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Abstract
Given a point set S = {s1, . . . , sn} in the unit square U = [0, 1]2, an anchored square packing is
a set of n interior-disjoint empty squares in U such that si is a corner of the ith square. The
reach R(S) of S is the set of points that may be covered by such a packing, that is, the union of
all empty squares anchored at points in S.

It is shown that area(R(S)) ≥ 1
2 for every finite set S ⊂ U , and this bound is the best possible.

The region R(S) can be computed in O(n log n) time. Finally, we prove that finding a maximum
area anchored square packing is NP-complete. This is the first hardness proof for a geometric
packing problem where the size of geometric objects in the packing is unrestricted.
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1 Introduction

Let S = {s1, . . . , sn} be a set of n points in the unit square U = [0, 1]2. We say that a
square q is empty if no point in S lies in the interior of q, and q is anchored at a point s if
one of its four corners is s. An anchored square packing for S is a set Q = {q1, . . . , qn} of
interior-disjoint axis-aligned empty squares that lie in U such that qi is anchored at si for
i = 1, . . . , n. A lower-left anchored square packing is an anchored square packing in which si

is the lower-left corner of qi, for i = 1, . . . , n [2]. No polynomial-time algorithm is known for
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Figure 1 (a) The reach R(S) for a set S of three points. (b) The area of R(S) is 1
2 for S = {( 1

2 , 0)}.
(c) The reach R(S) touches all four sides of U , and its area is 4

7 .

computing the maximum area of an anchored square packing for a given point set S; the
problem admits a PTAS using a reduction to the maximum weight independent set problem
(MWIS) [1]. The empty squares anchored at S do not always cover U entirely (Fig. 1(a)).
For finding a maximum anchored square packing for S, it suffices to consider the subset of
U that can be reached by anchored empty squares. Specifically, we define the reach of S,
denoted R(S), as the union of all axis-aligned empty squares contained in U and anchored
at some point in S.

For computing the reach R(S), we can take the union of all maximal empty squares
anchored at the points in S, as follows. For i = 1, . . . , n, let q1

i be the maximal axis-aligned
empty square in U whose lower-left corner is si, and similarly define q2

i , q3
i , and q4

i where si

is the upper-left, upper-right, and lower-right corner, respectively. We say that a point s ∈ S

blocks a square q1
i if s is incident to the top or right edge of q1

i . Similarly, s blocks qj
i if j = 2

(resp., 3, 4) and s is incident to the bottom or right edges of qj
i (resp., bottom or left edges,

or top or left edges of qj
i ). It is now clear that R(S) =

⋃n
i=1
⋃4

j=1 qj
i .

Summary of Results. We prove that for every finite set S ⊂ U , the area of R(S) is at
least 1

2 , and this bound is the best possible (Section 2). This settles in the affirmative a
conjecture by Balas et al. [1]. We show how to compute R(S) in O(n log n) time where
n = |S| (Section 3). We also show that finding the maximum area anchored square packing
for a given point set S is NP-complete (Section 4). This is the first NP-hardness result
for a geometric packing problem, where the size of the geometric objects in the packing is
unrestricted. We conclude with related open problems (Section 5).

Motivation and Related Previous Work. Geometric packing and covering problems have
a long and revered history, going back to Kepler’s problem about the densest packing of
congruent balls in Euclidean space. In a classical packing problem, we are given a container
region C, and a set O of geometric objects, and we wish to find a maximum subset O′ ⊆ O

such that congruent copies (or translates) of the objects in O′ fit in C without overlap.
Anchored variants, where each geometric object needs to contain a given point (anchor)

initially emerged in VLSI design, where the anchors represent the endpoints of wires. Allen
Freedman [15] conjectured that for every finite set S ⊂ [0, 1]2, which contains the origin (i.e.,
0 ∈ S), there is a lower-left anchored rectangle packing of area at least 1

2 . This lower bound
would match an easy upper bound construction, where n points are equally distributed on
the diagonal. The current best lower bound is 0.091 [6].
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More recently, a broad family of anchored packing problems were proposed in the context
of map labelling, where the anchors represent cities in a map, and axis-aligned rectangles
represent labels [7, 8, 9, 10, 12, 13, 16]. Variants of the problem require the anchor to be
at a corner, at a side, or anywhere in the rectangle, and the objective is to maximize the
number of labels that can be packed in the map. Many of these problems are known to be
NP-complete. However, in all previous reductions, the label boxes have a finite number of
possible sizes [7, 12, 16] or bounded size [8].

In this paper, we consider the variant of Freedman’s problem: We need to place an
axis-aligned square at each anchor, and the sizes of the squares are not given in advance.
Our objective is to maximize the total area of an anchored square packing. Balas et al. [1]
showed that a greedy strategy finds an 5

32 -approximation, and a reduction to MWIS yields a
PTAS that achieves an (1− ε)-approximation in time nO(1/ε). It is known that the number
of maximum-area square anchored packings may be exponential in n [2].

2 The Minimum Area of the Reach

In this section, we prove area(R(S)) ≥ 1
2 for every set S of n points in U = [0, 1]2 (Theorem 12).

