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Abstract
Consider concurrent, infinite duration, two-player win/lose games played on graphs. If the
winning condition satisfies some simple requirement, the existence of Player 1 winning (finite-
memory) strategies is equivalent to the existence of winning (finite-memory) strategies in finitely
many derived one-player games. Several classical winning conditions satisfy this simple require-
ment.

Under an additional requirement on the winning condition, the non-existence of Player 1
winning strategies from all vertices is equivalent to the existence of Player 2 stochastic strategies
almost-sure winning from all vertices. Only few classical winning conditions satisfy this additional
requirement, but a fairness variant of omega-regular languages does.
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1 Introduction

Computer science models systems interacting concurrently with their environment via infinite
duration two-player win/lose games played on graphs: a play starts at a state of the graph,
where the players concurrently choose one action each and thus induce the next state, and
so on for infinitely many rounds. The winning condition is a given subset W of the infinite
sequences of states, and Player 1 wins the play iff the sequence of visited states belongs to
W . A strategy of a player prescribes one action depending on what has been played so far,
and a winning strategy is a strategy ensuring victory regardless of the opponent strategy.

There are games where neither of the players has a winning strategy, but Borel determ-
inacy [25] guarantees the existence of a winning strategy in games where the players play
alternately and the winning condition is a Borel set. Under Borel condition again, Black-
well determinacy [26] guarantees a weaker conclusion when the players play concurrently:
there exists a value v ∈ [0, 1] such that for all ε > 0 the players have stochastic strategies
guaranteeing victory with probability v − ε and 1− v − ε, respectively.

In the special case of concurrent games played on finite graphs with ω-regular winning
conditions, [11] designed algorithms to decide the existence of (stochastic) strategies that
are winning, winning with probability one, and winning with probability 1− ε for all ε > 0.
[11] also mentions a three-state game where only the latter exist, which exemplifies the
complexity of the concurrent ω-regular games on finite graphs. Then [6] studied concurrent
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Figure 1 To the left, a concurrent game with states q0, q1, colors 0, 1, 2, and two actions per player.
To the right, a one-player game derived by using the delayed response [(0, q0)(0, q0)]; [(1, q0)(2, q1)].

prefix independent winning conditions, which is strictly more general than the ω-regular
conditions, and [13] further improved upon some results. Some of these results were extended
recently to multi-player multi-outcome games, see e.g. [3], [15].

The new games. This article studies slightly different games: when the players concurrently
choose one action each, it also produces a color ; the winning condition is now a given subset
W of the infinite sequences of colors; and Player 1 wins the play iff the produced sequence
of colors belongs to W . There are two differences between the classical games and the new
games. First, the winning condition does not involve the visited states but the transitions
instead; second it does so indirectly, via colors labeling the transitions. E.g. in the game
on the left-hand side of Figure 1, starting at q0, the action sequence (a1, b1)(a1, b2)(a1, b1)
yields the state sequence q0q0q1q0 and the color sequence 002.

There are several reasons why these new games are interesting.
The classical games can be encoded easily into the new ones by using state names as
colors. Variants such as the games with colored states, or the colorless games with winning
condition on the transitions can also be encoded easily into the new games.
The converse encoding may increase the state space (to infinity for games with infinitely
many actions). Note that the transition-versus-state issue was already studied in the
turned-based setting in [10]. Likewise, colorless games are encoded easily in games with
colors without size increase, and colors usually lead to more succinct winning conditions.
Colors are widely used in turn-based games, and for all games they help to study the
winning conditions independently from the game structure, and thus to approximate
or even characterize nice winning conditions for classes of games (usually simple to
check) rather than for single games (usually more accurate but harder to check). This is
exemplified by the difference between Theorems 5 and 7 in [27].
Whereas classical one-state games are trivial, the new one-state games are fairly complex
and constitute a nice intermediate object towards the understanding of the more complex
general games. Likewise, some one-state (aka stateless) objects from the literature are
interesting in their own right: [1] studied one-state multi-objective Markov decision
processes; vector addition systems (VAS, [17]) are still studied despite the vector addition
systems with states (VASS, [16]); the Minkowski games [24] defined with finite sets are a
special case of the one-state games from this article.

The main results.
If W is closed under interleaving and prefix removal, and if states and colors are finitely
many, the existence of a Player 1 winning (finite-memory) strategy is equivalent to the
existence of winning (finite-memory) strategies in finitely many derived one-player games.
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If, in addition, W is factor-prefix complete and there are finitely many actions, either
Player 1 has a winning strategy from one state, or every Player 2 constant (stronger than
positional!), positive, stochastic strategy is almost-sure winning from all vertices. This is
semi-random determinacy.
One-state games enjoy a stronger conclusion than in the previous item under somewhat
weaker assumptions: if the winning condition is factor-set complete and closed under
interleaving, if Player 2 has finitely many actions, either Player 1 has a winning strategy,
or every Player 2 constant, positive stochastic strategy is almost-sure winning.

The finitary flavor of the above characterizations yields decidability and memory sufficiency,
in the rough range of double exponentials in the number of states times the number of colors.

