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This work is aimed at evaluating the collapse displacement of masonry arch subjected to spreading sup-
ports. This is achieved through a general application of the virtual works principle. The problem is
described in a finite displacements formulation and investigated with a probabilistic approach, also con-
sidering the effects of the geometrical uncertainties. This aspect is related to the imperfections of the
voussoirs, which affect the structural shape. The comparison between the numerical and experimental
results, derived both by the literature and laboratory tests, confirms that the geometrical irregularities
can significantly affect the results obtained on the nominal structural geometry. Moreover, the disagree-
ment observed in the experimental tests is explained.
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1. Introduction under those loads” [3]. After Heyman’s model, the upper bound
The masonry arch is one of the most commonly used structural
components in the historical constructions. In the last centuries,
the understanding of its behaviour has received a growing interest
of architects, engineers and researchers, especially for the develop-
ment of the scientific method. As for the more general cases of
vaulted systems, the main function of a masonry arch is to bring
the upper loads through specific ways of the structure to the
ground, covering small or large spaces. The definition of the bear-
ing capacity is a crucial task for the right dimensioning of an arch.
In the case of restoration and/or retrofitting of existing buildings,
bearing capacity is also fundamental for its check and validation.
In the last decades, the scientific literature on this topic has consid-
erably grown and the level of knowledge has significantly
increased. In the second half of the XX century, a fundamental con-
tribution was provided by Heyman [1,2], who used limit analysis
for the study of masonry structures with an efficient approach
for the rapid evaluation of the structural limit conditions. In this
work, conceivable simplified hypotheses were assumed: no-
tensile material, infinite compressive strength and no-sliding con-
dition at failure between the voussoirs. The method is based on the
well-known safe theorem, which states that ‘‘if a set of internal
forces in a masonry structure can be found that equilibrate the
external loads, and which lie everywhere within the masonry, then
the structure is safe – safe in the sense that it cannot collapse
and the lower bound methods or, alternatively, the limit equilib-
rium state analysis have been largely used. These methods were
applied with several purposes, as the definition of the minimum
thickness and/or the bearing capacity under vertical and lateral
loads for different shapes of arches [4–11], the study of arches
and vaults behaviour by using the thrust network analysis
[12–15] or advanced numerical methods [16–19], the analysis of
the strengthening effects through innovative materials [20–25]
and many others.

During its life, a masonry arch has to withstand several threats
that could significantly reduce its bearing capacity. This problem
can be mainly related to two aspects: (i) structural damages of
the arch (e.g. openings or slidings between the voussoirs due to
load actions) and/or material degradation (reduction of the arch
thickness or the strength of materials); (ii) springing settlements.

As far as it concerns the evaluation of structural and material
degradation effects, in the last years several works have been
focused on the assessment of the strength or stability reduction
of a masonry arch due to its irregular geometry. The problem
was investigated by modelling masonry arches taking into account
the actual stones dimensions [26,27]. Elsewhere, parametric stud-
ies were applied to investigate the influence of localized damages
[28,29] or probabilistic approaches were used for the estimation
of uncertainties effects on the bearing structural capacity consider-
ing horizontal loads, both in static [30] and dynamic conditions
[31]. These works emphasized that in the most cases the reduction
of the collapse loads, with respect to the results obtained on the
structures having nominal geometries, cannot be neglected.
omput
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Fig. 1. Illustration of a masonry arch, divided in n voussoirs, with its geometrical
parameters: radius r, thickness t and angle of embrace a.
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Regarding the study of the springing settlements effects, it can be
stated that some aspects concerning the structural response of
masonry arches – and more in general of masonry vaults – still pre-
sent open problems. Differential settlements can be considered one
of themain causes of collapse of vaulted structures [4], occurring for
slow long-term deformations, for example due to static loads, or
very quickly dynamic behaviour of the building, as in the case of
earthquake actions. In a study concerning settled pushing struc-
tures, in particular arches and domes, Como [32] demonstrated
‘‘that, if the geometry changes are negligible, the structure will
attain the minimum thrust state, saving its safety margin as in the
perfect state”. Ochsendorf [33] analysed the collapse conditions of
the masonry arch on spreading supports in horizontal direction as
a function of the geometrical parameters, namely the curvature
radius, the thickness and the angle of embrace. Experimental results
pointed out that the hinges may move with the increase of the set-
tlements before reaching the collapse. Galassi et al. [34,35] studied
the response of masonry structures to settlements considering rigid
blocks connectedbyunilateral contact and frictional links, througha
non-linear numerical procedure experimentally validated. Starting
from the work of Ochsendorf, Coccia et al. [36] and Di Carlo et al.
[37] developed an incremental procedure, based on the kinematic
theorem applied to the deformed configuration. They aimed at
attaining the collapse conditions of the masonry arch with horizon-
tal spreading supports by varying the geometrical parameters and
the number of voussoirs. Zang et al. [38] and Tubaldi et al. [39] anal-
ysed the masonry arch on spreading supports through a mesoscale
modelling strategy, considering solid elements for bricks connected
by interface elements formortar joints. Constitutivemodels allow to
consider the effects related to the possible presence of damages.
Recently, Zampieri et al. analysed the effects of local pier scour in
a multi-span masonry bridges [40] and the influence of no-
horizontal springing supports of the masonry arch on the collapse
mechanisms, with a numerical approach supported by experimen-
tal observations [41,42].

