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Infections are a leading cause of mortality and morbidity in newborns. The high sus-
ceptibility of newborns to infection has been associated with a limited capacity to 
mount protective immune responses. Monocytes and macrophages are involved in 
the initiation, amplification, and termination of immune responses. Depending on cues 
received from their environment, monocytes differentiate into M1 or M2 macrophages 
with proinflammatory or anti-inflammatory and tissue repair properties, respectively. 
The purpose of this study was to characterize differences in monocyte to macrophage 
differentiation and polarization between newborns and adults. Monocytes from umbilical 
cord blood of healthy term newborns and from peripheral blood of adult healthy subjects 
were exposed to GM-CSF or M-CSF to induce M1 or M2 macrophages. Newborn 
monocytes differentiated into M1 and M2 macrophages with similar morphology and 
expression of differentiation/polarization markers as adult monocytes, with the exception 
of CD163 that was expressed at sevenfold higher levels in newborn compared to adult 
M1 macrophages. Upon TLR4 stimulation, newborn M1 macrophages produced three-
fold to sixfold lower levels of TNF than adult macrophages, while production of IL-1-β, 
IL-6, IL-8, IL-10, and IL-23 was at similar levels as in adults. Nuclear levels of IRF5, a 
transcription factor involved in M1 polarization, were markedly reduced in newborns, 
whereas the NF-κB and MAP kinase pathways were not altered. In line with a functional 
role for IRF5, adenoviral-mediated IRF5 overexpression in newborn M1 macrophages 
restored lipopolysaccharide-induced TNF production. Altogether, these data highlight a 
distinct immune response of newborn macrophages and identify IRF5 as a key regulator 
of macrophage TNF response in newborns.

Keywords: M1/M2 macrophages, newborns, innate immunity, interferon regulatory factor 5, monocytes, gM-csF, 
lPs, tumor necrosis factor

inTrODUcTiOn

Despite advances in perinatal care, neonatal infections remain a leading cause of mortality and 
morbidity worldwide (1–3). The high susceptibility to infection during the neonatal period has 
been linked to a developing immune system with a limited capacity to mount protective immune 
responses (4). Indeed, neonatal monocytes and dendritic cells (DCs) exposed to microbial products 
release reduced amounts of the proinflammatory and TH1-polarizing cytokines TNF, IFNγ, IL-1β, 
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and IL-12p70 than adult cells, but similar or even higher levels 
of the TH17-polarizing and anti-inflammatory cytokines IL-6, 
IL-10, and IL-23 (5–7). Yet, uncontrolled inflammatory responses 
contribute to the pathogenesis of sepsis and septic shock and other 
conditions associated with adverse outcomes in newborns, such 
as necrotizing enterocolitis, bronchopulmonary dysplasia, and 
periventricular leucomalacia (8–11). Attempts at improving the 
outcome of neonatal sepsis through immune enhancing thera-
pies including granulocyte colony-stimulating factor (G-CSF), 
granulocyte-macrophage colony-stimulating factor (GM-CSF), 
granulocyte transfusions, and intravenous immunoglobulins 
have only yielded a limited benefit (12–14). This underscores our 
incomplete understanding of how newborns respond to infec-
tions, and the need for new therapeutic approaches.

Tissue-resident macrophages are sentinel innate immune 
cells that display a spectrum of functions and produce a panel of 
cytokines that orchestrate innate and adaptive immune responses 
(15, 16). Macrophage activation and function are influenced by 
signals received from the local environment (17). The func-
tional plasticity of macrophages has given rise to the notion of 
macrophage polarization, ranging from classically activated 
proinflammatory M1 macrophages to alternatively activated 
pro-resolving/anti-inflammatory M2 macrophages (18). The 
differentiation of monocytes into M1 macrophages is induced 
by GM-CSF, IFNγ, TNF, and bacterial lipopolysaccharide (LPS) 
(19–21). M1 macrophages are potent phagocytic cells that pro-
duce microbicidal molecules such as reactive oxygen and nitrogen 
species (ROS and NO) and TNF, IL-1β, IL-6, IL-12p70, and IL-23 
(22, 23). In contrast, M-CSF, IL-4, IL-10, IL-13, adenosine, and 
steroid hormones induce the differentiation of monocytes into 
M2 macrophages (24). M2 macrophages are involved in resolving 
inflammation and promote tissue repair and homeostasis. M2 
macrophages are characterized by the expression of scavenger 
receptors (CD36, CD163) and the production of high levels of 
IL-10 and low levels of TNF, IL-12p70, IL-23, ROS, and NO 
(25–27).

