
Interactive Proofs with Polynomial-Time
Quantum Prover for Computing the Order of
Solvable Groups
François Le Gall1

Graduate School of Informatics, Kyoto University
Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan

Tomoyuki Morimae2

Yukawa Institute for Theoretical Physics, Kyoto University
Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan

Harumichi Nishimura3

Graduate School of Informatics, Nagoya University
Chikusa-ku, Nagoya, Aichi 464-8601, Japan

Yuki Takeuchi4

NTT Communication Science Laboratories, NTT Corporation
3-1 Morinosato-Wakamiya, Atsugi, Kanagawa 243-0198, Japan
Graduate School of Engineering Science, Osaka University
1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan

Abstract
In this paper we consider what can be computed by a user interacting with a potentially malicious
server, when the server performs polynomial-time quantum computation but the user can only
perform polynomial-time classical (i.e., non-quantum) computation. Understanding the compu-
tational power of this model, which corresponds to polynomial-time quantum computation that
can be efficiently verified classically, is a well-known open problem in quantum computing. Our
result shows that computing the order of a solvable group, which is one of the most general prob-
lems for which quantum computing exhibits an exponential speed-up with respect to classical
computing, can be realized in this model.

2012 ACM Subject Classification Theory of computation → Quantum computation theory

Keywords and phrases Quantum computing, interactive proofs, group-theoretic problems

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.26

1 Introduction

First-generation quantum computers will be implemented in the “cloud” style, since only few
groups, such as governments or huge companies, will be able to possess such expensive and
high-maintenance machines. In fact, IBM has recently opened their 16-qubit machine for
a cloud service [34]. In a future when many companies provide their own quantum cloud
computing services, a malicious company might emerge who is trying to palm a user off with

1 Partially supported by the JSPS KAKENHI grants No. 15H01677, No. 16H01705 and No. 16H05853.
2 Supported by JST PRESTO No. JPMJPR176A, and the Grant-in-Aid for Young Scientists (B)

No. JP17K12637 of JSPS.
3 Partially supported by the JSPS KAKENHI grants No. 26247016, No. 16H01705 and No. 16K00015.
4 Supported by the Program for Leading Graduate Schools: Interactive Materials Science Cadet Program.

© François Le Gall, Tomoyuki Morimae, Harumichi Nishimura, and Yuki Takeuchi;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 26; pp. 26:1–26:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/160672467?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.26
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

26:2 Interactive Proofs for Order of Solvable Groups

a wrong result forged from their fake quantum computer. In addition, even if a fortunate user
is interacting with a honest server, some noises in the server’s gate operations might change
the result. How can a user verify the correctness of the server’s quantum computation? If
the user has his/her own quantum computer, the user can of course check the server’s result,
but in this case the user may not need the cloud service in the first place. If the solution
of the problem is easily verifiable (e.g., integer factoring), the user can naturally verify the
correctness of the server’s result, but many problems considered in quantum computing are
not believed to have this property. Verifying classically and efficiently a server’s quantum
computation is indeed in general highly nontrivial.

It is known that if at least two servers, who are entangled but not communicating
with each other, are allowed, then any problem solvable in quantum polynomial time can
be verified by a classical polynomial-time user who exchanges classical messages with the
servers [20, 24, 27]. However, the assumption that servers are not communicating with
each other is somehow unrealistic: how can the user guarantee that remote servers are not
communicating with each other?

Whether the number of the servers can be reduced to one is a well-known open problem [4].
For certain computational problems solvable in quantum polynomial time, it is known that
this can be done. Simon’s problem [31] and factoring [30] are trivial examples, since the
answer can be directly checked in classical polynomial time. It is known that recursive
Fourier sampling [10], which was the first problem that separates efficient quantum and
classical computing, can be verified by a polynomial number of message exchanges with a
single quantum server [23]. Moreover, it was shown that certain promise problems related
to quantum circuits in the second level of the Fourier hierarchy [29] are verifiable by a
classical polynomial-time user interacting with a single quantum server who sends only a
single message to the user [12, 26].

Our results. In this paper we consider the problem of computing the order, i.e., the number
of elements, of a finite group given as a black-box group (the concept of black-box groups
is defined in Section 2). This problem is central in computational group theory, especially
since the ability of computing the order makes possible to decide membership in subgroups.
This problem has also been the subject of several investigations in computational complexity
[1, 6, 7, 9, 32, 33]. The seminal result by Babai [6], especially, which put this problem in
the complexity class AM, has been one of the fundamental motivations behind the concept
of interactive proofs. Note that this is clearly a hard problem for classical computation: it
is easy to show that no polynomial-time classical algorithm exists in the black-box setting,
even if the input is an abelian group [9].

Most of the known quantum algorithms that achieve exponential speedups with respect to
the best known classical algorithms are for group-theoretic problems, and especially problems
over abelian groups. Shor’s algorithm for factoring [30], for instance, actually computes the
order of a cyclic black-box group. Watrous has shown that the group order problem can be
solved in quantum polynomial time when the input group is solvable [33]. Since the class
of solvable groups, defined in Section 2, is a large5 class of finite groups that includes all

5 It is known (see for instance [11]) that

lim
m→∞

log Gs(m)
log G(m) = 1,

where G(m) denotes the number of finite groups of order at most m and Gs(m) denotes the number of
finite solvable groups of order at most m. It is even conjectured that the quotient Gs(m)/G(m) goes
to 1 when m goes to infinity, i.e., most finite groups are solvable.

F. Le Gall, T. Morimae, H. Nishimura, and Y. Takeuchi 26:3

abelian groups, this result significantly generalized Shor’s algorithm. Watrous’ algorithm can
actually be seen as one of the most general results achieving an exponential speedup with
respect to classical computation.

