
Average Case Analysis of Leaf-Centric Binary Tree
Sources
Louisa Seelbach Benkner
Universität Siegen, Germany
seelbach@eti.uni-siegen.de

Markus Lohrey
Universität Siegen, Germany
lohrey@eti.uni-siegen.de

Abstract
We study the average size of the minimal directed acyclic graph (DAG) with respect to so-called
leaf-centric binary tree sources as studied by Zhang, Yang, and Kieffer. A leaf-centric binary
tree source induces for every n ≥ 2 a probability distribution on all binary trees with n leaves.
We generalize a result shown by Flajolet, Gourdon, Martinez and Devroye according to which
the average size of the minimal DAG of a binary tree that is produced by the binary search tree
model is Θ(n/ logn).

2012 ACM Subject Classification Mathematics of computing → Enumeration

Keywords and phrases Directed acylic graphs, average case analysis, tree compression

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.16

Related Version A full version of the paper is available at [2], http://arxiv.org/abs/1804.
10396.

1 Introduction

One of the most important and widely used compression methods for trees is to represent a
tree by its minimal directed acyclic graph, shortly referred to as minimal DAG. The minimal
DAG of a tree t is obtained by keeping for each subtree s of t only one isomorphic copy of s
to which all edges leading to roots of s-copies are redirected. DAGs found applications in
numerous areas of computer science; let us mention compiler construction [1, Chapter 6.1
and 8.5], unification [14], XML compression and querying [5, 9], and symbolic model-checking
(binary decision diagrams) [4]. Recently, in information theory the average size of the minimal
DAG with respect to a probability distribution turned out to be the key in order to obtain
tree compressors whose average redundancy converges to zero [10, 16].

In this paper, we consider the problem of deriving asymptotic estimates for the average
size of the minimal DAG of a randomly chosen binary tree of size n. So far, this problem has
been analyzed mainly for two particular distributions: In [8], Flajolet, Sipala and Steyaert
proved that the average size of the minimal DAG with respect to the uniform distribution
on all binary trees of size n is asymptotically equal to c · n/

√
lnn, where c is the constant

2
√

ln(4/π). This result was extended to unranked and node-labelled trees in [3] (with a
different constant c). An alternative proof to the result of Flajolet et al. was presented in
[15] by Ralaivaosaona and Wagner. For the so-called binary search tree model, Flajolet,
Gourdon and Martinez [7] and Devroye [6] proved that the average size of the minimal DAG
becomes Θ(n/ logn). In the binary search tree model, a binary search tree of size n is built by
inserting the keys 1, . . . , n according to a uniformly chosen random permutation on 1, . . . , n.

© Louisa Seelbach Benker and Markus Lohrey;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 16; pp. 16:1–16:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/160672457?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:seelbach@eti.uni-siegen.de
mailto:lohrey@eti.uni-siegen.de
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.16
http://arxiv.org/abs/1804.10396
http://arxiv.org/abs/1804.10396
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

16:2 Average Case Analysis of Leaf-Centric Binary Tree Sources

A general concept to produce probability distributions on the set of binary trees of size
n was introduced by Zhang, Yang, and Kieffer in [16] (see also [11]), where the authors
extend the classical notion of an information source on finite sequences to so-called structured
binary tree sources, or binary tree sources for short. This yields a general framework for
studying the average size of a minimal DAG. Let T denote the set of all binary trees1
and let Tn denote the set of binary trees with n leaves. A binary tree source is a tuple
(T , (Tn)n∈N, P), in which P is a mapping from the set of binary trees to the unit intervall
[0, 1], such that

∑
t∈Tn P (t) = 1 for every n ≥ 1. This is a very general definition that

was further restricted by Zhang et al. in order to yield interesting results. More precisely,
they considered so-called leaf-centric binary tree sources, which are induced by a mapping
σ : (N \ {0})× (N \ {0})→ [0, 1] that satisfies

∑n−1
i=1 σ(i, n− i) = 1 for every n ≥ 2. In other

words, σ restricted to Sn := {(i, n− i) : 1 ≤ i ≤ n− 1} is a probability mass function for
every n ≥ 2. To randomly produce a tree with n leaves, one starts with a single root node
labelled with n and randomly chooses a pair (i, n− i) according to the distribution σ on Sn.
Then, a left (resp., right) child labelled with i (resp.-, n − i) is attached to the root, and
the process is repeated with these two nodes. The process stops at nodes with label 1. This
yields a function Pσ that restricts to a probability mass function on every set Tn for n ≥ 2.

The binary search tree model is the leaf-centric binary tree source where σ corresponds
to the uniform distribution on Sn for every n ≥ 2. Moreover, also the uniform distribution
on all trees with n leaves can be obtained from a leaf-centric binary tree source by choosing
σ suitably, see Section 4. Another well-known leaf-centric binary tree source is the digitial
search tree model [13], where the distribution on Sn is a binomial distribution.

Let Dt denote the minimal DAG of a binary tree t and let |Dt| denote the number of
nodes of Dt. The average size of the minimal DAG with respect to a leaf-centric binary tree
source (T , (Tn)n∈N, Pσ) is the mapping

Dσ(n) :=
∑
t∈Tn

Pσ(t)|Dt|. (1)

In this work, we generalize the results of [6, 7] on the average size of the minimal DAG with
respect to the binary search tree model in several ways. For this, we consider three classes of
leaf-centric binary tree sources, which are defined by the following three properties of the
corresponding σ-mappings:
(i) There exists an integer N ≥ 2 and a monotonically decreasing function ψ : R→ (0, 1]

such that ψ(n) ≥ 2
n−1 and σ∗(i, n− i) ≤ ψ(n) for every n ≥ N and 1 ≤ i ≤ n− 1. Here,

σ∗ is defined by σ∗(i, i) = σ(i, i) and σ∗(i, j) = σ(i, j) + σ(j, i) for i 6= j.
(ii) There exists an integer N ≥ 2 and a constant 0 < ρ < 1, such that σ(i, n− i) ≤ ρ for

every n ≥ N and 1 ≤ i ≤ n− 1.
(iii) There is a monotonically decreasing function φ : N→ (0, 1] and a constant c ≥ 3 such

that for every n ≥ 2,∑
n
c≤i≤n−

n
c

σ(i, n− i) ≥ φ(n).

Property (iii) generalizes the concept of balanced binary tree sources from [10, 11]: When
randomly constructing a binary tree with respect to a leaf-centric source of type (iii), the
probability that the current weight is roughly equally splitted among the two children is

1 We consider binary trees, where every non-leaf node has a left and a right child, but the whole framework
can be easily extended to binary trees, where a node may have only a left or right child.

