
Graph Similarity and Approximate Isomorphism

Martin Grohe
RWTH Aachen University, Aachen, Germany
grohe@informatik.rwth-aachen.de

https://orcid.org/0000-0002-0292-9142

Gaurav Rattan
RWTH Aachen University, Aachen, Germany
rattan@informatik.rwth-aachen.de

https://orcid.org/0000-0002-5095-860X

Gerhard J. Woeginger
RWTH Aachen University, Aachen, Germany
woeginger@informatik.rwth-aachen.de

https://orcid.org/0000-0001-8816-2693

Abstract
The graph similarity problem, also known as approximate graph isomorphism or graph matching
problem, has been extensively studied in the machine learning community, but has not received
much attention in the algorithms community: Given two graphs G,H of the same order n with
adjacency matrices AG, AH , a well-studied measure of similarity is the Frobenius distance

dist(G,H) := min
π
‖AπG −AH‖F ,

where π ranges over all permutations of the vertex set of G, where AπG denotes the matrix
obtained from AG by permuting rows and columns according to π, and where ‖M‖F is the
Frobenius norm of a matrix M . The (weighted) graph similarity problem, denoted by GSim
(WSim), is the problem of computing this distance for two graphs of same order. This problem
is closely related to the notoriously hard quadratic assignment problem (QAP), which is known
to be NP-hard even for severely restricted cases.

It is known that GSim (WSim) is NP-hard; we strengthen this hardness result by showing that
the problem remains NP-hard even for the class of trees. Identifying the boundary of tractability
for WSim is best done in the framework of linear algebra. We show that WSim is NP-hard as
long as one of the matrices has unbounded rank or negative eigenvalues: hence, the realm of
tractability is restricted to positive semi-definite matrices of bounded rank. Our main result is a
polynomial time algorithm for the special case where the associated (weighted) adjacency graph
for one of the matrices has a bounded number of twin equivalence classes. The key parameter
underlying our algorithm is the clustering number of a graph; this parameter arises in context of
the spectral graph drawing machinery.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases Graph Similarity, Quadratic Assignment Problem, Approximate Graph
Isomorphism

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.20

Related Version A full version of the paper is available at https://arxiv.org/abs/1802.
08509.

© Martin Grohe, Gaurav Rattan, and Gerhard J. Woeginger;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 20; pp. 20:1–20:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/160672461?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:grohe@informatik.rwth-aachen.de
https://orcid.org/0000-0002-0292-9142
mailto:rattan@informatik.rwth-aachen.de
https://orcid.org/0000-0002-5095-860X
mailto:woeginger@informatik.rwth-aachen.de
https://orcid.org/0000-0001-8816-2693
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.20
https://arxiv.org/abs/1802.08509
https://arxiv.org/abs/1802.08509
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

20:2 Graph Similarity and Approximate Isomorphism

1 Introduction

Graph isomorphism has been a central open problem in algorithmics for the last 50 years.
The question of whether graph isomorphism is in polynomial time is still wide open, but at
least we know that it is in quasi-polynomial time [4]. On the practical side, the problem
is largely viewed as solved; there are excellent tools [9, 15, 21, 22] that efficiently decide
isomorphism on all but very contrived graphs [25]. However, for many applications, notably in
machine learning, we only need to know whether two graphs are “approximately isomorphic”,
or more generally, how “similar” they are. The resulting graph similarity problem has
been extensively studied in the machine learning literature under the name graph matching
(e.g. [1, 10, 14, 29, 30]), and also in the context of the schema matching problem in database
systems (e.g. [23]). Given the practical significance of the problem, surprisingly few theoretical
results are known. Before we discuss these known and our new results, let us state the
problem formally.

Graph Similarity. It is not obvious how to define the distance between two graphs, but
the distance measure that we study here seems to be the most straightforward one, and it
certainly is the one that has been studied most. For two n-vertex graphs G and H with
adjacency matrices AG and AH , we define the Frobenius distance between G and H to be

dist(G,H) := min
π
‖AπG −AH‖F . (1)

Here π ranges over all permutations of the vertex set of G, AπG denotes the matrix obtained
from AG by permuting rows and columns according to π, and the norm ‖M‖F :=

√∑
i,jM

2
ij

is the Frobenius norm of a matrix M = (Mij). Note that dist(G,H)2 counts the number of
edge mismatches in an optimal alignment of the two graphs. The graph similarity problem,
denoted by GSim, is the problem of computing dist(G,H) for graphs G,H of the same
order, or, depending on the context, the decision version of this problem (decide whether
dist(G,H) ≤ d for a given d). We can easily extend the definitions to weighted graphs and
denote the weighted graph similarity problem by WSim. In practice, this is often the more
relevant problem. Instead of the adjacency matrices of graphs, we may also use the Laplacian
matrices of the graphs to define distances. Recall that the Laplacian matrix of a graph G is
the matrix LG := DG−AG, where DG is the diagonal matrix in which the entry (DG)ii is the
degree of the ith vertex, or in the weighted case, the sum of the weights of the incident edges.
Let distL(G,H) := minπ ‖LπG − LH‖F be the corresponding distance measure. Intuitively,
in the definition of distL(G,H) we prefer permutations that map vertices of similar degrees
onto one another. Technically, distL(G,H) is interesting, because the Laplacian matrices
are positive semidefinite (if the weights are nonnegative). Both the (weighted) similarity
problem and its version for the Laplacian matrices are special cases of the problem MSim
of computing minP ‖A − PBP−1‖F for given symmetric matrices A,B ∈ Rn×n. In the
Laplacian case, these matrices are positive semidefinite.1

The QAP. The graph similarity problem is closely related to quadratic assignment problem
(QAP) [6]: given two (n× n)-matrices A,B, the goal is to find a permutation π ∈ Sn that
minimizes

∑
i,j AijBπ(i)π(j). The usual interpretation is that we have n facilities that we

1 Note that the notion of similarity that we use here has nothing to do with the standard notion of
“matrix similarity” from linear algebra.

M. Grohe, G. Rattan, and G. J. Woeginger 20:3

want to assign to n locations. The entry Aij is the flow from the ith to the jth facility,
and the entry Bij is the distance from the ith to the jth location. The goal is to find an
assignment of facilities to locations that minimizes the total cost, where the cost for each pair
of facilities is defined as the flow times the distance between their locations. The QAP has a
large number of real-world applications, as for instance hospital planning [11], typewriter
keyboard design [27], ranking of archeological data [18], and scheduling parallel production
lines [13]. On the theoretical side, the QAP contains well-known optimization problems as
special cases, as for instance the Travelling Salesman Problem, the feedback arc set problem,
the maximum clique problem, and all kinds of problems centered around graph partitioning,
graph embedding, and graph packing.