As pointed out by literature works, numerical simulations car-
ried out on nominal geometry models seem to overestimate exper-
imental results [4,33,36]. Starting from this point, this paper is
aimed at investigating the role of geometrical irregularities, evalu-
ated through a probabilistic approach, on the collapse conditions of
a masonry arch subjected to spreading supports, which could be
also related to abutments or piers deformations. In particular, the
collapse conditions are studied through an incremental numerical
procedure using the virtual works principle applied at the
deformed configuration. For each deformed configuration, the limit
equilibrium approach is used to assure the structural equilibrium
and the strength condition defining the right hinges configurations.
This condition occurs when the thrust line is contained inside the
arch and passes through the hinge points.

Considering two experimental tests, in this work it is demon-
strated for the first time that the reduction of the ultimate dis-
placement observed at collapse, can be related to geometrical
uncertainties, if compared with numerical simulations. This aspect
leads to the opportunity of introducing safety factors in order to
take into account such effects also in engineering practice [30].

2. Problem statement and numerical procedure

2.1. Basic hypotheses

Let us consider a circular masonry arch of radius r, thickness t
and angle of embrace a made by n voussoirs under only its own
weight in equilibrium state (Fig. 1). The generic ith voussoir is sub-
jected to the vertical force

gi ¼ c Aid ð1Þ
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where c is the specific weight, Ai the area of the ith voussoir and d
the constant out-of-plane depth. The arch is supposed to be fixed on
a spreading support, in particular the left support without loss of
generality (point P0ðx0; y0Þ in Fig. 2), and the direction of the settle-
ment d0 identified by the angle h with respect to the horizontal.
Given the geometrical parameters, the Cartesian coordinates of a
generic point belonging to the arch can be indicated as a function
of the radius r, thickness t and angle of embrace a. As an example,
with reference to the Oxy system indicated in Fig. 1, the coordinates
of the centre of mass of the ith voussoir are

xi ¼ r cosb� r cos bþ ai

2
þ ði� 1Þai

� �
ð2Þ

yi ¼ �r sin bþ r sin bþ ai

2
þ ði� 1Þai

� �
ð3Þ

being b ¼ ðp� aÞ=2 and ai ¼ a=n.
The passage form the initial unsettled configuration X0 to an

equilibrated settled configuration Xk induced by the spreading
support is described by a kinematic mechanism consisting of a
three-hinged rigid body chain.

The mechanism can be analysed with the well-known hypothe-
ses proposed by Heyman [1]: (i) mechanism condition, (ii) resis-
tance criterion and (iii) equilibrium condition. The first condition
(i) requires that the mechanism is only of rotational type, so that
no sliding can occur at each joint; the second (ii) considers a mate-
rial with infinite compressive strength and no-tensile strength; the
third (iii) corresponds to the individuation of a thrust line – equi-
librated with the external loads – everywhere contained inside
the arch parts profile and passing through the hinges. The ultimate
state of equilibrium is reached by progressively increasing the
value of the displacement d0 up to the loss of stability of the arch.
This condition leads to the structural collapse with a mechanism
which may involve either all the voussoirs, with a five-hinges sym-
metric mechanism, or a part of them, with the occurrence of an
asymmetric configuration. In this case the collapse may develop
starting from a four-hinges mechanism, or due to the alignment
of the three hinges already present (three-hinges mechanism).

Let us consider the settlement d0 assigned in P0 along h direc-
tion and the resulting kinematically admissible displacement field
dðu;vÞ of the structure, with u and v as displacement components
in x and y directions respectively. The equation of the virtual works
– employed in the small displacement field – provided by the equi-

librated settled configuration Xk and a virtual displacement field
dk� having the same properties previously described (i.e. dk�0 defined

in h direction and dk� kinematically admissible) is

hg; dk�i þ Rk
0 � dk�0 ¼ hrk; ek�i ð4Þ

where rk and ek� are the stress and strain fields respectively, and Rk
0

is the reaction force acting on P0 along h direction. In the Eq. (4), the
asonry arch with geometrical uncertainties on spreading supports. Comput
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Fig. 2. Virtual displacement diagrams applied to the masonry arch for the determination of the reaction force R0.
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notation h�; �i indicates the work calculus given by the system ‘‘ � ”
of forces or stresses, and the system ‘‘� ” of displacements or strains
[43]. Assuming that the elastic deformations can be considered
everywhere negligible, the right side of Eq. (4) vanishes

hr; ek�i ¼ 0 ð5Þ
so that it is possible to calculate the reaction force along the settle-
ment direction

