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Abstract
The largest common embeddable subtree problem asks for the largest possible tree embeddable
into two input trees and generalizes the classical maximum common subtree problem. Several
variants of the problem in labeled and unlabeled rooted trees have been studied, e.g., for the
comparison of evolutionary trees. We consider a generalization, where the sought embedding
is maximal with regard to a weight function on pairs of labels. We support rooted and un-
rooted trees with vertex and edge labels as well as distance penalties for skipping vertices. This
variant is important for many applications such as the comparison of chemical structures and
evolutionary trees. Our algorithm computes the solution from a series of bipartite matching
instances, which are solved efficiently by exploiting their structural relation and imbalance. Our
analysis shows that our approach improves or matches the running time of the formally best
algorithms for several problem variants. Specifically, we obtain a running time of O(|T | |T ′|∆)
for two rooted or unrooted trees T and T ′, where ∆ = min{∆(T ),∆(T ′)} with ∆(X) the max-
imum degree of X. If the weights are integral and at most C, we obtain a running time of
O(|T | |T ′|

√
∆ log(C min{|T |, |T ′|})) for rooted trees.
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1 Introduction

The maximum common subgraph problem asks for a graph with a maximum number
of vertices that is isomorphic to induced subgraphs of two input graphs. This problem
arises in many domains, where it is important to find the common parts of objects which
can be represented as graphs. An example of this are chemical structures, which can be
interpreted directly as labeled graphs. Therefore, the problem has been studied extensively
in cheminformatics [5, 16, 17]. Although elaborated backtracking algorithms have been
developed [16, 2], solving large instances in practice is a great challenge. The maximum
common subgraph problem is NP-hard and remains so even when the input graphs are
restricted to trees [6]. However, in trees it becomes polynomial-time solvable when the
common subgraph is required to be connected, i.e., it must be a tree itself. This problem is
then referred to as maximum common subtree problem and the first algorithm solving it in
polynomial-time is attributed to J. Edmonds [12]. Also requiring that the common subgraph
must be connected (or even partially biconnected) several extensions to tree-like graphs
have been proposed, primarily for applications in cheminformatics [19, 17, 3]. Some of these
approaches are not suitable for practical applications due to high constants hidden in the
polynomial running time. Other algorithms are efficient in practice, but restrict the search
space to specific common subgraphs. Instead of developing maximum common subgraph
algorithms for more general graph classes, which has proven difficult, a different approach
is to represent molecules simplified as trees [15]. Then, vertices typically represent groups
of atoms and their comparison requires to score the similarity of two vertices by a weight
function. This, however, is often not supported by algorithms for tree comparison. Moreover,
it maybe desirable to map a path in one tree to a single edge in the other tree, skipping the
inner vertices. Formally, this is achieved by graph homeomorphism instead of isomorphism.

Various variants for comparing trees have been proposed and investigated [18]. Most of
them assume rooted trees, which may be ordered or unordered. Algorithms tailored to the
comparison of evolutionary trees typically assume only the leaves to be labeled, while others
support labels on all vertices or do not consider labels at all. The well-known agreement
subtree problem, for example, considers the case, where only the leaf nodes are labeled, with
no label appearing more than once per tree [11]. We discuss the approaches most relevant
for our work. Gupta and Nishimura [8] investigated the largest common embeddable subtree
problem in unlabeled rooted trees. Their definition is based on topological embedding (or
homeomorphism) and allows to map edges of the common subtree to vertex-disjoint paths
in the input trees. The algorithm uses the classical idea to decompose the problem into
subproblems for smaller trees, which are solved via bipartite matching. A solution for two
trees with at most n vertices is computed in time O(n2.5 logn) using a dynamic programming
approach. Fig. 1a illustrates the difference between maximum common subgraph and largest
common embeddable subtree. Lozano and Valiente [10] investigated the maximum common
embedded subtree problem, which is based on edge contraction. In both cases the input graphs
are rooted unlabeled trees. Note, the definition of their problems is not equivalent. The first
is polynomial time solvable, while the second is NP-hard for unordered trees, but polynomial
time solvable for ordered trees. Many algorithms do not support trees, where leaves and the
inner vertices both have labels. A notable exception is the approach by Kao et al. [9], where
only vertices with the same label may be mapped. This algorithm generalizes the approach
by Gupta/Nishimura and improves its running time to O(

√
dD log 2n

d ), where D denotes the
number of vertex pairs with the same label and d the maximum degree of all vertices.

We consider the problem of finding a largest weight common subtree embedding (LaWeCSE),
where matching vertices are not required to have the same label, but their degree of agreement
is determined by a weight function. We build on the basic ideas of Gupta and Nishimura [8].
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To prevent arbitrarily long paths which are mapped to a common edge we study a linear
distance penalty for paths of length greater than 1. Note that, by choosing a high distance
penalty, we solve the maximum common subtree (MCS) problem as a special case. By
choosing weight 1 for equal labels and sufficiently small negative weights otherwise, we solve
a problem equivalent to the one studied by Kao et al. [9].

Our contribution. We propose and analyze algorithms for finding largest weight common
subtree embeddings. Our method requires to solve a series of bipartite matching instances
as subproblem, which dominates the total running time. We build on recent results by
Ramshow and Tarjan [13, 14] for unbalanced matchings. Let T and T ′ be labeled rooted
trees with k := |T | and l := |T ′| vertices, respectively, and ∆ := min{∆(T ),∆(T ′)} the
smaller degree of the two input trees. For real-valued weight functions we prove a time
bound of O(kl∆). For integral weights bounded by a constant C we prove a running time
of O(kl

√
∆ log(min{k, l}C)). This is an improvement over the algorithm by Kao et al. [9]

if there are only few labels and the maximum degree of one tree is much smaller than the
maximum degree of the other. In addition, we support weights and a linear penalty for
skipped vertices.