L. Seelbach and M. Lohrey 16:3

lower bounded by a function. Therefore, for slowly decreasing functions φ, balanced trees are
preferred by this model. The binary search tree model satisfies all three conditions (i), (ii)
and (iii). As our main results, we obtain for each of these three types of leaf-centric binary
tree sources asymptotic bounds for the average size of the minimal DAG:
(a) For leaf-centric sources of type (i), the average size of the minimal DAG is upper bounded

by O
(
ψ
(1

2 log4(n)
)
n
)
, which is in o(n) if ψ(x) ∈ o(1).

(b) Using a simple entropy argument based on a result from [11], we show that for every
leaf-centric binary tree source of type (ii), the average size of the minimal DAG is lower
bounded by Ω(n/ logn).

(c) For leaf-centric binary tree sources of type (iii), the average size of the minimal DAG is
upper bounded by O

(
n

φ(n) logn
)
, which is in o(n) if φ(n) ∈ ω(1/ logn).

Both (a) and (c) imply the upper bound O(n/ logn) for the binary search tree model [7],
whereas (b) yields an information-theoretic proof of the lower bound Ω(n/ logn) from [6].

The upper bounds (a) and (c) can be applied to the problem of universal tree compression
[10, 16]. It is shown in [16] that a suitable binary encoding of the DAG yields a tree encoding
whose average-case redundancy converges to zero assuming the trees are produced by a
leaf-centric tree source for which the average DAG size is o(n). See [16] for precise definitions.

2 Preliminaries

We use the classical Landau notations O, o, Ω and ω. Quite often, we write sums of the form∑
q0≤k≤q1

ak for rational numbers q0, q1. With this, we mean the sum
∑bq1c
k=dq0e ak. In the

following, log x will always denote the binary logarithm log2 x of a positive real number x.
With [0, 1] we denote the unit interval of reals, and (0, 1] = [0, 1] \ {0}.

2.1 Trees and DAGs

We define binary trees as terms over the two symbols a (for leaves) and f (for binary nodes).
The set T of binary trees is the smallest set of terms in f and a such that (i) a ∈ T , and (ii)
if t1, t2 ∈ T , then f(t1, t2) ∈ T . Thus, if we consider elements in T as graphs in the usual
way, a binary tree is an ordered, rooted tree such that each node has either exactly two or no
children. With Tn we denote the set of binary trees which have exactly n leaves. The size of
a binary tree t is the number of leaves of t and denoted with |t|. A fringe subtree of a binary
tree t is a subtree which consists of a node of t and all its descendants. For a node v of a
binary tree t ∈ T , let t[v] denote the fringe subtree of t which is rooted at v. The leaf-size of
a node v of t is the size of the subtree t[v]. For a binary tree t ∈ T and an integer k ≥ 1, let
N(t, k) denote the number of nodes of t of leaf-size greater than k.

For a binary tree t ∈ T , let Dt denote its minimal directed acyclic graph, often shortly
referred to as its minimal DAG. It is obtained by merging nodes u and v if t[u] and t[v] are
isomorphic. The size |Dt| of Dt is the number of different pairwise non-isomorphic fringe
subtrees of t. An example of a binary tree and its minimal DAG can be found in Figure 1.

2.2 Leaf-centric binary tree sources

In this paper we are interested in the average size of minimal DAGs. For this, we need
for every n ≥ 1 a probability distribution on Tn. We restrict here to so-called leaf-centric
binary tree sources that were studied in [11, 16]. Let Σ denote the set of all functions

MFCS 2018

16:4 Average Case Analysis of Leaf-Centric Binary Tree Sources

Figure 1 A binary tree (left) and its minimal DAG (right).

σ : (N \ {0})× (N \ {0})→ [0, 1] which satisfy

n−1∑
i=1

σ(i, n− i) = 1

for every integer n ≥ 2. We define Pσ : T → [0, 1] inductively by Pσ(a) = 1 and Pσ(f(u, v)) =
σ(|u|, |v|) · Pσ(u) · Pσ(v). For every n ≥ 1, Pσ restricts to a probability mass function on Tn.
The tuple (T , (Tn)n∈N, Pσ) is called a leaf-centric binary tree source.

For an element σ ∈ Σ define the mapping σ∗ : (N \ {0})× (N \ {0})→ [0, 1] by

σ∗(i, j) =
{
σ(i, j) + σ(j, i) if i 6= j

σ(i, j) if i = j.

Note that σ∗(i, j) ≤ 1 for all i, j and that
∑bn/2c
k=1 σ∗(k, n− k) = 1.

3 Average size of the minimal DAG

Consider σ ∈ Σ. The average size of the minimal DAG with respect to the leaf-centric binary
tree source (T , (Tn)n∈N, Pσ) is the function Dσ : N → R defined by equation (1). In the
following, we present three natural classes of leaf-centric binary tree sources and investigate
the average size of the minimal DAG with respect to these leaf-centric binary tree sources.
In particular, we present conditions on σ ∈ Σ that imply Dσ(n) ∈ o(n). In order to estimate
Dσ, we use the so-called cut-point argument that was applied in several papers [6, 15].

For a mapping σ ∈ Σ and integers b ≥ 1 and n ≥ 1, let Eσ,b(n) denote the expected value
of N(t, b) with respect to the probability mass function Pσ on the set of binary trees Tn:

Eσ,b(n) =
∑
t∈Tn

Pσ(t) ·N(t, b).

Clearly, Eσ,b(n) = 0 if n ≤ b. The following lemma constitutes the crucial argument we need
in order to estimate the average size of a minimal DAG.

I Lemma 1. Let σ ∈ Σ and let n ≥ b ≥ 1. Then Dσ(n) ≤ Eσ,b(n) + 4b/3.

Proof. Let t ∈ Tn. The size of the minimal DAG Dt of t is upper bounded by
(i) the number N(t, b) of nodes of t of leaf-size greater than b plus
(ii) the number of binary trees with at most b leaves.
Recall that the number of binary trees with k leaves is the (k − 1)th Catalan number Ck−1,
which is bounded by 4k−1. Hence, the number in (ii) is upper bounded by

∑b
k=1 4k−1 ≤ 4b/3.

This proves the lemma. J

L. Seelbach and M. Lohrey 16:5

The integer b ≥ 1 from Lemma 1 is called the cutpoint. In order to apply Lemma 1 to
estimate Dσ, we first have to obtain estimates for Eσ,b(n). This will be done inductively:
Let t = f(u, v) ∈ Tn and let b < n. The number of nodes of t of leaf-size greater than b is
composed of the number of nodes of the left subtree u of leaf-size greater than b plus the
number of nodes of the right subtree v of leaf-size greater than b plus one (for the root),
i.e., N(t, b) = N(u, b) +N(v, b) + 1. This observation easily yields the following recurrence
relation for the expected value Eσ,b(n):

Eσ,b(n) = 1 +
n−1∑
k=b+1

(σ(k, n− k) + σ(n− k, k)) · Eσ,b(k).

