
Consensus Strings with Small Maximum Distance
and Small Distance Sum
Laurent Bulteau
Université Paris-Est, LIGM (UMR 8049), CNRS, ENPC, ESIEE Paris, UPEM, F-77454,
Marne-la-Vallée, France
laurent.bulteau@u-pem.fr

Markus L. Schmid
Fachbereich 4 – Abteilung Informatikwissenschaften, Universität Trier, 54286 Trier, Germany
mlschmid@mlschmid.de

Abstract
The parameterised complexity of consensus string problems (Closest String, Closest Sub-
string, Closest String with Outliers) is investigated in a more general setting, i. e., with
a bound on the maximum Hamming distance and a bound on the sum of Hamming distances
between solution and input strings. We completely settle the parameterised complexity of these
generalised variants of Closest String and Closest Substring, and partly for Closest
String with Outliers; in addition, we answer some open questions from the literature re-
garding the classical problem variants with only one distance bound. Finally, we investigate the
question of polynomial kernels and respective lower bounds.

2012 ACM Subject Classification Theory of computation → Problems, reductions and com-
pleteness, Theory of computation → Fixed parameter tractability, Theory of computation → W
hierarchy

Keywords and phrases Consensus String Problems, Closest String, Closest Substring, Paramet-
erised Complexity, Kernelisation

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.1

1 Introduction

Consensus string problems have the following general form: given input strings S =
{s1, . . . , sk} and a distance bound d, find a string s with distance at most d from the
input strings. With the Hamming distance as the central distance measure for strings,
there are two obvious types of distance between a single string and a set S of strings: the
maximum distance between s and any string from S (called radius) and the sum of all
distances between s and strings from S (called distance sum). The most basic consensus
string problem is Closest String, where we get a set S of k length-` strings and a bound
d, and ask whether there exists a length-` solution string s with radius at most d. This
problem is NP-complete (see [16]), but fixed-parameter tractable for many variants (see [17]),
including the parameterisation by d, which in biological applications can often be assumed to
be small (see [12, 18]). A classical extension is Closest Substring, where the strings of S

have length at most `, the solution string must have a given length m and the radius bound d

is w. r. t. some length-m substrings of the input strings. A parameterised complexity analysis
(see [13, 14, 20]) has shown Closest Substring to be harder than Closest String. If we
bound the distance sum instead of the radius, then Closest String collapses to a trivial
problem, while Closest Substring, which is then called Consensus Patterns, remains

© Laurent Bulteau and Markus L. Schmid;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 1; pp. 1:1–1:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/160672442?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:laurent.bulteau@u-pem.fr
mailto:mlschmid@mlschmid.de
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

1:2 Consensus Strings with Small Maximum Distance and Small Distance Sum

NP-complete. Closest String with Outliers is a recent extension, which is defined like
Closest String, but with the possibility to ignore a given number of t input strings.

The main motivation for consensus string problems comes from the important task of
finding similar regions in DNA or other protein sequences, which arises in many different
contexts of computational biology, e. g., universal PCR primer design [9,18,19,23], genetic
probe design [18], antisense drug design [8,18], finding transcription factor binding sites in
genomic data [25], determining an unbiased consensus of a protein family [3], and motif-
recognition [18,21,22]. The consensus string problems are a formalisation of this computational
task and most variants of them are NP-hard. However, due to their high practical relevance,
it is necessary to solve them despite their intractability, which has motivated the study of
their approximability, on the one hand, but also their fixed-parameter tractability, on the
other (see the survey [6] for an overview of the parameterised complexity of consensus string
problems). This work is a contribution to the latter branch of research.

Problem Definition. Let Σ be a finite alphabet, Σ∗ be the set of all strings over Σ,
including the empty string ε and Σ+ = Σ∗ \ {ε}. For w ∈ Σ∗, |w| is the length of w and,
for every i, 1 ≤ i ≤ |w|, by w[i], we refer to the symbol at position i of w. For every
n ∈ N ∪ {0}, let Σn = {w ∈ Σ∗ | |w| = n} and Σ≤n =

⋃n
i=0 Σi. By �, we denote the

substring relation over the set of strings, i. e., for u, v ∈ Σ∗, u� v if v = xuy, for some
x, y ∈ Σ∗. We use the concatenation of sets of strings as usually defined, i. e., for A, B ⊆ Σ∗,
A ·B = {uv | u ∈ A, v ∈ B}.

For strings u, v ∈ Σ∗ with |u| = |v|, dH(u, v) is the Hamming distance between u and v.
For a multi-set S = {ui | 1 ≤ i ≤ n} ⊆ Σ` and a string v ∈ Σ`, for some ` ∈ N, the radius of S

(w. r. t. v) is defined by rH(v, S) = max{dH(v, u) | u ∈ S} and the distance sum of S (w. r. t. v)
is defined by sH(v, S) =

∑
u∈S dH(v, u).1 Next, we state the problem (r, s)-Closest String

in full detail, from which we then derive the other considered problems:

(r, s)-Closest String
Instance: Multi-set S = {si | 1 ≤ i ≤ k} ⊆ Σ`, ` ∈ N, and integers dr, ds ∈ N.
Question: Is there an s ∈ Σ` with rH(s, S) ≤ dr and sH(s, S) ≤ ds?

For (r, s)-Closest Substring, we have S ⊆ Σ≤` and an additional input integer
m ∈ N, and we ask whether there is a multi-set S′ = {s′i | s′i� si, 1 ≤ i ≤ k} ⊆ Σm

with rH(s, S′) ≤ dr and sH(s, S′) ≤ ds. For (r, s)-Closest String with Outliers (or
(r, s)-Closest String-wo for short) we have an additional input integer t ∈ N, and we
ask whether there is a multi-set S′ ⊆ S with |S′| = k − t such that rH(s, S′) ≤ dr and
sH(s, S′) ≤ ds. We also call (r, s)-Closest String the general variant of Closest String,
while (r)-Closest String and (s)-Closest String denote the variants, where the only
distance bound is dr or ds, respectively; we shall also call them the (r)- and (s)-variant of
Closest String. Analogous notation apply to the other consensus string problems. The
problem names that are also commonly used in the literature translate into our terminology
as follows: Closest String = (r)-Closest String, Closest Substring = (r)-Closest
Substring, Consensus Patterns = (s)-Closest Substring and Closest String-wo
= (r)-Closest String-wo.

1 Note that we slightly abuse notation with respect to the subset relation: for a multi-set A and a set B,
A ⊆ B means that A′ ⊆ B, where A′ is the set obtained from A by deleting duplicates; for multi-sets
A, B, A ⊆ B is defined as usual. Moreover, whenever it is clear from the context that we talk about
multi-sets, we also simply use the term set.

