

Multi-Message Private Information Retrieval using Product-Matrix Minimum Storage Regenerating Codes

Chatdanai Dorkson and Siaw-Lynn Ng

Department of Mathematics, Royal Holloway, University of London

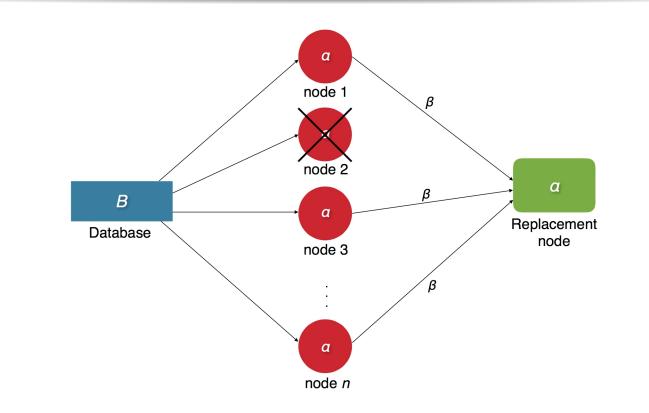
Abstract

Multi-message PIR scheme allows a user to download multiple messages from the database without revealing the identity of desired messages. Obviously, the user can repeatly use a single-message PIR scheme, but we wish for a more efficient way. In this work, we design a multi-message PIR using a product-matrix MSR codes from [1] achieving cPoP equals $\frac{p+2}{p}$ when p is the number of desired records. The use of regenerating codes beneficially reduces repair cost when a node failure occurs in the system. This work is the generalisation of our result on the single-message PIR [2].

System Model

- A database X consists of m records, each of length ℓ over \mathbb{F}_q , denoted by X^1, X^2, \ldots, X^m .
- Each record is encoded and distributed across n non-communicating nodes using the same product-matrix MSR code.
- A user who wants to download the record $X^{f_1}, X^{f_2}, \ldots, X^{f_p}$ submits a $d \times m\alpha$ query matrix Q_i over GF(q) to node i
- Node *i* responds with an answer $A_i = Q_i S_i$ where S_i the column vector consisting of all symbols stored in node *i*.
- A scheme is *perfect information-theoretic* if for $i \in [n]$, Q_i gives no information about which records are being retrieved, and A_i ensures that the user can recover the desired records X^{f_1}, \ldots, X^{f_p} with no errors.

Regenerating Codes



An $(n, k, r, \alpha, \beta, B)$ regenerating code stores *B* symbols among *n* nodes. Each node stores α symbols satisfying:

An Example of Our Scheme

In our construction, we use the product-matrix MSR code from [1] with n = (p+2)(k-2), over the finite field \mathbb{F}_q . The parameters of the MSR code are

$$(n, k, r, \alpha, \beta, B) = ((p+2)(k-2), k, 2k-2, k-1, 1, k(k-1)).$$

Assume $\ell = k(k-1)$ in this construction. We give an example to motivate our scheme.

Example: Suppose that we have 3 records over the finite field \mathbb{F}_{13} , each with size 6, so we can use an (8, 3, 4, 2, 1, 6) product-matrix MSR code over \mathbb{F}_{13} to encode each record. We write $X^i = \{x_{i1}, x_{i2}, x_{i3}, x_{i4}, x_{i5}, x_{i6}\}$. Choose the encoding matrix Ψ_8 to be the Vandermonde matrix, and the message matrix \mathcal{M}_i for the record $i, i \in \{1, 2, 3\}$ as described in [1]:

Hence, each node stores

node 1	node 2	node 3	node 4	node 5	node 6	node 7	node 8
$x_{11} + x_{12} + x_{14} + x_{15}$	$x_{11} + 2x_{12} + 4x_{14} + 8x_{15}$	$x_{11} + 3x_{12} + 9x_{14} + x_{15}$	$x_{11} + 4x_{12} + 3x_{14} + 12x_{15}$	$5 x_{11} + 5x_{12} + 12x_{14} + 8x_{15}$	$x_{11} + 6x_{12} + 10x_{14} + 8x_{15}$	$x_{11} + 7x_{12} + 10x_{14} + 5x_{15}$	$x_{11} + 8x_{12} + 12x_{14} + 5x_{15}$
$x_{12} + x_{13} + x_{15} + x_{16}$	$x_{12} + 2x_{13} + 4x_{15} + 8x_{16}$	$x_{12} + 3x_{13} + 9x_{15} + x_{16}$	$x_{12} + 4x_{13} + 3x_{15} + 12x_{16}$	$x_{12} + 5x_{13} + 12x_{15} + 8x_{16}$	$x_{12} + 6x_{13} + 10x_{15} + 8x_{16}$	$x_{12} + 7x_{13} + 10x_{15} + 5x_{16}$	$x_{12} + 8x_{13} + 12x_{15} + 5x_{16}$
$x_{21} + x_{22} + x_{24} + x_{25}$	$x_{21} + 2x_{22} + 4x_{24} + 8x_{25}$	$x_{21} + 3x_{22} + 9x_{24} + x_{25}$	$x_{21} + 4x_{22} + 3x_{24} + 12x_{25}$	$5 x_{21} + 5x_{22} + 12x_{24} + 8x_{25}$	$x_{21} + 6x_{22} + 10x_{24} + 8x_{25}$	$x_{21} + 7x_{22} + 10x_{24} + 5x_{25}$	$x_{21} + 8x_{22} + 12x_{24} + 5x_{25}$
$x_{22} + x_{23} + x_{25} + x_{26}$	$x_{22} + 2x_{23} + 4x_{25} + 8x_{26}$	$x_{22} + 3x_{23} + 9x_{25} + x_{26}$	$x_{22} + 4x_{23} + 3x_{25} + 12x_{26}$	$_{5} x_{22}+5x_{23}+12x_{25}+8x_{26} $	$x_{22} + 6x_{23} + 10x_{25} + 8x_{26}$	$x_{22} + 7x_{23} + 10x_{25} + 5x_{26}$	$x_{22} + 8x_{23} + 12x_{25} + 5x_{26}$

- The B symbols can be recovered from any k nodes

• If one node fails, we can connect to some set of r remaining nodes where $k \leq r < n$, and gets β symbols from each of these r nodes to regenerate α symbols in the failed node.

