Sliding Windows over Context-Free Languages

Moses Ganardi

Universität Siegen, Germany ganardi@eti.uni-siegen.de

Artur Jeż

University of Wrocław, Poland aje@cs.uni.wroc.pl

Markus Lohrey

Universität Siegen, Germany lohrey@eti.uni-siegen.de

— Abstract -

We study the space complexity of sliding window streaming algorithms that check membership of the window content in a fixed context-free language. For regular languages, this complexity is either constant, logarithmic or linear [4]. We prove that every context-free language whose sliding window space complexity is $\log_2(n) - \omega(1)$ must be regular and has constant space complexity. Moreover, for every $c \in \mathbb{N}$, $c \geq 1$ we construct a (nondeterministic) context-free language whose sliding window space complexity is $\mathcal{O}(n^{1/c}) \setminus o(n^{1/c})$. Finally, we give an example of a deterministic one-counter language whose sliding window space complexity is $\Theta((\log n)^2)$.

2012 ACM Subject Classification Theory of computation \rightarrow Streaming models

Keywords and phrases sliding windows, streaming algorithms, context-free languages

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.15

1 Introduction

In many streaming applications, data items are outdated after a certain time and the sliding window model is a simple way to model this: Sliding window algorithms process an input sequence $a_1a_2\cdots a_m$ from left to right and have at time t only direct access to the current symbol a_t . Moreover, at each time instant t the algorithm is required to compute a value that depends on the last n symbols. The value n is called the window size and the last n symbols form the active window at time t. A general goal in the area of sliding window algorithms is to avoid the explicit storage of the window content (which requires $\Omega(n)$ bits), and, instead, to work in considerably smaller space, e.g., polylogarithmic space in the window size n. An introduction into the sliding window model can be found in [1, Chapter 8].

In our recent papers [3, 4] we initiated the study of sliding window algorithms for regular languages. In general, a sliding window algorithm for a language $L \subseteq \Sigma^*$ decides, at every time instant, whether the word in the active window belongs to L. In [4] we proved that for every regular language L the optimal space bound for a sliding window algorithm for L is either constant, logarithmic or linear in the window size. In [3] we also gave several characterizations for the three space classes: A regular language has a sliding window algorithm with space bound $\mathcal{O}(\log n)$ (resp., $\mathcal{O}(1)$) if and only if it belongs to the Boolean closure of regular left ideals and regular length languages (resp., the Boolean closure of suffix-testable languages and regular length languages); see [3] for the formal definition of these language classes.

In this paper we investigate to which extent the results from [3, 4] can be generalized to context-free languages. Our first main result (Theorem 2) states that if L is a context-free language that has a sliding window algorithm with space bound $\log_2(n) - \omega(1)$ (recall that $f(n) \in \omega(1)$ iff $\forall c > 0 \,\exists m \,\forall n \geq m : f(n) \geq c$) then L must be regular. By the results from [3, 4] this implies that L has a constant space sliding window algorithm and is a Boolean combination of suffix-testable languages and regular length languages. Our proof uses a variant of the classical pumping lemma. The crucial observation is that taking a reversed Greibach normal form grammar for G, we can ensure that pumping in a word of length n does not affect a suffix of length o(n).

Theorem 2 shows that, analogously to regular languages, there is a gap between $\mathcal{O}(1)$ and $\mathcal{O}(\log n)$ in the space complexity spectrum for context-free languages. This leads to the question whether there is also a gap between $\mathcal{O}(\log n)$ and $\mathcal{O}(n)$ (as it is the case for regular languages). We answer this question negatively. For this we construct from a linear bounded automaton (LBA) a context-free language, whose sliding window space complexity is related to the time complexity of the LBA in a certain way. The precise technical statement can be found in Theorem 9. From this result we obtain for every $c \in \mathbb{N}$ a context-free language, whose optimal sliding window algorithm uses space $\mathcal{O}(n^{1/c})$ (Theorem 10).

The context-free languages from the proof of Theorem 9 are non-deterministic. They are obtained by taking the complement of all accepting computations of an LBA on an input from a^* (as usual, a computation is encoded by a sequence of configuration words). These complements are context-free since one can guess errors, but they are not deterministic context-free. This leads to the question whether there exist deterministic context-free languages for which the optimal sliding window algorithm has space complexity $o(n) \setminus \mathcal{O}(\log n)$. We answer this question positively by constructing a deterministic one-counter language whose optimal sliding window algorithm uses space $\mathcal{O}((\log n)^2)$ (Theorem 15).

The results from Theorem 10 and 15 are also shown for a more general sliding window model, which is known as the variable-size model in the literature. In the sliding window model discussed so far, the window size is fixed and for every window size there exists a streaming algorithm. In contrast, in the variable-size model, there is a single streaming algorithm and the window can grow and shrink. In other words, the arrival of new symbols and expiration of old symbols can happen independently. A formal definition can be found in Section 2. The space complexity of a variable-size streaming algorithm is measured with respect to the maximal window size seen in the past. In [4] it was shown that analogously to the fixed-size model, the space complexity of a regular language with respect to the variable-size model is either constant, logarithmic, or linear. Moreover, a regular language has space complexity $\mathcal{O}(\log n)$ in the variable-size model if and only if it has space complexity $\mathcal{O}(\log n)$ in the fixed-size model (on the other hand only trivial languages have constant space complexity in the variable-size model). Corollary 13 states that there exists a deterministic one-counter language whose optimal variable-size sliding window algorithm uses space $\Theta((\log n)^2)$.

Finally, we prove that our results for deterministic one-counter languages can be also shown for the reversals of the latter (i.e., for languages that can be accepted by a deterministic one-counter automaton that works from right to left). This is not obvious, since the reversal of a deterministic context-free language is in general not deterministic context-free. Moreover, the arguments for our space trichotomy result for regular languages [3, 4] mainly use a DFA for the reverse language, hence one might think that these arguments extend to reversals of deterministic context-free languages.

2 Preliminaries

For a function $f: \mathbb{N} \to \mathbb{N}$, we use the standard Landau notations $\mathcal{O}(f)$, $\Omega(f)$, o(f) and $\Theta(f)$. We assume that the reader is familiar with the basic notions of formal languages, in particular regular languages, see e.g. [7] for more details. Let Σ be a finite alphabet of symbols. With ε we denote the empty word. For a word $w = a_1 \cdots a_m \in \Sigma^*$ of length |w| = m we define $w[i] = a_i$ and $w[i:j] = a_i \cdots a_j$ if $i \leq j$ and $w[i:j] = \varepsilon$ if i > j. We define w[i:j] = w[i:m] and w[:j] = [1:j]. Let $\Sigma^n = \{w \in \Sigma^* : |w| = n\}$, $\Sigma^{\leq n} = \{w \in \Sigma^* : |w| \leq n\}$, and $\Sigma^{\geq n} = \{w \in \Sigma^* : |w| \geq n\}$. A word $v \in \Sigma^*$ is a prefix (resp., suffix) of the word w if there exists a word $w \in \Sigma^*$ such that w = vu (resp., w = uv). With prefix w = uv we denote the set of all prefixes of w. For a word $w = a_1 a_2 \cdots a_m$ let v = uv (w) and v = uv denotes the word w = uv read from right to left.

2.1 Automata and streaming algorithms

We use standard definitions from automata theory. A deterministic automaton is a tuple $\mathcal{A} = (Q, \Sigma, q_0, \delta, F)$, where Q is a possibly infinite set of states, Σ is an alphabet, $q_0 \in Q$ is the initial states, $\delta \colon Q \times \Sigma \to Q$ is the transition relation, and F is the set of final states. The transition function δ is extended to a function $\delta \colon Q \times \Sigma^* \to Q$ in the usual way and we set $\mathcal{A}(x) = \delta(q_0, x)$ for all $x \in \Sigma^*$. The language accepted from a state $q \in Q$ is denoted by $L(\mathcal{A}, q) = \{x \in \Sigma^* \mid \delta(q, x) \in F\}$ and the language accepted by \mathcal{A} is defined by $L(\mathcal{A}) = L(\mathcal{A}, q_0)$. If Q is finite, then A is a deterministic finite automaton (DFA).

