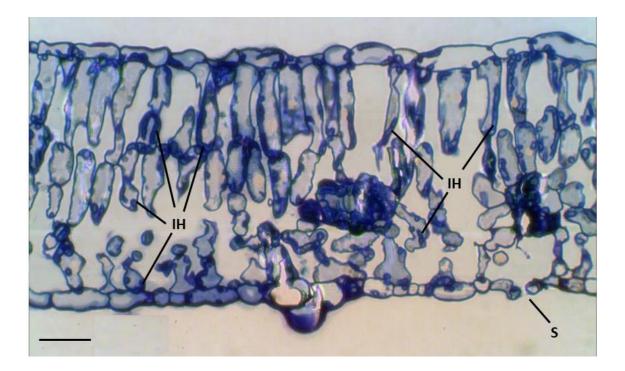
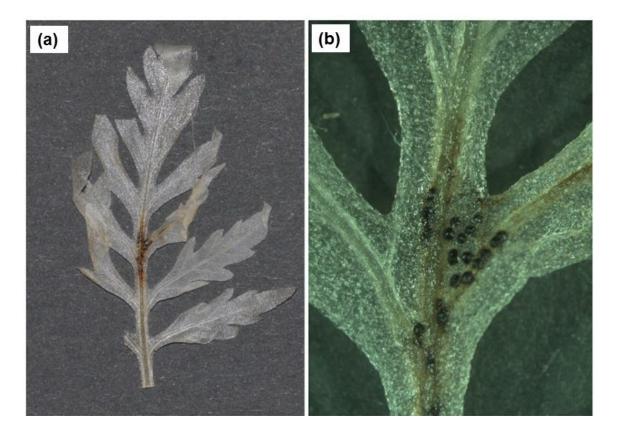
SUPPLEMENTARY MATERIAL

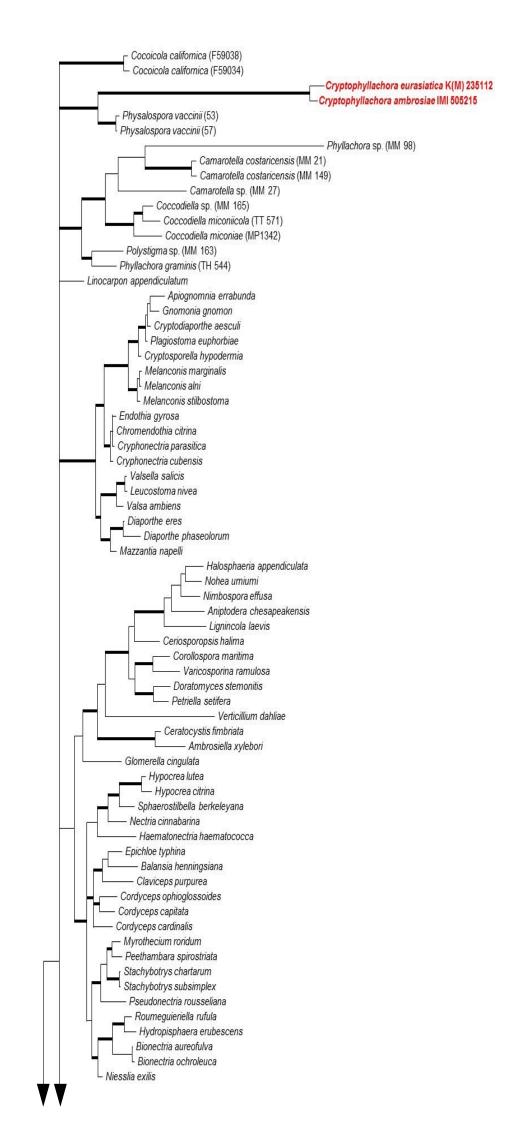
Deciphering the biology of *Cryptophyllachora eurasiatica* gen. et sp. nov., an often cryptic pathogen of an allergenic weed, *Ambrosia artemisiifolia*

