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MERRILL: Micromagnetic Earth Related Robust Interpreted

Language Laboratory

Padraig o) Conbhul'l, Wyn Wﬂliamsl, Karl F abian2’3, Phil Ridley4, Lesleis N agyl

and Adrian R. Muxworthy5

Abstract.

Complex magnetic domain structures and the energy barriers between them

are responsible for pseudo-single domain phenomena in rock magnetism, and contribute
significantly to the magnetic remanence of paleomagnetic samples. This article introduces
MERRILL, an open source software package for three-dimensional micromagnetics op-
timised and designed for the calculation of such complex structures. MERRILL has a
simple scripting user interface that requires little computational knowledge to use, but
provides research strength algorithms to model complex, inhomogeneous domain struc-
tures in magnetic materials. It uses a finite-element/boundary-element numerical method,
optimally suited for calculating magnetization structures of local energy minima (LEM)
in irregular grain geometries that are of interest to the rock and paleomagnetic commu-
nity. MERRILL is able to simulate the magnetic characteristics of LEM states in both
single grains, and small assemblies of interacting grains, including saddle-point paths be-
tween nearby LEMs. Here, the numerical model is briefly described, and an overview of
the scripting language and available commands is provided. The open source nature of
the code encourages future development of the model by the scientific community.

1. Introduction

Paleomagnetic observations have contributed a wealth of
information about the evolution of the Earth and other plan-
etary bodies [Merrill, 1998; Dunlop and Ozdemir, 2001],
through the interpretation of remanent magnetization in
naturally occurring magnetic minerals. The vast majority
of the natural magnetic archives are recorded by nano-sized
particles whose magnetic properties initially could only be
inferred from experimental observations, either on natural
samples or on man-made analogues of bulk particle arrays
which have relatively broad particle size distributions. Rock
magnetic interpretation is typically based on the assumption
that paleomagnetic samples are dominated by single-domain
particles which are theoretically accessible by Néel’s theoret-
ical description [Néel, 1955].

With the advent of numerical micromagnetics and high-
resolution imaging techniques, its has been demonstrated
that many of the remanence carriers in natural samples are
inhomogeneously magnetised pseudo-single-domain (PSD)
grains, which in their simplest form take on a single-vortex
(SV) magnetic structure. The first three-dimensional micro-
magnetic models were introduced in the late 1980’s [Schabes
and Bertram, 1988; Williams and Dunlop, 1989], and over
the last 30 years have significantly advanced our understand-
ing of magnetic recording in interacting and non-interacting
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non-uniformly magnetized particles. In paleomagnetism, for
example, such studies have demonstrated not only that small
PSD grains, ubiquitous in rocks, primarily occupy SV states
but that these states can provide reliable and stable record-
ing of the ancient magnetic field that remain stable of over
billions of years [Nagy et al., 2017].

Modern desktop computers and workstations are now
powerful enough to perform micromagnetic simulations of
a wide range of grain sizes, materials and even clusters of
grains that are of interest to rock-, paleo- and environmental
magnetists. The currently available open source programs
(e.g. OOMMEF [Donahue and Porter, 1999], Magpar [Scholz
et al., 2003], NMag [Fischbacher et al., 2007]) are developed
for applications in material science and physics and require
substantial specialist knowledge to install, maintain and ap-
ply in Earth related contexts. The objective of this article
is to introduce an opensource micromagnetic model that we
believe can significantly increase the ability of the rock and
paleomagnetic community to define the magnetic properties
of their samples through forward modelling of the behavior
of their possible domain states.

We describe here a finite element micromagnetic mod-
elling package called MERRILL(Micromagnetic Earth Re-
lated Robust Interpreted Language Laboratory) in honour of
the early work of Ron T. Merrill on micromagnetics in rock
magnetism [Merrill, 1977; Moon and Merrill, 1984; Moon,
T S and Merrill, R T, 1985]. MERRILL is a script based
modeling program designed for the Earth science commu-
nity, that needs no specialist computing knowledge or pro-
prietary additional software to run the models and visualize
the magnetic domain structures. Yet, it is a fully tested
research-strength modeling platform that uniquely provides
specific features relevant for natural samples, and may even
outperform some of the above mentioned software in cer-
tain applications. Both, pre-compiled binaries and the FOR-
TRAN source code are freely available and run on LINUX,
macOS and Windows. They can be downloaded from the
MERRILL homepage at http://www.rockmag.org.

1.1. Workflow

A typical workflow using MERRILL is outlined in fig-
ure 1. A tetrahedral mesh of the geometry of interest
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must first be generated in an external program (although
MERRILL contains routines for generating some commonly
used geometries), representing the magnetic material. An
“MScript” command file is then passed to MERRILL to
drive the model, e.g. loading the mesh, setting material
parameters, varying external fields, minimizing the micro-
magnetic energy, and outputting the magnetization to disk.
When the magnetization has been output to disk, an exter-
nal visualization program can be used to inspect the results.
The visualizations of the geometries and magnetizations pre-
sented in this paper were generated with ParaView [Ahrens
et al., 2005]. This magnetization may also be used as a
starting point in future models.

A productive workflow might involve running a micro-
magnetic model, inspecting the results visually, and then
continuing the model using the previous results as the new
starting point, until some desired result is achieved.

2. Micromagnetism

In micromagnetism, a real physical magnetic system is
described in terms of a continuous vector valued function

M:R® -5 R®

i — M(®),

where M (Z) represents a mathematical magnetization vec-
tor at the mathematical point Z € R® [Brown, 1963; Hubert
and Schdfer, 1998]. All physical energies and processes are
then mathematically studied through this continuous func-
tion. To link the results to the physical situation, one can as-
sume that the magnetization at a given mathematical point
is constructed by averaging the discrete physical sources of
magnetism, e.g. electron spins and orbitals, over a small
volume centered at that point. This volume must be large
enough that the behavior of individual atoms are averaged
out, but small enough to resolve inhomogeneous magnetic
structures such as domain walls, vortices, or flower states.
It turns out that this continuum approximation represents
real magnetization structures astonishingly well, even if the
mathematical magnetization at a given point represents only
the average over a few atoms. Quantum mechanical effects
which are essential in magnetism, are represented purely
phenomenologically through material constants like the ex-
change constant or the magnetocrystalline anisotropy con-
stant.

[

&
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energy NEB
log path
Paraview ‘ | Tecplot

Figure 1. A typical workflow using MERRILL.
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In micromagnetic models the magnetic structure in a par-
ticle gives rise to various contributions to the total free mag-
netic energy functional E (M), or to their associated effective
fields. The effective field H is given as a function of M as

OE
oM,

H{™(M) = (M) (1)
The dynamics of a micromagnetic system is described by
the Landau-Lifshitz-Gilbert (LLG) equation [Gilbert, 2004]

%4 = —yM x H* (M) — AM x (M x H®(M)), (2)
where 7 is the electron gyromagnetic ratio and A is a ma-
terial dependent damping factor. This behaves like a dy-
namical system where a force H*® acts on a system with a
non-zero angular momentum vector pointing parallel to M.
A sufficient condition for an equilibrium magnetization MP°
is given by

M° x (3% =0 (3)
This solution is local energy minimum (LEM), which we
might associate with a remanent magnetization state, and
so we will denote it M™™. From equation (3) we can see
two types of solutions. Either M? is parallel to H*"(M°) or
He(M°) = 0. In MERRILL, we focus on the second solu-
tion, that is we solve for the LEM solutions by optimising
the expression for the total free magnetic energy of the sys-
tem. This is generally much more efficient at finding stable
domain structures that the full solution to the LLG equa-
tion, and and we are not normally interested in the details
of the domain transition dynamics that the LLG describes.

2.1. Effective Fields

The total effective field H*™ (M) for a typical cubic fer-
romagnetic crystal involves four primary components: Zee-
man, anisotropy, exchange and demagnetizing fields [Kittel,
1949; Brown, 1963].