Moreover, the algorithm by Kao et al. [9] is designed for rooted trees only. A straight
forward approach to solve the problem for unrooted trees is to try out all pairs of possible
roots, which results in an additional O(kl) factor. However, our algorithm exploits the fact
that there are many similar matching instances using techniques related to [1, 4]. This
includes computing additional matchings of cardinality two. For unrooted trees and real-
valued weight functions we prove the same O(kl∆) time bound as for rooted trees. This
leads to an improvement over the formally best algorithm for solving the maximum common
subtree problem, for which a time bound of O(kl (∆ + log d)) has been proven [4].

2 Preliminaries

We consider finite simple undirected graphs unless stated otherwise. Let G = (V,E) be a
graph, we refer to the set of vertices V by V (G) or VG and to the set of edges by E(G)
or EG. An edge connecting two vertices u, v ∈ V is denoted by uv or vu. The order
|G| of a graph G is its number of vertices. The neighbors of a vertex v are defined as
N(v) := {u ∈ VG | vu ∈ EG}. The degree of a vertex v ∈ VG is δ(v) := |N(v)|, the degree
∆(G) of a graph G is the maximum degree of its vertices. In case of a directed graph (digraph)
we call its edges arcs, denoted by (u, v), i.e., an edge from u to v.

A path P is a sequence of pairwise disjoint vertices connected through edges (or arcs) and
denoted as P = (v0, e1, v1, . . . , el, vl), where ei = vi−1vi (or ei = (vi−1, vi)), i ∈ {1, . . . , l}.
We alternatively specify the vertices (v0, . . . , vl) or edges (e1, . . . , el) only. The length of a
path is its number of edges. A connected graph with a unique path between any two vertices
is a tree. A tree T with an explicit root vertex r ∈ V (T ) is called rooted tree, denoted by T r.
In a rooted tree T r we denote the set of children of a vertex v by C(v) and its parent by
p(v), where p(r) = r. For any tree T and two vertices u, v ∈ V (T ) the rooted subtree Tu

v is
induced by the vertex v and its descendants related to the tree Tu. If the root r is clear from
the context, we may abbreviate Tv := T r

v . We refer to the root of a rooted tree T by r(T ).
If the vertices of a graph G can be separated into exactly two disjoint sets V, U such

that E(G) ⊆ V × U , then the graph is called bipartite. In many cases the disjoint sets are
already given as part of the input. In this case we write G = (V t U,E), where E ⊆ V × U .

MFCS 2018
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For a graph G = (V,E) a matching M ⊆ E is a set of edges, such that no two edges share
a vertex. An edge e ∈M is denoted matched. A vertex incident to an edge e ∈M is denoted
matched; otherwise it’s free. For an edge uv ∈M , the vertex u is the partner of v and vice
versa. The cardinality of a matching M is its number of edges |M |. A weighted graph is
a graph endowed with a function w : E → R. The weight of a matching M in a weighted
graph is W (M) :=

∑
e∈M w(e). We call a matching M of a weighted graph G a maximum

weight matching (MWM) if there is no other matching M ′ of G with W (M ′) > W (M). A
matching M in G is a MWM of cardinality k (MWMk) if there is no other matching M ′ of
cardinality k in G with W (M ′) > W (M).

For convenience we define the maximum of an empty set as −∞.

3 Gupta and Nishimura’s algorithm

In this section we formally define a Largest Common Subtree Embedding (LaCSE) and present
a brief overview of Gupta and Nishimura’s algorithm to compute such an embedding. The
following two definitions are based on [8].

I Definition 1 (Topological Embedding). A rooted tree T is topologically embeddable in a
rooted tree T ′ if there is an injective function ψ : V (T )→ V (T ′), such that ∀a, b, c ∈ V (T )
i) If b is a child of a, then ψ(b) is a descendant of ψ(a).
ii) For distinct children b, c of a, the paths from ψ(a) to ψ(b) and from ψ(a) to ψ(c) have

exactly ψ(a) in common.
T is root-to-root topologically embeddable in T ′, if ψ(r(T )) = r(T ′).

I Definition 2 ((Largest) Common Subtree Embedding; (La)CSE). Let T and T ′ be rooted
trees and S be topologically embeddable in both T and T ′. For such a S let ψ : V (S)→ V (T )
and ψ′ : V (S)→ V (T ′) be topological embeddings.

Then ϕ := ψ′ ◦ ψ−1 : ψ(VS)→ ψ′(VS) is a Common Subtree Embedding.
If there is no other tree S′ topologically embeddable in both T and T ′ with |S′| > |S|,
then S is a Largest Common Embeddable Subtree and ϕ is a Largest Common Subtree
Embedding.
An CSE with ϕ(r(T )) = r(T ′) is a root-to-root CSE.
A root-to-root CSE is largest, if it is of largest weight among all root-to-root common
subtree embeddings.

Algorithm from Gupta and Nishimura. Gupta and Nishimura [8] presented an algorithm
to compute the size of a largest common embeddable subtree based on dynamic programming,
which is similar to the computation of a largest common subtree, described in, e.g., [12, 4].
Let T and T ′ be rooted trees and L be a table of size |T ||T ′|. For each pair of vertices
u ∈ T, v ∈ T ′ the value L(u, v) stores the size of a LaCSE between the rooted subtrees Tu

and T ′v. Gupta and Nishimura proved, that an entry L(u, v) is determined by the maximum
of the following three quantities.