In this paper we show that the group order problem over solvable groups is also verifiable
with a single server. More formally, in Section 2, where we introduce the relevant model
of interactive protocols, we will introduce the notation IP[k, qpoly] to denote the class of
computational problems that are verifiable by a classical polynomial-time user interacting
in k messages with a server who works in quantum polynomial time. Our main result is as
follows.

I Theorem 1. The solvable group order problem is in the complexity class IP[3, qpoly].
Moreover, if the set of prime factors of the order is also given as input, then the solvable
group order problem is in IP[2, qpoly].

This result shows that for this important computational problem, the number of servers can
be reduced to one as well, using a small number of messages. Note that assuming, in the
second part of Theorem 1, that the set of prime factors of the order is known corresponds
to several practical situations. An important example is computing the order of p-groups6
with p known, which cannot be done in polynomial time in the classical setting [9]. The
main open question is whether the number of messages can also be reduced to 2 without any
assumption on the prime factors.

Other related works. In addition to the introduction of multiple servers mentioned above,
there are other approaches considered in the literature for constructing verification systems
for quantum computation.

First, if the user is allowed to be “slightly quantum”, any problem solvable in quantum
polynomial time can be efficiently verified with a single quantum server. For example,
Refs. [2, 14] assume that the user can generate randomly-rotated single-qubit states, and
Refs. [13, 16, 25] assume that the user can measure single-qubit states.

Second, since the class BQP (the class of decision problems that can be solved in quantum
polynomial-time) is trivially in PSPACE and PSPACE = IP [21, 28], any problem in BQP
can be classically verified using generic interactive proof protocols for PSPACE. In such
protocols, however, the server has unbounded computational power. A tempting approach is
to try to specialize these generic protocols to the class BQP, with the hope that the server’s
necessary computational power may be reduced. Ref. [3] made an significant first step in
this direction.

Finally, it has been shown very recently that assuming that the learning with errors
problem is intractable for polynomial-time quantum computation, any problem solvable in
quantum polynomial time can be efficiently verified with a single quantum server and a single
classical user [22].

2 Preliminaries

In this paper we assume that the reader is familiar with the standard notions of group theory
(we refer to, e.g., [18] for a good introduction). All the groups considered will be finite. Given

6 A (finite) p-group, where p is a prime, is a group of order pr for some integer r ≥ 1. A basic result from
group theory shows that any p-group is solvable.

MFCS 2018

26:4 Interactive Proofs for Order of Solvable Groups

a group G, we use |G| to denote its order (i.e., the number of elements in G), and use e
to denote its identity element. Given elements g1, . . . , gr ∈ G, we denote 〈g1, . . . , gr〉 the
subgroup of G generated by g1, . . . , gr.

Black-box groups. We now describe the model of black-box groups. This concept, in which
each group element is represented by a string and each group operation is implemented
using an oracle, was first introduced by Babai and Szemerédi [9] to describe group-theoretic
algorithms in the most general way, without having to concretely specify how the elements
are represented and how groups operations are implemented. Indeed, any efficient algorithm
in the black-box group model gives rise to an efficient concrete algorithm whenever the
oracle operations can be replaced by efficient procedures. Especially, performing group
operations can be done directly on the elements in polynomial time for many natural groups,
including permutation groups and matrix groups where the group elements are represented
by permutations and matrices, respectively. In the quantum setting, black-box groups have
first been considered by Ivanyos et al. [19] and Watrous [32, 33].

A black-box group is a representation of a group G where each element of G is uniquely
encoded by a binary string of a fixed length n, which is called the encoding length. The
encoding length n is known. In order to be able to express the complexity of black-box
group algorithms in terms of the group order |G|, and not in terms of the encoding length,
we make the standard assumption that n = O(log |G|). Oracles are available to perform
group operations. More precisely, two oracles are available. A first oracle performs the group
product: given two strings representing two group elements g and h, the oracle outputs the
string representing gh. The second oracle performs inversion: given a string representing an
element g ∈ G, the oracle outputs the string representing the element g−1. Note that the
two oracles may behave arbitrarily on strings not corresponding to elements in G; this is
not a problem since our protocols will never use the oracles on such strings. We say that a
group G is input as a black-box if a set of strings representing generators {g1, . . . , gs} of G
with s = O(log |G|) is given as input and queries to the oracles can be done at cost 1.7 The
input length is thus sn = poly(log |G|).

To be able to take advantage of the power of quantum computation when dealing
with black-box groups, the oracles performing the group operations have to be able to
deal with quantum superpositions. Concretely, this is done as follows (see [19, 32, 33]).
Let s : G → {0, 1}n denote the encoding of elements as binary strings. We assume that
a quantum oracle VG is available, such that VG(|s(g)〉|s(h)〉) = |s(g)〉|s(gh)〉 for any two
elements g, h ∈ G, and behaving in an arbitrary way on other inputs (i.e., strings not in s(G)).
Another quantum oracle V ′G is also available, such that V ′G(|s(g)〉|s(h)〉) = |s(g)〉|s(g−1h)〉
for any g, h ∈ G and again behaving in an arbitrary way on other inputs.

Approximate sampling in black-box groups. Babai [5] proved the following result for
general groups, which shows that elements of a black-box group can be efficiently sampled
nearly uniformly.

I Theorem 2. ([5]) Let G be a black-box group. For any ε > 0, there exists a classical
randomized algorithm running in time polynomial in log(|G|) and log(1/ε) that outputs an
element of G such that each g ∈ G is output with probability in range (1/|G| − ε, 1/|G|+ ε).

