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ARTICLE

Linear mapping approximation of gene regulatory
networks with stochastic dynamics
Zhixing Cao 1 & Ramon Grima1

The presence of protein–DNA binding reactions often leads to analytically intractable models

of stochastic gene expression. Here we present the linear-mapping approximation that maps

systems with protein–promoter interactions onto approximately equivalent systems with no

binding reactions. This is achieved by the marriage of conditional mean-field approximation

and the Magnus expansion, leading to analytic or semi-analytic expressions for the

approximate time-dependent and steady-state protein number distributions. Stochastic

simulations verify the method’s accuracy in capturing the changes in the protein number

distributions with time for a wide variety of networks displaying auto- and mutual-regulation

of gene expression and independently of the ratios of the timescales governing the dynamics.

The method is also used to study the first-passage time distribution of promoter switching,

the sensitivity of the size of protein number fluctuations to parameter perturbation and the

stochastic bifurcation diagram characterizing the onset of multimodality in protein number

distributions.
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Gaining detailed quantitative insight into the dynamics of
single living cells is one of the main goals of modern
molecular biology. It is well acknowledged that a systems

biology approach, whereby alternating cycles of mathematical
modeling and experiments lead to refined understanding of the
biological system is ideal1. In such an approach, the prediction of
a mathematical model is contrasted with experimental data: a
good match implies that the model offers a potential explanation
of the observations (and potentially an estimation of the para-
meters) while a bad match implies that further refinement of the
model (and probably further experiments) is necessary. The
output of the experiments is often the number of fluorescently
tagged proteins as a function of time from which one can cal-
culate the probability distribution and its associated moments
such as the mean and variance in the protein numbers. Clearly
then a mathematical model is useful in this systems biology
approach to living cell dynamics, if it can accurately predict the
distribution of protein numbers and herein lies a problem: exact
solutions of the stochastic description of gene regulatory net-
works (GRNs) have only been reported for a few simple cases. In
this article, we describe a novel method which circumvents the
aforementioned problem by deriving approximate but accurate
solutions to the probability distributions of protein numbers of a
wide variety of GRNs.

Before we describe the method, we summarize the state of the
art in the mathematical modeling of GRNs. It is well known that
such networks suffer from noise principally due to the low copy
number of genes, mRNA and of some protein molecules inside
single cells2,3. Hence, a stochastic mathematical framework is
necessary to describe the dynamics of GRNs. The accepted
modern-day framework is the Chemical Master Equation (CME),
which is a set of differential equations describing the probabilistic
evolution of states of the GRN4. Exact solutions of the CME have
only been reported for a few simple GRNs: (i) the time-dependent
solution of the CME of a GRN involving the reversible switching
between two promoter states, the production of mRNA by the
active state and the degradation of mRNA5; (ii) the time-
dependent solution of the CME of a GRN involving the tran-
scription of mRNA by an active promoter, the translation of the
mRNA into protein and the decay of both protein and mRNA6;
(iii) the steady-state solution of a GRN of a negative or positive
feedback loop, whereby a promoter can produce proteins with a
certain rate in the inactive state and with a different rate in the
active state and it switches from the inactive to the active state by
binding a protein molecule. This model also includes protein
degradation7; (iv) the same as in (iii) but with the production rate
occurring in bursts8. In models (i) and (ii), every reaction is either
zero or first-order and hence we shall refer to these as linear
GRNs since by the law of mass action, the rate of every reaction is
linear in the concentrations. We shall refer to models (iii) and (iv)
as nonlinear GRNs because there is a second-order reaction
involving the binding of protein to the promoter, whose rate is
nonlinear in the concentrations. Note that the exact time-
dependent solution has only been obtained for linear GRNs; for
the nonlinear GRNs only the steady-state solution is known. It is
also the case that none of these model an external time-varying
stimulus to the GRN, a commonly observed feature, e.g., circa-
dian clocks.

Notwithstanding these difficulties, some have devised methods
to obtain expressions for the approximate probability distribution
solutions of the CME for nonlinear GRNs under various
assumptions: (i) the fluctuations in copy numbers are very small
and the distribution is Gaussian9–11; (ii) that there exists time-
scale separation, e.g. slow promoter switching12–16; (iii) the
promoter states are uncorrelated17; (iv) the volume of the cell is
large enough that the CME can be approximated by a few terms

in the system-size expansion18. All of these methods generate
approximate time evolving distributions for GRNs with second-
order reactions (for a comprehensive recent review see19) and
hence circumvent the issues of exact solutions of the CME. The
disadvantages of these methods are however considerable because
of their limiting assumptions: (i) distributions measured in vivo
are often highly skewed and sometimes multimodal, i.e. non-
Gaussian; (ii) timescale separation occurs in a few cases but is not
generally the case in nature; (iii) promoter states are often cor-
related due to the presence of feedback loops; (iv) it is impossible
to a priori estimate how many terms are needed in the system-
size expansion to obtain an accurate result. There are also
methods which compute the approximate distribution numeri-
cally without explicit analytical expressions (see for e.g.20–23); of
these the Stochastic Simulation Algorithm (SSA)20 is of particular
importance because the approximation error is equal to the
sampling error and hence can be made arbitrarily small.

In this article, we devise a novel type of approximate solution
of the CME which provides analytical or semi-analytical expres-
sions for the time-dependent and steady-state solution of com-
mon nonlinear GRNs without making a priori assumptions on
the form of the distribution or invoking timescale separation and
which is even applicable to GRNs with an external time-varying
stimulus.

Results
Illustrating the linear mapping approximation by an example.
The solution of the CME of linear GRNs is typically easier than
the solution of the CME of nonlinear GRNs. This observation
leads to the question: is it possible to map, in an approximate
way, a nonlinear GRN onto an equivalent linear GRN such that
the exact solution of the latter gives an approximate solution of
the former?

We shall first develop the method on a simple nonlinear
feedback loop which is schematically shown in Fig. 1a (upper). A
promoter switches between two states G and G*, and each state is
associated with a different rate of protein production. The switch
from G to G* occurs through the binding of a protein molecule to
G and the protein can also decay. This is a rudimentary form of a
feedback loop: if ρu > ρb, then it functions as a negative-feedback
loop (protein represses its own expression) and otherwise it is a
positive feedback loop (protein activates its own expression).
Here we do not explicitly model the mRNA for simplicity
purposes. This nonlinear GRN can be transformed in to a linear
GRN (Fig. 1a lower) by removing the second-order reaction
between protein and state G. Specifically, we replace the reversible
reaction Gþ P"G? by G"G?. Note that all parameters
between the two models are the same except for σb and �σb. The
question now is: given the nonlinear GRN with a certain set of
parameters, how can we select the free parameter �σb in the linear
GRN such that the solution of this system well approximates the
solution of the original nonlinear GRN?

First we write the exact moment equations for the linear GRN
(which can be straightforwardly obtained from the CME—see
Methods):

∂t np
D E

¼ ρu ng
D E

þ ρb 1� ng
D E� �

� np
D E

;

∂t ng
D E

¼ ��σb ng
D E

þ σu 1� ng
D E� �

;

∂t npng
D E

¼ ρu ng
D E

þ σu np
D E

� 1þ �σb þ σuð Þ npng
D E

;

ð1Þ

where ∂t denotes the time derivative, np is the number of
molecules of protein P, ng is a Boolean variable taking the value of
1 if the promoter is in state G and the value 0 if it is in state G*

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-05822-0

2 NATURE COMMUNICATIONS |  (2018) 9:3305 | DOI: 10.1038/s41467-018-05822-0 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


and bracket �h i is the expection operator. Next we note that the
first-order reaction G →G* in the linear GRN maps onto the
second-order reaction G+ P →G* if we select �σb =
σb npjng ¼ 1
� �

where np | ng= 1 is the instantaneous number
of proteins np given the promoter is in state G. The simplest
approximation is to use the expectation value of this stochastic
rate such that we have:

�σb ¼ σb npjng ¼ 1
D E

¼ σb
npng

D E

ng
D E : ð2Þ

This is a mean-field assumption and is expected to be accurate
when the size of the fluctuations in the number of proteins, given
the promoter is in state G, are small compared to the mean
number of proteins conditional on the same state. Since
experiments show that the standard deviation of the fluctuations
divided by the mean molecule number roughly scales as the
inverse square root of the mean molecule number24, it follows
that the mean-field assumption should be accurate provided the
mean protein molecule numbers in state G are not too small.