Rk
0 ¼ �hg; dk�i

dk�0
ð6Þ

Following the notation of Fig. 2, the solution of the equilibrium
problem is easily given by a system of equilibrium equations (three
global equilibrium conditions and a balance equation around the
point P2) expressed in the matrix form [40]

Q � r ¼ q ð7Þ
where Q is the coefficient matrix

Q ¼

1 0 1 0
� tan h 0 0 1

0 �1 ðx0 � x3Þ ðy3 � y0Þ
0 0 ðx2 � x3Þ ðy3 � y2Þ

26664
37775 ð8Þ

r is the vector of the unknown reaction forces

r ¼

V0

M0

V3

H3

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
ð9Þ

and q is the vector of the known terms

q ¼

F03 � Rk
0V

�Rk
0H

�F03b03

�F23b23

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
ð10Þ

in which F03 and F23 are the resultant vertical forces of the struc-
tural parts comprised between the points P0 � P3 and P2 � P3
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respectively, Rk
0V ¼ Rk

0 sin h and Rk
0H ¼ Rk

0 cos h are the vertical and

horizontal components of the reaction Rk
0, while b03 is the distance

between P0 and the line of action of F03, and b23 between P3 and
the line of action of F23.

The problem solution is achieved through the following
equation

r ¼ Q�1 � q ð11Þ
from which the horizontal component H0 is derived through the
relation H0 ¼ V0 tan h. If Heyman hypothesis about the resistance
criterion is satisfied, namely the thrust line is everywhere inside
the arch profile in each block, the solution is admissible, otherwise
the hinges must be moved and the solution is achieved by means of
few iterations.

As discussed above, the collapse condition can be reached for
the arising of several types of mechanisms. Many authors asserted
that the type of collapse mechanism depends on several features,
in particular the arch geometry (e.g. the rise, the span and the
thickness) and the settlement direction [4,33,36]. It is well-
known from the literature that a three hinges mechanism suddenly
develops with an even small settlement and then, with the increas-
ing of the displacement, evolves up to the arch collapse. During this
process, it is also possible to observe a change of mechanism, char-
acterized by a movement of the hinges before the collapse.

In this perspective, the description of the mechanism evolution
requires a finite displacements formulation of the problem, in
order to define the geometrical configuration of the kinematic
structural mechanism, also considering the possible change of
the hinges position, until reaching collapse.

2.2. Numerical procedure in finite displacement field

The structural problem introduced in the previous section,
regarding the research of the ultimate condition of an arch sub-
jected to a spreading support, is solved through an incremental
numerical procedure based on increasing values of the assigned
settlement. The search algorithm of the ultimate condition, devel-
oped in the finite displacements field, consists of three main steps.
The first step is dedicated to the identification of the kinematic
mechanism corresponding to the initial unsettled configuration
X0 (Fig. 2). Through an iterative procedure, it is possible to identify
asonry arch with geometrical uncertainties on spreading supports. Comput
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a virtual displacement field d0� associated to a kinematically
admissible mechanism. The procedure, based on the three Heyman
hypotheses previously recalled, allows to obtain an equilibrated
system in which the thrust line is tangent to the arch profile at
the three hinges (P0

1 x01; y
0
1

� �
; P0

2 x02; y
0
2

� �
and P0

3 x03; y
0
3

� �
) associated to

the mechanism. The Eq. (4) of virtual works, taking into account
the assumption (5), becomes

hg; d0�i þ R0
0 � d0�0 ¼ 0 ð12Þ

so that the reaction force is obtained by

R0
0 ¼ �hg; d0�i

d0�0
ð13Þ

Given the hinges position in the initial configuration X0, it is

possible to study the settled configuration Xk (second step) charac-
terized by a settlement dk0 uk

0;vk
0

� �
, applied at P0ðx0; y0Þ, which com-

ponents are

uk
0 ¼ dk0 cos h ð14Þ

vk
0 ¼ dk0 sin h ð15Þ
Also in this step, the right mechanism in the Xk configuration,

resulting by the application of the settlement dk0 uk
0;vk

0

� �
, is reached

through an iterative procedure, assuring the validity of Heyman’s

conditions. In fact, the position of the hinges Pk
1 xk1; y

k
1

� �
, Pk

2 xk2; y
k
2

� �
and Pk

3 xk3; y
k
3

� �
may not coincide with P0

1, P
0
2 and P0

3 of X0, due to
the possible occurrence of the change mechanism phenomenon
previously described.