With our definition of σ∗, this is equivalent to

Eσ,b(n) = 1 +
n−1∑
k=b+1

σ∗(k, n− k) · Eσ,b(k) (2)

if b+ 1 > n
2 and

Eσ,b(n) = 1 +
n−b−1∑
k=b+1

σ(k, n− k)(Eσ,b(k) + Eσ,b(n− k)) +
n−1∑
k=n−b

σ∗(k, n− k)Eσ,b(k) (3)

if b+ 1 ≤ n
2 .

3.1 Average size of the minimal DAG for bounded σ-functions
First, we consider leaf-centric binary tree sources (T , (Tn)n∈N, Pσ), where the function values
of σ (or σ∗) are upper bounded by a function. We will prove an upper as well as a lower
bound on the average DAG size.

3.1.1 Upper bound on the average DAG size
I Definition 2 (the class Σψ∗). For a monotonically decreasing function ψ : R→ (0, 1] such
that ψ(x) ≥ 2/(x − 1) for all large enough x > 1, let Σψ

∗ ⊆ Σ denote the set of mappings
σ ∈ Σ such that σ∗(k, n− k) ≤ ψ(n) for all large enough n ≥ 2 and all 1 ≤ k ≤ n− 1.

The restriction ψ(x) ≥ 2/(x − 1) is quite natural, at least for odd x ∈ N, because∑n−1
k=1 σ

∗(k, n− k) = 2 if n is odd.
As our first main theorem, we prove an upper bound on Dσ(n) for every σ ∈ Σψ∗ :

I Theorem 3. For every σ ∈ Σψ∗ , we have Dσ(n) ∈ O
(
ψ
(1

2 log4(n)
)
· n
)
.

Note that Theorem 3 only makes a nontrivial statement if ψ converges to zero: if ψ is
lower bounded by a nonzero constant then we only obtain the trivial bound Dσ(n) ∈
O(n). Moreover, the bound Dσ(n) ∈ O

(
ψ
(1

2 log4(n)
)
· n
)
also holds if we require that

σ(k, n − k) ≤ ψ(n) for all large enough n and 1 ≤ k ≤ n − 1, since the latter implies that
σ∗(k, n− k) ≤ 2ψ(n).

Let us fix a monotonically decreasing function ψ : R→ (0, 1] such that ψ(n) ≥ 2/(n− 1)
for all large enough n. Moreover, let σ ∈ Σψ

∗ . We can choose a constant Nσ such that
ψ(n) ≥ 2/(n− 1) and σ∗(k, n− k) ≤ ψ(n) for all n ≥ Nσ and all 1 ≤ k ≤ n− 1. In order to
prove Theorem 3, we use the cut-point argument from Lemma 1. Thus, we start with an
upper bound for Eσ,b(n). A similar statement for the special case of the binary search tree
model was shown by Knuth [12, p. 121].

MFCS 2018

16:6 Average Case Analysis of Leaf-Centric Binary Tree Sources

I Lemma 4. For all n, b with n ≥ b+ 1 > Nσ we have Eσ,b(n) ≤ 4nψ(b)− 2.

In the proof of Lemma 4, we make use of the following lemma from linear optimization:

I Lemma 5. Let a0 ≤ a1 ≤ · · · ≤ an−1 be a finite sequence of monotonically increasing
positive real numbers and let 0 ≤ c, ω ≤ 1 and l := bω/cc. Moreover, let x0, . . . , xn−1 denote
real numbers satisfying 0 ≤ xi ≤ c for every 0 ≤ i ≤ n− 1 and

∑n−1
k=0 xk = ω. Then

n−1∑
i=0

aixi ≤ c
n−1∑
i=n−l

ai + (ω − lc)an−l−1. (4)

Proof. Since 0 ≤ a0 ≤ a1 ≤ · · · ≤ an−1 and 0 ≤ xi ≤ c, the sum
∑n−1
i=0 aixi is maximized if

we choose the maximal weight c for the l largest values an−l ≤ · · · ≤ an−1 (i.e., xn−l = · · · =
xn−1 = c), and put the remaining weight ω − lc (note that ω/c− 1 ≤ l ≤ ω/c, which implies
0 ≤ ω− lc ≤ c) on the (l− 1)-th largest value an−l−1 (i.e., xn−l−1 = ω− l · c). The remaining
x1, . . . , xn−l−2 are set to zero. Then

∑n−1
i=0 aixi becomes the right-hand side of (4). J

Proof of Lemma 4. We prove the statement inductively in n ≥ b+ 1 > Nσ. For the base
case, let n = b+ 1. We have Eσ,b(b+ 1) = 1 ≤ 4(b+ 1)ψ(b)− 2, as ψ(b) ≥ 2

b−1 by assumption.
For the induction step take an n > b+ 1 > Nσ such that Eσ,b(k) ≤ 4kψ(b)− 2 for every

b < k ≤ n− 1. By assumption, we have n− 1 ≥ n− 1
ψ(n) >

n
2 , as n > Nσ. We distinguish

three subcases:

Case 1: n
2 < b + 1 < n − 1

ψ(n) . By equation (2) and the induction hypothesis, we have

Eσ,b(n) ≤ 1 +
n−1∑
k=b+1

σ∗(k, n− k) (4kψ(b)− 2) . (5)

Note that n
2 < b+ 1 implies that

∑n−1
k=b+1 σ

∗(k, n− k) ≤ 1. Without loss of generality,
we can assume that

∑n−1
k=b+1 σ

∗(k, n − k) = 1: since 4kψ(b)− 2 > 0 for every k with
b+ 1 ≤ k ≤ n− 1, this makes the right-hand side in (5) only larger. Let l :=

⌊
1

ψ(n)

⌋
and

δ := 1
ψ(n) − l. Applying Lemma 5 (with ak = 4kψ(b)− 2, xk = σ∗(k, n− k), c = ψ(n) and

ω = 1), we get

Eσ,b(n) ≤ 1 + ψ(n)
n−1∑
k=n−l

(4kψ(b)− 2) + (1− lψ(n)) (4(n− l − 1)ψ(b)− 2) . (6)

By simplifying the right hand side and using 0 ≤ δ < 1 and ψ(n) ≤ ψ(b), we get
Eσ,b(n) ≤ 4nψ(b)− 1− 4lψ(b)− 4ψ(b) + 2l2ψ(n)ψ(b) + 2lψ(n)ψ(b)

= 4nψ(b)− 1− 2ψ(b)
ψ(n) − 2ψ(b)− 2δψ(n)ψ(b) + 2δ2ψ(n)ψ(b)

≤ 4nψ(b)− 1− 2ψ(b)
ψ(n) − 2ψ(b) ≤ 4nψ(b)− 2.

