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ABSTRACT
Computational fluid and particle dynamics simulations (CFPD)
are of paramount importance for studying and improving drug
effectiveness. Computational requirements of CFPD codes involves
high-performance computing (HPC) resources. For these reasons
we introduce and evaluate in this paper system software techniques
for improving performance and tolerate load imbalance on a state-
of-the-art production CFPD code. We demonstrate benefits of these
techniques on both Intel- and Arm-based HPC clusters showing
the importance of using mechanisms applied at runtime to improve
the performance independently of the underlying architecture. We
run a real CFPD simulation of particle tracking on the human res-
piratory system, showing performance improvements of up to 2×,
keeping the computational resources constant.

CCS CONCEPTS
• Computing methodologies → Parallel programming lan-
guages; • Applied computing → Systems biology; • Computer
systems organization→Multicore architectures; •Hardware→
Emerging architectures;

1 INTRODUCTION AND RELATED WORK
Aerosolized delivery of drugs to the lungs is used to treat a number
of respiratory diseases, such as asthma, chronic obstructive pul-
monary disease, cystic fibrosis and pulmonary infections. But, it is
well known that a large fraction of the inhaled medicine is lost in
the extrathoracic airways.

During the last decade an exponential growth in the application
of Computational Fluid-Particle Dynamics (CFPD) methods in this
area has been observed, e.g., [8, 24]. CFPD simulations can be used
to help scientists to reproduce and reduce the lost aerosol fraction
and improve the overall performance of the drug [9, 13].

Validated CFPD methods offer a powerful tool to predict the
airflow and localized deposition of drug particles in the respiratory
airways, in order to improve our understanding of the flow and
aerosol dynamics as well as optimize inhaler therapies. Moreover, a
model of lung inflammation produced by pollutant particle inhala-
tion is key to predict therapeutic responses related with chronic
obstructive pulmonary disease. Deposition maps generated via
CFPD simulations and their integration into clinical practice is a
critical point to develop such a model. The understanding of these

kind of dynamics can in fact give hope for improving the living
conditions of affected patients and reducing the costs associated
with hospitalizations.

Accurate and efficient numerical simulations tracking the parti-
cles entering the respiratory system, pose a challenge due to the
complexities associated with the airway geometry, the flow dy-
namics and the aerosol physics. Due to the complexity and the
computational requirements of the models simulating such phe-
nomena, the use of large-scale computational resources paired with
highly optimized simulation codes is of paramount importance.

Therefore it is clear that a successful study of aerosol dynamic
strongly depends on two challenges: on one hand we have the
physics of the problem, that needs to be translated into more and
more precise models in order to increase the accuracy of the simu-
lations; on the other hand we have the computational part of the
problem, that requires the development of more efficient codes able
to exploit massively parallel supercomputers in order to reduce the
time to obtain a solution.

Looking closer at the computational challenge, we can note that,
not only the number of computational resources available to run
CFPD simulations is growing, but also the diversity of hardware
where simulations are performed is increasing (e.g., special purpose
architectures and emerging technologies). As proven by previous
studies on other fluid dynamics codes [1, 4], it is important to be
able to efficiently exploit state-of-the-art architectures maintaining
at the same time correctness and portability of the code.

In view of these observations, we consider in this paper Alya [25],
a simulation code for high performance computational mechanics
developed at the Barcelona Supercomputing Center (BSC). Alya
is part of the UEABS (Unified European Applications Benchmark
Suite), a selection of 12 codes scalable, portable, and relevant for the
scientific community. Alya is also currently adopted by industrial
players, such as Iberdrola and Vortex for wind farms simulations
and Medtronic for medical device and bio-mechanics experiments.

Using Alya we tested runtime mechanisms to mitigate load im-
balance penalties on an Intel-based HPC cluster [12]. We extend
here our previous work including the evaluation of those techniques
on emerging Arm system-on-chips (SoCs) by Cavium.

Considering the momentum that Arm technology is gaining in
the HPC panorama, we consider it is important to understand the
behaviour of such technology under a production HPC workload.
There have been previous evaluations of relevant scientific codes on
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Arm-based platforms targeting both performance improvement [18,
21] and energy reduction [5, 17], however we want to stress the
fact that we study in our paper a production code evaluating a real
use case on a server grade Arm platform targeting data centers and
code portability.

