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Abstract
In this paper we use the theory of computing to study fractal dimensions of projections in
Euclidean spaces. A fundamental result in fractal geometry is Marstrand’s projection theorem,
which shows that for every analytic set E, for almost every line L, the Hausdorff dimension of
the orthogonal projection of E onto L is maximal.

We use Kolmogorov complexity to give two new results on the Hausdorff and packing dimen-
sions of orthogonal projections onto lines. The first shows that the conclusion of Marstrand’s
theorem holds whenever the Hausdorff and packing dimensions agree on the set E, even if E is
not analytic. Our second result gives a lower bound on the packing dimension of projections of
arbitrary sets. Finally, we give a new proof of Marstrand’s theorem using the theory of computing.
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1 Introduction

The field of fractal geometry studies the fine-grained structure of irregular sets. Of particular
importance are fractal dimensions, especially the Hausdorff dimension, dimH(E), and packing
dimension, dimP (E), of sets E ⊆ Rn. Intuitively, these dimensions are alternative notions of
size that allow us to quantitatively classify sets of measure zero. The books of Falconer [8]
and Mattila [23] provide an excellent introduction to this field.

A fundamental problem in fractal geometry is determining how projection mappings
affect dimension [9, 24]. Here we study orthogonal projections of sets onto lines. Let e be a
point on the unit (n− 1)-sphere Sn−1, and let Le be the line through the origin and e. The
projection of E onto Le is the set

projeE = {e · x : x ∈ E} ,

where e · x is the usual dot product,
∑n
i=1 eixi, for e = (e1, . . . , en) and x = (x1, . . . , xn).

We restrict our attention to lines through the origin because translating the line Le will not
affect the Hausdorff or packing dimension of the projection.

Notice that projeE ⊆ R, so the Hausdorff dimension of projeE is at most 1. It is also
simple to show that dimH(projeE) cannot exceed dimH(E) [8]. Given these bounds, it
is natural to ask whether dimH(projeE) = min{dimH(E), 1}. Choosing E to be a line
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orthogonal to Le shows that this equality does not hold in general. However, a fundamental
theorem due to Marstrand [21] states that, if E ⊆ R2 is analytic, then for almost all e ∈ S1,
the Hausdorff dimension of projeE is maximal. Subsequently, Mattila [22] showed that the
conclusion of Marstrand’s theorem also holds in higher-dimensional Euclidean spaces.

I Theorem 1 ([21, 22]). Let E ⊆ Rn be an analytic set with dimH(E) = s. Then for almost
every e ∈ Sn−1,

dimH(projeE) = min{s, 1} .

In recent decades, the study of projections has become increasingly central to fractal
geometry [9]. The most prominent technique has been the potential theoretic approach
of Kaufman [14]. While this is a very powerful tool in studying the dimension of a set, it
requires that the set be analytic. We will show that techniques from theoretical computer
science can circumvent this requirement in some cases.

Our approach to this problem is rooted in the effectivizations of Hausdorff dimension [16]
by J. Lutz and of packing dimension by Athreya et al. [1]. The original purpose of these
effective dimension concepts was to quantify the size of complexity classes, but they also
yield geometrically meaningful definitions of dimension for individual points in Rn [18]. More
recently, J. Lutz and N. Lutz established a bridge from effective dimensions back to classical
fractal geometry by showing that the Hausdorff and packing dimensions of a set E ⊆ Rn are
characterized by the corresponding effective dimensions of the individual points in E, taken
relative to an appropriate oracle [17].

This result, a point-to-set principle (Theorem 7 below), allows researchers to use tools from
algorithmic information theory to study problems in classical fractal geometry. Although this
connection has only recently been established, there have been several results demonstrating
the usefulness of the point-to-set principle: J. Lutz and N. Lutz [17] applied it to give a new
proof of Davies’ theorem [4] on the Hausdorff dimension of Kakeya sets in the plane; N. Lutz
and Stull [20] applied it to the dimensions of points on lines in R2 to give improved bounds
on generalized Furstenberg sets; and N. Lutz [19] used it to show that a fundamental bound
on the Hausdorff dimension of intersecting fractals holds for arbitrary sets.

In this paper, we use algorithmic information theory, via the point-to-set principle, to
study the Hausdorff and packing dimensions of orthogonal projections onto lines. Given the
statement of Theorem 1, it is natural to ask whether the requirement that E is analytic
can be removed. Without further conditions, it cannot; Davies [5] showed that, assuming
the continuum hypothesis, there are non-analytic sets for which Theorem 1 fails. Indeed,
Davies constructed a set E∗ ⊆ R2 such that dimH(E∗) = 1 but dimH(projeE∗) = 0 for
every e ∈ S1.