In the maximization version max-QAP of QAP, the objective is to maximize the
quantity

∑
i,j AijBπ(i)π(j) (see [19, 24]). Both QAP and max-QAP are notoriously hard

combinatorial optimization problems, in terms of practical solvability [28] as well as in terms
of theoretical hardness results even for very restricted special cases [5, 8, 7]. It is easy to
see that MSim is equivalent to max-QAP, because in reductions between QAP and MSim
the sign of one of the two matrices is flipped. Most of the known results for GSim and its
variants are derived from results for (max)QAP.

Previous Work. It seems to be folklore knowledge that GSim is NP-complete. For example,
this can be seen by a reduction from the Hamiltonian path problem: take G to be the
n-vertex input graph and H a path of length n; then dist(G,H) ≤

√
|E(G)| − n if and

only if G has a Hamiltonian path. By the same argument, we can actually reduce the
subgraph isomorphism problem to GSim. Arvind, Köbler, Kuhnert, and Vasudev [3] study
several versions of what they call approximate graph isomorphism; their problem Min-PGI
is the same as our GSim. They prove various hardness of approximation results. Based on
an earlier QAP-approximation algorithm due to Arora, Frieze, and Kaplan [2], they also
obtain a quasi-polynomial time approximation algorithm for the related problem Max-PGI.
Further hardness results were obtained by Makarychev, Manokaran, and Sviridenko [19]
and O’Donnell, Wright, Wu, and Zhou [26], who prove an average case hardness result for a
variant of GSim problem that they call robust graph isomorphism. Keldenich [16] studied
the similarity problem for a wide range matrix norms (instead of the Frobenius norm) and
proved hardness for essentially all of them.

Our (hardness) results. So where does all this leave us? Well, GSim is obviously an
extremely hard optimization problem. We start our investigations by adding to the body of
known hardness results: we prove that GSim remains NP-hard even if both input graphs are
trees (Theorem 8). Note that in strong contrast to this, the subgraph isomorphism problem
becomes easy if both input graphs are trees [20]. The reduction from Hamiltonian path
sketched above shows that GSim is also hard if one input graph is a path. We prove that
GSim is tractable in the very restricted case that one of the input graphs is a path and the
other one is a tree (Theorem 9).

As WSim and MSim are essentially linear algebraic problems, it makes sense to look
for algebraic tractability criteria. We explore bounded rank (of the adjacency matrices) as
a tractability criteria for WSim and MSim. Indeed, the NP-hardness reductions for GSim
involve graphs which have adjacency matrices of high rank (e.g. paths, cycles). We show
that the problem GSim (and WSim) remains NP-hard as long as one of the matrices has
unbounded rank or negative eigenvalues. (Theorems 10, 11 and 12). Consequently, the realm
of tractability for WSim (and MSim) is restricted to the class of positive semi-definite (PSD)
matrices of bounded rank.

MFCS 2018

20:4 Graph Similarity and Approximate Isomorphism

Block Partition Structure. We feel that for a problem as hard as QAP or MSim, identifying
any somewhat natural tractable special case is worthwhile. Since the spectral structure of
PSD matrices of bounded rank is quite limited, we consider combinatorial restrictions: in
particular, restricting the block structure of these matrices is a natural line of investigation.

Given a weighted graph G, we call two vertices twins if they have identical (weighted)
adjacency to every vertex of G. The twin-equivalence partition of V (G), corresponding to
this equivalence relation, induces a block structure on the adjacency matrix AG. Indeed, if
S1∪̇ . . . ∪̇Sp = V (G) are the twin-equivalence classes, the submatrix AG[Si, Sj] is a constant
matrix. Hence, the rows and columns of the matrix AG can be simultaneously rearranged
to yield a p× p block matrix. The number of twin-equivalence classes will be an important
parameter of our interest: we denote this parameter by τ(G).

Our (algorithmic) results. Our main result is a polynomial time algorithm for MSim if
both input matrices are positive semidefinite and have bounded-rank, and where one of the
input matrices has a bounded number of twin-equivalence classes. Formally, we prove the
following theorem. Here, the Õ notation hides factors polynomial in the input representation.

I Theorem 1. The problem MSim can be solved in Õ(nkp2) time where
(i) the input matrices are n× n PSD matrices of rank at most k, and
(ii) one of the input matrices has at most p twin-equivalence classes.

For the proof of Theorem 1, we can re-write the (squared) objective function as ‖AP −
PB‖2F , where P ranges over all permutation matrices. This is a convex function, and it
would be feasible to minimize it over a convex domain. The real difficulty of the problem
lies in the fact that we are optimizing over the complicated discrete space of permutation
matrices. Our approach relies on a linearization of the solution space, and the key insight
(Lemma 19) is that the optimal solution is essentially determined by polynomially many
hyperplanes. To prove this, we exploit the convexity of the objective function in a peculiar
way.

2 Preliminaries

We denote the set {1, . . . , n} by [n]. Unless specified otherwise, we will always assume that
the vertex set of an n-vertex graph G is [n]. We denote the degree of a vertex v by dG(v).

Twins. Given a n× n symmetric matrix A with real entries, let GA denote the associated
weighted adjacency graph. Two vertices are called twins if they have identical (weighted)
adjacency to every vertex in the graph. Hence, two vertices labeled i, j ∈ [n] are twins if and
only if Ail = Ajl for all l ∈ [n]. This is an equivalence relation; call the resulting partition
of the vertex set as the twin-equivalence partition. The number of twin-equivalence classes
will be an important parameter of our interest: we denote this parameter by τ(G). In these
definitions, we use the matrix A and its adjacency graph AG interchangeably. This allows us
to define τ(A) for a matrix A to be τ(GA), for the associated weighted adjacency graph GA.
The connection with block structure of the matrix is straighforward: observe that we can
simultaneously rearrange the rows and columns of A to obtain a τ(A)× τ(A) block matrix W .
If S1∪̇ . . . ∪̇Sp = [n] be the twin-equivalence partition, the block Wlm (where l,m ∈ [τ(A)])
is the adjacency matrix for the induced subgraph GA[Sl, Sm]. Moreover, the definition of
twin-equivalence partition implies that this subgraph is a weighted complete bipartite graph.

M. Grohe, G. Rattan, and G. J. Woeginger 20:5

Matrices. Given an m× n matrix M , the ith row (column) of M is denoted by M i (Mi).
The multiset {M1, . . . ,Mm} is denoted by rows(M). Given S ⊆ [m], the sum

∑
i∈SM

i

is denoted by MS . We denote the n × n identity matrix by In. A real symmetric n × n
matrix M is called positive semi-definite (PSD), denoted by M � 0, if the scalar zTMz is
non-negative for every z ∈ Rn. The following conditions are well-known to be equivalent.

(i) M � 0
(ii) Every eigenvalue of M is non-negative.
(iii) M = WTW for some n×n matrixW . In other words, there exist n vectors w1, . . . , wn ∈

Rn such that Mij = wTi wj .

