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Abstract
We give a polynomial delay algorithm for enumerating the minimal transversals of hypergraphs
without induced cycles of length 3 and 4. As a corollary, we can enumerate, with polynomial
delay, the vertices of any polyhedron P(A, 1

¯
) = {x ∈ Rn | Ax ≥ 1

¯
, x ≥ 0

¯
}, when A is a balanced

matrix that does not contain as a submatrix the incidence matrix of a cycle of length 4. Other
consequences are a polynomial delay algorithm for enumerating the minimal dominating sets of
graphs of girth at least 9 and an incremental delay algorithm for enumerating all the minimal
dominating sets of a bipartite graph without induced 6 and 8-cycles.
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1 Introduction

The task of an enumeration algorithm is generating all the feasible solutions of a given
property, such as enumerating all the maximal cliques of a graph or all the triangulations
of a given set of points in a d-dimensional space. In enumeration algorithms the size of
the output is often exponential in the size of the input, therefore, to define the tractability
of enumeration problems, the complexity is measured based on the needed total time of
the algorithm depending on the size of the input and the size of the output. If the total
running time of the algorithm is bounded by a polynomial on the size of the input and the
output, the algorithm is called output-polynomial. For a good survey of various combinatorial

1 Kaveh Khoshkhah was supported by the Estonian Research Council, ETAG (Eesti Teadusagentuur),
through PUT Exploratory Grant #620.
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55:2 Enumerating Minimal Transversals of Hypergraphs Without Small Holes

enumeration problems and their known time complexities see [32]. It is worth noticing that,
unless P=NP, there are enumeration problems where no output polynomial enumeration
algorithm exist [22, 23].

In the area of enumeration algorithms, enumerating all the inclusion-wise minimal
transversals of a hypergraph2, known as Hypergraph Dualisation, is a long-standing open
problem which arises in different areas of computer science such as data mining [3], game
theory [29, 19], artificial intelligence [12, 31], databases [8, 18], learning theory [1] and integer
programming [5, 13]. Despite all the attempts, the complexity of the problem is not settled
yet. The best-known algorithm for solving Hypergraph Dualisation in the general case
is by Fredman and Khachiyan [14] (see also [24]) which solves the equivalent problem of
monotone Boolean duality in quasi-polynomial time. Nevertheless, for several well-structured
hypergraph classes, output-polynomial algorithms for Hypergraph Dualisation is known,
e.g., [11, 25, 22] to cite a few. It was also proved in [20] that the Hypergraph Dualisation is
equivalent to the enumeration of minimal dominating sets in graphs, allowing to tackle this old
problem in the realm of graph theory (see for instance [20, 16]). In this paper, we investigate
the Hypergraph Dualisation problem in the class of hypergraphs without induced small
cycles. A k-cycle in a hypergraph H is a sequence (x0, E0, x1, E1, x2, · · · , xk−1, Ek−1, x0)
where the xi’s belong to V (H), the Ei’s are in H, x0 ∈ Ek−1 ∩ E0 and, for 1 ≤ i ≤ k − 1,
xi ∈ Ei ∩ Ei−1. A chord in a k-cycles is a pair (xi, Ej) where j /∈ {i, (i − 1) mod k}. An
enumeration algorithm is said to be of polynomial delay if the time between two outputs is
bounded a polynomial on the input. Our main theorem is the following.

I Theorem 1. Let H be a hypergraph without chordless 3 and 4-cycles. Then, one can
enumerate with polynomial delay the minimal transversals of H.

The first consequence of our main theorem is a polynomial delay algorithm for listing the
minimal dominating sets of graphs with girth at least 9, answering a question from [17]. The
girth of a graph in G is the shortest chordless cycle3 in G. Notice that the recent paper [26],
proposes an enumeration algorithm, with a constant time delay, which enumerates all the
(not necessarily minimal) dominating sets of a given graph of girth at least 9.

I Corollary 2.
a. There is a polynomial delay algorithm that enumerates all the minimal dominating sets of

a given input graph G of girth at least 9. More precisely, the result holds if G does not
contain induced (4, 5, 6, 7, 8)-cycles.

b. There is an incremental delay algorithm that enumerates all the minimal dominating sets
of a given bipartite graph without chordless 6 and 8-cycles.

Enumeration algorithms also appear in computational geometry. The famous Minkowski-
Weyl theorem states that every convex polyhedron can be represented as the intersection
of finitely many affine half spaces, known as H-representation, and by the Minkowski sum
of a polytope and a finitely generated cone, known as V-representation, while the two
representations are equivalent. There are various open enumeration problems in this area,
such as facet enumeration and convex hull problem. We refer to [15] for more study. One of the
important enumeration problems in computational geometry is vertex enumeration problem

2 A hypergraph H is a collection of subsets of a ground set V (H) and a transversal of H is a subset T of
V (H) that intersects all sets in H.

3 A k-cycle in a graph G is a sequence (v1, v2, . . . , vk) where vi and vi+1 are adjacent in G and v1 is
adjacent with vk. A k-cycle (v1, . . . , vk) is chordless if there are no other edges between the vi’s.
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which asks for generating all the vertices of a polyhedron given by its H-representation.
Khachiyan et al. [23] proved that enumerating all the vertices of a rational polyhedron,
given as an intersection of finitely many half spaces is an NP-hard enumeration problem.
It’s worth mentioning that the complexity of the problem in the case of polytopes (bounded
polyhedrons), yet remains open. The hardness of enumerating the vertices of a polyhedron is
more interesting when it comes true even for 0/1 polyhedrons (polyhedrons with vertices
in {0, 1}n) [6] which is in contrast with the fact that all the vertices of a 0/1 polytope are
enumerable in polynomial delay [9]. Regardless of the hardness of vertex enumeration for
general polyhedrons, it is interesting to ask for which classes of polyhedrons the problem is
tractable.