A data stream is a finite sequence of data values. We make the assumption that these data values are from a finite set Σ . Thus, a data stream is a finite word $w = a_1 a_2 \cdots a_m \in \Sigma^*$. A streaming algorithm reads the symbols of a data stream from left to right. At time instant t the algorithm has only access to the symbol a_t and the internal storage, which is encoded by a bit string. The goal of the streaming algorithm is to compute a certain function $f \colon \Sigma^* \to A$ into some domain A, which means that at time instant t the streaming algorithm outputs the value $f(a_1 a_2 \cdots a_t)$. In this paper, we only consider the Boolean case $A = \{0,1\}$; in other words, the streaming algorithm tests membership in a fixed language. Thus, a streaming algorithm over Σ can be seen as a deterministic (possibly infinite) automaton $A = (S, \Sigma, s_0, \delta, F)$. Furthermore, we abstract away from the actual computation and only analyze the space requirement, which in particular means that we encode the states of A by bit strings. We describe this encoding by an injective function enc: $S \to \{0,1\}^*$. The space function space $(A, \cdot) \colon \Sigma^* \to \mathbb{N}$ specifies the space used by A on a certain input: For $w \in \Sigma^*$ let space $(A, w) = \max\{|\operatorname{enc}(A(u))| : u \in \operatorname{prefix}(w)\}$. We also say that A is a streaming algorithm for the accepted language L(A).

2.2 Sliding window streaming models

In the above streaming model, the output value of the streaming algorithm at time t depends on the whole past $a_1a_2\cdots a_t$ of the data stream. However, in many practical applications one is only interested in the relevant part of the past. Two formalizations of "relevant past" can be found in the literature:

- Only the suffix of $a_1 a_2 \cdots a_t$ of length n is relevant. Here, n is a fixed constant. This streaming model is called the *fixed-size sliding window model*.
- The relevant suffix of $a_1 a_2 \cdots a_t$ is determined by an adversary. In this model, at every time instant the adversary can either remove the first symbol from the active window (expiration of a data value), or add a new symbol at the right end (arrival of a new data value). This streaming model is also called the *variable-size sliding window model*.

In the following we formally define these two models.

Fixed-size sliding windows. Given a word $w \in \Sigma^*$ of length m and a window size $n \ge 0$, we define $\operatorname{last}_n(w) \in \Sigma^n$ by

$$\operatorname{last}_n(w) = \begin{cases} w[m-n+1:] & \text{if } n \leq m, \\ a^{n-m}w, & \text{if } n > m, \end{cases}$$

which is called the *active window*. Here $a \in \Sigma$ is an arbitrary, but fixed, symbol, which fills the initial window. For a language L and $n \geq 0$ let $L_n = \{w \in \Sigma^* : \text{last}_n(w) \in L\}$. A sequence $A = (A_n)_{n\geq 0}$ is a fixed-size sliding window algorithm for a language $L \subseteq \Sigma^*$ if for each n the A_n is a streaming algorithm for L_n . Its space complexity is the function $f_A : \mathbb{N} \to \mathbb{N} \cup \{\infty\}$ where $f_A(n)$ is the maximum encoding length of a state in A_n .

Note that for every language L and every n the language L_n is regular, which ensures that \mathcal{A}_n can be chosen to be a DFA and hence $f_{\mathcal{A}}(n) < \infty$ for all $n \geq 0$. The trivial fixed-size sliding window algorithm for L is the sequence $\mathcal{B} = (\mathcal{B}_n)_{n\geq 0}$, where \mathcal{B}_n is the DFA with state set Σ^n and transitions $au \stackrel{b}{\to} ub$ for $a, b \in \Sigma$, $u \in \Sigma^{n-1}$. States of \mathcal{B}_n can be encoded with $\mathcal{O}(\log |\Sigma| \cdot n)$ bits. Let \mathcal{A}_n be the minimal DFA for L_n and encode each state of \mathcal{A}_n with at most $\lfloor \log_2(a_n) \rfloor$ bits, where a_n is the number of states of \mathcal{A}_n . Then $\mathcal{A} = (\mathcal{A}_n)_{n\geq 0}$ is an optimal fixed-size sliding window algorithm \mathcal{A} for L. Finally, we define $F_L(n) = f_{\mathcal{A}}(n) = \lfloor \log_2(a_n) \rfloor$. Thus, F_L is the space complexity of an optimal fixed-size sliding window algorithm for L. Notice that F_L is not necessarily monotonic. For instance, for $L = \{au \colon u \in \{a,b\}^*, |u| \text{ odd}\}$ we have $F_L(2n) \in \Theta(n)$ and $F_L(2n+1) \in \mathcal{O}(1)$. The above trivial algorithm \mathcal{B} yields $F_L(n) \in \mathcal{O}(n)$ for every language L.

Note that the fixed-size sliding window is a *non-uniform* model: for every window size we have a separate streaming algorithm and these algorithms do not have to follow a common pattern. Working with a non-uniform model makes lower bounds stronger. In contrast, the variable-size sliding window model that we discuss next is a uniform model in the sense that there is a single streaming algorithm that works for every window size.

Variable-size sliding windows. For an alphabet Σ we define the extended alphabet $\overline{\Sigma} = \Sigma \cup \{\downarrow\}$. In the variable-size model the *active window* wnd $(u) \in \Sigma^*$ for a stream $u \in \overline{\Sigma}^*$ is defined by

- wnd(ε) = ε
- wnd(ua) = wnd(u)a for $a \in \Sigma$
- \longrightarrow wnd $(u\downarrow) = \varepsilon$ if wnd $(u) = \varepsilon$
- wnd $(u\downarrow) = v$ if wnd(u) = av for $a \in \Sigma$

A variable-size sliding window algorithm for a language $L \subseteq \Sigma^*$ is a streaming algorithm \mathcal{A} for $\{w \in \overline{\Sigma}^* : \operatorname{wnd}(w) \in L\}$. Following [3], we define its space complexity as the function $v_{\mathcal{A}} : \mathbb{N} \to \mathbb{N} \cup \{\infty\}$ mapping each window size n to the maximum number of bits used by \mathcal{A} on inputs producing an active window of size at most n. Formally, it is the monotonic function $v_{\mathcal{A}}(n) = \max\{\operatorname{space}(\mathcal{A}, u) : u \in \overline{\Sigma}^*, |\operatorname{wnd}(v)| \leq n \text{ for all } v \in \operatorname{prefix}(u)\}$. By taking the minimal (possibly infinite) deterministic automaton for $\{w \in \overline{\Sigma}^* : \operatorname{wnd}(w) \in L\}$ and encoding states appropriately one can prove that there exists an optimal space bound:

▶ **Lemma 1** ([3]). For every language $L \subseteq \Sigma^*$ there exists a variable-size sliding window algorithm \mathcal{A} for L such that $v_{\mathcal{A}}(n) \leq v_{\mathcal{B}}(n)$ for every variable-size sliding window algorithm \mathcal{B} for L and every n.

We define $V_L(n) = v_A(n)$, where A is a space optimal variable-size sliding window algorithm for L from Lemma 1. Since any algorithm in the variable-size model yields an algorithm in the fixed-size model, we have $F_L(n) \leq V_L(n)$.