L. Bulteau and M. L. Schmid 1:3

The motivation for our more general setting with respect to the bounds dr and ds is the
following. While the distance measures of radius and distance sum are well-motivated, they
have, if considered individually, also obvious deficiencies. In the distance sum variant, we
may consider strings as close enough that are very close to some, but totally different to the
other input strings. In the radius variant, on the other hand, we may consider strings as too
different, even though they are very similar to all input strings except one, for which the
bound is exceeded by only a small amount. Using an upper bound on the distance per each
input string and an upper bound on the total sum of distances caters for these cases.2

For any problem K, by K(p1, p2, . . .), we denote the variant of K parameterised by the
parameters p1, p2, For unexplained concepts of parameterised complexity, we refer to the
textbooks [7, 10,15].

Known Results. In contrast to graph problems, where interesting parameters are often
hidden in the graph structure, string problems typically contain a variety of obvious, but
nevertheless interesting parameters that could be exploited in terms of fixed-parameter
tractability. For the consensus string problems these are the number of input strings k,
their length `, the radius bound dr, the distance sum bound ds, the alphabet size |Σ|, the
substring length m (in case of (r, s)-Closest Substring), the number of outliers t and
inliers k− t (in case of (r, s)-Closest String-wo). This leads to a large number of different
parameterisations, which justifies the hope for fixed-parameter tractable variants.

The parameterised complexity (w. r. t. the above mentioned parameters) of the radius
as well as the distance sum variant of Closest String and Closest Substring has
been settled by a sequence of papers (see [13, 14, 16, 17, 20] and, for a survey, [6]), except
(s)-Closest Substring with respect to parameter `, which has been neglected in these
papers and mentioned as an open problem in [24], in which it is shown that the fixed-parameter
tractability results from (r)-Closest String carry over to (r)-Closest Substring, if we
additionally parameterise by (`−m). The parameterised complexity analysis of the radius
variant of Closest String with Outliers has been started more recently in [5] and, to
the knowledge of the authors, the distance sum variant has not yet been considered.

The parameterised complexity of the general variants, where we have a bound on both the
radius and the distance sum, has not yet been considered in the literature. While there are
obvious reductions from the (r)- and (s)-variants to the general variant, these three variants
describe, especially in the parameterised setting, rather different problems.

Our Contribution. In this work, we answer some open questions from the literature re-
garding the (r)- and (s)-variants of the consensus string problems, and we initiate the
parameterised complexity analysis of the general variants.

We extend all the FPT-results from (r)-Closest String to the general variant; thus, we
completely settle the fixed-parameter tractability of (r, s)-Closest String. While for some
parameterisations, this is straightforward, the case of parameter dr follows from a non-trivial
extension of the known branching algorithm for (r)-Closest String(dr) (see [17]).

For (r, s)-Closest Substring, we classify all parameterised variants as being in FPT or
W[1]-hard, which is done by answering the open question whether (s)-Closest Substring(`)
is in FPT (see [24]) in the negative (which also settles the parameterised complexity of
(s)-Closest Substring) and by slightly adapting the existing FPT-algorithms.

2 To the knowledge of the authors, optimising both the radius and the distance sum has been considered
first in [1], where algorithms for the special case k = 3 are considered.

MFCS 2018

1:4 Consensus Strings with Small Maximum Distance and Small Distance Sum

Regarding (r, s)-Closest String-wo, we solve an open question from [5] w. r. t. the
radius variant, we show W[1]-hardness for a strong parameterisation of the (s)-variant, we
show fixed-parameter tractability for some parameter combinations of the general variant and,
as our main result, we present an FPT-algorithm (for the general variant) for parameters dr

and t (which is the same algorithm that shows (r, s)-Closest String(dr) ∈ FPT mentioned
above). Many other cases are left open for further research.

Finally, we investigate the question whether the fixed-parameter tractable variants of the
considered consensus string problems allow polynomial kernels; thus, continuing a line of work
initiated by Basavaraju et al. [2], in which kernelisation lower bounds for (r)-Closest String
and (r)-Closest Substring are proved. Our respective main result is a cross-composition
from (r)-Closest String into (r)-Closest String-wo.

Due to space constraints, proofs for results marked with (∗) are omitted.

2 Closest String and Closest String-wo

In this section, we investigate (r, s)-Closest String and (r, s)-Closest String-wo (and
their (r)- and (s)-variants) and we shall first give some useful definitions.

It will be convenient to treat a set S = {si | 1 ≤ i ≤ k} ⊆ Σ` as a k × ` matrix with
entries from Σ. By the term column of S, we refer to the transpose of a column of the matrix
S, which is an element from Σk; thus, the introduced string notations apply, e. g., if c is the
ith column of S, then c[j] corresponds to sj [i]. A string s ∈ Σ` is a majority string (for a
set S ⊆ Σ`) if, for every i, 1 ≤ i ≤ `, s[i] is a symbol with majority in the ith column of S.
Obviously, sH(s, S) = min{sH(s′, S) | s′ ∈ Σ`} if and only if s is a majority string for S. We
call a string s ∈ Σ` radius optimal or distance sum optimal (with respect to a set S ⊆ Σ`) if
rH(s, S) = min{rH(s′, S) | s′ ∈ Σ`} or sH(s, S) = min{sH(s′, S) | s′ ∈ Σ`}, respectively.

It is a well-known fact that (r)-Closest String allows FPT-algorithms for any of the
single parameters k, dr or `, and it is still NP-hard for |Σ| = 2 (see [17]). While the latter
hardness result trivially carries over to (r, s)-Closest String (by setting ds = k dr), we
have to modify the FPT-algorithms for extending the fixed-parameter tractability results
to (r, s)-Closest String. We start with parameter k, for which we can extend the ILP-
approach that is used in [17] to show (r)-Closest String(k) ∈ FPT.

I Theorem 1 (*). (r, s)-Closest String(k) ∈ FPT.

Next, we consider the parameter dr. For the (r)-variant of (r, s)-Closest String,
the fixed-parameter tractability with respect to dr is shown in [17] by a branching al-
gorithm, which proved itself as rather versatile: it has successfully been extended in [5] to
(r)-Closest String-wo(dr, t) and in [24] to (r)-Closest Substring(dr, (`−m)).

We propose an extension of the same branching algorithm, that allows for a bound ds on the
distance sum; thus, it works for (r, s)-Closest String(dr). In fact, we prove in Theorem 7
an even stronger result, where we also extend the algorithm to exclude up to t outlier strings
from the input set S, i. e., we extend it to the problem (r, s)-Closest String-wo(dr, t).
Since Theorem 3 can therefore be seen as a corollary of this result by taking t = 0, we only
give an informal description of a direct approach that solves (r, s)-Closest String(dr) (and
refer to Theorem 7 for a formal proof).

