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Abstract
A temporal graph can be viewed as a sequence of static graphs indexed by discrete time steps. The
vertex set of each graph in the sequence remains the same; however, the edge sets are allowed to
differ. A natural problem on temporal graphs is the Temporal Exploration problem (TEXP):
given, as input, a temporal graph G of order n, we are tasked with computing an exploration
schedule (i.e., a temporal walk that visits all vertices in G), such that the time step at which the
walk arrives at the last unvisited vertex is minimised (we refer to this time step as the arrival
time). It can be easily shown that general temporal graphs admit exploration schedules with
arrival time no greater than O(n2). Moreover, it has been shown previously that there exists
an infinite family of temporal graphs for which any exploration schedule has arrival time Ω(n2),
making these bounds tight for general TEXP instances. We consider restricted instances of
TEXP, in which the temporal graph given as input is, in every time step, of maximum degree d;
we show an O( n2

logn ) bound on the arrival time when d is constant, and an O(d log d · n2

logn ) bound
when d is given as some function of n.
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1 Introduction

A natural generalisation of the static, undirected graph is one by which a notion of time is
introduced to the edge set. Such a generalisation provides a flexible tool for the modelling of
problems/scenarios of a dynamic nature; particularly those which incorporate some temporal
aspect into their structure. Informally, a temporal graph can be viewed as a graph whose
edges are allowed to change over time. Time, herein, refers to an interval comprised of
discrete time steps; the model we consider sees a temporal graph as an ordered sequence of
static graphs indexed by the steps in this time interval (we call the number of steps contained
in the interval the lifetime of the graph). In each graph of the sequence, the edge set may
differ, whilst the vertex set remains constant. Additionally, we require that the edges that
appear in each time step originate from some pre-specified static graph, which we call the
underlying graph. It is this potential for the edges connecting the vertices in the graph to
change over time that allows us to model problems, scenarios and systems in which the
relationships between entities can evolve. Various “dynamic graph” models exist; they, and
the problems defined on them, have been explored in a number of other studies. For an
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36:2 Faster Exploration of Degree-Bounded Temporal Graphs

overview we refer the reader to [9] and [4]. Since the addition of an element of dynamicity
fundamentally makes temporal graphs different from their static predecessors, it is clear that
the development of new techniques for their analysis (and for the analysis of problems defined
upon them) is required. In this paper, we take an algorithmic standpoint, and consider a
restricted case of the problem of computing a walk around a temporal graph that visits all
vertices by the earliest time step possible.

1.1 Contribution
This paper considers the problem of Temporal Exploration, or TEXP (defined originally
in [10] by Michail and Spirakis), which asks that, given a temporal graph G, we compute an
exploration schedule (i.e., a walk visiting each vertex in G at least once) such that the time
step at which the last unvisited vertex is reached is minimal amongst all possible schedules
(we call this time step the arrival time). In [10], Michail and Spirakis gave an O(dn) upper
bound on the arrival time of exploration schedules for arbitrary temporal graphs, where d is
the dynamic diameter of the graph. Erlebach et al. [5] observed that, in general temporal
graphs that are connected in every step, d can be at most n− 1, implying an O(n2) bound on
arrival times in the worst case. Moreover, they provide an explicit construction of an infinite
family of graphs for which any exploration schedule has arrival time Ω(n2), making these
bounds tight for general instances of TEXP. We note that this construction is, as far as we
are aware, the only one that has been shown to require this many steps for exploration; this,
coupled with the fact that all graphs within this family contain a vertex of high degree (n−1)
in each time step, motivates our examination of the problem when restricted to instances in
which the temporal graph is of maximum degree d in every time step. Further, provided in
[5] is a construction of a degree-bounded family of graphs (with planar underlying graphs),
such that each graph in the family is of maximum degree 2 in every time step. They prove
Ω(n logn) arrival times of any exploration schedule for any graph in this family. No better
bound than the general O(n2) bound is known for the arrival time of exploration schedules
for degree-bounded temporal graphs. We make the first step towards narrowing this large
gap by showing that, for any graph contained within the class of degree-bounded temporal
graphs, one can guarantee that there exists an exploration schedule, W , such that the arrival
time of W is O(d log d · n2

logn ) when d is given as some function of n, and O( n2

logn ) when d is
constant.

1.2 Related work
A number of previous studies have considered how standard results, problems and definitions
are affected when viewed in the context of a variety of dynamic graph models. For example,
it was found by Berman in [1] that the vertex variant of Menger’s theorem does not hold
when applied to a particular model of dynamic graphs (termed scheduled networks), in which
each edge is assigned both an arrival and departure time. On the other hand, Kempe et
al. showed in [7] that, under this same model, there is a class of temporal graphs for which
the vertex variant of Menger’s theorem does hold – they show this by means of a forbidden
minor characterisation.

As well as their previously mentioned results, Kempe et al. [7] showed that it is NP-
complete to decide whether or not there exist two vertex-disjoint, time-respecting paths (i.e.,
each edge in the path is traversed during a time step that is strictly greater than the previous
edge) between a given source and sink. Under a similar model, Bui-Xuan et al. [3] consider
the problems of computing an s-t path in a temporal graph that is shortest (minimal number
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of edges), foremost (arrives at t at the earliest possible time step) or fastest (the time spent
between traversing the first and last edges in the path is minimal), showing that there are a
number of natural path parameters one might wish to optimise when considering dynamic
graphs.