Note that this bound is the best possible for all n ∈ N. Indeed, if S is the one-element set
S = {( 1

2 , 0)}, then area(R(S)) = 1
2 ; see Fig. 1(b). By placing n points in an ε-neighborhood

of ( 1
2 , 0) in U , we see that for every ε > 0 and every n ∈ N, there exists a set S of n points

in U such that area(R(S)) < 1
2 + ε. Note that in this construction all maximal anchored

squares are disjoint from the top side of U . Under this constraint, the upper bound 1
2 is

always attained.
We call a point set S trivial if R(S) is disjoint from one of the sides of U . The following

lemma shows that area(R(S)) ≥ 1
2 for trivial instances.

I Lemma 1. If R(S) does not touch one of the sides of U , then area(R(S)) ≥ 1
2 .

Proof. Without loss of generality, R(S) does not touch the top side of U . Let s = (x, y)
be a point in S with maximum y-coordinate. Consider the maximal empty squares whose
lower-left and lower-right corners are at s. Since these squares do not touch the top side of
U , and s has maximum y-coordinate, they touch the left and right side of U , respectively.
Consequently, their combined area is x2 + (1−x)2 ≥ ( 1

2 )2 + ( 1
2 )2 = 1

2 . Hence area(R(S)) ≥ 1
2 ,

as claimed. J

I Remark. We do not know of any nontrivial point set S that attains the lower bound
area(R(S)) ≥ 1

2 . Our best lower bound construction for nontrivial instances yields 4
7 ; see

Fig. 1(c).

Outline. In the remainder of Section 2, we consider nontrivial instances S ⊂ U . A gap is a
connected component of U \R(S), i.e., of the complement of the reach. Section 2.1 presents
basic properties of R(S) and its gaps, Section 2.2 classifies the possible gaps into five types,
and Section 2.3 presents a charging scheme in which we define for every gap C a region
RC ⊂ R(S) such that area(C) ≤ area(RC), and the regions RC are pairwise interior-disjoint.
Summation over all gaps yields area(U \R(S)) ≤

∑
C area(RC) ≤ area(R(S)), consequently

area(R(S)) ≥ 1
2 area(U) = 1

2 .

MFCS 2018
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Figure 2 (a) A point s ∈ S where the anchored square Qs does not contain c0. (b) If s ∈ ∂Q,
x(p) ≤ x(s), and y(p) ≤ y(s), then the lower-left square anchored at s contains p. (c) ∂Q intersects
the bottom side of U , and r lies below p.

2.1 Properties of the Reach and its Gaps
I Lemma 2. For every finite set S ⊂ U , the reach R(S) is connected.

Proof. Let S ⊂ U be a finite set, and let c0 = ( 1
2 , 1

2 ) denote the center of U . We show
that for each s ∈ S, there is an empty square Qs anchored at s that contains c0 or whose
boundary contains an anchor s′ ∈ S such that ‖s′ − c0‖∞ < ‖s− c0‖∞ (i.e., s′ is closer to c0
in L∞ norm than s). This implies that Qs (hence R(S)) contains a line segment from s to
c0 or to s′. Consequently, R(S) contains a polyline from every s ∈ S to c0. By the definition
of R(S), this further implies that R(S) contains a polyline between any two points in R(S).

It remains to prove the claim. Let s ∈ S. We may assume without loss of generality that
x(s) ≤ y(s) ≤ 1

2 , hence ‖s− c0‖∞ = 1
2 − x(s). Let Qs be the maximal empty square whose

lower-left corner is s. Refer to Fig. 2(a). If c0 ∈ Qs, then our proof is complete. Otherwise,
the side length of Qs is as < 1

2 − x(s), and there is a point s′ in the right or the top side of
Qs. The anchor s′ lies in the interior of the L∞-ball of radius 1

2 − x(s) centered at c0, hence
‖s′ − c0‖∞ < ‖s− c0‖∞, as claimed. J

I Lemma 3. For every point p ∈ U \ R(S), there exists a point r ∈ ∂U such that the line
segment pr is horizontal or vertical; and pr ⊂ U \R(S).

Proof. Let p ∈ U \R(S), and let Q be the maximal empty axis-aligned square centered at p.
Refer to Fig. 2(b). The boundary of this square, ∂Q, intersects S or ∂U , otherwise Q would
not be maximal.

First assume that ∂Q contains a point s ∈ S. Without loss of generality, we may assume
that x(p) ≤ x(s) and y(p) ≤ y(s). Since Q is empty, the maximal anchored square with
upper-right corner at s contains p, hence p ∈ R(S), contradicting our assumption that
p /∈ R(S).