2.1.1. Zeeman Field

The Zeeman field represents the interaction of external
sources of magnetic field with the magnetic system under
investigation. As such, it is often referred to as the “exter-
nal field.” It is assumed that the system under investigation
has no effect upon the external source.

H*™ = constant (4)

2.1.2. Anisotropy Field

The anisotropy field couples the magnetization to the
crystal lattice. It is the primary mechanism by which the
symmetries of the lattice affect the magnetization. For a
cubic ferromagnetic crystal, if the crystal axes are along the
z, y, and z coordinate axes, it can be written

s = 25, (a1 (ag + ag) , az(ag +a3), as(ad + a%))
(5)
with K; the anisotropy constant. In magnetite and iron
higher order terms are are much smaller and can be safely ig-
nored for micromagnetic calculations. However, MERRILL
does allow a value for K» to be set.
The vector @ here represents the directional cosines of the
magnetization with respect to the crystal axes. For a crystal
with cubic axes @, b, and ¢, the vector & is defined

. M-a M-b M-¢
a=|=—, ==, = (6)
|M||a] ~ |M]p]  |M]|E

such that @ -a = 1.
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For other non-cubic anisotropies, appropriate equations
are used, e.g., for a crystal with a uniaxial symmetry, e.g., a
tetragonal mineral like tetrataenite, a uniaxial anisotropy
H*™S(M) = K;(M - @? is commonly used, with a the
anisotropy axis.

2.1.3. Exchange Field

The exchange field serves to align nearest neighbor mag-
netizations. Although this incorporates quantum mechani-
cal spin coupling, in the continuum approximation a micro-
magnetic expression can be given as

H™" = AV?a (7)

with A the exchange coupling constant.
2.1.4. Demagnetizing Field

The demagnetizing field represents the magnetic field gen-
erated by the magnetic material itself, derived from the
“magnetic self-energy”. It is called the demagnetizing field,
because a higher magnetic self-energy represents a higher en-
ergy configuration, so it typically acts on the magnetization
in such a way that it minimizes external flux and thereby
itself.

At = S ®)
V¢ =V-M 9)
p(o0) =0 (10)

Outside of the magnetic material, this is the “stray field.”

3. Minimum Energy Solutions using Finite
Elements

There are a variety of numerical micromagnetic ap-
proaches than can be used to solve for locally stable mag-
netic domain structures. Here we use a method that is both
numerically efficient and robust whilst requiring the simplest
input for representing the geometry of the grain. In most
micromagnetic models the primary consideration is the ef-
ficiency with which in the internal demagnetising field can
be computed. This field calculation scales as O(N?), where
N is the number nodes, but if the geometry is meshed us-
ing a regular grid this scaling can be reduced to O(N log N)
using FFT [Fabian et al., 1996; Wright et al., 1997]. How-
ever, such regular grids do not easily account for arbitrary
grain geometries, although some success has been achieved
by relative scaling of surface elements [ Witt et al., 2005], or
irregular FFT techniques [Kritsikis et al., 2008].

In MERRILL we employ the Finite Element Method
(FEM), a standard technique for describing functions over a
geometry and solving differential equations in terms of those
functions [Davies, 2011]. MERRILL uses arbitrarily shaped
linear tetrahedral finite elements to describe the geometry
of a particle and to solve for the LEM stable domain states.
Some care is needed in the calculation of the demagnetizing
field described by equations (8) - (10), which involves solv-
ing the Poisson equation for the magnetic scalar potential
over an infinite space.

MERRILL makes use of a Boundary Element Method
(BEM) technique [Lindholm, 1984; Fredkin and Koehler,
1990], which is a specialization of the FEM for homogeneous
Poisson equations, particularly suited to problems defined
over an infinite space. This method has significant advan-
tage in that we need not create a mesh in the free-space
region outside the geometry of the magnetic particle (even
for multi-particle solutions) but the method does, however,
increase the memory requirements of the programme. In our
experience, this is acceptable for single-grain geometries re-
quiring up to about a million elements. A more detailed
account of different mciromagnetic methodologies can be
found in [Fidler and Schrefl, 2000].
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LEM states are found by solving for the minimum free
magnetic energy of the system E = —H°T . M where the
total effective field is given by

ﬁeﬁ(ﬂ) _ I_{‘exch(M) + I‘{‘aniS(M)
+ ﬁzrrx(M) + ﬁdmag(M)

(11)

To include further phenomena, like stress fields or surface
anisotropy, in theory one need only derive the corresponding
effective field, typically by taking the derivative of the energy
with respect to the magnetization, and add it to equation
(11).

In order to determine minimum energy solutions, by de-
fault MERRILL makes use of an accelerated adaptive step-
size steepest descent algorithm across the energy landscape,
optimized for micromagnetics, here called “Hubert Mini-
mizer” [Ramstick, 1997; Berkov, 1998a] . A standard conju-
gate gradient optimizer is also available as an option, but in
most cases is slightly less efficient in finding energy minima.

4. Mesh Generation

MERRILL requires a that the geometry of the mag-
netic particle is described using a linear tetrahedral mesh
(by default defined in micron units). The magnetization is
thus specified only at the four vertices of each element and
linearly interpolated at all other locations. MERRILL is
able to generate suitable meshes for simple grain geome-
tries such as cubes and spheres, however more complex
particle geometries require additional meshing software of
which there are many free and commercial programmes. The
only requirement is that the mesh is formatted according to
ASCII text based PATRAN (.neu) standard. Most finite
element meshing applications will support this and more
detailed information about the PATRAN format can be ob-
tained from the website of the MSC Software Corporation
[https://simcompanion.mscsoftware.com).

Like all finite-element models, the quality of the mesh will
affect the convergence efficiency of the model. In most cases
meshing software will take care to produce a qood quality
mesh, but for highly irregular geometries problems may still
arise. Discussion of mesh quality metrics can be found in
many publications (e.g. [Knupp, 2006], [Dai et al., 2014])

For micromagnetic applications it is important to ensure
that that mesh is fine enough to resolve the expected spatial
variation of the magnetization within the model geometry.
The maximum element size is usually described in terms
of the “exchange length”, lexcn [Rave et al., 1998], which is
dependent on the magnetic material parameters

S Y
exch = MOMSQ

For iron and magnetite, for example, the exchange length
is around 3 nm and 9 nm respectively at 30 °C and slightly
larger near the Curie Temperature.

Clearly, the bigger particle and finer the mesh the longer
the model will take to converge to a LEM state. For large
grains the mesh size is usually set to the exchange length.
However, small grain geometries will require a mesh that is
finer than the exchange length in order adequately represent
the grain shape.

(12)

5. Model Validation

Validation of micromagnetic models should ultimately be
done against experimental observations. However such di-
rect validation has until recently been extremely difficult to
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achieve since the maximum grain size that could be mod-
elled numerically was much smaller than that which could
be directly observed experimentally. As a result the earliest
micromagnetic models could only be validated against bulk
observations such as assemblies of sized particle fractions
or magnetosome observations [Williams and Dunlop, 1995;
Fabian et al., 1996; Witt et al., 2005] in the case of natural
materials, or on thin film and particulate man-made record-
ing media [Labrune and Miltat, 1990; Silva and Bertram,
1990]. However, results from MERRILL have been directly
compared with nanoscale experimental data via electron
holography with good agreement [Almeida et al., 2016].

With an increasing number of micromagnetic models be-
ing published, a number of standard tests were developed in
order to ensure that the models were at least self-consistent.
Validation against these standard tests is now a pre-requisite
for any newly published micromagnetic code. One such test
is uMAG Standard Problem 3 (see appendix A), which tests
for the critical edge length of a cube for transition between
a flower state and a vortex state. Our solutions found the
flower and vortex states had equal energies at an edge length
of 8.47 loxcn when extrapolated to an infinitely fine mesh,
which is in good agreement with other submissions to the
uMAG problem.

MERRILL also tests the effective field components
against some analytic solutions. For example, the demagne-
tizing field for a uniform sphere can be written H9™m*8 = 1 M
and should be independent of the sphere size.