The core idea is to apply the branching algorithm starting with the majority string for
the input set S, instead of any random string from S. Then, as in [17], the algorithm would
replace some characters of the current string with characters of the solution string. This way,
it can be shown that the distance sum of the current string is always a lower bound of the

L. Bulteau and M. L. Schmid 1:5

Table 1 Results for (r, s)-Closest String.

k dr ds |Σ| ` Result Note/Ref.

p – – – – FPT Thm. 1
– p – – – FPT Thm. 3
– – p – – FPT Cor. 4
– – – 2 – NP-hard from (r)-variant [16]
– – – – p FPT Cor. 4

distance sum of the optimal string, which allows to cut any branch where the distance sum
goes beyond the threshold ds. We prove the following lemma, which allows to bound the
depth of the search tree (and shall also be used in the proof of Theorem 7 later on):

I Lemma 2 (*). Let S ⊆ Σ`, s ∈ Σ` such that rH(s, S) ≤ dr, and let sm be a majority string
for S. Then dH(sm, s) ≤ 2dr.

I Theorem 3. (r, s)-Closest String(dr) ∈ FPT.

Obviously, we can assume dr ≤ ` and we can further assume that every column of S

contains at least two different symbols (all columns without this property could be removed),
which implies sH(si, S) ≥ ` for every s ∈ Σ`; thus, we can assume ` ≤ ds. Consequently, we
obtain the following corollary:

I Corollary 4. (r, s)-Closest String(`) ∈ FPT, (r, s)-Closest String(ds) ∈ FPT.

This completely settles the parameterised complexity of (r, s)-Closest String with
respect to parameters k, dr, ds, |Σ| and `; recall that the (r)-variant is already settled, while
the (s)-variant is trivial.

2.1 (r, s)-Closest String-wo
We now turn to the problem (r, s)-Closest String-wo and we first prove several fixed-
parameter tractability results for the general variant; in Sec. 2.2, we consider the (r)- and
(s)-variants separately.

First, we note that solving an instance of (r, s)-Closest String-wo(k) can be reduced
to solving f(k) many (r, s)-Closest String(k)-instances, which, due to the fixed-parameter
tractability of the latter problem, yields the fixed-parameter tractability of the former.

I Theorem 5 (*). (r, s)-Closest String-wo(k) ∈ FPT.

If the number k − t of inliers exceeds ds, then an (r, s)-Closest String-wo-instance
becomes easily solvable; thus, k − t can be bounded by ds, which yields the following result:

I Theorem 6 (*). (r, s)-Closest String-wo(ds, t) ∈ FPT.

The algorithm introduced in [17] to prove (r)-Closest String(dr) ∈ FPT has been exten-
ded in [5] with an additional branching that guesses whether a string sj should be considered an
outlier or not; thus, yielding fixed-parameter tractability of (r)-Closest String-wo(dr, t).
We present a non-trivial extension of this algorithm, with a carefully selected starting
string, to obtain the fixed-parameter tractability of (r, s)-Closest String-wo(dr, t) (and,
as explained in Section 2, also of (r, s)-Closest String(dr)):

I Theorem 7. (r, s)-Closest String-wo(dr, t) ∈ FPT.

MFCS 2018

1:6 Consensus Strings with Small Maximum Distance and Small Distance Sum

Input: s1 = d b a d d c b c d b b d b b
dr = 5 s2 = d a a a a c b c d c c d b d
ds = 14 s3 = d a a d d a b c a c c d b d
t = 2 s4 = a a c d a c c d c c c a b d

s5 = a a c d a a b d a c c a d d
D = 10 s6 = a c a a a a b c d d b a d d

Step S′ t s′ d rH(s′, S′) action
1 {s1, s2, . . . , s6} 2 � a � � � � b � � c � � � d 20 13 s[3]← s1[3]
2 {s1, s2, . . . , s6} 2 � a a � � � b � � c � � � d 19 12 s[12]← s1[12]
3 {s1, s2, . . . , s6} 2 � a a � � � b � � c � d � d 18 11 remove s6
4 {s1, s2, . . . , s5} 1 � a a � � � b � � c � d � d 18 11 s[6]← s1[6]
5 {s1, s2, . . . , s5} 1 � a a � � c b � � c � d � d 17 10 remove s5
6 {s1, . . . , s4} 0 � a a � � c b � � c � d � d 17 10

s′′ = d a a d a c b c d c c d b d s[7]← s4[7]
7 {s1, . . . , s4} 0 � a a � � c c � � c � d � d 16 10

s′′ = d a a d a c c c d c c d b d return S′, s′′

Figure 1 Example for Algorithm 1 on an instance of (r, s)-Closest String-wo. The shown
steps correspond to one branch that yields a correct solution. The algorithm starts with the majority
string where disputed characters are replaced by �. At each step, the algorithm either inserts a
character from an input string at maximal distance from s′ (note that even non-disputed characters
may be replaced), or removes one such string. When t = 0, it is checked whether the completion s′′

of s′ is a correct solution. At step 7, we return a solution with rH(s′′, S′) = 5 and sH(s′′, S′) = 14.

Proof. Let (S, ds, dr, t) be a positive instance of (r, s)-Closest String-wo(dr, t) with k ≥
5t (otherwise k can be considered as a parameter). A character x is frequent in column i if it
has at least as many occurrences as the majority character minus t (thus, for any S′ ⊆ S,
|S′| ≥ |S| − t, all majority characters for S′ are frequent characters). A column i is disputed
if it contains at least two frequent characters. Let D be the number of disputed columns.

Let (S∗, s∗) be a solution for this instance. In a disputed column i, no character
occurs more than k+t

2 times, hence, among the k − t strings of S∗, there are at least
(k− t)− k+t

2 = k−3t
2 mismatches at position i. The disputed columns thus introduce at least

D k−3t
2 mismatches. Since the overall number of mismatches is upper-bounded by dr(k − t),

we have D ≤ 2dr(k−t)
k−3t = 2dr

(
1 + 2t

k−3t

)
, and, with k ≥ 5t, the upper-bound D ≤ 4dr follows.

We introduce a new character � /∈ Σ. A string s′ ∈ (Σ ∪ {�})` is a lower bound for a
solution s∗, if, for every i such that s′[i] 6= s∗[i], either i is a disputed column and s′[i] = �, or
i is not disputed and s′[i] is the majority character for column i of S∗ (which is equal to the
majority character for column i of S). Intuitively speaking, whenever a character s′[i] differs
from s∗[i], it is the majority character of its column (except for disputed columns in which
we use an “undecided” character �). Finally, the completion for S′ of a string s′ ∈ (Σ∪ {�})∗
is the string obtained by replacing each occurrence of � by a majority character of the
corresponding column in S′.