3 Sliding windows over context-free languages: below logspace

The goal of this section is to prove the following result:

▶ **Theorem 2.** If L is a context-free language with $F_L(n) \in \log_2(n) - \omega(1)$, then L is regular and $F_L(n) \in \mathcal{O}(1)$.

We start with some definitions. A language $L\subseteq \Sigma^*$ is k-suffix testable if it is a finite Boolean combination of languages of the form Σ^*w where $w\in \Sigma^{\leq k}$. An equivalent condition is: for all $x,y,z\in \Sigma^*$ with |z|=k we have $xz\in L$ if and only if $yz\in L$. We call L suffix testable if it is k-suffix testable for some k. Note that every suffix testable language is regular. Let $f\colon \mathbb{N}\to\mathbb{N}$ be a function. A language $L\subseteq \Sigma^*$ is f-suffix definable if for all $n\in\mathbb{N}$ and words $u,v,w\in \Sigma^*$ such that |uw|=|vw|=n and |w|=f(n) we have $uw\in L$ if and only if $vw\in L$. Similarly, one defines prefix testable and f-prefix definable languages. A length language is a language $L\subseteq \Sigma^*$ such that for every $n\geq 0$, either $\Sigma^n\subseteq L$ or $L\cap \Sigma^n=\emptyset$. We prove Theorem 2 in two steps:

- ▶ Theorem 3. Every language $L \subseteq \Sigma^*$ is $(2^{F_L(n)+1}-1)$ -suffix definable.
- ▶ **Theorem 4.** If a context-free language L is f-suffix definable for a function $f(n) \in o(n)$, then L is a finite Boolean combination of suffix testable languages and regular length languages.

Combining Theorem 3 and 4 yields Theorem 2: If a context-free language L satisfies $F_L(n) \in \log_2(n) - \omega(1)$ then L is f-suffix definable for a function $f(n) \in o(n)$ by Theorem 3. Theorem 4 implies that L is a finite Boolean combination of suffix testable languages and regular length languages. Hence L is regular and $F_L(n) \in \mathcal{O}(1)$. The rest of this section is devoted to the proofs of Theorem 3 and 4.

3.1 Proof of Theorem 3

For two languages L_1 and L_2 we define their distance $d(L_1, L_2)$ as follows: If $L_1 = L_2$, then we set $d(L_1, L_2) = 0$, and otherwise $d(L_1, L_2) = \sup\{|u| : u \in L_1 \triangle L_2\} + 1$ where $L_1 \triangle L_2 = (L_1 \setminus L_2) \cup (L_2 \setminus L_1)$ denotes the symmetric difference of L_1 and L_2 . Notice that $d(L_1, L_2) < \infty$ if and only if $L_1 \triangle L_2$ is finite. If $\mathcal{A} = (Q, \Sigma, q_0, \delta, F)$ is a DFA, we define the distance between two states $p, q \in Q$ by $d(p, q) = d(L(\mathcal{A}, p), L(\mathcal{A}, q))$. We will use a result from [5, Lemma 1] stating that $d(p, q) < \infty$ implies that $d(p, q) \leq |Q|$.

- ▶ Lemma 5. Let $L \subseteq \Sigma^*$ be regular and $A = (Q, \Sigma, q_0, \delta, F)$ be its minimal DFA. We have:
- (i) $d(p,q) \le k$ if and only if $\delta(p,z) = \delta(q,z)$ for all $p,q \in Q$ and $z \in \Sigma^k$.
- (ii) L is k-suffix testable if and only if $d(p,q) \leq k$ for all $p,q \in Q$.
- (iii) If there exists $k \geq 0$ such that L is k-suffix testable, then L is |Q|-suffix testable.

Proof. The proof of (i) is an easy induction: If k=0, the statement is d(p,q)=0 iff p=q, which is true because \mathcal{A} is minimal. For the induction step, we have $d(p,q) \leq k+1$ iff $d(\delta(p,a),\delta(q,a)) \leq k$ for all $a \in \Sigma$ iff $\delta(p,z)=\delta(q,z)$ for all $z \in \Sigma^{k+1}$.

For (ii), assume that L is k-suffix testable and consider two states $p = \mathcal{A}(x)$ and $q = \mathcal{A}(y)$. If $z \in L(\mathcal{A}, p) \triangle L(\mathcal{A}, q)$, then |z| < k because $xz \in L$ iff $yz \notin L$ and L is k-suffix testable. Now assume that $d(p,q) \leq k$ for all $p,q \in Q$ and consider $x,y \in \Sigma^*$, $z \in \Sigma^k$. Since

 $d(\mathcal{A}(x), \mathcal{A}(y)) \leq k$, (i) implies $\mathcal{A}(xz) = \mathcal{A}(yz)$, and in particular $xz \in L$ iff $yz \in L$. Therefore, L is k-suffix testable.

Point (iii) follows from (ii) and the above mentioned result from [5, Lemma 1].

Proof of Theorem 3. Let $n \geq 0$ and $L_n = \{w \in \Sigma^* : \operatorname{last}_n(w) \in L\}$. Let \mathcal{A}_n be the minimal DFA for L_n , which has at most $f(n) := 2^{F_L(n)+1} - 1$ states. Since $\operatorname{last}_n(xy) = y$ for all $x \in \Sigma^*$ and $y \in \Sigma^n$, the language L_n is n-suffix testable. Therefore L_n is f(n)-suffix testable by Lemma 5(iii). This implies that L is f-suffix definable because for all words $u, v, w \in \Sigma^*$ such that |uw| = |vw| = n and |w| = f(n) we have $uw \in L$ iff $uw \in L_n$ iff $vw \in L$.

3.2 Proof of Theorem 4

We prove the variant of Theorem 4 that talks about prefix-definability. This makes no difference, since the reversal of a context-free languages is again context-free. Also note that the requirement $f(n) \in o(n)$ in Theorem 4 cannot be relaxed: For every $k \ge 1$, the language $\{xay: x,y \in \{a,b\}^*, |x|=k|ay|\}$ is context-free and $\lceil n/(k+1) \rceil$ -suffix definable but not even regular.

First, we show that in the proof of Theorem 4 we can restrict ourselves to functions f with the following property: A monotonic function $f: \mathbb{N} \to \mathbb{N}$ has the *increasing plateau property* if for every $k \geq 1$ there exists an n_0 such that for all $n \geq n_0$ we have: $f(n+k) - f(n) \leq 1$. Clearly, if f has the increasing plateau property then $f \in o(n)$.

▶ **Lemma 6.** Let $f: \mathbb{N} \to \mathbb{R}_{\geq 0}$. If $f(n) \in o(n)$ then there exists a monotonic function $g: \mathbb{N} \to \mathbb{N}$ with the increasing plateau property and such that $f(n) \leq g(n)$ for all $n \in \mathbb{N}$.

Proof. For a linear function $g: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ of the form $g(x) = \alpha \cdot x + \beta$ we call α the *slope* of g. We will first define a sequence of natural numbers $n_1 < n_2 < n_3 \cdots$ such that f is bounded by a continuous piecewise linear function $h: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ that has slope 1/i on the interval $[n_i, n_{i+1}]$ and slope 0 on the interval $[0, n_1]$. Then we show that $g: \mathbb{N} \to \mathbb{N}$ with $g(n) = \lceil h(n) \rceil$ has the properties from the lemma.

First, for every $i \geq 1$ we define $n_i \in \mathbb{N}$ and a linear function $h_i : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ of slope 1/i such that: (i) $n_{i+1} > n_i$, (ii) for all natural numbers $n \geq n_i$ we have $f(n) \leq h_i(n)$, and (iii) $h_i(n_{i+1}) = h_{i+1}(n_{i+1})$.