In [8], Mertzios et al. consider a temporal graph model in which each edge, e, is labelled
with the set of time steps during which e appears in the graph. They specify a polynomial-
time algorithm for the problem of computing a foremost path between two given vertices,
and, complementing the work in [1] and [7], present a temporal analogue of Menger’s theorem
which holds for general graphs adhering to their model.

Brodén et al. [2] study a temporal analogue of the TSP problem, in which the graph is
a complete graph in every step, and a cost belonging to the set {1, 2} is assigned to each
edge; additionally, these costs can change in each time step. They assume that the costs of
the edges can change at most k times over the course of the graph’s lifetime, and manage to
provide a polynomial-time approximation algorithm with approximation ratio 2 − 2

3k . In
[10], Michail and Spirakis also considered this model, showing the general problem to be
APX -hard, whilst improving on the results of [2] with a (1.7 + ε)-approximation algorithm.

Under the same model as [8], Michail and Spirakis [10] formally introduced the problem
of Temporal Exploration, showing that the general problem of deciding whether a
temporal graph admits any valid exploration schedule is NP-complete if the graph is not
assumed to be connected in each time step. They suggested making the assumption that
the graph is connected in every step. Erlebach et al. [5] further studied the TEXP problem
under this assumption. In addition to their previously mentioned results, they obtained an
O(n1−ε)-inapproximability result, for any ε > 0, ruling out the possibility of any constant-
factor approximation algorithms. Additionally, they considered the problem of TEXP when
the input graph is subject to various structural restrictions: amongst other things, they
proved O(n) arrival times for temporal graphs in which the underlying graph is a cycle;
O(n1.5k2 logn) arrival times for underlying graphs of treewidth k; and O(n log3 n) arrival
times for underlying graphs that are 2× n grids. From a different angle, they also considered
a model in which the edges of the graph are present in each step with a particular probability,
or appear with a certain regularity.

In [6], Fluschnik et al. considered the NP-hard problem of Temporal (s, z)-Separation,
in which we are are asked to separate two vertices, s and z, in a given temporal graph, by
removing from it a minimal number of vertices. Similarly to [5], they showed that there are a
number of restricted graph classes for which Temporal (s, z)-Separation becomes easier,
and a number for which the problem remains hard to solve; for example they showed that
the problem becomes fixed-parameter tractable when parameterised by k + l, where k is the
size of a solution, and l is the longest temporal path in the input graph. Negatively, they
showed that for graphs in which at most one edge is present in every time step, the problem
remains NP-hard.

2 Preliminaries

In this section, we introduce those definitions key to formulating the general problem of
Temporal Exploration.

I Definition 1 (Temporal graph). We represent a temporal graph, G, with underlying graph,
G = (V,E), using an ordered sequence of static graphs: G = 〈G1, G2, ..., Gτ 〉. Further, we let
the set V (G) = V and |V | = n. The subscripts i ∈ {1, 2, ..., τ} indexing the graphs in the
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36:4 Faster Exploration of Degree-Bounded Temporal Graphs

sequence are the discrete time steps 1 to τ , where τ is known as the lifetime of G. Each Gi
represents the structure of G in time step i. More precisely, Gi = (V,Ei) is a subgraph of G;
in particular, V (Gi) = V (G), Ei ⊆ E, for all 1 ≤ i ≤ τ .

I Definition 2 (Temporal walk). A temporal walk W through a temporal graph G is given
as an alternating sequence of vertices and edge-time pairs,

W = v0, (e0, i0), v1, (e1, i1), v2, ..., vk−1, (ek−1, ik−1), vk,

that starts at vertex v0 and ends at vertex vk. Additionally, we require that i0 < i1 <

... < ik−1, so that an agent following W can traverse at most one edge per time step. Each
edge-time pair, (ej , ij), denotes the traversal of edge ej = {vj , vj+1} at timestep ij . For such
a traversal to be possible, ej must be present in graph Gij , i.e. ej ∈ Eij . We say that a walk,
W , departs at time i0 = δ(W ) and arrives at time ik−1 + 1 = α(W ), and may refer to the
time steps δ(W ) and α(W ) as the departure and arrival times of W , respectively. Finally,
let t0 ≤ δ(W ) be an arbitrary time step, and assume that an agent waits at vertex v0 for
δ(W )− t0 time steps before traversing edge e0; we refer to the difference, |W | = α(W )− t0,
as the duration of W .

The following result is implied by Lemma 1 in [5]. It provides an upper bound on the
number of time steps it might take to reach one vertex from another in a temporal graph
that is connected in every time step.

I Lemma 3 (Erlebach, Hoffmann and Kammer [5]). Let G be a temporal graph with vertex
set V , and assume G is connected in each step. Then an agent situated at any vertex u ∈ V
at any time t ≤ τ − n can reach any other vertex v ∈ V in at most |V | − 1 = n − 1 steps,
i.e., by time step t+ n− 1.

I Definition 4 (Exploration schedule). We say that a walk, W , is an exploration schedule if,
for all v ∈ V (G), there exists some vi ∈W such that v = vi. Additionally, W is said to be
foremost if it reaches the n-th unique vertex v ∈ V (G) at time α(W ), and if there exists no
other temporal walk W ′, such that α(W ′) < α(W ).