Case 2: b + 1 ≥ n − 1
ψ(n) . By equation (2) and by the induction hypothesis, we get

Eσ,b(n) ≤ 1 +
n−1∑
k=b+1

σ∗(k, n− k) (4kψ(b)− 2) .

L. Seelbach and M. Lohrey 16:7

Again, let l :=
⌊

1
ψ(n)

⌋
and δ := 1

ψ(n) − l. Since b + 1 ≥ n − 1
ψ(n) by assumption and

b+ 1 ∈ N we have b+ 1 ≥ n− l. Moreover, n− 1
ψ(n) >

n
2 implies n− l > n

2 . Since n− l
is an integer, we get n− l − 1 ≥ n−1

2 . This implies

4(n− l− 1)ψ(b)− 2 ≥ 2(n− 1)ψ(b)− 2 ≥ 2(n− 1)ψ(n)− 2 ≥ 2(n− 1) 2
n− 1 − 2 > 0

and hence also 4kψ(b) − 2 > 0 for all n − l − 1 ≤ k ≤ n − 1. As σ ∈ Σψ
∗ , we have

σ∗(k, n− k) ≤ ψ(n) for every 1 ≤ k ≤ n− 1. We get

Eσ,b(n) ≤ 1 + ψ(n)
n−1∑
k=n−l

(4kψ(b)− 2) .

Moreover, we have 1− ψ(n)l ≥ 0 and 4(n− l − 1)ψ(b)− 2 ≥ 0 and thus

Eσ,b(n) ≤ 1 + ψ(n)
n−1∑
k=n−l

(4kψ(b)− 2) + (1− ψ(n)l) (4(n− l − 1)ψ(b)− 2) .

This is equation (6) from Case 1. The statement follows now as in Case 1.
Case 3: b + 1 ≤ n

2 . By equation (3) and the induction hypothesis, we have

Eσ,b(n) = 1 +
n−b−1∑
k=b+1

σ(k, n− k) (Eσ,b(k) + Eσ,b(n− k)) +
n−1∑
k=n−b

σ∗(k, n− k)Eσ,b(k)

≤ 1 + (4nψ(b)− 4)
n−b−1∑
k=b+1

σ(k, n− k) +
n−1∑
k=n−b

σ∗(k, n− k) (4kψ(b)− 2) .

We set α :=
∑n−b−1
k=b+1 σ(k, n − k). Hence, we have

∑n−1
k=n−b σ

∗(k, n − k) = 1 − α. Set
l := b 1−α

ψ(n)c. Note that l ≤ 1
ψ(n) ≤

n−1
2 and that 4kψ(b)− 2 ≥ 0 for all n− b ≤ k ≤ n− 1

since n− b > n
2 and ψ(b) ≥ ψ(n) > 2

n . We distinguish two subcases:
Case 3.1: b > l and thus, n − b < n − l. Applying Lemma 5 (with ak = 4kψ(b)− 2 and

xk = σ∗(k, n− k) for n− b ≤ k ≤ n− 1 and c = ψ(n), ω = 1− α) yields

Eσ,b(n) ≤ 1 + (4nψ(b)− 4)α+ ψ(n)
n−1∑
k=n−l

(4kψ(b)− 2)

+ (1− α− lψ(n)) (4(n− l − 1)ψ(b)− 2) .

(7)

Simplifying the right-hand side yields

Eσ,b(n) ≤ 4nψ(b)− 2α− 1 + 2lψ(n)ψ(b) + 2l2ψ(n)ψ(b)− 4(1−α)ψ(b)− 4(1−α)lψ(b).

Setting δ := (1−α)
ψ(n) − l, we get

Eσ,b(n) ≤ 4nψ(b)−2α−1−2(1−α)ψ(b)− 2ψ(b)(1− α)2

ψ(n) −2δψ(n)ψ(b)+2δ2ψ(n)ψ(b).

As 0 ≤ δ < 1 and ψ(n) ≤ ψ(b), we have

Eσ,b(n) ≤ 4nψ(b)− 2α− 1− 2(1− α)ψ(b)− 2ψ(b)(1− α)2

ψ(n)
≤ 4nψ(b)− 2α− 1− 2(1− α)ψ(b)− 2(1− α)2.

With −2α− 2(1− α)2 ≤ −1 for every value 0 ≤ α ≤ 1, the statement follows.

MFCS 2018

16:8 Average Case Analysis of Leaf-Centric Binary Tree Sources

Case 3.2: b ≤ l and thus n − b ≥ n − l. Since n − l − 1 ≥ n − n−1
2 − 1 = n−1

2 and
ψ(b) ≥ ψ(n) ≥ 2

n−1 we have 4(n− l− 1)ψ(b)− 2 ≥ 0. Thus, we also have 4kψ(b)− 2 ≥ 0
for every n− l ≤ k ≤ n− 1. Moreover, as σ∗(k, n− k) ≤ ψ(n), we get

Eσ,b(n) ≤ 1 + (4nψ(b)− 4)α+ ψ(n)
n−1∑
k=n−l

(4kψ(b)− 2) .

Furthermore, as 1− α− lψ(n) ≥ 0, we obtain

Eσ,b(n) ≤ 1 + (4nψ(b)− 4)α+ ψ(n)
n−1∑
k=n−l

(4kψ(b)− 2)

+ (1− α− lψ(n)) (4(n− l − 1)ψ(b)− 2) .