Given two vectors x, y ∈ Rn, their dot product 〈x, y〉 is defined to be xT y. Given M � 0,
the inner product of x, y w.r.t. M, denoted by 〈x, y〉M , is defined to be xTMy. The usual
dot product corresponds to the case M = I, the identity matrix. Every n × n symmetric
matrix M has a spectral decomposition M = UΣUT , where the rows of U form an eigenbasis.
If M has rank k, we can truncate the zero eigenvalues in Σ to obtain a truncated spectral
decomposition. Now, Σ is a k × k diagonal matrix with the eigenvalues λ1, . . . , λk ∈ R on
the diagonal. The matrix U is a n× k matrix with the corresponding eigenvectors v1, . . . , vk
as the columns U1, . . . , Uk. We will always work with truncated spectral decompositions
henceforth.

Frobenius Norm. The trace of a matrix M , denoted by Tr(M), is defined to be
∑
i∈[n]Mii.

The trace inner product of two matrices A and B, denoted by Tr(A,B), is the scalar Tr(ATB).
The Frobenius norm ‖M‖F of a matrix M is defined to be

∑
i,j∈[n]Mij

2. It is easy to check
that ‖M‖2F = Tr(M,M). Given two n-vertex graphs G and H and a permutation π ∈ Sn, a
π-mismatch between G and H is a pair {i, j} such that {i, j} ∈ E(G) and {iπ, jπ} /∈ E(H)
(or vice-versa). In other words, π : V (G)→ V (H) does not preserve adjacency for the pair
{i, j}. The following claim will be useful as a combinatorial interpretation of the Frobenius
norm. Let ∆ denote the number of π-mismatches between G and H.

I Claim 2. ‖AπG −AH‖2F = 2∆.

Proof. The only non-zero terms in the expansion of summation ‖AπG − AH‖2F correspond
to π-mismatches. Since every mismatch {i, j} contributes 1 and is counted twice in the
summation, the claim follows. J

Clustering Number. Spectral Graph Drawing is a well-established technique for visualizing
graphs via their spectral properties (see e.g. [17]). We introduce the details necessary for our
results. Let A be a n× n matrix of rank k. Let G be the corresponding adjacency graph,
with the vertex set [n]. Given a spectral decomposition A = UΛUT , Σ is a k × k matrix
and U is a n × k matrix. Since the spectral decomposition of a matrix is not unique, the
following claim will be useful.

I Claim 3. Given two spectral decompositions A = UΛUT and A = U ′ΛU ′T , the number of
distinct elements in the multi-set rows(U) is equal to the number of distinct elements in the
multi-set rows(U ′).

Therefore, the number of distinct elements in the multi-set rows(U) is invariant of our choice
of spectral decomposition A = UΛUT . This allows us to define the clustering number of a
graph G, denoted by cn(G), as the number of distinct elements in the multi-set rows(U), for

MFCS 2018

20:6 Graph Similarity and Approximate Isomorphism

some spectral decomposition A = UΛUT . The clustering number of a matrix A, denoted by
cn(A), is defined to be the clustering number of the corresponding adjacency graph.

Let A = UΛUT be a PSD matrix. The following theorem relates the clustering number
cn(A) to the number of twin-equivalence partitions τ(A).

I Theorem 4. Let A be a PSD matrix. The number of twin-equivalence classes τ(A) is equal
to p if and only if A has p distinct elements in the set rows(U) for a spectral decomposition
A = UΛUT .

Hyperplanes and Convex Functions. A hyperplane H in the Euclidean space Rk is a (k−1)-
dimensional affine subspace. The usual representation of a hyperplane is a linear equation
〈c, x〉 = α for some c ∈ Rk, α ∈ R. The convex sets {x | 〈c, x〉 > α} and {x | 〈c, x〉 < α} are
called the open half-spaces corresponding to H, denoted by H+, H− respectively.

Two sets (S, T) are weakly linearly separated if there exists a hyperplane H such that
S ⊆ H+ ∪H and T ⊆ H− ∪H. In this case, we call them weakly linearly separated along H.
A family of sets S1, . . . , Sp is weakly linearly separated if for every l,m ∈ [p], the sets Sl, Sm
are weakly linearly separated. Let Π be a partition of a set S into p sets S1, . . . , Sp. The
partition Π is said to be mutually linearly separated if the family of sets S1, . . . , Sp is weakly
linearly separated.

Recall that a subset S ⊆ Rk is called convex if for every x, y ∈ S, αx + (1 − α)y ∈ S,
α ∈ [0, 1]. A function f : Rk → R is called convex on a convex set S if for every x, y ∈ S,
f(αx+ (1−α)y) ≤ αf(x) + (1−α)f(y). The following theorem about linearization of convex
differentiable functions is well-known and is stated without proof. The gradient of a function
f : Rk → R, denoted by ∇f , is the vector-valued function [∂f∂x1

. . . ∂f∂xk]. Given X∗ ∈ Rk, let
µ∗ denote the vector ∇f(X∗).

I Theorem 5 (Convex function linearization). Let f : Rk → R be a convex function. For all
X ∈ Rk, f(X)− f(X∗) ≥ 〈µ∗, X −X∗〉.

Finally, we state an important fact about the convexity of quadratic functions. Given a
PSD matrix M ∈ Rk×k, the quadratic function QM : Rk → R is defined as QM (x) = 〈x, x〉M .

I Lemma 6 (Convexity of PSD). QM is convex on Rk.

3 Hardness Results

In this section, we show several new hardness results for problems GSim,WSim and MSim.
As we will observe, these problems turn out to be algorithmically intractable, even for severely
restricted cases. We begin by recalling the following observation.

I Theorem 7 (Folklore). GSim is NP-hard for the class of simple undirected graphs.

In fact, the problem turns out to be NP-hard even for very restricted graph classes. The
following theorem is the main hardness result of this section.

I Theorem 8. GSim is NP-hard for the class of trees.

Proof. The proof is by a reduction from the following NP-hard variant of the Three-
Partition problem [12], which is defined as follows. The input consists of integers A and
a1, . . . , a3m in unary representation, with

∑3m
i=1 ai = mA and with A/4 < ai < A/2 for

1 ≤ i ≤ 3m. The question is to decide whether a1, . . . , a3m can be partitioned into m triples
so that the elements in each triple sum up to precisely A.

M. Grohe, G. Rattan, and G. J. Woeginger 20:7

We first show that the restriction of GSim to forests is NP-hard. Given an instance of
Three-Partition, we compute an instance of GSim on the following two forests F1 and F2.
Forest F1 is the disjoint union of 3m paths with a1, . . . , a3m vertices, respectively. Forest
F2 is the disjoint union of m paths that each consists of A vertices. We claim that the
Three-Partition instance has answer YES, if and only if there exists a permutation π
such that there are at most 2m mismatches. If the desired partition exists, then for each
triple we we can pack the three corresponding paths in F1 into one of the paths in F2 with
two mismatches per triple. Conversely, if there exists a permutation π with at most 2m
mismatches, then these 2m mismatches cut the paths in F2 into 3m subpaths (we consider
isolated vertices as paths of length 0). As each of these 3m subpaths must be matched with
a path in F1, we easily deduce from this a solution for the Three-Partition instance.