6. MScript: The

Language

MERRILL Scripting

MERRILL is run at the command line with an input text
file containing a series of MScript commands for MERRILL
to execute. These commands allow the user to interact with
MERRILL in a number of ways, for example setting mate-
rial constants, loading meshes or finding a local energy min-
imum. In this section we will outline a few typical computer
experiments that can be used to probe the behavior of the
magnetization of magnetic materials using MERRILL. This
will also serve as a brief tutorial on the MScript language
and introduce some of features in MERRILL.

The default units for MERRILL are microns and degrees
Celsius, although different units may be used as specified in
the user documentation. A full list of MERRILL commands
can be found in appendix B and on MERRILL download
page [http://www.rockmag.org] where it will be updated as
MERRILL is developed further.

Some typical commands include (but are not limited to)

Magnetite (temperature) C
Set material constants to magnetite at (temperature) degrees
Celsius.

Iron (temperature) C
Set material constants to iron at (temperature) degrees Cel-
sius.
GenerateCubeMesh (width) (edgelen)
Generate a cubic geometry of width (width) and with the
average length between mesh nodes of length (edgelen).
Uniform Magnetization (z,y, z)
Set the magnetization of the material to
M:MS (z,y,2) /2% +y? + 22
Minimize
Run the minimizer to find the local energy minimum.
WriteMagnetization (filename)
Write the magnetization to disk. Two files are writ-
ten, (filename).dat and (filename)_mult.tec. =~ The file
(filename).dat contains a list of vertex points and the
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magnetization at that point. This is suitable for use
with the ReadMagnetization command (see below). The
(filename) _mult.tec file is the mesh and the magnetization
in a TecPlot file format. This can be read by a number
of visualization tools, including the free, open source and
cross-platform ParaView software [Ahrens et al., 2005).
ReadMagnetization (filename)
Read a previously written file (filename) from the Write-
Magnetization command, and set the current magnetization
based on that.
External Field Direction {(x,y, z)
Set the Zeeman field direction to

2) [V x? 4+ y? + 22

Ezternal Field Strength (magnitude) mT
Set the Zeeman field strength to

f{ Iy,

|H*™| = (magnitude)

MScript also includes supports for variables and loops.
For example, the script

Loop myvalue 0 100 10
Print #myvalue
EndLoop

creates a loop with the local variable myvalue . The num-
bers in the loop command determine initial value, end value
and step size, such that the above loop prints out the values
0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100. To distinguish
between floating point, integer and string values, the vari-
able myvalue can be referred to as %myvalue, #myvalue and
$myvalue$, depending on what is needed. For example, in

Loop myvalue 0 100 10
WriteMagnetization SolnFileA _%myvalue
WriteMagnetization SolnFileB_#myvalue
EndLoop

the filenames written to by the two WriteMagneti-
zation commands are quite different. The argument
SolnFileA_Ymyvalue produces filenames of the form Soln-
FileA_40.10000E2 when myvalue is 10, whilst the argument
SolnFileB #myvalue produces filename of the form Soln-
FileB_10.

6.1. Minimization

A basic minimization from a random start, or a uniformly
magnetized start can be a quick way to tell if a grain is in
the SD or PSD size range. Moreover, it is the basic building
block from which most other MERRILL modelling experi-
ments come.

A simple minimization script to determine a LEM state
from a random initial state for a meshed geometry can be
given as follows

! Setup material constants for Iron
! at 20 Degrees Celsius
Iron 20 C

! Load the meshed geometry from a
! Patran Neutral file
ReadMesh 1 mesh.neu

! Randomize the magnetization
Randomize All Moments
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Helicity
4 -122.028 59 3.158
“J |- ‘ | -~ H

Figure 2. Minimization of an Iron inclusion from a
dusty olivine sample at 20 C with random initial magne-
tization. The shape is approximately a prolate ellipsoid
with semi-major axes of 0.134 pm and 0.126 pum, and
semi-minor axis of 0.085 pum, with axes aligned along the
cardinal directions. The LEM is a single vortex state
with core aligned along the semi-minor axis.

! Run the minimizer
Minimize

Output the solution M to two files:
soln.dat and soln_mult. tec.

The soln.dat file can be used as the
input for amnother run as, e.g., an
initial guess. soln_mult.tec is a
TecPlot format file which can be used

~ tm et e

Cubic Anisotropy Energy

4

-4421.922 -3459 -2495.154
Emm————

Figure 3. Minimization of a 0.08 um cube of Magnetite
to a flower state from an initial uniform [111] magnetiza-
tion.

Helicity
¢ 93823 46 1.408
H L1l ‘ |- \H

Figure 4. Minimization of a 0.08 um cube of Magnetite
to a vortex state from an initial approximate [111] aligned

vortex state, coloured by helicity (M - (V x M)).

! to wview the solution in a visualization
! program such as ParaView

! (which is free and open source!)
WriteMagnetization soln

The output of this script can be seen in figure 2 using a
mesh generated from experimental focused ion beam nan-
otomography data for an example iron inclusion in dusty
olivine in a chondritic meteor sample [Einsle et al., 2016].

It is important to note that there may be several possible
magnetization states the minimization might settle upon,
representing multiple possible, and completely valid local
energy minima states. However, from a given starting point,
barring numerical noise, the minimization should always
reach the same end point.

The LEM found can be highly dependent on the choice
of initial state. A simple minimization script to determine
a LEM state for a cubic grain of magnetite, starting with
uniform magnetization, can be given as follows

! Setup material constants for Magnetite
! at 20 Degrees Celsius
Magnetite 20 C

! Generate a .08 micron cube wusing the

! built—in cube mesh with mesh size &5 “nm
! generator

GenerateCubeMesh 0.080 0.005

I A flower state will nucleate from a
! uniform magnetization along the

! easy azis

Uniform Magnetization 1 1 1

Minimize

WriteMagnetization flower_soln

The output of this script can be seen in figure 3, repre-
senting a flower state.
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By starting from a rough vortex state rather than a uni-
form state, we can instead nucleate a vortex LEM. This can
be accomplished by

Magnetite 20 C
GenerateCubeMesh 0.080 0.005

! A vortex state will nucleate from a
! rough wvortexr state with core aligned
! along the easy axis

I The 1 1 1 refers to the direction ,
! 0.02 is the "tightness”, which should
! by manually tuned by the wuser, and

! LHS will produce a left hand wvortezx.

Vortex Magnetization 1 1 1 0.02 LHS
Minimize

WriteMagnetization vortex_soln

The output of this new script (seen in figure 4) highlights
the ”local” aspect of a local energy minimum.

6.2. Hysteresis Loops

Hysteresis loops are a useful tool when a magnetic mate-
rial has several remanent magnetization states for a given set
of parameters. From a hysteresis loop, it is possible to de-
terministically move from one state to another, and find the
tipping point where the variation of a given parameter will
cause one state to spontaneously switch to the other. This
also provides information on the range of values for the given
parameter where both states can co-exist. In other words,
it provides some information about the stability of a given
state when multiple valid states exist.

Since the minimization should always reach the same so-
lution when given the same starting point, a hysteresis loop
run with the same parameters and the same changes in pa-
rameters should always return the same results in MER-
RILL.

6.2.1. Magnetic Field Hysteresis

A magnetic hysteresis loop has several uses. A single hys-
teresis loop can be useful to get a feel for the behavior of
the magnetization of a system (i.e., its coercivity, if it’s SD
or PSD). The average of hysteresis loops in many directions
can be used to compare simulations with experimental ob-
servations of magnetic characteristics such as coercivity.

A hysteresis loop is a quasi-static thermodynamic pro-
cess. That is to say, at each point of the hysteresis loop, the
system is assumed to be in equilibrium and the energy at
a local energy minimum. A change from one point to the
next in a hysteresis loop represents the system moving from
what was a local energy minimum in the previous step to
the nearest, new local energy minimum in the current step.