Regenerating codes optimally trade repair bandwidth $(r\beta)$ with the amount of data stored per node (α) . One interesting extremal point on the optimal trade-off curve is called the *minimum storage regeneration* (MSR) which minimises α first and then minimise $r\beta$.

Contact Information

Chatdanai.Dorkson.2016@rhul.ac.uk

References

Let Y_{ij}^a denote the j^{th} symbol stored in node *i* of the record *a*.

 $Y_{32}^1 + I_1 + 3I_2 + 9I_3 + I_4 = r_{31}$

In the retrieval step, suppose the user wants to download X^1 and X^2 . The query Q_i is a (3×6) matrix which we can interpret as 3 subqueries submitted to node *i* for each $i \in [8]$. To form the query matrices, the user generates a (3×6) random matrix $U = [u_{ij}]$ whose elements are chosen uniformly at a random from \mathbb{F}_{13} . Let

$V_1 = \begin{bmatrix} 1 \ 0 \ 0 \ 0 \ 0 \ 0 \end{bmatrix}, V_2 = \begin{bmatrix} 0 \ 0 \ 0 \ 0 \ 0 \ 0 \end{bmatrix}, V_3 = \begin{bmatrix} 0 \ 1 \ 0 \ 0 \ 0 \ 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & 1 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}$
$V_1 = egin{bmatrix} 0 & 1 & 0 & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 &$	$0 0 , V_4 = 0 0 0 1 0 0 ,$	$V_5 = \left 0 \ 0 \ 1 \ 0 \ 0 \ 0 \right ,$	$V_6 = 0 0 0 0 0 0 0$.
$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \end{bmatrix} \qquad \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & 1 & 0 & 0 \end{bmatrix}$
For node $i \in [6]$, the query matrix is $Q_i = U + V_i$ and Q_i	-	-	-
vector $A_i = Q_i S_i$ where S_i is a length-6 vector of symb			Let
$w_1 = (x_{11}, x_{12}, x_{21}, x_{22}, x_{31}, x_{32})$	$(x_{12}, w_2 = (x_{12}, x_{13}, x_{22})$	$, x_{23}, x_{32}, x_{33})^{I},$	
$w_3=(x_{14},x_{15},x_{24},x_{25},x_{34},x_{35})$	$(x_{15})^T, w_4 = (x_{15}, x_{16}, x_{25})^T$	$, x_{26}, x_{35}, x_{36})^T.$	
Consider first subquery 1, we obtain			
$Y_{11}^1 + I_1 + I_2 + I_3 + I_4 = r_{11} \qquad (1)$	$I_1 + 5I_2$	$+12I_3 + 8I_4 = r_{51}$	(5)
$I_1 + 2I_2 + 4I_3 + 8I_4 = r_{21} \qquad (2)$	$Y_{64}^2 + I_1 + 6I_2$	$+10I_3 + 8I_4 = r_{61}$	(6)

 $I_1 + 7I_2 + 10I_3 + 5I_4 = r_{71} \tag{7}$

[1] K. Rashmi, N. Shah, P. Kumar

Optimal Exact-Regenerating Codes for Distributed Storage at the MSR and MBR Points via a Product-Matrix Construction.

IEEE Trans. Inf. Theory 2011, pp.5227–5239.

[2] C. Dorkson and S. Ng

Private Information Retrieval using Product-Matrix Minimum Storage Regenerating Codes. http://arxiv.org/abs/1805.07190.

(Manuscript submitted for publication.)

$Y_{43}^2 + I_1 + 4I_2 + 3I_3 + 12I_4 = r_{41} \qquad (4) \qquad \qquad I_1 + 8I_2 + 12I_3 + 5I_4 = r_{81} \qquad (8)$

(3)

where $I_l = u_1 w_l$, l = 1, 2, 3, 4, and u_1 is the first row of U. The user can solve for I_1, I_2, I_3, I_4 from (2), (5), (7), (8) as they form the equation with (4 × 4) submatrix of Ψ_8 which is invertible. Therefore, the user gets Y_{11}^1, Y_{32}^1 for record 1 and Y_{43}^2, Y_{64}^2 for record 2. Similarly, from subquery 2, the user obtains Y_{12}^1, Y_{21}^1 for record 1 and Y_{44}^2, Y_{53}^2 for record 2. Lastly, from subquery 3, the user obtains Y_{22}^1, Y_{31}^1 for record 1 and Y_{54}^2, Y_{63}^2 for record 2. Hence, the user has all the symbols of X^1 which are stored in the node 1, 2, 3 and all the symbols of X^2 which are stored in the node 4, 5, 6. From the property of regenerating codes, the user can reconstruct X^1 and X^2 as desired.

node 1	node 2	node 3	node 4	node 5	node 6	node 7	node 8
1	2	3					
2	3	1					
			1	2	3		
			2	3	1		

Table 1: Retrieval pattern for a (8,3,4,2,1,6) MSR code