Let $n_1 \geq 0$ be the smallest natural number such that $f(n) \leq n$ for $n \geq n_1$ and $f(n) \leq n_1$ for $n < n_1$. Clearly such an n_1 exists, as $f(n) \in o(n)$. Define h_1 by $h_1(x) = x$ for all $x \in \mathbb{R}_{\geq 0}$. Hence, we have $f(n) \leq h_1(n)$ for all $n \geq n_1$.

For the induction step, assume that n_i and the linear function $h_i: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ (of slope 1/i) are defined such that $f(n) \leq h_i(n)$ for all $n \geq n_i$. Define the linear function $u_{i+1}(x) = h_i(n_i) + (x - n_i)/(i + 1)$, which has a slope 1/(i + 1) and $u_{i+1}(n_i) = h_i(n_i)$. Then there is a smallest natural n_{i+1} such that $n_{i+1} > n_i$ and $u_{i+1}(n) \geq f(n)$ for each $n \geq n_{i+1}$. This holds because $f(n) \in o(n)$, and hence for any constants $\alpha > 0, \beta \in \mathbb{R}$ we have $f(n) \leq \alpha \cdot n + \beta$ for large enough n. Take this n_{i+1} and define the function h_{i+1} by $h_{i+1}(x) = h_i(n_{i+1}) + (x - n_{i+1})/(i + 1)$. It has slope 1/(i + 1) and satisfies $h_{i+1}(n_{i+1}) = h_i(n_{i+1})$. Finally, for all $n \geq n_{i+1}$ we have

$$h_{i+1}(n) = h_i(n_{i+1}) + (n - n_{i+1})/(i+1)$$

$$= h_i(n_i) + (n_{i+1} - n_i)/i + (n - n_{i+1})/(i+1)$$

$$\geq h_i(n_i) + (n_{i+1} - n_i)/(i+1) + (n - n_{i+1})/(i+1)$$

$$= h_i(n_i) + (n - n_i)/(i+1) = u_{i+1}(n) \geq f(n).$$

Hence, n_{i+1} and h_{i+1} have all the desired properties.

We now define the function $h: \mathbb{R}_{>0} \to \mathbb{R}_{>0}$:

$$h(x) = \begin{cases} n_1 & \text{if } x \in [0, n_1] \\ h_i(x) & \text{if } x \in [n_i, n_{i+1}] \text{ for some } i \ge 1. \end{cases}$$

Since $h_i(n_{i+1}) = h_{i+1}(n_{i+1})$ and $h_1(n_1) = n_1$, h is uniquely defined. Finally, let g(n) = [h(n)]for all $n \in \mathbb{N}$.

Since $f(n) \leq h_i(n)$ for all $n \geq n_i$ and $f(n) \leq f(n_1) \leq n_1$ for all $n \leq n_1$, we have $f(n) \le h(n) \le g(n)$ for all $n \in \mathbb{N}$. Moreover, h is clearly monotonic, which implies that g is monotonic, too. It remains to show that g has the increasing plateau property.

Let $k \geq 1$ and $n \geq n_k$. Since h is continuous and piecewise linear with slopes $\leq 1/k$ on $[n_k, \infty)$, we have $h(n+k) - h(n) \le (n+k-n)/k = 1$. This implies $g(n+k) - g(n) \le 1$.

- ▶ **Lemma 7.** Let L be a context-free language and $f: \mathbb{N} \to \mathbb{N} \setminus \{0\}$ be monotonic with $f(n) \in o(n)$. There are constants n_0 and c > 0 (only depending on L and f) such that the following hold for every $n \geq n_0$:
- $n \ge f(n) + c$ and
- for all words u, v with $uv \in L$, |uv| = n, |u| = f(n), and |v| = n f(n), there exist words v', v'' with |v'| = |v| - c, |v''| = |v| + c, and $uv', uv'' \in L$.

Proof. Consider the following variant of the pumping lemma for context-free languages (see also [7, Chapter 6.1]), which simultaneously considers all languages defined by various nonterminals of the grammar; it can be shown in the same way as the standard variant:

Given a context-free grammar G with set of nonterminals N and productions P, let L_A denote the language generated by the grammar G_A with productions P and the start nonterminal A. Then there exists a natural number c_1 depending only on G and not on A, such that if $w \in L_A$ and $|w| \geq c_1$, then w can be written as $w = w_1 w_2 w_3 w_4 w_5$ with: $w_1w_2^kw_3w_4^kw_5 \in L_A$ for every $k \ge 0$, $|w_2w_3w_4| \le c_1$ and $|w_2w_4| > 0$. In particular, the word $w_1w_2^{1+c_1!/|w_2w_4|}w_3w_4^{1+c_1!/|w_2w_4|}w_5$ of length $|w|+c_1!$ belongs to L_A .

Let G be a grammar for L in Greibach normal form, i.e., all productions are of the form $A \to aA_1 \cdots A_k$ for $k \geq 0$, nonterminals A, A_1, \ldots, A_k and a terminal a (such a grammar exists for every context-free language); see also [7, Chapter 4.6]. Let r be the maximal length of the productions' right-hand sides in G, let N be the set of nonterminals, and let c_1 be the constant from the above pumping lemma for G. We can assume that $r \geq 2$, otherwise L is finite and the lemma holds. Define $c = c_1!$ and choose an n_0 such that for all $n \ge n_0$ the following three inequalities hold:

$$\frac{n}{f(n)} > 1 + (r-1)r^{2|N| \cdot (rc_1|N|+1)!} \tag{1}$$

$$\frac{n}{f(n)} > 1 + (r-1)r^{2|N| \cdot (rc_1|N|+1)!}$$

$$\frac{n}{f(n)} > 1 + c_1(r-1)$$
(2)

As the right-hand sides are constant and $f(n) \in o(n)$, such an n_0 exists. Hence, for all $n \ge n_0$ the following two inequalities hold ((1) is equivalent to (3) and (2) is equivalent to (4):

$$\log_r \left(\frac{n - f(n)}{f(n)(r - 1)} \right) > 2|N|(rc_1|N| + 1)!$$

$$\frac{n - f(n)}{f(n)(r - 1)} > c_1$$
(4)

$$\frac{n - f(n)}{f(n)(r-1)} > c_1 \tag{4}$$

Consider a string uv of length $n \ge n_0$ generated by G, where |u| = f(n). Fix a leftmost derivation of uv and consider the first moment, at which the current sentential form has u as a prefix. This happens after |u| = f(n) derivation steps since G is in Greibach normal form. Apart from the prefix u, the rest of the sentential form has length at most $1 + f(n)(r-2) \le f(n)(r-1)$ and it derives the word v of length n - f(n). So one of the nonterminals in the sentential form, say A, generates a word v with

$$|x| \ge \frac{n - f(n)}{f(n)(r-1)} \stackrel{(4)}{>} c_1$$
 (5)

The further analysis splits into several cases depending on the claim we want to prove.

We first show the second claim of the lemma, that there exists v'' such that |v''| = |v| + c and $uv'' \in L(G)$. Since $|x| \geq c_1$, we can apply the pumping lemma and replace in the derivation of uv the word x by a word of length $|x| + c_1! = |x| + c$. The resulting derivation yields a word uv'' with |v''| = |v| + c, as claimed.

So let us now prove that there is v' such that $uv' \in L(G)$, where |v'| = |v| - c. Again, consider the nonterminal A that generates a string x satisfying (5). Since the length of each right-hand side is at most r, there is a path Π in the derivation tree of length at least

$$\log_r \left(\frac{n - f(n)}{f(n)(r-1)} \right) > 2|N| \cdot (rc_1|N| + 1)! ,$$

where the estimation follows from (3). We are going to color some nodes on the path Π black or grey: if a node v on Π has a child that does not belong to Π and derives a string of length at least c_1 , then we color v black. Then, as long as there are two uncolored nodes v, v' on Π (v above v') such that (i) v and v' are labelled with the same nonterminal, (ii) the path from v to v' has length at most |N|, and (iii) does not contain a black node, then we color v black and v' grey.