Our first main theorem shows that if the Hausdorff and packing dimensions of E agree,
then we can remove the requirement that E is analytic.

I Theorem 2. Let E ⊆ Rn be any set with dimH(E) = dimP (E) = s. Then for almost
every e ∈ Sn−1,

dimH(projeE) = min{s, 1} .

Our second main theorem applies to projections of arbitrary sets. Davies’ construction
precludes any non-trivial lower bound on the Hausdorff dimension of projections of arbitrary
sets, but we are able to give a lower bound on the packing dimension.

I Theorem 3. Let E ⊆ Rn be any set with dimH(E) = s. Then for almost every e ∈ Sn−1,

dimP (projeE) ≥ min{s, 1} .
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Lower bounds on the packing dimension of projections have been extensively studied for
restricted classes sets such as Borel and analytic [6, 7, 10, 12, 26]. To the best of our
knowledge, our result is the first non-trivial lower bound of this type for arbitrary sets. It is
known that the analogue of Marstrand’s theorem for packing dimension does not hold [13].

Our other contribution is a new proof of Marstrand’s projection theorem (Theorem 1). In
addition to showing the power of theoretical computer science in geometric measure theory,
this proof introduces a new technique for further research in this area. We show that the
assumption that E is analytic allows us to use an earlier, restricted point-to-set principle
due to J. Lutz [16] and Hitchcock [11]. While less general than that of J. Lutz and N. Lutz,
it is sufficient for this application and involves a simpler oracle. Informally, this allows us to
reverse the order of quantifiers in the statement of Theorem 1. This will be both beneficial
for further research, as well as clarifying the role of the analytic assumption of E.

2 Preliminaries

We begin with a brief description of algorithmic information quantities and their relationships
to Hausdorff and packing dimensions.

2.1 Kolmogorov Complexity in Discrete and Continuous Domains
The conditional Kolmogorov complexity of a binary string σ ∈ {0, 1}∗ given a binary string
τ ∈ {0, 1}∗ is the length of the shortest program π that will output σ given τ as input.
Formally, the conditional Kolmogorov complexity of σ given τ is

K(σ | τ) = min
π∈{0,1}∗

{`(π) : U(π, τ) = σ} ,

where U is a fixed universal prefix-free Turing machine and `(π) is the length of π. Any
π that achieves this minimum is said to testify to, or be a witness to, the value K(σ | τ).
The Kolmogorov complexity of a binary string σ is K(σ) = K(σ | λ), where λ is the empty
string. These definitions extend naturally to other finite data objects, e.g., vectors in Qn,
via standard binary encodings; see [15] for details.

One of the most useful properties of Kolmogorov complexity is that it obeys the symmetry
of information. That is, for every σ, τ ∈ {0, 1}∗,

K(σ, τ) = K(σ) +K(τ | σ,K(σ)) +O(1) .

Kolmogorov complexity can be naturally extended to points in Euclidean space, as we
now describe. The Kolmogorov complexity of a point x ∈ Rm at precision r ∈ N is the length
of the shortest program π that outputs a precision-r rational estimate for x. Formally, this is

Kr(x) = min {K(p) : p ∈ B2−r (x) ∩Qm} ,

where Bε(x) denotes the open ball of radius ε centered on x. The conditional Kolmogorov
complexity of x at precision r given y ∈ Rn at precision s ∈ Rn is

Kr,s(x | y) = max
{

min{Kr(p | q) : p ∈ B2−r (x) ∩Qm} : q ∈ B2−s(y) ∩Qn
}
.

When the precisions r and s are equal, we abbreviate Kr,r(x | y) by Kr(x | y). Given any
positive real as a precision parameter, we round up to the next integer; for example, Kr(x)
denotes Kdre(x) whenever r ∈ (0,∞).

We will need the following technical lemmas which show that versions of the symmetry
of information hold for Kolmogorov complexity in Rn. The first Lemma 4 was proved in our
previous work [20].

MFCS 2018
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I Lemma 4 ([20]). For every m,n ∈ N, x ∈ Rm, y ∈ Rn, and r, s ∈ N with r ≥ s,
i. |Kr(x | y) +Kr(y)−Kr(x, y)

∣∣ ≤ O(log r) +O(log log ‖y‖) .
ii. |Kr,s(x | x) +Ks(x)−Kr(x)| ≤ O(log r) +O(log log ‖x‖) .