Substituting Eq. (2) in Eq. (1) and solving the resultant coupled
set of differential equations, we obtain a time-dependent solution
for the moments. These solutions can then be substituted in Eq.
(2) to obtain our estimate for the effective rate parameter in the
linear (mapped) GRN:

�σb ¼ f t; ρu; ρb; σu; σb
� �

; ð3Þ

where f denotes function of. This function can generally be
obtained by numerical solution of the aforementioned modified
differential equations; in steady-state conditions an explicit

formula can also be obtained:

�σb ¼
�1þ ρbσb � σu þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρbσb þ σu
� �2 þ 4ρuσb 1þ σuð Þ

q
2

:

ð4Þ
The last and remaining question is how can we use this parameter
estimate to build the full time-dependent solution of the
nonlinear GRN. We observe that the time-dependent probability
distribution solution of the CME of the linear GRN with general
time-dependent �σb is likely impossible to obtain in closed-form.
However it is possible to solve if �σb were a constant independent
of time (see “Methods” section); let this general probability
distribution solution be denoted as SFLTD �σb; tð Þ. We shall then
make the assumption that the time-dependent probability
distribution solution of the CME of the linear GRN with general
time-dependent �σb given by Eq. (3) is well approximated by
SFLTD �σ�b ; t

� �
where �σ�b is the time-average of Eq. (3):

�σ�b ¼
R t
0 f t′; ρu; ρb; σu; σb
� �

dt′
t

: ð5Þ

A rigorous theoretical justification of this assumption can be
found in the Methods. Hence the linear mapping approximation
(LMA) of the probability distribution of the nonlinear feedback
loop at time t is given by SFLTD �σ�b ; t

� �
. Note that the time-

averaging assumption is only needed if one wants to calculate the
distribution in finite time; in steady-state, there is no need of the
assumption since then �σb is constant (and equal to Eq. (4)) and
the steady-state probability distribution is directly given by
SFLTD �σb; t ! 1ð Þ.

To summarize, the LMA procedure to find the approximate
time-dependent probability distribution of protein numbers at
time t in a general nonlinear GRN involves the following steps: (i)

LMA

2 :G* → G* + P

3 :P → Ø

4 :G + P → G*

5 :G* → G + P
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Fig. 1 Linear mapping approximation (LMA) and its application to steady-state conditions. a Illustration of the main idea behind the LMA namely to
approximate the reversible (nonlinear) reaction between protein and promoter in the nonlinear GRN by a first-order (linear) reaction with an effective
reaction rate in a linear GRN. b The upper figure shows a heatmap of Hellinger distance (HD) between the LMA and the exact probability distribution of
protein numbers in steady-state conditions with parameters ρu= 10, σu= 0.01 for the nonlinear GRN shown in a. The exact distribution is reported in7. The
bottom figure shows a heatmap of Λ, which is the ratio of the values of the two eigenvalues of the Jacobian of the deterministic rate equations of the
nonlinear GRN in steady-state conditions. The red broken line denotes the contour line of Λ= 1. Note that the value of the HD is very small over a wide
range of the ratio of time scales Λ indicating that the LMA’s accuracy is independent of time-scale separation. c A comparison of the LMA and exact
steady-state distributions for Points A and Point B, marked as white stars, on the heatmap in b; note that Point A corresponds to the parameter set with the
largest HD (ρb= 100, σb= 0.0126 with HD of 0.0478). Point B corresponds to ρb= 35, σb= 0.004 with HD of 0.0032
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find the linear GRN by replacing any reversible promoter-protein
reaction in the nonlinear GRN by a reversible pseudo first-order
reaction between promoter states with stochastic rates; (ii) write
the closed-set of moment equations for the linear GRN with the
stochastic rates replaced by their means, solve for the moments at
time t and use the latter to obtain the approximate value of the
rate parameter/s at time t characterizing the pseudo first-order
reaction/s in the linear GRN; (iii) calculate the time-average of
these parameters over the time interval [0, t]; (iv) obtain the time-
dependent probability distribution solution of the CME of the
linear GRN assuming the rate parameter/s characterizing the
pseudo first-order reactions are time-independent constants; (v)
the approximate time-dependent probability distribution of the
nonlinear GRN at time t is then given by replacing the “constant”
rate parameter/s characterizing the pseudo first-order reactions
solution in step (iv) by the time-averaged parameters calculated
in step (iii).

Steps (i) to (iii) can always be performed but steps (iv) and (v)
require the existence of a closed-form solution for the linear GRN
and this is the major limitation of the method. When such a
solution exists, then for a nonlinear GRN with N
protein–promoter binding reactions, the approximate time-
dependent probability distribution given by the LMA is a
closed-form distribution with N effective parameters to be
determined numerically. In practice, this leads to a considerable
computational advantage over purely numerical methods such as
the SSA20 and the Finite State Projection method21 (see
Supplementary Note 3 for details) simply because the closed-
form distribution is composed of well-known functions that can
be evaluated by standard symbolic packages in fractions of a
second.

If one is only interested to find an approximate steady-state
probability distribution of protein numbers then the procedure is
considerably simpler. Step (i) is as before. Step (ii) is the same but
now the moments are found in steady-state. The final
approximate solution is then obtained by substituting the effective
rate parameters found in Step (ii) in the steady-state probability
distribution solution of the CME of the linear GRN. In many
cases, these steps can be done analytically and hence the output is
an approximate solution in closed-form.

Note that independent of whether we are interested in the
time-dependent or steady-state problem, when a closed-form
solution for the linear GRN does not exist, the method still gives
approximate expressions for all the moments of the nonlinear
GRN using steps (i) and (ii); in this case, its output is similar to
moment-closure methods (see ref. 19 for a recent review) but with
the advantage that we have made no implicit assumption on the
form of the probability distribution solution of the chemical
master equation.

The LMA of common nonlinear GRNs. Next we will test the
accuracy of this method for various nonlinear GRNs using both
exact results and stochastic simulations. In particular, we want to
clearly show that the LMA accurately predicts probability dis-
tributions for protein numbers which are unimodal or bimodal,
Gaussian or skewed, in steady-state or evolving in time and
independent of timescale separation.