The mechanism, illustrated in Fig. 3, is defined by the motion of
three hinged bodies, namely I, II and III, in the finite displacements
field resulting by the assigned settlement dk0 uk

0;vk
0

� �
. The rotational

parameters u0
II;u0

III

� �
and uk

II;uk
III

� �
– which identify the placement

of the body II and III in the unsettled X0 and settled Xk configura-
tion respectively – are related to the settlement components
through the following relations

uk
0 ¼ uk

1 ¼ xk1 � x01

¼ b0
II cosu

0
II þ b0

III cosu
0
III � bk

II cosu
k
II � bk

III cosu
k
III ð16Þ

vk
0 ¼ vk

1 ¼ yk1 � y01 ¼ �bk
II sinu

k
II þ bk

III sinu
k
III ð17Þ

where bII and bIII are the distances P1P2 and P2P3 respectively, eval-
uated both in the unsettled or settled configuration.
Fig. 3. Graphical representation of the kinematic me
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The Eqs. (15) and (14) lead to the expressions of the rotational
parameters uk

II;uk
III

� �
evaluated in the deformed configuration

uk
II ¼ arcsin

1

bk
II

bk
III sinu

k
III � dk sin h

� �" #
ð18Þ

uk
III ¼ arccos

1

bk
III

b0
II cosu

0
II þ b0

III cosu
0
III � bk

II cosu
k
II � dk0 cos h

� �" #
ð19Þ

The incremental values of the rotational parameters
Duk

II;Duk
III

� �
associated to the passage from the unsettled X0 and

settled Xk configurations are directly obtained by the relations

Duk
II ¼ u0

II �uk
II ð20Þ

Duk
III ¼ u0

III �uk
III ð21Þ

Given the above Eqs. (14)–(21), the displacement components
of each point of the arch in the settled configuration can be
obtained. With reference to the body I, the horizontal and vertical
components, uk

i and vk
i respectively, of the displacement vector at a

generic point Qkðxki ; yki Þ are
uk
i ¼ uk

0 ¼ dk0 cos h ð22Þ

vk
i ¼ vk

0 ¼ dk0 sin h ð23Þ
Concerning with the body II, the displacement components in

the case of xki > x01 are

uk
i ¼ uk

0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x01 � xki
� �2 þ y01 � yki

� �2q
cosDuk

II ð24Þ

vk
i ¼ vk

0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x01 � xki
� �2 þ y01 � yki

� �2q
sinDuk

II ð25Þ

while in the case of xki < x01 are

uk
i ¼ uk

0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x01 � xki
� �2 þ y01 � yki

� �2q
cosDuk

II ð26Þ

vk
i ¼ vk

0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x01 � xki
� �2 þ y01 � yki

� �2q
sinDuk

II ð27Þ
As far as it concerns the body III, the following relations are

given for the case of xki < x03

uk
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x03 � xki
� �2 þ y03 � yki

� �2q
cosDuk

II ð28Þ
chanism in the generic settled configuration Xk .

asonry arch with geometrical uncertainties on spreading supports. Comput
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vk
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x03 � xki
� �2 þ y03 � yki

� �2q
sinDuk

II ð29Þ

and for the case of xki > x03

uk
i ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x03 � xki
� �2 þ y03 � yki

� �2q
cosDuk

II ð30Þ

vk
i ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x03 � xki
� �2 þ y03 � yki

� �2q
sinDuk

II ð31Þ

After the kinematic definition of the configuration Xk, the third

step of the procedure leads to the value of the reaction force Rk
0 at

the spreading support along h direction through the Eq. (6) and to
the solution of the equilibrium problem (11). If the equilibrated
system is statically admissible and the thrust line is everywhere
inside the arch profile of each block passing through the hinges,
is possible to increase the settlement to study the new configura-

tion Xkþ1. Otherwise is necessary to move the hinges, achieving

the solution through few iterations in the configuration Xk before

passing to the new configuration Xkþ1.
Finally, the collapse condition, and then the ultimate admissible

settlement, is reached with the occurrence of a kinematic chain
which activates a mechanism.
3. Modelling of geometrical uncertainties with a probabilistic
approach

3.1. Description of the random geometry

The analysis of masonry structures are generally affected by
uncertainties due to both the geometrical irregularities and the
variability of the materials mechanical properties. In this work,
having the material infinite compressive strength and no-tensile
property, only the effects of the geometrical irregularities are taken
into account, following the probabilistic approach introduced by
Cavalagli et al. [30]. Dealing with masonry arches, the geometrical
uncertainties may be due to several causes: irregularities in the
fabrication of the blocks (bricks and/or stones); imperfections
due to the construction of both the arch and of the provisional
structures placed for the supporting of the arch itself; degradation
of the materials over time. The irregular geometry has been mod-
elled by means of a statistical approach, with the introduction of
uncertain geometrical parameters. This method has been used
Fig. 4. Masonry arch with geometrical irregularities described by the random values
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with the aim to represent the irregularities that are generally
unknown and to describe the different structural behaviour of
arches having the same nominal geometry.