To show that GSim is NP-hard for the class of trees, we modify the above forests F1
and F2 into trees T1 and T2. Formally, we add a new vertex v1 to V (F1) and then connect
one end-point of every path in F1 to v1 by an edge; note that the degree of vertex v1 in
the resulting tree is 3m. Analogously, we add a new vertex v2 to V (F2), connect it to all
paths, and thus produce a tree in which vertex v2 has degree m. For technical reasons, we
furthermore attach 8m newly created leaves to every single vertex in V (F1) and V (F2). k
The resulting trees are denoted T1 and T2, respectively.

We claim that the considered Three-Partition instance has answer YES, if and only if
there exists π : V (T1)→ V (T2) with at most 4m mismatches. If the desired partition exists,
the natural bijection maps every original forest edge in T1 to an original forest edge in T2,
except for some 2m out of the 3m edges that are incident to v1 in T1; this yields a total
number of 2m+ 2m = 4m mismatches. Conversely, suppose that there exists a permutation
π with at most 4m mismatches. Then π must map v1 in T1 to v2 in T2, since otherwise
we pay a penalty of more than 4m mismatches alone for the edges incident to the vertex
mapped into v2. As the number of mismatches for edges incident to v1 and v2 amounts to
2m, there remain at most 2m further mismatches for the remaining edges. Similarly as in
our above argument for the forests, these at most 2m mismatches yield a solution for the
Three-Partition instance. J

On the other hand, if we restrict one of the input instances to be a path, the problem
can be solved in polynomial time. The following theorem provides a positive example of
tractability of GSim.

I Theorem 9. An input instance (G,H) of GSim, where G is a path and H is a tree, can
be solved in polynomial time.

The above results exhibit the hardness of GSim, and consequently, the hardness of the
more general problems WSim and MSim. Since the graphs (for instance cycles and paths)
involved in the hardness reductions have adjacency matrices of high rank, it is natural to
ask whether MSim would become tractable for matrices of low rank. Our following theorem
shows that MSim is NP-hard even for matrices of rank at most 2. The underlying reason for
hardness is the well-known problem QAP, which shares the optimization domain Sn.

I Theorem 10. MSim is NP-hard for symmetric matrices of rank at most 2.

The key to the above reduction is the fact that one of the matrices has non-negative
eigenvalues while the other matrix has non-positive eigenvalues. We show that the MSim
is NP-hard even for positive semi-definite matrices. The main idea is to reformulate the
hardness reduction in Theorem 7 in terms of Laplacian matrices.

MFCS 2018

20:8 Graph Similarity and Approximate Isomorphism

I Theorem 11. MSim is NP-hard for positive semi-definite matrices.

In fact, we show that the problem remains NP-hard, even if one of the matrices is of rank
1. The proof follows by modifying the matrices in the proof of Theorem 10 so that they are
positive semi-definite.

I Theorem 12. MSim is NP-hard for positive semi-definite matrices, even if one of the
matrices has rank 1.

Therefore, the realm of tractability for MSim is restricted to positive definite matrices of
bounded rank.

4 The QVP Problem

We proceed towards the proof of Theorem 1, our main algorithmic result about MSim.
In order to prove this theorem, we need to define an intermediate problem, called the
Quadratic-Vector-Partition (QVP). In this section, we study several aspects of this
problem. First, we state this problem, and show an efficient reduction from MSim to QVP
(Sections 4.1 and 4.2). The definition of the problem QVP is slightly technical; the ensuing
reduction, from MSim to QVP, will justify the introduction of this intermediate problem. In
Sections 4.3 and 4.4, we will establish strong conditions on the optimal solutions for a QVP
instance. Later on, in Section 5, these conditions will allow us to design efficient algorithms
for QVP, which will finish the proof of Theorem 1.

4.1 QVP, definition

Let p and k be fixed positive integers. The input instance to QVP is a tuple (W,K,Λ,∆),
where

W is a set of n vectors {w1, . . . , wn} ⊆ Rk,
K is a p× p PSD matrix,
Λ is a k × k diagonal matrix with non-negative entries, and,
∆ is (the unary encoding of) a p-tuple (n1, . . . , np) such that n1 + · · ·+ np = n.

Some additional notation is required, before we proceed further. An ordered partition
T1∪̇ · · · ∪̇Tp of [n] is said to have type ∆ if the cardinalities |Tl| = nl, for all l ∈ [p]. Let P∆
denote the set of all (ordered) partitions of [n] of type ∆. Let T be a subset of [n]. Denote
the subset of W indexed by the set T as W [T] = {wj | j ∈ T}. The centroid of the subset
W [T] is denoted by ŵT . In other words, ŵT = 1

|T |
∑
i∈T wi.

We continue with the definition of QVP. Given a partition P = (T1, . . . , Tp) ∈ P∆, the
QVP objective function F (P) is defined as

F (P) =
∑

l,m∈[p]

Klm 〈ŵTl , ŵTm〉Λ .

The optimization problem QVP is to compute a partition P ∗ ∈ P∆ which is a maximizer of
the objective function F (P) over the domain P∆.

M. Grohe, G. Rattan, and G. J. Woeginger 20:9

4.2 MSim reduces to QVP
Let k and p be fixed positive integers. Let (A,B) be an MSim instance, as defined in
Theorem 1: the PSD matrices A and B are of rank at most k, and moreover, τ(B) = p.
The following lemma describes a reduction from MSim to QVP. Here, the Õ notation hides
factors polynomial in the size of the input representation.

I Lemma 13. There exists an Õ(n3) running time algorithm which can transform the MSim
instance (A,B) into a QVP-instance (W,K,Λ,∆), with the following property. Given an
optimal solution for this QVP-instance, we can compute an optimal solution for the MSim
instance, in O(n) running time.

Proof. Fix two spectral decompositions A = UΛUT and B = V ΓV T of A and B respectively.
Since τ(B) = p, the multiset rows(V) has exactly p distinct vectors (by Theorem 4). Let
these p distinct vectors be denoted by {Ṽ 1, . . . , Ṽ p}. Let n1, . . . , np be the multiplicity of the
elements Ṽ 1, . . . , Ṽ p in the multiset rows(V). Clearly, n1 + · · ·+np = n. Let P̃ = S1∪· · ·∪Sp
be the partition of the set [n] such that Sl = {i |V i = Ṽ l}, for l ∈ [p]. In other words, the
partition P̃ encodes the equivalence relation V i = V j , where i, j ∈ [n].