In Fig. 1, we show the high accuracy of the LMA in predicting
the probability distribution of protein numbers for the feedback
loop in steady-state conditions. In particular, Fig. 1b (upper)
shows a heat map of the Hellinger distance (HD) between the
exact steady-state probability distribution of the nonlinear GRN
(reported in7) and the approximate probability distribution given
by the LMA (as described earlier). Note that the HD has the
properties of being symmetric and satisfies the triangle inequality,

thus implying that it is a distance metric on the space of
probability distributions (unlike for example the commonly used
Kullback–Leibler divergence). Since it returns a number between
0 and 1, it is clear that the distance between the exact and
approximated distributions is very small for both negative (ρb <
ρu) and positive feedback (ρb > ρu). This is further confirmed by
explicitly showing in Fig. 1c, the distribution for two points in the
heat map in Fig. 1b (upper): the LMA distribution with the largest
Hellinger distance (Point A) is barely noticeably different from
the exact distribution and the LMA does extremely well even
when the distribution is bimodal (Point B). It can also be easily
proved that the LMA distribution is exact when the system is in
detailed balance conditions. This is since in such conditions, ρu=
ρb7, which implies that the protein distribution is unaffected by
the bimolecular reaction at the heart of promoter switching and
hence the system acts as a linear GRN in this special case. In
Fig. 1b (lower), we further confirm the hypothesis that the LMA
does well in steady-state conditions independent of the existence
of timescale separation conditions: a comparison of the heat plots
in Fig. 1b upper and lower shows that while the ratio of the gene
and protein timescales (Λ) varies considerably (0.1 to 50) over the
region of parameter space considered, there is very little
corresponding change in the HD (0 to 4.5 × 10−2). There is also
no correlation between the two heat plots. Λ is the ratio of the two
eigenvalues obtained from the Jacobian of the deterministic rate
equations. Hence to sum up, in steady-state the LMA predictions
for the feedback loop are accurate independent of the type of
feedback (positive or negative), modality of the distribution and
of timescale separation conditions.

Next we test the accuracy of the LMA for predicting the time-
evolution of the probability distribution of proteins in four
common types of nonlinear GRNs (or motifs): the feedback loop
(Fig. 1a upper), the feedback loop with protein bursting (Fig. 2a),
the feedback loop with cooperative protein binding (Fig. 2b) and
the feedback loop with oscillatory transcription rates (Fig. 2c).
Details of these loops, their master equation formulation and
corresponding LMA can be found in Methods and the Supple-
mentary Information. Note that the decay rate of proteins in all
cases is set to unity; this is not an arbitrary choice but rather
stems from the fact that the time in the master equation can
always be non-dimensionalised using the actual value of the
protein decay rate kd. Hence all times shown in the graphs should
be understood to be non-dimensional and equal to the real time
multiplied by kd while all other parameters (ρu, ρb, σu, σb) should
be understood to also be non-dimensional and equal to the real
value of the parameter divided by kd. Bursting (production of
proteins in bursts), cooperativity (multiple proteins binding the
promoter) and time-varying transcription rates are common
features observed in many GRNs in both eukaryotic and
prokaryotic cells (see for example ref. 25–27). Note that an
implicit description of mRNA exists in the model with protein
bursting because protein burst sizes distributed according to a
geometric distribution are obtained when the protein is produced
by a fast intermediate mRNA, a common scenario in bacteria and
yeast15. Note also that while all the three systems are composed of
reactions with mass-action propensities, in certain limits they
reduce to systems composed of effective reactions with non-mass
action propensities e.g. under quasi-equilibrium conditions
between promoter and protein, the model of a feedback loop
with cooperative binding reduces to an effective model describing
protein production with a Hill-type propensity28,29.

Figure 2d shows that in all cases the LMA distribution agrees
very well with that obtained from stochastic simulations using the
SSA20. In particular the LMA precisely captures the change in
shape of the distribution with time from Gaussian at short times
to a skewed unimodal distribution at intermediate times to
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bimodal at long times. Furthermore for the oscillatory transcrip-
tion feedback loop, it can be shown that the LMA correctly
captures the oscillatory nature of the mean and variance in
protein numbers and accurately predicts the phase difference
between the oscillations in the mean protein numbers and in the
transcription rate (see Supplementary Fig. 1).

Next, we seek to understand the dependence of the error in the
LMA predictions with parameter values and the intuitive reasons
underlying such relationships. In Fig. 3a, we show the HD
(between the SSA calculated distribution and the LMA

distribution) as a function of time for the feedback loop with
cooperative protein binding with parameters ρu= 60, ρb= 25 and
for various values of σb. While there is no apparent relationship
between HD and σb in steady-state, it is clear that the maximum
of the HD (over time) increases with σb. The corresponding
probability distributions for these three maxima (A, B and C) are
shown in Fig. 3c upper. The degree of nonlinearity in the GRN is
controlled by the rate σb of the only nonlinear (second-order)
reaction in the nonlinear GRN and hence one would expect our
approximate linear mapping to be less accurate as σb increases
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Fig. 2 LMA approximation for the time-dependent probability distribution of protein numbers for various nonlinear GRN. The feedback loop shown in Fig. 1a
upper, a feedback loop with protein bursting (a), a feedback loop with cooperativity (b) and a feedback loop with oscillatory transcription (c). The inset of a
shows the probability distribution ψ(m) of the protein burst size m: we consider a geometric distribution, the discrete analog of the exponential distribution
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snapshots of the protein number distribution at various times. The LMA approximation (red line) agrees with the results of stochastic simulations using the
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(for a more precise explanation see the subsection on the
justification of the time-averaging assumption in the “Methods”
section). In Fig. 3b, we repeat the same analysis but now using
parameters ρu= 40, ρb= 25. The same relationship is seen
between the maximum of the HD (over time) and σb however
the absolute values of the error are now reduced by about half.
This can be explained due to the fact that the difference between
ρu and ρb is smaller in this case than for the one shown in Fig. 3a
and we already know that as ρu approaches ρb, the bimolecular
reaction behind promoter switching becomes irrelevant and the
LMA becomes exact. We also note that in all cases, the maximum
HD was obtained at intermediate times (rather than in steady-
state). This is since the HD must be zero initially since we start
with the same initial conditions in the LMA and SSA, it must be
significant in finite time because both assumptions (mean-field
and time averaging) are being used while it must be small in
steady-state because only the mean-field assumption is being
used. These results are typical of the three nonlinear GRN studied
(feedback loop, feedback loop with bursting and feedback loop
with cooperativity) which all possess non-zero, non-oscillating
moments of protein molecule numbers at steady-state. In
summary, the error in the LMA prediction is typically smaller
in steady-state compared to time-evolution and it achieves a
maximum whose value increases with the rate parameter
controlling the nonlinear protein–promoter binding reaction
and with the difference between the protein production rates of
the two promoter states.

We studied also the error in the LMA predictions for the
feedback loop with oscillatory transcription which leads to
oscillating moments in the protein numbers in steady-state and
hence is in a different class than the previous three nonlinear
GRNs. One can think of this nonlinear GRN as an oscillating
input signal passing through a filter (composed by the interacting
molecular components) with output given by the mean protein
numbers. Depending on the type of filter, one would expect
certain frequencies will be more attenuated than others. Indeed
this is what is observed in a plot (Fig. 4) of the amplitude in the
oscillations in the mean protein numbers as a function of the
frequency of the oscillating transcription (the input frequency).

The SSA predicts the amplitude to gently peak at a frequency of
about 0.2; the rate equations predict the same albeit with a
different protein amplitude. The LMA however does not capture
the peak and simply predicts a decreasing amplitude with
increasing frequency which agrees very well with the SSA for
frequencies larger than that of the peak. In fact it can be proved
(see Supplementary Note 2 Eq. (12)) that independent of
parameter values and of the amplitude and frequency of the
oscillatory transcription, the LMA predicts the amplitude of the
mean protein oscillations to decrease monotonically with
increasing frequency. This behavior of the LMA is due to its
time-averaging assumption: the amplitude of the time-average of
a sinusoidal function is inversely proportional to the frequency.
In summary the accuracy of the LMA’s predictions is likely low
for input frequencies close to the intrinsic resonant frequency of a
general nonlinear GRN and high otherwise.