7 The assumption s = O(log |G|) is standard. Indeed, every group G has a generating set of size O(log |G|).
Additionally, a set of generators of any size can be converted efficiently into a set of generators of size
O(log |G|) by taking random products of elements [5].

F. Le Gall, T. Morimae, H. Nishimura, and Y. Takeuchi 26:5

Solvable groups. Before discussing solvable groups, let us introduce the following concept
of polycyclic generating sequences (see [17] for details).

I Definition 3. Let G be a group. A polycyclic generating sequence of G is a sequence
(h1, . . . , ht) of t elements from G, for some integer t, such that:
1. 〈h1, . . . , ht〉 = G;
2. for each 1 < j ≤ t, the subgroup 〈h1, . . . , hj−1〉 is normal in 〈h1, . . . , hj〉.

There are many equivalent definitions of solvable groups in the literature (see, e.g., [17]
for a thorough discussion). In this paper we will use the following characterization: a finite
group is solvable if and only if it has a polycyclic generating sequence. This characterization,
which was already used by Watrous [33], is the most convenient for our purpose. As discussed
in [33], for any finite solvable group G given as a black box, a polycyclic generating sequence
(h1, . . . , ht) with t = O(log |G|) can be computed classically in polynomial time with high
probability using for instance the randomized algorithm by Babai et al. [8].

Watrous showed that the order of a solvable black-box group can be computed in
polynomial time in the quantum setting. We state this result in the following theorem.

I Theorem 4. ([33]) Let G be a solvable group given as a black-box group. There exists a
quantum algorithm running in time poly(log |G|) that outputs |G| with probability at least
1− 1/poly(|G|).

Let G be a solvable group and (h1, . . . , ht) be a polycyclic generating sequence of G. In
the following we will write Hj = 〈h1, . . . , hj〉 for each j ∈ {1, . . . , t}, and for convenience
write H0 = {e}. Since Hj is obtained from Hj−1 by adding one generator, the factor group
Hj/Hj−1 is cyclic. Let us write its order mj . Note that the order of G is thus the product
m1m2 · · ·mt. A fundamental (and easy to show) property of polycyclic generating sequences
is the following: For any j ∈ {1, . . . , t}, any element h ∈ Hj can be written, in a unique
way, as h = ha1

1 ha2
2 · · ·h

aj

j with integers ai ∈ {0, 1, . . . ,mi − 1} for i ∈ {1, . . . , j}. We call
this sequence (a1, . . . , aj) the decomposition of h over Hj . Watrous [33] showed that the
decomposition of any element can be computed efficiently in the quantum setting, which
immediately leads to an efficient algorithm for membership testing in the subgroups Hj . We
state these two results, separately, in the following theorem.

I Theorem 5. ([33]) Let G be a solvable group given as a black-box group and let (h1, . . . , ht)
be a polycyclic generating sequence of G with t = O(log |G|). There exist two quantum
algorithms A1 and A2 running in time polynomial in log |G| as follows.

Algorithm A1 receives an integer j ∈ {1, . . . t} and an element h ∈ Hj, and outputs with
probability at least 1− 1/poly(|G|) the decomposition of h over Hj.
Algorithm A2 receives an integer j ∈ {1, . . . t} and an element h ∈ G, and decides whether
h ∈ Hj or not. The decision is correct with probability at least 1− 1/poly(|G|).

Interactive proofs with efficient quantum prover. Interactive proof systems are typically
described as protocols for decision problems. In this paper it will be more convenient to
consider interactive proofs for computing functions, since we are interested in computing the
order of the input group.8 The definition we give below is inspired by [15].

8 In order to be completely rigorous, we should actually define this concept for functional problems where
the input is represented using oracles (since we are dealing with black-box groups where the group
operation is represented by oracles). We nevertheless omit this purely technical point in the exposition.

MFCS 2018

26:6 Interactive Proofs for Order of Solvable Groups

Let f : X → {0, 1}∗ be a function, where X is a finite set. We consider protocols between
a prover and a verifier, who both receives as input an element x ∈ X and can exchange
classical messages of polynomial length. At the end of the protocol, the verifier outputs
either some y ∈ {0, 1}∗ or one special element ⊥. We say that the function f has a k-message
polynomial-time interactive proof if there exists a k-message protocol in which the verifier
works in classical polynomial time, such that the following properties hold:
1. (completeness) there is a prover P such that the verifier’s output y satisfies y = f(x)

with probability at least 2/3 when interacting with P ;
2. (soundness) for any prover P ′, the verifier’s output y satisfies y ∈ {f(x),⊥} with probab-

ility at least 2/3 when interacting with P ′.
The prover P in the completeness condition is called the honest prover.

The above definition makes no assumption on the computational powers of the provers.
Our main definition is obtained by restricting the computational power of the honest prover,
i.e., the prover P in the completeness condition.

I Definition 6. A function f is in the class IP[k, qpoly] if it has a k-message polynomial-time
interactive proof where the honest prover P works in quantum polynomial time.

The notation IP[k, qpoly] comes from its definition as a k-message interactive protocol with
a prover working in quantum polynomial time (when honest). We stress that in Definition 6
there is no assumption on the computational power of P ′ for the soundness.

3 2-Message Protocol with Known Prime Factors

In this section we assume that the prime factors of the order of the black-box group G

are known. We present a 2-message protocol in this case, which proves the second part of
Theorem 1.

3.1 Preliminaries
We will need the following result in our protocol. This result essentially shows how to reduce
the computation of the order of a solvable group G to the problem of deciding if its factor
groups Hi/Hi−1 have order 1 or not.