The following hypotheses are considered: random values of the
angle of embrace ai; the thickness ti and the radius ri of each vous-
soir, and deterministic value of the angle of embrace a (Fig. 4). It
should be noted that in this work the joint direction is not consid-
ered as random parameter, so that each joint of the random arch
has a radial direction. The random parameters are defined by inde-
pendent uniform probability density functions in a range of vari-
ability limited by a dimensional tolerance value e as follows:

eai ¼ E½eai� þ ea=n � epai ¼ a=nþ ea=n � epai ¼ a=n 1þ eepai� �et i
¼ E½et i� þ et � epti ¼ t þ et � epti ¼ t 1þ etepti

� �eri
¼ E½eri� þ vr � epri ¼ r þ vr � epri ¼ r 1þ vepri

� � ð32Þ
where n is the number of voussoirs, v is a curvature tolerance
related to e as v ¼ eðt=rÞ and epai , epti , epri are independent samples
taken from a uniform probability density function in the range
[�1,1] (Fig. 5). The Eqs. (32) show that the mean values E½~�� of the
random geometrical parameters are assumed equal to the nominal
values. Concerning the variable parts, the number of extracted sam-
ples are n for the random parameters eti and eri, and n� 1 for eai in
order to assure the deterministic value of the angle of embrace of
the arch; the nth value of the sample results from the difference

an ¼ a�
Xn�1

i¼1

eai ð33Þ

The random nature of the geometrical parameters affects the
description of the Cartesian coordinates of a generic point belong-
ing to the arch. As an example, the Eqs. (2) and (3) indicating the
centre of mass of the generic ith voussoir become

~xi ¼ r cosb� ~ri cos bþ ~ai

2

� �
ð34Þ

~yi ¼ �r sinbþ ~ri sin bþ ~ai

2

� �
ð35Þ

for i ¼ 1, and

~xi ¼ r cosb� ~ri cos bþ ~ai

2
þ
Xi�1

m¼1

~am

 !
ð36Þ
of the angle of embrace ~ai; the thickness ~ti and the radius ~ri of the ith voussoir.

asonry arch with geometrical uncertainties on spreading supports. Comput
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Fig. 5. Probability density functions for the angle of embrace ~ai (a), the thickness ~ti (b) and the radius ~ri (c).

Fig. 6. Probability density function of the random ultimate displacement for arches
at different values of the number n of voussoirs (n equal to 10, 20, 30, 40 and 50).

Table 1
Ultimate displacements obtained by numerical analysis at different values of the
number n of voussoirs (n equal to 10, 20, 30, 40 and 50) using nominal and irregular
geometry.

Nominal geometry Irregular geometry

du [mm] n l [mm] r [mm]

234.10 10 199.54 17.56
230.01 20 197.41 13.33
226.04 30 195.02 11.37
222.00 40 192.31 7.59
217.90 50 191.99 4.32
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~yi ¼ �r sinbþ ~ri sin bþ ~ai

2
þ
Xi�1

m¼1

~am

 !
ð37Þ

for 2 6 i 6 n.
In the analysis of the results, the probabilistic approach consid-

ers the mean values of loads and/or displacements, obtained at col-
lapse, evaluated over a total number h of randomly generated cases

equal to 1000 of each sample eai
� �h

n, et i� �h
n
and erið Þhn, for a fixed num-

ber of voussoirs n. In [30] it has been already demonstrated that
the introduction of geometrical uncertainties in the model affects
the bearing capacity of an arch, obtaining lower values of the mean
collapse loads with respect to the nominal values provided by a
deterministic geometry. This aspect is related to the variability of
the effective contact length between the voussoirs, which directly
affects the strength criterion by limiting the position of the thrust
line. In this paper this effect is taken into account in the kinematic
description of the problem, developed in the finite displacement
field, which considers the possible occurrence of the hinges at
the extreme points of each effective contact length.