I Definition 5 (Temporal walk concatenation). We define two temporal walks, W and W ′,
to be compatible under concatenation if the departure time of W ′ is greater than or equal
to the arrival time of W (i.e., δ(W ′) ≥ α(W )), and W ′ departs from the same vertex at
which W arrives. The result of their concatenation is the walk obtained by following W ,
then following W ′ directly after.

I Problem (Temporal Exploration). An instance of the general Temporal Explor-
ation (TEXP) problem is given as a pair (G, s), where G = 〈G1, G2, ..., Gτ 〉 is an arbitrary
temporal graph with lifetime τ ≥ |V (G)|2 = n2 (in order to ensure that there exist feasible
solutions for any instance), and s ∈ V (G) is a start vertex. The problem then asks for a
temporal walk, W , such that W is an exploration schedule, W is foremost, and W departs
from vertex s. We make the additional assumption that the graph is connected in each step;
without this it could happen that there exists no valid exploration schedule.

We note that since (as part of any instance of the TEXP problem) we are given a temporal
graph, G = 〈G1, G2, ..., Gτ 〉, any candidate algorithm for the problem knows, in advance,
the structure of the graph in each step of its lifetime (and therefore knows the dynamic
structure of the temporal graph’s edge set in advance). The following section introduces
those definitions specific to the proof of our main result.
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3 Exploring degree-bounded temporal graphs

We now turn our attention to restricted instances of the Temporal Exploration problem,
in which the input graph is of bounded degree in each time step. We proceed by introducing
those definitions central to the proof of our main result.

I Definition 6 (Temporal graph of bounded degree). Let Gd = 〈Gd1, Gd2, ..., Gdτ 〉 be a temporal
graph of order |V (Gd)| = n, and lifetime τ . It is said that the degree of Gd is bounded by
d if, for all i, maxv∈V (Gd

i
) degGd

i
(v) ≤ d. We note that d may be given as a constant, or as

some function of n.

(Note that we do not place any restriction on the underlying graph of Gd.) Consider now a
partitioning of the vertex set, V (Gd), of a degree-bounded temporal graph, Gd, into distinct
parts T and L, such that T ∪L = V (Gd). We refer to the set T as the terminal set, containing
|T | = k terminal vertices u ∈ T , and L as the leftover set, containing the |L| = n− k leftover
vertices v ∈ L. The set T of terminals will contain, initially, the set of all unvisited vertices
in Gd, whilst the set L will contain the specified start vertex, s. Our aim is to form Ω(kd )
disjoint ordered pairs of terminal vertices, (u, u′), such that there is a temporal walk through
Gd that departs from u, arrives at u′, and has duration no longer than O(dnk ). In doing
so, we obtain a subset T ′ ⊆ T of terminals which are arrived at by such a walk; by setting
T = T ′, moving all terminals not reachable by such a walk into L, and forming pairs amongst
those u ∈ T again, we obtain a new collection of walks, each of which can be concatenated
with exactly one of the walks obtained from the previous application. Repeated application
of this process will form the basis of our overall exploration approach, eventually enabling us
to explore Θ(logd n) vertices in O(dn) steps. The following definitions will prove useful in
showing this – in each of them we consider an arbitrary temporal graph, G, during a time
period starting at time step t, and ending at time step t′:

I Definition 7 (Reachable set). The reachable set of a vertex, x ∈ V (G), is the set Rx(t, t′) =
{y ∈ V (G) | there exists a walk from x to y starting at time l and ending at time l′, with
t ≤ l ≤ l′ ≤ t′}. If t and t′ are made clear, or are deducible from the context, we simply
write Rx, rather than Rx(t, t′).

I Definition 8 (Reachable pair). We call an ordered pair of terminal vertices, (u, u′) ∈ T ×T ,
a reachable pair if u′ ∈ Ru(t, t′) (with 1 ≤ t ≤ t′ ≤ τ) and u 6= u′. When it is clear from the
context, we may simply refer to a reachable pair as a pair. We also say that a reachable pair
is formed in the step t′ − 1, in which u′ is added to Ru(t, t′).

I Definition 9 (Home set). We define a home set of a leftover vertex, v ∈ L, to be a set
Hv(t, t′) of terminal vertices such that, for any terminal vertex u, the condition u ∈ Hv(t, t′)
implies the following: v ∈ Ru(t, t′), and u does not already belong to a reachable pair. As
such, there exist temporal walks in G departing from all u ∈ Hv(t, t′) and arriving at v.
Again, we write Hv rather than Hv(t, t′) when t and t′ are clear from the context.

Note that Definition 9 does not define home sets in a unique way. It only requires that
u ∈ Hv(t, t′) implies v ∈ Ru(t, t′), but there is no requirement that all vertices u that satisfy
v ∈ Ru(t, t′) are included in the home set. We will specify how to construct home sets in
a certain way, and the home sets resulting from our construction will have the additional
property that they contain at most two vertices. The purpose of home sets and the details of
their construction will become clear in the proof of Lemma 13.