In the context of semi-random determinacy, a neutral, random Player 2 is therefore as
bad for Player 1 as a hostile environment. Also, the victory is clear-cut in the above results:
no need for approximate optimal strategies, no need for the notion of value, etc. This is due
to the assumptions, and it is legitimate to wonder how restrictive they are.

Several classical winning conditions from computer science are closed under interleaving,
see Section 5. The Muller condition is not, but the parity condition is, so the first charac-
terization result extends to the concurrent Muller games via the Last Appearance Record
(LAR), as done in [28]. So, closedness under interleaving is not as restrictive as it may seem.

Fewer classical winning conditions are factor-prefix complete (defined in Section 3.2), but
the boundedness condition from [24] and a variant of the ω-regular languages are both closed
under interleaving and factor-prefix complete. The variant is as follows: each produced color
requests some combinations of colors to occur in the future. In winning plays, the number of
currently unsatisfied requests should be uniformly bounded over time. It may be relevant
even as a business model: at every time unit the system can pay penalties for every currently
unsatisfied request, which may be covered by greater, albeit bounded, instantaneous income.

The above variant relates to the notion of fairness, which requires that co-finitely many
requests are eventually satisfied. The finitary fairness [2] additionally requires uniformly
bounded response time. This idea was used in [12] to study temporal logic, and in [9] to
study finitary parity games. Requiring uniformly bounded response time (or variants thereof)
to study games has been further used later, e.g. in [5]. However, these notions of fairness do
not enjoy closedness under interleaving and factor-prefix completeness. (Details in Section 5.)

Related works. The semi-random determinacy implies the bounded limit-one property
from [11] for the new games: if one state has positive value, one state has value one.

Corollary 4 generalizes the nice Theorem 4 from [18]. Note that the convexity of winning
conditions defined in [18] is a essentially the same as the interleaving closedness defined here.

This article also shares similarities with [14]: both use abstract winning conditions, and
both characterize the existence of winning strategies in two-player games by the existence
of winning strategies in finitely many derived one-player games. Several articles adopted a
similar approach: [19] and [20] reduce multi-player multi-outcome Borel games to simpler two-
player win/lose Borel games, and characterize the preferences and structures that guarantee
the existence of Nash equilibrium in infinite tree-games; [21] does the same to characterize
the preferences that guarantee the existence of subgame perfect equilibrium (at low levels
of the Borel hierarchy); [23] and [27] do the same to almost characterize the existence of
finite-memory Nash equilibrium in games on finite graphs; [22] reduces one-shot concurrent
two-player multi-outcome games to simpler one-shot concurrent two-player win/lose games,
with applications to generalized Muller games and generalized “parity” games.

MFCS 2018
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One of the benefits of abstraction is that it leads to more general results: e.g. [23] noted
that the lexicographic product of mean-payoff and reachability objectives cannot be encoded
into real-valued payoffs, and [27] proved it.

Structure of the article. Section 2 gives basic definitions. Section 3 presents the main
results and additional definitions. Section 4 discusses the key elements of the proofs. Section 5
presents applications.

2 Definitions

The folklore Observation 1 below will be used extensively to lift properties from finite words
to infinite words. It will be first explicitly invoked, and then only implicitly used.

I Observation 1. Let f : S∗ → T ∗ be such that u v v ⇒ f(u) v f(v), where v is the prefix
relation. Then f can be uniquely extended to S∗ ∪ Sω → T ∗ ∪ Tω such that f(ρ≤n) v f(ρ)
for all n ∈ N and ρ ∈ Sω.

Games. A game (with colors and states) is a tuple 〈A1, A2, Q, q0, δ, C, col,W 〉 such that
A1 and A2 are non-empty sets (of actions for Player 1 and Player 2),
Q is a non-empty set (of states),
q0 ∈ Q (is the initial state),
δ : Q×A1 ×A2 → Q (is the state update function).
C is a non-empty set (of colors),
col : Q×A1 ×A2 → C (is a color trace),
W ⊆ Cω (is the winning condition for Player 1)

Histories. The full histories (full runs) of such a game are the finite (infinite) words over
A1 × A2, the Player 2 histories (Player 2 runs) are the finite (infinite) words over A2, and
the Player 1 histories (Player 1 runs) are the finite (infinite) words over A1.

Strategies. A Player 1 strategy is a function from A∗2 to A1. Informally, it requires Player 1
to remember exactly how Player 2 has played so far, and it tells Player 1 how to play.

Induced histories. The function h is defined inductively below. As arguments it expects a
strategy and a Player 2 history in A∗2, and it returns a full history: the very full history that,
morally, should happen if Player 1 followed the given strategy while Player 2 played the given
Player 2 history. Namely, h(s, ε) := ε and h(s, β · b) := h(s, β) · (s(β), b).

By Observation 1 the function h is extended to expect opponents runs in Aω2 and return
full runs: h(s,β) is the only action run whose prefixes are the h(s,β≤n) for n ∈ N.

Extending the update and trace functions. The state update function δ is extended to
∆ : (A1 × A2)∗ → Q inductively: ∆(ε) := q0 and ∆(ρ · (a, b)) := δ(∆(ρ), a, b). Using
∆, the trace function col is naturally lifted to full histories by induction: col(ε) := ε and
col(ρ · (a, b)) := col(ρ) · col(∆(ρ), a, b). The trace function is further extended to full runs by
Observation 1. When considering several games, indices may be added to the corresponding
∆ and col.