M1 = max{L(u, c) | c ∈ C(v)}
M2 = max{L(b, v) | b ∈ C(u)}
M3 = W (M)+1, whereM is a MWM of the complete bipartite graph (C(u)tC(v), C(u)×
C(v)) with edge weight w(bc) = L(b, c) for each pair (b, c) ∈ C(u)× C(v).

Here, M1 represents the case, where the vertex v is not mapped. To satisfy ii) from Def. 1,
we may map at most one child c ∈ C(v). M2 represents the case, where u is not mapped
and at most one child b ∈ C(u) is allowed. M3 represents the case ϕ(u) = v. To maximize
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the number of mapped descendants we compute a maximum weight matching, where the
children of u and v are the vertex sets C(u) and C(v), respectively, of a bipartite graph.
The edge weights are determined by the previously computed solutions, i.e., the LaCSEs
between the children of u and v and their descendants, namely between Tb and T ′c for each
pair of children (b, c). The algorithm proceeds from the leaves to the roots. From the above
recursive formula, we get L(u, v) = 1 if u or v is a leaf, which was separately defined in [8].

A maximum value in the table yields the size of a LaCSE. We obtain the size of a
root-to-root LaCSE from M3 of the root vertices r(T ), r(T ′). Note, with storing O(|L|)
additional data, it is easy to obtain a (root-to-root) LaCSE ϕ.

I Theorem 3 (Gupta, Nishimura, [8]). Computing a LaCSE between two rooted trees of order
at most n is possible in time O(n2.5 logn).

4 Largest Weight Common Subtree Embeddings

First, we introduce weighted common subtree embeddings between labeled trees. Part of the
input is an integral or real weight function on all pairs of the labels. Next, we consider a
linear distance penalty for skipped vertices in the input trees. After formalizing the problem
and presenting an algorithm, we prove new upper time bounds.

Vertex Labels. In many application domains the vertices of the trees need to be distin-
guished. A common representation of a vertex labeled tree T is (T, l), where l : V (T )→ Σ
with Σ as a finite set of labels. Let ω : Σ× Σ→ R ∪ {−∞} assign a weight to each pair of
labels. Instead of maximizing the number of mapped vertices, we want to maximize the sum
of the weights ω(l(u), l(ϕ(u))) of all vertices u mapped by a common subtree embedding ϕ.
For simplicity, we will omit l and l′ for the rest of this paper and define ω(u, v) := ω(l(u), l′(v))
for any two vertices (u, v) ∈ V (T )× V (T ′).

Edge Labels. Although not as common as vertex labels, edge labels are useful to represent
different bonds between atoms or relationship between individuals. In a common subtree
embedding we do not map edges to edges but paths to paths. Since in an embedding inner
vertices on mapped paths do not contribute to the weight, we do the same with edges. I.e.,
both paths need to have length 1 for their edge labels to be considered. Here again, we
want to maximize the weight ω(e, e′) := ω(l(e), l′(e′)) of these edges mapped to each other
(additional to the weight of the mapped vertices).

Distance Penalties. Depending on the application purpose it might be desirable that paths
do not have an arbitrary length. Here, we introduce a linear distance penalty for paths of
length greater than 1. I.e., each inner vertex on a path corresponding to an edge of the
common embeddable subtree lowers the weight by a given penalty p. By assigning p the value
∞ we effectively compute a maximum common subtree. The following definition formalizes
a LaCSE under a weight function ω and a distance penalty p.

I Definition 4 (Largest Weight Common Subtree Embedding; LaWeCSE). Let (T, l) and
(T ′, l′) be rooted vertex and/or edge labeled trees. Let ϕ be a common subtree embedding
between T and T ′. Let ω : Σ× Σ→ R ∪ {−∞} assign a weight to each pair of labels. Let
p ∈ R≥0 ∪ {∞} be a distance penalty. We refer to a path P = (u0, e1, u1, . . . , uk) in the tree
T corresponding to a single edge in the common embeddable subtree as topological path. Let
ϕ(P ) be the corresponding path (v0, e

′
1, v1, . . . , vl) in T ′. Then

MFCS 2018
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T1 T T2

(a) Labeled MCS (green dashed lines) and LaCSE
(black dotted lines) between T and Ti, i ∈ {1, 2}.

ω( , ) = 1
ω(|, |) = 3
ω(|, |) = −1
p = 0.3

T u1

u2

T ′v1

v2

v3

(b) The black embedding has weight 1.7, since the
vertex v2 is skipped and therefore the penalty p is
applied; the weight between the edges is not added.
The green embedding has weight 5; 2 from the ver-
tices, 3 from the topological path (u1, u2) mapped
to (v1, v2).

Figure 1 a) Although ’intuitively’ T is more similar to T1 than to T2, both MCSs have size 3.
However, the LaCSE between T and T1 has 6 mapped vertices. b) Two weighted embeddings; one
with a skipped vertex, the other where the edge labels contribute to the weight.

ωp(P,ϕ(P )) = ω(e1, e
′
1) := ω(l(e1), l′(e′1)), if l = k = 1, or

ωp(P,ϕ(P )) = −p · (l + k − 2), otherwise.
The weight W(ϕ) is the sum of the weights ω(u, ϕ(u)) of all vertices u mapped by ϕ plus
the weights ωp(P,ϕ(P )) of all topological paths P .
If ϕ is of largest weight among all common subtree embeddings, then ϕ is a Largest
Weight Common Subtree Embedding (LaWeCSE).

The definition of root-to-root LaWeCSE is analogue to Def. 2. A closer look at the
definition of ωp reveals that each inner vertex (the skipped vertices) on a topological path or
its mapped path subtracts p from the embedding’s weight. Fig. 1b illustrates two weighted
common subtree embeddings.