As a consequence of our main theorem, we also obtain a polynomial delay algorithm for
enumerating the vertices of a large subclass of 0/1 polyhedrons given by balanced matrices. For
doing so we use the known equivalent characterisation in terms of a Hypergraph Dualisation
problem. Let us define the problem formally. Let A ∈ {0, 1}m×n and 1

¯
and 0

¯
be respectively

all ones and all zeros vectors with appropriate size and P(A, 1
¯
) = {x ∈ Rn | Ax ≥ 1

¯
, x ≥ 0

¯
}

be a polyhedron with only integral vertices. In other words, P(A, 1
¯
) is the set covering

polyhedron with the 0/1 ideal matrix A. It is well-known and not hard to see that the
vertices of P(A, 1

¯
) are in bijection with the minimal transversals of the hypergraph H[A],

where the columns of A correspond to vertices of H[A] and the rows of A are incident vectors
of the hyperedges of H[A] [27]. This gives an equivalence between the vertex enumeration
problem for P(A, 1

¯
) and the Hypergraph Dualisation problem for such hypergraphs H[A].

The existence of the quasi-polynomial algorithm for enumerating the minimal transversals of
a hypergraph [14] suggests that the complexity of vertex enumeration for P(A, 1

¯
) is unlikely

to be in NP.
In the Recent paper [13], Elbassioni and Makino have given an incremental polynomial time

algorithm for enumerating the vertices of P(A, 1
¯
) when A is a 0/1 totally unimodular matrix.

Totally unimodular matrices are an important class of matrices for integer programming
with the property that every square submatrix of it has determinant 0 or 1. The generating
method in [13] is based on enumerating the transversals of the associated hypergraph and
Seymour’s fundamental decomposition theorem for totally unimodular matrices [30]. As
an interesting open problem, one may ask about the existence of an output polynomial
algorithm for enumerating the vertices of P(A, 1

¯
) when A is a balanced matrix [13]. A 0/1

matrix is balanced if it does not contain a submatrix that is the incidence matrix of a cycle
of odd length (see [30, Chapter 21] or [10]). Totally unimodular matrices are a proper subset
of balanced matrices. A consequence of our main theorem is the following.

I Theorem 3. There is a polynomial delay algorithm for listing the vertices of any given
0/1 polyhedron P(A, 1

¯
) whenever A is a balanced matrix without any submatrix that is the

incident matrix of a 4-cycle.

As the algorithm needs some technical definitions, we postpone the details of the algorithm
to Section 2. The main technical part of the paper is in Section 3 where we prove the main
theorem.

2 Definitions and Preliminaries

The power set of a set V is denoted by 2V , and for two sets A and B, we let A \B denote
the set {x ∈ A | x /∈ B}.

A hypergraph H is a collection of subsets of a finite ground set. The elements of H are
called the hyperedges of H and the vertex set of H is V (H) :=

⋃
E∈HE. Given S ⊆ V (H),

MFCS 2018
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we denote by H[S] the hypergraph induced by S, that is, H[S] := {E ∩ S | E ∈ H}. Any
subset H′ of H is called a sub-hypergraph of H. Notice that if there exists E ∈ H such that
E ⊆ V (H) \ S, then ∅ ∈ H[S].

Given a hypergraph H and a subset S ⊆ V (H) of its vertex set, we denote by H(S) the
sub-hypergraph {E ∈ H | S ∩E 6= ∅}; and for v ∈ V (H), we write H(v) instead of H({v}).
Notice that H(v) is the set of hyperedges containing v.

We assume that each hypergraph is given with an ordering ≤ of its set of vertices.
A k-hole in a hypergraph is a chordless cycle of length k.
A transversal (or hitting set) of a hypergraph H is a set T ⊆ V (H) that has a nonempty

intersection with every hyperedge E ∈ H. A transversal T is said minimal if no proper subset
of T is a transversal. For T ⊆ V (H) and x ∈ T , we let PT (x) := {E ∈ H | E ∩ T = {x}},
and call it the set of privates of x with respect to T (we may drop the “with respect to
T” when T is clear from the context). We say that B ⊆ V (H) breaks x ∈ T , if for every
E ∈ PT (x), E ∩B 6= ∅ and if B = {b}, we say that b breaks x, for short.

We call T ⊆ V (H) irredundant if PT (x) 6= ∅ for all x ∈ T . It is well-known that T is a
minimal transversal if and only if T is a transversal and is irredundant. We denote by tr(H)
the set of minimal transversals of H. Observe that if all hyperedges of H are non-empty,
then tr(H) 6= ∅. For more definitions and details on hypergraphs, we refer to [4].

I Definition 4. For ` ∈ V (H) and E ∈ H such that ` ∈ E, we let S(`, E), called a double
star, be the sub-hypergraph H(`)[E]. A double star is called valid if (H \H(`))[V (H) \ E]
does not contain the empty set.

The notion of double star is defined and used in [10] for the decomposition of balanced
matrices. We rephrase it in terms of hypergraphs. Observe also that if a hypergraph is Sperner
(no hyperedge contains another hyperedge), then every double star is valid. Even though
for the Hypergraph Dualisation problem, it is enough to consider Sperner hypergraphs,
we prefer giving the definition above for general hypergraphs for a better readability of our
algorithms as we manipulate induced sub-hypergraphs. We often use the notation S for the
double star S(`, E) in customary whenever ` and E are clear from the context.

I Fact 5. If ∅ /∈ H, then H has a valid double star and it can be found in polynomial time

Proof. Let T ∈ tr(H), which exists because ∅ /∈ H. Let ` ∈ T and E ∈ PT (`). Since T is a
transversal and E ∩ T = {`}, then each hyperedge in H \H(`) has a nonempty intersection
with T \ {`}. Now, since T \ {`} ⊆ V (H) \ E because E ∩ T = {`}, we can conclude that
(H \H(`))[V (H) \ E] does not contain the ∅ as a hyperedge. J

The algorithm for enumerating minimal transversals uses the standard technique which
consists, for a hypergraph H, in choosing a vertex ` and enumerate the minimal transversals
that do not contain `, denoted by Inc(H, `), and those that do contain `, denoted by
Exc(H, `). For enumerating the minimal transversals that do not contain `, it suffices to
make a recursive call to H[V (H) \ {`}], once we ensure that one exists (which can be checked
in polynomial time). But, enumerating the minimal transversals containing ` is a tough task
and is exactly what makes the enumeration of tr(H) difficult because such a strategy causes
to ask at each step the following NP-complete problem [7]: Given X ⊆ V (H), does there
exist a minimal transversal including X? In order to avoid this NP-complete problem, we
use the following strategy, which depends heavily on the fact that 3-holes and 4-holes are
forbidden:
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1. We always choose ` to be in a valid double star S(`, E).
2. We secondly show that, for any minimal transversal T of H\S(`, E), T ∪{`} is a minimal

transversal of H. Such minimal transversals are called basic.
3. We then show that any minimal transversal containing ` is either basic or can be obtained

from a basic one by successively applying a flipping method. The flipping method yields
a parent-child relation between the minimal transversals containing `.