Winning strategies. A Player 1 strategy s is winning if col ◦ h(s,β) ∈W for all β ∈ Aω2 . If
there is a Player 1 winning strategy in a game, one says that Player 1 wins the game.
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Memory. A Player 1 strategy s is said be implementable with memory M , or memory size
log2 |M |, if there exist a set M and m0 ∈ M , and two functions σ : Q ×M → A1 and
µ : Q×M ×A2 →M such that s(β) = σ(∆ ◦ h(s, β),m(β)), where m is defined inductively
by m(ε) := m0 and m(βb) := µ(∆◦h(s, β),m(β), b). IfM is finite, s is called a finite-memory
strategy. Note that every Player 1 strategy is implementable with memory Aω2 .

One-player games. Intuitively, a one-player game (with colors and states) amounts to a
game where Player 2 has only one strategy available, i.e. |A2| = 1. Formally, it is a tuple
〈A1, Q, q0, δ, C, col,W 〉 such that A1, Q, and C are non-empty sets, q0 ∈ Q, δ : Q×A1 → Q,
col : Q×A1 → C, and W ⊆ Cω. In this context, the full histories (full runs) of such a game
are the finite (infinite) words over A1, and the Player 2 histories of Player 1 are the natural
numbers (telling how many rounds have been played). There is only one Player 2 run, namely
ω. Then, a Player 1 strategy is a function from N to A1, and the notation for the induced full
histories is overloaded: h(s, 0) := ε and h(s, n+ 1) := h(s, n) · s(n). By Observation 1 the
function h is (again) extended: h(s, ω) is the only action run whose prefixes are the h(s, n)
for n ∈ N. A Player 1 strategy s is winning if col ◦ h(s, ω) ∈W .

Prefix removal. A set of infinite sequences is closed under prefix removal if the tails of the
sequences from the set are again in the set. Formally, W ⊆ Cω is closed under prefix removal
if the following holds: ∀(γ,γ) ∈ C∗ × Cω, γ · γ ∈W ⇒ γ ∈W . Note that closedness under
prefix removal is weaker than the prefix independence assumed in [6], [13], and [18].

Interleaving. Interleaving two infinite sequences consists in enumerating sequentially (pre-
fixes of) the two sequences to produce a new infinite sequence. For example, interleav-
ing (2n)n∈N and (2n + 1)n∈N can produce the sequences (n)n∈N (perfect alternation),
1 · 0 · 3 · 5 · 2 · 7 · 4 · 6 · (n+ 8)n∈N, and (2n)n∈N (by enumerating the first sequence only), but
not the sequences (4n)n∈N or 0 · 1 · 4 · 3 . . . .

Delayed response. Consider a game g = 〈A1, A2, Q, q0, δ, C, col,W 〉 with finite Q and C.
For every q ∈ Q let Eq1 , . . . , E

q
kq

be the elements of {(col, δ)(q, a,A2) | a ∈ A1}, where
(col, δ)(q, a,A2) := {(col(q, a, b), δ(q, a, b)) | b ∈ A2} for all a ∈ A1. The elements of
⊗q∈Q,i≤kq

Eqi are called the Player 2 delayed responses. Intuitively, a Player 2 delayed response
amounts to a Player 2 positional strategy in (and only in) a sequentialized version of the
game. In every round of this version, Player 1 chooses an action first, then Player 2 chooses an
action (or more precisely some color and state among the pairs he could induce by choosing
an action). E.g. [(0, q0)(0, q0)]; [(1, q0)(2, q1)] is a delayed response for Figure 1. It means
that at state q0, Player 2 selects (0, q0) for both actions of Player 1, and at state q1 it selects
(1, q0) if Player 1 chooses action a1. Note that delayed responses are not Player 2 (positional)
strategies in the concurrent game, e.g. as [(0, q0)(0, q0)] is not achievable in any column.

Derived one-player games. Let t be a Player 2 delayed response. The one-player game
g(t) := 〈A1, Q, q0, δt, C, colt,W 〉 is defined by (colt, δt)(q, a) := tq,(col,δ)(q,a,A2), the projection
of t on the (q, Eqi )-component such that Eqi = (col, δ)(q, a,A2). Intuitively, g(t) is the game
obtained by letting Player 2 fix his strategy (to realize) t in the sequentialized version of g.
For example, the game on the left-hand side of Figure 1 applied to the delayed response
[(0, q0)(0, q0)]; [(1, q0)(2, q1)] yields the game on the right-hand side of Figure 1.

MFCS 2018



40:6 Concurrent Games and Semi-Random Determinacy

3 Main results

Section 3.1 characterizes the existence of Player 1 winning strategies and gives a complexity
result. Section 3.2 defines additional concepts and uses the above characterization to
characterize the existence of Player 2 everywhere-winning stochastic strategies. Section 3.3
studies the special case of one-state games and presents the semi-random determinacy.

3.1 Existence of Player 1 winning strategies
Theorem 2 below characterizes the existence of Player 1 winning strategies in a game via
the existence of winning strategies in finitely many derived one-player games. Theorem 3
afterwards drops the assumption on closedness under prefix removal from Theorem 2, but at
the cost of a universal quantification over the starting state of the game. In Theorems 2 and
3, the finiteness and the closedness assumptions are used only to prove the 2⇒ 1 implications.