Monocyte to macrophage differentiation is controlled by 
the Janus-kinase/signal transducer and activator of transcrip-
tion (JAK/STAT), MAP kinase (MAPK), and NF-κB pathways 
(28–31). These pathways activate suppressor of cytokine signal-
ing (SOCS) and interferon regulatory factors (IRFs), leading 
to M1/M2 macrophage polarization (32, 33). In adults, IRF5, 
a downstream target of GM-CSF receptor (GM-CSFR), plays a 
critical role in driving macrophage polarization toward the M1 
phenotype (23). However, the response of newborn macrophages 
to environmental signals driving M1 and M2 polarization and 
production of proinflammatory and anti-inflammatory cytokines 
is unknown.

Here, we report that in primary human monocytes exposed 
to GM-CSF, IRF5 was activated to a lower extent in newborns 
compared to adults during differentiation into M1 macrophages. 
Upon TLR4 stimulation, newborn M1 macrophages secreted 
lower levels of TNF compared to adult macrophages, while the 
production of other cytokines was not affected. Overexpression 
of IRF5 in newborn macrophages restored TNF production, 
suggesting a key role of IRF5 in shaping the distinct immune 
response of newborn macrophages.

MaTerials anD MeThODs

subjects and source of Blood samples
Umbilical cord blood was collected after delivery of the placenta 
of 91 healthy term neonates. Peripheral blood was obtained 
from 71 healthy adult volunteers (age 18–65 years). Monocytes 
and macrophages from the same subjects (20 newborns and 20 
adults) were used for the experiments reported in Figures 1B and 
2A,C,D. Macrophages from the same subjects (10 newborns and 
10 adults) were used for the experiments reported in Figures 2B 
and 5A–J. Different sets of newborn and adult donors were used 
for every other Figures 1A,C, 3A,B, 4A,B, 5A–J, and 6A–C. Blood 
was collected in heparinized tubes (10  U/ml). Our study was 
approved by the Cantonal Human Research Ethics Committee of 
Vaud (CER-VD, Lausanne, Switzerland).

cells and reagents
Mononuclear cells were isolated by Ficoll Hypaque (GE 
Healthcare) gradient density centrifugation. Monocytes were 
extracted from blood mononuclear cells by positive selection 
using magnetic microbeads coupled to anti-CD14 antibodies 
(Miltenyi Biotec) (34–36). Purity assessed by flow cytometry was 
>95%. Viability determined by trypan blue exclusion was >95%. 
Monocytes were cultured in RPMI medium 1640 supplemented 
with 10% (vol/vol) FCS (GE Healthcare) and GM-CSF (50 ng/ml)  
(Peprotech) or M-CSF (50  ng/ml) (Peprotech) for 1  week to 
induce M1 or M2 macrophages, respectively. Ultrapure E. coli 
O111:B4 LPS was purchased from List Biological Laboratories. 
Polyclonal and monoclonal antibodies (pAbs and mAbs) used for 
flow cytometry, Western blotting and cytometry by time of flight 
(CyTOF) are described in Table S1 in Supplementary Material. 
Unless specified otherwise, all other reagents were obtained from 
Sigma-Aldrich.

rna analyses
RNA was extracted, reverse transcribed, and used in real-time 
PCR as described (37). The primers (5′–3′ sequences, sense 
and antisense) used for amplification were: HPRT, GAA 
CGTCTTGCTCGAGATGTG and CCAGCAGGTCAGCAAA 
GAATT; CD14, CGCCCTGAACTCCCTCAAT and CTTGG 
CTGGCAGTCCTTTAGG; TLR4, AGTTTCCTGCAATGGAT 
CAAGG and CTGCTTATCTGAAGGTGTTGCAC; CD64, TG 
CCACAGAGGATGGAAATG and CTGGAGGCCAAGCAC 
TTGA; IRF4, AATCCTCGTGAAGGAGCTGA and GTAGAT 
CGTGCTCTGGCACA; SOCS2, GGATGGTACTGGGGAAGT 
ATGACTG and AGTCGATCAGATGAACCACACTGTC; 
SOCS3, GCTCCAAGAGCGAGTACCAG and CTGTCGCGG 
ATCAGAAAGGT; TNF, CAGAGGGCCTGTACCTCATC and 
GGAAGACCCCTCCCAGATAG. Gene-specific expression was 
normalized to the expression of HPRT and was expressed in 
arbitrary units (A.U.).

Flow cytometry analyses
Mononuclear cells and macrophages were stained using mAbs 
(Table S1 in Supplementary Material) as described (38). Thirty 
thousand events were acquired with a LSR-II flow cytometer 
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FigUre 1 | Adult and newborn monocytes differentiate into M1 or M2 macrophages following exposure to GM-CSF or M-CSF. Freshly isolated monocytes were 
cultured for 7 days with GM-CSF and M-CSF (50 ng/ml) to induce M1 and M2 macrophages. (a) Hematoxylin and eosin staining of monocytes and M1 and M2 
macrophages. Scale bar = 30 µm. Data are representative of results obtained from five newborns and five adults. (B) CD14, TLR4, CD64, SOCS2, and IRF4 mRNA 
expression levels in newborn (black bars) and adult (white bars) monocytes and M1 and M2 macrophages were measured by RT-PCR. Data are means ± SEM from 
eight newborns and eight adults. (c) HLA-DR, CD80, CD163, and CD206 mean fluorescence intensity in newborn (black circles) and adult (white circles) monocytes 
and M1 and M2 macrophages was analyzed by flow cytometry in three to five healthy newborns and adults. Each dot represents one subject. CD163 and CD206 
were not detected in monocytes from 2/5 newborns and 2/5 adults. Means ± SEM are presented. *P < 0.05.
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(BD Biosciences). Data were analyzed using the BD FACSDiva™ 
software (BD Biosciences).