Let us describe the polynomial time transformation of the MSim instance (A,B) into
the QVP instance (W,K,Λ,∆). Define W as the multiset rows(U). In other words, we
can denote W = {w1, . . . , wn} where wi = U i. Define K to be the p× p matrix defined as
Klm = |Sl| · |Sm| · 〈Ṽ l, Ṽ m〉Γ, for l,m ∈ [p]. Since we can write Klm = 〈|Sl| · Ṽ l, |Sm| · Ṽ m〉Γ,
we can show that K is positive semi-definite. We set Λ to be the k×k diagonal matrix in the
spectral decomposition A = UΛUT . Finally, we set ∆ to be (n1, . . . , np): these numbers were
defined in the previous paragraph. The computation of this QVP instance can be performed
in Õ(n3) time, which is the time taken to compute the spectral decompositions for A and B.

It remains to show that an optimal solution for this QVP instance yields an optimal
solution for the MSim instance inO(n) time. Observe that ‖Aπ−B‖2F = Tr(Aπ−B,Aπ−B) =
Tr(Aπ, Aπ) + Tr(B,B) − 2 Tr(Aπ, B). Since Tr(Aπ, Aπ) = ‖Aπ‖2F = ‖A‖2F = Tr(A,A), we
have ‖Aπ −B‖2F = Tr(A,A) + Tr(B,B)− 2 Tr(Aπ, B). This derivation implies that we can
equivalently maximize Tr(Aπ, B) over π ∈ Sn. Observe that Tr(Aπ, B) can be rewritten as

Tr(Aπ, B) =
∑
i,j∈[n]

aiπjπ bij

=
∑
i,j∈[n]

〈U i
π

, U j
π

〉Λ · 〈V i, V j〉Γ

=
∑

l,m∈[p]

 ∑
i∈Sl, j∈Sm

〈U i
π

, U j
π

〉Λ · 〈V i, V j〉Γ

which can be further re-written as

Tr(Aπ, B) =
∑

l,m∈[p]

 ∑
i∈Sl, j∈Sm

〈U i
π

, U j
π

〉Λ

 · 〈Ṽ l, Ṽ m〉Γ
=

∑
l,m∈[p]

〈∑
i∈Sl

U i
π

,
∑
j∈Sm

U j
π

〉
Λ

· 〈Ṽ l, Ṽ m〉Γ

=
∑

l,m∈[p]

|Sl| · |Sm| ·
〈
ŵSπ

l
, ŵSπm

〉
Λ
· 〈Ṽ l, Ṽ m〉Γ

MFCS 2018

20:10 Graph Similarity and Approximate Isomorphism

Define the partition Pπ of [n] to be Pπ = (Sπ1 , . . . , Sπp). Observe that Pπ is of type ∆, and
therefore, Pπ ∈ P∆. Using the definition of the matrix K, we can thus rewrite

Tr(Aπ, B) =
∑

l,m∈[p]

|Sl| · |Sm| ·
〈
ŵSπ

l
, ŵSπm

〉
Λ
· 〈Ṽ l, Ṽ m〉Γ

=
∑

l,m∈[p]

〈
ŵSπ

l
, ŵSπm

〉
Λ
· Klm

= F (Pπ),

which allows us to state the following equality.

‖Aπ −B‖2F = Tr(A,A) + Tr(B,B)− 2F (Pπ). (2)

We continue with the proof of the lemma. Let P ∗ be an optimal solution for our QVP
instance. In other words, the partition P ∗ = (T ∗1 , . . . , T ∗p) is a maximizer of F (P) over the set
P∆. Let π∗ be a permutation which maps the sets Sl to T ∗l , for all l ∈ [p]. We claim that π∗
is an optimal solution for the MSim instance. To see this, suppose π∗ is not optimal. Instead,
let π′ be an optimal solution for the MSim instance, and hence, ‖Aπ∗ −B‖2F > ‖Aπ

′ −B‖2F .
Define a related partition Pπ′ = (Sπ′1 , . . . , Sπ

′

p): clearly, π′ ∈ P∆. Since Equation 2 implies
that

‖Aπ
∗
−B‖2F = Tr(A,A) + Tr(B,B)− 2F (P ∗),

‖Aπ
′
−B‖2F = Tr(A,A) + Tr(B,B)− 2F (Pπ′),

we use ‖Aπ∗ − B‖2F > ‖Aπ′ − B‖2F to obtain that F (P ∗) < F (Pπ′). This contradicts the
maximality of P ∗. Hence, π∗ must be an optimal solution for the QVP instance.

Given such an optimal solution P ∗ for the QVP instance, the computation of the optimal
solution π∗ for the MSim instance is a straightforward Õ(n) procedure: we define π∗ by
choosing arbitrary bijections between the sets Sl and T ∗l , for all l ∈ [p]. This finishes the
proof of our lemma. J

4.3 Linearization of Convex Functions
We take a small detour towards the properties of convex functions. These properties will be
useful for studying the optimal solutions to the QVP problem. In general, we show that
the linearization of a convex function can be useful in understanding its optima over a finite
domain. In this context, we prove the following lemma about convex functions, which is
interesting in its own right.

I Lemma 14. Let Ω be a finite subset of Rk × R`. Let G : Rk → R, H : R` → R such
that H is convex, and let F : Rk × R` → R be defined as F (X,Y) = G(X) + H(Y). Let
(X∗, Y ∗) ∈ arg max(X,Y)∈Ω F (X,Y).

Then there exist a µ∗ ∈ R` such that:
(i) (X∗, Y ∗) ∈ arg max(X,Y)∈Ω L(X,Y) where L(X,Y) = G(X) + 〈µ∗, Y 〉;
(ii) arg max(X,Y)∈Ω L(X,Y) ⊆ arg max(X,Y)∈Ω F (X,Y).

Proof. Let (X∗, Y ∗) ∈ arg maxS∈Ω F (S). Since H is convex, we can use Theorem 5 to
linearize H around Y ∗ ∈ R`. Hence, there exists a µ∗ ∈ R` such that H(Y) − H(Y ∗) ≥
〈µ∗, Y − Y ∗〉, or equivalently,

H(Y)− 〈µ∗, Y 〉 ≥ H(Y ∗)− 〈µ∗, Y ∗〉, (3)

M. Grohe, G. Rattan, and G. J. Woeginger 20:11

for all Y ∈ R`. Hence with L(X,Y) = G(X) + 〈µ∗, Y 〉, for all (X,Y) ∈ Ω we have

L(X∗, Y ∗) = F (X∗, Y ∗)−H(Y ∗) + 〈µ∗, Y ∗〉 ≥ F (X,Y)−H(Y) + 〈µ∗, Y 〉 = L(X,Y),

where the inequality holds by (3) and because (X∗, Y ∗) maximizes F . Hence (X∗, Y ∗)
maximizes L as well, which proves (i).