We now prove that Algorithm 1 solves (r, s)-Closest String-wo in time at most
O∗((dr + 1)6dr 26dr+t), using the following three claims (see Figure 1 for an example).

Claim 1. Any call to Solve Closest String-wo(S′, t, s′, d) always returns after a time
O∗((dr + 1)d2d+t).

L. Bulteau and M. L. Schmid 1:7

ALGORITHM 1: Solve Closest String-wo.
Input : S′ ⊆ S, t ∈ N, s′ ∈ (Σ ∪ {�})`, d ∈ N
Output : a pair (S∗, s∗) or the symbol O

1 if t = 0 then
2 s′′ = completion of s′ in S′;
3 if sH(s′′, S′) ≤ ds, and rH(s′′, S′) ≤ dr then return (S′, s′′);
4 if d = 0 then return O;
5 Let sj ∈ S′ be such that dH(s′, sj) is maximal;
6 if t > 0 then
7 sol = Solve Closest String-wo(S′ \ {sj}, t− 1, s′, d);
8 if sol 6= O then return sol;
9 if d > 0 then

10 Let I ⊆ {1, . . . , `} contain dr + 1 indices i s. t. s′[i] 6= sj [i] (or all indices if dH(sj , s′) ≤ dr);
11 for i ∈ I do
12 s′′ = s′, s′′[i] = sj [i];
13 sol = Solve Closest String-wo(S′, t, s′′, d− 1);
14 if sol 6= O then return sol;
15 return O;

Proof of Claim 1. We prove this running time by induction: if d = t = 0, then the function
returns in Line 3 or 4; thus, it returns after polynomial time. Otherwise, it performs at most
dr +1 recursive calls with parameters (d−1, t), and one recursive call with parameters (d, t−1).
By induction, the complexity of this step is O∗((dr +1)(dr +1)d−12d+t−1 +(dr +1)d2d+t−1) =
O∗((dr + 1)d2d+t). J

A tuple (S′, t′, s′, d) is valid if |S′| − t′ = |S| − t, there exists an optimal solution (S∗, s∗)
for which S∗ ⊆ S′, |S∗| = |S′| − t′, dH(s′, s∗) ≤ d, and s′ is a lower bound for s∗. A call of
the algorithm is valid if its parameters form a valid tuple, its witness is the pair (S∗, s∗).

Claim 2. Any valid call to Solve Closest String-wo either directly returns a solution
or performs at least one recursive valid call.

Proof of Claim 2. Let S′ ⊆ Σ`, t′ ≥ 0, s′ ∈ (Σ ∪ {�})`, and d ≥ 0. Consider the call to
Solve Closest String-wo(S′, t′, s′, d). Assume it is valid, with witness (S∗, s∗).

Case 1. If d = t′ = 0, then s∗ = s′ and S∗ = S′. The completion s′′ of s′ is exactly s′, and
since (S′, s′) is a solution, it satisfies the conditions of Line 3 and is returned on Line 3.

Case 2. If t′ = 0 and ∀s ∈ S′ : dH(s, s′) ≤ dr. Then S∗ = S′ and s′ is a lower bound for
s∗. Let s′′ be the completion of s′. We show that sH(s′′, S′) ≤ sH(s∗, S′) ≤ ds. Indeed,
consider any column i with s′′[i] 6= s∗[i]. Either s′[i] = �, in which case s′′[i] is the
majority character for column i of S′, or s′[i] 6= �, in which case by the definition of lower
bound, i is not a disputed column and s′[i] = s′′[i] contains the only frequent character
of this column, which is the majority character for S′. In both cases, s′′[i] is a majority
character for S′ in any column where it differs from s∗; thus, it satisfies the upper-bound
on the distance sum. Since it also satisfies the distance radius (by the case hypothesis:
dH(s, s′′) ≤ dH(s, s′) ≤ dr for all s ∈ S′), it satisfies the conditions of Line 3; thus, solution
(S′, s′′) is returned on Line 3.
In the following cases, we can thus assume that the algorithm reaches Line 5. Indeed, if
it returns on Line 3 then it returns a solution, and if it returns on Line 4 then we have
d = t′ = 0, which is dealt in Case 1 above (the algorithm may not return on this line
when it has a valid input). We can thus define sj to be the string selected in Line 5.

MFCS 2018

1:8 Consensus Strings with Small Maximum Distance and Small Distance Sum

Case 3. sj ∈ S′ \ S∗. Then in particular t′ > 0; and since S∗ ⊆ S′ \ {sj}, the recursive call
in Line 7 is valid, with the same witness (S∗, s∗).

Case 4. sj ∈ S∗, d = 0 and t′ > 0. Then s′ = s∗, let s′j be any string of S′ \ S∗, and
S+ = S∗ \ {s′j} ∪ {sj}. Then the pair (S+, s∗) is a solution, since dH(s∗, s′j) ≤ dH(s∗, sj)
by definition of sj . Thus the recursive call on Line 7 is valid, with witness (S+, s∗).

Case 5. sj ∈ S∗, d > 0 and dH(sj , s′) > dr. Consider the set I defined in Line 10. I has size
dr + 1, hence there exists i0 ∈ I such that sj [i0] = s∗[i0]. Then the recursive call with
parameters (S′, t, s′′, d− 1) in Line 13 with i = i0 is valid with the same witness (S∗, s∗).
Indeed, s′′ is obtained from s′ by setting s′′[i0] = s∗[i0] 6= s′[i0], hence, all mismatches
between s′′ and s∗ already exist between s′ and s∗, which implies that s′′ is still a lower
bound for s∗. Moreover, dH(s′′, s∗) = dH(s′, s∗)− 1 ≤ d− 1.
From now on, we can assume that d > 0 and t′ > 0. Indeed, d = 0 is dealt with in cases
1, 3 and 4, and t′ = 0, d > 0 is dealt with in cases 2 and 5. Moreover, with cases 3 and 5,
we can assume that sj ∈ S∗ and dH(sj , s′) ≤ dr (i.e. dH(s, s′) ≤ dr for all s ∈ S∗).

Case 6. There exists i0 such that sj [i0] = s∗[i0] 6= s′[i0]. Then again consider the set I

defined in Line 10. Since dH(sj , s′) ≤ dr, we have i0 ∈ I, and, with the same argument as
in Case 5, there is a valid recursive call in Line 13 when i = i0.