As already mentioned, the complexity and the size of produc-
tion CFPD codes do not allow machine dependent fine tuning for
each platform used to perform studies. For this reason we propose
here two software techniques:multidependences, for improving per-
formance avoiding atomic operations while running on a shared
memory system [26] and DLB, a dynamic load balancing library
able to detect load imbalance within a parallel system and redis-
tribute workload in order to minimize the inefficiency [11, 16]. The
idea is to demonstrate how these tools, deployed at level of system
software, require minimal or even no changes in the source code,
boosting the performance without harming portability nor the se-
mantic of the source code. On the longer term, we believe tools like
the multidependences and DLB will allow programmers to survive
to the waves of architectural novelties without drowning into fine
tuning optimizations of the code.

The main contributions of this paper are: i) we provide the eval-
uation of a production use case of real biological HPC simulation
on a Arm-based HPC cluster. ii) we introduce programming models
techniques applied to a production simulation that show benefits
on current and emerging HPC architectures.

The remaining of this document is organized as follows: Section 2
introduces Alya simulation infrastructure as well as its computa-
tional profiling. Section 3 introduces the key ideas of the runtime
techniques that we evaluate. In Section 4 we briefly introduce the
hardware platforms, the software configurations used for our tests
and the results of our evaluation. In Section 5 we discuss the lessons
learned and next steps for our work.

2 PARTICLE TRACKING IN THE
RESPIRATORY SYSTEM

2.1 Simulation details
The effect of aerosol therapies depends on the dose deposited be-
yond the oropharyngeal region as well as its distribution in the
lungs. The efficiency of the treatment is affected by the amount of
drug lost at the airway as well as its deposition on regions that are
not affected by the pathology. At the same time, factors as the size
of the aerosol particles, breathing conditions, the geometry of the
patient, among others, are decisive in the resulting deposition maps
of the lung. All these parameters must be considered in a clinical
practice to personalize therapies involving treatments with aerosol.

In this work we simulate the transport of particles injected in an
unsteady flow in the human large airways during a rapid inhalation.
The use of massive computational resources allows to capture all
the spatial and temporal scales of the flow necessaries to reduce the
lost aerosol fraction and improve the effectiveness of treatments.

The CFPD simulation is performed on a complex subject-specific
geometry extended from the face to the 7th branch generation
of the bronchopulmonary tree and a hemisphere of the subject’s
face exterior [3]. In particular, the mesh is hybrid and composed of
17.7 million elements with different geometry: prisms, to resolve
accurately the boundary layer; tetrahedra, in the core flow; pyramids

to enable the transition from prism quadrilateral faces to tetrahedra.
Figure 1 shows some details of the mesh, and in particular the
prisms in the boundary layer.

Figure 1: Mesh representing the human respiratory system.

As introduced in Section 1, the application used in this document
is the high performance computational mechanics code, Alya [25].
Alya is parallelized using MPI and OpenMP, but, production runs
are usually performed using a pure MPI parallelization approach.

CFPD implies the solution of the incompressible fluid flow ob-
tained through Navier-Stokes equations as well as the Lagrangian
particle tracking.

The Navier-Stokes equations express the Newton’s second law
for a fluid continuous medium, whose unknowns are the velocity
uf and the pressure pf of the fluid. Two physical properties are
involved, namely µf be the viscosity, and ρf the density. At the
continuous level, the problem is stated as follows: find the velocity
uf and pressure pf in a domain Ω such that they satisfy in a given
time interval

ρf
∂uf

∂t
+ ρf (uf · ∇)uf − ∇ · [2µf ε(uf )] + ∇pf = 0, (1)

∇ · uf = 0, (2)

together with initial and boundary conditions. The velocity strain
rate is defined as ε(uf ) := 1

2 (∇uf + ∇utf ). The numerical model
of the Navier-Stokes solver implemented in Alya code and used
in this study is a stabilized finite-element method, based on the
Variational MultiScale (VMS) method [15].

Particles are transported solving the Newton’s second law, and
by applying a series of forces. Letmp be the particle mass, dp its
diameter, ρp its density,ap its acceleration. According the Newton’s
second law, if Fp is the total force acting on the particle, then

Fp =mpap . (3)

The different forces considered in this work are the drag, gravity
and buoyancy forces, given by

Fд = mpд, (4)
Fb = −mpдρf /ρp , (5)
FD = (π/8)µf dpCdRep (uf −up ), (6)
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respectively, where Re and CD are the particle Reynolds number
and drag coefficient given by Ganser’s formula[10], respectively:

Rep = ρf dp |uf −up |/µf , (7)

CD =
24
Rep

[1 + 0.1118(Rep )0.65657] +
0.4305
1 + 3305

Rep

. (8)

The time integration is based on Newmark’s method. The time step
used in this paper is 10−4 seconds.