There can be at most |N| consecutive nodes on the path that are not colored and there are at least as many black nodes as grey nodes. Thus, the number of black nodes is at least

$$\left| \frac{1}{2} \left| \frac{2|N| \cdot (rc_1|N|+1)!}{|N|} \right| \right| = (rc_1|N|+1)!$$

For each black node we can shorten the derivation such that the derived word is shorter by at least 1 and at most $rc_1|N|$ without affecting other colored nodes:

- For the first type of black nodes this follows directly from the pumping lemma. Note that we can apply the pumping lemma to a subtree that is disjoint from Π .
- For the second kind of black nodes, let v and v' be the corresponding nodes colored black and grey, respectively. We can delete the subtree rooted in v and replace it with the one rooted in v'. The length of the path is $\leq |N|$, the arity of the rules $\leq r$ and each deleted nonterminal derived a string of length $\leq c_1$ (otherwise it would be black).

nonterminal derived a string of length $\leq c_1$ (otherwise it would be black). So for some $m \in \{1, 2, \ldots, rc_1|N|\}$ there are $\frac{(rc_1|N|+1)!}{rc_1|N|} > (rc_1|N|)!$ different possibilities to shorten the derived word by m letters. We choose $(rc_1|N|)!/m$ of them so that the word is shortened by $(rc_1|N|)!$ letters. Thus we showed that there exists v' such that $uv' \in L(G)$ and $|uv'| = n - (rc_1|N|)!$. As $c = c_1!$ divides $(rc_1|N|)!$, by applying $((rc_1|N|)!/c - 1)$ times the already proved second claim of the lemma we can first obtain a word $uz \in L(G)$ such that $|uz| = n + (rc_1|N|)! - c$ and then use the argument above to obtain a word $uv' \in L(G)$ such that $|uv'| = |uz| - (rc_1|N|)! = |uv| - c$. Here, we use monotonicity of f, which ensures that the prefix u is not touched when using the above argument for the longer word uz.

▶ Lemma 8. Let L be a context-free language that is f-prefix definable for a function $f(n) \in o(n)$. Then there exists a constant α such that for every word u of length α and all words v, w with |v| = |w| we have $uv \in L$ if and only if $uw \in L$.

Proof. By Lemma 6 there exists a monotonic function $g(n) \in o(n)$ having the increasing plateau property and such that $f(n) \leq g(n)$ for all $n \geq 0$. Hence, L is still g-prefix definable. Moreover, let $f' \in o(n)$ be defined by f'(n) = g(n) + 1 for all n. Take the constants n_0 and c from Lemma 7 for L and f' (instead of f). Choose m such that (i) $m \geq n_0 + c$ and (ii) $g(n) - g(n-c) \leq 1$ for all $n \geq m$, which is possible by the increasing plateau property. We take $\alpha = g(m)$. Heading for a contradiction, let us take words u, v, w such that $|u| = \alpha$, |v| = |w|, $uv \in L$ and $uw \notin L$. We can assume that |v| = |w| is minimal with these properties. Let n = |uv| = |uw| in the following. We now distinguish two cases.

Case 1. $n \le m$, which implies $g(n) \le g(m) = |u|$. Hence, uv and uw have the same prefix of length g(n). Since L is g-prefix definable, we have $uv \in L$ iff $uw \in L$, which is a contradiction.

Case 2. n > m, and thus $n > n_0 + c$ and $g(n) \ge g(m) = |u|$. Since $n - g(m) \ge n - g(n) = n - f'(n) + 1 > c > 0$, we can write $v = v_1 a v_2$ and $w = w_1 b w_2$ such that $a, b \in \Sigma$ and $|uv_1| = |uw_1| = g(n)$. Thus, $|uv_1a| = |uw_1b| = f'(n)$. By Lemma 7 there exists a word v_2' with $|v_2'| = |v_2| - c$ and $uv_1 a v_2' \in L$. Take any word w_2' of length $|w_2'| = |w_2| - c$. By the length-minimality of v and w we must have $uw_1 b w_2' \in L$ (note that c > 0). Note that $|uw_1bw_2'| = |uw| - c = n - c > n_0$. Therefore, we can apply Lemma 7 to the word uw_1bw_2' . Note that $g(n) - g(n - c) \le 1$ since $n \ge m$. Thus, $f'(n - c) = g(n - c) + 1 \ge g(n)$ and the prefix of uw_1bw_2' of length f'(n - c) starts with uw_1 . We can conclude with Lemma 7 that there is a word w_2'' such that $uw_1w_2'' \in L$ and $|uw_1w_2''| = n$. But since $|uw_1| = g(n)$ and $|uw_1w_2''| = n$, the g-prefix definability of L implies that $uw_1y \in L$ for all words y of length n - g(n). In particular, we get $uw_1bw_2 = uw \in L$, which is a contradiction.

We can now prove (the prefix version of) Theorem 4:

Proof of Theorem 4. Let L be a f-prefix definable context-free language with $f(n) \in o(n)$. Let α be the constant from Lemma 8. For every word u of length α let $L_u = \{w : uw \in L\}$. Each of these finitely many languages is context-free and by Lemma 8 it is a length language. It is a direct consequence of Parikh's theorem [8] (or the fact that every unary context-free language is regular) that a context-free length language is regular. Hence, every L_u (for $|u| = \alpha$) is a regular length language. We can now decompose L as follows:

$$L = (L \cap \Sigma^{<\alpha}) \cup \bigcup_{u \in \Sigma^{\alpha}} uL_u = (L \cap \Sigma^{<\alpha}) \cup \bigcup_{u \in \Sigma^{\alpha}} (u\Sigma^* \cap \Sigma^{\alpha}L_u).$$

Since L_u is a regular length language, also $\Sigma^{\alpha}L_u$ is a regular length language. Moreover, $u\Sigma^*$ is prefix testable. Finally, every finite language (and hence $L \cap \Sigma^{<\alpha}$) is a finite Boolean combination of prefix testable languages. This shows the theorem.

4 Sliding windows over context-free languages: above logspace

In this section, we show that the trichotomy result for regular languages [4] does not carry over the context-free languages. More precisely, we show that for every natural number $c \geq 1$ there exists a one-counter language L_c such that $F_{L_c}(n) \in \mathcal{O}(n^{1/c}) \setminus o(n^{1/c})$ and $V_{L_c}(n) \in \Theta(n^{1/c})$. Recall that a one-counter language is a language that can be accepted by a nondeterministic pushdown automaton with a singleton pushdown alphabet (a so called

one-counter automaton). Also recall that a linear bounded automaton (LBA for short) is a Turing machine that only uses the space that is occupied by the input word; see also [7, Chapter 9.3]. We first show the following technical result:

▶ **Theorem 9.** Let t(k) be a monotonically increasing function and M be an LBA which halts on input a^k after exactly t(k) steps. Let f(n) be the function with¹

$$f(n) = \begin{cases} k & \text{if } n = k(t(k) + 3) \text{ for some } k \\ 0 & \text{else} \end{cases}$$

and let $g(n) = \max\{f(m) : m \le n\}$. There is a one-counter language L such that $F_L(n) \in \Theta(f(n))$ and $V_L(n) \in \Theta(g(n))$.