Case 7. For all i, sj [i] 6= s′[i]⇒ sj [i] 6= s∗[i]. In this case no character from sj can be used
to improve our current solution, so the character switching procedure Line 13 will not
improve the solution, but still sj is part of our witness set S∗, so it is not clear a priori
that we can remove sj from our current solution, i.e. that the recursive call on Line 7 is
valid.
We handle this situation as follows. Let s+ be obtained from s′ by filling the �-positions of
s′ with the corresponding symbols of s∗. We now show that (S∗, s+) is a solution. To this
end, let s ∈ S∗. For every i, 1 ≤ i ≤ `, if s[i] 6= s+[i], then either s′[i] = � or s′[i] ∈ Σ with
s′[i] = s+[i]. In both cases, we have s[i] 6= s′[i], which implies dH(s, s+) ≤ dH(s, s′) ≤ dr,
i. e., the radius is satisfied. Regarding the distance sum, we note that if s+[i] 6= s∗[i],
then, since occurrences of � of s′ have been replaced by the corresponding symbol from s∗,
s′[i] 6= �, which, by the definition of lower bound, implies that s+[i] = s′[i] is the majority
character for column i of S∗. Consequently,

∑
s∈S∗ dH(s+[i], s[i]) ≤

∑
s∈S∗ dH(s∗[i], s[i]),

which implies sH(s+, S∗) ≤ sH(s∗, S∗) ≤ ds.
Having defined a new solution string s+ (with respect to S∗), we now prove that s+

is also a solution string with respect to S+ = (S∗ \ {sj}) ∪ {s′j}, where s′j is any
string of S′ \ S∗. To this end, we prove that dH(s′j , s+) ≤ dH(sj , s+); together with
the fact that dH(s′j , s′) ≤ dr, this implies that (S+, s+) is a solution. For two strings
s1, s2 ∈ Σ`, let d�(s1, s2) be the number of mismatches between s1 and s2 at positions
i such that s′[i] = �, and dΣ(s1, s2) be the number of mismatches at other positions.
Clearly dH(s1, s2) = d�(s1, s2) + dΣ(s1, s2). Comparing strings sj and s′j to s′, we have
d�(sj , s′) = d�(s′j , s′) (both distances are equal to the number of occurrences of � in s′).
Since dH(sj , s′) is maximal, we have dΣ(s′j , s′) ≤ dΣ(sj , s′). Consider now s+. Since s+

is equal to s′ in every non-� characters, we have dΣ(s′j , s+) ≤ dΣ(sj , s+). Finally, for
any i such that s′[i] = �, by hypothesis of this case we have sj [i] 6= s∗[i] = s+[i], hence
d�(sj , s+) is equal to the number of occurrences of � in s′, which is an upper bound for
d�(s′j , s+). Overall, d(s′j , s+) ≤ d(sj , s+), and (S+, s+) is a solution.
Thus, (S+, s+) is a solution such that S+ ⊆ S′ \ {sj}, s′ is a lower bound for s+, and
dH(s′, s+) ≤ d, hence the recursive call in Line 7 is valid. J

It follows from the claim above that any valid call to Solve Closest String-wo returns
a solution. Indeed, if it does not directly return a solution, then it receives a solution of a
more constrained instance from a valid recursive call, which is returned on Line 8 or 14.

L. Bulteau and M. L. Schmid 1:9

Claim 3. Let s′ be the majority string for S where for every disputed column i, s′[i] = �.
Then Solve Closest String-wo(S, t, s′, 2dr + D) is a valid call.

Proof of Claim 3. Consider a solution (S∗, s∗). We need to check whether dH(s∗, s′) ≤
2dr +D, and whether s′ is a lower bound of s∗. The fact that s′ is a lower bound follows from
the definition, since � is selected in every disputed column, and the majority character is
selected in the other columns. String s∗ can be seen as a solution of (r, s)-Closest String
over S∗, dr, ds, thus, we can use Lemma 2: the distance between s∗ and the majority string of
S∗ is at most 2dr. Hence there are at most 2dr mismatches between s′ and s∗ in non-disputed
columns (since in those columns, the majority characters are identical in S and S∗). Adding
the D mismatches from disputed columns, we get the 2dr + D upper bound. J

J

2.2 The (r)- and (s)-Variants of Closest String-wo
In [5], the fixed-parameter tractability of (r)-Closest String-wo w. r. t. parameter k and
w. r. t. parameters (|Σ|, dr, k− t) are reported as open problems. Since Theorem 5 also applies
to (r)-Closest String-wo, the only open cases left for the (r)-variant are the following:

I Open Problem 8. What is the fixed-parameter tractability of (r)-Closest String-wo
with respect to (|Σ|, k − t), (|Σ|, dr) and (|Σ|, dr, k − t)?

Next, we consider the (s)-variant of Closest String-wo. We recall that replacing
the radius bound by a bound on the distance sum turns (r)-Closest String into a
trivial problem, while (s)-Closest Substring remains hard. The next result shows that
Closest String-wo behaves like Closest Substring in this regard. For the proof, we
use Multi-Coloured Clique (which is W[1]-hard, see [11]), which is identical to the
standard parameterisation of Clique, but the input graph G = (V, E) has a partition
V = V1 ∪ . . . ∪ Vkc , such that every Vi, 1 ≤ i ≤ kc, is an independent set (we denote the
parameter by kc to avoid confusion with the number of input strings k).

I Theorem 9. (s)-Closest String-wo(ds, `, k − t) is W[1]-hard.

Proof. Let G = (V1 ∪ . . . ∪ Vkc , E) be a Multi-Coloured Clique-instance. We assume
that, for some q ∈ N, Vi = {vi,1, vi,2, . . . vi,q}, 1 ≤ i ≤ kc, i. e., each vertex has an index
depending on its colour-class and its rank within its colour-class. Let Σ = V ∪ Γ, where
Γ is some alphabet with |Γ| = |E|(kc−2). For every e = (vi,j , vi′,j′) ∈ E, let se ∈ Σkc

with se[i] = vi,j , se[i′] = vi′,j′ and all other non-defined positions are filled with symbols
from Γ such that each x ∈ Γ has exactly one occurrence in the strings se, e ∈ E. We set
S = {se | e ∈ E}, t = |E| −

(kc
2
)
(i. e., the number of inliers is

(kc
2
)
) and ds =

(kc
2
)
(kc−2).

Let K be a clique of G of size kc, let s ∈ Σkc be defined by {s[i]} = K∩Vi, 1 ≤ i ≤ kc, and
let S′ = {se | e ⊆ K}. Since dH(s, s′) = kc−2, for every s′ ∈ S′, sH(s, S′) = ds. Consequently,
S′ and s is a solution for the (s)-Closest String-wo-instance S, t, ds.