We can now assume that ∂Q intersects ∂U . Without loss of generality, ∂Q ∩ ∂U lies
in the bottom side of both Q and U . Let r ∈ ∂Q ∩ ∂U be a point vertically below p (see
Fig. 2(c) for an example). Suppose that segment pr intersects R(S). Then some point x ∈ pr

lies in a square Q′ anchored at a point s ∈ S. Since Q is empty, the anchor s lies outside of Q,
and so the side length of Q′ is at least half of that of Q, i.e., the side length of Q′ is at least
|pr|. However, then y(s) ≥ |pr|, and the square Q′ contains the segment px, contradicting
our assumption that p /∈ R(S). Therefore there is no such point x ∈ pr, and pr ⊂ U \R(S),
as claimed. J
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Figure 3 (a) A corner gap of type 1. (b–d) Corner gaps of type 2.

I Corollary 4. The reach is simply connected.

Proof. By Lemma 2, R(S) is connected. Suppose that R(S) is not simply connected. Then
there is a gap C ⊂ U \R(S) such that ∂C ⊂ R(S). Let p ∈ int(C) be an arbitrary point in the
interior of C. By Lemma 3, there is a point r ∈ ∂U such that pr ⊂ U \R(S), which implies
r ∈ ∂C, contradicting our assumption ∂C ⊂ R(S). Therefore R(S) is simply connected, as
required. J

2.2 Classification of Gaps
In this section we classify the possible shapes of the gaps in U \R(S) for nontrivial instances.
To simplify our analysis, we assume that S ⊂ int(U) and no two points in S have the same
x- or y-coordinates. This assumption is justified by the following lemma.

I Lemma 5. If area(R(S)) ≥ 1
2 for every finite point set S ⊂ U such that S ⊂ int(U) and

no two points in S have the same x- or y-coordinates, then area(R(S)) ≥ 1
2 for every finite

point set S ⊂ U .

Proof. Let S ⊂ U be a finite point set that contains a point in ∂U or two points with
the same x- or y-coordinate. Let ε0 be minimum positive difference between x- and y-
coordinates of points in S. For every ε ∈ (0, ε0/2), translate each point in S by a random
vector of length at most ε into int(U). The resulting point set Sε lies in int(U) and
have distinct x- and y-coordinates with probability 1; the side length of each maximal
anchored square may increase by at most 2ε, but could decrease substantially. Consequently,
area(R(Sε)) ≤ area(R(S)) + 4nε, hence limε→0 area(R(Sε)) ≤ area(R(S)). J

We distinguish a corner gap, which is incident to a corner of U ; and a side gap, which is
adjacent to exactly one side of U . We show that every gap is bounded by ∂U and by squares
anchored at up to three points in S. We define five types of gaps (two types of corner gaps
and three types of side gaps). Each type is defined together with an empty rectangle B ⊂ U

and 1–3 anchors on the boundary of B. In each case, the gap is determined by the maximal
empty squares that lie entirely in B and are anchored at points in S ∩B.

We describe each type modulo the symmetry group of U (i.e., the dyhedral group D4).
Specifically, we restrict ourselves to corner gaps incident to the lower-left corner of U , and
side gaps adjacent to the bottom side of U . Reflection in the line x = y (resp., x = 1

2 )
maintains corner gaps incident to the origin (resp., side gaps along the bottom side of U);
and we describe only one variant modulo reflection.

1. Let 0 < c < b < 1. If B = [0, b]× [0, b + c] is empty and s1 = (b, c) ∈ S, then the squares
anchored at s1 form a corner gap [0, b− c]× [0, c]. See Fig. 3(a).

MFCS 2018
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(a) (c)
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b

U

s1 = (a, c)

a a + c

s2 = (b, d)

b

s3 = (a′, c′)

a′a′ − c′

Figure 4 (a–c) Side gaps of type 3, 4, and 5, respectively.

2. Let 0 < a < b < 1 and 0 < c < d < 1 such that c < b and d < b + c. If B = [0, b]× [0, d]
is empty and s1 = (b, c), s2 = (a, d) ∈ S, then the squares anchored at s1 and s2 form a
corner gap [0, b− c]× [0, min(c, d− a, d− b + a)] ∪ [0, min(a, b− c, b− d + c)]× [0, d− a].
See Fig. 3(b–d).

3. Let 0 < a < b < 1 and 0 < c, d < 1 with max(c, d) < b− a. If B = [a, b]× [0, min(c, d) +
(b− a)] is empty and s1 = (a, c), s2 = (b, d) ∈ S, then the squares anchored at s1 and s2
form a side gap [a + c, b− d]× [0, min(c, d)]. See Fig. 4(a).

4. Let 0 < a < b < 1 and 0 < c < d < 1 with b− a < d. If B = [a, b + d]× [0, d] is empty
and s1 = (a, c), s2 = (b, d) ∈ S, then the squares anchored at s1 and s2 form a side gap
[a + c, b]× [0, min(c, d− b + a)]. See Fig. 4(b).

5. Let 0 < a < b < a′ < 1 and 0 < c < c′ < d < 1 with b − a < d and a′ − b < d. If
B = [a, a′]× [0, d] is empty and s1 = (a, c), s2 = (b, d), s3 = (a′, c′) ∈ S, then the squares
anchored at s1, s2, and s3 form a side gap [a + c, min(b, a′ − d + c′)]× [0, min(c, d− b +
a)] ∪ [min(b, a′ − d + c′), a′ − c′]× [0, min(c′, d− a′ − b)]. See Fig. 4(c) for an example.