The simulation of a hysteresis loop is accomplished by the
following scheme

1. Set Zeeman field to saturating value in a fixed direc-
tion: Z = Zmax

2. Find LEM

3. Update Zeeman field: Z = Z - a*Zmax

4. If Z != -Zmax, Go to 2
_, For asaturating field 2™, a hysteresis loop will run from
Z™M3 to -Z™* in small increments. Here, “small” means
sufficiently small enough that any phenomenon sensitive to
the external field, e.g., magnetization switching or nucle-
ation of vortices, are accounted for. In practice, “small”
means just small enough to resolve changes in the magneti-
zation you are looking for, but as large as possible to reduce
the total number of steps needed for the loop. Otherwise a
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large amount of work may be done unnecessarily for little
progress.
A MERRILL script which accomplishes this is

Magnetite 20 C
GenerateCubeMesh 0.100 0.005

External Field Direction 1 0 0
External Field Strength 0 mT

Loop field —100 100 5
Randomize Magnetization 10
External Field Strength %field mT
Minimize
! Write current wvalue to disk,

! so we can inspect it later.
WriteHyst hyst_soln
1
0.5
T
s 0
-0.5
-1 ———¢
0.1 0.05 0 0.05 0.1

IHI (mT)

Figure 5. The lower branch of a hysteresis loop with re-
spect to an external magnetic field, varying from -100 mT
to 100 mT for a 0.1 pm sphere of magnetite. The arrow
denotes the direction of change of |H| during the loop.

& Helicity

» 10.781 47.7 84.567
H,\\J\\\\H\\Jﬂ

Figure 6. Magnetization of a 0.1 pum sphere of mag-
netite at |H| = —30 mT during a field hysteresis from
|H| = —100 mT to H = 100 mT, coloured by helicity

(M - (V x M)).
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EndLoop

Since hysteresis is generally symmetrical to forward and
reverse fields, it is only necessary to run either the upper or
lower branch of the hysteresis loop, not both.

A plot of the upper branch is shown in figure 5. This
curve is different to the usual SD curve, where the value
M - H remains near the saturation value, until passing the
coercive field. Here, the grain enters a vortex state, and the
value M - H can minimized while keeping the anisotropy en-
ergy relatively low by varying the shape of the vortex. An
example of the vortex state at |H| = —30 mT is shown in
figure 6
6.2.2. Size Hysteresis

A hysteresis loop where the size of the grain is varied
rather than an external field can be a useful tool for deter-
mining SD and PSD ranges, and the evolution of magnetic
domain states. Since several remanent states can exist for
a grain, particularly in the early PSD size range, it can be
difficult to pinpoint exactly where that regime begins.

In a size hysteresis loop, the grain is started in an SD
magnetization state. The size of the grain is increased until
it spontaneously switches to a vortex PSD state. The size of
the grain is then scaled down until it is in a SD state again.
The branch of increasing size can tell us what the largest
grain size is that supports an SD state, and the branch of
decreasing size can tell us what the smallest grain size is
that supports a PSD state.

Note, the exact initial SD was not defined. Ideally, a
size hysteresis should be run for each possible SD remanent
state. For symmetric grains, symmetry should make many
of these redundant. However, for asymmetric grains, the
direction of the initial magnetization may greatly affect the
stability of the SD solution.

When scaling sizes, it is important to consider the size of
the elements of the mesh during scaling. Typically, the edges
of a mesh should be around the exchange length. When
the size of a mesh is increased, the average edge length
should not exceed the exchange length. By starting with
a larger mesh and scaling down, rather than the other way
around, we can avoid this problem. However, finer meshes
take longer to run. A compromise can be found using the
“Remesh” command. A user might use a mesh that is suit-
able for scaling up to e.g. 0.1 pum, and at that size, switch
to a mesh suitable for up to e.g. 0.2 pm.

So, if we want a maximum node spacing of e.g. 0.005 pm,
we make two meshes of width 0.1 gm: one with node spac-
ing 0.005 pm, and one with node spacing of 0.0025 ym. The
first mesh will cover grains from 0 ym to 0.1 um, while the
second can cover grains from 0.1 pym to 0.2 pm. We make
the meshes the same initial size so the Remesh command
can interpolate the magnetization directly from one to the
other.

In MERRILL, the “Resize” command can be used to scale
the mesh. An example size hysteresis script incorporating
all of this is

! Use magnetite material parameters
Magnetite 20 C

! Ensure we can load at least 2 meshes
! at a time

Set MaxMeshNumber 2

0.005 um node
scaling up to

! Load 0.1 um mesh with
! spacing, suitable for
! 0.1 um, into slot 1

ReadMesh 1 octahedron_0.1um_0.005um. neu

! Load 0.1 um mesh with 0.0025 um node

XResize-7

! spacing, swuitable for scaling up to

! 0.2 um, into slot 2

ReadMesh 2 octahedron_0.1um_0.0025um. neu
! Set reference size of the meshes to 100.
! We’ll be scaling from 10 to 200.

! In this case, 100 will be 0.1 um,

I 10 will be 0.01 um, and 200 will be

! 0.2 um.

define refsize 100

! Make sure mesh 1 is loaded
LoadMesh 1

! Set initial magnetization to [111]
Uniform Magnetization 1 1 1

! Loop from 10 to 100 in steps of 10 for
! the 0.005 uwm mesh
Loop meshsize 10 100 10

! Resize our mesh to the current

! %meshsize

! For #meshsize 20, for example,

! the 0.1 um mesh is scaled to

! 0.02 um.

Resize #refsize #meshsize

! Give the magnetization a small kick
Randomize Magnetization 5

! Run the minimization
Minimize
! Write the output to a file

WriteMagnetization up_0.$meshsize$um

original
iteration

! Resize the mesh back to its

! size, for the next loop

Resize #meshsize #refsize
EndLoop

!

! Hand off to the 0.0025 um mesh
!

! Interpolate the current magnetization to
! mesh 2 and load it
Remesh 2

! Loop from 110 to 200 in steps of 10 for
! the 0.0025 um mesh
Loop meshsize 110 200 10
Resize #refsize #meshsize
Randomize Magnetization 5
Minimize
WriteMagnetization up_0.$meshsize$um
Resize #meshsize #refsize
EndLoop

! Small to large done.
! Now do large to small.
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Figure 7. A full hysteresis loop of saturation magneti-
zation versus size for an octahedral grain of magnetite.
Three distinct magnetic phases are marked: a flower state
(FS), a hard-aligned single vortex state (HSV) and an

easy-aligned single vortex state (ESV).

Helicity
-9.109 95

Helicity

198.157 -9.109 95 198.157
- g -

Helicity
95 198.157
-

Helicity
95 198.157
u -

-9.109 -9.109
L -—

Figure 8. Comparison of upper and lower branch results
for a size hysteresis of an octahedral grain of magnetite.
The upper branch goes from small to large, and the lower
branch goes from large to small. Image a) is the upper
branch at 0.13 pm, b) is the lower branch at 0.13 pm, c) is
the upper branch at 0.15 pum, and d) is the lower branch

at 0.15 um. The colouring is helicity (M - (V x M)).

! Loop over 0.0025 um mesh
Loop meshsize 200 110 —10

Resize #refsize #meshsize

Randomize Magnetization 5

Minimize

WriteMagnetization down_0.$meshsize$um
Resize #meshsize #refsizeEndLoop

! Hand off to 0.1 um mesh
Remesh 1

! Loop over 0.1 um mesh
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Loop meshsize 100 10 —10
Resize #refsize #meshsize
Randomize Magnetization 5
Minimize
WriteMagnetization down_0.$meshsize$um
Resize #meshsize #refsize
EndLoop

A graph of the saturation magnetization versus the grain
size is shown in figure 7, with three distinct magnetic phases
marked: a flower state (FS), a hard-aligned single vortex
(HSV), and an easy-aligned easy vortex state (ESV). A com-
parison of the upper and lower branches at 0.13 pm and at
0.15 pm, are shown in figure 8, demonstrating the ESV and
HSV states for the lower branch, and the corresponding FS
states on the upper branch.