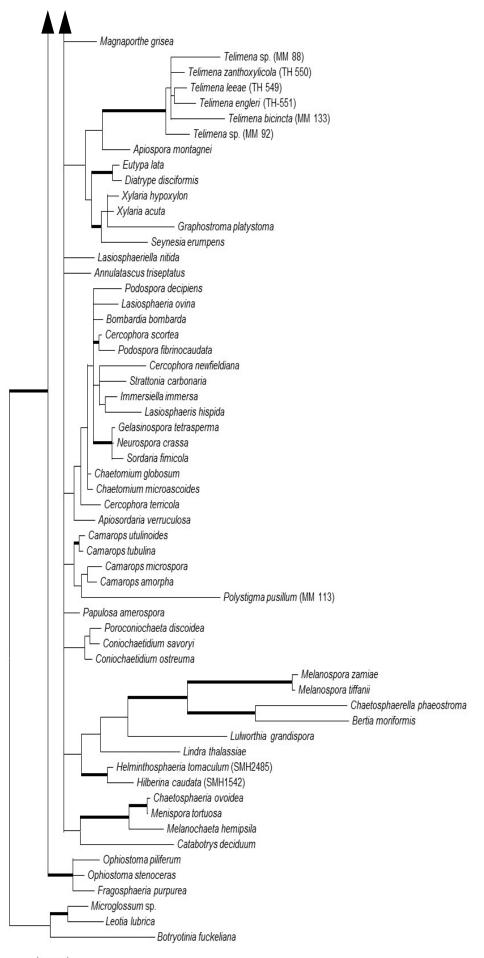

Levente Kiss^{1,2*}, Gábor M. Kovács^{2,3}, Károly Bóka³, Gyula Bohár⁴, Krisztina Varga Bohárné⁴, Márk Z. Németh², Susumu Takamatsu⁵, Hyeon-Dong Shin⁶, Vera Hayova⁷, Claudia Nischwitz⁸, Marion K. Seier⁹, Harry C. Evans⁹, Paul Cannon¹⁰, Gavin James Ash¹, Roger G. Shivas¹, and Heinz Müller-Schärer¹¹

¹University of Southern Queensland, Centre for Crop Health, Toowoomba, Qld 4350, Australia ²Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences (MTA-ATK), Budapest, H-1525, Hungary ³Eötvös Loránd University, Institute of Biology, Department of Plant Anatomy, Budapest, H-1117, Hungary ⁴Biovéd 2005 Ltd., Kemenestaródfa, H-9923, Hungary ⁵Mie University, Graduate School of Bioresources, Tsu, 514-8507, Japan ⁶Korea University, Division of Environmental Science and Ecological Engineering, Seoul, 02841, Korea ⁷National Academy of Sciences of Ukraine, M.G. Kholodny Institute of Botany, Kyiv, 01004, Ukraine ⁸Utah State University, Department of Biology, Logan, UT 84322, USA ⁹CABI Europe-UK, Egham, Surrey, TW20 9TY, United Kingdom ¹⁰Royal Botanic Gardens, Jodrell Laboratory, Mycology Section, Kew, TW9 3AB, United Kingdom

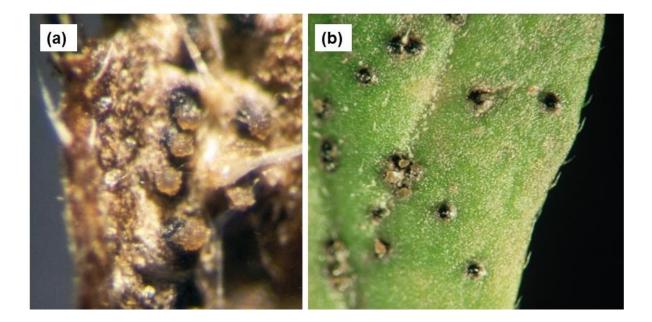

¹¹University of Fribourg, Department of Biology/Ecology & Evolution, Fribourg, CH-1700, Switzerland

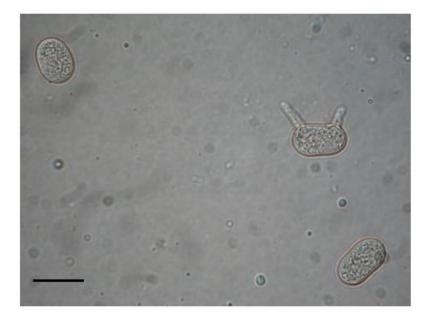
*Corresponding author (Email: Levente.Kiss@usq.edu.au)


This file contains all the supplementary figures (Figs. S1-S5) and supplementary tables (Tables S1-S3) of this work.