I Lemma 5. Let m,n ∈ N, x ∈ Rm, z ∈ Rn, ε > 0 and r ∈ N. If Kx
r (z) ≥ Kr(z)− εr, then

the following hold for all s ≤ r.
i. |Kx

s (z)−Ks(z)| ≤ εr −O(log r) .
ii. |Ks,r(x | z)−Ks(x)| ≤ εr −O(log r) .

Proof. We first prove item (i). By Lemma 4(ii),

εr ≥ Kr(z)−Kx
r (z)

≥ Ks(z) +Kr,s(z | z)− (Kx
s (z) +Kx

r,s(z | z))−O(log r)
≥ Ks(z)−Kx

s (z) +Kr,s(z | z)−Kx
r,s(z | z)−O(log r) .

Rearranging, this implies that

Ks(z)−Kx
s (z) ≤ εr +Kx

r,s(z | z)−Kr,s(z | z) +O(log r)
≤ εr +O(log r) ,

and the proof of item (i) is complete.
To prove item (ii), by Lemma 4(i) we have

εr ≥ Kr(z)−Kr(z | x)
≥ Kr(z)− (Kr(z, x)−Kr(x))−O(log r)
≥ Kr(z)− (Kr(z) +Kr(x | z)−Kr(x))−O(log r)
= Kr(x)−Kr(x | z)−O(log r) .

Therefore, by Lemma 4(ii),

Ks(x)−Ks,r(x | z) = Kr(x)−Kr,s(x | x)− (Kr(x | z)−Kr,s,r(x | x, z))
≤ εr +O(log r) +Kr,s,r(x | x, z)−Kr,s(x | x)
≤ εr +O(log r) ,

and the proof is complete. J

2.2 Effective Hausdorff and Packing Dimensions
J. Lutz [16] initiated the study of effective dimensions by effectivizing Hausdorff dimension
using betting strategies called gales, which generalize martingales. Subsequently, Athreya et
al. defined effective packing dimension, also using gales [1]. Mayordomo showed that effective
Hausdorff dimension can be characterized using Kolmogorov complexity [25], and Mayordomo
and J. Lutz [18] showed that effective packing dimension can also be characterized in this
way. In this paper, we use these characterizations as definitions. The effective Hausdorff
dimension and effective packing dimension of a point x ∈ Rn are

dim(x) = lim inf
r→∞

Kr(x)
r

and Dim(x) = lim sup
r→∞

Kr(x)
r

.

Intuitively, these dimensions measure the density of algorithmic information in the point
x. J. Lutz and N. Lutz [17] generalized these definitions by defining the lower and upper
conditional dimension of x ∈ Rm given y ∈ Rn as

dim(x | y) = lim inf
r→∞

Kr(x | y)
r

and Dim(x | y) = lim sup
r→∞

Kr(x | y)
r

.
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2.3 The Point-to-Set Principle
By letting the underlying fixed prefix-free Turing machine U be a universal oracle machine,
we may relativize the definitions in this section to an arbitrary oracle set A ⊆ N. The
definitions of KA(σ|τ), KA(σ), KA

r (x), KA
r (x | y), dimA(x), DimA(x) dimA(x | y), and

DimA(x | y) are then all identical to their unrelativized versions, except that U is given
oracle access to A. We will frequently consider the complexity of a point x ∈ Rn relative to
a point y ∈ Rm, i.e., relative to an oracle set Ay that encodes the binary expansion of y is a
standard way. We then write Ky

r (x) for KAy
r (x).

The following point-to-set principles show that the classical notions of Hausdorff and
packing dimension of a set can be characterized by the effective dimension of its individual
points. The first point-to-set principle we use here, which applies to a restricted class of sets,
was implicitly proven by J. Lutz [16] and Hitchcock [11].

A set E ⊆ Rn is a Σ0
2 set if it is a countable union of closed sets. The computable

analogue of Σ0
2 is the class Σ0

2, consisting of sets E ⊆ Rn such that there is a uniformly
computable sequence {Ci}i∈N satisfying

E =
∞⋃
i=0

Ci ,

and each set Ci is computably closed, meaning that its complement is the union of a computably
enumerable set of open balls with rational radii and centers. We will use the fact that every
Σ0

2 set is Σ0
2 relative to some oracle.

I Theorem 6 ([16, 11]). Let E ⊆ Rn and A ⊆ N be such that E is a Σ0
2 set relative to A.

Then

dimH(E) = sup
x∈E

dimA(x) .

J. Lutz and N. Lutz [17] showed that the Hausdorff and packing dimension of any set
E ⊆ Rn is characterized by the corresponding effective dimensions of individual points,
relativized to an oracle that is optimal for the set E.