cytokine Measurements
Cytokine concentrations in cell-culture supernatants were meas-
ured by ELISA (BD Biosciences, for TNF, IFNγ, IL-1β, IL-6, IL-8, 

and IL-10) or by the Luminex technology (Affymetrix eBiosci-
ence, for IL-12p70, IL-20, IL-23, and IL-27).

cyTOF analyses
Monocytes were exposed for 0, 15, 30, 60, or 120 min to GM-CSF 
and fixed with formaldehyde at a final concentration of 1.5%. 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


FigUre 2 | Newborn M1 macrophages secrete reduced amounts of TNF after lipopolysaccharide (LPS) stimulation. Newborn (black bars) and adult (white bars) 
monocytes were cultured for 7 days with GM-CSF (50 ng/ml) and with M-CSF (50 ng/ml) to induce M1 (a–c) and M2 macrophages (a). Macrophages (a–c) and 
monocytes (D) were stimulated with 0–100 ng/ml LPS. (a) Cytokine levels were measured in cell culture supernatants collected after 20 h. Data are means ± SEM 
from 20 (TNF, IL-6, IL-8, IL-1β, and IL-10) or 10 (IL-23) newborn and adult subjects. (B) TNF, IL-6, and IL-8 levels were measured in cell culture supernatants 
collected after 0–18 h. Data are means ± SEM from eight newborns and six adults. (c) TNF mRNA expression levels in M1 macrophages exposed for 0 and 4 h to 
100 ng/ml LPS were measured by RT-PCR. Data are means ± SEM from 10 newborns and 9 adults. (D) TNF concentrations in cell culture supernatants of 
monocytes exposed for 20 h to 0–100 ng/ml LPS. Data are means ± SEM from 20 newborns and 10 adults. *P < 0.05.
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Cells were stained using an anti-CD14 mAb conjugated with the 
Fluidigm MaxPar conjugation kit (Fludigm). Cells were washed 
with Cell Staining Media and PBS, fixed with 2% formaldehyde, 

and bar-coded using Scn-Bn-EDTA-palladium barcode reagents 
(39). After barcoding, cells were pooled, permeabilized for 
30 min at −20°C using 100% methanol, washed twice with 6 ml 
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FigUre 3 | Proportions of monocyte subpopulations, expression of GM-CSF receptor (GM-CSFR), M-CSFR and HLA-DR and activation of intracellular signaling 
pathways by GM-CSF in newborn and adult monocytes. (a) Percentages of classical CD14++CD16−, intermediate CD14++CD16+SLAN−, and non-classical 
CD14+CD16++SLAN+ subpopulations and mean fluorescence intensity of GM-CSFR, M-CSFR, and HLA-DR in newborn (black circles) and adult (white circles) 
monocytes were determined by flow cytometry. Each dot represents one healthy subject. Means ± SEM are depicted. (B) Nuclear levels pSTAT1, pSTAT3, pSTAT5, 
pp38, pERK, and pNF-κBp65 in newborn (black bars) and adult (white bars) monocytes exposed for 15–120 min to 50 ng/ml GM-CSF were analyzed by CyTOF. 
Mean magnetic intensities were determined. Data are means ± SEM from six newborns and six adults.
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Cell Staining Media containing 0.3% saponin, and incubated 
for 30  min with mAbs directed against intracellular targets. 
Finally, cells were incubated overnight at 4°C in intercalation 
solution (PBS, 0.3% saponin, 1% formaldehyde, 125 nM Cell-ID 
Intercalator-Ir, Fluidigm) before acquisition on a CyTOF 1 
upgraded to a CyTOF 2. Individual data files were concatenated, 
normalized, and deconvoluted as described (40) and were ana-
lyzed using Cytobank (Cytobank Inc.).