I Lemma 6. Every gap C of type 1–5 is disjoint from all empty squares that are anchored
at points in S and lie in the exterior of the defining box B of C. Consequently, C is bounded
by ∂U and some empty squares anchored at points in S ∩B.

Proof. In each of the five cases, ∂B ∩ int(U) is covered by empty squares anchored at the
points in S that define C. More precisely, each point in ∂B ∩ int(U) lies in an empty square
anchored at a point in S ∩ ∂B blocked by some point in S ∩ ∂B or ∂U ∩ ∂B. For si ∈ S

lying in the exterior of B, let Qi be a square anchored at si. If Qi intersects B, then its
interior intersects ∂B ∩ int(U), hence it intersects a square Qj anchored at some sj ∈ ∂B

and blocked by some point pj ∈ S ∩ ∂B or ∂U ∩ ∂B. Since int(Qi) contains neither sj nor
pj , we have Qi ∩B ⊂ Qj , and so Qi is disjoint from the gap C, as claimed. J

We prove the following classification result for the gaps in the full paper.

I Lemma 7. Every gap of a nontrivial instance is of one of the five types defined above.

It is now easy to check that the following properties hold for all five types of gaps.

I Corollary 8.
(i) Each gap is either a rectangle incident to a side of U , or the union of two rectangles

incident to the same side of U (which we call an L-shaped gap).
(ii) Every edge uv of a gap is contained in either ∂U or a maximal anchored rectangle.

Consequently, the square built on the side uv outside of the gap lies either outside of U

or in R(S).

We say that a point p ∈ ∂U is a lead if it is a vertex of a maximal anchored square qj
i ,

and psi is a diagonal of qj
i . We observe that one or two vertices of a gap along ∂U is a lead.
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C ⇒ C1 C2

Figure 5 An L-shaped side gap C is subdivided into two rectangles C1, C2 ∈ C∗.

I Corollary 9.
If C is a rectangular gap, then at least one endpoint of C ∩ ∂U is a lead,
otherwise both endpoints of C ∩ ∂U are leads.

2.3 Charging Scheme
For every gap C, we define a region RC ⊂ R(S); and then we show that area(RC) ≥ area(C)
and the regions RC are pairwise interior-disjoint.

For ease of exposition, we subdivide every L-shaped side gap C into two rectangles
C = C1 ∪ C2, then define interior-disjoint regions RC1 and RC2 , and let RC := RC1 ∪RC2 .
Specifically, let C∗ be a set of regions that contains: (1) all corner gaps, (2) all rectangular
side gaps, and (3) for each L-shaped side gap C, the two interior-disjoint rectangles C1 and
C2, such that C = C1 ∪C2 and both C1 and C2 have a common side with ∂U (see Fig. 5 for
an example). By Corollary 9, at least one vertex of every rectangle in C∗ is a lead, and two
vertices of every L-shaped corner gap in C∗ are leads.

We are now ready to define a region RC for each region C ∈ C∗.
Let C = (a, b, c, d) be a rectangle in C∗. Assume w.l.o.g. that bc is contained in the
bottom side of U , and c is a lead (a symmetric construction applies if bc is contained in
another side of U or b is the only lead). Refer to Fig. 6(a). Let `1 and `2 be lines of slope
1 passing through a and c, respectively. Let p1 be the intersection of `1 with the vertical
line through cd, and let p2 be the intersection of `2 with the horizontal line through
da. Let z1 (resp., z2) be the intersection point of `2 (resp., `1) with the line of slope −1
passing through p1 (resp., p2). Then RC is the smaller pentagon out of (a, d, c, z1, p1)
and (a, d, c, p2, z2).
Let C = (a, b, c, d, e, f) be a L-shaped corner gap in C∗. Assume w.l.o.g. that b is the
lower-left corner of U . By Corollary 9, both a and c are leads. Refer to Fig. 6(b). Let
`1 and `2 be lines of slope 1 passing through a and c, respectively. Let p1, p2 ∈ S be
the anchors on `1 and `2, respectively (which exist since both a and c are leads). Let z1
(resp., z2) be the intersection point of line `2 (resp., `1) with the line of slope −1 passing
through p1 (resp., p2). Then RC is the smaller heptagon out of (a, f, e, d, c, z1, p1) and
(a, f, e, d, c, p2, z2).

I Lemma 10. For every C ∈ C∗, we have:
(P1) RC ⊆ R(S),
(P2) int(RC) does not contain any anchors, and
(P3) area(C) ≤ area(RC).

Proof. The region C ∈ C∗ is either a gap or a rectangle within an L-shaped side gap; Fig. 6(b).
Let C∗ be the gap that contains C, and B the box defining the gap C∗. For all five types of
gaps, int(B) does not contain any anchor, and B \ C∗ ⊂ R(S). By Corollaries 8(ii) and 9,
the points p1 and p2 lie in B. Consequently, RC ⊂ B, hence RC ⊂ B \ C∗. This confirms
(P1) and (P2).