I Theorem 7. Let G be a solvable group given as a black-box group. Let p1, . . . , p` denote
the prime factors of |G| and assume that the set S = {p1, . . . , p`} is also given as input.
There exists a classical algorithm running in time polynomial in log |G| that outputs elements
h1, . . . , ht ∈ G, with t = poly(log |G|), and t prime numbers r1, . . . , rt ∈ S such that, with
probability at least 1− 1/poly(|G|), the following conditions hold:

(h1, . . . , ht) is a polycyclic generating sequence of G;
the order of Hi/Hi−1 is either 1 or ri for each 1 ≤ i ≤ t, where we denote Hi = 〈h1, . . . , hi〉
for 1 ≤ i ≤ t and H0 = {e}.

Before proving Theorem 7, let us discuss the main idea of the algorithm in this theorem. The
approach is to start with an arbitrary polycyclic generating sequence and refine it by replacing
each element by decreasing powers of it. Consider for instance the cyclic group of order 12, for
which we have ` = 2, p1 = 2, p2 = 3 and |G| = 12. Assume that we start with the polycyclic
generating sequence (k1) consisting of a unique element k1 of order 12. We refine this
sequence as (h1, h2, h3) with h1 = k

|G|/p1
1 = k6

1, h2 = k
|G|/p2

1
1 = k3

1 and h3 = k
|G|/(p2

1p2)
1 = k1.

This is a polycyclic generating sequence with |H1/H0| = 2, |H2/H1| = 2 and |H3/H2| = 3.
The difficulty is that naturally we do not know the order |G|. Remember nevertheless that

F. Le Gall, T. Morimae, H. Nishimura, and Y. Takeuchi 26:7

we know the encoding length n of the black-box group, which is an upper bound on log2 |G|.
This means that the quantity m = pn1 × . . . × pn` is a multiple of the order |G|, and thus
we can use the same approach, working with m instead of |G| when refining the original
polycyclic generating sequence.

Proof of Theorem 7. Let us consider the function λ : {1, . . . , `} × {1, . . . , n} → Z such that

λ(i, a) = pn−ai × pni+1 × · · · × pn`

for any (i, a) ∈ {1, . . . , `} × {1, . . . , n}. Now consider the sequence

(λ(1, 1), . . . , λ(1, n), λ(2, 1), . . . , λ(2, n), . . . , λ(`, 1), . . . , λ(`, n)) (1)

consisting of `n integers (the integers in the sequence are strictly decreasing). Define the
function µ : {1, . . . , `n} → Z such that µ(j) is the j-th integer in Sequence (1). Note that
µ(j − 1)/µ(j) ∈ S for any j ∈ {2, . . . , `n}.

We now describe our algorithm that computes the claimed generating sequence.
We first compute a polycyclic generating sequence (k1, . . . , kt′) of G with t′ = O(log |G|)

using the randomized polynomial-time algorithm from [8], already mentioned in Section 2,
which succeeds with probability at least 1− 1/poly(|G|). Let us write Ki′ = 〈k1, . . . , ki′〉 for
each 1 ≤ i′ ≤ t′, and K0 = {e}.

We now show how to refine the polycyclic generating sequence. For each i′ ∈ {1, . . . , t′},
we replace ki′ by the sequence of `n elements (kµ(1)

i′ , . . . k
µ(`n)
i′), which gives a new sequence(

k
µ(1)
1 , . . . , k

µ(`n)
1 , k

µ(1)
2 , . . . , k

µ(`n)
2 , . . . , k

µ(1)
t′ , . . . , k

µ(`n)
t′

)
, (2)

of `nt′ elements. Sequence (2) is a polycyclic generating sequence of G since (k1, . . . , kt′) is
a polycyclic generating sequence of G and µ(`n) = 1. For any i′ ∈ {1, . . . , t′}, observe that∣∣∣〈kµ(1)

1 , . . . , k
µ(j)
i′ 〉/〈k

µ(1)
1 , . . . , k

µ(j−1)
i′ 〉

∣∣∣ ∈ {1, µ(j − 1)/µ(j)} (3)

for any j ∈ {2, . . . `n}. Similarly for any i′ ∈ {2, . . . t′} we have∣∣∣〈kµ(1)
1 , . . . , k

µ(1)
i′ 〉/〈k

µ(1)
1 , . . . , k

µ(`n)
i′−1 〉

∣∣∣ ∈ {1, p1}. (4)

Let us rename the elements of Sequence (2) as h1, . . . , ht, with t = `nt′. Note that
t = O(`(log |G|)2) = O((log |G|)3). Let us write Hi = 〈h1, . . . , hi〉 for 1 ≤ i ≤ t and
K0 = {e}. For each 1 ≤ i ≤ t, the order of Hi/Hi−1 is either 1 or ri, where ri can be
determined from Equations (3) and (4). More concretely, ri is of the form µ(j − 1)/µ(j)
for some j (which can be immediately computed from i) when Hi/Hi−1 corresponds to the
case of Equation (3), and ri = p1 when Hi/Hi−1 corresponds to the case of Equation (4).
Note that in both cases we have ri ∈ S, from the property µ(j − 1)/µ(j) ∈ S mentioned
before. J

3.2 The protocol
Let S = {p1, . . . , p`} denote the set of prime factors of |G|, which is given as an additional
input. The protocol is given in Figure 1. The main idea is that the verifier can, using
Theorem 7, compute by itself a polycyclic generating sequence (h1, . . . , ht) and prime
numbers r1, . . . , rt such that |Hi/Hi−1| ∈ {1, ri} for each 1 ≤ i ≤ t. This is done at Step 1
of the protocol. Note that |G| =

∏t
i=1 |Hi/Hi−1|. The purpose of Steps 2-5 is to decide

MFCS 2018

26:8 Interactive Proofs for Order of Solvable Groups

Input: • a black-box solvable group G with generators {g1, . . . , gs}
• the set S = {p1, . . . , p`} of prime factors of |G|

1. The verifier uses the algorithm of Theorem 7 to compute elements h1, . . . , ht and
prime numbers r1, . . . , rt ∈ S. Let us write Hi = 〈h1, . . . , hi〉 for each 1 ≤ i ≤ t

and H0 = {e}.