Western Blot analyses
Whole cellular extracts and cytoplasmic and nuclear extracts were 
prepared as described previously (34). Equal amounts of protein 
extracts were electrophoresed through SDS/PAGE. Proteins 
were transferred onto nitrocellulose membranes (Schleicher and 

Schuell). Membranes were incubated with Abs (listed in Table 
S1 in Supplementary Material) directed against NF-κBp65, IκBα, 
total and phosphorylated p38, ERK1/2, and JNK MAPKs, MAP 
kinase phosphatase-1 (MKP-1), IRF5, IRF8, total and phos-
phorylated Akt, GAPDH, β-actin, and TATA-binding protein. 
After washing, membranes were incubated with horseradish 
peroxidase-conjugated secondary Abs (Pierce Biotechnology 
Inc.). Signals were revealed using enhanced chemiluminescence 
detection (GE Healthcare). Images were recorded using a Fusion 
Fx system (Viber Lourmat).

adenovirus Transduction
IRF5-encoding and control empty adenoviral vectors (Applied 
Biochemical Materials Inc.) were amplified in HEK-293 cells (ATCC 
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FigUre 4 | Reduced cytoplasmic and nuclear IRF5 levels during GM-CSF-induced monocyte to macrophage differentiation in newborns. (a) Intracellular IRF5 
levels in freshly isolated newborn (black bars) and adult (white bars) monocytes. Data are means ± SEM from 10 newborns and 10 adults. (B) Cytoplasmic and 
nuclear IRF5 levels in newborn (black) and adults (white) monocytes cultured for 0–7 days with 50 ng/ml GM-CSF. IRF5 levels were analyzed by Western blotting  
(left panels) and quantified by imaging (right panels). Data are means ± SEM from nine newborns and nine adults. *P < 0.05.

6

Schneider et al. IRF5 and TLR4 Response of Newborn Macrophages

Frontiers in Immunology | www.frontiersin.org July 2018 | Volume 9 | Article 1597

CRL-1573) and stored at −80°C in 10% glycerol. Macrophages were 
transduced with the adenoviral preparations (50  µl for 105  cells, 
1 ml for 2.5 × 106), and used 24 h later for functional studies.

chromatin immunoprecipitation (chiP) 
assay
Chromatin immunoprecipitation analyses were performed 
according to the manufacturer’s recommendations (MAGnifiy 
Chromatin Immunoprecipitation System, Thermo Fisher). 
Briefly, 1 × 106 M1 macrophages were fixed with 1% formalde-
hyde. Chromatin was sheared by 16 cycles of 30-s pulse/30-s rest 
with an amplitude of 14% using an Ultrasonic Liquid Processor 
(Branson). Chromatin was incubated overnight at 4°C with 5 µg 
of antibodies directed against IRF5 (Cell Signaling Technology), 
or RNA polymerase II (Pol II, Table S1 in Supplementary 
Material), or with control IgGs (provided in the kit). Real-time 
PCR was performed with a 7500 Fast Real-Time PCR System 
using the SYBR Kapa Fast Mix (Sigma-Aldrich). The follow-
ing sense and antisense primers (5′–3′ sequences) were used 
for amplification: TNF, TGCTTGTTCCTCAGCCTCTT, and 
TCACCCATCCCATCTCTCTC.

statistical analyses
Statistical analyses were performed using PRISM (Graphpad 
Software Inc.). Data are expressed as means ± SEMs. Comparisons 

between the different groups were performed by two-two-tailed 
t tests. Findings were considered statistically significant when 
P < 0.05.

resUlTs

newborn and adult Monocytes 
Differentiate into M1 and M2 Macrophages 
in response to gM-csF and M-csF
The differentiation and polarization of freshly isolated newborn 
and adult monocytes into M1 and M2 macrophages following 
7 days of culture with recombinant GM-CSF and M-CSF were 
analyzed by hematoxylin and eosin staining (Figure  1A) and 
by measuring the expression of maturation/differentiation 
markers by RT-PCR (CD14, CD64, SOCS2, SOCS3, and IRF4; 
Figure  1B) and flow cytometry (HLA-DR, CD80, CD163, 
CD206; Figure  1C). Monocytes and M1 macrophages from 
healthy term newborns and adult volunteers showed a round 
shape, while M2 macrophages displayed a more elongated 
shape, consistent with the expected phenotype (41, 42). No 
difference in morphology and viability (91 ± 1 versus 95 ± 1% 
and 91 ± 1 versus 94 ± 1% for newborn and adult M1 and M2 
macrophages, respectively) was noticed between newborn and 
adult cells.
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FigUre 5 | Reduced IRF5 expression levels in newborn M1 macrophages. Newborn (black bars) and adult (white bars) M1 macrophages were stimulated with 
100 ng/ml lipopolysaccharide for 0–60 min. IRF5 (a,B), IκBα (c), NF-κBp65 (D), phosphorylated and total ERK1/2 (e), p38 (F) and JNK (g), MAP kinase 
phosphatase-1 (h), IRF8 (i), and phosphorylated and total Akt (J) were analyzed by Western blotting using total (a,c,e–J) or nuclear (B,D) cellular extracts and 
quantified by imaging. Values were normalized to those obtained from resting adult M1 macrophages set at 1. Data are means ± SEM from 8 to 10 newborns and 8 
to 10 adults. *P < 0.05.
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CD14 mRNA levels were higher (2.1- to 4.7-fold) in monocytes 
than in macrophages (Figure 1B), as anticipated (43). Unexpecte-
dly, CD14 was more expressed (1.9-fold) in newborn than in adult 
monocytes. When compared to monocytes, TLR4 was expressed 
at lower levels in M2 macrophages (2.4- to 3.2-fold), while the M1 
marker CD64 was enriched (5.2- to 8.1-fold) in M1 macrophages, 