I Definition 10 (Spread of a terminal vertex). We refer to the number of home sets that a
particular terminal vertex u ∈ T belongs to as the spread of u.
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36:6 Faster Exploration of Degree-Bounded Temporal Graphs

As previously discussed, we first wish to show that in a degree-bounded temporal graph, Gd,
enough disjoint reachable pairs are formed during any period of O(dnk ) time steps (here we
take k to be the number of terminals contained in T at the start of the time period we are
considering). To achieve this, we introduce the following potential function, which tracks the
number of terminals that each leftover vertex has contained within its respective home set.
By first showing that we can increase the value of this potential function by a large enough
amount in each of the O(dnk ) considered steps, we will be able to prove that Ω(kd ) disjoint
reachable pairs can be found during those same steps.
I Definition 11 (Potential function, φ). Consider an arbitrary time step t, and let i be the
current time step (1 ≤ t ≤ i ≤ τ). Further, let L0, L1, L2 be the sets of leftover vertices
v ∈ L, such that |Hv(t, i)| = 0, |Hv(t, i)| = 1, and |Hv(t, i)| = 2, respectively. In other words,
L0, L1 and L2 are the sets of leftover vertices that have 0, 1 and 2 terminals contained in
their home sets at time i. Clearly, L = L0 ∪ L1 ∪ L2 at any time, since the home sets we
consider grow to a size no larger than 2. We denote by P iv the potential value of vertex v at
time i, and define it for all i as follows:

P iv =


1, if v ∈ L0 (at time i)
2, if v ∈ L1 (at time i)
3, if v ∈ L2 (at time i).

Given this, we introduce our potential function, φ, taking as argument a bounded-degree
temporal graph, Gd:

φit(Gd) =
∑
v∈L

P iv,

so that φit(Gd) is the sum of the values, P iv, during time step i (t ≤ i ≤ τ), given that we
began tracking the value of φ at time t. When t is clear from the context, we may refer to
φit(Gd) at arbitrary i (t ≤ i ≤ τ) as φi(Gd) or, if i is clear from the context, as φ(Gd) or φ.
I Observation 12. If we assume that we begin tracking the value of our potential function
from some time t, such that no v ∈ L belongs to the reachable set of any u ∈ T at time
t, then initially, φt(Gd) = |L|. Further to this, P iv ≤ 3 for any v ∈ L, and |L| ≤ |V (Gd)|.
Therefore, φi(Gd) ≤ 3|V (Gd)| = 3n for any t ≤ i ≤ τ .
We note that when a reachable pair (u, u′) is formed, then both u, u′ ∈ T are no longer
considered as candidates for further reachable pairs (since we require our pairs to be disjoint).
Therefore, we remove u and u′ from T and place them into L. As a result, it is possible for
the number of leftover vertices to grow over the course of time, allowing for larger potential
values in future time steps. Moreover, in order to increase our potential in any given step,
we must be able to find terminal vertices that can be added to the home set of a leftover
vertex in that step.

By Definition 9, u ∈ Hv implies that u does not already belong to any reachable pair. It
therefore follows that the forming of a pair in Gd can also cause the potential to drop, since
we are required to remove u and u′ from all home sets that they are contained within. Whilst
some decrease in potential is inevitable, it is important that we ensure that the decrease is
not too large in any single step. If the home sets of many leftover vertices contain the same
terminal, and that terminal goes on to form a pair, then it will be removed from all of these
home sets, possibly generating a large drop in potential. If this type of behaviour occurs too
often, it might happen that we are unable to obtain a large enough amount of potential in
total, and as a result, not be able to form the required amount of reachable pairs. This issue
is fully addressed by Lemma 13 in the following subsection.
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3.1 Exploration method
Following the discussion above, all is in place to fully describe our overall approach to
computing exploration schedules (in degree-bounded temporal graphs) that are guaranteed
to have arrival time O(d log d · n2

logn ). We begin by showing that it is possible to obtain a
potential increase of k−2p

2d in any given time step, where p is the number of pairs that have
already been formed between vertices in T . For the following, assume that we have fixed a
time step t, and that we consider Gd from time t onwards.

I Lemma 13. Consider a degree-bounded temporal graph, Gd, in an arbitrary timestep i,
whose vertex set has been partitioned into sets T (terminals) and L (leftovers), which initially
contained |T | = k and |L| = n− k vertices, respectively. Additionally, assume that p ≤ k−2

2
reachable pairs of terminal vertices have been formed already (including those pairs formed in
step i). Then, it is possible to obtain a potential increase of at least k−2p

2d in time step i.

Proof. Observe that, since there are already p pairs formed amongst the terminals u ∈ T ,
there are exactly k − 2p terminals that remain in T , i.e. |T | = k − 2p (since any two
terminals forming a pair become leftover vertices once the pair is formed). As p ≤ k−2

2
implies k − 2p ≥ 2, we know that there are still at least 2 terminals. We wish to find at least
k−2p