4. We finally use this parent-child relation to enumerate (with polynomial delay) the minimal
transversals containing `.

LetH be a hypergraph with n := |V (H)|+
∑

F∈H |F |. An enumeration algorithm for tr(H)
is an algorithm that lists all the minimal transversals without repetitions. An enumeration
algorithm A for tr(H) which terminates in time p(n, |tr(H)|) for some polynomial p(x, y) is
called output-polynomial and it is called polynomial space if it uses a space bounded by a
polynomial in n. Assume now that T1, . . . , Tm are the elements of tr(H) enumerated in the
order in which they are generated by A. Let us denote by T (A, i) the time A requires until it
outputs Ti, also T (A, m+1) is the time required by A until it stops. Let delay(A, 1) = T (A, 1)
and delay(A, i) = T (A, i)− T (A, i− 1). The delay of A is max{delay(A, i)}. Algorithm A
is a polynomial delay algorithm if there is a polynomial p(x) such that the delay of A is at
most p(n).

The remainder of this paper is as follows. In Section 3 we define the flipping method,
the basic minimal transversals and the resulting parent-child relation. We also prove that if
S(`, E) is a valid double star, then any minimal transversal containing ` can be obtained
from a basic minimal transversal by following the parent-child relation. The algorithm for
enumerating the children of a minimal transversal containing ` is given in Section 3.2.

3 Enumeration of minimal transversals including ` from a valid
double star S(`, E)

3.1 Basic transversals, flipping operation and parent-child relation
In this section, we introduce the family of minimal transversals B, called basic transversals,
which will be used as a base for generating all the minimal transversals T containing the
vertex `. In the first step, a valid double star S(`, E) is fixed for H.

I Fact 6. For every minimal transversal T of (H \H(`))[V (H) \ E], T ∪ {`} is a minimal
transversal of H.

Proof. Since T is a minimal transversal of (H \H(`))[V (H) \ E], T ⊆ V (H) \ E and each
vertex of T has a private in H\H(`). As {`} is a minimal transversal of H(`) and E ∩T = ∅,
we can conclude that T ∪ {`} is a minimal transversal of H. J

We denote by B(`, E) the set {T ∪ {`} | T ∈ tr((H \H(`))[V (H) \E])} and call it the set
of basic transversals of H. We will show that one can generate all the minimal transversals
of H that contain ` by doing flipping operations, starting from B(`, E).

Recall that S(`, E) is a fixed double star of a fixed hypergraph H. The objective is
to define a way to generate the set of all minimal transversals containing the vertex `,
starting with the basic transversals. We first define a parent-child relation based on a flipping
operation which results in removing one vertex, from E, at a time. As a consequence, each
minimal transversal containing ` will be reachable, by following the parent-child relation,

MFCS 2018



55:6 Enumerating Minimal Transversals of Hypergraphs Without Small Holes

Algorithm 1: GreedyPair.
Input: T ⊆ V and the largest succedent vertex x in T

Output: (Y, (Zy)y∈Y )
1 Function GreedyPair(H, T, x)
2 Y := ∅;
3 while PT (x) is not empty do
4 Choose the smallest y ∈ V (PT (x)) \ E such that ∃ F ∈ PT (x),

F \ E ⊆ {v ∈ V (H) | v ≤ y};
5 Y := Y ∪ {y};
6 Zy := {z ∈ T | PT (z) ⊆ H(y)};
7 T := (T ∪ {y}) \ Zy;

from a basic transversal. In a second step, we explain how to generate the children of any
minimal transversal containing `. Let’s denote by Inc(H, `, E) the set of minimal transversals
of H containing ` where S(`, E) is a valid double star of H.

I Definition 7. Let T be an irredundant set of H. A vertex x in T is called a succedent
vertex if x ∈ E \ {`}.

Observe that a minimal transversal is basic if and only if it does not contain any succedent
vertex. Also, if x is a succedent vertex of T ∈ Inc(H, `, E), then PT (x) ⊆ H \H(`) because
` ∈ T .

I Definition 8. Let T be an irredundant set containing succedent vertices and let x ∈ T

be the largest succedent vertex of T with respect to the ordering ≤. We call (Y, (Zy)y∈Y ) a
greedy pair of PT (x) if
1. Y ⊆ V (PT (x)) \ E and Zy ⊆ T for each y ∈ Y ,
2. Y is a minimal transversal of PT (x),
3. for each y ∈ Y , there is a hyperedge F ∈ PTy (x) such that y ∈ F and F \ E ⊆ {v ∈

V (H) | v ≤ y}, where Ty := (T ∪ {y′ ∈ Y | y′ < y}) \ (∪y′<yZy′) for each y ∈ Y ,
4. for each y ∈ Y , Zy := {z ∈ T | PTy (z) ⊆ H(y)} with Ty as defined above.

I Fact 9. The greedy pair of PT (x) is unique and is computed in polynomial time by the
function GreedyPair depicted in Algorithm 1.

