Multi-Message Private Information Retrieval using Product-Matrix Minimum Storage Regenerating Codes

Chatdanai Dorkson and Siaw-Lynn Ng
Department of Mathematics, Royal Holloway, University of London

Abstract

Multi-message PIR scheme allows a user to download multiple messages from the database without revealing the identity of desired messages. Obviously, the user can repeatly use a single-message PIR scheme, but we wish for a more efficient way. In this work, we design a multi-message PIR using a product-matrix MSR codes from [1] achieving cPoP equals $\frac{p+2}{p}$ when p is the number of desired records. The use of regenerating codes beneficially reduces repair cost when a node failure occurs in the system. This work is the generalisation of our result on the single-message PIR [2].

Regenerating Codes

An $(n, k, r, \alpha, \beta, B)$ regenerating code stores B symbols among n nodes. Each node stores α symbols satisfying:

- The B symbols can be recovered from any k nodes
- If one node fails, we can connect to some set of r remaining nodes where $k \leq r<n$, and gets β symbols from each of these r nodes to regenerate α symbols in the failed node.
Regenerating codes optimally trade repair bandwidth $(r \beta)$ with the amount of data stored per node (α). One interesting extremal point on the optimal trade-off curve is called the minimum storage regeneration (MSR) which minimises α first and then minimise $r \beta$.

Contact Information

Chatdanai.Dorkson.2016@rhul.ac.uk

References

[1] K. Rashmi, N. Shah, P. Kumar Optimal Exact-Regenerating Codes for Distributed Storage at the MSR and MBR Points via a Product-Matrix Construction.
IEEE Trans. Inf. Theory 2011,
pp.5227-5239.
[2] C. Dorkson and S. Ng
Private Information Retrieval using
Product-Matrix Minimum Storage
Regenerating Codes.
http://arxiv.org/abs/1805.07190.
(Manuscript submitted for publication.)

System Model

- A database X consists of m records, each of length ℓ over \mathbb{F}_{q}, denoted by $X^{1}, X^{2}, \ldots, X^{m}$.
- Each record is encoded and distributed across n non-communicating nodes using the same product-matrix MSR code. - A user who wants to download the record $X^{f_{1}}, X^{f_{2}}, \ldots, X^{f_{p}}$ submits a $d \times m \alpha$ query matrix Q_{i} over $G F(q)$ to node i - Node i responds with an answer $A_{i}=Q_{i} S_{i}$ where S_{i} the column vector consisting of all symbols stored in node i. - A scheme is perfect information-theoretic if for $i \in[n], Q_{i}$ gives no information about which records are being retrieved, and A_{i} ensures that the user can recover the desired records $X^{f_{1}}, \ldots, X^{f_{p}}$ with no errors.

An Example of Our Scheme

In our construction, we use the product-matrix MSR code from [1] with $n=(p+2)(k-2)$, over the finite field \mathbb{F}_{q}. The parameters of the MSR code are

$$
(n, k, r, \alpha, \beta, B)=((p+2)(k-2), k, 2 k-2, k-1,1, k(k-1))
$$

Assume $\ell=k(k-1)$ in this construction. We give an example to motivate our scheme.
Example: Suppose that we have 3 records over the finite field \mathbb{F}_{13}, each with size 6 , so we can use an $(8,3,4,2,1,6)$ product-matrix MSR code over \mathbb{F}_{13} to encode each record. We write $X^{i}=\left\{x_{i 1}, x_{i 2}, x_{i 3}, x_{i 4}, x_{i 5}, x_{i 6}\right\}$. Choose the encoding matrix Ψ_{8} to be the Vandermonde matrix, and the message matrix \mathcal{M}_{i} for the record $i, i \in\{1,2,3\}$ as described in [1]:

$$
\Psi_{8}=\left[\begin{array}{ccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
8 \\
1 & 4 & 9 & 3 & 12 & 10 & 10 \\
1 & 8 & 1 & 12 & 8 & 8 & 5
\end{array}\right]^{T}, \quad \mathcal{M}_{i}=\left[\begin{array}{ll}
x_{i 1} & x_{i 2} \\
x_{i 2} & x_{i 3} \\
x_{i 4} & x_{i 5} \\
x_{i 5} & x_{i 6}
\end{array}\right]
$$