This is equation (7) from Case 3.1, and we can conclude as in Case 3.1. This finishes the
proof of Lemma 4. J

With Lemma 4, we are able to prove Theorem 3 using the cut-point argument from Lemma 1:

Proof of Theorem 3. Let σ ∈ Σψ∗ , n > 42Nσ and Nσ ≤ b < n. By Lemma 1 and 4 we have
Dσ(n) ≤ Eσ,b(n) + 4b/3 ≤ 4n · ψ(b) + 4b/3. Choose b := dlog4(n)/2e. As n > 42Nσ , this
accords with b ≥ Nσ. We obtain Dσ(n) ≤ 4n·ψ (log4(n)/2)+Θ(

√
n). Since n·ψ (log4(n)/2) ≥

2n
log4(n)/2−1 grows faster than Θ(

√
n), this finishes the proof. J

In the following examples, we consider the results of Theorem 3 with respect to some concrete
functions ψ:

I Example 6. Let σbst(k, n − k) = 1
n−1 for every integer 1 ≤ k ≤ n − 1 and n ≥ 2. The

leaf-centric binary tree source (T , (Tn)n≥1, Pσbst) corresponds to the well-known binary search
tree model. Let ψ(x) = 2

x−1 for every x > 1. We find σbst ∈ Σψ∗ . With Theorem 3, we have
Dσbst ∈ O(n/ logn), which accords with the results of [6]. J

I Example 7. There are plenty of other ways to choose ψ in Theorem 3. For example
ψ(x) ∈ Θ(1/xα) with 0 ≤ α ≤ 1 yields Dσ(n) ∈ O(n/ log(n)α) for every σ ∈ Σψ

∗ . For
ψ(x) ∈ Θ(1/ log x) we get Dσ(n) ∈ O(n/ log logn) for every σ ∈ Σψ∗ . J

3.1.2 Lower bound on the average DAG size
In this section we prove a lower bound for Dσ(n).

I Definition 8 (the class Σρ). For a constant ρ with 0 < ρ < 1 let Σρ denote the set of
mappings σ ∈ Σ such that σ(k, n− k) ≤ ρ for all large enough n and all 1 ≤ k ≤ n− 1.

By Theorem 3, we only know Dσ(n) ∈ O(n) for σ ∈ Σρ. In the following theorem, we present
a lower bound for Dσ(n) with respect to a mapping σ ∈ Σρ:

I Theorem 9. If σ ∈ Σρ, then Dσ(n) ∈ Ω(n/ logn).

Let us fix a mapping σ ∈ Σρ, where 0 < ρ < 1, and let Nσ ≥ 2 such that σ(k, n− k) ≤ ρ
for all n ≥ Nσ and all 1 ≤ k ≤ n − 1. In order to prove Theorem 9, we make use of an
information-theoretic argument. We need the following notations: For a mapping σ ∈ Σ,
let Xn

σ denote the random variable taking values in Tn according to the probability mass
function Pσ on Tn. Moreover, let H(Xn

σ) denote the Shannon entropy of Xn
σ , i.e.,

H(Xn
σ) =

∑
t∈Tn

Pσ(t) · log(1/Pσ(t)).

L. Seelbach and M. Lohrey 16:9

I Lemma 10. If σ ∈ Σρ, then H(Xn
σ) ≥ log

(1
ρ

)(
n

4Nσ−4
)
for every n ≥ Nσ.

In order to prove Lemma 10, we need a lower bound for Eσ,b(n):

I Lemma 11. For a mapping σ ∈ Σ and integers n > b ≥ 1, we have Eσ,b(n) ≥ n
4b .

Proof. We prove the statement inductively in n ≥ b+ 1: For the base case, let n = b+ 1. A
binary tree t ∈ Tb+1 has exactly one node of leaf-size greater than b, which is the root of t.
Thus, Eσ,b(b+ 1) = 1 ≥ b+1

4b for every integer b ≥ 1. For the induction hypothesis, take an
integer n > b+ 1 such that Eσ,b(k) ≥ k

4b for every integer b+ 1 ≤ k ≤ n− 1.
In the induction step, we distinguish two cases:

Case 1: n
2 < b + 1 ≤ n − 1. We thus have n

4b ≤ 1. By equation (2), we have

Eσ,b(n) = 1 +
n−1∑
k=b+1

σ∗(k, n− k)Eσ,b(k) ≥ 1 ≥ n

4b .

Case 2: b + 1 ≤ n
2 . Let α :=

∑n−b−1
k=b+1 σ(k, n − k). From equation (3) and the induction

hypothesis we get

Eσ,b(n) = 1 +
n−b−1∑
k=b+1

σ(k, n− k)(Eσ,b(k) + Eσ,b(n− k)) +
n−1∑
k=n−b

σ∗(k, n− k)Eσ,b(k)

≥ 1 +
n−b−1∑
k=b+1

σ(k, n− k) n4b +
n−1∑
k=n−b

σ∗(k, n− k) k4b

≥ 1 + n

4b

n−b−1∑
k=b+1

σ(k, n− k) + n− b
4b

n−1∑
k=n−b

σ∗(k, n− k)

= 1 + α
n

4b + (1− α)
(
n− b

4b

)
= n

4b + 3
4 + α

4 .

As 0 ≤ α ≤ 1, the statement follows. J

Proof of Lemma 10. Lemma 10 follows from identity (4) in [11]: Define

hk(σ) :=
∑
i,j≥1
i+j=k

σ(i, j) log
(

1
σ(i, j)

)
,

that is, hk(σ) is the Shannon entropy of the random variable taking values in {(i, k− i) : 1 ≤
i ≤ k − 1} according to the probility mass function σ. As σ(i, j) ≤ ρ for i+ j ≥ Nσ, we find

hk(σ) ≥ log
(

1
ρ

) ∑
i,j≥1
i+j=k

σ(i, j) = log
(

1
ρ

)

for every k ≥ Nσ. Identity (4) in [11] states that H(Xn
σ) =

∑n
j=2 (Eσ,j−1(n)− Eσ,j(n))hj(σ).

With n ≥ Nσ, we obtain

H(Xn
σ) ≥

n∑
j=Nσ

(Eσ,j−1(n)− Eσ,j(n))hj(σ) ≥ log
(

1
ρ

) n∑
j=Nσ

(Eσ,j−1(n)− Eσ,j(n))

= log
(

1
ρ

)
(Eσ,Nσ−1(n)− Eσ,n(n)) = log

(
1
ρ

)
Eσ,Nσ−1(n).

By Lemma 11, we have H(Xn
σ) ≥ log

(1
ρ

)(
n

4Nσ−4
)
. This proves the statement. J

MFCS 2018

16:10 Average Case Analysis of Leaf-Centric Binary Tree Sources

With Lemma 10, we are able to prove Theorem 9:

Proof of Theorem 9. We first show that a binary tree t ∈ Tn can be encoded with at most
2mdlog(2n− 1)e bits, where m = |Dt| ≤ 2n− 1 (note that t has exactly 2n− 1 nodes). It
suffices to encode Dt. W.l.o.g. assume that the nodes of Dt are the numbers 1, . . . ,m, where
m is the unique leaf node of Dt. For 1 ≤ k ≤ m − 1 let lk (resp., rk) be the left (resp.,
right) child of node k. We encode each number 1, . . . ,m by a bit string of length exactly
dlog(2n− 1)e. The DAG Dt can be uniquely encoded by the bit string l1r1l2r2 · · · lm−1rm−1,
which has length 2(m− 1)dlog(2n− 1)e.