I Theorem 7 (Point-to-set principle [17]). Let n ∈ N and E ⊆ Rn. Then

dimH(E) = min
A⊆N

sup
x∈E

dimA(x), and

dimP (E) = min
A⊆N

sup
x∈E

DimA(x) .

It is worth noting that the point-to-set principle is taking the minimum over all oracles, not
simply the infimum.

3 Bounding the Complexity of Projections

In this section, we will focus on bounding the Kolmogorov complexity of a projected point at
a given precision. In Section 4, we will use these results in conjunction with the point-to-set
principle to prove our main theorems.

We begin by giving intuition of the main idea behind this lower bound. We will show
that under certain conditions, given an approximation of e · z and e, we can compute an
approximation of the original point z. Informally, these conditions are the following.
1. The complexity Kr(z) of the original point is small.
2. If e · w = e · z, then either Kr(w) is large, or w is close to z.

MFCS 2018
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Assuming that both conditions are satisfied, we can recover z from e · z by enumerating over
all points u of low complexity such that e · u = e · z. By our assumption, any such point u
must be a good approximation of z. We now formally state and prove this lemma.

I Lemma 8. Suppose that z ∈ Rn e ∈ Sn−1, r ∈ N, δ ∈ R+, and ε, η ∈ Q+ satisfy
r ≥ log(2‖z‖+ 5) + 1 and the following conditions.
i. Kr(z) ≤ (η + ε) r.
ii. For every w ∈ B1(z) such that e · w = e · z,

Kr(w) ≥ (η − ε) r + (r − t)δ ,

whenever t = − log ‖z − w‖ ∈ (0, r].
Then for every oracle set A ⊆ N,

KA,e
r (e · z) ≥ KA,e

r (z)− nε

δ
r −K(ε)−K(η)−Oz(log r) .

Proof. Suppose z, e, r, δ, ε, η, and A satisfy the hypothesis.
Define an oracle Turing machine M that does the following given oracle (A, e) and

input π = π1π2π3π4π5 such that UA(π1) = q ∈ Q, U(π2) = h ∈ Qn, U(π3) = s ∈ N,
U(π4) = ζ ∈ Q, and U(π5) = ι ∈ Q.

For every program σ ∈ {0, 1}∗ with `(σ) ≤ (ι + ζ)s, in parallel, M simulates U(σ). If
one of the simulations halts with some output p = (p1, . . . , pn) ∈ Qn ∩ B2−1(h) such that
|e · p− q| < 2−s, then MA,e halts with output p. Let cM be a constant for the description of
M .

Let π1, π2, π3, π4, and π5 testify to KA,e
r (e ·z), K1(z), K(r), K(ε), and K(η), respectively,

and let π = π1π2π3π4π5. Let σ be a program of length at most (η+ε)r such that ‖p−z‖ ≤ 2−r,
where U(σ) = p. Note that such a program must exist by condition (i) of our hypothesis.
Then it is easily verified that

|e · z − e · p| ≤ 2−r .

Therefore MA,e is guaranteed to halt on π.
Let MA,e(π) = p = (p1, . . . , pn) ∈ Qn. Another routine calculation shows that there is

some

w ∈ B2γ−r (p) ⊆ B2−1(p) ⊆ B20(z)

such that e · w = e · z, where γ is a constant depending only on z and e. Then,

KAe
r (w) ≤ |π|+ cM

≤ KA,e
r (e · z) +K1(z) +K(r) +K(ε) +K(η) + cM

= KA,e
r (e · z) +K(ε) +K(η) +O(log r) .

Rearranging this yields

KA,e
r (e · z) ≥ KA,e

r (w)−K(ε)−K(η)−O(log r) . (1)

Let t = − log ‖z−w‖. If t ≥ r, then the proof is complete. If t < r, then B2−r (p) ⊆ B21−t(z),
which implies that KA,e

r (w) ≥ KA,e
t−1(z). Therefore,

KA,e
r (w) ≥ KA,e

r (z)− n(r − t)−O(log r) . (2)
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We now bound r − t. By our construction of M ,

(η + ε)r ≥ K(p)
≥ Kr(w)−O(log r) .

By condition (ii) of our hypothesis, then,

(η + ε)r ≥ (η − ε)r + δ(r − t) ,

which implies that

r − t ≤ 2nε
δ
r +O(log r) .