2. For each i ∈ {1, . . . , t}, the verifier takes a bit si ∈ {0, 1} uniformly at random
and takes a random element xi ∈ Hi−1 using the algorithm of Theorem 2 with
ε = 1/22n (where n represents the encoding length of the black-box group).

3. The verifier sends to the prover the elements h1, . . . , ht and, for each i ∈ {1, . . . , t},
the element hsi

i xi.

4. The prover sends to the verifier bits b1, . . . , bt and integers ai,j for i ∈ {1, . . . t}
and j ∈ {1, . . . , i− 1}.

5. For each i ∈ {1, . . . , t} the verifier does the following:
5.1 If hi = h

ai,1
1 · · ·hai,i−1

i−1 then set `i = 1;
5.2 If hi 6= h

ai,1
1 · · ·hai,i−1

i−1 and bi = si then set `i = ri;
5.3 If neither of these two conditions holds, then abort the protocol and output ⊥.

6. The verifier outputs the product of the `i’s.

Figure 1 Our 2-message protocol computing the order of a solvable group when the prime factors
of the order are known.

whether |Hi/Hi−1| = 1 or |Hi/Hi−1| = ri, for each i ∈ {1, . . . , t}, by interacting with the
prover. More precisely, the verifier interacts with the prover to test, for each i, whether
hi ∈ Hi−1 or hi /∈ Hi−1. This requires testing non-membership in a solvable group with a
polynomial-time quantum prover, which is achieved by sending (at Step 3) to the prover the
element hsi

i xi for a random bit si and a random element xi, and asking the prover to find
the chosen bit si. These tests enable the verifier to decide which of the two cases holds (at
Steps 5.1 and 5.2), and then to compute |G| at Step 6, or to detect cheating (at Step 5.3).

3.3 Analysis of the protocol
We now analyze the protocol of Figure 1. Let h1, . . . , ht be the group elements and r1, . . . , rt ∈
S be the prime numbers computed at Step 1. The analysis below is done under the assumption
that (h1, . . . , ht) is a polycyclic generating sequence of G and |Hi/Hi−1| ∈ {1, ri} for all
i ∈ {1, . . . , t}, which is true with probability at least 1− 1/poly(|G|) from Theorem 7.

Let us first consider the correctness, i.e., showing that there exists a prover (working in
quantum polynomial time) who enables the verifier to compute |G| with high probability.
This prover acts as follows. For each i ∈ {1, . . . , t}, the prover checks if the element hsi

i xi
received at Step 3 is in the subgroup Hi−1, using Algorithm A2 of Theorem 5. If the prover
learns that this element is in Hi−1 then the prover applies Algorithm A1 of Theorem 5 to
obtain a decomposition (ai,1, . . . , ai,i−1) of hi over Hi−1, and sends to the verifier the bit
bi = 0 and these values ai,1, . . . , ai,i−1. If the prover learns that this element is not in Hi−1,
then the prover sends to the verifier the bit bi = 1 and arbitrary values ai,1, . . . , ai,i−1.

Let us analyze the verifier’s output when interacting with the above prover. If |Hi/Hi−1| =
1 then we have hi ∈ Hi−1 and thus hsi

i xi ∈ Hi−1 whatever the value of si is. With probability
at least 1− 1/poly(|G|), the prover’s message is thus bi = 0 and ai,1, . . . , ai,i−1 corresponding

F. Le Gall, T. Morimae, H. Nishimura, and Y. Takeuchi 26:9

to the decomposition of hi over Hi−1, and then the verifier sets `i = 1. If |Hi/Hi−1| = ri
then we have hi /∈ Hi−1 and thus hsi

i xi ∈ Hi−1 if and only if si = 0. With probability at
least 1 − 1/poly(|G|), the bit bi sent by the prover satisfies bi = si, and thus the verifier
sets `i = ri (since the second part of the message ai,1, . . . , ai,i−1 cannot correspond to the
decomposition of hi over Hi−1). In conclusion, with probability at least 1− 1/poly(|G|) the
output at Step 6 is

t∏
i=1

`i =
t∏
i=1
|Hi/Hi−1| = |G|.

Let us now consider the soundness, i.e., showing that for any prover the verifier outputs
either |G| or ⊥ with high probability. It is clear that if |Hi/Hi−1| = ri, then the prover
cannot convince the verifier to set `i = 1, since there is no set of integers ai,1, . . . , ai,i−1
such that hi = h

ai,1
1 · · ·hai,i−1

i−1 . On the other hand, if |Hi/Hi−1| = 1 then the prover cannot
convince the verifier to set `i = ri unless the prover is able to decide whether si = 0 or si = 1
from the element hsi

i xi received, which cannot be done with probability larger than 1
2 + 1

2δ,
where

δ = 1
2
∑

h∈Hi−1

∣∣∣∣Pr
xi

[xi = h]− Pr
xi

[hixi = h]
∣∣∣∣

represents the variational distance between the two probability distributions xi and hixi
(seen as distributions over Hi−1). We have