2.2 Profile and performance analysis
In this section we study a trace of the Alya simulation gathered
on one node of the Thunder cluster, introduced in Section 4.2 (i.e.,
running with 96 MPI processes in the same cluster evaluated in
Section 4).

We use Extrae [22] to obtain a performance trace and then Par-
aver [19] to visualize it. In this simulation 4 · 105 particles where
injected in the respiratory system during the first time step.

Figure 2 shows the timeline of one simulation step: on the y-axis
are represented the different OpenMP threads, grouped by process,
while on the x-axis we plot the execution time. The different colors
identify the different parallel regions. White color corresponds
to MPI communication, brown is matrix assembly of the Navier-
Stokes equations, pink and blue are algebraic solvers to compute
the momentum and continuity of the fluid and purple represents
the computation of the velocity subgrid scale vector (SGS). Finally,
once the velocity of the fluid has been computed, the transport of
the particles is computed: this is shown in black on the right part
of the trace.

From the trace we can observe that the active work performed
by each process (i.e., each colored part in the trace) within the same
phase is not homogeneous: we call this phenomenon load imbalance.
Load imbalance is one of the main sources of inefficiency in this
execution and it is present in different phases and with a different
pattern in each phase. We define Ln the load balance among n MPI
processes within each phase as:

Ln =

n∑
i=1

ti

n ·maxni=1 ti
(9)

where ti is the elapsed time by process i during that phase.
Using this metric, Ln = 1 corresponds to a perfectly balanced

execution on nMPI processes, while Ln = 0.5 is an execution that it
is losing 50% of the computational resources due lo load imbalance.

Phase L96 % Time
Matrix assembly 0.66 40.84%
Solver1 0.90 16.13%
Solver2 0.89 4.20%
SGS 0.61 21.43%
Particles 0.02 3.37%

Table 1: Load balance and percentage of the total execution
time for different phases of the respiratory simulation exe-
cuted with 96 MPI processes.

In Table 1, the first column shows the load balance measured in
each phase of the execution; the second column shows the percent-
age of execution time spent by each phase, within a time step.

We can observe low values of load balance in thematrix assembly
and the subgrid scale (SGS) phases, both L96 ∼ 0.6. But the lowest
value of load balance appears in the computation of particles: L96 =
0.02 means that globally 98% of the time of that phase is wasted.
For a complete analysis of load unbalance in Alya see [12].

It is important to note that the percentage of time spent in the
particle phase is directly proportional to the amount of particles
injected in the system. In the simulation we show in Figure 2 we
are injectingO(105) particles, but in production simulations we can
inject up to O(107) particles or inject particles several times during
the simulation (e.g., when simulating the inhalation of pollutants
when breathing). This of course affects the load balance as well:
increasing the amount of particles in the system, translates in fact
into higher and higher inefficiency.

Moreover, the high load imbalance of the particles computation
is inherent to the problem because the particles are always intro-
duced in the system through the nasal orifice. Therefore, at the
injection they are located in one or few MPI subdomains, and as
the simulation advances the particles will get distributed among
the different MPI subdomains, changing the load balance between
MPI processes.

To avoid the inefficient use of resources during the computation
of the particles phase, Alya offers the possibility of running a cou-
pled execution. A coupled execution runs two instances of Alya
within the same MPI communicator, one of them solving the fluid
and the other one the transport of particles.

In Figure 3 we can see the different options to run the same sim-
ulation. In the top we can see the synchronous execution, where
all the processes first solve the velocity of the fluid and then the
transport of particles. In the bottom the coupled execution is repre-
sented; in this case some MPI processes will solve the velocity of
the fluid and send them to the MPI processes that are solving the
transport of particles.

When using the coupled simulation the user can decide how
many processes will assign to solve the fluid and how many pro-
cesses will solve the particles. Depending on this decision and the
amount of particles injected, the more loaded processes will be
the ones solving the fluid or the ones solving the particles. This is
depicted at the bottom of Figure 3, where f > f ′ and p < p′. The
conclusion is that depending on the decision taken by the user the
performance of the simulation can vary. The optimum distribution
of MPI processes depends on the parameters of the simulation, the
architecture and the number of resources used.