Combining this with inequalities (1) and (2) concludes the proof. J

With the above lemma in mind, we wish to give a lower bound on the complexity of
points w such that e · w = e · z. Our next lemma gives a bound based on the complexity,
relative to z, of the direction e ∈ Sn−1. This is based on the observation that we can solve
for e = (e1, . . . , en) given w, z and e3, . . . , en. This follows from solving the system of two
equations

e · (z − w) = 0
e2

1 + . . .+ e2
n = 1 .

This suggests that

Kz,e3,...,en
r (e) ≤ Kz,e3,...,en

r (w) .

However, for our purposes, we must be able to recover (an approximation of) e given
approximations of w and z. Intuitively, the following lemma shows that we can algorithmically
compute an approximation of e whose error is linearly correlated with the distance between w
and z. We can then bound the complexity of w using a symmetry of information argument.

I Lemma 9. Let z ∈ Rn, e ∈ Sn−1, and r ∈ N. Let w ∈ Rn such that e · z = e · w. Then
there are numbers i, j ∈ {1, . . . , n} such that

Kr(w) ≥ Kt(z) +K
e−{ei,ej}
r−t,r (e | z) +O(log r) ,

where t = − log ‖z − w‖.

Proof. Let z, w, e, and r be as in the statement of the lemma. We first choose i so that
|zi − wi| is maximal. We then choose j so that

sgn((zi − wi)ei) 6= sgn((zj − wj)ej), and
|zj − wj | > 0 ,

where sgn denotes the sign. Note that such a j must exist since (z −w) · e = 0. For the sake
of removing notational clutter, we will assume, without loss of generality, that i = 1 and
j = 2.

We first show that

Ke3,...,en
r−t,r (e2 | z) ≤ Kr(w | z) +O(1) . (3)

As mentioned in the informal discussion preceding this lemma, note that

e2 = −b+ (−1)h
√
b2 − 4ac

2a , (4)

where

MFCS 2018
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h ∈ {0, 1},
a = (z1 − w1)2 + (w2 − z2)2,
b = 2(w2 − z2)

∑n
i=3(wi − zi)ei, and

c = (
∑n
i=3(wi − zi)ei)2 + (z1 − w1)2∑n

i=3 e
2
i − 1.

With this in mind, let M be the Turing machine such that, whenever q = (q1, . . . , qn) ∈ Qn
and U(π, q) = p = (p1, . . . , pn) ∈ Q2 with p1 6= q1,

Me3,...,en(π, q, j) = −b
′ + (−1)h

√
b′,2 − 4a′c′

2a′ ,

where
h ∈ {0, 1},
a′ = (q1 − p1)2 + (p2 − q2)2,
b′ = 2(p2 − q2)

∑n
i=3(pi − qi)di, and

c′ = (
∑n
i=3(pi − qi)di)2 + (q1 − p1)2∑n

i=3 d
2
i − 1, and

d = (d3, . . . , dn) ∈ Qn−2 is an nr-approximation of (e3, . . . , en).
Let q ∈ B2−r (z)∩Qn, and πq testify to K̂r(w | q). It tedious but straightforward (Lemma 10)
to verify that

|Me3,...,en(πq, q, h)− e2| ≤ 2α+t−r ,

where α is a constant depending only on e. Hence, inequality (3) holds. Since

Ke3,...,en
s (e2) = Ke3,...,en

s (e) +O(1)

holds for every s, we see that

Ke3,...,en
r−t,r (e | z) ≤ Kr(w | z) +O(1) . (5)

To complete the proof, we note that

Kr(w | z) ≤ Kr,t(w | z) +O(log r)
= Kr,t(w | w) +O(log r)
= Kr(w)−Kt(w) +O(log r)
= Kr(w)−Kt(z) +O(log r) .

The lemma follows from rearranging the above inequality, and combining inequality (5). J

The previous lemma uses the following technical lemma, whose proof is omitted due to
space considerations.

I Lemma 10. Let z, w ∈ Rn, e ∈ Sn−1, and r ∈ N such that e · z = e · w. Let q =
(q1, . . . , qn) ∈ Qn and p = (p1, . . . , pn) ∈ Qn be r-approximations of z and w, respectively.
Then∣∣∣∣∣−b+

√
b2 − 4ac

2a − −b
′ +
√
b′,2 − 4a′c′
2a′

∣∣∣∣∣ ≤ 2−r+t+α ,

where a, b, c, a′, b′ and c′ are as defined in Lemma 9, t = − log ‖z − w‖ and α is a constant
depending only on e.