6.2.3. Temperature Hysteresis

A temperature hysteresis can be used to observe the ef-
fects of heating, say iron, from room temperature to the
Curie temperature and back. The approach MERRILL
takes to this is to simply change the temperature depen-
dant material parameters for each step. In this way, the
model is of a “cold” material, since no other thermal effects
are taken into account which might spontaneously and non-
deterministically effect the magnetization. However, the
changes in material properties can have significant impact
on the shape of the energy landscape with respect to the
depths, positions and even number of the local energy min-
ima.

An example temperature hysteresis of iron is

GenerateCubeMesh 0.18 0.005
Uniform Magnetization 1 1 1

Loop temperature 20 770 10
! Set the material parameters for iron
! at the given temperature
Iron %temperature C

! Find the LEM
Minimize

! Write current value to disk,

! can inspect it later.

WriteHyst hyst_soln_#temperature
EndLoop

SO0 we

6.3. Energy Barriers

MERRILL includes a new method for finding the min-
imum energy transition between two given LEM states
[Fabian and Shcherbakov, 2017]. It uses a combination of
the Nudged Elastic Band technique [Henkelman et al., 2000;
Dittrich et al., 2002] and an action minimization method
[Berkov, 1998a, b; Fabian and Shcherbakov, 2017]. It fi-
nally constructs a prescribed number of intermediary states
between the given LEM states Li, L2, such that their in-
terpolation represents the average physical switching path
for a fully damped (A = 0) switching process from L; to
L2. The path with the lowest maximum energy barrier, de-
termines the thermal activation energy required to switch
between these states. From that, the probability of switch-
ing and the relaxation time across the energy barrier can be
obtained.

These quantities are of paramount importance in paleo-
magnetism, where small changes in size, shape, or material
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parameters can change the relaxation time from the order of
seconds, to millions of years, and the corresponding paleo-
magnetic information is either completely unblocked, or can
be regarded as stable or blocked. In contrast to, for example,
the simulation of writing heads for magnetic hard drives, the
nanosecond dynamics of the switching processes are of no
interest in paleomagnetism, such that time-consuming full-
fledged LLG models do not improve the result. On the con-
trary, the exact determination of the energy barrier through
the saddle-point path provides a better estimate of the ther-
mal relaxation time. Note in that respect that the LLG
equation does not include temperature, and that thermal
activation has to be added in a phenomenological way, e.g.
as a stochastic zero-mean Gaussian fluctuation field [Torres
et al., 2001], if it is considered at all.

If morphology and composition of a natural magnetic
mineral system is known MERRILL can provide quantita-
tive insight to whether the signal recorded has remained
stable since it was recorded [Nagy et al., 2017].

An example script for a NEB calculation is

! Use only one mesh for this NEB
! minimization
Set MaxMeshNumber 1

! Read in the mesh
ReadMesh 1 model.neu

! Set the maximum number of energy

! evaluations for LEM/path calculations
Set MaxEnergyEvaluations 10000

Set MaxPathEvaluations 1000

! Set the material parameters using a
! predefined material (iron)
Iron 20 C

! Define an initial path containing only
! two points (the start and end points)

Set PathN 2

! Read in the start structure from a
! magnetization file & store as path
! point 1

ReadMagnetization start_mag
MagnetizationToPath 1

! Read in the end structure from a
! magnetization file & store as path
! point 2

ReadMagnetization end_mag
MagnetizationToPath 2

! Define the energy log output file
EnergyLog nebinitial_energy

! Refine the path to 100 structures (98
! intermediate structures are created)
RefinePathTo 100

! Set the minimization to use conjugate
! gradient
ConjugateGradient

! Set the exchange calculator to the
! typical one (default)
Set ExchangeCalculator 1

! Generate an initial path and save the
! dinitial path

MakelnitialPath

WriteTecPlotPath initialpath.tec

! Run the NEB wusing the initial and write
! the output file

PathMinimize

WriteTecPlotPath finalpath.tec

! Output the energy of each point of the
! path to disk.
PathStructureEnergies energies

7. Practical Considerations

There are a number of practical considerations when
using MERRILL. Presently MERRILL is not parallelized.
However, many instances of MERRILL may be run in task-
farm parallel manner for reasonably small grains. This ap-
proach can be used to model, for example, large assemblies
of non-interacting grains, and hysteresis loops about many
axes in parallel. The maximum grain size that you will be
able to model will be dependent on a number of factors, but
primarily the number of elements in the model. MERRILL
will comfortably cope with models of up to approximately
10° elements for single grain of simple geometry on a ma-
chine with access to 64 GB of RAM (see figure 9). If the
model consists of a cluster particles where the total grain
surface to volume ratio is significantly greater than that of
a single grain then the maximum number of elements in the
model would need to be less than 10°. It is not possible
to formulate any hard rules that cover the combination of
different number of particles, grain sizes and mesh sizes, but
the user should be aware that the memory requirement in-
creases as the square of the number of surface nodes (which
is typically proportional to the number of surface elements).

The time taken for a model to converge on a local energy
minimum will again be largely dependent on the model size
(See figure 9), but also on how close your initial guess is
to the final LEM solution. Thus solution times for a ran-
dom initial guess and a uniform saturated state initial guess
can have significantly different solution times. A similar sit-
uation occurs during a change in the magnetic phase, i.e.
when a solution changes from SD to SV, or hard-aligned SV
to easy-aligned SV.

running time (s)
3
il

T
10° 10* 10° 10°
no. of elements

Figure 9. A log-log plot of the time taken for MERRILL
to find a Local Energy Minimum of a cube, starting from
a random state, versus the number of elements in the
mesh.
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In rare cases, the model might attempt a large number of
iterations because of slow convergence to the final solution.
In such cases it is better to place a limit in on the maxi-
mum number of allowed iterations (which has default value
of 100,000). Often such slowly converging solutions can be
avoided by trying a slightly different initial guess, slightly
changing the model mesh, or adding a small random kick to
the solution.

As mentioned in section 4, the mesh shape and quality
also impact on convergence times. Regular tetrahedra are
the most numerically stable elements, so the more regular
the tetrahedra in a mesh, the quicker the model will con-
verge. The single most important concern, however, is to
avoid slivers. Slivers are elements that are so flat, their vol-
umes approach zero [Alliez et al., 2017]. These lead to ex-
treme numerical instability and very slow convergence times,
if the model converges at all. Slivers might occur during De-
launay triangulation, as the algorithm is well known to be
blind to a class of slivers where the vertices all lie on the
same circumcircle. An additional mesh optimization step
like Lloyd optimization, or ODT smoothing is often per-
formed during mesh generation to eliminate slivers. Most
finite element meshing packages will have algorithms that
attempt to detect and avoid such elements, but in all cases
when the model fails to converge it is important to check
the mesh quality (e.g. using the ‘Mesh Quality’ filter in
ParaView).

Also mentioned in section 4 is that mesh edge lengths
should be smaller than the exchange length. In most mesh-
ing programs, it is unclear what the defined “mesh size”
is. In some cases, it is the upper bound of the radius of
the circumcircle of an element allowed before the element is
decomposed into smaller elements. In some cases, it’s the
diameter of this circumcircle. For some software, it is the
target average edge length of the elements in the mesh. In
any case, the ReportEnergy function of MERRILL reports
the average edge length of the mesh in nanometres, which
is then directly comparable to the exchange length reported
by this function in nanometres. Users are encouraged to
use these values as a useful and direct report of whether the
mesh is fine enough for the given material.

The solvers used in MERRILL can be susceptible to find-
ing unstable equilibria. Gimbal locking, for instance, can
occur for field hysteresis loops directly along the hard-axis
of the material. Two simple techniques can be used to avoid
this. First, prefer not to perform hysteresis loops directly
along the major axes. Add a slight perturbation, i.e. use the
[1 1 1.0001] direction instead of [1 1 1]. Another technique
is to add a small random “kick” to the magnetization. Typ-
ically, moving each magnetization randomly by around 5 or
10 degrees isn’t so large that it will move the state out of a
deep, stable LEM, but it can move it off a local maximum,
and also out of a shallow LEM, where the magnetization is
around a SD / SV phase transition.