For (ii), consider (X∗∗, Y ∗∗) ∈ arg max(X,Y)∈Ω L(X,Y). To prove that (X∗∗, Y ∗∗) ∈
arg max(X,Y)∈Ω F (X,Y), it suffices to prove that F (X∗∗, Y ∗∗) ≥ F (X∗, Y ∗). By (i), we have
L(X∗, Y ∗) = L(X∗∗, Y ∗∗). Thus

F (X∗∗, Y ∗∗) = L(X∗∗, Y ∗∗) +H(Y ∗∗)− 〈µ∗, Y ∗∗〉 ≥ L(X∗, Y ∗) +H(Y ∗)− 〈µ∗, Y ∗〉
= F (X∗, Y ∗),

where the inequality holds by (3) with (X,Y) := (X∗∗, Y ∗∗) and as (X∗∗, Y ∗∗) maximizes L.
J

In other words, for every (X∗, Y ∗) which maximizes F over Ω, there exists a partially
“linearized” function L such that (X∗, Y ∗) maximizes L over Ω. Moreover, every maximizer
of L over Ω is a maximizer of F over Ω. This additional condition is necessary so that this
“linearization” does not create spurious optimal solutions.

I Corollary 15. Let Ω be a finite subset of Rkp. For all i ∈ [k], let Gi : Rk → R be a convex
function. Let F : Rkp → R be defined as F (X1, . . . , Xk) := G1(X1) + . . . + Gk(Xk). Let
X∗ = (X∗1 , . . . , X∗k) ∈ arg maxX∈Ω F (X).

Then there are µ∗1, . . . , µ∗k ∈ Rp such that:
(i) X∗ ∈ arg maxX∈Ω L(X) where L(X1, . . . , Xk) =

∑k
i=1〈µ∗i , Xi〉;

(ii) arg maxX∈Ω L(X) ⊆ arg max∈Ω F (X).

Proof. Inductively apply the lemma to the functions

F i((X1, . . . , Xi−1, Xi+1, . . . , Xk), Xi) =

i−1∑
j=1
〈µ∗j , Xj〉 +

k∑
j=i+1

Gj(Xj)

︸ ︷︷ ︸

=:Gi(X1,...,Xi−1,Xi+1,...,Xk)

+ Gi(Xi)︸ ︷︷ ︸
=:Hi(Xi)

. J

4.4 Optimal Solution Structure for QVP
Let us express the QVP objective function

F (P) =
∑

l,m∈[p]

Klm 〈ŵTl , ŵTm〉Λ

as a restriction of a convex function to a finite domain. Using the results above for linearization
of convex functions, we show that the optimal solutions for a QVP instance must satisfy
certain structural constraints, specified by Lemma 19.

Formally, given a QVP instance (W,K,Λ,∆), and a partition P = (T1, . . . , Tp) ∈ P∆,
we define k vectors X1, . . . , Xk as follows. For q ∈ [k], let Xq be the vector of length p

corresponding to the qth coordinates of vectors ŵT1 , . . . , ŵTp . Clearly, the vectors X1, . . . , Xk

are a function of the partition P . Recall that Λ is a diagonal matrix with k non-negative
entries, say λ1, . . . , λk.

I Claim 16. F (P) =
k∑
q=1

λq〈Xq, Xq〉K .

MFCS 2018

20:12 Graph Similarity and Approximate Isomorphism

Observe that the function G : Rp 7→ R defined by G(Y) = 〈Y, Y 〉K is a convex function
(by Lemma 6). Define a function F̃ (Y1, . . . , Yp) = λ1G(Y1) + · · · + λkG(Yk), where the
vectors Y1, . . . , Yk ∈ Rp. This function is convex as well: it is a linear combination of convex
functions, with positive co-efficients. Observe that F (P) = F̃ (X1, . . . , Xp). Therefore, the
problem of maximizing F over P∆ is, essentially, a problem of maximizing a convex function
F̃ (Y1, . . . , Yk) over a finite discrete domain.

Using Corollary 15, we claim that a maximizer P ∗ = (T ∗1 , . . . , T ∗p) of the objective function
F (P) over the domain P∆ must be a maximizer for some linear objective function L1(P)
over the domain P∆.

I Claim 17. There exist vectors µ∗1, . . . , µ∗k ∈ Rp such that P ∗ is a maximizer of the function

L1(P) =
k∑
q=1

λq〈µ∗q , Xq〉K over P∆. Moreover, every maximizer of L1(P) is a maximizer of

F (P).

We can further reformulate the optimality conditions of Claim 17 as follows.

I Claim 18. There exist vectors µ1, . . . , µp ∈ Rk such that P ∗ is a maximizer of the function

L2(P) =
p∑

m=1
〈µm, ŵTm〉 over P∆. Moreover, every maximizer of L2(P) is a maximizer of

L1(P), and consequently, a maximizer of F (P).

The above claim leads to a strong geometrical restriction on the partition W [T ∗1], . . . ,W [T ∗p]
of W , induced by the optimal partition P ∗ ∈ P∆.

I Lemma 19. Let P ∗ = (T ∗1 , . . . , T ∗p) be an optimal solution for a QVP instance (W,K,Λ,∆).
The partition (W [T ∗1], . . . ,W [T ∗p]) of the set W is (weakly) mutually linearly separated.

Proof. By Claim 18, there exist vectors µ1, . . . , µp ∈ Rk such that P ∗ is a maximizer of
L2(P). Suppose there exist q, r such that W [T ∗q] and W [T ∗r] are not (weakly) linearly
separated. We claim that this leads to a contradiction.

Let nq and nr be the cardinalities of the sets T ∗q and T ∗r . We use the notation WT

to denote the sum of the vectors in the set W [T], for a subset T ⊆ [n]. Let us isolate
the two terms 〈µq, ŵT∗q 〉 + 〈µr, ŵT∗r 〉 and rewrite them as 〈µqnq ,W

T∗q 〉 + 〈µrnr ,W
T∗r 〉. Let us

denote 1
nq
µq by µ′q, and 1

nr
µr by µ′r. Therefore, the terms can be re-written as 〈µ′q,WT∗q 〉 +

〈µ′r,WT∗r 〉.
Rewriting further, we can express the above terms as 〈(µ′q−µ′r),WT∗q 〉+〈µ′r, (WT∗q +WT∗r)〉.