and the M2 markers SOCS2 and IRF4 were enriched (5.1- to 8.1 
and 3.6- to 4.8-fold) in LPS-stimulated M2 macrophages (44–47). 
SOCS3, a gene implicated in the repression of the M1 phenotype 
(48), was expressed at lower levels in M1 macrophages than in 
monocytes. Newborns and adult cells expressed similar levels of 
TLR4, CD64, SOCS2, SOCS3, and IRF4.
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FigUre 6 | IRF5 overexpression restores TNF secretion by newborn M1 macrophages. Newborn M1 macrophages were transduced with empty control (pEV) 
(black bars) and IRF5-expressing (gray bars) adenoviral vectors (a,B). (a) IRF5 levels were analyzed by Western blotting (left panel) and quantified by imaging (right 
panel). (B) Newborn M1 macrophages were stimulated with 0–100 ng/ml lipopolysaccharide (LPS). TNF, IL-6, IL-8, and IL-10 concentrations were measured in cell 
culture supernatants collected after 20 h. Data are means ± SEM from 20 (TNF) or 10 (IL-6, IL-10, and IL-8) newborns. *P < 0.05. (c) The recruitment of RNA 
polymerase II (Pol II) and IRF5 to the TNF promoter in M1 macrophages before and 1 h after stimulation with 100 ng/ml LPS was assessed by chromatin 
immunoprecipitation. Data from one experiment representative of two experiments are presented as the percentage input relative to genomic DNA set at 100%.
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HLA-DR, CD80, CD163, and CD206 were expressed at similar 
levels by newborn and adult monocytes (Figure 1C). The mean 
fluorescence intensity (MFI) of each of the molecules increased, 
albeit to different extents, in M1 and M2 macrophages (MFI fold 
increase versus monocytes: HLA-DR: 2.3–3.9; CD80: 6.2–6.6; 
CD163: 33–50; CD206: 5.5–16.5). HLA-DR and CD80 MFI were 
similar in newborn and adult M1 and M2 macrophages. CD163 
was previously reported as an M2 marker in adults (41, 49, 50). 
However, in newborns, CD163 MFI strongly increased in both 
M1 and M2 macrophages compared to monocytes (33- and 
50-fold). CD206, an M2 polarization marker at the transcript 
level (27), was more expressed in GM-CSF than M-CSF-derived 
macrophages by flow cytometry (41, 49). Accordingly, CD206 
MFI was higher in newborn and adult M1 macrophages than 
in M2 macrophages, without noticeable difference of expression 
between newborns and adults. Overall, following exposure to 
GM-CSF and M-CSF, newborn monocytes differentiated into 
cells adopting morphological features and expressing markers of 
M1 and M2 macrophages similar to adult cells, with the exception 
of CD163 that was expressed at higher levels in newborn than 
adult M1 macrophages.

Tlr4-Mediated TnF secretion is 
selectively reduced in newborn M1 
Macrophages
Functional studies were performed to compare the capacity of 
newborn and adult M1 and M2 macrophages to secrete proin-
flammatory and anti-inflammatory cytokines in response to 
TLR4 stimulation. In response to LPS, newborn and adult M1 
macrophages secreted higher levels of TNF, IL-6, IL-8, and IL-23 
and lower levels of IL-10 than M2 macrophages (Figure  2A). 
IL-1β secretion was similar between M1 and M2 macrophages. 
IFNγ, IL-12p70, IL-20, and IL-27 were undetectable.

Interestingly, newborn M1 macrophages secreted 3- to 6-fold 
less TNF (6.1 versus 21.2 ng/ml using 100 ng/ml LPS), while they 
produced IL-1β, IL-6, IL-8, IL-10, and IL-23 in the same range 
as adult M1 macrophages. Reduced TNF secretion was detected 
as early as 1 h following LPS stimulation (Figure 2B) and was 
associated with lower TNF mRNA expression in newborn M1 
macrophages (Figure 2C).

We then evaluated whether the diminished TNF secretion 
by newborn M1 macrophages was also present in monocytes 
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(Figure  2D). LPS-induced TNF secretion was much lower in 
monocytes than in macrophages and was similar in newborn 
and adult monocytes. These findings suggested that GM-CSF 
triggered a different response in newborn and adult cells result-
ing in a specific reduction of TNF production by newborn M1 
macrophages. This was unlikely to be due to gender differences, 
as macrophages from males released similar amounts of TNF 
compared to macrophages from females, both in newborns and 
adults.

reduced irF5 activation During Monocyte 
to Macrophage Differentiation in 
newborns
As a first approach to decipher the impact of GM-CSF on mac-
rophage differentiation, we analyzed the expression CSF receptors 
and the activation of downstream signaling pathways in monocytes. 
Classical (CD14++CD16−), intermediate (CD14++CD16+SLAN−),  
and non-classical (CD14+CD16++SLAN+) monocyte subsets 
(51, 52) were equally distributed in newborns and adults and 
expressed similar levels of GM-CSFR, M-CSFR, and HLA-DR 
(Figure 3A; Figure S1 in Supplementary Material).