The dynamic programming approach. To compute a LaWeCSE, we need to store some
additional data during the computation. In Gupta and Nishimura’s algorithm there is a
table L of size |T ||T ′| to store the weight of LaCSEs between subtrees of the input trees. In
our algorithm we need a table L of size 2|T ||T ′|. An entry L(u, v, t) stores the weight of a
LaWeCSE between the rooted subtrees Tu and T ′v of type t ∈ {f, �}. Type f represents a
root-to-root embedding between Tu and T ′v; � an embedding, where u or v is skipped. Skipped
in the sense, that at least one of u, v will be an inner vertex when mapping some additional
ancestor nodes of u or v during the dynamic programming. For type � we subtract the
penalty p from the weight for the skipped vertices before storing it in our table. We obtain
the weight of a LaWeCSE and a root-to-root LaWeCSE, respectively, from the maximum
value of type f and from L(r(T ), r(T ′),f), respectively. The following lemma specifies the
recursive computation of an entry L(u, v, t).

I Lemma 5. Let u ∈ V (T ) and v ∈ V (T ′). For t ∈ {f, �} let MT
t = max{L(b, v, t) | b ∈

C(u)} and MT ′

t = max{L(u, c, t) | c ∈ C(v)}. Then
L(u, v, �) = max{MT

� ,M
T
f ,M

T ′

� ,M
T ′

f } − p
Let G = (C(u) t C(v), C(u) × C(v)) be a bipartite graph with edge weights w(bc) =
max{L(b, c, �),L(b, c,f) + ω(ub, vc)} for each pair (b, c) ∈ C(u)× C(v). Then
L(u, v,f) = ω(u, v) +W (M), where M is a MWM on G.

Proof. Since we defined the maximum of an empty set as −∞, this covers the base case, where
one vertex is a leaf, e.g., if u is a leaf, then max{MT

� ,M
T
f ,M

T ′

� ,M
T ′

f } = max{MT ′

� ,M
T ′

f }.
Further, W (M) = 0, if G has no positive weight edges. Then L(u, v,f) = ω(u, v).
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The type � represents the case of an embedding between Tu and T ′v which is not root-
to-root. From the definition of MT

t the vertex u is skipped and from the definition of MT ′

t

the vertex v is skipped, so it is indeed not root-to-root. Since either u or v was skipped,
we subtract the penalty p. This ensures we have taken inner vertices of later steps of the
dynamic programming into account.

The type f implies that u is mapped to v. Each edge in G represents the weight of
a LaWeCSE from one child of u to one child of v. A maximum matching yields the best
combination which satisfies Def. 1. If a child b of u is mapped to a child c of v, the paths bu
and cv have length one. Then from Def. 4 we have to add the weight ω(bu, cv). Otherwise at
least one path has length greater than one and we have to subtract the distance penalty p
for each inner vertex. We already did that while computing L(b, c, �). J

Time and space complexity. We next analyze upper time and space bounds. Thereby
we distinguish between real- and integer-valued weight functions ω. If we use dynamic
programming starting from the leaves to the roots, we need to compute each value L(u, v, t)
only once.

I Theorem 6. Let T and T ′ be rooted vertex and/or edge labeled trees. Let ω be a weight
function, ∆ = min{∆(T ),∆(T ′)}, and p be a distance penalty.

A LaWeCSE between T and T ′ can be computed in time O(|T | |T ′|∆} and space O(|T | |T ′|).
If the weights are integral and bounded by a constant C, a LaWeCSE can be computed in
time O(|T | |T ′|

√
∆ log(C min{|T |, |T ′|})).

We first need to provide two results regarding maximum weight matchings.

I Lemma 7 ([14]). Let G be a weighted bipartite graph containing m edges and vertex sets
of sizes s and t. W.l.o.g. s ≤ t. We can compute a MWM on G in time O(ms + s2 log s)
and space O(m). If G is complete bipartite, we may simplify the time bound to O(s2t).

If the weights are integral and bounded by a constant, the following result for a minimum
weight matching was shown in [7]. We solve MWM by multiplying the weights by -1.

I Lemma 8. Let G as in Lemma 7 and the weights be integral and bounded by a constant C.
We can compute a MWM on G in time O(m

√
s logC). If G is complete bipartite, we may

simplify the time bound to O(s1.5t logC).

Unfortunately, there is no space bound given in [7]. However, since their algorithm is based
on flows, the space bound is probably O(m). If we assume this to be correct, the space
bound in Theorem 6 applies to integral weights too.

Proof of Theorem 6. We observe that the entries of type f in the table L dominate the
computation time. We assume the bipartite graphs on which we compute the MWMs to be
complete. We further observe that each edge bc representing the weight of the LaWeCSE
between the subtrees Tb and T ′c is contained in exactly one of the matching graphs.

Let us assume real weights first. L requires O(|T | |T ′|) space. We may also compute each
MWM within the same space bound. This proves the total space bound. From Lemma 7 the

MFCS 2018
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ω( , ) = 1
ω( , ) = −5
ω( , ) = 2
ω(|, |) = 0
p = 0.2

T r

u

u2

u3

u0

T ′ v

v0

v1

Figure 2 The weight of a LaWeCSE between T r and T ′v is 2.8 (black dotted lines), since we
have one skipped vertex u for penalty 0.2. The weight of a LaWeCSE between T u0 and T ′v0 is 3.6
(green dashed lines) for two skipped vertices. The latter one is also a LaWeCSEu.

time to compute all the MWMs is bounded by

O

 ∑
v∈VT ′

∑
u∈VT

|C(u)| |C(v)|min{|C(u)|, |C(v)|}


⊆ O

 ∑
v∈VT ′

|C(v)|
∑

u∈VT

|C(u)|∆

 = O(|T | |T ′|∆).