3.2. A parametric investigation about the random effect

This Section reports the results of a parametric analysis of an
arch subjected to a spreading support d on a direction having an
inclination h ¼ 45� on the horizontal (see Fig. 2). The arch has the
following nominal geometrical parameters: angle of embrace
a ¼ 102:78�, radius r ¼ 1:40 m and thickness t ¼ 0:12 m, from
which derived a dimensionless ratio t=r ¼ 0:08545. The specific
nominal geometry refers to a real masonry arch, which has been
tested in the laboratory and described more in detail in the Sec-
tion 4.2. The parametric analysis exposed in the following aims
at investigating the uncertainties effects on the ultimate displace-
ment to be expected in the experimental test. Following the prob-
abilistic approach described in the previous Section, the
geometrical irregularities of the voussoirs are considered assuming
a parameter e ¼ 0:03, due to the intrinsic values of tolerance affect-
ing the bricks of the actual specimen [30]. Moreover, the effect of
stereotomy is also taken into account by considering several values
of the number n of voussoirs in the range of 10–50. Following the
approach previously described, for each value of n, 1000 samples of
arches affected by geometrical uncertainties have been obtained.

The results, expressed in terms of the random variable ð~duÞhn, has
been interpolated through the normal probability density function

p~du
¼ f ~dujl;r
� �

¼ 1
r
ffiffiffiffiffiffiffi
2p

p e
�ð~du�lÞ2

2r2 ð38Þ

where l ¼ E½~du� and r2 ¼ r2½~du� ¼ E½~du � l�2 are the mean value and
the variance of the sample of the random ultimate displacement
(Fig. 6). It is worth noting as the spread and the mean values of
the ultimate displacement decrease with the increase of the num-
ber of the voussoirs. Furthermore, for each fixed value of n, the
Please cite this article in press as: Zampieri P et al. Collapse displacements of m
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mean final displacement is always lower than the displacement
value obtained by using the nominal geometry. Table 1 summarizes
the results. It should be also noted that, for the arch geometry in
exam, as the displacement dk of the settled springing increases,
the position ~bj of the cracking hinges changes. This change occurs
at between 80% and 90% of the final displacement, as shown by
the graph in Fig. 7, which represents, for the case of n = 50, the value
of the position of the hinges in the model with nominal geometry
and the mean value of the random position of the hinges ð~bj � bÞ
obtained in the model with irregular geometry, both normalized
with respect to the angle of embrace a. The graph highlights that,
for the case of n = 50, the mean position of the hinges obtained by
probabilistic analysis on the irregular geometry is quite close to
the position obtained from deterministic analysis. Fig. 8 shows
the position of the hinges, as a function of n, in the initial configu-
ration (Fig. 8a) and in the final configuration (Fig. 8b), in which can
be observed a higher uncertainty in the definition of the cracking
hinges for a low number n of voussoirs. However, in terms of mean
values, the position of hinges 1, 2 and 3 differs slightly from the
value obtained from deterministic analysis.
asonry arch with geometrical uncertainties on spreading supports. Comput
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Fig. 7. Evolution of the normalized position ½ð~bj � bÞ=a� of hinges 1, 2 and 3 in
function of the normalized settlement ðdk=~duÞ at the springing, for the case of
nominal (continuous lines) and irregular (dashed lines) geometry, evaluated in
average.
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4. Experimental tests

In this section, the comparison between the results obtained by
proposed numerical procedure and two related experimental tests
is reported. The first refers to a round arch subjected to horizontal
settlement developed by Ochsendorf [33]; in the second, with ref-
Fig. 8. Normalized position ½ð~bj � bÞ=a� of hinges 1, 2 and 3 in function of the number n
geometry, in the initial (a) and ultimate (b) configuration. The dotted lines below and a

Fig. 9. (a) Experimental test carried out by Ochsendorf [33]: equilibrium state of a se
mechanism.
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erence to an experimental test carried out by the Authors on a seg-
mental arch, a springing has been subjected to incremental
settlements along a direction inclined of 45� angle from the hori-
zontal (Fig. 2).
4.1. Horizontal spreading support

The small-scale experimental test carried out by Ochsendorf
[33] considered as a case of study refers to an arch comprising
16 concrete blocks (Fig. 9a), with a 50 mm radial thickness, mean
radius r of 220 mm and thickness-radius ratio t=r ¼ 0:23.

On this arch, a springing was subjected to incremental horizon-
tal settlement until reaching the final condition. Experimental test-
ing showed that the cracking hinges (1, 2 and 3) do not change in
position from the initial to the final condition. Furthermore, the
maximum measured displacement (30 mm) was reached with an
increment of 15.4% of the span with respect to the internal radius
(Fig. 9b). In Fig. 9a the instant immediately before the collapse is
shown. From this instant on, the arch has lost its stability and
the collapse occurred with a pure rotational mechanism. An impor-
tant observation made by Ochsendorf was that the expected theo-
retical five-hinges mechanism did not occur owing to model
imperfections, which reduced the ultimate displacement du at
springing from the predicted value of about 33–30 mm. The theo-
retical collapse condition was obtained through the study of the
limit equilibrium, which is commonly used considering the
nominal arch geometry. In general, the results quite accurately
represents both the arch configurations and the position at which
the hinges occur (Fig. 10), nonetheless, an error of the final
of voussoirs, for the case of nominal (continuous lines) and irregular (dashed lines)
bove the continuous curve are related to the values l � r and l + r respectively.