Proof. Let Γ be the tape alphabet of M and Q the set of states of M. A configuration of M is encoded by a word from $\Gamma^*(Q \times \Gamma)\Gamma^*$ over the alphabet $\Delta := \Gamma \cup (Q \times \Gamma)$. A computation of M on an input a^k $(k \geq 1)$ is a sequence of configurations $c_0 \vdash_M \cdots \vdash_M c_{t(k)}$ where $|c_i| = k$ for all $1 \leq i \leq t(k)$, $c_0 = (q_0, a)a^{k-1}$ is the start configuration on input a^k , every c_{i+1} is obtained from c_i by applying a transition of M for $0 \leq i \leq t(k) - 1$, and $c_{t(k)}$ is an accepting computation. Let $\Delta' = \{x' \mid x \in \Delta\}$ be a disjoint copy of Δ and define w' for a word $w \in \Delta^*$ by applying the homomorphism $x \mapsto x'$ $(x \in \Delta)$ to w. Finally, let K be the set of all words

$$c_0 \operatorname{rev}(c_1)' c_2 \operatorname{rev}(c_3)' \cdots c_{t(k)} s \operatorname{rev}(s)$$
 or (6)

$$c_0 \operatorname{rev}(c_1)' c_2 \operatorname{rev}(c_3)' \cdots \operatorname{rev}(c_{t(k)})' s \operatorname{rev}(s)$$
(7)

such that $k \geq 1$, $c_0 \vdash_M \cdots \vdash_M c_{t(k)}$ is a computation on input a^k , $s \in \{0,1\}^*$ is an arbitrary word of length k (0 and 1 are arbitrary symbols not in $\Delta \cup \Delta'$), and t(k) even (resp., odd) in case (6) (resp., (7)). Notice that the words in (6) and (7) have length k(t(k) + 3). We can assume that M never goes back to the initial state q_0 . This ensures that every word has at most one non-empty suffix that is a prefix of a word from K.

For the language L from the theorem, we take the complement of K. It is not hard to see that L can be recognized by a nondeterministic one-counter automaton by guessing an error in the input word w. Possible errors are the following, where we call a block of w a maximal factor from $\Delta^+ \cup (\Delta')^+ \cup \{0,1\}^+$ in w, m is the number of blocks of w and u_i denotes the i-th block of w for $1 \le i \le m$:

- 1. m < 2,
- 2. u_1 is not an initial configuration, i.e., of the form $(q_0, a)a^{k-1}$ for some $k \ge 1$,
- **3.** for some odd $i < m, u_i$ is not a configuration,
- **4.** for some even i < m, u_i is not of the form c' for a configuration c,
- **5.** u_{m-1} is not an accepting configration,
- **6.** there exists $1 \le i < m-1$ with $|u_i| \ne |u_{i+1}|$,
- 7. $|u_m| \neq 2|u_{m-1}|$,
- **8.** there exists $1 \le i < m-1$ odd such that $u_i \vdash_M \operatorname{rev}(u)$ does not hold for $u' = u_{i+1}$,
- **9.** there exists $1 \le i < m-1$ even such that $rev(u) \vdash_M u_{i+1}$ does not hold for $u' = u_i$,
- **10.** u_m is not a palindrome over the alphabet $\{0,1\}^*$.

The conditions in points 1–5 are regular. Points 6–10 can be checked with a single counter. The upper bound in the theorem has to be shown for the variable-size model. Since $F_K(n) = F_L(n)$ and $V_K(n) = V_L(n)$, it is enough to show the bounds for the language K. Let us first present a variable-size streaming algorithm with space complexity $\mathcal{O}(g(n))$. Assume that w is the active window. The algorithm stores the following data n, i, t, k, ℓ, s :

¹ Since t(k) is monotonically increasing, the number k in the first case is unique.

- = n = |w| is the length of the active window.
- i is the smallest position x such that w[x:] is a prefix of a word from K. If this prefix is empty, then i = n + 1.
- \bullet t is the number of blocks in w[i:] minus 1 (where i is from the previous point); this tells us the number of computation steps that M has executed.
- k is the largest number y such that w[i:] starts with $(q_0, a)a^{y-1}$; hence, k tells us the input length.
- In case $1 \le t \le t(k)$, ℓ is the length of the last block of w[i:] (if t = 0 or t = t(k) + 1 we store some dummy value in ℓ).
- In case t = t(k) + 1, s is the maximal suffix of w[i:] from $\{0,1\}^*$. If the length of this suffix exceeds k then s stores only its prefix of length k.

It is easy to see that these variables can be updated. The main observation is that in case $1 \le t \le t(k)$ and $\ell < k$ then the algorithm internally simulates M for t steps on input a^k . In this way, the algorithm can check whether the arriving symbol is the right one, namely the (possibly primed) $(\ell+1)$ -th symbol of the configuration reached after t steps on input a^k . In this case, the algorithm sets $\ell := \ell+1$, otherwise the algorithm sets i := n+1. If t is set to t(k)+1 then the algorithm starts to accumulate the window suffix $s \in \{0,1\}^*$ up to length k. If s has length k then the next k arriving symbols are compared in reversed order with s. If a match is obtained, the algorithm accepts if i=1 at the same time.

Let us now compute the space complexity of the algorithm. The numbers n, i, t, k and ℓ need $\mathcal{O}(\log n)$ bits. Recall that s has maximal length k. But we only store symbols in s if $n \geq k(t(k)+1) \geq \lfloor k/3 \rfloor (t(\lfloor k/3 \rfloor)+3)$, since the window must already contain a complete computation on input a^k before s becomes non-empty. We get $\lfloor k/3 \rfloor = f(\lfloor k/3 \rfloor (t(\lfloor k/3 \rfloor)+3)) \leq g(n)$, i.e., $k \leq 3g(n)+3$. Finally, since g(n) is the maximal value k such that $k(t(k)+3) \leq n$ and $t(k) \in 2^{\mathcal{O}(k)}$, we get $g(n) \in \Omega(\log n)$. This shows that the algorithm works in space $\mathcal{O}(g(n))$.

To show that $F_K(n) \in \mathcal{O}(f(n))$ we can argue similarly. Of course, in the fixed-size model, we do not have to store the window size n. If the window size n is not of the form k(t(k)+3) for some k then the algorithm always rejects and no space at all is needed. Otherwise, since t(k) is monotonically increasing, there is a unique k with n = k(t(k) + 3).

Finally, we show that $F_K(n) \geq f(n)$ for all n, which implies that $V_K(n) \geq g(n)$ for all n since $V_K(n) \geq F_K(n)$ and $V_K(n)$ is monotonic. It suffices to consider a window size n = k(t(k) + 3) for some k, as otherwise f(n) = 0. Hence, f(n) = k. Moreover, consider an accepting computation $c_0 \vdash_M c_1 \vdash_M \cdots \vdash_M c_{t(k)}$ where $|c_0| = \cdots = |c_{t(k)}| = k$. Let us assume that k is even; the case that k is odd is analogous. Now consider the 2^k many distinct words $w(s) := 0^k c_0 \operatorname{rev}(c_1)' c_2 \operatorname{rev}(c_3)' \cdots c_{t(k)} s$ for $s \in \{0,1\}^k$. The length of these words is n = k(t(k) + 3), which is the window size.

Consider now the minimal DFA \mathcal{A}_n for the language K_n , and let r be the number of states of \mathcal{A}_n (hence, $F_K(n) = \lfloor \log_2 r \rfloor$). We claim that $\mathcal{A}_n(w(s)) \neq \mathcal{A}_n(w(u))$ for all $s, u \in \{0, 1\}^k$ with $s \neq u$. To see this, assume that $\mathcal{A}_n(w(s)) = \mathcal{A}_n(w(u))$ for $s, u \in \{0, 1\}^k$ with $s \neq u$. Hence, $\mathcal{A}_n(w(s) \operatorname{rev}(s)) = \mathcal{A}_n(w(u) \operatorname{rev}(s))$. On the other hand, the above definition of w(s) and w(u) implies $w(s) \operatorname{rev}(s) \in K$ and $w(u) \operatorname{rev}(s) \notin K$, which yields a contradiction. We get $r \geq 2^k$, and thus $F_K(n) \geq k = f(n)$.