Let us assume ω to be integral and bounded by a constant C next. This implies a
weight of each single matching edge of at most C̄ := 2C ·min{|T |, |T ′|}, since no more than
2 min{|T |, |T ′|} edges and vertices in total may contribute to the weight. Negative weight
edges never contribute to a MWM and may safely be omitted. From Lemma 8 the time
bound is

O

 ∑
v∈VT ′

∑
u∈VT

|C(u)| |C(v)|
√

min{|C(u)|, |C(v)|} log C̄


⊆ O

 ∑
v∈VT ′

|C(v)|
∑

u∈VT

|C(u)|
√

∆ log C̄

 = O
(
|T | |T ′|

√
∆ log(C min{|T |, |T ′|})

)
. J

5 Largest Weight Common Subtree Embeddings for Unrooted Trees

In this section we consider a LaWeCSE between unrooted trees. I.e., we want to find two
root vertices r ∈ V (T ), s ∈ V (T ′) and a common subtree embedding ϕ between T r and
T ′s such that there is no embedding ϕ′ between T r′ and T ′s′ , r′ ∈ V (T ), s′ ∈ V (T ′), with
W(ϕ′) >W(ϕ). We abbreviate this as LaWeCSEu. In Sect. 5.1 we present a basic algorithm
and a first improvement by fixing the root of T . In Sect. 5.2 we speed up the computation by
exploiting similarities between the different chosen roots of T ′. In each section we prove the
correctness and upper time bounds of our algorithms.

5.1 Basic algorithm and fixing one root
The basic idea is to compute for each pair of vertices (u, v) ∈ V (T ) × V (T ′) a (rooted)
LaWeCSE from Tu to T ′v and output a maximum solution. This is obviously correct and
the time bound is O(|T |2 |T ′|2∆).

In our previous work [4] we showed how to compute a maximum common subtree between
unrooted trees by arbitrarily choosing one root vertex r of T and then computing MCSs
between T r and T ′s for all s ∈ V (T ′). The key idea in the proof is that for any maximum
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common subtree isomorphism ϕ between T and T ′, either r is mapped by ϕ, or there is a
unique vertex u ∈ V (T ) with shortest distance to r, such that all vertices mapped by ϕ are
contained in Tu. The dynamic programming approach for LaWeCSE already considers the
maximum solutions between the rooted subtrees of T r and T ′s. However, Fig. 2 shows that
this strategy alone sometimes fails, if we want to find a LaWeCSEu between the input trees.
A LaWeCSE between T r and T ′ rooted at any vertex results in a weight of at most 2.8. In
contrast, rooting T at u0 results in a LaWeCSE of weight 3.6.

In a maximum common subtree between trees T and T ′, let r ∈ V (T ) be an arbitrarily
chosen root of T . If any two children u1, u2 of their parent node u ∈ V (T ) are mapped to
vertices of T ′, then u is also mapped. This statement is independent from the chosen root
r ∈ V (T ), since a common subtree is connected. If we want to compute a (rooted) LaWeCSE,
the statement is also true (for the given root). This follows from Def. 1 ii). However, if we
choose u1 as root in a LaWeCSEu, we may skip u and map u2, forming the topological path
(u1, u, u2). Whatever we do, if we skip vertex u as an inner vertex of a topological path, this
is the only path containing u; otherwise we violate Def. 1. We record this as a lemma.

I Lemma 9. Let T and T ′ be unrooted trees. Let ϕ be a LaWeCSEu from T to T ′ and
u ∈ V (T ) be an inner vertex of a topological path with its neighbors N(u) = {u1, u2, . . . , uk}.
Then ϕ maps vertices from exactly two of the rooted subtrees Tu

u1
, . . . , Tu

uk
to T ′.

To compute a LaWeCSEu ϕ, additionally to the strategy from [4], we need to cover the
case, that there is no single vertex u mapped by ϕ, such that all vertices mapped by ϕ are
contained in T r

u , cf. Fig. 2 with r as chosen root. In this case let u be the unique inner vertex
of a topological path P , such that all vertices mapped by ϕ are contained in T r

u . An example
is the yellow vertex u in Fig. 2. Further, let P1 = (u0, . . . , ui−1, ui = u, ui+1, . . . , uk) be the
topological path containing u and ϕ(P1) = P2 = (v0, . . . , vl) with ϕ(u0) = v0 and ϕ(uk) = vl.

Then there is a LaWeCSE φ1 between the rooted subtrees T r
ui−1

and T ′v1
v0

containing u0
and all its descendants mapped by ϕ. There is another LaWeCSE φ2 between the rooted
subtrees T r

ui+1
and T ′v0

v1
containing uk and all its descendants mapped by ϕ. Note, choosing

T
′vj+1
vj and T ′vj

vj+1 for any j ∈ {0, . . . , l + 1} as rooted subtrees yields the same LaWeCSEs φ1
and φ2, i.e., it does not matter where we split the path P2.

For any vertex v ∈ V (T ′) let Lv refer to the table L corresponding to T r and T ′v. Then
L1 := max{Lv1(ui−1, v0, t) | t ∈ {f, �}} is the weight of the LaWeCSE φ1 minus the penalty
for the inner vertices u1, . . . , ui−1; the penalty is 0, if i = 1. L2 := max{Lv0(ui+1, v1, t) |
t ∈ {f, �}} is the weight of the LaWeCSE φ2 minus the penalty for the inner vertices
ui+1, . . . , uk−1 and v1, . . . , vl−1. I.e., the penalty p for each inner vertex on the paths
excluding u is included in L1 +L2. Therefore W(ϕ) = L1 +L2 − p. Before summarizing this
strategy in the following Lemma 10, we exemplify it on Fig. 2.