Finally, to satisfy the condition that Kr(z) is small, we will use an oracle to “artificially"
decrease the complexity of z at precision r. We will achieve this by applying the following
lemma due to N. Lutz and Stull.
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I Lemma 11 ([20]). Let n, r ∈ N, z ∈ Rn, and η ∈ Q ∩ [0,dim(z)]. Then there is an oracle
D = D(n, r, z, η) and a constant k ∈ N depending only on n, z and η satisfying
i. For every t ≤ r,

KD
t (z) = min{ηr,Kt(z)}+ k log r .

ii. For every m, t ∈ N and y ∈ Rm,

KD
t,r(y | z) = Kt,r(y | z) + k log r ,

and

Kz,D
t (y) = Kz

t (y) + k log r .

4 Projection Theorems

The main results of the previous section gave us sufficient conditions for strong lower bounds
on the complexity of e · z at a given precision, and methods to ensure that the conditions are
satisfied. The following theorem encapsulates these results so that we may apply them in
the proof of our main theorems.

I Theorem 12. Let z ∈ Rn, e ∈ Sn−1, A ⊆ N, η′ ∈ Q ∩ (0, 1) ∩ (0,dim(z)), ε′ > 0, and
r ∈ N. Assume the following are satisfied.
1. For every s ≤ r, and i, j ∈ {1, . . . , n}, Ke−{ei,ej}

s (e) ≥ s− log(s).
2. KA,e

r (z) ≥ Kr(z)− ε′r.
Then,

KA,e
r (e · z) ≥ η′r − ε′r − 2nε′

1− η′ r −K(2ε′)−K(η′)−Oz(log r) .

Proof. Assume the hypothesis, and let η = η′, ε = 2ε′ and δ = 1− η′. Let Dr = D(n, r, z, η′)
be the oracle as defined in Lemma 11.

First assume that the conditions of Lemma 8, relative to Dr, hold for z, e, r, η, ε and δ.
Then we may apply Lemma 8, which, when combined item (2) and Lemma 11, yields

KA,Dr,e
r (e · z) ≥ KA,Dr,e

r (z)− nε

δ
r −K(ε)−K(η)−Oz(log r)

≥ KDr
r (z)− ε′r − nε

δ
r −K(ε)−K(η)−Oz(log r)

= η′r − ε′r − 2nε′

1− η′ r −K(ε′)−K(η′)−Oz(log r) .

Therefore, to complete the proof, it suffices to show that the conditions of Lemma 8, relative
to Dr, hold.

Item (i) of Lemma 8 holds by our construction of Dr. To see that condition (ii) holds, let
w ∈ B1(z) such that e · w = e · z. By Lemma 9, for some i, j ∈ {1, . . . , n},

KDr
r (w) ≥ KDr

t (z) +K
Dr,e−{ei,ej}
r−t,r (e | z) +O(log r) ,

where t = − log ‖z − w‖. Therefore, by condition (2) of the hypothesis and Lemma 5,

KDr
r (w) ≥ KDr

t (z) +K
Dr,e−{ei,ej}
r−t,r (e)− ε′r −O(log r) .
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By combining this with condition (1) of the present lemma and Lemma 11,

KDr
r (w) ≥ KDr

t (z) +K
Dr,e−{ei,ej}
r−t,r (e)− ε′r −O(log r)

≥ η′t+ r − t− ε′r −O(log r)
= t(η′ − 1) + r(1− ε′)−O(log r)
≥ (η − ε)r + δ(r − t) .

Hence, the conditions of Lemma 8 are satisfied and the proof is complete. J

4.1 Projection Theorems For Non-Analytic Sets
Our first main theorem shows that if the Hausdorff and packing dimensions of E are equal, the
conclusion of Marstrand’s theorem holds. Essentially this assumption guarantees, for every
oracle A and direction e, the existence of a point z ∈ E such that dimA,e(z) ≥ dimH(E)− ε.
This allows us to use Theorem 12 at all sufficiently large precisions r.

I Theorem 2. Let E ⊆ Rn be any set with dimH(E) = dimP (E) = s. Then for almost
every e ∈ Sn−1,

dimH(projeE) ≥ min{s, 1} .

Proof. Let E ⊆ Rn be any set with dimH(E) = dimP (E) = s. By the point-to-set principle,
there is an oracle B ⊆ N testifying to dimH(E) and dimP (E). Let e ∈ Sn−1 be any point
which is random relative to B. That is, let e be any point such that

KB,e−{ei,ej}
r (e) ≥ r − log r ,

for every i, j ∈ {1, . . . , n}. Note that almost every point satisfies this requirement. Let A ⊆ N
be the oracle testifying to dimH(projeE). Then, by the point-to-set principle, it suffices to
show that for every ε > 0 there is a z ∈ E such that

dimA(e · z) ≥ min{s, 1} − ε .