2d disjoint paths, such that each path has terminals as its endpoints, and that every other
vertex in the path is a leftover vertex (we will refer to such a path as a terminal path). Let
Gdi denote the form of Gd during the i-th time step; we proceed by computing a spanning
tree Si of Gdi , selecting an arbitrary leaf, r, as Si’s root, and forming paths in a bottom-up
fashion via a greedy procedure. More specifically, we consider each vertex, x ∈ Si, in reverse
level order, so that we first examine those vertices that are furthest away from r, followed
by those vertices second furthest away from r, and so on, until every x has been processed.
On examining a vertex x, we consider the subtree of Si rooted at x: if it contains 2 or more
terminals that do not already belong to a path, we arbitrarily select two and take the path
joining them in Si to be one of our terminal paths, discarding the remaining terminals in
that subtree. We claim that in this way, we use exactly 2 terminals for each path we form,
and discard at most d− 2 terminals whenever we form a single path. To see this, observe
that each vertex in Si has at most d− 1 children (since r is a leaf), and consider the situation
in which the vertex we are currently processing, x, is a terminal of degree d. If each of the
subtrees rooted at x’s children contains exactly one terminal, then we will only be able to
form one path, which must have x and one of the other d− 1 terminals (each of which lies
alone in one of the subtrees rooted at x’s children) as its endpoints – the remaining d− 2
terminals will be discarded. This follows from the fact that if more than one terminal lay in
the subtree rooted at any of x’s children, then they must already belong to a path; otherwise
they would have already been discarded, as per our procedure. Therefore, on forming any
path in Si, we “use up” at most d terminals (2 terminals for the path, and at most d − 2
terminals are discarded). Observe now that, on processing r, it may also happen that there
is a single unmatched terminal, y, in the subtree rooted at r; in this case, y will be discarded.
As a result, it follows that we are able to find at least k−2p−1

d disjoint terminal paths in
Si. Moreover, k−2p−1

d ≥ k−2p
2d for d > 0 and p ≤ k−2

2 , which can be easily checked. Since
k − 2p ≥ 2 precisely when p ≤ k−2

2 , it follows that we are able to form at least k−2p
2d disjoint

terminal paths in Si, as required.
Now, given a set of terminal paths obtained by following the aforedescribed method, we

wish to show that, per each path, we can obtain a +1 increase in potential. We require a way
of doing so that ensures that not only are we able to increase the potential by a large enough
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amount in every step, but that we are able to ensure the drop in potential experienced in
any particular time step is limited. Specifically, we require a procedure with the following
properties:
1. We can obtain a potential increase of +1 within any given terminal path.
2. For a single execution of our procedure on a given terminal path, we want the spread of

exactly one of the path’s endpoints to increase by 1, and the spread of the terminal at
the opposite end of the path to remain the same.

Property (1) ensures that we are able to guarantee a potential increase of k−2p
2d in each

time step. Property (2) limits the number of home sets that any terminal vertex u ∈ T
can be added to in any particular step to 1. To this end, we specify now our procedure,
demonstrating that both properties (1) and (2) are satisfied by the actions performed within
each individual case.

I Procedure (Obtain-Potential). Consider an arbitrary time step, t, from which we
began tracking the value of φ(Gd). The input to the procedure is a terminal path, Qi ⊆ Si
(we omit the i from this notation from here onwards), obtained by applying the aforedescribed
greedy procedure to Gd in step i ≥ t (i.e., by applying the greedy procedure to the graph
Gdi ). Let u and u′ be the endpoints of Q. We proceed as follows: arbitrarily select one of u
or u′ (for argument’s sake we select u), and begin examining the set Hvj

(t, i) (again, we will
omit the arguments from this notation) for every vj ∈ Q in the order in which they appear
in Q (from u to u′). Let the x-th and last leftover vertex that we examine where Hvj

= {u}
be known as vx; the vertex we examine next will be known as vx+1. We note that since,
by our earlier assumption, all pairs that will form in step i have already been formed, the
existence of such a vx is guaranteed in all but one case. If u is adjacent to the vertex v1 ∈ Q
such that Hv1 ⊇ {u∗} with u∗ 6= u, then clearly a pair is formed; a contradiction, since the
greedy procedure for forming terminal paths does not consider terminals that already belong
to pairs. Similarly, if vx = v|Q|−1, then Hv|Q|−1 = {u} and u and u′ form a pair in that
step; again, a contradiction. Thus, the exceptional case, in which there is no such vx, occurs
when Hv1 = ∅: here, we can instantly obtain our potential increase for Q by adding u to
Hv1 , whilst still satisfying properties (1) and (2). With these exceptions dealt with, we now
distinguish between two main cases:

(i) Case 1: Hvx ∩ Hvx+1 = ∅. We distinguish between two subcases:
(i) Case 1.1: Hvx+1 6= ∅. Select an arbitrary u∗ in Hvx+1 and add u∗ to Hvx ,

giving our +1 potential increase (satisfying property (1)). We note that this is
possible since u∗ ∈ Hvx+1 implies that vx+1 ∈ Ru∗ , in which case an agent could
move from u∗ to vx+1, and from vx+1 to vx. It is therefore valid to select u∗ from
the home set of a vertex adjacent to vx and add it to vx’s home set since, by
definition, vx would be added to Ru∗ in that step regardless.
In the event that u∗ /∈ {u, u′}, remove u∗ from Hvx+1 , and add u to Hvx+1 ;
this ensures that the potential associated with vx+1 does not decrease, whilst
additionally ensuring that the spread of u∗ does not increase with respect to Q
(satisfying property (2)).

(ii) Case 1.2: Hvx+1 = ∅. In this case, we add u to Hvx+1 , giving our +1 potential
increase (property (1)), whilst ensuring that only u is added to the home set of
exactly one leftover vertex in Q (property (2)).