Supplementary Figure S1. A semi-thin section of a common ragweed leaf infected with *Cryptophyllachora eurasiatica*, stained with toluidine blue. Intracellular hyphae (IH) are visible in the epidermal cells, as well as in the mesophyll. $S = \text{stoma. Bar} = 50 \,\mu\text{m.}$


Supplementary Figure S2. A leaf of a potted common ragweed plant decolorized in Carnoy's solution one month following artificial inoculation with a *Cryptophyllachora eurasiatica* ascosporic suspension. Mature perithecia are visible around the point of inoculation, but not elsewhere. (a) The whole leaf. (b) A close-up of the leaf surface with perithecia.



0.1

Supplementary Figure S3. The majority consensus tree of Bayesian phylogenetic inference of the nrLSU sequences of two *Cryptophyllachora* specimens, K(M) 235112 and IMI 505215, collected in Hungary and the USA, respectively, analyzed together with most of the sequences used by Zhang *et al.* (2006), and included in our analysis of the combined nrLSU and nrSSU dataset (see Fig. 5), and, in addition, with representative nrLSU sequences of the Phyllachorales published recently by Mardones *et al.* (2017). Taxon names follow the original publications. The dataset contained 128 sequences and was 691 characters long. *Botryotinia fuckeliana* served as outgroup in the analyses. Bold branches indicate that Bayesian PP support was equal or higher than 0.9. Bar represents 0.1 expected changes/site/branch.

Supplementary Figure S4. Ascospore release from *Cryptophyllachora eurasiatica* perithecia. (a) Release of ascospores in a brownish mucilaginous material from perithecia found on an already dry, crispy part of a common ragweed plant collected in the field. (b) Ascospore release from perithecia produced in a potted plant one month following artificial inoculation with a *C. eurasiatica* ascosporic suspension.

Supplementary Figure S5. A germinating, and two non-germinating ascospores of *Cryptophyllachora eurasiatica* following 24 hour incubation of an aqueous ascospore suspension on cellophane placed on water agar. Bar = $15 \mu m$.

Supplementary Table S1. Characteristics of the Eurasian field survey sites where *Ambrosia artemisiifolia* populations were monitored for at least five consecutive years for symptoms of fungal diseases.

Locality	Habitat	Coordinates	Duration of	Number of years when
	description		field surveys	<i>C. eurasiatica</i> was detected / Duration of
				the survey
				the survey
Hungary				
Kál	Roadside	47.7200,	2004-2008	2/5
		20.2825		
Biatorbágy	new residential	47.4789,	2005-2015	3/11
	area construction	18.8153		
Etyek	roadside	47.4508,	1999-2004	1/6
		18.7481		
Hatvan	roadside	47.6694,	2003-2007	2/5
		19.6229		
Esztergom	roadside	47.7324,	2002-2006	1/5
20200180111	10000100	18.7385	2002 2000	2,0
Kemenestaródfa	agricultural field	46.9959,	2008-2013	2/6
Kennenestaroura	agricultural field	40.9959,	2008-2013	2/0
D 1 -			2000 2014	2/7
Budaörs	agricultural field	47.4604,	2008-2014	2/7
		18.8947		
Korea				
Pocheon	roadside	37.4517,	1997-2006	1/10
		127.1005		

Seoul	roadside	37.3503,	1997-2015	1/19
		127.0126		
Ukraine				
Dudarkiv,	abandoned field	50.4507,	1996-2011	8/16
Boryspil district		30.9642		
Kiev,	roadside	50.4747,	1997-2008	4/12
Novobilychi		30.3384		
Baryshivka	along railway	49.2186,	1996-2005	5/10
		28.5265		
Baryshivka	agricultural field	50.2745,	2000-2008	5/9
		31.3325		
Vinnytsia	roadside	49.2186,	1997-2004	6/8
		28.5265		

Supplementary Table S2. Designations, place and date of collection and herbarium and NCBI GenBank accession numbers of the *Cryptophyllachora* specimens included in the molecular work.