To alleviate this decision we propose to use a dynamic load
balancing mechanism to adapt the resources given to the different
codes. This mechanism will be explained in detail in Section 3.2.

3 RUNTIME TECHNIQUES
3.1 Multidependences
As we have seen in the previous section, one of the main compu-
tational tasks in a CFDP code is the algebraic system assembly,
depicted in Figure 2 as Matrix assembly. This phase consists of a
loop over the elements of the mesh (see Figure 1): for each element,
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Figure 2: Trace of respiratory simulation with 96 MPI processes gathered on a node of the Thunder cluster
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Figure 3: Execution modes for CFPD simulations with Alya

a set of local operations is performed in order to assemble the local
matrices. More details can be found in [12, 14].

From the parallelism point of view this phase has two important
characteristics:

(1) On one hand, the algebraic system assembly over the ele-
ments is performed locally to each MPI process, thus, no
MPI communication are involved during this operation. This
characteristic makes the assembly phase well suited to apply
shared memory parallelism within each element.

(2) On the other hand, the algebraic system assembly over the
elements for generating the local matrices consists of a reduc-
tion operation over a mesh that is local to each element, but
presents irregular connectivity. This translates into indirect
and irregular accesses to the data structure storing the local
mesh that can involve two local elements that share a node.
When this happens, it can mean that two separate OpenMP
threads, processing two independent local elements that
share a node, could update the same position of the matrix,
resulting in a race condition. To avoid the race condition be-
tween two threads updating the same position of the matrix
we evaluate in this section different implementations.

In Figure 4 we can see the three approaches to parallelize the
matrix assembly that we have considered. The straightforward
approach would be to protect the update of the local matrix with
an omp atomic pragma. This approach has a negative impact in
the performance, because when computing each element an atomic
operation must be performed whether or not there is a conflict in
the update of the matrix.

To avoid the use of an atomic operation, a coloring technique
can be used [7]. The coloring technique, as can be seen in Figure 4,
consists in assigning a color to each element. Elements that share a

Elements Parallelizationomp parallel do+omp atomicomp parallel do

omp taskmutexinoutset(iterator)
Atomic

s
Colorin

g
Multide

penden
ces

omp parallel doomp parallel doomp parallel doomp parallel do

Figure 4: Parallelization approaches for thematrix assembly

node can not have the same color. Once each element is assigned a
color, the elements of the same color can be computed in parallel
(e.g., in a parallel loop without an atomic operation to avoid the race
condition). The main drawback of the coloring approach is that it
hurts spatial locality, since contiguous elements are not computed
by the same thread.

The third approach that we consider is multidependences. This
approach consists in partitioning each MPI domain in different
subdomains using Metis. We map each subdomain into an OpenMP
task. Knowing that two subdomains are adjacent if they share at
least one node, we can use the information about the adjacency
of subdomains provided by Metis to know which OpenMP tasks
cannot be executed at the same time. Therefore those subdomains
that are adjacent, i.e., that share at least one node, will be processed
sequentially, those that are not adjacent, i.e., that do not share nodes,
can be processed in parallel.

In the multidependences version we used two new features that
will be introduced in the OpenMP standard in the 5.0 release [2]. On
one hand, the iterators to define a list of dependences, this feature
allow to define a dynamic number of dependences between tasks
that is computed at execution time. On the other hand, a new kind
of relationship between tasks: mutexinoutset. This relationship
implies that two tasks cannot be executed at the same time, but the
execution order between them is not relevant. This relationship
can express “incompatibility” between tasks.

4



These two new features of the standardwere first implemented in
the OmpSs programming model [6, 23]. The OmpSs programming
model is a forerunner of OpenMP where extensions to the OpenMP
model are implemented and tested and some of them are finally
added to the standard [26]. We will take advantage of these early
implementations tot test these two new features in a real code.

An important added value of the multidependences version is
that its implementation does not requires significant changes in
the code and leaves the parallelization quite clean and simple. For
large production code, such as Alya, this is highly desirable.

With the parallelization introduced with multidependences, we
do not need omp atomic and the elements that are consecutive in
memory are executed by the same thread, so a certain degree of
spatial locality is preserved.