I Theorem 2. Consider a game g = 〈A1, A2, Q, q0, δ, C, col,W 〉. If Q and C are finite, and
W is closed under interleaving and prefix removal, the following are equivalent.
1. Player 1 wins g.
2. Player 1 wins g(t) for all delayed responses t.
If A1 is finite and Player 1 wins, she can do it with memory size O(f(|A1|, |Q|, |C|) · (|C ×
Q|)|Q|2|C×Q|), where f(|A1|, |Q|, |C|) is a sufficient memory size to win the one-player games
using A1, Q and C.

I Theorem 3. Consider games gq = 〈A1, A2, Q, q, δ, C, col,W 〉 parametrized by q ∈ Q. If
A1, A2, and Q are finite, if W is factor-prefix complete and closed under interleaving and
prefix removal, the following are equivalent.
1. Player 1 wins gq for all q ∈ Q.
2. Player 1 wins gq(t) for all q ∈ Q and delayed responses t.
If the above holds, Player 1 wins every gq with memory size as in Theorem 2.

In games that are (or encode) turn-based games, the delayed responses are Player 2
positional strategies. So, restricting Theorems 2 and 3 to turn-based games yields Corollaries 4
and 5, respectively. Note that Corollary 4 generalizes Theorem 4 from [18] by only assuming
closedness under prefix removal instead of prefix independence. This is significant since the
safety condition is closed under interleaving and prefix removal, but is not prefix independent.

I Corollary 4. Consider a game g = 〈A1, A2, Q, q0, δ, C, col,W 〉 encoding a turn-based game.
If Q and C are finite, and W is closed under interleaving and prefix removal, either Player 1
has a winning strategy or Player 2 has a positional winning strategy.

I Corollary 5. Consider games gq = 〈A1, A2, Q, q, δ, C, col,W 〉 parametrized by q ∈ Q and
encoding a turn-based games. If Q and C are finite, and W is closed under interleaving,
either Player 1 wins all gq, or Player 2 has a positional winning strategy for some gq.

The characterizations from Theorems 2 and 3 yields decidability results and rough
algorithmic complexity estimates in Corollary 6 below. Note that checking all the possible
strategies using memory size given by Theorems 2 and 3 would be slower than Corollary 6.

I Corollary 6. Let C 6= ∅, let W ⊆ Cω be closed under interleaving and prefix removal (resp.
by interleaving), and let f : N3 → N be such that for all finite C ⊆ C and all one-player
games 〈A1, Q, q0, δ, C, col,W 〉, it takes at most f(|A1|, |Q|, |C|) computation steps to decide
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the existence of a (finite-memory) winning strategy in the game. Then for all finite games
gq0 = 〈A1, A2, Q, q0, δ, C, col,W 〉 it takes at most

f(|A1|, |Q|, |C|) · (|C ×Q|)|Q|2
|C×Q|

+ |Q||A1||A2|

computation steps to decide whether Player 1 wins gq0 (with finite memory).
(resp. |Q| · f(|A1|, |Q|, |C|) · (|C ×Q|)|Q|2

|C×Q| + |Q||A1||A2| computation steps to decide
whether Player 1 wins gq (with finite memory) for all q ∈ Q.)

3.2 Existence of Player 2 almost-sure winning random strategies
Consider a game 〈A1, A2, Q, q0, δ, C, col,W 〉.

Probability distribution. A probability distribution on a finite set E is a function f : E →
[0, 1] such that

∑
e∈E f(e) = 1. Let us call D(E) the set of the probability distributions on

E.

Stochastic strategies. A Player 1 (Player 2) stochastic strategy is a function σ : (A1×A2)∗ →
D(A1) (τ : (A1 ×A2)∗ → D(A2)).

Induced stochastic histories. The function H is defined inductively below. As arguments
it expects stochastic strategies σ and τ for Player 1 and a Player 2, respectively, and it
returns a function from (A1 ×A2)∗ to R. Namely, H(σ, τ)(ε) := 1, and H(σ, τ)(ρ · (a, b)) :=
H(σ, τ)(ρ) · σ(ρ)(a) · τ(ρ)(b). It is easy to check that H(σ, τ)(ρ) ≥ 0 for all ρ ∈ (A1 ×A2)∗,
and that

∑
|ρ|=nH(σ, τ)(ρ) = 1 for all n ∈ N.

Induced probability measure. For every pair (σ, τ) ∈ D(A1)(A1×A2)∗ ×D(A2)(A1×A2)∗ one
defines a probability measure λ(σ, τ) on (A1 × A2)ω by setting λ(σ, τ)(ρ · (A1 × A2)ω) :=
H(σ, τ)(ρ) for all ρ ∈ (A1 ×A2)∗. (It is then extended uniquely to measurable sets.)

Almost-sure winning stochastic strategies. A Player 2 stochastic strategy τ is said to
be almost-sure winning if λ(σ, τ)(col−1[W ]) = 0 for all σ ∈ D(A1)(A1×A2)∗ . (Recall that
col : (A1 ×A2)ω → Cω is an extension of col : Q×A1 ×A2 → C with notation overload.)