To prove (P3), we distinguish two cases. First assume that C is an x× y rectangle. Let
T be an isosceles right triangle whose hypotenuse has length x + y. It is easy to check that
area(C) ≤ area(T ). Indeed, area(T ) =

( 1
2 (x + y)

)2 = 1
2

(
x2

2 + xy + y2

2

)
≥ xy = area(C).

MFCS 2018
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Figure 6 Region RC . (a) C ∈ C∗ is a rectangle. (b) C ∈ C∗ is an L-shaped corner gap.

By definition, RC contains a triangle congruent to T , consequently area(C) ≤ area(T ) ≤
area(RC), as claimed.

Next assume that C ∈ C∗ is an L-shaped corner gap; Fig. 6(b). Assume that C is formed
by three interior-disjoint axis-aligned rectangles defined by diagonals ae, be, and ce. Let
their dimensions respectively be x× y, x× z, and w × z. Let T1 and T2 be isosceles right
triangles whose hypotenuses are of length x + y and w + z, respectively. Let T3 and T4 be
isosceles right triangles whose legs are of length x and z, respectively. By definition, RC

contains interior-disjoint triangles congruent to T1, T2, T3, and T4: the hypotenuses of the
respective triangles are in the same supporting lines as ef , ed, ap1, and cp2 respectively.
Using the same argument as in the previous case, we can show that area(T1) and area(T2)
are, respectively, greater or equal than the areas of the x× y and w× z rectangles. It remains
to show that area(T3) + area(T4) is greater or equal than the area of the x× z rectangle. By
definition, we have area(T3) + area(T4) =

(
x2

2 + z2

2

)
≥ xz for all x, z > 0. J

We prove that the regions RC , C ∈ C∗, are pairwise interior-disjoint in the full paper.

I Lemma 11. For every two regions C, C ′ ∈ C∗, C 6= C ′, we have int(RC) ∩ int(RC′) = ∅.

I Theorem 12. For every finite set S ⊂ U , we have area(R(S)) ≥ 1
2 , and this bound is the

best possible.

Proof. By Lemma 5, it suffices to prove the lower bound when S ⊂ int(U) and no two
points in S have the same x- or y-coordinate. For all gaps C ⊂ U \ R(S)), we have
defined interior-disjoint regions RC ⊂ R(S) such that area(C) ≤ area(RC). Consequently,∑

C area(C) ≤
∑

C area(RC) ≤ area(R(S)), which immediately yields area(R(S)) = 1 −∑
C area(C) ≥ 1− area(R(S)), and area(R(S)) ≥ 1/2, as claimed. This bound is the best

possible: the point set S = {( 1
2 , 0)} attains area(R(S)) = 1

2 . J

3 Algorithm for Computing the Reach

In this section, we show how to compute efficiently the reach of a given point set.

I Theorem 13. For a set S ⊂ U of n points, R(S) can be computed in O(n log n) time.
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Figure 7 A set S of 6 anchors in U = [0, 1]2. (a) The maximal empty anchored square q1
2 ; (b)

wedge W R
2 ; and (c) wedge W T

2 .

Recall that, for a set S = {s1, . . . , sn}, the reach is defined as a union of 4n squares,
R(S) =

⋃n
i=1
⋃4

j=1 qj
i , where q1

i is the maximal axis-aligned empty square in U whose lower-
left corner is si, and q2

i , q3
i , and q4

i are defined similarly where si is the upper-left, upper-right,
and lower-right corner, respectively. Since any two squares cross in at most two points,
the 4n squares qj

i (i = 1, . . . , n and j = 1, . . . , 4) form a pseudo-circle arrangement. It is
well known that the union of O(n) pseudo-circles has O(n) vertices [11]. The union of 4n

axis-aligned squares can be computed by a sweep-line algorithm in O(n log n) time [3].
We note that Bentley’s sweep-line algorithm can compute the area of the union of n

axis-aligned rectangles in O(n log n) time (without computing the union itself, which may
have Θ(n2) complexity). Computing the volume of the union of axis-aligned hyper-rectangles
in Rd is known as Klee’s measure problem, and the current best algorithms [4] for d ≥ 3 run
in O(nd/2) time in general, and in O(n(d+1)/3 polylog(n)) time for hypercubes (see also [17]).

It remains to compute the 4n anchored maximal empty squares qj
i . We focus on the

n lower-left anchored squares q1
i (i = 1, . . . , n), the other three types can be computed

analogously. For every i = 1, . . . , n, the lower-left corner of q1
i is si, and its left or top side

contains another anchor or a point in ∂U ; we say that this point is the blocker of q1
i . For

each i, we find a first point that may block the square q1
i on the left and on the top side,

independently. The blocker of q1
i is the points closest to si in L∞ norm. We continue with the

details. We define two wedges with apex at the origin: Let W L = {(x, y) ∈ R2 : 0 < y < x}
and W T = {(x, y) ∈ R2 : 0 < x < y}; see Fig. 7(b–c). The Minkowski sums W L

i := si + WL

and W T
i := si + W T are the translates of these wedges with apex at si. Let ri be a point of

minimum x-coordinate in W L
i ∩ (S ∪ ∂U); and let ti be a point of minimum y-coordinate

in W T
i ∩ (S ∪ ∂U). Then the blocker of q1

i is either ri or ti, whichever is closer to si in L∞
norm.