3.2 Dynamic Load Balancing (DLB)
Dynamic Load Balancing (DLB) is a library that aims to improve the
load balance of hybrid applications [16]. In an application leverag-
ing multi level parallelism, e.g., MPI+OpenMP, DLB uses the second
level of parallelism (usually OpenMP) to improve the load balance
at the MPI level and achieve so better overall performance. The load
balancing library acts at runtime, reacting to the load imbalance
whenever it is appearing. It has been proved beneficial in several
HPC codes [11].

The DLB library is transparent to the application, therefore it
does not require to modify the source code. It uses standard mecha-
nisms provided by the programming models, such as PMPI inter-
ception from MPI and OpenMP call omp_set_num_threads().

Figure 5: Left: Unbalanced hybrid application. Right: Hybrid
application balanced with DLB

In Figure 5 we can see the behavior of DLB when load balancing
a hybrid application. On the left side we can see an unbalanced
MPI+OpenMP application with 2 MPI processes and 2 OpenMP
threads per process. On the right side we can see the same execution
when load balanced with DLB. We can observe that when MPI
process 1 reaches a blocking MPI call, it lends its resources to MPI
process 2. At this point MPI process 2 will be able to use 4 OpenMP
threads and finish so its computation faster. When finishing the
MPI blocking call, each MPI process recovers its original resources.

4 PERFORMANCE EVALUATION
4.1 Experimental setup
In this evaluation we simulate the transport of particles in the hu-
man airways during a rapid inhalation. The details of the simulation
are explained in Section 2.1 and have been obtained running the
latest version of Alya (r8941) averaging 10 time steps. Production
simulations can run for up to 105 time steps.

We evaluated the runtime methods on two different platforms
that will be explained in the following section. All the experiments
have been executed in two nodes of each platform.

4.2 Platforms
The tests presented in this work have been executed on MareNos-
trum4, the PRACE Tier-0 Supercomputer hosted at BSC and Thun-
der, a small cluster deployed at BSC within the framework of the
EU Mont-Blanc project.

MareNostrum4 is a supercomputer based on Intel Xeon Platinum
processors, Lenovo SD530 Compute Racks, a Linux Operating Sys-
tem and an Intel Omni-Path interconnection. Its general purpose
partition has a peak performance of 11.15 Petaflops, 384.75 TB of
main memory spread over 3456 nodes. Each node houses 2× Intel
Xeon Platinum 8160 with 24 cores at 2.1 GHz, 216 nodes feature
12 × 32 GB DDR4-2667 DIMMS (8GB/core), while 3240 nodes are
equipped with 12 × 8 GB DDR4-2667 DIMMS (2GB/core).

The Thunder cluster is composed of four computational nodes
integrated in a 2U server box. Each node features a dual socket
motherboard housing 2× Cavium ThunderX CN8890 Pass1 SoCs
with 48× custom Arm-v8 cores at 1.8 GHz each socket, 128 GB
DDR3 at 2.1 GHz per node and 256 GB SSD for local storage. Nodes
are air cooled and interconnected using a single 40 GbE link. The
SoC double precision peak performance is 172.80 GFlops while the
SoC aggregate memory bandwidth is 51.20 GB/s.

The Thunder cluster is a state-of-the-art Arm-based test platform
as i) it embeds 48 Armv8 custom designed cores per SoC, ii) it
features a fairly high number of cores (96) running a single instance
of Linux, iii) it is one of the first off-the-shelves platform based on
Arm technology targeting data centers [20].

On both clusters we use the same version of the OmpSs program-
ming model composed by the Mercurium 2.1.0 source to source
compiler and the Nanox 15a compiler. On MareNostrum4 we lever-
age the Intel MPI distribution together with the Intel compiler 2017.4.
On Thunder we use OpenMPI 3.0.1 for message passing flavour and
the GNU compiler suite 5.3.0 as compiler.

4.3 Multidependences
In this section we evaluate the performance of multidependences
compared with the implementation using a coloring algorithm or
atomic. We will evaluate the performance in two phases of the
simulation, the matrix assembly and the subgrid scale (SGS).