ttled configuration before collapse. (b) Theoretical symmetric five-hinges collapse

asonry arch with geometrical uncertainties on spreading supports. Comput
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Fig. 10. Masonry arch with nominal geometry: thrust line in the initial (a) and ultimate (b) configuration.
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displacement estimation, which in some cases may not be
neglected, could be done. The same results of Ochsendorf’s analy-
ses are obtained by Coccia et al. [36], in which the problem of the
right ultimate displacement estimation is highlighted, making the
focus on the geometric imperfections that are found in the real
arch.

In this work, an interpretation of the experimental observation
has been provided by introducing geometrical uncertainties in the
model through the probabilistic approach described in Section 3.
Fixing the number of the voussoirs (n = 16), 1000 samples of arches
affected by geometrical uncertainties have been generated. The
random parameters have been described using the Eqs. (32) and
setting three levels of tolerance e (0.01, 0.02 and 0.03). Fig. 11
shows the case of a random arch, with e = 0.03, in the initial state
characterized by the three-hinges chain. The geometrical irregular-
ities determine the natural loss of symmetry in the mechanism, so
that the ultimate condition is reached, by increasing the displace-
ment of a springing, with the occurrence of a fourth hinge at the
extrados of the left or right springing alternatively.
Fig. 11. Masonry arch with irregular geometry (e = 0.03): thrust line in the initial
configuration.

Fig. 12. Histogram of the probability density of the ultimate displacement ð~duÞe , with its
0.02 (b) and 0.03 (c).
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In Fig. 12 the histogram of the probability density of the random
ultimate displacement ~du has been represented for e equal to 0.01,
0.02 and 0.03. Given the Skewness (CS) and Kurtosis (CK) values

related to each population of ~du
� �e

, the normal probability density

function p~du
expressed by the Eq. (38) has been used to interpolate

in first approximation the numerical results.
The normal distributions of Fig. 12 have been superimposed

with the experimental and numerical results performed using
nominal geometry (Fig. 13). The graph highlights that the greater
the level of tolerance e, the greater the spread of the interpolant
interpolant normal probability density function, for the case of e equal to 0.01 (a),

Fig. 13. Comparison between the ultimate displacement values obtained by the
experimental test, by numerical analysis using nominal geometry and the normal
distributions of the random ultimate displacement values given by the probabilistic
approach (e equal to 0.01, 0.02 and 0.03).

asonry arch with geometrical uncertainties on spreading supports. Comput
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Table 2
Ultimate displacements obtained by experimental test and numerical analysis using
nominal and irregular geometry.

Experimental test Numerical analysis

Real geometry Nominal geometry Irregular geometry

du [mm] Reference du [mm] e l [mm] r [mm]

Ochsendorf [33] 32.9 0.01 30.42 1.1
30.0 Coccia et al. [36] 32.2 0.02 29.63 1.2

Present research 32.5 0.03 28.37 1.8
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normal distribution and the lower the mean value of the random
ultimate displacement. It is interesting to note that the probabilis-
tic approach provides a more consistent prediction of the experi-
mental displacement observed by Ochsendorf, considering a
value of e between 0.01 and 0.02. Table 2 summarizes the compar-
ison between the experimental observations and the numerical
results obtained using nominal geometry and the probabilistic
approach, with reference to the mean and standard deviation val-
ues. Finally, it is conceivable to consider that the deviation
between the results obtained by the experimental tests and by
numerical simulation with nominal geometry can be related to
uncertainties in the actual geometry of the arch.

4.2. No-horizontal spreading support

The masonry arch described in Section 3.2 refers to a real struc-
ture constructed and tested in the laboratory. The arch has a nom-
inal span of 2.281 m, a nominal net rise of 0.585 m and is
constituted by 37 bricks assembled with mortar joints (Fig. 14).
The arch complies with Heyman’s condition of zero resistance
between the interfaces of the blocks, as a Plexiglas plate was
inserted (Fig. 15a) in the middle of each mortar joint. For this rea-
son, mortar hinges formed at the interface between the Plexiglas
plate and the mortar (Fig. 15b). The structure is placed on a steel
frame system featuring a moveable springing (left springing) along
a direction inclined of 45� with respect to the horizontal. The test
system provides an instant-by-instant displacement measurement,
until the structural collapse. The support movement has been
imposed with a manual system, and the displacement measured
Fig. 14. Specimen geome
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with an LVDT activated simultaneously with a video recording of
the test. The collapse condition occurred with a three-hinges
mechanism in correspondence to an ultimate displacement of
about 195 mm (Fig. 15c).