Binding of GM-CSF to the GM-CSFR initiates the JAK/STAT, 
MAPK, and NF-ĸB intracellular signaling pathways and activates 
IRF5 in DCs (53). The pathways activated by GM-CSF in new-
born and adult monocytes were investigated by mass cytometry. 
Exposure of newborn and adult monocytes to GM-CSF increased 
the phosphorylation of STAT5 (3.5- to 4.6-fold) and ERK1/2 (2.8- 
to 9.9-fold), but not that of STAT1, STAT3, p38, and NFĸBp65 
(Figure 3B). No difference was detected between newborns and 
adults.

IRF5 is a downstream target of GM-CSFR signaling and plays 
a key role in M1 polarization (23). IRF5 is activated by phospho-
rylation, leading to its dimerization and nuclear translocation 
to promote the expression of immune response genes (54). 
Intracellular levels of IRF5 were similar in newborn and adult 
monocytes (Figure 4A). We then quantified IRF5 in cytoplasmic 
and nuclear fractions obtained from monocytes exposed for 
0–7  days to GM-CSF (Figure  4B). Cytoplasmic levels of IRF5 
started to rise at day 1, peaked at day 3–6, and declined at day 
7, while nuclear levels of IRF5 increased from day 2 to day 7. 
Cytoplasmic levels of IRF5 were 1.4- to 2.3-fold higher in adults 
than in newborns at days 1–7, while nuclear levels were 2.0- to 
4.5-fold higher in adults from day 0 to day 7. Of note, IRF5 was 
detected at 15–20 lower levels in the nucleus than in the cyto-
plasm at day 7. Thus, during GM-CSF-induced monocyte to M1 
macrophage differentiation, IRF5 was expressed at lower levels 
and translocated to the nucleus to a lower extent in newborn than 
in adult cells, a difference that might well explain the reduced 
expression of TNF in newborn M1 macrophages.

reduced irF5 expression in newborn M1 
Macrophages
To further characterize the mechanisms underlying M1 mac-
rophage polarization, the expression of IRF5 and IRF8, another 
transcription factor implicated in M1 polarization (55), and the 
activation of NF-κB, MAPK, and Akt signaling pathways were 

analyzed in GM-CSF-induced M1 macrophages exposed to LPS 
for 0, 15, 30, and 60 min. Cytosolic IRF5 levels were lower in new-
born than in adult M1 macrophages before and following LPS 
exposure (Figure 5A). Nuclear IRF5 levels decreased following 
LPS stimulation and were lower in newborns than in adults at all 
time points, although differences were not statistically significant 
(Figure 5B). Newborn M1 macrophages expressed lower levels of 
cytosolic IκBα and higher levels of nuclear NF-ĸBp65 before and 
15 min after LPS stimulation (Figures 5C,D). Phosphorylation of 
ERK1/2 and p38, but not of JNK, was higher in newborn M1 mac-
rophages at baseline and upon LPS stimulation (Figures 5E–G). 
In line with these findings, expression of MKP-1/dual specificity 
phosphatase (DUSP1), a DUSP that inactivates ERK1/2 and p38, 
was reduced in newborn M1 macrophages (1.4- to 1.9-fold less 
at baseline and 15 min after LPS stimulation; Figure 5H). No dif-
ference in IRF8 expression was noticed between newborns and 
adults (Figure 5I). Phospho-Akt levels were not affected by LPS 
stimulation in newborn and adult M1 macrophages (Figure 5J). 
Combined altogether, and considering that NF-κB and MAPK 
signaling pathways were not impaired in newborns, our data 
pointed toward IRF5 as a possible regulator, which decreased 
expression in newborn M1 macrophages could be involved in a 
selectively reduced TNF production.

irF5 Overexpression restores TnF 
secretion in newborn M1 Macrophages
To investigate the relationship between lower levels of IRF5 
and reduced TNF secretion in newborn M1 macrophages, we 
transduced newborn M1 macrophages with an IRF5 expressing 
adenoviral vector. Transduction increased IRF5 expression 1.6-
fold (Figure 6A) and markedly increased (2.1- to 4.0-fold) TNF 
secretion, while it did not affect IL-6, IL-8, and IL-10 secretion 
(Figure 6B). Next, we examined the recruitment of IRF5 and RNA 
Pol II to the TNF promoter by ChIP. IRF5 binding was detected 
in unstimulated M1 macrophages and strongly decreased 1  h 
after exposure to LPS in both newborns and adults (Figure 6C). 
LPS stimulation for 1 h led to the recruitment of RNA Pol II to 
the TNF promoter in newborn and adult M1 macrophages. In 
summary, a selective increase in LPS-induced TNF production 
following IRF5 overexpression in newborn M1 macrophages 
strongly suggests an important role for IRF5 in shaping the TNF 
response in newborns. Yet, the mechanism of action of IRF5 
might be independent of its recruitment to the TNF promoter 
following LPS stimulation.