For every i = 1, . . . , n, we find points ri and ti, independently. Consider the points
ri ∈ W R

i , for i = 1, . . . , n (the case of the points ti ∈ W T
t is analogous). We use a data

structure originally developed for computing Θ-graphs in the context of geometric spanners
by Narasimhan and Smid [14, Section 4.1.2]. They developed the following dynamic data
structure for n points in the plane:

I Lemma 14 ([14], Lemma 4.1.9). Let H be a nonvertical line through the origin. There is
a data structure that maintains a set P of n points in the plane and supports the following
queries: (i) MinBelow(p): Given a query point p ∈ P , compute a point with the minimum
x-coordinate among all points in P that are below p + H; (ii) insert a point into P ; (iii)
delete a point from P . The data structure has O(n) space, O(n log n) preprocessing time, and
O(log n) query time.
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I Corollary 15. Given a point set S = {si : i = 1 . . . , n} ⊂ U , the points ri and ti

(i = 1, . . . , n) can be computed in O(n log n) time. Consequently, the squares q1
i can also be

computed in O(n log n) time.

Proof. Assume that S is sorted in decreasing order by their y-coordinates. We use the data
structure in Lemma 14 with the line H : y = x as follows. Initially P = ∅. For i = 1, . . . , n,
we insert si into P . If MinBelow(si) returns a point in P , then let this be ri, otherwise let
ri be the point in the right side of U that has the same y-coordinate as si. Since P contains
all points in S whose y-coordinates are greater or equal to that of si, if wedge W R

i contains
any anchor, then MinBelow(si) returns one with the minimum x-coordinate. This shows
that ri is computed correctly for all i = 1, . . . , n.

The points ti (i = 1, . . . , n) can be computed analogously in O(n log n) time. In O(1)
additional time for each i = 1, . . . , n, we can compare ri and ti, find the blocker of q1

i , and
determine the maximal anchored square q1

i . J

Proof of Theorem 13. By a repeated application of Corollary 15, we can compute all 4n

anchored squares qj
i (i = 1, . . . , n; j = 1, . . . , 4). As noted above, a sweep-line algorithm can

compute the union R(S) =
⋃n

i=1
⋃4

j=1 qj
i in O(n log n) time. This completes the proof. J

4 NP-Hardness of Maximum-Area Anchored Square Packings

We now prove that the maximum-area anchored square packing problem is NP-complete. We
define the decision version of the problem as follows. Instead of the unit square [0, 1]2, we
use the square U = [0, W ]2, for some integer W > 0. For a finite set S ⊂ [0, W ]2 of anchors
with integer coordinates, we ask whether there is an anchored square packing of area W 2.

We prove NP-hardness by a reduction from Planar-Monotone-3SAT (described below).
For every instance of Planar-Monotone-3SAT, we construct an instance S ⊂ [0, W ]2.
We say that an anchored empty square is forced if every packing of area W 2 contains it. An
anchor in S is forced if it is the anchor of a forced square; otherwise it is free. A forced
square A and its anchor s ∈ S form a forced pair (A, s). We construct an instance in which
most of the anchors are forced, and a small number of anchors encode the truth value of the
variables in a 3SAT instance.

To prove that the two instances are equivalent, we shall argue that a set of squares and
anchors are forced. In an intermediate step, we assume that F = {(Ai, si) : i = 1 . . . , f} is a
set of forced square-anchor pairs, and we would like to show that another square-anchor pair
(A, s) is also forced. Let P = U \

⋃f
i=1 Ai be the complement of the forced squares in F . By

construction, P is an orthogonal polygon (possibly with holes). An anchor s is undecided if
there is no forced pair (A, s) anchored at s in F (i.e., s is either free or its forced pair is not
in F).

We show (Lemma 16) that the following two properties each imply that the pair (A, s) is
forced (given that all pairs in F are forced). We define both properties for the orientations
shown in Fig. 8, but they generalize to all other orientations obtained through the symmetry
group of U . Let s ∈ S, and let A be a maximal empty square anchored at s such that
int(A) ⊂ P . Without loss of generality, assume that s is the upper-right corner of A.

1. The lower-left corner of A is a convex vertex of P and there is no undecided anchor in
the closure of the bottom and left edges of A.
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Figure 8 Identifying forced points. (a) Property 1. (b) Property 2.

2. The lower-left corner of A is a convex vertex of P , the side length of A is greater than
1, and the bottom edge of A is contained in ∂P . There is a unique undecided anchor
s′ ∈ ∂A located one unit above the lower-left corner of A. There is no undecided anchor
one unit to the right of s or to the right of the lower-right corner of A.

I Lemma 16. Given a set of forced pairs F = {(Ai, si) : i = 1 . . . , f}, if a pair (A, s) has
properties 1 or 2, then (A, s) is a forced pair.