Now let s ∈ Σkc and S′ ⊆ S with |S′| =
(kc

2
)
be a solution for the (s)-Closest String-wo-

instance S, t, ds. If, for some s′1 ∈ S′, dH(s′1, s) ≥ kc−1, then there is an s′2 ∈ S′ with
dH(s′2, s) ≤ kc−3. Thus, for some i, 1 ≤ i ≤ kc, s[i] = s′2[i] and s′2[i] ∈ Γ, which implies that
replacing s[i] by s′1[i] does not increase sH(s, S′). Moreover, after this modification, dH(s′1, s)
has decreased by 1, while dH(s′2, s) ≤ kc−2. By repeating such operations, we can transform
s such that dH(s′, s) ≤ kc−2, s′ ∈ S′. Next, assume that, for some i, 1 ≤ i ≤ kc, there is an
S′′ ⊆ S′ with |S′′| = kc and, for every s′ ∈ S′′, s[i] = s′[i]. Since dH(s′, s) ≤ kc−2 for every

MFCS 2018

1:10 Consensus Strings with Small Maximum Distance and Small Distance Sum

Table 2 Results for (r, s)-Closest String-wo, including (r)- and (s)-variants.

k t |Σ| ` dr ds k − t Result Note/Ref.

p – – – – – – FPT Thm. 5, Open Prob. in [5]
– 0 2 – – – – NP-hard even for dr-var., but P for ds-var.
– p – p – – – FPT dr ≤ `

– p – – p – – FPT Thm. 7, and [5] for dr-var.
– p – – – p – FPT Thm. 6
– p – – – – p FPT k = t + (k − t)
– – p p – – – FPT trivial
– – p – ? ? ? Open param. |Σ| and some of dr, ds, k − t

– – – p p p p W[1]-hard even for dr-var. [5] and ds-var. (Thm. 9)

s′ ∈ S′′, pigeon-hole principle implies that there are s′1, s′2 ∈ S′′ with s′1[i′] = s′2[i′] = s[i′], for
some i′, 1 ≤ i′ ≤ kc, and i′ 6= i, which, by the structure of the strings of S, is a contradiction.
Consequently, for every i, 1 ≤ i ≤ kc, s matches with at most kc−1 strings from S′ at
position i. Since there are at least 2

(kc
2
)

= kc(kc−1) matches, we conclude that, for every
i, 1 ≤ i ≤ kc, s[i] matches exactly kc − 1 times with the ith position of a string from
S′. Hence, s[i] ∈ Vi, 1 ≤ i ≤ kc, i. e., s = v1,r1v2,r2 . . . vkc,rkc

, for some rj ∈ {1, 2, . . . , q},
1 ≤ j ≤ kc. Let K = {v1,r1 , v2,r2 , . . . , vkc,rkc

}. For every s′ ∈ S′, by definition of the strings
se, we have dH(s, s′) ≥ kc−2, combining with the lower-bound proved ealier, we conclude
dH(s, s′) = kc−2, for every s′ ∈ S. Now let e = (vi,j , vi′,j′) ∈ E be such that se ∈ S′. From
dH(s, se) = kc−2 its follows that s[i] = vi,j and s[i′] = vi′,j′ , which implies e ⊆ K. Since
|S| =

(kc
2
)
, there are

(kc
2
)
edges connecting vertices from K; thus, K is a clique. J

Setting dr = kc−2 instead of ds =
(kc

2
)
(kc−2) in the reduction of Theorem 9 leads to a

simpler proof for the W[1]-hardness of (r)-Closest String-wo(dr, `, k− t) shown in [5] (on
the other hand, the reduction of [5] does not work for (s)-Closest String-wo(ds, `, k− t)).
The results obtained in this section are summarized in Table 2.

3 Closest Substring

In this section, we consider the problem (r, s)-Closest Substring and, as done in Section 2
for (r, s)-Closest String, we classify all parameterisations of (r, s)-Closest Substring
(and its (r)- and (s)-variants) with respect to the parameters `, k, m, dr, ds and |Σ| into
either fixed-parameter tractable or W[1]-hard. Of course, many of those questions are already
solved in the literature, but, unlike for (r, s)-Closest String, not all cases of the (r)- and
(s)-variants are settled, i. e., the status of (s)-Closest Substring(`) is unknown, which is
mentioned as open problem in [24]. We shall first close this gap by defining a reduction from
Multi-Coloured Clique to (s)-Closest Substring.

Let G = (V1∪. . .∪Vkc , E) be a Multi-Coloured Clique-instance. We assume that, for
some q ∈ N, Vi = {vi,1, vi,2, . . . vi,q}, 1 ≤ i ≤ kc, i. e., each vertex has an index depending on
its colour-class and its rank within its colour-class. Let Σ = V ∪{$, �}. For every j, 1 ≤ j ≤ q,
we list all jth elements of the colour-classes as a string Vj = $v1,jv2,j . . . vkc,j . For every edge
e = (vi,j , vi′,j′) with i < i′, we define a string Ee = $�ivi,j�i′−i−1vi′,j′�kc−i′−1. Note that
Ee = $�E ′e, where |E ′e| = kc, the positions i and i′ of E ′e are vi,j and vi′,j′ , respectively, and all
remaining positions are �. The (s)-Closest Substring-instance is now defined as follows.
Let S contain N = |E|(kc +2) + 1 occurrences of each Vj , 1 ≤ j ≤ q, and one occurrence of
each Ee, e ∈ E, and let m = kc +1. We note that ` = kc +2. See Figure 2 for an example.

L. Bulteau and M. L. Schmid 1:11

a

b

c

d

e

f

V1 : $ a c e

V2 : $ b d f

E1 : $ � a c �
E2 : $ � a d �
E3 : $ � a � e

E4 : $ � b c �
E5 : $ � b � e

E6 : $ � � c f

E7 : $ � � d e

s : $ a d e

Repeat

N = 36

times

Figure 2 Illustration of the parameterized reduction from a Multi-Coloured Clique-instance
to (s)-Closest Substring. The colour-classes of the graph are V1 = {a, b} (red), V2 = {c, d} (blue)
and V1 = {e, f} (yellow), the occurrences of symbols from V in the strings Vj and Ei are coloured
according to their colour-classes. The string s = $ade is an optimal solution with respect to the
substrings emphasised with grey background (positions producing a match are in bold). Note that
vertices {a, d, e} form a clique in G.

In the following, we extend the notation of radius optimal and distance sum optimal
to sets S ⊆ Σ≤` and strings s ∈ Σm in the natural way by taking all sets S′ of length-m
substrings of the string in S into account. The next lemma shows that distance sum optimal
strings (with respect to S and m) are basically lists of vertices from each colour-class.

I Lemma 10 (*). If s ∈ Σk+1 is distance sum optimal w. r. t. S, then s ∈ {$} ·V1 ·V2 · . . . ·Vk.