The LaWeCSEu ϕ is depicted by green dashed lines with mapping u0 7→ v0 and u3 7→ v1.
The yellow inner vertex u fulfills the condition that T r

u contains all vertices mapped by ϕ.
We have paths P1 = (u0, u, u2, u3) and ϕ(P1) = P2 = (v0, v1). Then L1 = Lv1(u0, v0,f) = 2
for the mapping u0 7→ v0. Further L2 = Lv0(u2, v1, �) = 1.8 for the mapping u3 7→ v1 and
the skipped vertex u2. We obtain W(ϕ) = L1 + L2 − p = 2 + 1.8− 0.2 = 3.6.

I Lemma 10. Let T and T ′ be trees. Let r ∈ V (T ) be arbitrarily chosen. Let W(r, v) be the
weight of a LaWeCSE from T r to T ′v and T (u, v, w) = max{Lw(u, v, t) | t ∈ {f, �}}. Then
the weight of a LaWeCSEu is the maximum of the following two quantities.

M1 = max{W(r, v) | v ∈ V (T ′)}
M2 = maxu∈V (T ), vw∈E(T ′){T (u1, v, w) + T (u2, w, v) | u1 6= u2 ∈ C(u)} − p
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I Lemma 11. Let the preconditions be as in Lemma 10. Then M1 can be computed in time
O(|T | |T ′|2∆) and M2 in time O(|T | |T ′|); both can be computed in space O(|T | |T ′|).

Proof. For any vertices s, v ∈ V (T ′) consider the rooted subtree T ′sv . Let p(v) be the parent
vertex of v with p(s) = s. Then T ′sv = T

′p(v)
v = T ′wv for each vertex w ∈ V (T ′) \ V (T ′sv ),

i.e., w is a vertex of T ′, which is not contained in the rooted subtree T ′sv . Therefore we can
identify each table entry Ls(u, v, t) by Lp(v)(u, v, t). In other words, all the table entries
needed to compute M1 are determined first by a node u ∈ V (T ), and second by either an
edge wv ∈ E(T ′) or the root vertex s. Therefore, the space needed to store all the table
entries and thus compute M1 is O(|T | |T ′|). We will use these values to retrieve T (u, v, w)
in constant time.

From Theorem 6 for each v ∈ V (T ′) we can compute W(r, v) in time O(|T | |T ′|∆). Thus,
the time for M1 is bounded by O(|T | |T ′|2∆). For any edge vw ∈ E(T ′) we observe that the
only rooted subtrees from T ′ to consider are T ′vw and T ′wv . Let L(b, v) and L(b, w), b ∈ C(u)
be the weight of a LaWeCSE from T r

b to T ′wv and T ′vw , respectively. Let G be a bipartite graph
with vertices C(u) t {v, w} and edges between these vertices with weights defined by L(b, v)
and L(b, w), respectively. Let M be a MWM2 on G. Then W (M) = max{T (u1, v, w) +
T (u2, w, v) | u1 6= u2 ∈ C(u)}. This follows from the construction of G. Note, a MWM2
contains exactly 2 edges. Let C(u) = {b1, . . . , bk} such that L(bi, v) ≥ L(bi+1, v) for any
i < k. I.e., the vertices bi are ordered, such that L(b1, v) and L(b2, v) have weight at least
L(bi, v) for all i > 2. We remove all edges incident to v except b1v and b2v. Analog we
remove all but the two edges of greatest weight incident to w. Let G′ be the graph with
those edges removed and M ′ be a MWM2 on G′. We next prove W (M ′) = W (M). Let M
be a matching on G. Assume the partner of v is bi, i > 2. Then let b = b1 if b1 is not the
partner of w, and b = b2 otherwise. Replacing vbi ∈M by vb results in a matching M ′ such
that W (M ′) ≥W (M). We may argue analog for w.

Since G′ contains at most 4 edges we may compute M ′ in constant time. The time to
remove the edges from G to G′ is O(k). Therefore the time to compute max{T (u1, v, w) +
T (u2, w, v) | u1 6= u2 ∈ C(u)} for given u and vw is O(|C(u)|). The time to compute M2 is
O(
∑

u∈VT ,vw∈ET ′
|C(u)|) = O(|T | |T ′|).

We may computeM2 from L and additional space O(|T |), which is O(|T | |T ′|) in total. J

5.2 Exploiting similarities
In this section we improve the running time from O(|T | |T ′|2∆) to O(|T | |T ′|∆). To this
end, we need to speed up the computation in Lemma 5. Specifically, we exploit similarities
between the graphs on which we compute the maximum weight matchings. We further
need to speed up the computation of MT ′

t related to the root vertices from T ′. We have to
take special care of the sequence, in which we compute the table entries, to avoid circular
dependencies.

Speeding up the dynamic programming approach. In Lemma 5 the recursion computes
maximum values among certain table entries. We first include the current root s ∈ V (T ′)
into the notation. We use the definition of Ls from Sect. 5.1 refering to the table where
s is the root of V (T ′). Let u ∈ V (T ) and v ∈ V (T ′) be the vertices in the current
recursion of Lemma 5. For all t ∈ {f, �} let MT,s

t = max{Ls(b, v, t) | b ∈ C(u)} and
MT ′,s

t = max{Ls(u, c, t) | c ∈ C(v)}. From the proof of Lemma 11 we know that T ′sv = T ′wv
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for each vertex w ∈ V (T ′) \ V (T ′sv ). This implies MT,s
t = MT,w

t and MT ′,s
t = MT ′,w

t for
all w as before. I.e., it is sufficient to distinguish all the MT,s

t and MT ′,s
t first by a node

u ∈ V (T ), and second by either an edge wv ∈ E(T ′) or a single vertex s ∈ V (T ′).
This observation allows us to upper bound the time to compute all the MT,s

t by

O

 ∑
u∈VT ,wv∈ET ′

|C(u)|+
∑

u∈VT ,s∈VT ′

|C(u)|

 = O

 ∑
wv∈ET ′

|T |+
∑

s∈VT ′

|T |

 = O (|T | |T ′|) .