Proof. Suppose, to the contrary, that there is a anchored square packing Q of area W 2

that does not use the square A anchored at s. Let B ⊆ A be the unit square incident to
the lower-left corner of A. Since all anchors have integer coordinates, every empty square
containing B is also contained in A. If a pair (A, s) has property 1, apart from A, no such
empty square has a corner at an undecided anchor and, hence, B cannot be covered. If a pair
(A, s) has property 2, B must be covered by a square anchored at its upper-left corner, which
is undecided by hypothesis. Hence, B ∈ Q. Let B′ be a unit square with integer coordinates
to the right of B. Then the maximal empty square in P \B containing B′ satisfies property 1,
but that there is no point at its upper-right corner. In this case, B′ is not covered. J

I Theorem 17. It is NP-hard to compute the maximum area anchored square packing of a
given set S of n anchors with integer coordinates in a square U = [0, W ]2.

Proof. We reduce from Planar-Monotone-3SAT which is NP-complete [5]. An instance
of such problem consists of a boolean formula Φ in 3CNF with n variables {x1, . . . , xn} and
m clauses, and a planar rectilinear drawing of the a bipartite graph of Φ. The drawing given
by an Planar-Monotone-3SAT instance represents variables and clauses by rectangles,
and edges by vertical line segments. It has the additional property that the rectangles of
variables (and only variables) intersect the line y = 0 and the rectangles of clauses lies in
the upper (resp., lower) half-plane contain only positive (resp., negative) literals. A literal is
called negative if it is the negation of a variable, and positive otherwise. We need to decide
whether we can satisfy all m clauses, each of which is a disjunction of three literals.

For a given instance of Planar-Monotone-3SAT, we construct an instance S ⊂ [0, W ]2
of the maximal area anchored square packing problem, and then show that the two instances
are equivalent. We first modify the rectilinear graph of the Planar-Monotone-3SAT
instance in the following way. Replace each rectangle by a cycle along its boundary and
denote by G the resulting geometric graph. Delete the left, right, and the top (resp., bottom)
edges of the rectangles representing positive (resp., negative) clauses. Each clause is now
represented by a horizontal segment (a path of length 2 in G). We designate the middle
vertex of this path, which has degree 3, as a clause vertex. For each cycle in G that represents
a variable, delete the right vertical edges, and designate the left vertical edge as a variable
edge. All remaining edges in G called wires and all remaining vertices of degree 3 are called
split vertices. We orient the wires such that they form directed paths from the variable edges
to clause vertices. Assume that the feature size of the resulting rectilinear graph is 1 and the
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(a) (b) (c) (d)

(e) (f) (g) (h) (i)

Figure 9 Gadgets. (a) is a filler gadget, (b–c) are wire gadgets, (d–g) are turn gadgets, (h) is a
split gadget, and (i) is a clause gadget. The rhombus in (h) represents 2 anchors placed at the same
position.

Figure 10 Square packing for the split gadget connected to negative wires.

side length of a minimum enclosing axis-aligned square is k. We set W = 48k + 48 and let
U = [0, W ]2. Scale up the drawing by a factor of 48 and place it in U so that every vertex is
at distance at least 24 from ∂U .

We tile U with orthogonal polygons. Every tile is congruent to one of the tiles shown in
Fig. 9. We call these tiles gadgets: (a) is a filler gadget, (b–c) are wire gadgets, (d–g) are
turn gadgets, (h) is a split gadget, and (i) is a clause gadget. The filer gadget is a 12× 12
square, all other tiles are constructed from a 12× 12 square by possibly adding or deleting
1× 2 rectangular features in two or three side of the squares. In a tiling of [0, W ]2, each such
feature matches a feature of an adjacent tile. Choose a tile for each variable that contains
part of the variable edge and add the anchors shown in Fig. 9(b) (only the star contained
in the 12× 12 square is added). Do the same for split and clauses using the tiles shown in
Fig. 9(h) and (i), respectively. Connect the gadgets as they are connected in the original
drawing using wires and turns. The directions of the wires attached to split and clause
gadgets are indicated by blue arrows in Fig. 9. For all remaining tiles, we use filler gadgets
with one anchor. This completes the description of the instance S ⊂ [0, W ]2.

We now prove that a Planar-Monotone-3SAT instance admits a positive solution if
and only if the corresponding point set S ⊂ [0, W ]2 admits an anchored square packing of
area W 2.
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(a) (b) (c) (d)

(e) (f) (g) (h) (i)

Figure 11 Forced squares and anchors.