δ ≤ 1
2
∑

h∈Hi−1

∣∣∣∣Pr[xi = h]− 1
|Hi−1|

∣∣∣∣+ 1
2
∑

h∈Hi−1

∣∣∣∣Pr[hixi = h]− 1
|Hi−1|

∣∣∣∣
= 1

2
∑

h∈Hi−1

∣∣∣∣Pr[xi = h]− 1
|Hi−1|

∣∣∣∣+ 1
2
∑

h∈Hi−1

∣∣∣∣Pr[xi = h−1
i h]− 1

|Hi−1|

∣∣∣∣
=

∑
h∈Hi−1

∣∣∣∣Pr[xi = h]− 1
|Hi−1|

∣∣∣∣
≤ |Hi−1|ε
≤ 1/2n,

where the second inequality follows from Theorem 2 and the third inequality follows from our
choice of ε and the upper bound |G| ≤ 2n. Thus, for any fixed i such that |Hi/Hi−1| = 1, the
prover cannot convince the verifier to set `i = ri with probability greater than 1

2 + 1
2n+1 =

1/2 + 1/poly(|G|). Let us now bound the probability that the verifier’s output is either |G| or
⊥. This corresponds to the probability that the verifier does not output an integer different
from the order of G. Note that the verifier can output an integer not equal to the order only
if the prover forces the verifier to set `i 6= |Hi/Hi−1| for at least one index i. From the above
analysis, we know that this can happen with probability at most 1/2 + 1/poly(|G|), i.e., such
a cheating is detected by the verifier at Step 5.3 with probability at least 1/2− 1/poly(|G|),
in which case the verifier immediately aborts the protocol and outputs ⊥. Thus the overall
probability that the verifier’s output is either |G| or ⊥ is at least 1/2− 1/poly(|G|). Note
finally that this probability can be amplified to reach the soundness threshold of 2/3 used in
Definition 6 by repeating the protocol of Figure 1 a constant number of times in parallel and
deciding the output based on a standard threshold argument.

MFCS 2018

26:10 Interactive Proofs for Order of Solvable Groups

Input: a black-box solvable group G with generators {g1, . . . , gs}

0. The prover sends to the verifier the following:
a. a list of t elements h1, . . . , ht ∈ G, for some t = poly(log |G|);9
b. a list of t prime numbers r1, . . . , rt;
c. a list of integers αi,j , for i ∈ {1, . . . , s} and j ∈ {1, . . . , t};
d. a list of integers βi,j , for i ∈ {2, . . . , t} and j ∈ {1, . . . , i− 1};
e. a list of integers γi,j,`, for i ∈ {2, . . . , t} and j, ` ∈ {1, . . . , i− 1}.
Let us write Hi = 〈h1, . . . , hi〉 for each 1 ≤ i ≤ t and H0 = {e}.

1. The verifier checks that the following equalities hold:
a. gi = h

αi,1
1 · · ·hαi,t

t for all i ∈ {1, . . . , s};
b. hri

i = h
βi,1
1 · · ·hβi,i−1

i−1 for all i ∈ {2, . . . , t} and hr1
1 = e;

c. hih`h−1
i = h

γi,1,`

1 · · ·hγi,i−1,`

i−1 for all i ∈ {2, . . . , t} and all ` ∈ {1, . . . , i− 1}.
If any of these equalities fails, then the verifier aborts the protocol and outputs ⊥.

2. For each i ∈ {1, . . . , t}, the verifier takes a bit si ∈ {0, 1} uniformly at random
and takes a random element xi ∈ Hi−1 using the algorithm of Theorem 2 with
ε = 1/22n.

3. The verifier sends, for each i ∈ {1, . . . , t}, the element hsi
i xi.

4. The prover sends to the verifier bits b1, . . . , bt and integers ai,j for i ∈ {1, . . . t}
and j ∈ {1, . . . , i− 1}.

5. For each i ∈ {1, . . . , t} the verifier does the following:
5.1 If hi = h

ai,1
1 · · ·hai,i−1

i−1 then set `i = 1;
5.2 If hi 6= h

ai,1
1 · · ·hai,i−1

i−1 and bi = si then set `i = ri;
5.3 If neither of these two conditions holds, then abort the protocol and output ⊥.

6. The verifier outputs the product of the `i’s.

Figure 2 Our 3-message protocol computing the order of a solvable group.

4 General 3-Message Protocol

In this section we show that when the prime factors of the order of G are not known, we can
design a 3-message protocol, which proves the first part of Theorem 1.

4.1 The protocol

Our 3-message protocol, described in Figure 2, is obtained by modifying the protocol of the
previous section. More precisely, Step 1 in the protocol of the previous section is replaced by
two steps (Steps 0 and 1 in Figure 2): instead of having the verifier compute a polycyclic
generating sequence (h1, . . . , ht) using Theorem 7, which requires the knowledge of the set of
factors of |G|, in the new protocol the prover computes by itself this sequence and sends it
at Step 0 to the verifier, who then checks that the sequence is really correct at Step 1. All
the other steps 2-6 are exactly the same as for the protocol in Figure 1 (one small exception
is Step 3, which is slightly rewritten since the polycyclic generating sequence does not need
to be sent to the prover anymore).

F. Le Gall, T. Morimae, H. Nishimura, and Y. Takeuchi 26:11

4.2 Analysis of the protocol
Let us consider the correctness. In that case the prover first uses the algorithm of Theorem 4
to compute the order |G|, then factorizes it using Shor’s algorithm [30] and collects the prime
factors in a set S. The prover then uses the algorithm of Theorem 7 using the set S as
input to obtain group elements h1, . . . , ht and a list of integers r1, . . . , rt ∈ S such that with
probability at least 1− 1/poly(|G|) the following two conditions hold:
(i) (h1, . . . , ht) is a polycyclic generating sequence of G, with t = poly(log |G|),
(ii) the order of Hi/Hi−1 is either 1 or ri for each 1 ≤ i ≤ t,