Proof. It is easy to see that the function GreedyPair in algorithm 1 runs in polynomial time
and its output, (Y, (Zy)y∈Y ), is a greedy pair. Assume that there is another greedy pair
(Y ′, (Z ′y)y∈Y ′). It is enough to show that Y = Y ′ since (Zy)y∈Y and (Z ′y)y∈Y ′ are determined
completely by Y and Y ′, respectively. Let us enumerate Y and Y ′ as y1 < y2 < · · · < yk

and y′i1
< y′ip

< · · · < y′ip
, respectively. Let j the smallest such that y′ij

6= yj . If y′ij
does not

exist, then Y ′ cannot be a transversal of PT (x) and similarly if yj does not exist. So, let us
assume that such a j exists. If y′ij

< yj , then there is an edge Fij
∈ PT (x) which does not

intersect Y because Fij
does not intersect {y1, . . . , yj−1} and Fij

\E ⊆ {w ∈ V (H) | w < yij
}

(Condition (3) of Definition 8). Similarly, if yj < yij , there is an edge Fj ∈ PT (x) which does
not intersect Y ′ as Fj does not intersect {y1, . . . , yj−1} and Fj \E ⊆ {w ∈ V (H) | w < yj}.
In both cases, we contradict the fact that Y or Y ′ is a transversal of PT (x). J

If (Y, (Zy)y∈Y ) is the greedy pair of PT (x), for a minimal transversal T , then Y is intended
to replace x in T , but even though (T \{x})∪Y is a transversal, it is not necessarily minimal.
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The set ∪y∈Y Zy is the set to remove to obtain a minimal transversal. The next lemma allows
to prove that (T ∪ Y ) \ ((∪y∈Y Zy) ∪ {x}) is a minimal transversal.

I Lemma 10. Let T be an irredundant set of H containing succedent vertices and let x

be the largest succedent vertex of T . Let (Y, (Zy)y∈Y ) be the greedy pair of PT (x) and let
Z := ∪y∈Y Zy. Then, the following properties hold:
a. For each vertex x′ of T ∩E different from x, and each F ′ ∈ PT (x′), we have F ′ ∩ Y = ∅.
b. For each hyperedge F ∈ H \ H(x), we have |F ∩ Y | ≤ 1.
c. For each z ∈ Z, there is exactly one y ∈ Y such that H(y) ∩ PT (z) 6= ∅.
d. If there are zi, zj ∈ Z and y ∈ Y such that H(y) ∩ PT (zi) 6= ∅ and H(y) ∩ PT (zj) 6= ∅,

then there is no hyperedge in H \H(y) which includes both zi and zj.
e. If there are z ∈ Z and y ∈ Y such that H(y)∩PT (z) 6= ∅, then H(x)∩H(z) ⊆ H(x)∩H(y).

Proof. All the proofs are by contradicting the fact that H is (3, 4)-hole free.
a. Let x′ 6= x be a vertex of T ∩ E and F ′ ∈ PT (x′) and y ∈ Y ∩ F ′. Also, assume that

F ∈ PT (x), containing y. By the definition of the double star S(`, E), the hyperedge E

contains all the succedent vertices and therefore, (y, F, x, E, x′, F ′, y) is a 3-hole in H.
b. Let F ∈ H \ H(x) be a hyperedge containing two vertices yi ≤ yj , both from Y . Let

Fi ∈ PY (yi) ∩ H(x) and Fj ∈ PY (yj) ∩ H(x), which exist by the definition of a greedy
pair. Then (yi, F, yj , Fj , x, Fi, yi) constitutes a 3-hole in H.

c. Let Ni ∈ H(yi) ∩ PT (z) and Nj ∈ H(yj) ∩ PT (z) for two distinct vertices yi and yj of Y .
Notice that Ni 6= Nj by (b). Let Fi ∈ PT (x) ∩ PY (yi) and Fj ∈ PT (x) ∩ PY (yj). Then
(z, Ni, yi, Fi, x, Fj , yj , Nj , z) gives a 4-hole in H.

d. Let zi, zj ∈ Z such that there is a vertex y ∈ Y , and Fi ∈ H(y) ∩ PT (zi) and Fj ∈
H(y) ∩ PT (zj). Suppose that there is a hyperedge F ∈ H \ H(y) that contains both zi

and zj . Then, (zj , F, zi, Fi, y, Fj , zj) induces a 3-hole in H.
e. Let Fz ∈ H(y) ∩ PT (z) and Nz ∈ H(x) ∩H(z) such that y /∈ Nz. Let Ny ∈ H(x) ∩H(y).

Then, (x, Nz, z, Fz, y, Ny, x) is a 3-hole in H. J

From Lemma 10, we can deduce the following.

I Proposition 11. Let T ∈ Inc(H, `, E) be a non-basic minimal transversal and let x be
the largest succedent vertex of T . Let (Y, (Zy)y∈Y ) be the greedy pair of PT (x). Then,
T ∗ := (T ∪ Y ) \ ((∪y∈Y Zy) ∪ {x}) belongs to Inc(H, `, E). Moreover, T ∗ has one less
succedent vertices than T .

Proof. Let Z := ∪y∈Y Zy. By definition of T ∗, it is clear that ` ∈ T ∗ and it has less succedent
vertices than T since x is removed from T . By the definition of the greedy pair, each vertex
y ∈ Y has a private with respect to T ∗, and by Lemma 10(a), each vertex of (T ∩ E) \ {x}
has a private with respect to T ∗. Also, by the definition of the greedy pair, each vertex z of
T \ (E ∪ Z) has a private with respect to T ∗. It remains to show that T ∗ is a transversal. If
there is F ∈ H such that F ∩ T ∗ = ∅, then by the definition of Z and by Lemma 10(e), F is
not the private of any vertex z ∈ Z and then, there are at least two distinct vertices z and
z′ both contained in F ∩ Z. By Lemma 10(d), z ∈ Zyi and z′ ∈ Zyj for two distinct yi and
yj in Y . Let yj be the largest such that there is z′ ∈ Zyj

and z′ ∈ F . Then, F necessarily
belongs to the private of z′ with respect to (T ∪ {y′ ∈ Y | y′ < yj}) \ (∪y′<yj Zy′), which
contradicts the fact that z′ ∈ Zyj

. This concludes the proof. J

We are now ready to define the parent-child relation.

MFCS 2018
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Algorithm 2: Enum(H,≤).
Input: A (3, 4)-hole free hypergraph H and a linear ordering ≤ of V (H).