Let σ ∈ Σρ. By Lemma 10, we know that H(Xn
σ) ≥ log

(1
ρ

)(
n

4Nσ−4
)
for every n ≥ Nσ.

Shannon’s coding theorem implies

H(Xn
σ) ≤ 2dlog(2n− 1)e

∑
t∈Tn

Pσ(t)|Dt| = 2dlog(2n− 1)eDσ(n).

We get log(1/ρ)
(

n
4Nσ−4

)
≤ 2dlog(2n− 1)eDσ(n) for all n ≥ 2, which concludes the proof. J

3.2 Average size of the minimal DAG for weakly balanced tree sources
In this subsection, we present so-called weakly balanced binary tree sources, which represent
a generalization of balanced binary tree sources introduced in [11] and further analysed in
[10]. Let us fix a constant c ≥ 3 for the rest of this subsection.

I Definition 12 (the class Σφ). For a monotonically decreasing function φ : N→ (0, 1] let
Σφ ⊆ Σ denote the set of mappings σ such that for every n ≥ 2,∑

n
c≤k≤n−

n
c

σ(k, n− k) ≥ φ(n).

We call a binary tree source (T , (Tn)n≥1, Pσ) with σ ∈ Σφ weakly balanced. We obtain the
following upper bound for Dσ with respect to a weakly balanced tree source:

I Theorem 13. For every σ ∈ Σφ, we have Dσ(n) ∈ O
(

n
φ(n) logn

)
.

Theorem 13 can be used to reprove the upper bound Dσbst(n) ∈ O(n/ logn) for the binary
search tree model from Example 6 (note that

∑
n/4≤k≤3n/4

1
n−1 > 1

2). More generally, if
φ(n) ∈ ω(1/ logn), then Theorem 13 yields Dσ(n) ∈ o(n) for every σ ∈ Σφ.

Analogously to Theorem 3, we show Theorem 13 using the cut-point argument from
Lemma 1. The strategy in the proof of the following lemma is similar to Lemma 4.

I Lemma 14. For every σ ∈ Σφ and all b ≥ 1, n ≥ b+ 1 we have Eσ,b(n) ≤ cn
φ(n)b −

1
φ(n) .

Proof. We prove the statement inductively in n ≥ b + 1. For the base case, note that a
binary tree t ∈ Tb+1 has exactly one node of leaf-size > b, which is the root of t. Thus,

Eσ,b(b+ 1) = 1 ≤ c(b+ 1)
φ(b+ 1)b −

1
φ(b+ 1) .

Let us now deal with the induction step. Take an integer n > b + 1 such that Eσ,b(k) ≤
ck

φ(k)b −
1

φ(k) for every integer b+ 1 ≤ k ≤ n− 1. We distinguish six cases:

Case 1: c ≥ n and thus c > b. We have n
c ≤ 1 and n− 1 ≤ n− n

c . Case 1 splits into two
subcases:

L. Seelbach and M. Lohrey 16:11

Case 1.1: n
2 < b + 1 ≤ n − 1. By equation (2), the induction hypothesis, and the fact

that φ is monotonically decreasing, we get

Eσ,b(n) = 1 +
n−1∑
k=b+1

σ∗(k, n− k)
(

ck

φ(k)b −
1

φ(k)

)

≤ 1 +
(
c(n− 1)
φ(n)b −

1
φ(n)

) n−1∑
k=b+1

σ∗(k, n− k).

As b+ 1 > n
2 and σ ∈ Σ, we have

∑n−1
k=b+1 σ

∗(k, n− k) ≤ 1 and thus

Eσ,b(n) ≤ cn

φ(n)b −
c

φ(n)b −
1

φ(n) + 1 ≤ cn

φ(n)b −
1

φ(n) .

Case 1.2: b + 1 ≤ n
2 . Equation (3), the induction hypothesis, and the fact that φ is mono-

tonically decreasing yield

Eσ,b(n) = 1 +
n−b−1∑
k=b+1

σ(k, n− k) (Eσ,b(k) + Eσ,b(n− k)) +
n−1∑
k=n−b

σ∗(k, n− k)Eσ,b(k)

≤ 1 +
n−b−1∑
k=b+1

σ(k, n− k)
(

cn

φ(n)b −
2

φ(n)

)

+
n−1∑
k=n−b

σ∗(k, n− k)
(

ck

φ(k)b −
1

φ(k)

)

≤ 1 +
(

cn

φ(n)b −
2

φ(n)

) n−b−1∑
k=b+1

σ(k, n− k)

+
(
c(n− 1)
φ(n)b −

1
φ(n)

) n−1∑
k=n−b

σ∗(k, n− k).

We set α :=
∑n−b−1
k=b+1 σ(k, n− k) and get

Eσ,b(n) ≤ 1 +
(

cn

φ(n)b −
2

φ(n)

)
α+

(
c(n− 1)
φ(n)b −

1
φ(n)

)
(1− α)

= cn

φ(n)b −
c

φ(n)b + 1− 1
φ(n) + α

(
c

φ(n)b −
1

φ(n)

)
.

As c > b by assumption, the last term is monotonically increasing in α. With α ≤ 1, we
have

Eσ,b(n) ≤ cn

φ(n)b −
2

φ(n) + 1 ≤ cn

φ(n)b −
1

φ(n) .

Case 2: n > c. We have n
c > 1 and n− n

c < n− 1. Case 2 splits into four subcases:
Case 2.1: n − n

c
< b + 1 ≤ n − 1. This case is very similar to Case 1.1 and left to the

reader; see also the long version [2].
Case 2.2: n

2 < b + 1 ≤ n − n
c
. Equation (2), the induction hypothesis and the monotonici-

ty of φ yield
Eσ,b(n) = 1 +

∑
b+1≤k≤n−nc

σ∗(k, n− k)Eσ,b(k) +
∑

n−nc<k≤n−1
σ∗(k, n− k)Eσ,b(k)

≤ 1 +
(

(c− 1)n
φ(n)b −

1
φ(n)

) ∑
b+1≤k≤n−nc

σ∗(k, n− k)

+
(
c(n− 1)
φ(n)b −

1
φ(n)

) ∑
n−nc<k≤n−1

σ∗(k, n− k).

MFCS 2018

16:12 Average Case Analysis of Leaf-Centric Binary Tree Sources

We set α :=
∑
n−nc<k≤n−1 σ

∗(k, n− k). Since b+ 1 > n
2 we have

∑
b+1≤k≤n−nc

σ∗(k, n−
k) ≤ 1− α and get

Eσ,b(n) ≤ 1 + (1− α)
(

(c− 1)n
φ(n)b −

1
φ(n)

)
+ α

(
c(n− 1)
φ(n)b −

1
φ(n)

)
= cn

φ(n)b −
n

φ(n)b −
1

φ(n) + 1 + α
(n− c)
φ(n)b .