Let N(v) = {c1, c2, . . . cl} and Ci := {c1, . . . , ci−1, ci+1, . . . , cl} for 1 ≤ i ≤ l, i.e, Ci

contains all the vertices fromN(v) except ci. We observeMT ′,v
t = max{Lv(u, c, t) | c ∈ N(v)}

and MT ′,ci

t = max{Lci(u, c, t) | c ∈ Ci} = max{Lv(u, c, t) | c ∈ Ci} for each i ∈ {1, . . . , l}.
Let j be an index, such thatMT ′,v

t = Lv(u, cj , t). Then for each i 6= j we haveMT ′,ci

t = MT ′,v
t .

Therefore, we may compute MT ′,v
t and MT ′,ci

t for all i ∈ {1, . . . , l} in time O(δ(v)). Hence,
the time to compute all theMT ′,s

t is bounded by O
(∑

u∈VT ,v∈VT ′
δ(v)

)
= O

(∑
u∈VT

|T ′|
)

=
O(|T | |T ′|).

I Lemma 12. Assume there is a sequence of all pairs (u, v) such that all necessary values are
available to compute MT,s

t and MT ′,s
t for s ∈ N(v) ∪ {v}; then the total time is O(|T | |T ′|).

Exploiting similarities between the matching graphs. In Lemma 5 we need to compute
a MWM for each (u, v) ∈ V (T ) × V (T ′). When considering all roots s ∈ V (T ′), we have
one matching graph G with vertices C(u) t N(v), N(v) = {c1, . . . , cl} as well as l graphs
Gci

, 1 ≤ i ≤ l. This follows analog to the observation regarding MT ′,v
t from the previous

paragraph. A graph Gc, c ∈ N(v), is the same as G except that the vertex c and incident
edges are removed. Let s := min{δ(u), δ(v)} and t := max{δ(u), δ(v)}. We now prove a total
time bound of O(s2t) for computing a MWM on G as well as on Gc for all c ∈ N(v). We
distinguish two cases.

i) s ≥ log t. In our previous work we presented an algorithm to compute a maximum
common subtree of maximum weight, a special case of LaWeCSEu [4]. A subproblem is to
compute MWMs on graphs structurally identical to G and Gci

, 1 ≤ i ≤ l. We showed that
we can compute all those MWMs in time O(st(s+ log t)). Under the premise s ≥ log t the
time bound is O(s2t).

ii) s < log t. Then one vertex set is much smaller than the other. From Lemma 14 we can
compute all those MWMs in time O(s4 + s2t). Under the premise s < log t that is O(s2t).

I Lemma 13. Assume there is a sequence of all pairs (u, v) such that all necessary values
are available to compute the MWMs; then the total time is O(|T | |T ′|∆).

Proof. The time to compute all the MWMs is

O

∑
u∈VT

∑
v∈VT ′

δ(u)δ(v) min{δ(u), δ(v)}

 ⊆ O
∑

u∈VT

∑
v∈VT ′

δ(u)δ(v)∆

 = O(|T | |T ′|∆).J

I Lemma 14. Let G be a weighted bipartite graph with vertex sets U and V , s := |U | ≤
|V | =: t. Let either C = U or C = V . We can compute a MWM on G and a MWM on each
graph Gc, c ∈ C, in total time O(s4 + s2t).

Proof. From Lemma 7 we know there is an algorithm which computes a MWM on G in time
O(s2t). This algorithm first copies the s vertices of U and then adds an edge of weight 0

MFCS 2018
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(a) G′ and a MWM M ′ (red).
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(green, dashed lines).

u1

u2

u3

v1

v2

v3

0

0

0

1

3

22
2

4

(c) A MWM (red) on G′
v4 ob-

tained from a single augmenting
path (dashed lines).

Figure 3 (a) A MWMs, s = |U | = 3, on G′, which is also a MWM. (b) The graph G′
v4 , on

which we compute a shortest path from u3 to a. Such a path corresponds to a augmenting path of
maximal weight in G′

v4 . (c) Applying the path yields a MWM3 on G′
v4 , which is also a MWM.

between each vertex of U and its copy. We denote this graph by G′. The algorithm computes
a MWMs M

′ on G′ (M ′ is also a MWM), which corresponds to a MWM on G. An example
is depicted in Figure 3a.

The graph G′ with one vertex c ∈ C removed is denoted by G′c. If c is not matched, we
are done. If c is matched, let u (in case c ∈ V ) respectively v (in case c ∈ U) be the partner
of c. Let M ′c := M ′ \ {cu} or M ′c := M ′ \ {cv}, respectively. We observe |M ′c| = s− 1.