The master equations studied thus far have been limited to
GRNs with two promoter states, reactions with mass-action
propensities and no explicit description of mRNA. While an
implicit description of mRNA exists in the feedback loop with
protein bursting model, an explicit description has the advantage
that it gives information about both mRNA and protein and can
hence can be useful to interpret experiments producing such type
of data (see for example ref. 30). Also we earlier mentioned that an
implicit description of effective non-mass action propensities of
the Hill-type exists in the model of a feedback loop with
cooperativity; an explicit description in the sense of using directly
Hill-type propensities in the master equation can sometimes be
helpful when we want to work with a reduced model in terms of
few parameters. In Figs. 5 and 6, we show the application of the
LMA to master equations describing systems with more than two
promoter states, effective reactions with non mass-action
propensities and including mRNA dynamics. Specifically we find
that the LMA accurately captures: (1) the time-evolution of the
protein distributions for the 4 promoter state toggle switch
(Fig. 5a, b), which involves the expression and mutual repression
of two different proteins P and M; (2) the steady-state protein
distribution in a two promoter feedback loop where the protein
decays via the (non-mass action) Michaelis–Menten like
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propensity function (Fig. 5c, d); (3) the mRNA steady-state
distribution in a two promoter feedback loop which models both
mRNA transcription and protein translation (Fig. 6a, b). Details
of the LMA for these three systems can be found in the
Supplementary Notes 5–7.

Note that for the two promoter feedback loop modeling
transcription and translation, the mRNA distribution can also be
computed in time; however, the protein distribution cannot
currently be obtained from the LMA in time or steady-state. The
reason is that the LMA maps this GRN on to a linear network
(also called three-stage gene expression in ref. 15), for which there
is an exact analytical solution for the marginal distribution of
mRNA numbers but no solution is currently known for the
marginal distribution of protein numbers. However, note that
nevertheless the LMA does give all the moments of the protein
distribution and these are shown in Fig. 6c to be very accurate
compared to those obtained from the SSA, independent of the
ratio of the timescales of protein and mRNA—this is particularly
relevant to the description of mammalian gene expression31

where the ratio of timescales varies widely. Analytical solutions
for the linear network are known for the case of timescale
separation of protein and mRNA lifetimes15 (conditions
compatible with gene expression in bacteria and yeast) and thus
in this case by use of the LMA, one can obtain the corresponding
analytical solutions for both the mRNA and protein marginal
distributions for the feedback loop shown in Fig. 6a.

Further applications of the LMA. Having verified the high
accuracy of the LMA, we shall next use it to shed light on how the
stochastic properties of a feedback loop are affected by coopera-
tivity and protein bursting. In particular we are interested in how
these two features affect: the first-passage time distribution of
switching from one promoter state to the other, the sensitivity of
the coefficient of variation squared to a change in the parameter
values and the stochastic bifurcation diagram.

Practically, all GRNs involve multiple promoter states with
different post-translational pathways enabled by each state.
Hence the switching from one state to another is important to
understand from the perspective of cellular decision-making, e.g.,
a cell’s response to a stimulus may require the quick switching on
of certain biochemical machinery. This can be mathematically
characterized using the first-passage time (FPT) distribution
which is the probability distribution of the time it takes to switch
between two promoter states given initially one of the states. The
switch from G* to G occurs via G* →G+ P, which is a linear
reaction with rate σu and hence it can be easily shown that the
FPT for the promoter switching from state G* to G is simply
exponential distribution with mean σ�1

u . Hence, cooperativity and
bursting have no effect on this switch. The switch from G to G*

occurs via G+ P →G*, which is a nonlinear reaction with rate σb;
in this case it is much more difficult to obtain the FPT because the
process is nonlinear (most FPT theory is for linear reactions
though there are exceptions32) and since there is a dependence on
the instantaneous protein number that is affected by many
different processes (transcription, degradation, bursting, coopera-
tivity, etc). However, the LMA maps the above nonlinear reaction
to a linear one, and thus enables us to obtain an approximate
non-exponential expression for the FPT of switching from state G
to G* (given no protein initially in state G) for nonlinear GRNs
(see “Methods” section). In Fig. 7a, we show the LMA’s estimate
of the FPT distribution for the feedback loop (Fig. 1a upper); the
feedback loop with cooperativity, specifically two protein
molecules binding the promoter in state G (Fig. 2b) and the
feedback loop with protein bursting and a mean burst size of two
protein molecules (Fig. 2a) (the four parameters which are
common to all three GRNs are fixed for comparison purposes; see
Fig. 7 caption for details). The estimates are close to the FPT
calculated using the SSA thus verifying the LMA’s accuracy. The
mean time to switch from G to G* in a feedback loop is decreased
considerably by cooperativity and slightly by bursting; this was
observed for all parameter sets, which we studied. We also found
out using the LMA that over a large region of parameter space,
the mean first-passage time τ is approximately described by a
simple power law in two parameters (Fig. 7b):

τ / σ�3=5
b ρ�4=5

u ; feedback loopwithandwithoutbursting ð6Þ

τ / σ�1=3
b ρ�4=5

u feedback loopwithcooperativity ð7Þ

For the case of the feedback loop with no cooperativity, it is
possible to derive an exact solution for the FPT of switching from
state G to G* in steady-state conditions and hence this provides
another means to evaluate the accuracy of the LMA (see
Supplementary Note 4 for details). This comparison is shown
in Fig. 7c, where we show that the error in the LMA’s estimate of
the FPT distribution (measured by the HD) increases with σb (the
rate parameter controlling the degree of nonlinearity in the
GRN), in agreement with our previous error analysis for time-
dependent protein distributions. Nevertheless, the high accuracy
of the LMA for predicting first-passage time distributions is
visually discernible in all cases.

Next we turn our attention to the sensitivity of nonlinear GRNs
to noise. The coefficient of variation of protein number
fluctuations defined as the ratio of the standard deviation of the
fluctuations and the mean protein numbers is a common measure
of the size of intrinsic noise. It is often the case that noise needs to
be controlled such that the smooth performance of a certain
cellular function is guaranteed33. The question then is: which
parameter tweaking leads to the largest and smallest changes in
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oscillatory feedback loop is the one shown in Fig. 2c with ρu= 20, ρb= 0,
σb= 0.04, σu= 0.25, and Am is selected to be 0.9, 0.5, 0.3, 0.1 (from top
to bottom). Note that the transcription rate in the active promoter state is
ρu[1+Am cos(kπt)]
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the coefficient of variation squared in steady-state conditions?
Whilst this is computationally very expensive to answer using the
SSA over large areas of parameter space, with the LMA it can be
addressed straightforwardly. We used the LMA to compute the
logarithmic sensitivity34 of the coefficient of variation squared to
the four rate parameters common to all three non-oscillatory
loops (namely ρu, ρb, σb and σu) over a large swath of parameter
space. The results are summarized in pie chart form in Fig. 8. For
all feedback loops, independent of whether the protein was
repressing or activating its own production, the most sensitive
parameter was in the vast majority of cases ρb while the least
sensitive parameter was one of the other three parameters
(typically was either σu or σb). Hence in summary, control of the
size of the protein fluctuations can be most efficiently obtained by
tweaking gene expression in state G*.