Sample	Place of	Geographic	Date of	Herbarium	GenBank
designa-	collection	coordinates	collection	accession	accession
tion				number	number
					ITS/SSU/LSU
Hu-1	Etyek,	47.4508,	21 July 1999	-	MH155433/
	Hungary	18.7481			MH155451/
					MH155469
Hu-2	Esztergom,	47.7324,	15 August	-	MH155434/
	Hungary	18.7385	2002		MH155452/
					MH155470
Hu-3	near Hatvan,	47.6694,	9 September	K(M)	MH155435/
	Hungary	19.6229	2003	235112	MH155453/
					MH155471
Hu-4	Kál,	47.7200,	5 October	-	MH155436/
	Hungary	20.2825	2004		MH155454/
					MH155472
Hu-5	Budapest,	47.3976,	18 August	-	MH155437/
	Soroksár,	19.1527	2005		MH155455/
	Hungary				MH155473
Hu-6	Biatorbágy,	47.4789,	8 September	-	MH155438/
	Hungary	18.8153	2006		MH155456/
					MH155474
Hu-7	Biatorbágy,	47.4789,	5 October	-	MH155439/
	Hungary	18.8153	2007		MH155457/
					MH155475

Hu-8	Budaörs,	47.4604,	2 October	BPI 880510	MH155440/
	Hungary	18.8947	2008		MH155458/
					MH155476
Ko-1	Pocheon,	37.4517,	2 Sept 2003	SMK19592,	MH155441/
	Korea	127.1005		BPI	MH155459/
				880505,	MH155477
				K(M)	
				235111	
Ко-2	Seoul,	37.3503,	6 Sept 2003	SMK19613,	MH155442/
	Korea	127.0126		BPI 880506	MH155460/
					MH155478
Ko-3	Pyeongchan	37.5559,	22 September	_	MH155443/
	g, Korea	128.4851	2016		MH155461/
					MH155479
Ukr-1	Dudarkiv,	50.4507,	15 September	BPI	MH155444/
	Boryspil	30.9642	2005	880507,	MH155462/
	district,			K(M)	MH155480
	Ukraine			235110	
Ukr-2	Kyiv,	50.4747,	25 September	BPI 880508	MH155445/
	Novobilychi	30.3384	2005		MH155463/
	, Ukraine				MH155481
US-1	Trifton, GA,	31.477953,	19 August	BPI 880509	MH155446/
	USA	-83.440278	2005		MH155464/
					MH155482
US-2*	Clermont,	28.629250,	3 June 2014	IMI 505215	MH155447/
	FL, USA	-81.695533			MH155465/
					MH155483

US-3*	Clermont,	28.629250,	3 June 2014	IMI 505215	MH155448/
	FL, USA	-81.695533			MH155466/
					MH155484
US-4*	Clermont,	28.629250,	3 June 2014	IMI 505215	MH155449/
	FL, USA	-81.695533			MH155467/
					MH155485
US-5	near	28.604817,	3 June 2014	IMI 505216	MH155450/
	Paradise	-81.547417			MH155468/
	Heights, FL,				MH155486
	USA				

*Different parts of the infected plant material collected in the same place and at the same time were treated as separate samples during the DNA work to reveal any potential genetic diversity in the pathogen. **Supplementary Table S3.** Accession numbers, host plant species, and place and date of collection of herbarium specimens deposited as *Phyllachora ambrosiae* at U.S. National Fungus Collections (BPI) and examined in this work.

Herbarium accession number	Host plant species	Place of collection	Date of collection
BPI 636213	Ambrosia artemisiifolia (?)	Colombia	24 July 1940
BPI 636214	A. artemisiifolia (?)	Colombia	6 August 1910
BPI 636220	A. artemisiifolia	Tuskegee, AL, USA	7 August 1935
BPI 636221	A. artemisiifolia	Shenandoah National Park, VA, USA	18 August 1938
BPI 636222	A. artemisiifolia	Woods Hole, MA, USA	not specified
BPI 636223	A. artemisiifolia	Amery, WI, USA	15 July 1959
BPI 636224	A. artemisiifolia	Pine Bluff, WI, USA	9 August 1962
BPI 636225	A. artemisiifolia	Gainesville, FL, USA	28 October 1912
BPI 636226	A. peruviana	El Cobre, Venezuela	10 September 1932
BPI 636227	A. peruviana	Ibaque, Colombia	20 June 1929
BPI 636228	A. peruviana	Trujillo, Venezuela	27 August 1932
BPI 636236	A. tenuifolia	unknown	16 May 1905
BPI 636240	A. trifida	WI, USA	17 September 1905