The benefit of using multidependences in the matrix assembly
is to avoid the use of atomic and preserve the spatial locality. In
the case of the SGS, no update of a shared structure is involved,
therefore, there is no need of using atomic pragmas. Nevertheless,
we will evaluate the performance in this phase in order to see the
overhead added by the multidependences.
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We have executed three different versions of each simulation,
using atomic pragmas labeled as Atomics, a coloring algorithm la-
beled as Coloring or the multidependences implementation labeled
as Multidep. For each version we have executed different combina-
tions of MPI processes and threads, with 1, 2 or 4 threads per MPI
process. In the charts the combination is shown as: Total number of
MPI processes × Number of OpenMP threads per MPI process.

In this section we show the speedup obtained by each hybrid
execution with respect to the pure MPI version using the same num-
ber of nodes in each cluster (i.e., running with 96 MPI processes in
MareNostrum4 and 192MPI processes in Thunder).Within the same
cluster, we compute the speedup S as: Sc = tM /tc , where tc is the
time spent for simulating a given problem with the configuration c
of MPI processes and OpenMP threads and tM is the time spent for
simulating the same problem using a pure MPI implementation.

Figure 6: Speedup of hybrid assemblywrt theMPI-only code.

In Figure 6 we can see the speedup obtained by each version
with different combinations of MPI processes and threads in the
matrix assembly phase. We can observe that adding the second
level of parallelism with the most naive approach (using the atomic
pragma) have a worse performance than the pure MPI version (the
speedup is in fact below one in almost all the cases). Although this
observation is true for both clusters, the negative impact of the
atomic in the performance is much higher in MareNostrum4 (based
on Intel technology) than in Thunder (based on Arm technology).
This difference can be explained by the higher instruction level
parallelism (ILP) exposed by the Intel architecture, compared to the
Arm one (e.g., Intel leverages out-of-order cores, while the Cavium
implementation of the Arm core is in-order). These architectural
differences are reflected in the Instruction Per Cycle (IPC) achieved
by the different versions in this phase. When running the MPI-only
version the average IPC in the Thunder cluster is ∼ 0.49, while with
the atomic version the IPC is ∼ 0.42 (a reduction of 14%). On the
other hand, in MareNostrum4 the IPC of the MPI-only version is
∼ 2.25 and the IPC in the matrix assembly when using atomics is
∼ 1.15 (corresponding to a reduction of 50%).

The coloring version achieves a better performance than the
atomics version on both architectures, in the case of Thunder achiev-
ing the same performance or better than the MPI-only code.

Nevertheless, the best version in all the cases is the multidepen-
dences version; this version has a good data locality and does not
need atomic operations. It is confirmed by the IPC values obtained:

in both clusters IPC is in fact 94% to 96% of the one achieved by the
MPI-only version.

Figure 7: Speedup of hybrid SGS wrt the MPI-only code.

In Figure 7 is presented the execution time of the subgrid scale
computation for the different versions and clusters. As we explained
before, the subgrid scale does not perform global operations, so
it does not need to protect a race condition, and therefore should
not require atomic operations. Nonetheless, we want to show the
performance of the coloring and multidependences versions to
evaluate the overhead introduced by these techniques.

In both clusters, MareNostrum4 and Thunder, we can observe an
overhead below 10% associated with the use of coloring andmultide-
pendences, because its performance is lower than the one obtained
with the atomic version. We can observe that the MPI+OpenMP
versions outperforms the MPI-only execution.

4.4 DLB
To evaluate the impact of using DLB on the performance of CFPD
codes, we run two kinds of simulations: in one of them 4 · 105
particles are injected in the respiratory system, and in the other
one 7 · 106 particles are injected.

With these two simulations we represent two different scenarios:
onewhere themain computational load is in the fluid code, injecting
only 4·105 particles; and another one where themain computational
load is in the particles code, injecting 7 · 106 particles.

All the experiments executed in this section were obtained us-
ing the multidependences version of the code to solve the matrix
assembly and the atomics version for the subgrid scale, because
in the previous section were the versions that obtained the best
performance in each phase. Also, all tests have been performed
using one OpenMP thread for each MPI process.

As explained in Figure 3, this CFPD simulation can be executed
in a synchronous or coupled mode. When running the coupled
mode, the number of processes assigned to the computation of the
fluid f and the number of processes assigned to the computation of
the particles p must be decided by the user. We present experiments
using both modes and varying f and p when running coupled
simulations.