8 begin
9 Let S(`, E) be a valid double star of H

10 foreach T ∈ Enum ((H \H(`))[V (H) \ E],≤ do
11 output (T ∪ {`})
12 Enum-Children (T ∪ {`})
13 Enum (H[V (H) \ {`}],≤)

I Definition 12. Let T be a non-basic minimal transversal T in Inc(H, `, E). Let x be the
largest succedent vertex of T and let (Y, (Zy)y∈Y ) be the greedy pair of PT (x). We call
T ∗ := (T ∪ Y ) \ ((∪y∈Y Zy) ∪ {x}) the parent of T , and call T the child of T ∗ with respect
to (x, Y, (Zy)y∈Y ).

The following will be used to characterise the children of any minimal transversal in
Inc(H, `, E).

I Fact 13. If T is a child of T ∗ with respect to (x, Y, (Zy)y∈Y ) then for every y ∈ Y ,
PT (x) ∩ PT∗(y) 6= ∅ and for all z ∈ Zmin(Y ), PT (z) ⊆ PT∗(min(Y )).

I Lemma 14. Let T be a child of T ∗ with respect to (x, Y, (Zy)y∈Y ) and let y1 := min(Y \Y0)
where Y0 := {y ∈ Y | PT∗(y) ⊆ H(x)}. Let Z ′ := ∪y∈Y \{y1}Zy and Cy1 := V (H) \ (T ∗ ∪
E ∪ {w ∈ V (H) | ∃t ∈ T \ Zy1 s.t. PT\Zy1

(t) ⊆ H(w)}). Then, Zy1 ∪ {x} is a minimal
transversal of P(T∗∪Z′)\(Y \{y1})(y1)[Cy1 ∪ {x}].

Proof. Notice first that by Fact 13, for each z ∈ Zy1 , PT (z) ⊆ PT∗(y1) and since T \ Zy1 =
(T ∗ \ Y ) ∪ (Z ′ ∪ {x}) and T is a minimal transversal, we can conclude that Zy1 ∪ {x} is
an irredundant set of P(T∗∪Z′)\(Y \{y1})(y1) by Lemma 10(c). Now, because T is a minimal
transversal of H, no z ∈ Zy1 breaks the private of some t ∈ T \ Zy1 . So, Zy1 ⊆ Cy1 .
Assume that there is F ∈ P(T∗∪Z′)\(Y \{y1})(y1) such that F ∩ (Zy1 ∪ {x}) = ∅. Because
T = (T ∗ ∪ Z ′ ∪ Zy1 ∪ {x}) \ Y , we would have T ∩ F = ∅, contradicting the fact that T is a
minimal transversal. J

The proofs of the following are trivial from the definitions.

I Lemma 15. For every non-basic minimal transversal T in Inc(H, `, E), the parent of T

can be computed in polynomial time.

I Proposition 16. The directed graph with vertex set Inc(H, `, E) and arc set the pairs
(T ∗, T ) such that T ∗ is the parent of T is acyclic.

The algorithm consists now in doing a DFS traversal of the directed graph of Proposition
16. The description is given in Algorithm 2. In order to prove that it runs with polynomial
delay, it remains to show that for each non-basic minimal transversal, its children can be
enumerated with polynomial delay.

We will now prove in the next section that the children of any T ∈ Inc(H, `, E) can be
enumerated with polynomial delay and polynomial space.
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3.2 Enumerating the children of T ∈ Inc(H, `, E)
Remember that H is given with an ordering ≤ of V (H). Also, S(`, E) is a valid double star
of H. For a minimal transversal T ∗ ∈ Inc(H, `, E), let Cov(T ∗) := {x ∈ E \ T ∗ | for each
x′ ∈ T ∗ ∩ E, x′ ≤ x and PT∗∪{x}(x′) 6= ∅}. The set Cov(T ∗) is the set of vertices in E

that can be added to T ∗ without breaking the privates of any x′ ∈ E ∩ T ∗ and are therefore
candidates for generating the children of T ∗.

Let x ∈ Cov(T ∗) and let Y0 := {y ∈ T ∗ \ E | PT∗(y) ⊆ H(x)}.

I Lemma 17. If Y0 6= ∅, then T0 := (T ∗ \ Y0) ∪ {x} is a minimal transversal of H.

Proof. By the definition of Y0 and of T0, we can conclude that T0 is an irredundant set.
If there is N ∈ H not intersected by T0, then N ∈ H(y) ∩ H(y′) for two distinct vertices
in Y0. Let F ∈ PT∗(y) and F ′ ∈ PT∗(y′). Then, (x, F, y, N, y′, F ′, x) is a 3-hole in H, a
contradiction. J

I Lemma 18. If T is a child of T ∗ with respect to (x, Y, (Zy)y∈Y , then Y0 ⊆ Y .

Proof. Let T be a child of T ∗ with respect to (x, Y, (Zy)y∈Y ). We first claim that Y0∩T = ∅.
Suppose that there is y0 ∈ T ∩ Y0. Since T is a child of T ∗, then T ∗ = (T ∪ Y ) \ (Z ∪ {x})
for some greedy pair (Y, (Zy)y∈Y with Z := ∪y∈Y Zy. Therefore, y0 /∈ Y and thus y0 ∈
T \ (Z ∪ {x}). Now, because PT∗(y0) ⊆ H(x), we can conclude that there is y ∈ Y and
F ∈ H(y) ∩ H(y0) with F ∈ PT (y0). Because y ∈ Y , then there is F ′ ∈ PT (x) such that
F ′ ∈ PT∗(y1). Therefore, (x, F0, y0, F, y1, F ′, x) is a 3-hole, contradicting that H is (3, 4)-hole
free, for some F0 ∈ PT∗(y0).

If T is a child of T ∗, then by the previous claim, we know that Y0 ∩ T = ∅. Because
T ∗ = (T ∪ Y ) \ ({x} ∪ Z), we can conclude that Y0 is necessarily a subset of Y , otherwise it
would not be a subset of T ∗. J

Level-0-child. If Y0 6= ∅ and T0 := (T ∗ \ Y0)∪ {x} is a child of T ∗ with respect to (x, Y0, ∅),
we call T0 the level-0 child of T ∗.