Factor-prefix completeness. Informally, W is factor-prefix complete if the following holds:
if the prefixes of an infinite sequence occur as factors arbitrarily far in the tail of a second
sequence in W , the first sequence is also in W . (A factor, aka substring, is a subsequence of
consecutive elements.) Formally, W ⊆ Cω is factor-prefix complete if the following holds:
∀γ ∈ Cω, (∃γ′ ∈W, ∀n,m ∈ N,∃k ∈ N,γ≤n = γ′m+k . . .γ

′
m+k+n)⇒ γ ∈W .

In Theorem 7 below, a distribution is said to be positive if it assigns only positive masses.
A (stochastic) strategy is said to be constant if it is a constant function, i.e. it returns always
the same distribution, which is stronger than being Markovian (aka memoryless, positional).

I Theorem 7 (semi-random determinacy). Consider games gq = 〈A1, A2, Q, q, δ, C, col,W 〉
parametrized by q ∈ Q. If A1 and A2 are finite, if W is factor-prefix complete and closed
under interleaving and prefix removal, the following are equivalent.
1. for all q ∈ Q, Player 1 has no winning strategies in gq.
2. for all q ∈ Q, Player 2 has a constant, positive, stochastic strategy almost-sure winning gq.
3. for all q ∈ Q every Player 2 stochastic strategy involving probabilities bounded away from

0 (i.e. with positive infimum) almost-sure wins gq.

MFCS 2018
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So in the setting of Theorem 7, either Player 1 has a winning strategy for some gq, or every
constant, positive strategy is almost-sure winning, hence the determinacy. Also note that
semi-random determinacy implies the bounded limit-one property from [11] for the new games:
if one state has positive value, one state has value one.

3.3 The special case of stateless (i.e. one-state) games
Stateless games. Intuitively, a stateless game (with colors) amounts to a game with only
one state, i.e. |Q| = 1. Formally, it is a tuple 〈A1, A2, C, col,W 〉 such that A1, A2, and
C are non-empty sets, col : A1 × A2 → C (as opposed to col : Q × A1 × A2 → C in the
general case), and W ⊆ Cω. Histories, runs, strategies, and induced histories are defined as
in the general case . It is easier to extend the trace function in this context: col(ε) := ε and
col(ρ · (a, b)) = col(ρ) · col(a, b).

Restricting Theorem 3 to stateless games yields a simpler Corollary 8 below. (Note that
restricting Theorem 2 would yield a weaker variant of Corollary 8, i.e. additionally assuming
closedness under prefix removal.) Memory size and algorithmic complexity estimates could
be obtained essentially by replacing |Q| with 1 in Theorem 3 and Corollary 6.

I Corollary 8. Consider a game 〈A1, A2, C, col,W 〉 with finite C and interleaving-closed W .
Let C1, . . . , Ck be the elements of {col(a,A2) | a ∈ A1}. The following are equivalent.
1. Player 1 has a winning strategy (resp. finite-memory winning strategy).
2. ∀(c1, . . . , ck) ∈ C1×· · ·×Ck, W ∩{c1, . . . , ck}ω 6= ∅ (resp. W ∩{c1, . . . , ck}ω ∩ regC 6= ∅),
where regC are the regular infinite sequences over C.

Restricting Theorem 7 to stateless games cancels the universal quantification over states,
but an even stronger version can be obtained: finiteness of A1 and prefix removal closedness
are dropped, and the assumption on factor-prefix completeness is weakened to factor-set
completeness, as below.

Factor-set completeness. A language of infinite sequences is called factor-set complete if
the following holds: if a sequence in the language has factors of unbounded length over
some C0, the language has a sequence over C0. This is formally defined by contraposition:
W ⊆ Cω is factor-set complete if for all C0 ⊆ C and for all ρ ∈W , we have W ∩ Cω0 = ∅ ⇒
∀ρ ∈W, ∃m ∈ N,∀n ∈ N,∃i ∈ N, i < m ∧ ρn+i /∈ C0.

I Observation 9. Factor-prefix completeness implies factor-set completeness (finite alpha-
bets).

I Theorem 10 (Stateless semi-random determinacy). Consider a stateless game 〈A1, A2, C,

col,W 〉 with finite C and A2. Let us assume that W is interleaving-closed and factor-set
complete. Then either Player 1 has a winning strategy, or every Player 2 constant, positive,
stochastic strategy is almost-sure winning.

4 The proofs

Theorems 2 and 3 characterize a concurrent game by finitely many one-player games. A
natural idea would be to split their proof into two parts: first, reduce the problem to
turn-based games via the well-known observation that a player has a winning strategy in a
concurrent game iff she has one in the sequential version of the game where she plays first;
second, use similar techniques as in [18]. For this to work, the sequential versions of the
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b1 b2
a1 1, 1 2, 1
a2 1,−1 0,−1
a3 −1, 0 −2, 0

1, 1
1,−1
−1, 0

1, 1
1,−1
−2, 0

1, 1
0,−1
−1, 0

1, 1
0,−1
−2, 0

2, 1
1,−1
−1, 0

Figure 2 A concurrent Minkowski game and its derived games.

concurrent games must allow for colorless transitions, or a fresh color should be used for
the transitions where Player 1 plays. This raises three issues: first, true colors should occur
infinitely often in every run in these turn-based games, which would require a more complex
notion of turn-based game (and considering only games with strict player alternation does not
help, as this property is lost during the induction); second, the winning condition should be
rephrased to take the fresh color into account, and so should its closedness properties; third,
it would be much more difficult to obtain stronger results for the one-state concurrent games,
since the one-state property may be hard to track through the translation into turn-based
games. Instead, this article overcomes the concurrency directly thanks to Lemma 11.