Theorem 9 yields a quite dense spectrum of space complexity functions for context-free languages. We only prove the existence of context-free languages with sliding-window space complexity $n^{1/c}$ for $c \in \mathbb{N}$, $c \geq 1$:

▶ Theorem 10. For every $c \in \mathbb{N}$, $c \geq 1$, there exists a one-counter language L_c such that $F_{L_c}(n) \in \mathcal{O}(n^{1/c}) \setminus o(n^{1/c})$ and $V_{L_c}(n) \in \Theta(n^{1/c})$.

Proof. One can easily construct a deterministic LBA M that on input a^k terminates after exactly k^{c-1} steps. For instance, an LBA that terminates after exactly k^2 steps makes k phases, where in each phase the read-write head moves from the left input end to the right end or vice versa and thereby replaces the first a that is seen on the tape by a b-symbol. This construction can be iterated to obtain the above LBA M for an arbitrary k. The mapping f(n) from Theorem 9 then satisfies $f(k(t(k)+3)) = f(k(k^{c-1}+3)) = f(k^c+3k) = k$ and f(n) = 0 if n is not of the form $k^c + 3k$ for some k. This implies $f(n) \in \mathcal{O}(n^{1/c}) \setminus o(n^{1/c})$ and $g(n) \in \Theta(n^{1/c})$ for the mapping g(n) from Theorem 9. Hence, by Theorem 9 there is a one-counter language L_c with the properties stated in the theorem.

To fully exploit Theorem 9 one would have to analyze the spectrum of time complexity functions of linear bounded automata. We are not aware of specific results in this direction.

5 Sliding windows over deterministic one-counter languages

The context-free language L_c from Theorem 10 is not deterministic context-free and it is open whether the same result can be obtained for deterministic context-free languages. In this section we exhibit a deterministic one-turn one-counter language with space complexity $\Theta((\log n)^2)$ in the variable-size (resp., fixed-size) model. A *t-turn pushdown automaton* has the property that in any accepting run there are at most t alternations between push and pop operations [6].

We start with the variable-size model. A maximal factor β in a word $w \in \{a, b\}^*$ of the form $\beta = ab^i$ is called a *block* of length i + 1 in w (this notion is not related to the blocks used in the proof of Theorem 9). Define the language

$$L = \{ab^k av : k \ge 0, \ v \in \{a, b\}^{\le k}\} \cup ab^*, \tag{8}$$

which is recognized by a deterministic one-turn one-counter automaton. Put differently, L contains those words $w \in \{a, b\}^*$ which begin with a block of length $\geq |w|/2$.

▶ Lemma 11. We have $V_L(n) \in \mathcal{O}((\log n)^2)$.

Proof. Any word $w \in \{a,b\}^*$ can be uniquely factorized as $w = b^s \beta_m \beta_{m-1} \cdots \beta_2 \beta_1$ where $s,m \geq 0$ and each β_i is a block. A block β_i is relevant if it is at least as long as the remaining suffix, i.e. $|\beta_i| \geq \sum_{j=1}^{i-1} |\beta_j|$. For an active window $w \in \{a,b\}^*$ our variable-size algorithm maintains the window size and for each relevant block β_i its starting position and its length. If the first symbol in the window expires, every relevant block stays relevant (and the starting position is decremented) with the possible exception of a relevant block with starting position 1, which is removed. If an a arrives, we create a new relevant block of length 1. If a b arrives, we prolong the rightmost relevant block (which is also rightmost among all blocks) by 1. Furthermore, using this information we can determine whether $w \in L$: This is the case if and only if the leftmost relevant block starts at the first position and its length is at least n/2 where n is the current window size.

To show that the space complexity of the algorithm is $\mathcal{O}((\log n)^2)$, it suffices to show that each word $w \in \{a,b\}^n$ has $\mathcal{O}(\log n)$ relevant blocks. Let $\gamma_k, \gamma_{k-1}, \ldots, \gamma_2, \gamma_1$ be the sequence of relevant blocks in w. Then we know that $|\gamma_i| \geq \sum_{j=1}^{i-1} |\gamma_j|$ for all $1 \leq i \leq k$. Inductively, we show that $|\gamma_i| \geq 2^{i-2} |\gamma_1|$ for all $2 \leq i \leq k$. This is immediate for i=2 and for the induction step, observe that $|\gamma_i| \geq |\gamma_1| + \sum_{j=2}^{i-1} |\gamma_j| \geq |\gamma_1| + |\gamma_1| \sum_{j=2}^{i-1} 2^{j-2} = 2^{i-2} |\gamma_1|$ for all $i \geq 3$. This proves $k = \mathcal{O}(\log n)$, which concludes the proof.

▶ Lemma 12. We have $V_L(n) \in \Omega((\log n)^2)$.

Proof. For each $k \geq 0$ we define arrangements of length 3^k : The word a is the only arrangement of length $3^0 = 1$. An arrangement of length 3^{k+1} is any word of the form $ub^{3^k}v$ where $u, v \in \{a, b\}^{3^k}$, u begins with a and has at most one other a-symbol and v is any arrangement of length 3^k . Notice that an arrangement $ub^{3^k}v$ contains one or two blocks in the factor ub^{3^k} , one of which is relevant. If $\alpha_1 \neq \alpha_2$ are distinct arrangements of length 3^k , consider the maximal common suffix α_3 of α_1 and α_2 which is again an arrangement. Consider the suffixes of α_1, α_2 of length $3|\alpha_3|$. By the construction, these suffixes are also arrangements. Hence, their "middle parts" consist solely of b's, so they have the common suffix $b^{|\alpha_3|}\alpha_3$. Since α_1 and α_2 differ, there exists a number $\ell \geq |\alpha_3|$ such that α_1 has the suffix $ab^{\ell}\alpha_3$ and $ab^{\ell}\alpha_3$ and $ab^{\ell}\alpha_3$ has the suffix $ab^{\ell}\alpha_3$, or vice versa.

Now consider a variable-size sliding window algorithm for L. We claim that the algorithm can distinguish any two distinct arrangements $\alpha_1 \neq \alpha_2$ of length 3^k . Consider two instances of the algorithm, where the active windows are α_1 and α_2 , respectively. By performing a suitable number of \downarrow -operations the two windows contain the words $ab^{\ell}\alpha_3$ and $b^{\ell+1}\alpha_3$, respectively. Since $|\alpha_3| \leq \ell$, we have $ab^{\ell}\alpha_3 \in L$ and $b^{\ell+1}\alpha_3 \notin L$.

It is easy to see that the number n_k of arrangements of length 3^k is exactly $\prod_{i=0}^{k-1} 3^i$: to construct an arrangement of length 3^k , note that among its first 3^{k-1} letters the first one is a and there is at most one further a. So, there are 3^{k-1} choices for the prefix of length 3^{k-1} . The next 3^{k-1} letters are fixed, and then one of n_{k-1} many arrangements of length 3^{k-1} follows. Thus $n_k = 3^{k-1}n_{k-1}$ and $n_0 = 1$, which yields the claim. Note that $\log_3(n_k) = \sum_{i=0}^{k-1} i = \Theta(k^2)$. Therefore, the algorithm needs $\Omega((\log n)^2)$ bits of space.

▶ Corollary 13. There exists a deterministic one-turn one-counter language L such that $V_L(n) = \Theta((\log n)^2)$.

The language L from (8) is an example of a language where the space complexity in the fixed-size model is strictly below the space complexity in the variable-size model:

▶ **Lemma 14.** We have $F_L(n) \in \mathcal{O}(\log n)$.