8. Discussion

The formulation of a micromagnetic model in an easy
to use form can significantly enhance its application in pa-
leomagnetic and rock magnetic investigations. MERRILL
presents such a tool that is particularly focused on finding
remanent states and studying their stability. The parallels
and usefulness to paleomagnetic and rock magnetic stud-
ies should be clear. MERRILL has been used in a number
of publications and talks using functionality not presented
in this paper, e.g., behaviors of assemblages of interacting
grains, large models, strongly anisotropic materials and de-
tailed simulations of magnetostrictive effects (e.g. [Williams
et al., 2010], [Li et al., 2013], [Chang et al., 2012], [O Conbhui
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et al., 2016], [Almeida et al., 2016], [Einsle et al., 2016],
[Nagy et al., 2017]). Not all of these, however, used the
scripting interface presented here.

The simple scripting language makes it particularly
friendly to non-technical users. The fast and efficient min-
imization scheme means simple computer experiments can
be run quite quickly. The scripts presented here represent
the sort of scripts run by the authors day to day. Some effort
has been made to make these copy/pasteable, but a curious
reader is recommended to look in the “demo” directory of
the MERRILL package for more information and examples.

If the scripting language is not up to a particular task,
MERRILL can also be used as a library and called from a
Fortran program. In addition, a plugin interface has been in-
cluded so that users can compile libraries that can be loaded
from the MScript interface and hook into the MScript parser
to add commands and variables, and also add effective field
calculators to H*T not originally shipped with MERRILL.
This should allow MERRILL to be adopted to a wide range
of problems.

For viewing solutions, the authors recommend ParaView.
It is a free, open source 3D viewer, easily downloaded and
installed from the ParaView website, which can open and
visualize solutions generated by MERRILL from the Write-
Magnetization command. A plugin for ParaView for
opening MERRILL solutions with some pre-processing al-
ready done can be found in the demo directory.
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Appendix A: pMAG Standard Problem 3

Al.

The tMAG Standard Problem 3 is a test for the critical
edge length of a cube with uniaxial anisotropy for a change
in the magnetic phase from a flower state to a single vortex
state [http://www.ctcms.nist.gov/ rdm/mumag.org.html].
It was introduced in 1998.

In Standard Problem 3, the material parameters of the
cube: the saturation magnetization M, and the uniaxial
anisotropy constant K, are related by the relation

Introduction

1
K, =01=poM?

; (A1)

and the exchange length lexch is given in terms of the uni-
axial anisotropy constant, the exchange coupling A

A

o (A2)

lexch =

Existing results suggest the critical edge length, where a
flower state and a vortex state should have the same energy
is in the region of 8.45Xlexch t0 8.55 Xlexch.
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Figure 10. An initial flower solution at edge length
8.45 X lexch, colored by the cubic anisotropy energy.

A2. Method

The material parameters used were

M, = 4.807680 x 10° A/m (A3)
A =1.334870 x 10~ " J/m (A4)
K, = 1.452282 x 10*  J/m® (A5)
The exchange length was therefore
loxen = 9.587248 x 10™° pym (A6)

To nucleate a flower state, the mesh is scaled to 7.5 X lexch
and a Local Energy Minimum (LEM) is found, then rescaled
to 8.45Xlexch, our expected lower bound, and the LEM
found and saved to disk. By “scaled to”, we mean the

z/ Helicity
1.922 67.2 132.380
[
Figure 11. An initial vortex state at edge length

8.45 X lexen colored by helicity (M (6 X M))
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mesh is resized until edge length of the cube is the given
value. This two step approach to nucleation is needed, since
a flower state is not guaranteed to nucleate at 8.45 X lexch,
as this is around the critical edge length; re-minimizing at
8.45 X lexch is done primarily to save time during minimiza-
tion later.

For any particular domain state, its form will change
slightly with grain size. A flower at a larger grain size, for
example, will have a more divergent magnetization at the
grain surface than a flower state at a smaller grain size. In
that manner, states from grains closer in size tend to be
more “similar” to each other than states from grains less
close in size. Since the size 8.45Xlexch is closer in size to our
expected critical region than the initial size of 7.5X lexch, the
flower state at 8.45Xlcxch should be more “similar” to the
states about the region of interest too. As a result, mini-
mizing from the more “similar” state at 8.45Xlexch to states
about the region of interest takes less time than minimiz-
ing from the state at 7.5Xlexch. An initial flower state at
8.45 X lexch is shown in figure 10.

To nucleate a vortex state, the mesh is first scaled to
11 Xlexen to guarantee vortex nucleation and the LEM found,
then scaled to 8.45Xlexch and the LEM found and saved to
disk. Again, re-minimization saves a lot of time as the vor-
tex at 8.5Xlexch is more “similar” to the states around the
region of interest than the state at 11Xlexch iS. An initial
vortex state at 8.45Xlexch is shown in figure 11.
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Figure 12. Cube mesh with a node spacing of 0.5X/exch-

Table 1. Extrapolated Partial Energies at the Critical Edge
Length in Units of K4V

Flower Vortex
Demag 0.2791 £0.0001  0.077540.0006
Anisotropy | 0.00563+0.00002 0.052040.0001
Exchange | 0.017734+0.00005 0.1729+0.0007

Table 2. Extrapolated magnetizations at the Critical Edge
Length in Units of M.

Flower Vortex
0.9708640.00008 -0.0000=40.0008
-0.0000 40.0002 0.0 +0.3
-0.0003 =£0.0002 0.0000+£0.0007
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To evaluate, say, the flower state energy at a certain cube
size, say L, the mesh is scaled to length L, the flower state
at is loaded from disk, which for the flower was found for
8.45 X lexch, and the energy is minimized. The energy is then
found and written to disk. This is done for the flower and
vortex states for a range of cube sizes about the expected
critical point of 8.5Xlexch-

The critical length for the cube is then found by finding
the iteration just before the flower state energy passes the
single vortex energy and the iteration just after, and using a
linear interpolation between the energies of each iteration to
find the edge length where they intercept. Denoting the first
iteration’s flower energy, vortex energy, and length scale as
f—,v—,l—, and the second iteration’s as fi,vy,l+, the in-
tercept length scale, lo, is

(s =1)(f~ —v-)
(f- —v) = (fy —v4)
This assumes the energies scale linearly with the edge length,

which is incorrect, but for sufficiently small steps of the edge
length, it should be accurate enough for this application.

lo=1_+ (A7)

Critical Edge Length vs. Node Spacing

8.48
f(x) = -0.106+0.002x + 8.468+0.002
R=0.31154
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Figure 13. The critical length versus the node spacing
of the mesh, and linear fit extrapolating the node spacing
to 0. This shows the critical edge length for an infinitely
fine mesh using MERRILL is (8.468 & 0.002) X lexch.

Critical Energy vs. Node Spacing

f(x) = -0.0028+0.0001x + 0.3024£0.0001
(4 R=0.00012

MERRILL soluton @
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Figure 14. The critical energy versus the node spacing
of the mesh, and linear extrapolating the node spacing
to 0. This shows the critical energy for an infinitely fine
mesh using MERRILL is (0.30242 + 0.00008) x KqV'.
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This entire process is then repeated for an increasingly
fine mesh. The critical edge length of the cube should scale
as the square of the mesh spacing. This is due to higher
resolution of the derivatives, which, for the demagnetisation
and exchange calculations are of the order two. By perform-
ing a linear fit on the (mesh spacing)2 versus the intercept
length, it is be possible to extrapolate the intercept length
for an infinitely fine mesh, i.e. where the mesh spacing is
Zero.

For each mesh, the energies were found for the flower
and vortex states for 8.39Xlexch t0 4.70Xlexeh in steps of
0.01xlexch. The mesh spacings used were 1.0Xlexch tO
0.3Xlexch in steps of 0.1Xlexch. The meshes were generated
using a Delaunay Triangulation algorithm from the CGAL
library [The CGAL Project, 2017]. An example mesh at
node spacing 0.5Xlexch is given in figure 12.