DiscUssiOn

We report that monocyte-derived M1 macrophages from 
newborns exhibit a strongly reduced capability to release TNF 
upon TLR4 stimulation, while the production of other cytokines 
is at similar levels as in adults. IRF5 is a key factor shaping this 
important functional characteristic of newborn macrophages 
(Figure 7).

Studies in mice, rats, and monkeys have described organ, tis-
sue, and species-specific phenotypic and functional differences 
between newborn and adult macrophages. Globally, newborn 
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FigUre 7 | Distinct TLR4 response in neonatal monocyte-derived macrophages. Exposure of newborn and adult monocytes to GM-CSF and M-CSF drives their 
differentiation into macrophages having an M1 (CD64high and CD206high round cells) and an M2 (SOCS2high, IRF4high and CD163high elongated cells) phenotype. 
Macrophages express high levels of membrane-bound HLA-DR, CD80, CD163, and CD206, with newborn M1 macrophages expressing higher levels of the 
hemoglobin scavenger receptor CD163 than adult M1 macrophages. Following TLR4 stimulation, newborn monocytes secrete TNF to a similar level as adult 
monocytes. M1 macrophages secrete higher levels of TNF but low levels of IL-10, whereas M2 macrophages secrete low levels of TNF but high levels of IL-10. TNF 
secretion is threefold to sixfold lower in newborn than in adult M1 macrophages, while the production of other cytokines (IL-1β, IL-6, IL-8, and IL-23) is at similar 
levels. IRF5, a transcription factor implicated in M1 polarization, increases in the cytoplasm and in the nucleus during monocyte to M1 macrophage differentiation. 
Both cytoplasmic and nuclear levels of IRF5 are lower in newborn than adult M1 macrophages. IRF5 overexpression in newborn M1 macrophages restores 
LPS-induced TNF production in newborn M1 macrophages.
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macrophages display reduced capacities to kill bacteria (56–59) 
and to produce proinflammatory cytokines (59–62) while they 
release anti-inflammatory cytokines at the same levels as adult 
macrophages (61–63). Previous studies in humans have investi-
gated mixed populations of umbilical cord blood mononuclear 
cells or monocyte-derived cells, without a phenotypic charac-
terization of differentiated cells (64–67). Cord blood-derived 
macrophage-like cells have a reduced capacity to kill group B 
Streptococcus and Candida, and release lower amounts of TNF, 
IL-1β, IL-6, and IL-12 in response to LPS (64, 68).

M-CSF is constitutively expressed by several cell types includ-
ing fibroblasts, endothelial cells, stromal cells, and osteoblasts 
(69). Besides promoting survival, proliferation, and differen-
tiation of bone marrow progenitors and monocytes, steady-state 
expression of M-CSF contributes to polarize macrophages toward 
an M2 phenotype (70). GM-CSF is expressed at low levels in the 
circulation and in tissues at homeostasis and plays a critical role 
in the terminal differentiation and functions of alveolar mac-
rophages (71). Inflammation and infections trigger the produc-
tion of GM-CSF by endothelial cells, fibroblasts macrophages, 
T  cells, mast cells, and natural killer cells. GM-CSF drives M1 
polarization, which is essential to mount efficient antimicrobial 
responses. Morphological and phenotypical analyses confirmed 
that newborn monocytes differentiate into cells adopting features 
of M1 and M2 macrophages, similar to adult cells. Uniquely, 
CD163 was strongly upregulated by both M1 and M2 mac-
rophages in newborns, while this molecule is commonly used 
as an M2 marker in adults [(41, 49, 50) and our data]. Reduced 

activation of IRF5 in newborns might be implicated as IRF5 
downregulates CD163 expression in adult macrophages (23). 
CD163 is a scavenger receptor involved in the clearance of free 
hemoglobin (72). During the neonatal period, high expression 
of CD163 in both M1 and M2 macrophages could be relevant, 
since newborn infants have an elevated turnover of erythrocytes 
under physiologic conditions and are prone to hemolysis during 
infection (8, 73, 74).

The lower capacity of newborn M1 macrophages to release 
TNF is most likely acquired during the process of monocyte 
to macrophage differentiation. Indeed, newborn monocytes 
released similar levels of TNF as adult monocytes under the 
experimental conditions used in the present study. Clearly, 
newborn M1 macrophages are not globally defective in TLR4 
signaling, considering that TLR4 expression, NF-κBp65 nuclear 
translocation, ERK1/2 phosphorylation and MKP-1 expression, 
and production of IL-1β, IL-6, IL-8, and IL-23 are not diminished 
in newborn M1 macrophages.