First, assume c ∈ V . In a MWMs of G′c each vertex of U including u must be matched.
An odd length M ′c-augmenting path P of maximal weight (the path’s weight refers to the
difference in the matching’s weight after augmentation) incident to u yields a MWMs on G′c
and thus a MWM on Gc. This follows from the fact, that anyM ′c-alternating cycle or path on
G′c not incident to u has nonpositive weight; otherwise M ′ was no MWM. We can find such a
path using the Bellman-Ford algorithm in time O(st+ s3) as follows. Let G′c = (U ∪ {a}, A)
be the digraph, where A is the union of the following two sets of directed arcs.
1. For each alternating path ūvu′ in G′c, where ū, u′ ∈ U, v ∈ V , and vu′ is matched, we add

the arc (ū, u′) with weight w(vu′)− w(ūv).
2. For each vertex ū ∈ U let v be a free vertex adjacent to u, such that the edge uv has

maximum weight among all such edges. We add an arc (u, a) of weight −w(uv).
The time to construct the graph is bounded by O(st). Since G′c has O(s) vertices and O(s2)
edges, we may compute a shortest path P from c’s partner u to a in time O(s3). We obtain
a MWM on G′c by augmenting M ′c with the edges that correspond to P in G′c. Figure 3b
depicts an example for G′c, as well as a shortest path P . Figure 3c depicts the resulting
MWM. Since at most s vertices of V are matched by M , the total time to compute a MWM
on each of the graphs Gc, c ∈ V , is O(s4 + s2t).

Second, assume c ∈ U . Each vertex in U is matched. Therefore the cardinality of M ′c is
s− 1. This time we need to find an alternating path of even length (we removed a vertex
from U) and of maximal weight incident to c’s partner v. Any alternating cycle or path not
incident to v cannot augment M ′c to greater weight; otherwise M ′ was no MWM. This path
may have length 0, e.g., if M ′c is a MWM of M ′. The total time to compute such a path is
O(s3) as follows. Let G′c = (U ∪ {v, a}, A), where A is the union of the following four sets of
directed arcs.
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(b) A MWM (red) on G′
u1 (isolated ver-

tices removed) obtained from a single
augmenting path (dashed lines).

Figure 4 (a) The graph G′
u1 , on which we compute a shortest path from v2 to a. Such a path

corresponds to an augmenting path of maximal weight in G′
u1 . (b) Applying the path yields a

MWM2 on G′
u1 , which is also a MWM.

1. For each edge vu ∈ E(G′c), u ∈ U , we add the arc (v, u) with weight −w(vu).
2. For each alternating path uv′u′ in G′c, where u, u′ ∈ U, v′ ∈ V , and uv′ is matched, we

add the arc (u, u′) with weight w(uv′)− w(v′u′).
3. For each matching edge uv′, where u ∈ U, v′ ∈ V , we add the arc (u, a) with weight

w(uv′).
4. We add the arc (v, a) with weight 0.
The time to construct the graph is bounded by O(s2). An example is depicted in Figure 4a.
Figure 4b depicts the resulting MWM. Since G′c has O(s) vertices and O(s2) edges, we
may compute a shortest path P from c’s partner v to a in time O(s3). Again, P yields the
augmenting path in G′c. Since all the s vertices of U are matched by M , the total time to
compute a MWM on each of the graphs Gc, c ∈ U , is O(s4). J

Sequence of computation. For given vertices (u, v) ∈ V (T )×V (T ′) we denote the matching
graph G without removed vertices as main instance and the matching graphs Gc as its
sub instances. Analog for t ∈ {f, �} we define MT ′,v

t as main instance and MT ′,c
t for each

c ∈ N(v) as its sub instances.
Let u ∈ V (T ) and vw ∈ E(T ′). We observe, for type t ∈ {f, �} the following values

depend circularly on each other. To compute MT ′,w
t recursively for the vertices u,w we need

Lw(u, v, t). Computing Lw(u, v, t) requires MT ′,v
t computed recursively for the vertices u, v.

The latter one requires Lv(u,w, t). Finally Lv(u,w, t) requires MT ′,w
t computed recursively

for the vertices u,w, which was the start of the circular dependency.
We further observe, the MWMs depend on table entries of both types. We may break

the dependencies by solving at most one sub instance before solving the main instance, as
shown next.

We iterate over all roots s ∈ V (T ′) and compute a rooted LaWeCSE between T r and T ′s
as in Lemma 5. During the recursion on vertices (u, v) the following cases may happen.
1. The first instance to compute on (u, v) is a main instance. Then we instantly compute

all its sub instances from it.
2. The first instance to compute on (u, v) is a sub instance. Then we compute only the sub

instance without deriving it from the main instance.
a. If the second instance is a main instance, we instantly compute its sub instances.
b. Otherwise let c1 ∈ N(v) and c2 ∈ N(v) be the vertices corresponding to the first

and second sub instance, respectively. Let us consider table entries first. When
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we computed the sub instance corresponding to c1, all necessary table entries for
MT ′,v

t except Lv(u, c1, t) were available. For the second sub instance Lv(u, c1, t) is
also available. Thus we may instantly compute the main instance and all other sub
instances including the one corresponding to c2. We may argue analog for the MWMs.

I Theorem 15. Let T and T ′ be (unrooted) vertex and/or edge labeled trees. Let ω be a
weight function, ∆ = min{∆(T ),∆(T ′)}, and p be a distance penalty. A LaWeCSEu between
T and T ′ can be computed in time O(|T | |T ′|∆) and space O(|T | |T ′|).

6 Conclusions

We presented an algorithm which solves the largest weight common subtree embedding
problem in time O(|T | |T ′|∆). For rooted trees of integral weights bounded by a constant
we proved a bound of O(|T | |T ′|

√
∆ log(C min{|T |, |T ′|})). Our approach generalizes the

maximum common subtree problem [4] and the largest common subtree embedding problem,
both unlabeled [8] and labeled [9], by supporting weights between labels and a distance
penalty for skipped vertices.

A remaining open problem is whether the time bound for unrooted trees can be improved
when the weights are integral and bounded by a constant. Since weight scaling algorithms for
matchings do not work incrementally [13], there is no obvious way to exploit the similarities
in the given matching graphs.
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