A3. Results

From figure 13, the critical edge length for an infinitely
fine mesh was found to be (8.468 % 0.002) X lexch, and from
figure 14, the critical energy was (0.30242+0.00008) x K4V
A break down of the demag, exchange, and anisotropy en-
ergies at the critical length for the flower and vortex states
is in table 1. The average magnetization for these states at
the critical length is in table 2.

These measurements were also carried out with MER-
RILL’s built in regular mesh generation for cubes, and the
difference in results was within 1%.

A4. Discussion

MERRILL’s solutions to the uMAG Standard Problem
3 are in very good agreement with the other submissions.
This is good evidence that the energy terms in MERRILL
are correctly determined and converge to the true continuum
value when mesh size approaches zero.

The error values presented here are for the extrapolation
of the critical values MERRILL would find on an infinitely
fine mesh. They are not errors in the actual values generated
by MERRILL compared to the physical equivalent. There
are many sources of error unaccounted for by this approach,
including material parameters, mesh geometry, numerical
errors, and approximation errors. For this reason, when
comparing between MERRILL’s results, and other submis-
sions to the uMAG site, it may be more informative to di-
rectly compare the extrapolated values than to compare the
extrapolated values within the presented errors.

Appendix B: MERRILL commands

The basic functionality of MERRILL provides a bound-
ary element micromagnetic energy calculation for arbitrary
particle shapes.

To use MERRILL requires at least

1. A particle geometry (e.g. a cube or octahedron)
that describes the particle to be modeled. This geome-
try is translated into a tetrahedral mesh with a large set
of model nodes by a mesh generator. The distance be-
tween the nodes defines the resolution of the model. Several
ready to use meshes are provided together with MERRILL,
but arbitrary meshes can be loaded as long as they fulfill
some minimal quality criteria. Besides commercial soft-
ware, there exist several professional open source mesh gen-
erators that are more than sufficient for generating simple
particle meshes. For example, http://engits.eu/en/engrid,
http://sourceforge.net/projects/netgen-mesher/,
http://geuz.org/gmsh/, http://meshlab.sourceforge.net/

2. Material properties of the magnetic material to be
modeled and the scaling constant determining the particle
size. MERRILL provides a database of material properties
for several common natural magnetic minerals.
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3. With the above prerequisites it is already possible to
do very sophisticated model runs resulting e.g. in micromag-
netic energies and mean magnetization values. To visualize
the resulting output files MERRILL is set up to easily in-
teract with ParaView.

B1l. Interpreter language

MERRILL is operated through an interpreter language
script that determines all aspects of the micromagnetic cal-
culation.

The script is a simple ASCII file containing a sequence of
lines. Empty lines, leading, trailing, and multiple spaces or
tabs are ignored, as well as anything behind an exclamation
mark (!). A number of keywords are used to call subrou-
tines or perform simple assignments. All keywords are case
insensitive, e.g. ‘ReadMesh’ and ‘readmesh’ are equivalent.
The script file is parsed line by line. Each valid line is im-
mediately interpreted and executed.

B1.1. Basic commands

The following list contains the currently available com-
mands.

Set (variable) (value) is used to define global variables for
the material, the geometry of the mesh, or program param-
eters. The following variables are supported:

Ms saturation magnetization in A/m.

K1 anisotropy constant for uniaxial or cubic anisotropy
in J/m3.

Aex exchange constant in J/m.

Ls inverse length scale 1/m. Internally Ls? is used.

mu related to permeability of free space via mu =
uo/47r .

NEBSpring Spring constant for nudged-elastic band
method (NEB) .

Curvature Weight Weight of curvature contribution for
nudged-elastic band method (NEB).

MaxMeshNumber Maximal number of finite element
meshes stored. Must be set once before loading meshes.

PathN Number of structures along the magnetization
path. Warning: The mesh must have been defined previ-
ously ! Use only after ReadMesh.

EzchangeCalculator Chooses the exchange energy dis-
cretization method used. The available choices are 1=
mAm, 2= ¢? along edges, 3= (V)% +sin? 9 (Vy)?, 4=
from centroid to vertices.

MazRestarts Maximum number of restarts during en-
ergy minimization.

MazEnergyFEvaluations Maximum number of energy
calculations during energy minimization (typical: 5000-
10000). Afterwards energy minimization is aborted.

MazPathEvaluations Maximum number of path en-
ergy calculations during path minimization (typical: 500-
2000).

Zone Current Zone to be written into the TecPlot out-
put file (double). Zone can be set before each output, or ¢
an be used with automatic increment.

Zonelncrement Automatic increment of zone (de-
fault=1.0).

AllEzchange Values greater zero imply that all ex-
change energy calculations are performed and logged. This
slows the program down.

Magnetite (temperature) C Defines material constants
for magnetite at temperature (temperature) to be used in
subsequent calculations. The temperature is given in de-
grees Celsius and must be positive and below magnetite’s
Curie temperature at 580° C.
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Resize (old length) (new length) changes the length scale
of the mesh such that after this rescaling the length (old
length) will become (new length) .

(Cubic | Uniazial) Anisotropy Defines the symmetry of
the anisotropy energy.

CubicRotation (@, ¥, ) Rotates the cubic easy axes us-
ing the rotation matrix with the prescribed Euler angles.

CubicAzes {az,ay,az) (bg,by,b:) {ce,cy,c:) Directly set
the 3 cubic axes, a, 57 and ¢, for the cubic anisotropy. Users
should ensure the axes are mutually orthogonal.

EasyAwis (z,y,z) Determines the easy axis for uniaxial
anisotropy.

External field direction (x,y,z) Determines the direc-
tion vector of an external homogenous magnetic field. In-
trinsically sets the field to B =1 T.

External field strength (B) (unit) Determines the strength
of the external homogenous magnetic field as (B) in units
of (unit). Possible values for (unit) are ‘uT’, ‘mT’, or ‘T".
Must be set after defining the direction. Subsequent calls
reset the field to (B) without changing the direction. Can
be used for hysteresis modeling.

ReadMesh (indez) (filename) Reads the Patran file
(filename), and stores the corresponding mesh and finite
element arrays at location (indez). The index must be less
or equal to the previously set MaxMeshNumber.

LoadMesh (index) Loads a previously read mesh and its
finite element arrays from location (index). This mesh will
then be used in subsequent operations.

ReadMagnetization (filename) Reads a magnetization
file, (filename), (.dat) into the current mesh magnetization
array. Make sure that it was created for the currently ac-
tive mesh! The magnetization read is used in subsequent
operations.

Uniform magnetization (x,y,z), [(b)] Creates a uni-
form magnetization for the current mesh pointing in the
normalized direction (x,y,z). The optional parameter (b)
is the index of the block of nodes in the mesh that should
be set. By definition block 1 contains the free nodes, while
higher block numbers can be used to define fixed nodes.
These blocks have to be defined in the Patran file. Any
previous magnetization is lost.

Vortex magnetization (x,y, z), [(xo, Yo, 20)], [(v)], [RH|LH]
Creates an approximate vortex state with core pointing
along the line from %y to &, with component (v) along the
core direction, and right handed (RH), or left handed (LH)
orientation. By default, Z = 0, v = 0 and the orientation
is RH.

Invert magnetization (sg, Sy, S») Inverts the current mag-
netization structure by multiplying each component of
(maz, my,m.) with the corresponding sign (sg, sy,sz). E.g
Invert magnetization 1 -1 1 on each node changes the current
magnetization (ma, my,m.) — (Mg, —my, m;).

Randomize magnetization {angle) Randomly changes each
current magnetization vector by at most (angle) degrees.
The previous magnetization is (partially) lost.

Randomize all moments Replaces the current magnetiza-
tion by randomly distributed unit vectors. Any previous
magnetization is lost!

ReMesh (index) Takes the current magnetization array
and interpolates it at the nodes of the previously read mesh
at location (indezx). This mesh from location (indezx) is then
loaded and will be used in subsequent operations.

ConjugateGradient Uses conjugate gradient steps during
the accelerated descent.
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SteepestDescent Uses normal gradient steps during the
accelerated descent.