To that end, let η′ ∈ Q ∩ (0, 1) ∩ (0, s) and ε′ > 0. By the point-to-set principle, there is
a zε′ ∈ E such that

s− ε′

4 ≤ dimA,B,e(zε′)

≤ dimB(zε′)
≤ DimB(zε′)
≤ s . (6)

We now show that the conditions of Theorem 12 are satisfied, relative to B, for all
sufficiently large r ∈ N. We first note that, by inequality (6) and the definition of effective
dimension,

sr − ε′

4 r −
ε′

4 r ≤ K
A,B,e
r (zε′)

≤ KB
r (zε′) +O(1)

≤ sr + ε′

2 r ,
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for all sufficiently large r. Hence, for all such r,

KA,B,e
r (zε′) ≥ KB

r (zε′)− ε′r . (7)

Thus the conditions of Theorem 12, relative to B, are satisfied.
We may therefore apply Theorem 12, resulting in

KA,B,e
r (e · zε′) ≥ η′r − ε′r −

2nε′

1− η′ r −K(ε′)−K(η′)−Ozε′ (log r) .

Hence,

dimA(e · zε′) ≥ dimA,B,e(e · zε′)

= lim inf
r→∞

KA,B,e
r (e · zε′)

r

≥ lim inf
r→∞

η′r − ε′r − 2nε′
1−η′ r −K(ε′)−K(η′)−Ozε′ (log r)

r

= η′ − ε′ − 2nε′

1− η′ .

Since η′ was chosen arbitrarily,

dimA(e · z) ≥ min{s, 1} − ε′

4 .

As ε′ was chosen arbitrarily, by the point-to-set principle,

dimH(projeE) ≥ sup
z∈E

dimA(e · z)

≥ sup
ε>0

dimA(e · zε′)

= min{s, 1} ,

and the proof is complete. J

Our second main theorem gives a lower bound for the packing dimension of a projection
for general sets. The proof of this theorem again relies on the ability to choose, for every
(A, e), a point z whose complexity is unaffected relative to (A, e). This cannot be assumed
to hold for every precision r. However, by the point-to-set principle, we can show that this
can be done for infinitely many precision parameters r.

I Theorem 3. Let E ⊆ Rn be any set with dimH(E) = s. Then for almost every e ∈ Sn−1,

dimP (projeE) ≥ min{s, 1} .

Proof. Let E ⊆ Rn be any set with dimH(E) = s. By the point-to-set principle, there is
an oracle B ⊆ N testifying to dimH(E) and dimP (E). Let e ∈ Sn−1 be any point which is
random relative to B. Note that almost every point satisfies this requirement. Let A ⊆ N
be the oracle testifying to dimP (projeE). Then, by the point-to-set principle, it suffices to
show that for every ε > 0 there is a z ∈ E such that

DimA(e · z) ≥ min{s, 1} − ε .

To that end, let η′ ∈ Q ∩ (0, 1) ∩ (0, s) and ε′ > 0. By the point-to-set principle, there is
a zε′ ∈ E such that

s− ε′

4 ≤ dimA,B,e(zε′) ≤ dimB(zε′) ≤ s . (8)
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We now show that the conditions of Theorem 12 are satisfied, relative to B, for infinitely
many r ∈ N. We first note that, by equation (8),

sr − ε′

4 r −
ε′

4 r ≤ K
A,B,e
r (zε′)

≤ KB
r (zε′) +O(1)

≤ sr + ε′

2 r ,

for infinitely many r. Hence, for all such r,

KA,B,e(zε′) ≥ KB(zε′)− εr . (9)

Thus the conditions of Theorem 12, relative to B, are satisfied for infinitely many r ∈ N.
We may therefore apply Theorem 12, resulting in

KA,B,e
r (e · zε′) ≥ η′r − ε′r −

2nε′

1− η′ r −K(ε′)−K(η′)−Ozε′ (log r) ,

for infinitely many r ∈ N. Hence,

DimA(e · zε′) ≥ DimA,B,e(e · zε′)

= lim sup
r→∞

KA,B,e
r (e · zε′)

r

≥ lim sup
r→∞

η′r − ε′r − 2nε′
1−η′ r −K(ε′)−K(η′)−Ozε′ (log r)

r

= η′ − ε′ − 2nε′

1− η′ .

Since η′ was chosen arbitrarily

DimA(e · z) ≥ min{s, 1} − ε′

4 .