(ii) Case 2: Hvx ∩ Hvx+1 6= ∅. Again, we distinguish between two subcases:
(i) Case 2.1: u′ ∈ Hvx+1 . Since u′ ∈ Hvx+1 , we can simply add u′ to Hvx and we

are done – this gets us our required +1 potential increase (property (1)), whilst
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also satisfying property (2), since the only terminal that is added to a home set
within Q is one of Q’s endpoints, u′.

(ii) Case 2.2: u′ /∈ Hvx+1 . Select an arbitrary u∗ ∈ Hvx+1 (with u∗ 6= u, u′), add
u∗ to Hvx , and remove u∗ from Hvx+1 . Now, continue following Q in the same
direction, repeating the above process some y− 1 times, until in the y-th iteration
we examine a vertex vx+y+1, such that u /∈ Hvx+y+1 . More generally, in the j-th
iteration, we check the set Hx+j+1, select from it an arbitrary u∗ 6= u, add u∗ to
Hvx+j , and remove u∗ from Hvx+j+1 . By removing u∗ from Hvx+j+1 , we ensure
that the spread of u∗ does not increase with respect to Q, satisfying property
(2) for all iterations 1 through y − 1 (notice that in each of these iterations, our
potential value stays the same, since whenever we add a terminal to one leftover
vertex’s home set, we remove that terminal from another home set). If it happens
that Hvx+j+1 = {u} (i.e., we cannot select u∗ 6= u), then we do not add any u∗ to
Hvx+j

in that iteration; clearly property (2) is still satisfied in this situation. Once
we begin the y-th iteration, if it happens that the set Hvx+y+1 = ∅, we simply add
u to Hvx+y+1 and we are done – in this case, both properties are trivially satisfied.
Otherwise, select an arbitrary u∗ from Hvx+y+1 , add u∗ to Hvx+y

(increasing
the potential value of vx+y), and remove u∗ from Hvx+y+1 . Finally, add u to
Hvx+y+1 ; this uses the fact that Hvx+y

is guaranteed to contain terminal u, and
so we replace u∗ with u, ensuring that the potential of vertex vx+y+1 does not
decrease, whilst still ensuring that property (2) is satisfied, since only vertex u’s
spread has increased by exactly 1. It is this final step that ensures property (1)
is satisfied, since we increased the potential value of vx+y in this iteration, but
did not decrease the potential value of vx+y+1.

The lemma follows by applying the greedy procedure (for forming k−2p
2d disjoint terminal

paths) in Gdi , and supplying each path as input to the Obtain-Potential procedure. J

I Lemma 14. Let Gd be a degree-bounded temporal graph with a vertex set partitioned into
parts T and L. Let t be the time at which tracking of the potential function began (so that
φt(Gd) = |L|), and let i be the current time step. Then, the forming of a single reachable
pair of terminal vertices, (u, u′), can cause the potential value to drop by at most 2l, where
l = i− t is the number of steps that passed since we began tracking the value of φ(Gd).

Proof. Consider the specification of our Obtain-Potential procedure and note that, during
any time step i (with t ≤ i ≤ τ), each terminal vertex can belong to at most one disjoint
terminal path, and that exactly one of the vertices in {u, u′} (that form the endpoints of
each terminal path) has its spread increase by 1. It is clear that when a reachable pair of
terminal vertices (u, u′) is formed, the worst case scenario is the following: both u and u′
were added to the home set of a single leftover vertex in each of the l steps that have passed
since time t. The lemma follows by observing that this scenario will result in an overall drop
in potential of 2l, since, by Definition 9, u and u′ will be removed from the home set of all
those leftover vertices v ∈ L for which they belong to the set Hv(t, i). J

I Lemma 15. Let Gd be a degree-bounded temporal graph with an underlying graph of order
n, and let V (Gd) be partitioned into parts T and L, with |T | = k and |L| = n− k. Then in
10 · dnk steps, at least k

20d disjoint reachable pairs of terminal vertices are formed.

Proof. Consider Gd from time t onwards and assume that the opposite of our claim is true,
so that less than k

20d reachable pairs are formed in the space of 10 · dnk steps (i.e. less than
k

20d reachable pairs are formed within the time range t to t+ 10 · dnk ). Then, by the end of the
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(t+ 10 · dnk )-th step, there are at least k− 2 · k
20d = k− k

10d = 10dk−k
10d = k · (10d−1)

10d ≥ 0.9k (for
all d ≥ 1) terminal vertices that have not yet formed a pair with another terminal vertex. It
follows then, by Lemma 13, that the value of φ(Gd) increases by at least 0.9k

2d ·
10dn
k = 9kdn

2dk =
9n
2 = 4.5n over those 10 · dnk steps. By Lemma 14, over the same period, the potential can
decrease by at most k

20d · 2 ·
10dn
k = k

20d ·
20dn
k = 20dkn

20dk = n, since, by our earlier assumption,
fewer than k

20d pairs are formed. From this, it follows that the potential at the end of those
10 · dnk steps is at least 4.5n− n = 3.5n. But this is a contradiction since, by Observation 12,
φi(Gd) ≤ 3n for any t ≤ i ≤ τ ; the lemma follows. J

I Lemma 16. Consider a degree-bounded temporal graph, Gd, in an arbitrary time step, t,
and let the vertices in V (Gd) be divided into parts T and L, with |T | = k and |L| = n − k
at the beginning of time t. Then, there exists at least one vertex v ∈ T such that an agent
positioned at v at the start of time t can explore Θ(logd k) terminal vertices in O(dn) steps.