I Lemma 11. Let (Xi)i∈I be a family of sets. Then
∀f :

∏
i∈I Xi → I, ∃i ∈ I, ∀x ∈ Xi,∃y ∈

∏
i∈I Xi, yi = x ∧ f(y) = i.

Proof. Towards a contradiction, let us assume the negation of the claim, i.e. ∃f :
∏
i∈I Xi →

I, ∀i ∈ I, ∃x ∈ Xi,∀y ∈
∏
i∈I Xi, yi 6= x ∨ f(y) 6= i. By collecting one witness x =: zi for

each i, one constructs z ∈
∏
i∈I Xi such that ∀y ∈

∏
i∈I Xi, yi 6= zi ∨ f(y) 6= i. In particular,

taking y := z yields zi 6= zi ∨ f(z) 6= i for all i, which contradicts the type of f . J

Consider the one-state game g in Figure 2 (to the left), where each cell encloses one
vector of the real plane. Player 1’s objective is that the sum of the outcome vectors remains
bounded, which is closed under interleaving and prefix removal, so g is a concurrent version of
the Minkowski games [24]. There are 23 = 8 delayed responses, and five of the corresponding
one-player games g0, . . . g7 are displayed to the right in Figure 2. Player 1 wins g0, . . . , g7,
since for each i ≤ 7 the vector (0, 0) is in the convex hull of the three vectors defining gj .
The idea is to let Player 1 play g as if she were playing g0, . . . , g7 in parallel, more specifically
in an interleaved way. Then, summing up the eight bounded trajectories yields a bounded
trajectory for g.

The main difficulty to play the g0, . . . , g7 in an interleaved way is that at every stage,
Player 1 should pick an action such that whichever action Player 2 chooses, the resulting
vector is exactly the expected one by the (fixed) winning strategy for some gj . Let f :
{1, 2}3 → {a1, . . . , a3} be the function that tells which action should be played currently in
each of the 23 = 8 one-player games. By Lemma 11 there exists an action ai such that the
following holds: if Player 2 chooses b1, there exists gj expecting the vector in the cell (ai, b1),
and likewise if Player 2 chooses b2, there exists gk expecting the vector in the cell (ai, b2).

Let us now quickly mention semi-random determinacy. The proof of Theorem 7 below
uses similar techniques as, e.g., a proof in [24].

Proof of 1 ⇒ 3 from Theorem 7. Let p ∈]0, 1
|A2| ] and let τ be a Player 2 stochastic strategy

that always assigns probability at least p to every action.
For all q ∈ Q, by contraposition of Theorem 2 let tq be a delayed response (in gq) such

that Player 1 loses the one-player game gq(tq). For all n ∈ N, anytime a play reaches the
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state q, the probability that from then on Player 2 follows tq for n rounds in a row, as if
second-guessing Player 1, is greater than or equal to pn.

Consider a play where Player 2 follows τ . Let q be a state that is visited infinitely often.
(Such a state exists since Q is finite.) Thanks to the argument above, for all n ∈ N, the
probability that, at some point, Player 2 follows tq for n rounds in a row from q on is one.
Since the countable intersection of measure-one sets has also measure one, the probability
that, for all n ∈ N, at some point Player 2 follows tq for n rounds in a row from q on is one.

Let (ρn)n∈N be the corresponding full histories. Since A1 and A2 are finite, the tree
induced by prefix closure of the (ρn)n∈N is finitely branching, so by Koenig’s Lemma it has
an infinite path ρ, which corresponds to Player 2 following tq infinitely many rounds in a
row. So col(ρ) /∈W . By factor-prefix closedness the original play is also losing for Player 1,
i.e. winning for Player 2. J

5 Applications

Abstract assumptions need not only be general, they also need to be practical. Section 5.1
shows that the closedness and completeness axioms enjoy nice algebraic properties: individu-
ally, w.r.t. Boolean combination, as well as collectively via the derived closure or completion
operators. Section 5.2 mentions several classical or recent winning conditions from computer
science and tells which of them satisfy the closedness and completeness axioms. Section 5.3
introduces the notion of bounded residual load as an alternative to the finitary fairness [2],
and uses it to define a finitary variant of the ω-regular languages that satisfies the closedness
and completeness axioms.

5.1 Algebraic properties of the closedness and completeness axioms
Lemma 12 below shows how the axioms behave w.r.t. Boolean combination.

I Lemma 12.
1. The set of the factor-set complete languages is closed under union.
2. The set of the interleaving-closed languages is closed under intersection.
3. The set of the factor-prefix complete languages is closed under intersection and union.