Assume that the Planar-Monotone-3SAT instance admits a positive solution. We
show that the corresponding instance S ⊂ [0, W ]2 admits an anchored square packing of area
W 2. Choose every orange square in each gadget assigning its anchor as the origin of the arrow
contained in it (as shown in Fig. 9). For each of the n wire gadgets placed on variable edges,
if the corresponding variable is assigned true (resp., false) add all blue squares assigning
its anchor as the only point on its bottom (resp., top) edge. Every connected component
formed by blue squares represents a path of wires. We say that a wire is positive if it is in
the upper half of U and its corresponding variable is assigned true, or if it is in the lower
half of U and its corresponding variable is assigned false. A wire is negative otherwise. If a
wire is positive (resp., negative), assign the corner that is behind (resp., ahead of) the blue
square as its anchor, considering the direction of the wire. For split gadgets connected to
positive wires assign the top-left corner of the red square as its anchor. For negative wires,
the red square is reached by four equal squares as shown in Fig. 10. Since there exists at
least one positive wire connected to a clause vertex, there will be at least one point in a
corner of the red square in the clause gadget that has not yet been assigned a square. We
complete the square packing by adding such a square with a corresponding anchor. Since
the anchored squares cover all gadgets, the overall area of the square packing is W 2.

Assume that the anchored square packing instance S ⊂ [0, W ]2 admits a positive solution
(of area W 2). Recall that [0, W ]2 is tiled with gadgets. Sort them in lexicographic order by
the coordinates of their lower-left corners (i.e., the first gadget is incident to the origin). We
use Lemma 16 to prove the following property for each gadget:

Property (i). If the left and bottom boundaries are part of the perimeter of a forced
polygon P and contain no free anchor relative to P except for the points shown by a
star, then (i.a) every orange and blue square shown in Fig. 9 in the corresponding
gadget is forced; and (i.b) if P ′ is the union of P and the orange and blue squares
inside the gadget, then there is no free anchor relative to P ′ on the boundary of the
gadget except for points shown by a star.

Initially, in every gadget, we can determine at least one pair of a forced square and a
corresponding forced anchor using Lemma 16. Fig. 11 shows the result of recursively adding
a forced square into the forced polygon, and applying Lemma 16 to another pair until there
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are no more forced pairs in the gadget. We now show that all blue squares are forced. In each
case, we can take the lower-left blue square and conclude that if the square packing covers
it entirely, then it is covered by a square anchored at one of its corners. After we add this
square to the forced polygon P , the same argument holds for every lower-left blue square not
in P . Consequently, all blue squares are forced. The remaining orange squares are forced by
recursively applying Lemma 16. Then, if property (i) is satisfied, every gadget satisfies (i.a)
and (i.b). Property (i) is trivially satisfied for the lower-left gadget and inductively satisfied
by assuming that all gadgets to the left and below satisfy (i.a) and (i.b).

We now show how to convert a square packing of area W 2 into a solution of the Planar-
Monotone-3SAT instance. Wire gadgets have two points indicates by a star: one that is
ahead and one behind using the direction of the wire (recall that the direction points from
the variable edge to the clause). A wire gadget that does not use the star that is ahead in its
direction as an anchor for one of the squares contained in it is called positive. A wire gadget
is called negative otherwise. For all wire gadgets satisfying (i.a) and (i.b), if a star is not used
as an anchor for a square in the gadget, then the other point marked by a star must be used
as anchor in this gadget. This implies that, for a pair of adjacent wire gadgets, if the one
ahead in the wire direction is positive, so is the other gadget. Now assume that one of the
outputs of the split gadget satisfying (i.a) and (i.b) is connected to a positive gadget. A point
in the middle of an edge of the red square in Fig. 11(h) must be used as an anchor of a blue
square. Then, the only way to cover all the red area is to use a single square anchored at its
upper-left corner. Therefore, the wire connected to the input of the split gadget must also be
positive. Finally, assume that the red square in a clause gadget that satisfies (i.a) and (i.b)
(see Fig. 11(i)) is covered. Then, it must be anchored at one of its corners. If it is anchored
at the upper-left (resp., bottom-left, bottom-right) corner, then the star at the top (resp.,
left, bottom) of the gadget is used as an anchor of a blue square in this gadget. Therefore,
it must be adjacent to a positive wire. Combining all arguments, we set a variable true if
its first wire gadget (that was placed on the variable edge) is positive and false otherwise,
and then this assignment will satisfy the boolean formula of the Planar-Monotone-3SAT
instance. J

5 Open Problems

We have shown that at least half of the area of the unit square U = [0, 1]2 can be reached by
empty squares anchored at S for any finite set S ⊂ U , and this bound is the best possible. We
have also given the first NP-hardness proof for a packing problem over geometric objects of
arbitrary sizes. Our results raise several intriguing open problems. Does our result generalize
to higher dimensions, that is, is there a lower bound for the maximal volume covered by
empty hypercubes anchored at a finite set of points in [0, 1]d for d > 2? Axis-aligned squares
are balls in L∞-norm: Over all finite sets S of anchors in a unit-diameter ball U in Lp-norm,
p ≥ 1, what is the maximum area of a packing of Lp-balls that each contain an anchor?
Is there a polynomial-time algorithm for computing the minimum area lower-left anchored
square packing for a given set S of n points in the unit square [0, 1]2? Is it NP-hard to
compute the maximum area anchored rectangle packing of a given set S ⊂ [0, 1]2? For the
last two problems, simple greedy strategies achieve constant-factor approximations [6], and a
QPTAS is available for rectangles and a PTAS for squares [1].
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