Note. If Y0 = ∅, we “symbolically” call T ∗ ∪ {x} the level-0 child of T ∗ with respect to
(x, ∅, ∅). Also, we say that (∅, ∅) is the greedy pair of PT∗∪{x}(x). Notice that T ∗ ∪ {x} is
not a minimal transversal.

We will now characterise the other children of T ∗. Before, let us first prove the following
which is the base of the characterisation.

I Lemma 19. Let T be an irredundant set containing succedent vertices and let x be the largest
succedent vertex of T . Let y1 ∈ Y be the smallest such that Zy1 6= ∅. Then, (Y, (Zy)y∈Y ) is
the greedy pair of PT (x) if and only if (Y, (Z ′y)y∈Y ) is the greedy pair of PT\Zy1

(x) where

Z ′y :=
{

Zy if y 6= y1,

∅ otherwise.

Proof. Let (Y ′, (Wy)y∈Y ′) be the greedy pair of PT\Zmin(Y )(x). Because (Wy)y∈Y ′ is de-
termined by Y ′, it is enough to prove that Y = Y ′. Let us enumerate Y as yt1 < yt2 <

· · · < ytp
< y1 < y2 < · · · < yk with Zytj

= ∅ for all 1 ≤ j ≤ p. Then, Y ′ is the sequence
yt1 < yt2 < · · · < ytp

< y′i1
< y′i2

< · · · < y′it
. Let j be the smallest such that y′ij

6= yj .
Let Fij ∈ PT\Zy1

(x) such that Fij \ E ⊆ {v ∈ V (H) | v ≤ y′ij
} and let Fj ∈ PT (x) such

that Fj \ E ⊆ {v ∈ V (H) | v ≤ yj}. Observe that because PT (x) ⊆ PT\Zy1
(x), then
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Fj ∈ PT\Zy1
(x). If yj < y′ij

, then yj should necessarily belong to Y ′, contradicting the choice
of j. So y′ij

< yj . Assuming that Fij
∈ PT (x) ⊆ PT\Zy1

(x) contradicts the fact that y′ij
/∈ Y .

So, Fij
/∈ PT (x), i.e., there is z1 ∈ Zy1 such that z1 ∈ Fij

. Let F1 ∈ PT (z1). Because
z1 ∈ Zy1 , we have that F1 ∈ H(y1). Then, (z1, F1, y1, Fj , x, Fij , z1) is a 3-hole in H. J

Level-i children. Let R := {y ∈ T ∗ \ (E ∪Y0) | PT∗(y)∩H(x) 6= ∅}. The high-level idea for
generating the children of T ∗ with respect to x consists in, recursively, deleting a correct set
of vertices Y0 ⊆ Y ⊆ R from T ∗ and assigning the privates of vertices in Y to x. The choice
of Y is determined by checking whether there is a Z ∈ tr(∪y∈Y PT∗(y) \ H(x)) containing x

such that T := (T ∗ \ Y ) ∪ Z is a minimal transversal and child of T ∗, which can be checked.
As we will see, this step is independent of the choice of Z. In a second step, we will enumerate
the set of suitable minimal transversals Z of ∪y∈Y PT∗(y) \ H(x).

A collection I of subsets of a ground set V is an accessible system if for each I ∈ I, there
is an i ∈ I such that I \ {i} ∈ I. The two following lemmas show that the set of children of
T ∗ is like an accessible system following the Y -parts of the greedy pairs.

I Lemma 20. Suppose that Y0 = ∅. Let T be a child of T ∗ with respect to (x, Y, (Zy)y∈Y ),
with Y ⊆ R. Then, T ′ := (T ∪ {min(Y )}) \ Zmin(Y ) is a child of T ∗ with respect to
(x, Y \ {min(Y )}, (Zy)y∈Y \{min(Y )}).

Proof. If |Y | = 1, then T ′ = T ∗ ∪ {x}. That is a symbolic level-0 child of T ∗ with respect
to (x, ∅, ∅). If |Y | ≥ 2, let y1 := min(Y ). By Fact 13, PT (z) ⊆ PT∗(y1). Then using Lemma
10(d) and by definition, T ′ is a transversal of H. In order to prove that it is minimal, we
must show T ′ is irredundant. By the construction of Z1, if y1 breaks t ∈ T then t ∈ Z1. Also,
since |Y | ≥ 2, by Fact 13, PT (x) ∩ PT∗(y) 6= ∅, when y ∈ Y \ {y1} and by the minimality of
T ∗, H(y1) ∩ PT∗(y) = ∅. Therefore PT∪{y}(x) 6= ∅ and T ′ is irredundant.

Now, by the GreedyPair Algorithm and uniqueness of the greedy pair, we can easily check
that the greedy pair of PT ′(x) is exactly (Y \ {min(Y )}, (Zy)y∈Y \{min(Y )}) and T ′ ∪ (Y \
{min(Y )}) \ ((Zy)y∈Y \{min(Y )}) = T ∗ is the parent of T ′. J

I Lemma 21. Suppose that Y0 6= ∅. Let T be a child of T ∗ with respect to (x, Y, (Zy)y∈Y ),
with Y ⊆ R ∪ Y0 and |Y \ Y0| ≥ 1. Then, T ′ := (T ∪ {min(Y \ Y0)}) \ Zmin(Y \Y0) is a child
of T ∗ with respect to (x, Y \ {min(Y \ Y0)}, (Zy)y∈Y \{min(Y \Y0)}).