Finally, we study differences in the stochastic bifurcation
diagrams of the three types of feedback loop. The LMA reveals
that, for some parameter values, the system has a unimodal
steady-state distribution, whereas for other values it has a
bimodal distribution, i.e., the noise causes the system to switch
between two distinct states. This phenomenon is referred to as
noise-induced bistability (NIB) since the deterministic rate
equations do not show bistability35–37. We explored how the
region in parameter space where NIB is observed depends on

cooperativity, protein bursting, the type of loop (positive or
negative feedback) and the existence of timescale separation. The
results are summarized in Fig. 9. Each of the subfigures in Fig. 9 is
generated by calculating the steady-state protein distribution over
parameter space: the white then indicates a unimodal distribution
while a shade of red indicates a bimodal distribution. The three
shades of red indicate three different parameter sets as described
in the figure caption where a lighter shade of red indicates a larger
distance from detailed balance conditions. The calculation is done
using the LMA and direct numerical integration of the master
equation (as in ref. 7) and differences between the two are shown
in black. For negative feedback, the black regions show where
numerical integration predicts unimodality, whereas the LMA
(incorrectly) predicts bimodality whereas for positive feedback,
the black regions show the opposite situation. In all cases, the
black regions are very small thus showing the accuracy of the
LMA in capturing NIB. The plots comparing positive (activator)
and negative (repressor) feedback show a slight increase in the
region of space where there is NIB when there is positive
feedback. A comparison of the three shades of red shows that the
major factor determining NIB is not the feedback type but rather
the difference between the rates of protein production in the two
promoter states, i.e., the distance from detailed balance. The
larger the difference between the two rates, the larger is the region
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of parameter space where NIB is observed; for example for the
negative feedback loop, the fraction of parameter space where
NIB occurs is 59%, 36% and 5% for (ρu, ρb)= (60, 25), (50, 25)
and (40, 25), respectively (see Supplementary Table 1 for data of
all cases shown in Fig. 9). We found that both cooperativity and
bursting significantly reduce the size of this space and thus have
an adverse effect on NIB. In Fig. 9b, we repeat the same
exploration as in Fig. 9a, but using a method in the literature that
assumes slow promoter switching, i.e., the timescale of promoter
switching is much larger than the timescale of protein
dynamics12. A comparison of Fig. 9a, b shows that the
assumption of timescale separation tends to significantly over-
estimate the size of parameter space where NIB exists, though
capturing some of the major observed trends. The comparison
also confirms that the LMA is free of underlying assumptions of
timescale separation.

Discussion
In this paper, we have introduced a new modeling framework, the
LMA, based on a mapping of a nonlinear gene regulatory network
to an approximately equivalent linear network. The approach
rests on the following two assumptions: (i) a mean-field
assumption and (ii) a time-averaging assumption. Specifically
these two assumptions are needed to calculate the approximate
time-dependent probability distribution solution of protein fluc-
tuations but if one is interested in steady-state then only the first
assumption is needed. The mean-field assumption essentially
equates with assuming small protein fluctuations compared to the
mean number of proteins when the promoter is unbound, a
reasonable assumption given that protein numbers are typically

much larger than one. The time-averaging assumption implies
that the probability distribution at time T of a linear network with
a time-dependent parameter α(t) is approximately given by sol-
ving the master equation assuming the parameter is a time-
independent constant to obtain the solution at time T and sub-
sequently replacing the parameter (in the latter solution) by the
time-averaged value of α(t) over the period [0, T]. This approx-
imation was shown to correspond to the first term of the Magnus
expansion of the time-dependent solution of the master equation.

We have verified that the LMA gives accurate probability
distributions (compared to stochastic simulations and to direct
numerical integration of the master equation) for feedback loops
with and without cooperativity / bursting including those with
time-dependent transcription. The accuracy was high indepen-
dent of the type of feedback (positive or negative), of the modality
of the distribution (unimodal or bimodal) and of the existence or
lack of timescale separation. We found the accuracy of the LMA
to be very high for short and long times and good at intermediate
times. The likely reason is that to predict steady-state distribu-
tions the method needs only one assumption—the mean-field
assumption whereas it needs in addition the time-averaging
assumption for predictions in finite time (for short times the
accuracy is necessarily high because of deterministic initial con-
ditions). In all cases, the LMA well captures the changes in the
shape of the distribution as a function of time, in particular, the
transition from unimodal to bimodal behavior. The differences
between the predicted and exact distribution are found to grow
with the rate parameter controlling the nonlinear
protein–promoter binding reaction and with the difference
between the protein production rates of the two promoter states;
however, these differences are typically barely noticeable to the
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naked eye, except for some intermediate times. We also found
that for nonlinear GRNs with an external input oscillatory signal,
the LMA’s predictions are accurate for input frequencies far from
the intrinsic resonant frequency of the GRN itself; this is due to
the filtering properties of the time-averaging assumption. We also
used the LMA to study how cooperativity and protein bursting
affect the first-passage time distribution governing promoter
switching, the sensitivity of the coefficient of variation squared to
parameter perturbation and the stochastic bifurcation diagram.
The extensive study over large swaths of parameter space was
made possible by the fact that the LMA provides closed-form
solutions for the protein distributions. This is a distinct compu-
tational advantage over the stochastic simulation algorithm and
also over the finite-state projection algorithm (see Supplementary
Note 3 and Supplementary Fig. 2 for details of the comparison of
CPU time of the various algorithms).

The LMA, of course, cannot possibly solve the master equa-
tions of all gene regulatory networks encountered in nature. In
particular when the nonlinear GRN has also bimolecular reac-
tions that are not of the protein–promoter type, the LMA map-
ping does not lead to a linear GRN though it is still a simpler
GRN than the original one. In such a case, it is typically difficult
to solve exactly the master equation of the simplified GRN. Likely,
progress can then be made by replacing the bimolecular reactions
(not involving protein and promoter) by an effective first-order
reaction/s such that one has again an effective linear GRN. For
example, for GRNs, for which the protein is catalyzed by an
enzyme, the catalysis can be effectively modeled by a first-order
decay reaction for the protein with a Michaelis–Menten rate (as
shown in one of our examples). This additional linearization
might not always be possible or else even if possible it might still
lead to unsolvable or very difficult to solve master equations; this
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has to be ascertained on a case-by-case basis and no general
statements can be made in this regard.

We finish by noting that the LMA has significant advantages
over current methods in the literature. Unlike the linear-noise
approximation, it does not assume the distribution is Gaussian
and that the means are well described by the deterministic rate
equations. It does not assume timescale separation, a common
assumption in the literature. It is also superior to moment-closure
methods38–40 since there is no underlying assumption of a dis-
tribution of any kind and also since it does not just give the
moments but also the distribution itself (a detailed study of the
accuracy of the moments provided by the LMA and comparison
with common moment-closure methods is under investigation).
The LMA also provides distributions in analytical or semi-
analytical form for all times, a clear advantage over methods
based on distribution reconstruction using maximum entropy23

or finite-state projection21. Hence concluding, the newly devised
LMA method provides a new tool for the systematic exploration
of the stochastic properties of nonlinear GRNs in systems and
synthetic biology.

Methods
Master and moment equations. Consider a chemical reaction network involving
N distinct species interacting with each other in a well-stirred volume Ω via a set of
R reactions

PN
i¼1 sirXi �!

kr PN
i¼1 pirXi , where Xi stands for species i (i= 1, 2, …,

N), r= 1, 2, …, R and the stoichiometric coefficients sir and pir are nonnegative
integers specifying, the molecule numbers of reactants and products involved in
reaction r, respectively. kr is the rate constant of reaction r. The associated CME
can be written as:

∂tPðn; tÞ ¼
XR
r¼1

fr n� Srð ÞP n� Sr ; tð Þ �
XR
r¼1

frðnÞPðn; tÞ; ð8Þ

where n= [n1, n2, …, nN]⊤ is the state vector of species molecule numbers, P(n, t)
is the probability of the system being in state n at time t4. The i-th entry of the
vector Sr is given by pir− sir, and fr(n) is the propensity function. The propensity
function for the rth reaction assuming mass-action kinetics is then given by19:

frðnÞ ¼ krΩ
YN
i¼1

ni!
ni � sirð Þ!Ωsir

: ð9Þ

Furthermore, we shall absorb powers of Ω in to kr so that the latter has units of
inverse time for all reaction types.