Minimize Calls the minimization routine for the current
mesh and initial magnetization. This call does not save the
final result!

EnergyLog (filename) Starts logging all subsequent en-
ergy calculations into the logfile (filename).log. Logging can
be stopped by EndLog or CloseLogfile

CloseLogfile ends the previous logging of energy calcula-
tions or path minimizations.

WriteMagnetization (filename) Saves the magnetization
and the mesh in three files:

(filename).dat contains vertex coordinates and magne-
tization vectors.

(filename)_mult.dat TecPlot file for visualization using
ParaView or TecPlot. Contains mesh geometry and one or
more magnetization states.

WriteHyst (filename) Saves hysteresis data in 5 columns
of H*™ . M, |[H*"| and the 3 components on the average
unit magnetization vector, (mz), (my), (m.), where M is
the magnetization and |H*™| is the magnitude of external
field. M - H*™ is normalized to the saturated magnetization

in the direction of the applied field.

SystemCommand (command) ... Performs the system
command in the remaining arguments as a line. No guar-
antee can be given for correct behavior. Uses FORTRAN’s
SYSTEM command.

KeyPause Pauses script evaluation and waits for
Key+Enter for continuation.

GradientTest Test feature to check energy gradient cal-
culation against several finite-difference estimates.

(Stop | End) Stops script evaluation.

B1.2. Path related commands

The following contains all path related commands avail-
able for NEB calculations.

Magnetization ToPath {index) Saves the current magne-
tization in the path at location (indez). This allows to as-
semble a path from individual magnetization states that
have to fit to the current mesh! After assembling a path
it must be renewed before further operations can be per-
formed.

PathToMagnetization (index) Moves the path magneti-
zation state at location (index) to the current magnetization.
This allows to change individual magnetizations in the path.
E.g. Initial and final states of a path read from a file can be
minimized for new material constants.

RenewPath Defines all path variables, like distances and
tangent vectors, assuming that all magnetizations have been
correctly filled.

RefinePathTo (newlength) Refines the current path to a
new number of states by linear interpolation in the magne-
tization angles. This also resets PathN to the new value
and renews the path. Of course, the new number of states
can also be less than the previous PathN .

WriteTecPlotPath (filename) Exports the current path
to a TecPlot file with name (filename) . All states along the
path are individual zones in the TecPlotFile.

ReadTecPlotPath (filename) Reads a new path from a
TecPlot file with name (filename) . All states along the
path are individual zones in the TecPlotFile. Because this
also reads in the mesh, all mesh related quantities are recal-
culated. Sets PathN and allocates necessary space for mesh
and path arrays.

Make sure that all material parameters are correctly as-
signed, since those are not read !
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MakelnitialPath Assumes that a path is defined by set
PathN (number) and that the first and last magnetization
patterns are defined. Then proceeds by stepwise minimiza-
tion to construct an initial path for subsequent optimization
by the NEB method.

PathMinimize Assumes that an initial path is defined
and minimizes the action integral using a variant of the NEB
method.

PathLogfile {filename) Starts logging all subsequent path
minimization calculations into three logfiles (filename).enlog
(filename).grlog, and (filename).dlog. They contain ener-
gies along the path, norms of the gradients along the path
and cumulative distances along the path. Logging can be
stopped by EndLog or CloseLogfile.
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Figure 15. Exchange coupling vs. temperature for mag-
netite.
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Figure 16. Crystalline anisotropy constant vs. temper-
ature for magnetite.
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Figure 17. Saturation magnetization vs. temperature
for magnetite.
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PathStructureEnergies [(filname)] Calculates the ener-
gies for each structure along the currently loaded path (in
Joule). If (filename) is omitted, the path is written to stan-
dard output.

Energy Calculates the energy (in Joule) of the currently
loaded magnetization structure.

B1.3. Interpreter language control constructs

The following commands are simple options of the inter-
preter language to implement loops or script variables. Note
that they cannot be nested or used recursively.

Loop (variable) (startvalue) (endvalue) [(step)] Takes all
commands until the next EndLoop statement and performs
a loop over the enclosed commands by replacing the vari-
able (variable) with values from (startvalue) to {endvalue) in
steps of (step). If step is not given stepsize step=1.0 is as-
sumed. Within the loop the string #<variable> is replaced
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Figure 18. Exchange coupling vs. temperature for iron.
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Figure 19. Crystalline anisotropy constant vs. temper-
ature for iron.
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by the integer value of wvariable , the string %<variable>
is replaced by the double precision value of wvariable , and
the string $<variable>$ is replaced by a string of the value
of variable . Nested loops are not yet supported. Warning:
The Loop command itself must NOT contain other variables
than the loop variable. This is so because currently the pars-
ing for replacing variables is performed only after unravelling
the loops.

EndLoop Delimits the set of commands inside the active
loop.

Define (variable) (value) Defines a numeric variable that
can be used like a loop variable.

AddTo {(variable) (value) Adds a number to a previously
defined variable.

Undefine (variable) Forgets a previously defined vari-
able.

Appendix C: Material Parameters

The micromagnetic models require values of the three
temperature dependent magnetic parameters of saturation
magnetization (M), the crystalline anisotropy constant
(K1) and the exchange constant (A). Each parameter is
represented by a polynomial, based on the best fit to exper-
imental data.

C1l. Magnetite

For magnetite the experimental data was derived from
[Heider and Williams, 1988] for the exchange constant,
[Fletcher and O’Reilly, 1974] for the crystalline anisotropy
and [Heider et al., 1987] for the saturation magnetisation.
The polynomial expressions used in MERRILL for each of
these three magnetite parameters is

_ \/21622.526 +816.476 x (Tc —T) — 147.046

A 408.238 x 101
(C1)
Ki(T) = —2.13074 x 107° x (Tc — T)** ©2)
M,(T) = 737.384 x 51.876 x (Tc — T)%* ©3)

Where T is the temperature in Celsius and T¢ is the Curie
Temperature for magnetite taken as 580 C. These parameter
polynomials are plotted in figures 15, 16, and 17.

C2.

For iron the experimental data for M is derived from
[Crangle and Goodman, 1971] and [Cullity and Graham,
2008], where the sparsity of data near the Curie Temper-
ature in tabulated values of [Crangle and Goodman, 1971]
are supplemented data digitized from the M;-T graphs of
[Cullity and Graham, 2008]. For K1, the experimental data
is taken from [Honda et al., 1928] reproduced in graphical
form in [Cullity and Graham, 2008]. Although this K; ma-
terial parameters fall to zero as the temperature approached
the Curie point, more recent studies (e.g. [Muzworthy and
Williams, 2015]) use a slightly higher room temperature
value. In order to reconcile this discrepancy, the data from
[Honda et al., 1928] was scaled by a factor (480/456). Fi-
nally the exchange constant, A, for iron was obtained fol-
lowing the method outlined in [Heider and Williams, 1988] ,
using the stiffness constant values reported by [Stringfellow,
1968].

Iron
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The polynomial expressions used in MERRILL for each

of these there iron parameters is
—1.8952 x 107" 4+3.0657 x 10 T
—1.599 x 107" 7% +4.0151 x 10~ T°
—5.3728 x 102" T* + 3.6501 x 10 2* T°
—9.9515 x 10728 T°

1.75221 x 10° —1.21716 x 10* T
+33.3368 T —0.363228 T*
+1.96713 x 107 T* —5.98015 x 107° T°
+1.06587 x 107° T° —1.1048 x 107 ** 17
+6.16143 x 107 *° T® — 1.42904 x 107 % T°
(C5)
(C6)

A(T) = (C4)

Ki(T) = ( 54967.1 +44.2946 T

— 0.426485 T*> +0.000811152 T°

—1.07579 x 107° T* + 8.83207 x 10'° T°
480.0

—2.90947 x 10713 T9) x ——
90947 x ) x 56,0

Note for iron, T is the temperature in Kelvin, although the
default temperature unit in MERRILL is Celsius. The con-
version to Kelvin is done internally. These parameter poly-
nomials are plotted in figures 18, 19, and 20.
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