Proof. Recall by Lemma 18 that Y0 ( Y . By the similar argument as in Lemma 20, we can
conclude that T ′ is a minimal transversal of H as in addition PT (x) \ (∪y∈Y \Y0PT∗(y)) 6= ∅.
Again, GreedyPair Algorithm shows that T ′ is a child of T ∗ with respect to (x, Y \ {min(Y \
Y0)}, (Zy)y∈Y \{min(Y \Y0)}). J

In the following, we want to characterise the other children of T ∗. For 1 ≤ i ≤ |R|, we
call T a level-i child of T ∗ if T is a child with respect to (x, Y, (Zy)y∈Y ) with |Y \ Y0| = i.
We have seen by Lemmas 20 and 21 that if T is a level-i child of T ∗ with respect to
(x, Y, (Zy)y∈Y ), then (T \ Zmin(Y \Y0)) ∪ {min(Y \ y0)} is a level-(i − 1) child of T ∗ with
respect to (x, Y \{min(Y \Y0)}, (Zy)y∈Y \{min(Y \Y0)}). We have already seen how to generate
the level-0 child. It remains now to explain how to generate the level-i children from the
level-(i− 1) children.

Let T be a level-(i− 1) child of T ∗ with respect to (x, Y, (Zy)y∈Y ). Let Correct(Y ) :=
{y ∈ R \ Y | y < min(Y \ Y0)}. Recall that Correct(Y ) ⊆ T . For y ∈ Correct(Y ), we let
Cy := V (PT\{x}(y)) \ (T ∗ ∪E ∪ {w ∈ V (H) | ∃t ∈ T \ {y} s.t. PT\{y}(t) ⊆ H(w)}). The set
Cy is the set of vertices that are candidates, other than x, for computing minimal transversals



M.M. Kanté, K. Khoshkhah, and M. Pourmoradnasseri 55:11

of PT∗(y), and such that they do not break the privates of any other vertices in T ∗, except
those of y. The following characterises the level-i children from level-(i− 1) children.

I Proposition 22. Let i ≥ 1. T is a level-i child of T ∗ if and only if there is T ′ a level-(i−1)
child of T ∗ with respect to (x, Y, (Zy)y∈Y ) and y1 ∈ Correct(Y ) such that (Y ∪{y1}, (Zy)y∈Y )
is the greedy pair of PT ′\{y1}(x) and T := (T ′\{y1})∪Zy1 with Zy1∪{x} a minimal transversal
of PT ′\{x}(y1)[Cy1 ∪ {x}].

Proof. Let T be a level-i child of T ∗ with respect to (x, Y, (Zy)y∈Y ) and let y1 := min(Y \Y0).
By Lemma 21, T ′ := (T ∪{y1})\Zy1 is a child of T ∗ with respect to (x, Y \{y1}, (Zy)y∈Y \{y1})
and by Lemma 19, (Y, (Z ′y)y∈Y ) is the greedy pair of PT ′\{y1}(x) where

Z ′y :=
{

Zy if y 6= y1,

∅ otherwise.

By Lemma 14, Zy1 ∪ {x} is a minimal transversal of PT ′\{x}(y)[Cy1 ∪ {x}].
Let T ′ be a level-(i−1) child of T ∗ with respect to (x, Y, (Zy)y∈Y ) and let y1 ∈ Correct(Y )

be such that (Y ∪ {y1}, (Zy)y∈Y ) is the greedy pair of PT ′\{y1}(x). Let Zy1 ⊆ Cy1 such that
Zy1 ∪ {x} is a minimal transversal of PT ′\{x}(y1). Let T := (T ′ \ {y1}) ∪ Zy1 , which by
definition is a transversal of H. By definition of Cy1 , no z ∈ Zy1 breaks the privates, with
respect to T ′ \ {y1}, of some vertex t ∈ T ′ \ {y} and since Zy1 ∪ {x} is a minimal transversal
of PT ′\{x}(y1), each vertex in Zy1 ∪ {x} has a private with respect to T . Now, if there are
z, z′ ∈ Zy1 ∪{x} that break the privates, with respect to T , of some t ∈ T ′ \ ({x}∪Zy1), then
by definition of Cy1 , there are F1, F2 ∈ PT ′\{y1}(t), F ∈ PZy1∪{x}(z), F ′ ∈ PZy1∪{x}(z

′),
both belonging to PT ′\{x}(y). But, then (z, F1, t, F2, z′, F ′, y, F, z) is a 4-hole in H. So, T is
a minimal transversal of H. By Lemma 19, (Y ∪ {y1}, (Z ′y)y∈Y ∪{y1}) is the greedy pair of
PT (x) where

Z ′y :=
{

Zy if y 6= y1,

Zy1 otherwise.

Therefore, T is a level-i child of T ∗. J

Combining Lemma 21 and Proposition 22, we are now ready to prove that the algorithm
Enum given in Algorithm 2 runs with polynomial delay.

Proof of Theorem 1. We claim that the algorithm Enum depicted in Algorithm 2 and
combined with the algorithm Enum-Children enumerates the minimal transversals of a (3, 4)-
hole free hypergraph with polynomial delay.

For any minimal transversal T ∈ tr(H), either T ∈ Inc(H, `, E) or T belongs to
tr(H[V (H) \ {`}]). Since we enumerate both in Lines 3-6, we can conclude that the al-
gorithm enumerates all the minimal transversals of H because of Proposition 16 and also,
each non-basic minimal transversal has a parent. It remains to show that we enumerate all
the children of each minimal transversal in Inc(H, `, E).

Now, the function given in Algorithm 3 first outputs the level-0-child if it exists, otherwise
it stops. Then, it calls Algorithm 4, which does a DFS on the tree where you have an
arc (T ′, T ) if T ′ is a level-(i − 1) child and T is a level-i child obtained from T ′ as stated
in Proposition 22. One can, therefore, conclude that the algorithm correctly outputs all
the children of a minimal transversal in Inc(H, `, E). We can, therefore, conclude that by
combining Algorithms 2, 3 and 4 we output exactly the set of minimal transversals.
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Algorithm 3: Enum-Children(H,≤, `, E, T ).
Input: A (3, 4)-hole free hypergraph H, a linear ordering ≤ of V (H), a valid double

star S(`, E) and T ∈ Inc(H, `, E).
14 begin
15 foreach x ∈ Cov(T ) do
16 Let Y0 := {y ∈ T | PT (y) ⊆ H(x)} and T0 := ((T \ Y0) ∪ {x})
17 if (Y0, ∅) is the greedy pair of PT\Y0(x) then
18 if Y0 6= ∅ then
19 output T0

20 Let R := {y ∈ T \ (E ∪ Y0) | PT (y) ∩H(x) 6= ∅}
21 Enum-ChildrenAux (H,≤, `, E, T0, x, R, Y0)

Algorithm 4: Enum-ChildrenAux(H,≤, `, E, T, x, R, Y ).
Input: A (3, 4)-hole free hypergraph H, a linear ordering ≤ of V (H), a valid double

star S(`, E), T a transversal of H, a succedent x ∈ T , R the set of candidates
and Y the already chosen candidates.