IRF5 regulatory axis shapes the phenotype of newborn mac-
rophages and plays an important role in systemic inflammation 
(54), as IRF5-deficient mice are protected from LPS-induced 
systemic inflammation and autoimmune diseases (75). Freshly 
isolated newborn monocytes expressed IRF5 to a similar extent 
as adult monocytes but had reduced expression and nuclear 
translocation of IRF5 when cultured with GM-CSF. Moreover, 
adenoviral-mediated IRF5 overexpression in newborn M1 
macrophages restored TLR4-mediated TNF secretion, while it 
did not impact IL-6, IL-8, and IL-10 production, indicating that 
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IRF5 might play a key role in the selective reduction of TNF secre-
tion observed in newborn macrophages. In contrast, germline 
deletion of IRF5 impairs LPS-induced production of Th1/Th17 
cytokines in mice (75), and IRF5 overexpression in adult human 
macrophages increases expression of TNF, IL-1β, IL-12p70, and 
IL-23 and reduces secretion of IL-10 (23). These data suggest 
that IRF5 has a broader impact on cytokine production in adult 
than in newborn cells. Further studies will be required to define 
whether IRF5 differential expression impacts on immune func-
tions besides TNF production in newborns.

Following exposure of macrophages to LPS, IRF5 is recruited 
to regulatory elements of the TNF gene and stimulates transcrip-
tion (75, 76). In adult M1 macrophages, NOD2 stimulation trig-
gers an IRF5-dependent activation of MAPKs, NFκB, and Akt2, 
increasing TNF, IL-1β, and IL-12 production (77). However, in 
our study, LPS stimulation did not increase IRF5 expression, 
nuclear translocation, and recruitment to the TNF promoter in 
M1 macrophages. Moreover, NF-κB and MAPKs signaling path-
ways were not impaired in newborn M1 macrophages, and Akt 
was not activated following LPS stimulation. Chromatin remod-
eling is implicated in monocyte to macrophage differentiation 
and macrophage polarization (78, 79), and histone acetylation 
and methylation are regulators of TNF gene expression (80). 
Further studies will be required to address whether GM-CSF 
induced a specific epigenetic reprogramming in newborn 
monocytes making newborn M1 macrophages less prone to 
transcribe TNF in response to TLR4 stimulation. It will be also 
important to define whether posttranscriptional modifications 
of IRF5 required for optimal TNF transcription are reduced in 
newborn macrophages.

Previous studies have identified reduced activation of IRF 
family members as mechanisms underlying the limited capacity 
of neonatal DCs to mount proinflammatory responses. Lower 
IRF3 activity in newborn monocyte-derived DCs in response 
to TLR4 stimulation is associated with reduced expression of 
IFN-β, IL-12p70, and the IFN-inducible chemokines CXCL9, 
CXCL10, and CXCL11 (5). Moreover, the limited production of 
typeI/III IFNs by newborn plasmocytoid DCs exposed to herpes 
simplex virus-1 is linked to a reduced nuclear translocation 
of IRF7 (81). Combined altogether, these studies put forward 
a major role of IRFs in shaping the unique characteristics of 
newborn myeloid cells.

Our findings recognize characteristics of newborn mac-
rophages that could be relevant to the vulnerability to infections 
observed during the neonatal period. Indeed, TNF is an early 
response cytokine that plays a crucial role in recruiting innate 
immune cells to sites of infection and promoting microbicidal 
activities. However, during established infections, excessive levels 
of TNF participate to the dysregulated immune responses that 
contribute to the pathogenesis of sepsis (74). Moreover, inflam-
mation can cause considerable damage to developing organs, 

resulting in death or long-term disability (10). Thus, lower pro-
duction of TNF by newborn macrophages exposed to microbial 
products could be advantageous to limit inflammatory responses 
during postnatal colonization of the skin and gastrointestinal 
tract and to reduce organ dysfunction and damage during sys-
temic infection. The observation of a selective reduction in TNF 
secretion by newborn macrophages, while activation of major 
signaling pathways and production of other cytokines is main-
tained, supports the concept that immune responses are highly 
regulated to meet the specific requirements of early life. While we 
focused on differences between the developing neonatal immune 
system and the fully developed adult immune system, the absence 
of data from children is a limitation.

In summary, we identified distinct characteristics of the mono-
cytic lineage in newborns that show limited IRF5 activation during 
monocyte to macrophage differentiation, and a specific reduction 
of TNF production upon TLR4 stimulation in M1 macrophages. 
These observations are relevant in the context of neonatal inflam-
mation and infection and may provide a new potential target for 
immune modulating therapies during the neonatal period.
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