As n > c by assumption, the last term is monotonically increasing in α. With α ≤ 1−φ(n)
as σ ∈ Σφ, we find

Eσ,b(n) ≤ cn

φ(n)b −
1

φ(n) + 1− c

φ(n)b + c

b
− n

b
≤ cn

φ(n)b −
1

φ(n) .

Case 2.3: n
c

≤ b + 1 ≤ n
2 . Equation (3), the induction hypothesis, and the monotonicity

of φ yield

Eσ,b(n) = 1 +
n−b−1∑
k=b+1

σ(k, n− k)(Eσ,b(k) + Eσ,b(n− k))

+
∑

n−b≤k≤n−nc

σ∗(k, n− k)Eσ,b(k) +
∑

n−nc<k≤n−1
σ∗(k, n− k)Eσ,b(k)

≤ 1 +
(

cn

φ(n)b −
2

φ(n)

) n−b−1∑
k=b+1

σ(k, n− k)

+
(

(c− 1)n
φ(n)b −

1
φ(n)

) ∑
n−b≤k≤n−nc

σ∗(k, n− k)

+
(
c(n− 1)
φ(n)b −

1
φ(n)

) ∑
n−nc<k≤n−1

σ∗(k, n− k).

With α :=
∑n−b−1
k=b+1 σ(k, n− k) and β :=

∑
n−nc<k≤n−1 σ

∗(k, n− k) one can simplify this
to

Eσ,b(n) = cn

φ(n)b −
n

φ(n)b −
1

φ(n) + 1 + α

(
n

φ(n)b −
1

φ(n)

)
+ β

(
n− c
φ(n)b

)
. (8)

As b < n and c < n by assumption, the term in the last line is monotonically increasing
in α and β. Using this fact, as well as 0 ≤ β ≤ 1 − φ(n) (as σ ∈ Σφ), 0 ≤ α ≤ 1 and
α+ β ≤ 1, one can show that

α

(
n

φ(n)b −
1

φ(n)

)
+ β

(
n− c
φ(n)b

)
≤ n

φ(n)b − 1

(see the long version [2] for details). Plugging this into (8) yields

Eσ,b(n) ≤ cn

φ(n)b −
n

φ(n)b −
1

φ(n) + 1 + n

φ(n)b − 1 = cn

φ(n)b −
1

φ(n) .

Case 2.4: b + 1 < n
c
. This case is very similar to Case 1.2 and left to the reader; see also

the long version [2].
J

Proof of Theorem 13. Let n ≥ 2 and let 1 ≤ b < n. By Lemma 1 and 14, we have

Dσ(n) ≤ Eσ,b(n) + 4b

3 ≤
cn

φ(n)b + 4b

3 .

Choosing b :=
⌈ 1

2 log4(n)
⌉
, the statement follows. J

L. Seelbach and M. Lohrey 16:13

In the following corollary we identify a constant ν ∈ (0, 1] with the function mapping
every n ∈ N to ν. The corollary follows immediately from Theorem 13 and 9.

I Corollary 15. For all 0 < ν, ρ < 1 and all σ ∈ Σν ∩ Σρ we have Dσ(n) ∈ Θ(n/ logn).

I Example 16. In this example, we investigate the binomial random tree model, which was
studied in [11] for the case p = 1/2, and which is a slight variant of the digital search tree
model, see [13]. Let 0 < p < 1 and define σp ∈ Σ by

σp(k, n− k) = pk−1(1− p)n−k−1
(
n− 2
k − 1

)
for every integer n ≥ 2 and 1 ≤ k ≤ n− 1. We use the abbreviation π(i) = σp(i, n− i) in the
following. By the binomial theorem, we have

∑n−1
k=1 π(k) = 1. In the following, we will prove

that Dσp(n) ∈ O(n/ logn). We distinguish two cases.

Case 1: 0 < p ≤ 1
2 . Let ν := 1− 4−4p

4+p . We find ν > 0 for 0 < p ≤ 1
2 . We claim that with

c := 6
p , we have σp ∈ Σν . Then Theorem 13 yields Dσp(n) ∈ O(n/ logn).

In order to prove σp ∈ Σν , we show∑
np
6 ≤i≤n−

np
6

σp(i, n− i) =
∑

np
6 ≤i≤n−

np
6

π(i) ≥ 1− 4− 4p
4 + p

.

Without loss of generality, let n ≥ 3. Let Xn
p denote the random variable taking values in

the set {1, . . . , n− 1} according to the probability mass function π. Thus, Xn
p = 1 + Y np ,

where Y np is binomially distributed with parameters n− 2 and p. For the expected value
and variance of Xn

p we obtain E[Xn
p] = p(n − 2) + 1 and Var[Xn

p] = p(1 − p)(n − 2).
Let κ := p(n− 2)/2 so that E[Xn

p] = 2κ+ 1 and Var[Xn
p] = 2κ(1− p). By Chebyshev’s

inequality, we have (Prob(A) denotes the probability of the event A)

Prob
(∣∣Xn

p − E[Xn
p]
∣∣ < κ+ 1

)
≥ 1−

Var[Xn
p]

(κ+ 1)2 = 1− 2κ(1− p)
κ2 + 2κ+ 1 ≥ 1− 2(1− p)

κ+ 2

= 1− 4(1− p)
p(n− 2) + 4 ≥ 1− 4(1− p)

p+ 4
where the last inequality holds due to n ≥ 3. Moreover, with E[Xn

p] = 2κ+ 1, we have

Prob
(
|Xn

p − E[Xn
p]| < κ+ 1

)
=

∑
κ<i<3κ+2

π(i).

As n ≥ 3 and 0 < p ≤ 1
2 , we have κ ≥ pn

6 and 3κ+ 2 ≤ n− pn
6 . Thus, we have

∑
pn
6 ≤i≤n−

pn
6

π(i) ≥
∑

κ<i<3κ+2
π(i) = Prob

(
|Xn

p − E[Xn
p]| < κ+ 1

)
≥ 1− 4(1− p)

p+ 4 .

This finishes the proof of Case 1.
Case 2: 1

2 < p < 1. Define a mapping ϑ : T → T inductively by ϑ(a) = a and ϑ(f(u, v)) =
f(ϑ(v), ϑ(u)). Intuitively, ϑ exchanges the right child node and the left child node of
every node of a binary tree t. It is easy to see that ϑ : Tn → Tn is a bijection for every
n ≥ 1 and that ϑ2 is the identity mapping. Moreover, t and ϑ(t) have the same number of
different pairwise non-isomorphic subtrees and thus, |Dt| = |Dϑ(t)|. We show inductively
in n ≥ 1, that Pσp(ϑ(t)) = Pσ1−p(t) for a binary tree t ∈ Tn: For the base case, let t = a.
We find Pσp(ϑ(a)) = 1 = Pσ1−p(a).