The set of the interleaving-closed languages is not closed under union: {0ω} and {1ω}
are closed under interleaving (and by prefix removal), but {0ω, 1ω} is not. The set of
the interleaving-closed languages is not closed under complementation: the interleaving
of two infinite sequences that are not eventually constant is not eventually constant, but
interleaving the eventually constant sequences 0ω and 1ω may yield (01)ω. The set of the
factor-set complete languages is not closed under intersection: indeed, both two-element
sets {0(12)0(12)20(12)30 . . . , (12)ω} and {0(12)0(12)20 . . . , (112)ω} are factor-set complete,
but their intersection {0(12)0(12)20 . . . } is not. The set of the factor-set (-prefix) complete
languages is not closed under complementation: {1ω} is factor-set (-prefix) complete, but
{0, 1}ω \ {1ω} is not.

The closedness under interleaving and prefix removal, and the factor-prefix completeness
induce closure operators. If a relevant winning condition fails to satisfy an equaly relevant
axiom, such an operator conveniently constructs a (more generous, axiom satisfying) variant
of the winning condition. The closure by prefix removal of a set consists in adding the tails of
the sequences from the set; the closure by interleaving consists in adding sequences obtained
by interleaving the sequences from the set; and the factor-prefix completion consists in adding
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the sequences whose prefixes occur arbitrarily far in a sequence from the set. Note that
factor-set completeness does not induce a canonical closure operator due to the existential
quantifier in its definition.

Lemma 13 below shows that the operators behave as expected. This is not for granted
in general, as one may need to perform the addition operation an ordinal number of times.
Here, one step suffices, which is convenient if computation is of concern.

I Lemma 13.
1. Closure by prefix removal yields sets that are closed under prefix removal.
2. Closure by interleaving yields sets that are closed under interleaving
3. Factor-prefix completion yields sets that are factor-prefix complete.

Lemma 14 shows that the operators preserve the existing properties. (Lemma 13 is
invoked as a proof technique.)

I Lemma 14.
1. Closure by prefix removal preserves closedness under interleaving.
2. Closure by prefix removal preserves factor-set and factor-prefix completeness.
3. Closure by interleaving preserves closedness under prefix removal.
4. Closure by interleaving preserves factor-set and factor-prefix completeness.
5. Factor-prefix completion preserves closedness under prefix removal.

5.2 Concrete winning conditions
The non-comprehensive list below displays classical or recent winning conditions from
computer science. It especially shows that new winning conditions obtained by conjunction
of older winning conditions have been recently studied, e.g. in [7] and [4].
Parity C := {0, 1, . . . n} for some n ∈ N. A sequence is winning iff the least number occurring

infinitely many times in the sequence is even.
Muller C := {0, 1, . . . n} for some n ∈ N. LetM ⊆ P(C) be a set of subsets of C. A sequence

is winning iff the numbers occurring infinitely many times in the sequence constitute a
set in M .

Mean-payoff C = R, and a sequence is winning iff the limit superior of the partial sums is
non-negative: (un)n∈N ∈ RN is winning iff lim supn→∞

1
n

∑n
i=0 un ≥ 0. (Variants exist

with limit inferior or positivity instead of non-negativity.)
Energy C = R, and a sequence is winning iff its partial sums are non-negative: (un)n∈N ∈ RN

is winning iff ∀n ∈ N,
∑n
i=0 un ≥ 0.

Boundedness [24] C = Rd, and a sequence is winning iff its partial sums are uniformly
bounded: (un)n∈N ∈ (Rd)N is winning iff ∃b∀n ∈ N, ‖

∑n
i=0 un‖ ≤ b.

Discounted sum C is a bounded subset of R. Let 0 < α < 1 and t ∈ R. A sequence
(un)n∈N ∈ CN is winning iff

∑+∞
n=0 α

nun ≥ t.
Energy-parity [7] C := R × {0, 1, . . . n} for some n ∈ N. The winning condition is the

conjunction of the energy (first component) and the parity (second component) conditions.
Average energy [4] C = R. The objective is to maintain a non-negative energy while

keeping the average level of energy below a threshold t ∈ R: a sequence (un)n∈N ∈ RN is
winning iff (∀n ∈ N,

∑n
i=0 un ≥ 0) ∧ lim supn→+∞

1
n

∑n
i=0
∑i
j=0 uj ≤ t.

I Observation 15.
1. The parity, mean-payoff, energy, boundedness, energy-parity, and average energy condi-

tions are all closed under interleaving. (It uses Lemma 12.2 to deal with energy-parity
and average energy.)
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2. The Muller and discounted sum conditions are not closed under interleaving.
3. The boundedness condition is factor-prefix complete; the others are not.
4. The energy condition (thus also energy-parity and average energy) and the discounted

sum condition are not closed under prefix removal; the others are.

I Corollary 16. The turn-based safety-mean-payoff-parity games are half-positionally de-
termined. (By Corollary 4 and Section 5.1.)

It may be disappointing that the Muller condition is not even closed under interleaving,
but Proposition 17 below extends Theorem 2 to the concurrent Muller games. Using results
from [11] is likely to yield a better algorithmic complexity, though, but the point here is
mainly that Theorem 2 can be extended.