Now let s be distance sum optimal with respect to S and m. From Lemma 10, we can
conclude that s = $v1,r1v2,r2 . . . vkc,rkc

, for some rj ∈ {1, 2, . . . , q}, 1 ≤ j ≤ kc. Let K be the
corresponding set of vertices, i. e., K = {v1,r1 , v2,r2 , . . . , vkc,rkc

}.

I Lemma 11 (*). Let e ∈ E. The optimal distance between s and a length-(kc +1) substring
of Ee is kc−1 if e ⊆ K, and kc otherwise.

Using the lemmas from above, we can now show the correctness of the reduction.

I Theorem 12. (s)-Closest Substring(`, m) is W[1]-hard.

Proof. Let s ∈ Σkc +1 be distance sum optimal with respect to S and m, and let K

be the corresponding set of vertices. We first note that the total distance from s to
the N copies of the strings Vj , 1 ≤ j ≤ q, is exactly Nq kc. According to Lemma 11,
for every e ∈ E, the optimal distance sum between s and the respective substring of
Ee is kc−1 if e ⊆ K, and kc otherwise. Hence, the total distance sum from s to the
respective substrings of Ee, e ∈ E, is |E| kc−r, where r = {e ∈ E | e ⊆ K}, and the
total distance sum between s and S is therefore Nq kc +|E| kc−r. This implies that the
distance sum between s and S is Nq kc +|E| kc−kc(kc−1)

2 if and only if r = kc(kc−1)
2 if and

only if K is a clique of size kc. Consequently, the above reduction, with the addition of
ds = Nq kc +|E| kc−kc(kc−1)

2 , is a parameterised reduction from Multi-Coloured Clique
to (s)-Closest Substring(`, m). J

MFCS 2018

1:12 Consensus Strings with Small Maximum Distance and Small Distance Sum

Table 3 Results for (s)-Closest Substring.

` k m ds |Σ| Result Reference

– – p – p FPT trivial
p – – – p FPT [24]
p p – – – FPT [24]
p – – p – FPT [24]
– – – p p FPT [20]
– p – – 2 W[1]-hard [14]
– p p p – W[1]-hard [14]
p – p – – W[1]-hard Thm. 12

Table 4 Results for (r, s)-Closest Substring.

` k m dr ds |Σ| Result Reference

– – p – – p FPT Thm. 14
p p – – – – FPT Thm. 14
p – – – p – FPT Thm. 14
p – – – – p FPT Thm. 14
p – p p – – W[1]-hard Cor. 13, Open Prob. in [24]
– p – p p p W[1]-hard [20]
– p p p p – W[1]-hard [14]

As illustrated by Table 3, Theorem 12 together with known results from the literature
completely settle the parameterised complexity of (s)-Closest Substring.

Moving on to the problem (r, s)-Closest Substring, we first observe that reducing
(s)-Closest Substring to (r, s)-Closest Substring by setting dr = m is a parameterised
reduction from (s)-Closest Substring(`, m) to (r, s)-Closest Substring(`, m, dr), which
implies the following corollary:

I Corollary 13. (r, s)-Closest Substring(`, m, dr) is W[1]-hard.

Next, we consider several fixed-parameter tractable variants of (r, s)-Closest Substring.

I Theorem 14 (*). (r, s)-Closest Substring(x) ∈ FPT, for every x ∈ {(m, |Σ|), (`, k),
(`, |Σ|), (`, ds)}.

It remains to observe that all remaining parameterisations of (r, s)-Closest Substring
are W[1]-hard. More precisely, it is known that (r)-Closest Substring is W[1]-hard
for parameterisations (k, dr, |Σ|) (see [20]) and (k, m, dr) (see [14]). Hence, the obvious
reduction from (r)-Closest Substring to (r, s)-Closest Substring, i. e., setting ds =
k dr, shows that (r, s)-Closest Substring is W[1]-hard for parameterisations (k, dr, ds, |Σ|)
and (k, m, dr, ds). As can be checked with the help of Table 4, this now classifies all
parameterised variants of (r, s)-Closest Substring.

4 Kernelisation

Neither (r)-Closest String(dr, `, |Σ|) nor (r)-Closest Substring(k, m, dr) admit poly-
nomial kernels unless coNP ⊆ NP/Poly (see [2]), and (r)-Closest String(k, dr) has a kernel
of size O(k2dr log k) (see [17]). From these results, we can conclude the following:

L. Bulteau and M. L. Schmid 1:13

I Proposition 15 (*).
(r, s)-Closest String(dr, `, |Σ|) has no polynomial kernel unless coNP ⊆ NP/Poly.
(r, s)-Closest String(k, dr) has a kernel of size O(k2dr log k).
(r, s)-Closest String(ds) has a kernel of size O((ds)3 log ds).

This only leaves the case open, where only k (or k and |Σ|, which, due to the dependency
|Σ| ≤ k (see [17]), is the same question) is a parameter (regarding this case, note that for
(r)-Closest String(k) no combinatorial kernel or combinatorial FPT-algorithm is known).

I Proposition 16 (*).
(r, s)-Closest Substring(k, m, dr, ds, |Σ|) has no polynomial kernel unless coNP ⊆
NP/Poly.
(r, s)-Closest Substring(`, k) and (r, s)-Closest Substring(`, ds) have kernels of
size O(`k) and O(`ds), respectively.

This almost settles the (r, s)-variant, for which only the parameterisation (`, |Σ|) is open.
For the (r)-variant, the parameterisations `, (`, dr) and (`, |Σ|), and for the (s)-variant, the
parameterisations (m, |Σ|) and (ds, |Σ|) are open.

For (r)-Closest String-wo no kernelisation lower bounds are known so far. However,
the following can be concluded from [2]:

I Proposition 17 (*). (r)-Closest String-wo(dr, `, t, |Σ|) has no polynomial kernel unless
coNP ⊆ NP/Poly.

By a cross-composition3 from (r)-Closest String into (r)-Closest String-wo, we
can rule out a polynomial kernel for the parameterisation (dr, ds, `, (k − t), |Σ|).

To this end, we define a polynomial equivalence relation ∼ over the (r)-Closest String-
instances as follows. For j ∈ {1, 2}, let Sj = {sj,i | 1 ≤ i ≤ kj} ⊆ Σ`j and dr,j ∈ N. Then
(S1, dr,1) ∼ (S2, dr,2) if k1 = k2, `1 = `2 and dr,1 = dr,2. Now let (S1, dr), (S2, dr), . . . , (Sq, dr)
be ∼-equivalent (r)-Closest String-instances, where, for the sake of convenience, Si =
{si,1, si,2, . . . , si,k} ⊆ Σ`, 1 ≤ i ≤ q. For every i, 1 ≤ i ≤ q, let Bi denote the binary
representation of i with exactly dlog(q)e bits, and let Ci = (Bi)2dr+1. Moreover, for every i,
1 ≤ i ≤ q, let S′i = {s′i,1, s′i,2, . . . , s′i,k}, where, for every j, 1 ≤ j ≤ k, s′i,j = si,jCi. Finally,
let the (r, s)-Closest String-wo-instance be (S′, d′r, d′s, t) with S′ =

⋃q
i=1 S′i, d′r = dr,

d′s = kdr and t = (q − 1)k.