Proof. By application of Lemma 15 to part T , we are able to form at least k
20d disjoint

reachable pairs of terminal vertices in the space of 10 · dnk time steps. As a result, we obtain a
set of k

20d temporal walks, each of which has exactly one such reachable pair constituting its
endpoints, with no walk taking any longer than 10 · dnk steps. At the end of these k

20d walks
are exactly k

20d unique (since the pairs are disjoint) terminal vertices. We proceed by taking
this smaller set of terminals as our new T and reapplying Lemma 15 at time t+ 10 · dnk ; as
a result, we obtain k/20d

20d = k/(20d)2 new walks, each of which has endpoints that form a
reachable pair, and each of which takes no longer than 10 · dn

k/20d steps. Notice now that since,
via our second application of Lemma 15, we formed pairs amongst only those terminals that
were reachable via one of the walks obtained from our initial application of Lemma 15, there
are now at least k/(20d)2 walks of length at most 10dn

k + 10dn
k/(20d) , each of which visits three

terminal vertices; in other words, we are able to concatenate some walk obtained by our first
application of Lemma 15, with some walk obtained by our second application, to construct a
walk that visits three terminals. In this fashion, we claim that we are able to construct a
walk that visits Θ(logd k) terminals.

Generally speaking, the i-th application of Lemma 15 produces at least k/(20d)i disjoint
pairs of reachable unvisited vertices, in each of which one vertex can reach the other via a walk
of length at most 10 · (dn)/(k/(20d)i−1). Since each time we reapply Lemma 15, it is applied
only to those terminals that are reachable via a walk computed by the previous application,
it follows that there must be a sequence of i walks, one resulting from each application of
Lemma 15, that can be concatenated (in the order in which they were produced) to form a
walk that visits exactly i+ 1 terminals (two terminals are visited by the first computed walk,
then an additional terminal is explored by the walk obtained by each successive application).
Observe that we are able to repeatedly apply Lemma 15 to T exactly blog20d kc times until
no more pairs can be formed in T . By taking the i-th application of Lemma 15 to be the
blog20d kc-th such application, it is clear that an agent following a walk constructed via the
discussed concatenation method can explore blog20d kc+ 1 = Θ(logd k) terminals. All that
remains to be shown is that the length of any temporal walk, W , constructed in this way is
of duration at most O(dn). By our earlier discussion, a reachable pair of unvisited vertices,
(u, u′), found as a result of the i-th application of Lemma 15, are separated by a walk with
duration no longer than 10 · dn/(k/(20d)i−1). Given that we apply Lemma 15 blog20d kc
times in order to obtain each of the shorter walks that are then concatenated to obtain W ,
we derive the following summation to bound the overall duration of W from above:
blog20d kc∑

i=0

(
10 · dn

k/(20d)i
)

= 10dn
k
·
blog20d kc∑

i=0
(20d)i ≤ 10dn

k
· 2k = O(dn),

as required. J
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I Theorem 17. Let Gd be a degree-bounded temporal graph of order |V (Gd)| = n. Then
there exists an exploration schedule, Wexp, starting from a given vertex, s, such that Wexp’s
arrival time, α(Wexp), is O(d log d · n2

logn ).

Proof. Let the current time step be t = 1, and let V (Gd) be partitioned into sets T and
L, with |T | = k and |L| = n − k at time t (for k = n − 1, since s is already explored).
Initially, we wish to explore Θ(logd k) vertices during the first O(dn) steps. To achieve this,
we begin by constructing a temporal walk, W1, with departure time δ(W1) = t = 1. Let W1
be the product of concatenating two walks, X1 and Y1, in that order. We note that it is
not guaranteed that s will be at the start of any walk computed via our first application
of Lemma 16: therefore, we set X1 to be of duration n, and apply Lemma 16 to Gd at
time δ(W1) + |X1| = δ(W1) + n, initially setting T = V (Gd) − {s}, and L = {s}, so that
T ∪ L = V (Gd). The walk resulting from that application of Lemma 16 will be known as Y1.
In this way, we ensure, by Lemma 3 (Lemma 1 in [5]), that there is enough time for an agent
to move, via X1, from s to whichever vertex Y1 departs from. Since |X1| = n, |Y1| = O(dn)
(by Lemma 16), and, X1 and Y1 are compatible under walk concatenation, we are able to
obtain the walk, W1, of duration |W1| = n+O(dn) = O(dn), that explores Θ(logd k) unique
vertices.

We wish to apply the above process repeatedly, until only k ≤ n
log20d n

vertices remain to
be explored in Gd. This can be achieved by constructing temporal walks Wi, such that each
Wi is the concatenation of two walks Xi and Yi. Let α(Wi−1) be the arrival time of walk
Wi−1. Each Xi is a walk with duration n and departure time δ(Xi) = α(Wi−1), that departs
from the last vertex of Wi−1, and arrives at the first vertex of Yi. We then define Yi to be
the temporal walk, exploring Θ(logd k) vertices, obtained via the i-th application of Lemma
16. We perform this i-th such application at time δ(Wi−1) + |Xi| = δ(Wi−1) + n, setting

T = V (Gd)− ({s} ∪ V (Y1) ∪ V (Y2) ∪ ... ∪ V (Yi−1)),

L = V (Gd)− T and k = |T |. Taking Wi to be the result of concatenating Xi and Yi (in that
order), it follows that each walk Wi departs from the last vertex of Wi−1, and so we can
continually concatenate each Wi in the order that they are produced. The concatenation of
each Wi explores an additional Θ(logd k) vertices; we continue this process until the number
of unexplored vertices is less than or equal to n

log20d n
.