I Proposition 17. [Similar to [11]] Consider the finite games 〈A1, A2, Q, q0, δ, C, col,W 〉
where W is a Muller condition. Deciding the existence of a Player 1 winning (finite-memory)
strategy can be done in big O of

(|A1||A2||C||C|!)2 · (|Q||C|2|C|!)|Q||C||C|!
(

2|Q||C|
2|C|!

)
computation steps.

5.3 Bounded residual load
Unlike Theorems 2 and 3, Theorems 7 and 10 are not likely to be extended to include
ω-regular languages. Before defining a variant of the ω-regular languages that satisfies the
closedness and completeness properties from this article, let us consider notions of fairness
that can be defined via a predicate S on N× N× Cω. Intuitively S(n, d,γ) is supposed to
mean that the sequence γ has satisfied, with delay at most d, a request that was formulated
in γ at time n.

There are several reasonable ways to express the good behavior of an infinite sequence using
the S(n, d,γ). The classical definition of fairness requires that all problems be eventually
solved (see F below), or cofinitely many problems (see FCI below), for a usual weakening
that ensures prefix independence of the condition. Arguing that this kind of fairness gives
no guarantee about response time, [11] strengthened fairness into finitary fairness, which
requires the existence of a uniform bound on the waiting time (see FF below).

Yet another variant, bounded residual load (BRL), is introduced below. It says that
γ ∈ Cω satisfies S wrt bounded residual load, if the number of problems that have currently
not yet been solved is uniformly bounded over time.
1. F (γ) := ∀n ∈ N,∃d ∈ N, S(n, d,γ)
2. FCI(γ) := |{n ∈ N | ∀d ∈ N, ¬S(n, d,γ)}| <∞
3. FF (γ) := ∃d ∈ N,∀n ∈ N, S(n, d,γ)
4. BRL(γ) := ∃b ∈ N,∀n ∈ N, b ≥ |{k ∈ N | k ≤ n ∧ ¬S(k, n− k,γ)}|

I Observation 18.
1. FF (γ) ⇒ F (γ) ∧ F (γ) ⇒ FCI(γ)
2. FF (γ) ⇒ BRL(γ) ∧ BRL(γ) ⇒ FCI(γ)
3. F and BRL are incomparable in general.

The finitary fairness and the like may be too strict for some applications: gladly accepting
to wait b time units, but categorically refusing to wait b+ 1 time units sounds unusual indeed.
Instead, the system (which is responsible for solving the problems) could pay a penalty for
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each problem spending each time unit unsolved. Thanks to the bounded residual load, one
has then the guarantee that the amount of money to be paid per time unit is bounded.

It is possible to combine the two ideas, though: by setting an acceptable response time
and an acceptable uniform bound on the number of missed deadlines. This however, turns
out to be equivalent to the simple BRL, which argues for the robustness of the concept.

I Observation 19. Let BRLD(γ) := ∃b, d ∈ N,∀n ∈ N, b ≥ |{k ∈ N | k ≤ n − d ∧
¬S(k, n− k,γ)}|, then BRLD(γ) ⇔ BRL(γ).

A second justification for the BRL is that it has nice properties that the other notions
of fairness lack when S(n, d,γ) is defined to minic ω-regular languages, as shown below.
Consider a non-empty set C of colors and a function C : C → P(C∗). A sequence γ ∈ Cω is
said to satisfy C from position n after delay d, denoted SC(n, d,γ), if the following holds.

∃u ∈ C(γn),∃(k1, . . . , k|u|) ∈ N|u|, n < k1 < · · · < k|u| ≤ n+ d ∧ ∀i ≤ |u|, ui = γki

Intuitively, each color is a problem or a request, and the problem may be solved in several ways,
each way consisting in enumerating suitable colors quickly. (This might very well correspond to
the positive fragment of some bounded-time temporal logic.) To simulate the parity condition,
one can set C := N and C(2n) := {{k} | k ∈ N} and C(2n+ 1) := {{2k} | k ∈ N ∧ k ≤ n} for
all n ∈ N. The corresponding BRLC is the parity condition with bounded residual load.

Lemma 20 below says that however C may be instantiated, all Theorems 2, 3, 7, and 10
can be applied with the BRLC winning condition.

I Lemma 20. For every non-empty set C of colors and every function C : C → P(NC), the
winning condition BRLC is closed under prefix removal and interleaving, and factor-prefix
complete.

Even when C simulates the parity condition as above, none of the corresponding
FC, FCIC, or FFC is both closed under interleaving and factor-set complete. FFC is
not closed under interleaving: FFC((01)ω) and FFC((23)ω), but ¬FFC(γ), where γ :=
(23)01(23)201 . . . 01(23)n01 . . . can be obtained by interleaving (01)ω and (23)ω. FCIC is
not factor set-complete: FCIC(γ), where γ := 1012013 . . . 01n0 . . . , but ¬FCIC(1ω) altough
factors of 1’s occur with arbitrary length in γ. FC is neither: first, FC((10)ω) and FC(2ω), but
¬FC(1 · 2ω), altough 1 · 2ω can be obtained by interleaving (10)ω and 2ω; second, as above for
FCIC . Note that the window-parity condition [8],[5] is not closed under interleaving either,
as again exemplified by (01)ω and (23)ω.
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