I Theorem 18 (*). (r, s)-Closest String-wo(dr, ds, `, (k − t), |Σ|) does not admit a poly-
nomial kernel unless coNP ⊆ NP/Poly.

5 Conclusions

The parameterised complexity of the (r)-, (s)- and general variant of Closest String
and Closest Substring with respect to `, k, m, dr, ds, |Σ| is now completely settled. For
(r, s)-Closest Substring, where positive results are less abundant, it might be worthwhile to
identify other parameters that yield fixed-parameter tractability. For (r, s)-Closest String,
it should be pointed out that the FPT-algorithms with respect to k are based on ILP and are
most likely practically not relevant; direct combinatorial FPT-algorithms are still unknown.
For the outlier variant of (r, s)-Closest String, many cases are left open, most prominently,
the ones with |Σ| as parameter, and we expect those to be challenging. Moreover, for several
FPT-variants, the existence of polynomial kernels is not yet answered.

3 For the technique of cross-composition, see Bodlaender et al. [4].

MFCS 2018

1:14 Consensus Strings with Small Maximum Distance and Small Distance Sum

References
1 A. Amir, G. M. Landau, J. C. Na, H. Park, K. Park, and J. S. Sim. Efficient algorithms for

consensus string problems minimizing both distance sum and radius. Theoretical Computer
Science, 412:5239–5246, 2011.

2 M. Basavaraju, F. Panolan, A. Rai, M. S. Ramanujan, and S. Saurabh. On the kernelization
complexity of string problems. In Proc. 20th International Conference on Computing and
Combinatorics, COCOON 2014, volume 8591 of LNCS, pages 141–153, 2014.

3 A. Ben-Dor, G. Lancia, R. Ravi, and J. Perone. Banishing bias from consensus sequences.
In Proc. 8th Annual Symposium on Combinatorial Pattern Matching, CPM 1997, volume
1264 of LNCS, pages 247–261, 1997.

4 H. L. Bodlaender, B. M. P. Jansen, and S. Kratsch. Kernelization lower bounds by cross-
composition. SIAM Journal of Discrete Mathematics, 28(1):277–305, 2014.

5 C. Boucher and B. Ma. Closest string with outliers. BMC Bioinformatics, 12:S55, 2011.
6 L. Bulteau, F. Hüffner, C. Komusiewicz, and R. Niedermeier. Multivariate algorithmics for

NP-hard string problems. Bulletin of the EATCS, 114:31–73, 2014.
7 M. Cygan, F. Fomin, Ł. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk,

and S. Saurabh. Parameterized Algorithms. Springer, 2015.
8 X. Deng, G. Li, Z. Li, B. Ma, and L. Wang. Genetic design of drugs without side-effects.

SIAM Journal of Computing, 32(4):1073–1090, 2003.
9 J. Dopazo, A. Rodríguez, J. Sáiz, and F. Sobrino. Design of primers for PCR amplification

of highly variable genomes. Computer Applications in the Biosciences, 9(2):123–125, 1993.
10 R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complexity. Texts in

Computer Science. Springer, 2013.
11 Rodney G Downey and Michael Ralph Fellows. Parameterized complexity. Springer Science

& Business Media, 2012.
12 P. A. Evans, A. Smith, and H. T. Wareham. The parameterized complexity of p-center

approximate substring problems. Technical Report TR01-149, Faculty of Computer Science,
University of New Brunswick, Canada, 2001.

13 P. A. Evans, A. D. Smith, and H. T. Wareham. On the complexity of finding common
approximate substrings. Theoretical Computer Science, 306:407–430, 2003.

14 M. R. Fellows, J. Gramm, and R. Niedermeier. On the parameterized intractability of motif
search problems. Combinatorica, 26:141–167, 2006.

15 J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006.
16 M. Frances and A. Litman. On covering problems of codes. Theory of Computing Systems,

30:113–119, 1997.
17 J. Gramm, R. Niedermeier, and P. Rossmanith. Fixed-parameter algorithms for closest

string and related problems. Algorithmica, 37:25–42, 2003.
18 J. K. Lanctot, M. Li, B. Ma, S. Wang, and L. Zhang. Distinguishing string selection

problems. Information and Computation, 185:41–55, 2003.
19 K. Lucas, M. Busch, S. Mössinger, and J. A. Thompson. An improved microcomputer pro-

gram for finding gene- or gene family-specific oligonucleotides suitable as primers for poly-
merase chain reactions or as probes. Computer Applications in the Biosciences, 7(4):525–
529, 1991.

20 D. Marx. Closest substring problems with small distances. SIAM Journal on Computing,
38:1382–1410, 2008.

21 G. Pavesi, G. Mauri, and G. Pesole. An algorithm for finding signals of unknown length in
DNA sequences. Bioinformatics, 17:S207–S214, 2001.

22 P. Pevzner and S. Sze. Combinatorial approaches to finding subtle signals in DNA strings.
In Proceedings of the 8th International Conference on Intelligent Systems for Molecular
Biology, ISMB 2000, pages 269–278, 2000.

L. Bulteau and M. L. Schmid 1:15

23 V. Proutski and E. C. Holmes. Primer master: a new program for the design and analysis
of PCR primers. Computer Applications in the Biosciences, 12(3):253–255, 1996.

24 Markus L. Schmid. Finding consensus strings with small length difference between input
and solution strings. ACM Transactions on Computation Theory, 9(3):13:1–13:18, 2017.

25 M. Tompa, N. Li, T. L. Bailey, G. M. Church, B. De Moor, E. Eskin, A. V. Favorov,
M. C. Frith, Y. Fu, W. J. Kent, V. J. Makeev, A. A. Mironov, W. S. Noble, G. Pavesi,
G. Pesole, M. Régnier, N. Simonis, S. Sinha, G. Thijs, J. van Helden, M. Vandenbogaert,
Z. Weng, C. Workman, C. Ye, and Z. Zhu. Assessing computational tools for the discovery
of transcription factor binding sites. Nature Biotechnology, 23(1):137–144, 2005.

MFCS 2018

	Introduction
	Closest String and Closest String-wo
	(r, s)-Closest String-wo
	The (r)- and (s)-Variants of Closest String-wo

	Closest Substring
	Kernelisation
	Conclusions