Hence, each node stores

node 1	node 2	node 3	node 4	node 5	node 6	node 7	node 8
x_{1}	$x_{11}+2 x_{12}+4 x_{14}+8 x_{15}$	$x_{11}+3 x_{12}+9 x_{14}+x_{15}$	$x_{11}+4 x_{12}+3 x_{14}+12 x_{15}$	$x_{11}+5 x_{12}+12 x_{14}+8 x_{15}$	$x_{11}+6 x_{12}+10 x_{14}+8 x_{15}$	$x_{11}+7 x_{12}+10 x_{14}+5 x_{15}$	$x_{11}+8 x_{12}+12 x$
$x_{12}+x_{13}+x_{15}+x_{16}$	$x_{12}+2 x_{13}+4 x_{15}+8 x_{16}$	$x_{12}+3 x_{13}+9 x_{15}+x_{16}$	$x_{12}+4 x_{13}+3 x_{15}+12 x_{16}$	$x_{12}+5 x_{13}+12 x_{15}+8 x_{16}$	$x_{12}+6 x_{13}+10 x_{15}+8 x_{16}$	$x_{12}+7 x_{13}+10 x_{15}+5 x_{16}$	$x_{12}+8 x_{13}+12 x_{15}+$
$x_{21}+x_{22}+x_{24}$	$x_{21}+2 x_{22}+4 x_{24}+8 x_{25}$	$x_{21}+3 x_{22}+9 x_{24}+x_{25}$	$x_{21}+4 x_{22}+3 x_{24}+12 x_{25}$	$x_{21}+5 x_{22}+12 x_{24}+8 x_{25}$	$x_{21}+6 x_{22}+10 x_{24}+8 x_{25}$	$x_{21}+7 x_{22}+10 x_{24}+5 x_{25}$	$x_{21}+8 x_{22}+12 x^{2}$
$x_{22}+x_{23}+x_{25}+x_{26}$	$x_{22}+2 x_{23}+4 x_{25}+8 x_{26}$	$x_{22}+3 x_{23}+9 x_{25}+x_{26}$	$x_{22}+4 x_{23}+3 x_{25}+12 x_{26}$	$x_{22}+5 x_{23}+12 x_{25}+8 x_{26}$	$x_{22}+6 x_{23}+10 x_{25}+8 x_{26}$	$x_{22}+7 x_{23}+10 x_{25}+5 x_{26}$	$x_{22}+8 x_{23}+12 x$
x_{3}	$x_{31}+2 x_{32}+4 x_{34}+8 x_{35}$.	$x_{31}+3 x_{32}+9 x_{34}+x_{35}$	$x_{31}+4 x_{32}+3 x_{34}+12 x_{35}$	$x_{31}+5 x_{32}+12 x_{34}+8 x_{35}$		$x_{31}+7 x_{32}+10 x_{34}+5 x_{35}$,

Let $Y_{i j}^{a}$ denote the $j^{\text {th }}$ symbol stored in node i of the record a.
In the retrieval step, suppose the user wants to download X^{1} and X^{2}. The query Q_{i} is a (3×6) matrix which we can interpret as 3 subqueries submitted to node i for each $i \in[8]$. To form the query matrices, the user generates a (3×6) random matrix $U=\left[u_{i j}\right]$ whose elements are chosen uniformly at a random from \mathbb{F}_{13}. Let

$$
V_{1}=\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right], \quad V_{2}=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0
\end{array}\right], \quad V_{3}=\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0
\end{array}\right], V_{4}=\left[\begin{array}{llllll}
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right], \quad V_{5}=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right], \quad V_{6}=\left[\begin{array}{lllll}
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0
\end{array}\right] .
$$

For node $i \in[6]$, the query matrix is $Q_{i}=U+V_{i}$ and $Q_{7}=Q_{8}=U$. Then each node computes and returns the length-3 vector $A_{i}=Q_{i} S_{i}$ where S_{i} is a length-6 vector of symbols stored in node i. Write $A_{i}=\left(r_{i 1}, r_{i 2}, r_{i 3}\right)^{T}$. Let

$$
\begin{array}{ll}
w_{1}=\left(x_{11}, x_{12}, x_{21}, x_{22}, x_{31}, x_{32}\right)^{T}, & w_{2}=\left(x_{12}, x_{13}, x_{22}, x_{23}, x_{32}, x_{33}\right)^{T} \\
w_{3}=\left(x_{14}, x_{15}, x_{24}, x_{25}, x_{34}, x_{35}\right)^{T}, & w_{4}=\left(x_{15}, x_{16}, x_{25}, x_{26}, x_{35}, x_{36}\right)^{T}
\end{array}
$$

Consider first subquery 1 , we obtain

$$
\begin{equation*}
Y_{11}^{1}+I_{1}+I_{2}+I_{3}+I_{4}=r_{11} \tag{1}
\end{equation*}
$$

$$
\begin{align*}
I_{1}+5 I_{2}+12 I_{3}+8 I_{4} & =r_{51} \tag{5}\\
Y_{64}^{2}+I_{1}+6 I_{2}+10 I_{3}+8 I_{4} & =r_{61} \tag{2}\\
I_{1}+7 I_{2}+10 I_{3}+5 I_{4} & =r_{71} \tag{3}\\
I_{1}+8 I_{2}+12 I_{3}+5 I_{4} & =r_{81} \tag{4}
\end{align*}
$$

where $I_{l}=u_{1} w_{l}, l=1,2,3,4$, and u_{1} is the first row of U. The user can solve for $I_{1}, I_{2}, I_{3}, I_{4}$ from (2), (5), (7), (8) as they form the equation with (4×4) submatrix of Ψ_{8} which is invertible. Therefore, the user gets Y_{11}^{1}, Y_{32}^{1} for record 1 and Y_{43}^{2}, Y_{64}^{2} for record 2. Similarly, from subquery 2, the user obtains Y_{12}^{1}, Y_{21}^{1} for record 1 and Y_{44}^{2}, Y_{53}^{2} for record 2. Lastly, from subquery 3 , the user obtains Y_{22}^{1}, Y_{31}^{1} for record 1 and Y_{54}^{2}, Y_{63}^{2} for record 2. Hence, the user has all the symbols of X^{1} which are stored in the node $1,2,3$ and all the symbols of X^{2} which are stored in the node $4,5,6$. From the property of regenerating codes, the user can reconstruct X^{1} and X^{2} as desired.