Recall that the sets W [T ∗q] and W [T ∗r] are not weakly linearly separated. Let us partition
the set W [T ∗q]∪W [T ∗r] into two sets W [T ′q] and W [T ′r] such that (a) |T ′q| = nq, |T ′r| = nr and
(b) the sets W [T ′q] and W [T ′r] are weakly linearly separated along the direction (µ′q − µ′r).
Indeed, we can sort all elements w in W [T ∗q] ∪W [T ∗r] in a descending order, according to
their (signed) projection 〈(µ′q − µ′r), w〉 along (µ′q − µ′r). Pick the top nq elements in this
ordering to obtain the set T ′q and collect the remaining nr elements to form the set T ′r. Note
that the sets T ′q and T ′r are weakly linearly separated along the direction (µ′q − µ′r), and
hence, the pair (T ∗q , T ∗r) 6= (T ′q, T ′r).

Clearly, 〈(µ′q−µ′r),WT ′q 〉 > 〈(µ′q−µ′r),WT∗q 〉 by our construction. Moreover, 〈µ′r, (WT ′q +
WT ′r)〉 = 〈µ′r, (WT∗q +WT∗r)〉, because T ′q ∪ T ′r = T ∗q ∪ T ∗r . Hence, 〈µ′q,WT ′q 〉 + 〈µ′r,WT ′r 〉 >
〈µ′q,WT∗q 〉 + 〈µ′r,WT∗r 〉, which implies that 〈µq, ŵT ′q 〉 + 〈µr, ŵT ′r 〉 > 〈µq, ŵT∗q 〉 + 〈µr, ŵT∗r 〉.
This contradicts the maximality of P ∗ for the function L2(P) over the domain P∆. J

M. Grohe, G. Rattan, and G. J. Woeginger 20:13

5 Proof of Theorem 1

In this section, we prove the following algorithmic result about QVP.

I Theorem 20. Given a QVP instance (W,K,Λ,∆), we can compute an optimal solution
for this instance in Õ(nkp2) time.

In this section, we will prove Theorem 20 in a restricted setting: we assume that the set
W is in General Position (G.P.). The proof for the general case is not very different: using a
technical tool to handle degeneracies in W , we can reduce the general case to this restricted
case. We defer the proof of Theorem 20 (i.e., the general case) to the full version of the
paper, and continue with the proof for this restricted setting.

Observe that the proof of Theorem 1 follows immediately from the above theorem.

Proof of Theorem 1. Let (A,B) be an MSim instance, as defined in the statement of
Theorem 1. Using the reduction in Lemma 13, we can compute a QVP instance (W,K,Λ,∆)
in Õ(n3) with the following property: an optimal solution to this QVP instance can be used
to compute an optimal solution for the MSim instance (A,B), in O(n) time. Using Theorem
20, we can compute an optimal solution for the QVP instance (W,K,Λ,∆) in Õ(nkp2) time.
Therefore, we can compute an optimal solution for the MSim instance in overall Õ(nkp2)
time. J

5.1 Algorithm for QVP, restricted version
We proceed with the proof of Theorem 20, under the G.P. assumption. In other words,
given a QVP instance (W,K,Λ,∆), the input set W is in General Position. Recall that
a set S of n points w1, . . . , wn ∈ Rk is said to be in general position (G.P.), if there is no
subset S′ ⊆ S with |S′| > k that lies on a common hyperplane. Moreover, we can associate
a unique hyperplane HS with every k-element subset S of W . Let H be the set of

(
n
k

)
hyperplanes, defined by each k-element subset of W . Under the G.P. assumption, we can
further strengthen Lemma 19, as follows.

I Lemma 21. Let P ∗ = (T1, . . . , Tp) be an optimal solution for a QVP instance (W,K,Λ,∆).
For every pair of sets W [Ti] and W [Tj], where i < j, there exists a hyperplane Hij in the set
H such that W [Ti] and W [Tj] are weakly linearly separated along Hij.

The proof of this lemma follows immediately from the following claim.

I Claim 22. Let W be a set of n points {w1, . . . , wn} ⊂ Rk in general position, where
n > k. Suppose W1,W2 are two disjoint subsets of W which are weakly linearly separated by
a hyperplane H. Then, there exists another hyperplane H̃ with the following properties: (a)
H̃ passes through exactly k points of W , and (b) H̃ also weakly linearly separates W1,W2.

Enumerative Algorithm. We proceed with an informal description of the algorithm. The
overall strategy of our algorithm follows from Lemma 19 and Lemma 21. We will enumerate
a particular subset P of P∆ defined as follows. The set P is the set of all weakly linearly
separated partitions P = (T1, . . . , Tp) of W with the following property (stated in Lemma
21). For every pair of sets W [Ti] and W [Tj], where i < j, there exists a hyperplane Hij

in H such that W [Ti] and W [Tj] are weakly linearly separated along Hij . Clearly, we can
maximize the objective function F (P) over the set P, instead of the original domain P∆:

MFCS 2018

20:14 Graph Similarity and Approximate Isomorphism

by Lemma 21, an optimal solution must lie in the set P. Therefore, it suffices to prove the
following lemma.

I Lemma 23 (Enumeration, under G.P. assumption). Given a QVP instance (W,K,Λ,∆),
assume that the set W is in General Position. Then, we can enumerate the set P in Õ(nkp2)
time.

Proof. From Lemma 21, we can deduce that a partition P = (T1, . . . , Tp) ∈ P can be
associated with a sequence of

(
p
2
)
separating hyperplanes Hij ∈ H, i < j, i, j ∈ [p]. In

particular, the hyperplane Hij weakly linearly separates W [Ti] and W [Tj].

Therefore, we enumerate the set P as follows. We branch over every choice of |H|(
p
2) ≤ n

kp2
2

sequences of hyperplanes. We can define p convex regions R1, . . . , Rp using these hyperplanes;
the region Ri is supposed to contain the set W [Ti], i ∈ [p].

We assign the elements of W to these p disjoint convex regions R1, . . . , Rp. It is possible
that an element wj might lie on one or more of the hyperplanes Hij . For such an ‘ambigious’
point, we brute-force try all possible p assignments of regions Ri. Since every hyperplane in
H contains exactly k points of W , there can be at most

(
p
2
)
· k such ambigious points: this

leads to an additional branching factor of at most p(
p
2)·k. For each such branch, we obtain

a partition (W1, . . . ,Wp) of W . If the type of this partition is not equal to ∆, we reject it;
otherwise we add it to the list P . The overall branching is bounded by n

kp2
2 · p(

p
2)·k which is

bounded by n
kp2

2 · n
kp2

2 ≤ nkp2 . The overall running time is bounded by Õ(nkp2).
Clearly, every partition P in P can be discovered along some branch of our computation:

we branch over all hyperplane sequences and further, over all assignments of ‘ambigious’
points. Moreover, every partition enumerated above belongs to P , by our construction. Our
overall branching factor of Õ(nkp2) is also an upper bound on the cardinality of P. This
finishes the proof of the lemma. J

Since we can enumerate the set P in Õ(nkp2) time, the optimal solution can be computed
in a similar time as well. We summarize the above discussion as the following theorem.

I Theorem 24 (QVP algorithm, G.P. assumption). QVP can be solved in Õ(nkp2) running
time.