In order to show now that our overall approach to exploration always produces schedules
with arrival time O(d log d · n2

logn
), we first show that log20d k = Θ(logd n) whenever we apply

Lemma 16. As stated previously, we repeatedly apply the process discussed above until
k ≤ n

log20d n
. This implies that whenever we apply Lemma 16, k > n

log20d n
, giving that

log20d k > log20d(
n

log20d n
) = log20d n− log20d log20d n = Θ(logd n).

From this, we can conclude that the duration of any Wi produced in the aforedescribed
manner visits Θ(logd n) vertices. Since we initially explore at least n − n

log20d n
= O(n)

vertices using this method, it follows that we require the concatenation of O(n)/Θ(logd n)
Wi’s, each of which is of duration |Wi| = O(dn). Let the walk, resulting from the repeated
concatenation of our Wi, be W 1

exp; it follows that W 1
exp explores at least n− n

log20d n
vertices

in at most

O(dn) · O(n)
Θ(logd n) = O(d · n2

logd n
)

time steps. To deal with the remaining n
log20d n

vertices: letWx be the last walk we produce via
an application of Lemma 16, and assume it has arrival time α(Wx); clearly, W 1

exp has arrival
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time α(W 1
exp) = α(Wx) = O(d · n2

logd n
). We apply Lemma 3 (Lemma 1 in [5]), computing a

walk, W 2
exp, which starts at time α(W 1

exp), and spends a total time of O(n) steps visiting
each of the remaining vertices. This gives W 2

exp a total duration of O(n) · n
log20d n

= O( n2

logd n
)

steps. Now, since W 1
exp has respective departure and arrival times δ(W 1

exp) = 1 and α(W 1
exp),

and W 2
exp departs at time α(W 1

exp) from the vertex at which W 1
exp ends, it follows that they

are compatible under walk concatenation. The result of their concatenation is a walk, Wexp,
such that Wexp’s arrival time is:

α(Wexp) = |W 1
exp|+ |W 2

exp| = O(d · n2

logd n
)+O( n2

logd n
) = O

(
d · n

2

logn
log d

)
= O

(
d log d · n

2

logn

)
,

and the theorem follows. J

From the above, it follows that whenever d log d = o(logn), then a degree-bounded
temporal graph Gd admits exploration schedules with arrival time o(n2). Moreover, Theorem
17 implies the following corollary:

I Corollary 18. Let Gd be a temporal graph whose maximum degree in every step is at most
d ≥ 2, and d is constant. Additionally, let s be a specified start vertex. Then there exists an
exploration schedule, Wexp, which starts at vertex s and explores all vertices in Gd, such that
the arrival time of Wexp is O( n2

logn ).

We remark that our proof is constructive and implies a polynomial-time algorithm
computing an exploration schedule with arrival time O(d log d · n2

logn ), and thus also an
O(d log d · n

logn )-approximation algorithm for the TEXP problem when restricted to temporal
graphs of bounded-degree.

4 Conclusion

Linear arrival times for the exploration of any static, undirected graph can be easily achieved
by means of a depth-first search. The additional layer of complexity in the structure of
temporal graphs, brought about by the potential for time-variance in the edge set, means
that their exploration is not such a simple task: exploration schedules of general temporal
graphs can require Θ(n2) time steps.

Complementing previous results, which suggest that subjecting our input temporal graph
to certain structural restrictions can improve arrival times, we have shown that by requiring
the maximum degree in each time step to be bounded by d, one can guarantee arrival times of
O(d log d · n2

logn ). These results directly suggest a number of further questions: we would like
to close the gap between the upper and lower bounds for exploring general degree-bounded
temporal graphs – we suspect that there exists an upper bound lower than the one presented
here, but it may also be the case that the current lower bound of Ω(n logn) can be improved
upon. The study of further restricted temporal graph classes, in order to establish bounds
on the amount of time needed to explore them, remains an interesting question; for example,
one might consider the class of temporal graphs in which only a constant number of edges
are allowed to differ from each time step to the next.

A further question might ask precisely which structural properties a graph must possess in
order for it to admit exploration schedules with arrival time o(n2)? – it would be interesting
to classify the graphs that can be explored in time strictly less than quadratic under these
terms. Establishing how the computational complexity of TEXP changes whilst the problem
is restricted to particular classes of graphs also presents an interesting direction; for which
classes does the problem remain NP-hard to solve optimally, and how well can we approximate
solutions for these restricted cases?
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A number of other related questions also remain open. An example of one we find
particularly interesting is as follows: how much quicker can general temporal graphs be
explored if we allow an agent exploring the graph to make a move across two edges per time
step, rather than one? We remark that the construction requiring Θ(n2) steps to explore
(given in [5]) requires only O(n) steps in this two-move model. Establishing bounds for this
model could provide further insight into the exploration of temporal graphs under the model
considered throughout this paper.
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