Proof. Let $n \geq 0$ be the window size. For the active window we store (i) the starting position of the leftmost block of length at least n/2 (if such a block does not exist we set a special flag) and (ii) the length of the unique suffix from ab^* (again, a flag is set if the window content is in b^*). This information can be stored with $\mathcal{O}(\log n)$ bits and it can be updated at each step. Moreover, the active window belongs to L if the leftmost block of length at least n/2 starts at position 1.

We now prove the variant of Corollary 13 for the fixed-size model: For the language L from (8) let $K = Lc^*$, which is a deterministic one-turn one-counter language.

▶ Theorem 15. We have $F_K(n) = \Theta((\log n)^2)$.

Proof. Let n be the window size. Consider the maximal suffix of the active window which has the form vc^i where $v \in \{a,b\}^*$. Using $\mathcal{O}(\log n)$ bits we maintain the starting position of that suffix and the length |v|. Furthermore, we maintain the same data structure as in the proof of Lemma 11 for the word $v \in \{a,b\}^*$. The algorithm accepts iff v begins at the first position, the leftmost relevant block also starts at the first position and has length at least |v|/2. In total, the space complexity is bounded by $\mathcal{O}((\log n)^2)$.

The proof for the lower bound is similar to the proof of Lemma 12. Let k be maximal such that $3^k \leq n$. Then the number of bits required to encode an arrangement of length 3^k is $\Omega((\log n)^2)$. The rest of the proof follows the proof of Lemma 12; we only have to replace every \downarrow -operation by the insertion of a c-symbol.

For the language L from (8) let $L' = \{\#^j \operatorname{rev}(u)v\$^i : u \in L, i \geq 0, v \in \{a,b\}^i, j \geq 1\}$. Its reversal $\operatorname{rev}(L') = \{\$^i v \mid i \geq 0, v \in \{a,b\}^i\} L \#^+$ is accepted by a deterministic one-counter three-turn automaton.

▶ **Theorem 16.** We have $V_{L'}(n) = \mathcal{O}((\log n)^2)$ and $F_{L'}(n) \notin o((\log n)^2)$.

Proof. We first exhibit a variable-size sliding window algorithm for L'. Of course, we maintain the window size n. For the active window consider its longest suffix of the form $\#^j w^{si}$ where $w \in \{a,b\}^*$ and $i,j \geq 0$. Using $\mathcal{O}(\log n)$ bits we can maintain the numbers i,j, the length |w|, and the maximal number k such that b^k is a suffix of w.

Furthermore, if $j \geq 1$ we maintain for each relevant block in $\operatorname{rev}(w)$ its starting position and its length, which requires $\mathcal{O}((\log n)^2)$ bits (see the proof of Lemma 11). Let us argue why this information can be maintained. Let n, i, j, k and w have the meaning from the previous paragraph. If j is set from 0 to 1, then w is empty and $\operatorname{rev}(w)$ contains no blocks. If $j \geq 1$ we can prolong w as long as the active window does not end with \$-symbols (i = 0). In this case, every time an a-symbol arrives, a new block in $\operatorname{rev}(w)$ is formed, which has length k+1. If it is not relevant, then it is immediately discarded. Also notice that when w is prolonged by a or b, all relevant blocks in $\operatorname{rev}(w)$ stay relevant. A \downarrow -operation only affects w if $j \in \{0,1\}$ and n=j+|w|+i. In this case j is set to zero, and we no longer have to store the relevant blocks of w.

It remains to show the lower bound. Let the window size n be of the form $2 \cdot 3^k$. Again we show that any fixed-size sliding window algorithm for L' must distinguish any two distinct arrangements. Let $\alpha_1 \neq \alpha_2$ be two arrangements of length 3^k . As shown in the proof of Lemma 12, there exists a number $0 \leq \ell < 3^k$ and an arrangement α_3 of length at most ℓ such that α_1 and α_2 have the suffixes $ab^{\ell}\alpha_3 \in L$ and $b^{\ell+1}\alpha_3 \notin L$, respectively (or vice versa). Without loss of generality, $\alpha_1 = v_1 ab^{\ell}\alpha_3$ and $\alpha_2 = v_2 b^{\ell+1}\alpha_3$ for some $v_1, v_2 \in \{a, b\}^*$. Both words v_1 and v_2 have length $r := 3^k - (\ell + 1 + |\alpha_3|)$. We have

$$\operatorname{last}_{n}(\#^{3^{k}}\operatorname{rev}(\alpha_{1})\$^{r}) = \#^{3^{k}-r}\operatorname{rev}(ab^{\ell}\alpha_{3})\operatorname{rev}(v_{1})\$^{r} \in L' \text{ and } \operatorname{last}_{n}(\#^{3^{k}}\operatorname{rev}(\alpha_{2})\$^{r}) = \#^{3^{k}-r}\operatorname{rev}(b^{\ell+1}\alpha_{3})\operatorname{rev}(v_{2})\$^{r} \notin L'.$$

This shows that the algorithm must distinguish the words $\#^{3^k}\operatorname{rev}(\alpha_1)$ and $\#^{3^k}\operatorname{rev}(\alpha_2)$. Note that adding a \$ at the right end of the word removes the right-most symbol (a or b) in the factor which has to belong to $\operatorname{rev}(L)$ in order to have a word from L'. The rest of the proof follows the arguments from the proof of Lemma 12.

6 Open problems

Our results lead to several open problems; in particular for deterministic context-free languages: Are there deterministic context-free languages where the optimal space bound (for the variable-size or the fixed-size model) is in $o(n) \cap \omega((\log n)^2)$?

An interesting subclass of the deterministic context-free languages are the visibly pushdown languages [2, 9], which are also known as input-driven languages. Visibly pushdown languages have better algorithmic properties than general deterministic context-free languages [2, 9]. Our deterministic context-free languages from Section 5 are not visibly pushdown languages. This leads to the question, whether our space trichotomy result for regular languages [4] extends to visibly pushdown languages (or at least visibly one-counter languages).

References

- 1 Charu C. Aggarwal. Data Streams Models and Algorithms. Springer, 2007.
- 2 Rajeev Alur and P. Madhusudan. Visibly pushdown languages. In *Proceedings of the 36th Annual ACM Symposium on Theory of Computing, STOC 2004*, pages 202–211. ACM Press, 2004.
- 3 Moses Ganardi, Danny Hucke, Daniel König, Markus Lohrey, and Konstantinos Mamouras. Automata theory on sliding windows. In *Proceedings of the 35th Symposium on Theoretical Aspects of Computer Science, STACS 2018*, volume 96 of *LIPIcs*, pages 31:1–31:14. Schloss Dagstuhl Leibniz-Zentrum für Informatik, 2018.
- Moses Ganardi, Danny Hucke, and Markus Lohrey. Querying regular languages over sliding windows. In *Proceedings of the 36th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2016*, volume 65 of *LIPIcs*, pages 18:1–18:14. Schloss Dagstuhl Leibniz-Zentrum für Informatik, 2016.
- 5 Paweł Gawrychowski and Artur Jeż. Hyper-minimisation made efficient. In *Proceedings* of the 34th International Symposium on Mathematical Foundations of Computer Science, MFCS 2009, volume 5734 of Lecture Notes in Computer Science, pages 356–368. Springer, 2009.
- 6 Seymour Ginsburg and Edwin H Spanier. Finite-turn pushdown automata. SIAM Journal on Control, 4(3):429–453, 1966.
- 7 J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages and Computation. Addison-Wesley, Reading, MA, 1979.
- 8 Rohit Parikh. On context-free languages. Journal of the ACM, 13(4):570–581, 1966.
- 9 Burchard von Braunmühl and Rutger Verbeek. Input-driven languages are recognized in log n space. In *Proceedings of the 1983 International FCT-Conference, FCT 1983*, volume 158 of *Lecture Notes in Computer Science*, pages 40–51. Springer, 1983.