6 Conclusion

Through our results, we were able to gain insight into the tractibility of the problems GSim
and MSim. However, there are a few open threads which remain elusive. The regime of
bounded rank k and unbounded parameter τ(G) is still not fully understood for MSim, in
the case of positive semi-definite matrices. It is not clear whether the problem is P-time or
NP-hard in this case. Indeed, an nO(k) algorithm for MSim, in the case of positive semi-
definite matrices, remains a possibility. From the perspective of parameterized complexity,
we can ask if MSim is W[1]-hard, where the parameter of interest is the rank k. Finally, the
approximability for the problems MSim deserves further examination, especially for the case
of bounded rank.

M. Grohe, G. Rattan, and G. J. Woeginger 20:15

References

1 H.A. Almohamad and S.O. Duffuaa. A linear programming approach for the weighted
graph matching problem. IEEE Transactions on pattern analysis and machine intelligence,
15(5):522–525, 1993.

2 S. Arora, A. Frieze, and H. Kaplan. A new rounding procedure for the assignment prob-
lem with applications to dense graph arrangement problems. Mathematical programming,
92(1):1–36, 2002.

3 V. Arvind, J. Köbler, S. Kuhnert, and Y. Vasudev. Approximate graph isomorphism. In
B. Rovan, V. Sassone, and P. Widmayer, editors, Proceedings of the 37th International
Symposium on Mathematical Foundations of Computer Science, volume 7464 of Lecture
Notes in Computer Science, pages 100–111. Springer Verlag, 2012.

4 L. Babai. Graph isomorphism in quasipolynomial time. In Proceedings of the 48th Annual
ACM Symposium on Theory of Computing (STOC ’16), pages 684–697, 2016.

5 R.E. Burkard, E. Cela, G. Rote, and G.J. Woeginger. The quadratic assignment prob-
lem with a monotone anti-monge and a symmetric toeplitz matrix: easy and hard cases.
Mathematical Programming, 82:125–158, 1998.

6 E. Cela. The Quadratic Assignment Problem: Theory and Algorithms. Kluwer Academic
Publishers, Dordrecht, The Netherlands, 1998.

7 E. Cela, V.G. Deineko, and G.J. Woeginger. Well-solvable cases of the qap with block-
structured matrices. Discrete Applied Mathematics, 186:56–65, 2015.

8 E. Cela, N. Schmuck, S. Wimer, and G.J. Woeginger. The wiener maximum quadratic
assignment problem. Discrete Optimization, 8:411–416, 2011.

9 P. Codenotti, H. Katebi, K. A. Sakallah, and I. L. Markov. Conflict analysis and branch-
ing heuristics in the search for graph automorphisms. In 2013 IEEE 25th International
Conference on Tools with Artificial Intelligence, Herndon, VA, USA, November 4-6, 2013,
pages 907–914, 2013.

10 D. Conte, P. Foggia, C. Sansone, and M. Vento. Thirty years of graph matching in pat-
tern recognition. International journal of pattern recognition and artificial intelligence,
18(3):265–298, 2004.

11 A.N. Elshafei. Hospital layout as a quadratic assignment problem. Operational Research
Quarterly, 28:167–179, 1977.

12 M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. Freeman, San Francisco, 1979.

13 A.M. Geoffrion and G.W. Graves. Scheduling parallel production lines with changeover
costs: Practical application of a quadratic assignment/lp approach. Operational Research,
24:595–610, 1976.

14 S. Gold and A. Rangarajan. A graduated assignment algorithm for graph matching. IEEE
Transactions on pattern analysis and machine intelligence, 18(4):377–388, 1996.

15 T. Junttila and P. Kaski. Engineering an efficient canonical labeling tool for large and sparse
graphs. In Proceedings of the Ninth Workshop on Algorithm Engineering and Experiments
and the Fourth Workshop on Analytic Algorithms and Combinatorics, pages 135–149. SIAM,
2007.

16 P. Keldenich. Random robust graph isomorphism. Master’s thesis, Department of Compter
Science, RWTH Aachen University, 2015.

17 Y. Koren. Drawing graphs by eigenvectors: theory and practice. Computers and Mathem-
atics with Applications, 49(11):1867–1888, 2005.

18 J. Krarup and Pruzan P.M. Computer-aided layout design. Mathematical Programming
Study, 9:75–94, 1978.

MFCS 2018

20:16 Graph Similarity and Approximate Isomorphism

19 K. Makarychev, R. Manokaran, and M. Sviridenko. Maximum quadratic assignment prob-
lem: Reduction from maximum label cover and lp-based approximation algorithm. ACM
Transactions on Algorithms, 10(4):18, 2014.

20 D.W. Matula. Subtree isomorphism in o(n5/2). In P. H. B. Alspach and D. Miller, editors,
Algorithmic Aspects of Combinatorics, volume 2 of Annals of Discrete Mathematics, pages
91–106. Elsevier, 1978.

21 B. McKay. Practical graph isomorphism. Congressus Numerantium, 30:45–87, 1981.
22 B. D. McKay and A. Piperno. Practical graph isomorphism, II. J. Symb. Comput., 60:94–

112, 2014.
23 S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity flooding: A versatile graph match-

ing algorithm and its application to schema matching. In Proceedings. 18th International
Conference on Data Engineering, pages 117–128, 2002.

24 V. Nagarajan and M. Sviridenko. On the maximum quadratic assignment problem. In
Proceedings of the twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
516–524, 2009.

25 D. Neuen and P. Schweitzer. Benchmark graphs for practical graph isomorphism. ArXiv
(CoRR), arXiv:1705.03686 [cs.DS], 2017.

26 R. O’Donnell, J. Wright, C. Wu, and Y. Zhou. Hardness of robust graph isomorphism,
Lasserre gaps, and asymmetry of random graphs. In Proceedings of the 25th Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 1659–1677, 2014.

27 M.A. Pollatschek, N. Gershoni, and Y.T. Radday. Optimization of the typewriter keyboard
by simulation. Angewandte Informatik, 17:438–439, 1976.

28 F. Rendl and H. Wolkowicz. Applications of parametric programming and Eigenvalue
maximization to the quadratic assignment problem. Mathematical Programming, 53:63–78,
1992.

29 S. Umeyama. An eigendecomposition approach to weighted graph matching problems.
IEEE transactions on pattern analysis and machine intelligence, 10(5):695–703, 1988.

30 M. Zaslavskiy, F. Bach, and J.-P. Vert. A path following algorithm for the graph matching
problem. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(12):2227–
2242, 2009.

	Introduction
	Preliminaries
	Hardness Results
	The QVP Problem
	QVP, definition
	MSim reduces to QVP
	Linearization of Convex Functions
	Optimal Solution Structure for QVP

	Proof of Theorem 1
	Algorithm for QVP, restricted version

	Conclusion