The moment equations quantify the time evolution of moments. They can be
derived directly from the CME, and have the compact form:

∂t ni ¼ nlh i ¼
XR
r¼1

ni þ Sirð Þ¼ nl þ Slrð ÞfrðnÞh i �
XR
r¼1

ni ¼ nlfrðnÞh i: ð10Þ

where ni ¼ nlh i=P1
ni¼0 ¼

P1
nl¼0 ni ¼ nlPðn; tÞ, the angled brackets denote the

expectation operator and Sij= pij− sij.

LMA for feedback loops with and without cooperativity. Here we provide
details of the LMA for the nonlinear GRNs involving a feedback loop (Fig. 1a
upper) and the feedback loop with cooperativity (Fig. 2b). For the latter, we shall
here consider in detail the case of two proteins binding cooperatively to the pro-
moter (cp= 2) and then briefly show how the procedure can be easily extended to
the case of any number of proteins binding cooperatively.

Let the number of proteins, the unbound promoter state G and the bound
promoter state G* be denoted by np, ng= 1 and ng= 0, respectively. By the LMA,
both types of nonlinear GRNs map onto the same linear GRN (Fig. 1a lower)
whose stochastic dynamics is described by a master equation of the type given by
Eq. (8). This is an equation for the time-evolution of P(np, ng, t). For convenience,

since ng can be in only two states, we write P1�ng
np; t

� �
= P(np, ng, t) meaning that

P0(np, t) is the probability that the promoter is in state G and there are np proteins
at time t and P1(np, t) is the probability that the promoter is in state G* and there
are np proteins at time t. Thus, it follows that we can write the master equation as a
set of two coupled master equations, one for each state:

∂tP0ðnpÞ ¼ ρu P0 np � 1
� �

� P0 np
� �h i

þ np þ 1
� �

P0 np þ 1
� �

�npP0 np
� �

þ σuP1 np
� �

� �σbP0 np
� �

;

∂tP1ðnpÞ ¼ ρb P1 np � 1
� �

� P1 np
� �h i

þ np þ 1
� �

P1 np þ 1
� �

�npP1 np
� �

� σuP1 np
� �

þ �σbP0 np
� �

:

ð11Þ

Note that the argument t is suppressed for notation simplicity. Note also that time
and the parameters are dimensionless since we divided by the rate of protein
degradation (as done in ref. 7). In ref. 5, an exact time-dependent solution of the
same master equations was obtained for the special case ρu= 0. It is
straightforward to use the same method to treat the more general case of non-zero
ρu, which leads to the exact solution for the probability distribution of the number
of proteins at time t:

P np; t
� �

¼ 1
np!

dnp

dwnp
G0ðw; tÞ þ G1ðw; tÞð Þjw¼�1; ð12Þ
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Fig. 8 Sensitivity of the coefficient of variation squared to parameter perturbation in steady-state conditions. The pie charts show the most and least
sensitive parameters for the three types of non-oscillatory feedback loops, in activating (positive feedback) or repressing mode (negative feedback). Out of
the four variables, ρb is the most sensitive parameter and occupies almost 90% in each of the six cases, whereas the least sensitive parameter is typically
either σb or σu. The activator stands for ρb > ρu, whereas the repressor means ρu > ρb. The sensitivity results are obtained by using the LMA to calculate the
logarithmic sensitivity of the coefficient of variation squared to the four parameters (σb, σu, ρb and ρu) on a regular lattice over the space: ρb, ρu∈ [1, 102]
and σb, σu∈ [10−2, 1]. The lattice spacing is 5 for ρb, ρu and 0.05 for σb, σu. The cooperativity order was cp= 2 for the feedback loop with cooperativity and
the mean protein bursts size was b= 2 for the feedback loop with bursting
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where,

G0ðw; tÞ ¼ expðρbwÞ f we�tð Þ �ρΔw
� �1�Σ

M 1� �σb; 2� Σ;�ρΔw
� �h

þg we�tð ÞM 1þ σu;Σ;�ρΔw
� �� ; ð13Þ

G1ðw; tÞ ¼ σ�1
u exp ρbw

� � �σuf we�tð Þ �ρΔw
� �1�Σ

M ��σb; 2� Σ;�ρΔw
� �h

þ�σbg we�tð ÞM σu;Σ;�ρΔw
� �� ; ð14Þ

where w= z− 1 and the generating functions are defined as Gi(z, t)=P1
np¼0 z

npPi np; t
� �

. The function M(⋅,⋅,⋅) represents the Kummer function and we

have also used the definitions ρΔ= ρb− ρu, Σ= σu þ �σb þ 1, f(w)=
�σb
Σ�1ð�ρΔwÞΣ�1e�ρuwM σu;Σ;�ρΔw

� �
and g(w)= σu

Σ�1e
�ρuwM ��σb; 2� Σ;�ρΔw

� �
.

We have assumed the initial conditions to be zero protein in state G which
translates in to the conditions: P0(0, 0)= 1, P0(np, 0)= 0 for np > 0 and P1(np, 0)=
0 for all np.

In steady-state conditions, the solution simplifies to:

P np
� �

¼ 1
np!

dnp

dwnp
GðwÞjw¼�1; ð15Þ

where

GðwÞ ¼ exp ρbw
� �

σu
σu þ �σb

M 1þ σu;Σ;�ρΔw
� �þ exp ρbw

� �
�σb

σu þ �σb
M σu;Σ;�ρΔw
� �

: ð16Þ

Next we have to determine the value of the effective parameter �σb using the
LMA’s mean-field assumption. From Eq. (10), one can obtain the moment
equations of the linear GRN up to the third order:

MFL �σbð Þ :

∂t np
D E

¼ ρu ng
D E

þ ρb 1� ng
D E� �

� np
D E

;

∂t ng
D E

¼ ��σb ng
D E

þ σu 1� ng
D E� �

;

∂t n2p

D E
¼ 2 ρu � ρb

� �
npng

D E
þ 2ρb þ 1
� �

np
D E

� 2 n2p

D E
þ ρu � ρb
� �

ng
D E

þ ρb ;

∂t npng
D E

¼ ρu ng
D E

þ σu np
D E

� 1þ �σb þ σuð Þ npng
D E

;

∂t n2png
D E

¼ 2ρu þ 1
� �

npng
D E

� σu þ �σb þ 2ð Þ n2png
D E

þ ρu ng
D E

þ σu n2p

D E
:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

: ð17Þ

Note that MFLð�σbÞ is a set of closed ODEs given that �σb is specified. The
proposed LMA rests upon the idea of parametrizing �σb by means of the conditional
mean. Specifically, for the nonlinear feedback loop without cooperativity, since the

nonlinear reaction is P+G →G*, then �σb = σb npjng ¼ 1
D E

= σb npng
D E

= ng
D E

,

where we used the fact that ng is a Boolean variable. Similarly, for the nonlinear
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Fig. 9 Stochastic bifurcation diagram for non-oscillatory feedback loops. a The red shaded areas denote the regions of parameter space where the steady-
state distribution of protein numbers is bimodal, the white areas shows the regions where the distribution is unimodal and the black areas show regions
where the LMA and direct numerical integration of the master equations disagree on the number of modes of the distribution. The black regions are small
and thus verify the accuracy of the LMA. The shade of red indicates the difference between gene expression in the two promoter states, where a lighter
shade indicates a larger difference. Specifically from inside to outside, the dark red corresponds to ρu= 40, ρb= 25 (repressor) and ρu= 25, ρb= 40
(activator), the medium red corresponds to ρu= 50, ρb= 25 (repressor) and ρu= 25, ρb= 50 (activator), and the light red corresponds to ρu= 60, ρb= 25
(repressor) and ρu= 25, ρb= 60 (activator). The cooperativity order was cp= 2 for the feedback loop with cooperativity and the mean protein bursts size
was b= 2 for the feedback loop with bursting. Generally the region of parameter space where bimodality is present is decreased by cooperativity and by
bursting but is almost unaffected by the type of feedback (activating or repressing). b This is the same as a except that the number of modes of the steady-
state distribution of protein numbers is calculated using a method in the literature which assumes timescale separation, i.e. slow promoter switching12.
While this method captures the salient features of the bifurcation diagrams in a it also significantly over-estimates the extent of bimodality and thus
illustrates the advantage of the LMA over timescale separation methods
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feedback loop with cooperative order cp= 2, since the nonlinear reaction is 2P+

G → G* then �σb = σb np np � 1
� �

jng ¼ 1
D E

= σb np np � 1
� �

ng
D E

= ng
D E

.