where as usual we use the notation Hi = 〈h1, . . . , hi〉 for any i ∈ {1, . . . , t} and the convention
H0 = {e}. These two conditions are equivalent to the following:
(a) Ht = G, i.e., gi ∈ Ht for each i ∈ {1, . . . , s};
(b) hri

i ∈ Hi−1 for each i ∈ {1, . . . , t};
(c) Hi−1 is normal in Hi for any i ∈ {2, . . . , t}, i.e., hih`h−1

i ∈ Hi−1 for any ` ∈ {1, . . . , i−1}.
Thus, with probability at least 1 − 1/poly(|G|), the prover can compute the following
decompositions in quantum polynomial time using Algorithm A1 of Theorem 5:

a decomposition (αi,1, . . . , αi,t) of gi over Ht, for each i ∈ {1, . . . , s};
a decomposition (βi,1, . . . , βi,i−1) of hri

i over Hi−1, for each i ∈ {2, . . . , t};
a decomposition (γi,1,`, . . . , γi,i−1,`) of hih`h−1

i over Hi−1, for each i ∈ {2, . . . , t} and
each ` ∈ {1, . . . , i− 1}.

At Step 0, the prover sends all these integers, along with the elements h1, . . . , ht and the
primes r1, . . . , rt. All the tests performed by the verifier at Step 1 then pass. The analysis of
the second part of the protocol (Steps 2-6) is then exactly the same as the analysis of the
protocol of Section 3.

The soundness follows by observing that passing the tests performed by the verifier at
Step 1 guarantees that Conditions (a)-(c) of the previous paragraph hold. This guarantees
that Conditions (i)-(ii) hold as well, and thus the soundness analysis for the second part of
the protocol (Steps 2-6) is exactly the same as the analysis of the protocol of Section 3.

References
1 Scott Aaronson and Greg Kuperberg. Quantum versus classical proofs and advice. Theory

of Computing, 3:129–157, 2007. doi:10.4086/toc.2007.v003a007.
2 Dorit Aharonov, Michael Ben-Or, Elad Eban, and Urmila Mahadev. Interactive proofs for

quantum computations. arXiv:1704.04487, 2017.
3 Dorit Aharonov and Ayal Green. A quantum inspired proof of P#P ⊆ IP .

arXiv:1710.09078, 2017.
4 Dorit Aharonov and Umesh Vazirani. Is quantum mechanics falsifiable? A computational

perspective on the foundations of quantum mechanics. arXiv:1206.3686, 2012.
5 László Babai. Local expansion of vertex-transitive graphs and random generation in finite

groups. In Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, pages
164–174, 1991. doi:10.1145/103418.103440.

9 Naturally, this is binary strings corresponding to the elements h1, . . . , ht (i.e., the oracle representations
of these elements) that are actually sent, not the elements themselves. Note also that, to simplify the
exposition, we are assuming that these strings do correspond to elements of G. To deal with a cheating
prover that may send strings not corresponding to group elements, we can simply ask the prover to
send a certificate of membership in G for each string (such a certificate can be computed in quantum
polynomial time using the algorithms of Theorem 5).

MFCS 2018

http://dx.doi.org/10.4086/toc.2007.v003a007
http://dx.doi.org/10.1145/103418.103440

26:12 Interactive Proofs for Order of Solvable Groups

6 László Babai. Bounded round interactive proofs in finite groups. SIAM Journal on Discrete
Mathematics, 5(1):88–111, 1992. doi:10.1137/0405008.

7 László Babai, Robert Beals, and Ákos Seress. Polynomial-time theory of matrix groups.
In Proceedings of the 41st Annual ACM Symposium on Theory of Computing, pages 55–64,
2009. doi:10.1145/1536414.1536425.

8 László Babai, Gene Cooperman, Larry Finkelstein, Eugene M. Luks, and Ákos Seress. Fast
monte carlo algorithms for permutation groups. Journal of Computer and System Sciences,
50(2):296–308, 1995. doi:10.1006/jcss.1995.1024.

9 László Babai and Endre Szemerédi. On the complexity of matrix group problems I. In
Proceedings of the 25th Annual Symposium on Foundations of Computer Science, pages
229–240, 1984. doi:10.1109/SFCS.1984.715919.

10 Ethan Bernstein and Umesh Vazirani. Quantum complexity theory. SIAM Journal on
Computing, 26:1411–1473, 1997. doi:10.1137/S0097539796300921.

11 Simon R. Blackburn, Peter M. Neumann, and Geetha Venkataraman. Enumeration of
Finite Groups. Cambridge University Press, 2017. doi:10.1017/CBO9780511542756.

12 Tommaso F. Demarie, Yungkai Ouyang, and Joseph F. Fitzsimons. Classical verification
of quantum circuits containing few basis changes. arXiv:1612.04914, 2016.

13 Joseph F. Fitzsimons, Michael Hajdušek, and Tomoyuki Morimae. Post hoc verifica-
tion of quantum computation. Physical Review Letters, 120:040501, 2018. doi:10.1103/
PhysRevLett.120.040501.

14 Joseph F. Fitzsimons and Elham Kashefi. Unconditionally verifiable blind computation.
Physical Review A, 96:012303, 2017. doi:10.1103/PhysRevA.96.012303.

15 Shafi Goldwasser, Ofer Grossman, and Dhiraj Holden. Pseudo-deterministic proofs. In
Proceedings of the 9th Innovations in Theoretical Computer Science Conference, pages 17:1–
17:18, 2018. doi:10.4230/LIPIcs.ITCS.2018.17.

16 Masahito Hayashi and Tomoyuki Morimae. Verifiable measurement-only blind quantum
computing with stabilizer testing. Physical Review Letters, 115:220502, 2015. doi:10.
1103/PhysRevLett.115.220502.