22 begin
23 foreach y ∈ Correct(Y ) do
24 if Y ∪ {y} is the Y -part of the greedy pair of PT\{y}(x) then
25 foreach Zy containing x in Enum (PT\{x}(x)[Cy ∪ {x}],≤) do
26 output ((T ∪ Zy) \ {y})
27 Enum-ChildrenAux (H,≤, `, E, (T ∪ Zy) \ {y}), x, R, Y ∪ {y})

Let us now analyse its time complexity. Let n := |V (H)|+
∑

E∈H |E|. We first notice
that one can combine both algorithms Enum and Enum-ChildrenAux into a single one which
will do a DFS traversal of the tree of recursive calls (see for instance [2, 21]). Second,
each call of Enum or of Enum-ChildrenAux, after a pre-processing polynomial in n, either
outputs a new minimal transversal or exits. Therefore, the tree of combined recursive calls of
both algorithms has size bounded by O(nc) · |tr(H)|, for some universal constant c, i.e., the
amortised time complexity of the algorithm is O(nc). By using the same technique as in [28],
which consists in outputting a solution at the beginning when the depth of the recursive call
is odd, and at the end when the depth is even, one obtains the desired delay per solution. J

4 Related results and Conclusion

Enumerating all the minimal dominating sets of a graph is another interesting task in the
area of enumeration algorithms with numerous applications (see for instance [20]). Our
algorithm readily can enumerate the minimal dominating sets of graphs of girth at least 9.
We refer to [26] and [17] for related works. The result of this paper also, gives an incremental
delay algorithm for enumerating all the minimal dominating sets in a bipartite graph without
induced cycles of length 6 and 8.
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I Corollary 2.
a. There is a polynomial delay algorithm that enumerates all the minimal dominating sets of

a given input graph G of girth at least 9. More precisely, the result holds if G does not
contain induced (4, 5, 6, 7, 8)-cycles.

b. There is an incremental delay algorithm that enumerates all the minimal dominating sets
of a given bipartite graph without chordless 6 and 8-cycles.

Proof of Corollary 2.
a. Let G be a graph of girth at least 9. Let N [G] be the hypergraph {N [x] | x ∈ V (G)}

where N [x] is the set {x} ∪ {y ∈ V (G) | y a neighbour of x}. It is well-known that D is a
minimal dominating set of G if and only if D is a minimal transversal of N [G]. One can
easily check that if G does not contain a chordless cycle of length strictly smaller than 9
and greater than 3, then N [G] cannot contain a chordless 3 or 4-cycle, because a cycle of
length 3 in N [G] can only be obtained by an induced cycle of length at most 6 in G and
a cycle of length 4 in N [G] by an induced cycle of length at most 8 in G. By Theorem 1,
one can enumerate with polynomial delay all the minimal transversals of N [G].

b. Let G := (R, B, E) be a bipartite graph without chordless 6 and 8-cycles. By Theorem 1
one can enumerate all the minimal sets D ⊆ R such that D dominates B (called red-blue
dominating sets in [16]). By using the flipping method in [17], one reduces the existence
of an incremental delay enumeration algorithm for the minimal dominating sets of G

to the existence of a polynomial delay enumeration algorithm for the minimal red-blue
dominating sets in induced subgraphs of G. This concludes the proof. J

As we have already discussed in the introduction, the vertices of the polyhedron P(A, 1
¯
) =

{x ∈ Rn | Ax ≥ 1
¯
, x ≥ 0

¯
} are in bijection with the minimal transversals of the corresponding

hypergraph H[A], where the columns of A correspond to the vertices of H[A] and the rows
of A are incident vectors of the hyperedges of H[A] [27]. If the coefficient matrix A in the
polyhedron is balanced, then the corresponding hypergraph does not contain any odd-hole.

I Theorem 3. There is a polynomial delay algorithm for listing the vertices of any given
0/1 polyhedron P(A, 1

¯
) whenever A is a balanced matrix without any submatrix that is the

incident matrix of a 4-cycle.

Proof of Theorem 3. Let A be a balanced matrix without any 4-cycle submatrix. Then,
H[A], the hypergraph corresponding to the matrix A as explained above, does not contain
chordless cycles of length 3 or 4. By Theorem 1 one can enumerate with polynomial delay
the minimal transversals of H[A], which by [27] correspond to the vertices of P(A, 1

¯
). J

We conclude the paper by observing that even though our algorithm in Theorem 1 is a
polynomial delay one, it uses exponential space and it should be interesting to know whether
one can modify it in order to use polynomial space. However, there are more challenging
questions, and in particular, it is still open whether there is an output-polynomial time
algorithm for enumerating the vertices of a polyhedron P(A, 1

¯
) when A is balanced. We

just notice that one needs another technique to deal with balanced hypergraphs as our
technique cannot avoid the requirement of the hypergraph to be without chordless 4-cycles.
A more challenging question in this area asks for the existence of an output-polynomial time
algorithm for the vertices of bounded polyhedron [13].

In many enumeration algorithms, like ours in this paper or [2, 17], the enumeration is
reduced to traverse a graph with vertex set the set of solutions, and the difficulty is usually
how to generate the neighbors of a given solution. In our paper, we solve this problem by a
rather technical, but nice parent-child relation based on the structure of the hypergraphs.
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However, the used techniques in almost all such papers are ad-hoc (despite the nice attempts
in [2]) and the area still lacks a general theory on identifying a large family of combinatorial
enumeration problems on which such a technique works finely.
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