MFCS 2018

16:14 Average Case Analysis of Leaf-Centric Binary Tree Sources

For the induction step, let t = f(u, v) ∈ Tn. We have
Pσp(ϑ(t)) = Pσp(f(ϑ(v), ϑ(u))) = σp(|ϑ(v)|, |ϑ(u)|)Pσp(ϑ(v))Pσp(ϑ(u))

= σp(|v|, |u|)Pσ1−p(u)Pσ1−p(v),
where the last equality holds by the induction hypothesis. Moreover, with |u| = n− |v|
and by definition of σp, we find that σp(|v|, |u|) = σ1−p(|u|, |v|). Thus, we have

σp(|v|, |u|)Pσ1−p(u)Pσ1−p(v) = σ1−p(|u|, |v|)Pσ1−p(u)Pσ1−p(v) = Pσ1−p(t).

This finishes the induction. Altogether, and as ϑ : Tn → Tn is a bijection, we get

Dσp(n) =
∑
t∈Tn

Pσp(t)|Dt| =
∑
t∈Tn

Pσp(ϑ(t))|Dϑ(t)| =
∑
t∈Tn

Pσ1−p(t)|Dt| = Dσ1−p(n).

Since 1
2 < p < 1, we have 0 < 1− p < 1

2 . Thus, the result for Case 2 follows from Case 1.

4 Open Problems

Perhaps the most natural probability distribution on the set of binary trees with n leaves is the
uniform distribution with Pσ(t) = 1/Cn−1 for every t ∈ Tn, where Cn denotes the nth Catalan
number. The corresponding leaf-centric binary tree source is induced by the mapping σeq ∈ Σ
with σeq(k, n− k) = Ck−1Cn−k−1/Cn−1. In [8], it was shown that Dσeq(n) ∈ Θ(n/

√
logn).

Unfortunately, our main results Theorem 3 and Theorem 13 only yield the trivial bound
Dσeq ∈ O(n): An easy computation shows that σeq ∈ Σρ with ρ = 1/4 and σeq ∈ Σφ with
φ(n) ∈ Θ(1/

√
n). An interesting open problem would be to find a nontrivial subset Σ′ ⊆ Σ

that contains σeq and such that Dσ(n) ∈ O(n/
√

logn) for all σ ∈ Σ′.
Another type of binary tree sources are so-called depth-centric binary tree sources, which

yield probability distributions on the set of binary trees of a fixed depth; see for example
[10, 16]. Depth-centric binary tree sources resemble leaf-centric binary tree sources in many
ways. An interesting problem would be to estimate the average size of the minimal DAG
with respect to certain classes of depth-centric binary tree sources.

References
1 Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques, and

Tools. Addison-Wesley series in computer science / World student series edition. Addison-
Wesley, 1986.

2 Louisa Seelbach Benkner and Markus Lohrey. Average case analysis of leaf-centric binary
tree sources. CoRR, abs/1804.10396, 2018. arXiv:1804.10396.

3 Mireille Bousquet-Mélou, Markus Lohrey, Sebastian Maneth, and Eric Noeth. XML com-
pression via DAGs. Theory of Computing Systems, 57(4):1322–1371, 2015.

4 Randal E. Bryant. Symbolic boolean manipulation with ordered binary-decision diagrams.
ACM Computing Surveys, 24(3):293–318, 1992.

5 Peter Buneman, Martin Grohe, and Christoph Koch. Path queries on compressed XML.
In Johann Christoph Freytag et al., editors, Proceedings of the 29th Conference on Very
Large Data Bases, VLDB 2003, pages 141–152. Morgan Kaufmann, 2003.

6 Luc Devroye. On the richness of the collection of subtrees in random binary search trees.
Information Processing Letters, 65(4):195–199, 1998.

7 Philippe Flajolet, Xavier Gourdon, and Conrado Martínez. Patterns in random binary
search trees. Random Structures & Algorithms, 11(3):223–244, 1997.

http://arxiv.org/abs/1804.10396

L. Seelbach and M. Lohrey 16:15

8 Philippe Flajolet, Paolo Sipala, and Jean-Marc Steyaert. Analytic variations on the com-
mon subexpression problem. In Proceedings of the 17th International Colloquium on Auto-
mata, Languages and Programming, ICALP 1990, volume 443 of Lecture Notes in Computer
Science, pages 220–234. Springer, 1990.

9 Markus Frick, Martin Grohe, and Christoph Koch. Query evaluation on compressed trees
(extended abstract). In Proceedings of the 18th Annual IEEE Symposium on Logic in
Computer Science, LICS 2003, pages 188–197. IEEE Computer Society Press, 2003.

10 Danny Hucke and Markus Lohrey. Universal tree source coding using grammar-based
compression. In Proceedings of the 2017 IEEE International Symposium on Information
Theory, ISIT 2017, pages 1753–1757. IEEE, 2017.

11 John C. Kieffer, En-Hui Yang, and Wojciech Szpankowski. Structural complexity of random
binary trees. In Proceedings of the 2009 IEEE International Symposium on Information
Theory, ISIT 2009, pages 635–639. IEEE, 2009.

12 Donald E. Knuth. The Art of Computer Programming: Volume 3 – Sorting and Searching.
Addison-Wesley, 1998.

13 Conrado Martínez. Statistics under the BST model. Dissertation, Universidad Politécnica
de Cataluna, 1991.

14 Mike Paterson and Mark N. Wegman. Linear unification. Journal of Computer and System
Sciences, 16(2):158–167, 1978.

15 Dimbinaina Ralaivaosaona and Stephan G. Wagner. Repeated fringe subtrees in random
rooted trees. In Proceedings of the Twelfth Workshop on Analytic Algorithmics and Com-
binatorics, ANALCO 2015, pages 78–88. SIAM, 2015.

16 Jie Zhang, En-Hui Yang, and John C. Kieffer. A universal grammar-based code for lossless
compression of binary trees. IEEE Transactions on Information Theory, 60(3):1373–1386,
2014.

MFCS 2018

	Introduction
	Preliminaries
	Trees and DAGs
	Leaf-centric binary tree sources

	Average size of the minimal DAG
	Average size of the minimal DAG for bounded sigma-functions
	Upper bound on the average DAG size
	Lower bound on the average DAG size

	Average size of the minimal DAG for weakly balanced tree sources

	Open Problems