Subsequently, we solve the set of differential equations with initial conditions

np
D E

= n2p

D E
= npng
D E

= n2png
D E

= 0; ng
D E

= 1 and with the aforementioned �σb

parameterization, i.e., solving MFL �σbð = σb npng
D E

= ng
D E�

for feedback loop or

MFL �σb ¼ σb hn2pngi � hnpngi
� �

= ng
D E� �

for cooperative network with cp= 2 on

the time interval [0, t]. We denote the solved moments of interest at time t′ as
ng

D E
t′
, npng
D E

t′
and n2png

D E
t′
, where 0 ≤ t′ ≤ t. Hence, the effective time-

dependent constants in the linear GRN are given by:

�σb t′ð Þ ¼ σb

npng
D E

t′

ng
D E

t′

; �σb t′ð Þ ¼ σb

n2png
D E

t′
� npng
D E

t′

ng
D E

t′

; ð18Þ

for the noncooperative and cooperative feedback loops, respectively.
From these, we can compute the the time-averaged value of the effective

parameter �σb at time t:

�σ�b ¼ σb
t

Z t

0

npng
D E

t′

ng
D E

t′

dt′ and �σ��b ¼ σb
t

Z t

0

n2png
D E

t′
� npng
D E

t′

ng
D E

t′

dt′;

for non-cooperative and cooperative loops, respectively. This is the time-averaging
assumption of the LMA.

Finally the approximate probability distribution at time t of the nonlinear GRN
without cooperativity is given by Eqs. (12–14) with �σb replaced by �σ�b and for
cooperativity the distribution is given by Eqs. (12–14) with �σb replaced by �σ��b .

In steady-state, the solution is simpler. The moment equations can be solved

with the time-derivative set to zero, i.e., MFL �σb ¼ σb npng
D E

= ng
D E� �

= 0, leading

to explicit expressions for ng
D E

and npng
D E

from which one can calculate the

effective parameter �σ�b = σb npng
D E

= ng
D E

of the non-cooperative feedback loop:

�σ�b ¼
�1þ ρbσb � σu þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρbσb þ σu
� �2þ4ρuσbð1þ σuÞ

q
2

:
ð19Þ

For the cooperative feedback loop, the effective parameter �σ��b =

σb n2png
D E

� npng
D E� �

= ng
D E

can be obtained in a similar way. It is found to be

the solution of a third-order polynomial given by:

�σ��b ¼ σb
ρ2b�σ

��
b 1þ �σ��b
� �þ 2ρbρu�σ

��
b 1þ σuð Þ þ ρ2u 1þ σuð Þ 2þ σuð Þ

1þ �σ��b þ σu
� �

2þ �σ��b þ σu
� � : ð20Þ

Finally, the approximate steady-state probability distribution of the nonlinear
GRN without cooperativity is given by Eqs. (15) and (16) with �σb replaced by �σ�b in
Eq. (19) and for cooperativity the distribution is given by Eqs. (15) and (16) with �σb
replaced by �σ��b as obtained from solving Eq. (20). See the Supplementary Note 3
for details of an efficient numerical implementation of the LMA of the feedback
loop using Mathematica.

The procedure can also be easily extended for the case of general number of
proteins cp= n binding cooperatively to the promoter. In this case by the mean-
field approximation, the effective parameter is:

�σ���b ¼ σb

Qn�1

i¼0
np � i

� �
ng

� 	

ng
D E :

By substituting in the moment equations up to the order of nnpng
D E

and solving in

steady-state, one finds that the effective rate constant is the solution of the
following implicit function:

�σ���b ¼ σb

Pn
i¼0

Cn
i ρ

i
uρ

n�i
b

Qi
j¼1

jþ σuð Þ Qn�1�i

j¼0
jþ �σ���b

� �
Qn
i¼1

�σ���b þ σu þ i
� � :

Finally, the approximate steady-state probability distribution of the nonlinear GRN
with cooperativity order n is given by Eqs. (15) and (16) with �σb replaced by �σ���b as
obtained from solving the implicit equation above. The construction of the time-
dependent solution parallels that previously shown for the special case of n= 2.

LMA for feedback loop with protein bursts. The feedback loop with protein
bursting (Fig. 2a) is mapped onto the linear GRN described by:

G�!ρu GþmP;G? �!ρb G? þmP;G�!�σb G?;G? �!σu G; P�!1 ;; ð21Þ

where m is a discrete random variable sampled from the geometric distribution ψ
(m)= bm/(1+ b)m+1 (see main text for justification of the choice of distribution).
The mean burst size of gene expression is given by b. As in the previous example of
noncooperative and cooperative feedback loops, we can derive coupled master
equations of the linear GRN above:

∂tP0 np
� �

¼ ρu
P1
i¼0

ψðiÞP0 np � i
� �

� ρuP0 np
� �

þ np þ 1
� �

P0 np þ 1
� �

� npP0 np
� �

þσuP1 np
� �

� �σbP0 np
� �

;

ð22Þ

∂tP1 np
� �

¼ ρb
P1
i¼0

ψðiÞP1 np � i
� �

� ρbP1 np
� �

þ np þ 1
� �

P1 np þ 1
� �

� npP1 np
� �

�σuP1 np
� �

þ �σbP0 np
� �

:

ð23Þ

A time-dependent solution for these master equations is presently missing from the
literature and we provide one in the Supplementary Note 1. Here we shall simply
refer to the exact steady-state and time-dependent solutions as SPBSS �σbð Þ and
SPBTD �σbð Þ, respectively.

Using Eq. (10), one can obtain the corresponding moment equations up to the
second order:

MPB �σbð Þ :

∂t np
D E

¼ ρub ng
D E

þ ρbb 1� ng
D E� �

� np
D E

;

∂t ng
D E

¼ σu 1� ng
D E� �

� �σb ng
D E

;

∂t npng
D E

¼ ρub ng
D E

þ σu np
D E

� 1þ �σb þ σuð Þ npng
D E

8>>>><
>>>>:

Since the only nonlinear reaction in the nonlinear GRN is P+G →G* then by the

LMA’s mean-field assumption �σb = σb npjng ¼ 1
D E

= σb npng
D E

= ng
D E

. Solving the

set of differential equations MPB σb npjng ¼ 1
D E� �

on the time interval [0, t], we

obtain the moments of interest at time t′ as ng
D E

t′
and npng

D E
t′
. The time-average

�σ�b is then constructed as before. The approximate solution for the probability
distribution at time t of the nonlinear GRN with protein bursts is given by
SPBTD �σ�b

� �
.