In Figure 8 we can see the execution time when simulating the
transport of 4 · 105 particles in MareNostrum4. In the x axis the
different modes and combinations of MPI processes are represented
in the form f +p. We can observe that depending on the mode and
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Figure 8: Simulation of 4 · 105 particles in MareNostrum4

combination of MPI processes the execution time can change up to
2× compared to the original code. The use of DLB improve all the
executions of the original code. The improvement obtained by DLB
respect the same type of execution of the original code depends on
the mode and combination of MPI processes.

Figure 9: Simulation of 4 · 105 particles in Thunder

In Figure 9 is shown the execution time for simulating 4 · 105
particles in Thunder. In the Arm-based cluster the trend in perfor-
mance of this simulation is similar to the Intel-based one. If the user
takes a wrong decision (e.g., running the coupled execution with 96
MPI processes for the fluid and 96 MPI processes for the particles)
the simulation can be 2× slower than running the best configura-
tion (e.g., synchronous execution). Also in Thunder the use of DLB
improves the performance of all the configurations, and minimize
the effect of choosing a bad combination of MPI processes.

The execution time when simulating the transport of 7 · 106 of
particles in MareNostrum4 can be seen in Figure 10. We can see that
respect the simulation of 4 ·105 particles the computational load has
increased significantly. The impact of using DLB in this simulation
is even higher than in the previous one, obtaining an improvement
between 1.7× and 2.2× respect to the original execution.

In Figure 11 we can see the execution timewhen simulating 7·106
particles in the Thunder cluster.We can observe that the trend in the
performance of the original execution when changing the number
of MPI processes is different respect to the simulation of 4 · 105
particles, and also when compared to the same simulation in the
Intel-based system. This means that users can not rely on a single
configuration as the optimum one. The optimum configuration

Figure 10: Simulation of 7 · 106 particles in MareNostrum4

Figure 11: Simulation of 7 · 106 particles in Thunder

depends in fact on the simulation (simulating 4 · 105 or 7 · 106
particles implies a different behavior), on the mode and distribution
of MPI processes chosen and also on the underlying architecture.

The execution with DLB in this case speeds the simulation up
between 2× and 3×with respect to the original execution. Moreover,
the performance when using DLB is independent from the decision
taken by the user in the mode and distribution of MPI processes
between codes.

5 CONCLUSIONS
In this paper we analyzed the performance of a simulation tracking
the transport of particles within the human respiratory system.
We showed that the performance of these kind of simulations is
affected by factors going from the simulation parameters (i.e. num-
ber of particles injected) to the underlying architecture of the HPC
cluster. For this reason we rely on runtime techniques that will
improve the performance of CFPD simulations independently from
the simulation parameters and the architecture details.

One of the techniques that we evaluated are the iterators over
dependences that will be added in the new release of OpenMP
(5.0). Using these iterators we are able to define multidependences
between tasks (i.e. the number of dependences is decided at runtime,
not compile time). We take advantage of the early implementation
of multidependences in the OmpSs programming model to evaluate
it in a CFPD simulation on an Intel-based and an Arm-based cluster.

We have seen that the use of multidependences can improve the
performance of the matrix assembly phase when using a hybrid
parallelization. We have observed also that its impact depends
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on the architecture we are using. In the Intel-based cluster the
performance of multidependences achieves a 2.5 speedup respect to
the implementation using omp atomic pragmas. In the Arm-based
cluster the speedup obtained by the multidependences version is
1.2 respect to the atomic version.

The DLB library offers a load balancing mechanism transparent
to the application and the architecture. DLB relies on the broadly
adopted programming model OpenMP to improve the resource
utilization. In this paper we have analyzed its performance when
applied to a CFPD simulation. One of the main characteristics of
CFPD simulations is that they must solve two different physic
problems: the velocity of the fluid and the transport of the particles.
The users running these simulations can decide whether to run
them in a synchronous mode or in a coupled mode and, when
running the coupled mode, how many computational resources to
assign to each of the physics.

We have shown that the execution time of the simulation can
be doubled if a bad decision is taken. Also, that the best decision
is not easy to find without a previous performance analysis of the
simulation. We have demonstrated that using DLB improves the
performance of the execution in all the cases, independently on the
architecture and the configuration chosen by the user. We obtained
a speedup of up to 2× with respect to the original code using the
same number of resources.

Moreover, using DLB relieves the user of deciding which con-
figuration of OpenMP thread per MPI process to choose for his
simulation. The performance of the simulation when using DLB is
in fact less dependent on the chosen configuration.
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