17 Derek F. Holt, Bettina Eick, and Eamonn A. O’Brien. Handbook of computational group
theory. Chapman & Hall/CRC, 2005. doi:10.1201/9781420035216.

18 I. Martin Isaacs. Finite group theory. American Mathematical Society, 2008.
19 Gábor Ivanyos, Frédéric Magniez, and Miklos Santha. Efficient quantum algorithms

for some instances of the non-abelian hidden subgroup problem. International
Journal of Foundations of Computer Science, 14(5):723–740, 2003. doi:10.1142/
S0129054103001996.

20 Zhengfeng Ji. Classical verification of quantum proofs. In Proceedings of the 48th Annual
ACM symposium on Theory of Computing, pages 885–898, 2016. doi:10.1145/2897518.
2897634.

21 Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic methods
for interactive proof systems. Journal of the ACM, 39(4):859–868, 1992. doi:10.1145/
146585.146605.

22 Urmila Mahadev. Classical verification of quantum computations. arXiv:1804.01082, 2018.
23 Mathew McKague. Interactive proofs with efficient quantum prover for recursive fourier

sampling. Chicago Journal of Theoretical Computer Science, 2012(6), 2012. doi:10.4086/
cjtcs.2012.006.

24 Mathew McKague. Interactive proofs for BQP via self-tested graph states. Theory of
Computing, 12(3):1–42, 2016. doi:10.4086/toc.2016.v012a003.

25 Tomoyuki Morimae, Daniel Nagaj, and Norbert Schuch. Quantum proofs can be verified
using only single-qubit measurements. Physical Review A, 93:022326, 2016. doi:10.1103/
PhysRevA.93.022326.

http://dx.doi.org/10.1137/0405008
http://dx.doi.org/10.1145/1536414.1536425
http://dx.doi.org/10.1006/jcss.1995.1024
http://dx.doi.org/10.1109/SFCS.1984.715919
http://dx.doi.org/10.1137/S0097539796300921
http://dx.doi.org/10.1017/CBO9780511542756
http://dx.doi.org/10.1103/PhysRevLett.120.040501
http://dx.doi.org/10.1103/PhysRevLett.120.040501
http://dx.doi.org/10.1103/PhysRevA.96.012303
http://dx.doi.org/10.4230/LIPIcs.ITCS.2018.17
http://dx.doi.org/10.1103/PhysRevLett.115.220502
http://dx.doi.org/10.1103/PhysRevLett.115.220502
http://dx.doi.org/10.1201/9781420035216
http://dx.doi.org/10.1142/S0129054103001996
http://dx.doi.org/10.1142/S0129054103001996
http://dx.doi.org/10.1145/2897518.2897634
http://dx.doi.org/10.1145/2897518.2897634
http://dx.doi.org/10.1145/146585.146605
http://dx.doi.org/10.1145/146585.146605
http://dx.doi.org/10.4086/cjtcs.2012.006
http://dx.doi.org/10.4086/cjtcs.2012.006
http://dx.doi.org/10.4086/toc.2016.v012a003
http://dx.doi.org/10.1103/PhysRevA.93.022326
http://dx.doi.org/10.1103/PhysRevA.93.022326

F. Le Gall, T. Morimae, H. Nishimura, and Y. Takeuchi 26:13

26 Tomoyuki Morimae, Yuki Takeuchi, and Harumichi Nishimura. Merlin-Arthur with efficient
quantum Merlin and quantum supremacy for the second level of the fourier hierarchy.
arXiv:1711.10605, 2017.

27 Ben W. Reichardt, Falk Unger, and Umesh Vazirani. Classical command of quantum
systems. Nature, 496:456–460, 2013. doi:10.1038/nature12035.

28 Adi Shamir. IP = PSPACE. Journal of the ACM, 39(4):869–877, 1992. doi:10.1145/
146585.146609.

29 Yaoyun Shi. Quantum and classical tradeoffs. Theoretical Computer Science, 344:335–343,
2005. doi:10.1016/j.tcs.2005.03.053.

30 Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms
on a quantum computer. SIAM Journal on Computing, 26(5):1484–1509, 1997. doi:10.
1137/S0097539795293172.

31 Daniel R. Simon. On the power of quantum computation. SIAM Journal on Computing,
26(5):1474–1483, 1997. doi:10.1137/S0097539796298637.

32 John Watrous. Succinct quantum proofs for properties of finite groups. In Proceedings
of the 41st Annual Symposium on Foundations of Computer Science, pages 537–546, 2000.
doi:10.1109/SFCS.2000.892141.

33 John Watrous. Quantum algorithms for solvable groups. In Proceedings of the 33rd An-
nual ACM Symposium on Theory of Computing, pages 60–67, 2001. doi:10.1145/380752.
380759.

34 https://www-03.ibm.com/press/us/en/pressrelease/52403.wss.

MFCS 2018

http://dx.doi.org/10.1038/nature12035
http://dx.doi.org/10.1145/146585.146609
http://dx.doi.org/10.1145/146585.146609
http://dx.doi.org/10.1016/j.tcs.2005.03.053
http://dx.doi.org/10.1137/S0097539795293172
http://dx.doi.org/10.1137/S0097539795293172
http://dx.doi.org/10.1137/S0097539796298637
http://dx.doi.org/10.1109/SFCS.2000.892141
http://dx.doi.org/10.1145/380752.380759
http://dx.doi.org/10.1145/380752.380759
https://www-03.ibm.com/press/us/en/pressrelease/52403.wss

	Introduction
	Preliminaries
	2-Message Protocol with Known Prime Factors
	Preliminaries
	The protocol
	Analysis of the protocol

	General 3-Message Protocol
	The protocol
	Analysis of the protocol