For steady-state conditions, the moment equations can be solved explicitly (as
before for the noncooperative and cooperative feedback loops) yielding:

�σ�b ¼ 1
2

�1þ ρbbσb � σu þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρbbσb þ σu
� �2þ4ρubσb 1þ σuð Þ

q
 �
:

The approximate steady-state solution for the probability distribution of the
nonlinear GRN with protein bursts is then given by SPBSS �σ�b

� �
.

LMA for feedback loop with oscillatory transcription. The feedback loop with
oscillatory transcription (Fig. 2c) is mapped onto the same linear GRN used for
cooperative and noncooperative feedback loops, namely that shown in Fig. 1a
lower except for the parameters ρu and ρb which become ρu‘t and ρb‘t , where ‘t =
1+Am cos(kπt) is an oscillatory function, where Am is the amplitude and k is the
frequency. Note that 0 < Am < 1 such that the protein production rate in each
promoter state is positive at all times. The master equations and moment equations
are thus given by Eqs. (11) and (17), respectively, with the aforementioned sub-
stitutions. An explicit time-dependent probability distribution solution of the
master equations can be found in the Supplementary Note 2. The approximate
time-dependent distributions of the nonlinear GRN can then be obtained by the
same LMA procedure as for the noncooperative feedback loop.

The time-averaging assumption in the LMA. The chemical master equation can
be compactly written as:

dPðtÞ
dt

¼ ALðtÞPðtÞ; ð24Þ

where P(t)= [P0(t), P1(t), …]⊤ and P1(t) is the probability that the system is in
state i at time t. Each entry of the transition matrix AL(t) is defined by the pro-
pensity function governing the transition from one state to another. By means of
the Magnus expansion of linear differential equations41–43, the solution of the
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master equation at time t= T can be written as:

PðTÞ ¼ expðΩðTÞÞP0;

and Ω(T)=
P1

i¼1 ΩiðTÞ. The first two terms of this expansion are:

Ω1ðTÞ ¼
Z T

0
ALðtÞdt; ð25Þ

Ω2ðTÞ ¼
1
2

Z T

0
dt1

Z t1

0
dt2 AL t1ð Þ;AL t2ð Þ½ �: ð26Þ

The convergence of this expansion has been extensively studied (for a review of
known results see Section 2.7 in ref. 42). The time-averaging assumption
corresponds to the first term of the Magnus expansion, i.e., truncating the
expansion to include only Ω1(T). This is since this term is the same as if we had to
first solve Eq. (24) assuming a time-independent transition matrix, leading to P(T)
= exp(ALT)P0 and then replace the time-independent transition matrix AL in this
result by the time-averaged matrix

R T
0 ALðtÞdt=T . This first term of the Magnus

series of the master equation can be shown to give a well-defined probability vector
and hence is physically meaningful to consider the expansion to this order only (see
Supplementary Note 8 for a proof). Hence the approximation error of our time-
averaging assumption is given by the rest of the terms in the expansion. What
follows is an analysis of this error, in particular we prove that the error is small for
all times in the limit of small protein–promoter binding rate, σb.

First of all, we note that for nonlinear GRNs with constant rates, the time
dependence of AL(t) with the LMA arises from the mapping to a linear GRN with a
time-dependent protein–promoter binding rate �σbðtÞ (for example see Eq. (18) for
the case of feedback loops with and without cooperativity). We now look at the
time-dependence of �σbðtÞ. Since there are zero proteins initially, �σbð0Þ ¼ 0 while
for long times �σbðtÞ approaches a constant steady-state value determined by the

steady-state values of the moments, e.g. the value of npng
D E

and ng
D E

for the non-

cooperative feedback loop. Furthermore the approach to steady-state occurs
exponentially (see Supplementary Note 8 for a proof).

Since the time dependence of AL(t) stems from �σbðtÞ, it also follows that AL(t)
converges to AL(∞) exponentially. This implies the following two statements. There
exist some positive real numbers C1 and δ1 such that

ALðtÞ � ALð1Þk k � C1e
�δ1 t

for any t and the matrix AL(t) can be expressed in terms of the steady-state matrix,
i.e.,

ALðtÞ ¼ ALð1Þ þ σbDðtÞ;

where D(t) is a discrepancy matrix and DðtÞk k � C2e
�δ2 t for some positive real

numbers δ2 and C2. Note that all norms are matrix 2-norms. Thus, for the Lie
bracket, we have:

AL t1ð Þ;AL t2ð Þ½ �k k ¼ ALð1Þ þ σbD t1ð Þ;ALð1Þ þ σbD t2ð Þ½ �k k
� σb ALð1Þk k D t1ð Þk k

þσb ALð1Þk k D t2ð Þk k
þσ2b D t1ð Þk k D t2ð Þk k

� σbC3e
�δ2 t2

for some positive real number C3 and for any t2 ≤ t1. Therefore, the matrix norm
Ω2(T) is upper bounded by:

Ω2ðTÞk k � σb
C3

2

Z T

0

Z t1

0
e�δ2 t2 dt2 ¼

σbC3

2δ22
δ2T þ e�δ2T � 1
� � � σbOðTÞ;

On the other hand, it is known that:

lim
T!1

Ω1ðTÞk k
T

¼ ALð1Þk k:

Thus, we have:

lim
T!1

Ω2ðTÞk k
Ω1ðTÞk k � σbOð1Þ:

This result indicates that the approximation error is bounded in time and first
order in σb. Applying similar arguments, it can be shown that all higher-order
terms in the Magnus expansion (Ωi, where i ≥ 3) are bounded in time and have
higher orders in σb than the first two terms. In other words, one can conclude that
the time-averaging assumption of the LMA is uniformly valid in time and accurate
provided the protein–promoter binding rate σb is small.

The first-passage time distribution of promoter switching. For our purposes,
this is the distribution of the time it takes for the promoter to switch from G to G*,
given there are n proteins initially. We shall show this for the cooperative and
noncooperative feedback loops (similar can be done for the bursty loop). Given the
process, the only relevant reactions for this calculation are:

G�!ρu Gþ P; cpP þ G�!σb G?; P�!1 ;; ð27Þ

where cp= 1 for the noncooperative feedback loop, and cp > 1 for the cooperative
feedback loop. The LMA maps this onto the simpler linear GRN:

G�!ρu Gþ P; G�!�σb G?; P�!1 ; ð28Þ

Using the same recipe as before, one writes the moment equations, applies the
mean-field assumption, obtains the relevant moments and then calculates the
effective time-dependent constants �σbðt′Þ. This implies the solution of the
moment equations Eq. (17) with the constants ρb and σu set to zero (since the
associated reactions are irrelevant to the first-passage time process as described
above) and initial conditions np

D E
¼ n, n2p

D E
¼ n2, npng

D E
¼ n, n2png

D E
¼ n2,

ng
D E

¼ 1.
The first-passage time distribution to switch from G to G* is given by P(tFP= t)

=−∂tP0(t)44, where P0(t) is the probability that the system is still in state G at time
t given that initially it is in this state. Since the LMA maps the second-order
reaction onto the linear reaction G →G* with effective rate �σbðtÞ, it follows from
elementary probability arguments that:

P0ðtÞ ¼ exp �
Z t

0
�σb t′ð Þdt′

� 
:

Hence, the final expression for the first-passage time distribution in the LMA is
given by:

P tFP ¼ tð Þ ¼ �σbðtÞexp �
Z t

0
�σbðt′Þdt′

� 
:

Code availability. The Mathematica code solving the LMA for the simple non-
linear feedback loop (schematically shown in Fig. 1a (upper)) can be found at
https://github.com/edwardcao3026/Linear-mapping-approximation. The details
are provided in Supplementary Note 3.

Data availability. All relevant data are available from the authors.
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