As ε′ was chosen arbitrarily, by the point-to-set principle

dimP (projeE) ≥ sup
z∈E

DimA(e · z)

≥ sup
ε>0

DimA(e · zε′)

= min{s, 1} ,

and the proof is complete. J

4.2 Marstrand’s Projection Theorem
We now give a new, algorithmic information theoretic proof of Marstrand’s projection theorem.
Recall that

I Theorem 1. Let E ⊆ Rn be analytic with dimH(E) = s. Then for almost every e ∈ Sn−1,

dimH(projeE) = min{s, 1} .
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Note the order of the quantifiers. To use the point-to-set principle, we must first choose
a direction e ∈ Sn−1. We then must show that for every oracle A and ε > 0, there is some
z ∈ E such that

dimA(e · z) ≥ dimH(E)− ε .

In order to apply Theorem 12, we must guarantee that (A, e) does not significantly change
the complexity of z. To ensure this, we will use the point-to-set principle of J. Lutz and
Hitchcock (Theorem 6). While this result is less general than the principle of J. Lutz and N.
Lutz, the oracle characterizing the dimension of a Σ0

2 set is easier to work with.
To take advantage of this, we use the following lemma.

I Lemma 13. Let E ⊆ Rn be analytic with dimH(E) = s. Then there is a Σ0
2 set F ⊆ E

such that dimH(F ) = s.

Proof. It is well known that if E ⊆ Rn is analytic, then for every ε ∈ (0, s], there is a
compact subset Eε ⊆ E such that dimH(Eε) = s− ε (see e.g. Bishop and Peres [2]). Thus,
the set

F =
∞⋃

i=d1/se

E1/i

is a Σ0
2 set with dimH(F ) = s. J

We will also use the following observation, which is a consequence of the well-known fact
from descriptive set theory that Σ classes are closed under computable projections.

I Observation 14. Let E ⊆ Rn and A ⊆ N be such that E is a Σ0
2 set relative to A. Then

for every e ∈ Sn−1, projeE is a Σ0
2 set relative to (A, e).

Finally, we must ensure that e does not significantly change the complexity of z. For
this, we will use the following definition and theorem due to Calude and Zimand [3]. We
rephrase their work in terms of points in Euclidean space. Let n ∈ N, z ∈ Rn and e ∈ Sn−1.
We say that z and e are independent if, for every r ∈ N, Ke

r (z) ≥ Kr(z) − O(log r) and
Kz
r (e) ≥ Kr(e)−O(log r).

I Theorem 15 ([3]). For every z ∈ Rn, for almost every e ∈ Sn−1, z and e are independent.

With these ingredients we can give a new proof Marstrand’s projection theorem using
algorithmic information theory.

Proof of Theorem 1. Let E ⊆ Rn be analytic with dimH(E) = s. By Lemma 13, there is a
Σ0

2 set F ⊆ E such that dimH(F ) = s. Let A ⊆ N be an oracle such that F is Σ0
2 relative to

A. Using Theorem 6, for every k ∈ N we may choose a point zk ∈ F such that

dimA(zk) ≥ s− 1/k .

Let e ∈ Sn−1 be a point such that, for every k ∈ N, the following hold.
For every r and t < r, KA,zk,e3...,en

t (e) ≥ t−O(1).
For every r, KA,e

r (zk) ≥ KA
r (zk)−O(log r).
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A basic fact of algorithmic randomness states that almost every e satisfies the first item.
By Theorem 15, almost every e satisfies the second item. So almost every e satisfies these
requirements.

Fix k ∈ N. Let η′ ∈ Q ∩ (0, 1) ∩ (0,dimA(zk)) and ε′ > 0. It is clear, by our choices of e
and zk, that the conditions of Theorem 12 are satisfied for all sufficiently large r. We may
therefore apply Theorem 12, resulting in

KA,e
r (e · zk) ≥ η′r − ε′r − 2nε′

1− η′ r −K(2ε′)−K(η′)−Oz(log r) .

Hence,

dimA,e(e · zk) = lim inf
r→∞

KA,e
r (e · zk)

r

≥ lim inf
r→∞

η′r − ε′r − 2nε′
1−η′ r −K(2ε′)−K(η′)−Oz(log r)

r

= η′ − ε′ − 2nε′

1− η′ .

Since both η′ and ε′ were chosen independently and arbitrarily, we see that

dimA,e(e · zk) ≥ dimA,e(zk)
≥ min{s, 1} − 1/k .

As k was chosen arbitrarily, Observation 14 and Theorem 6 give

dimH(projeE) ≥ dimH(proje F )
= sup
z∈F

dimA,e(e · z)

≥ sup
k∈N

dimA,e(e · zk)

= min{s, 1} ,

and the proof is complete. J
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