The numerical procedure proposed in this paper has been used
to simulate the experimental test, both with nominal and irregular
geometry (e ¼ 0:03) using the probabilistic approach. In Fig. 16 a
case extracted from random arch samples is illustrated in an equi-

librated settled configuration Xk.
Fixing the number of voussoirs (n = 37), 1000 samples have

been generated considering eai
� �h, eti� �h

and erið Þh as random geo-

metrical parameters and analysed through the proposed proce-
dure. As expected from the parametric analysis carried out in
Section 3.2, the configuration of hinges 1, 2 and 3 changes with
the increase of the displacement dk imposed to the left springing.
The proposed algorithm, by updating the position of the hinges
via the thrust line, is able to accurately represent this phenomenon
of change in hinge position throughout the development of the
mechanism up to the collapse, as can be seen from the graph in
Fig. 17. The figure shows the evolution of the normalized hinge
position ½ð~bj � bÞ=a� in function of the normalized settlement at

the springing ðdk=~duÞ obtained during the experimental test
(Fig. 17a) and by numerical simulations (Fig. 17b). The localiza-
tions of hinges 1, 2 given by numerical analysis are quite similar
to those observed in the experimental test, while the position of
hinge 3 are quite different. However, it must be considered that
the results reported in Fig. 17b are evaluated as a mean over
1000 samples, thus the presence of consistent solutions cannot
be a priori excluded. In Fig. 18 the results in terms of ultimate dis-
placement are shown.

The normal distribution which interpolates the obtained ran-
dom ultimate displacement are plotted in Fig. 18 with the deter-
ministic values obtained by the experimental test and the
numerical simulation carried out considering the nominal geome-
try. The graph highlights that, in average, the results given by irreg-
ular geometry (mean value of about 192.5 mm) provide a more
consistent prediction of the experimental ultimate displacement
(195 mm) than the case of nominal geometry (222 mm), reducing
the error from 13.8% to 1.3%. Finally, it has been demonstrated that
try and test layout.
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(a)        (b) 

(c)

Plexiglass Plate Hinge opening

Fig. 15. (a) Plexiglas plate inserted in the middle of the mortar joint. (b) Opening of the hinge corresponding to the Plexiglas plates (initial hinge configuration). (c) Arch
collapse condition.

Fig. 16. A case extracted from random arch samples with a tolerance value e ¼ 0:03
in an equilibrated settled configuration Xk (~dk ¼ 69:6 mm).

Fig. 17. Evolution of the normalized position ½ð~bj � bÞ=a� of hinges 1, 2 and 3 in function o
(b) Mean values provided by the numerical simulations based on the probabilistic appr
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the overestimations of the collapse condition, in terms of both dis-
placements and reaction forces, generally observed by the direct
application of the limit equilibrium approach on structures having
nominal geometry, with respect to the experimental observations,
can be corrected by introducing uncertainties in the model. More
in general, depending on the specific structure in exam and on
its geometrical irregularities with respect to the actual geometry,
an investigation about the influence of the uncertainties on the
ultimate condition should be carried out with a probabilistic
approach. Then, a safety factor evaluated as the ratio
f the normalized settlement ðdk=~duÞ at the springing. (a) Results of experimental test.
oach.
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Fig. 18. Comparison between probabilistic results (continuous curve), numerical
simulations with nominal arch geometry (dotted line) and experimental results
(dashed line).
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cs ¼
E½ ~W� � r½ ~W�

Wnom

where ~W is the considered random variable (collapse load, ultimate
displacement, etc.) and Wnom its deterministic value obtained by
using a nominal geometry, returns the amount of error that could
affect the analysis if the irregular geometry is not taken into
account. For the interested reader, an example of application of
such a procedure to the masonry arch can be found in [30].

5. Conclusions

In this paper, the behaviour of the masonry arch on no-
horizontal spreading supports has been analysed, taking into
account the geometrical irregularities effects. A numerical proce-
dure based on the limit equilibrium approach has been developed
in large displacements field, in order to follow the evolution of the
mechanism until the collapse with the incremental increase of the
imposed settlement. The algorithm makes use of the Principle of
Virtual Work to solve static problem, and it is able to reach the col-
lapse conditions characterized by all the mechanisms described
above. The geometrical irregularities have been considered as
intrinsic uncertainties of the structures and spread on the arch
model by means of three random variables. These random param-
eters, namely the radius of curvature, the thickness and the angle
of embrace of each voussoir, have been described through indepen-
dent uniform probability density functions. It should be noted that
each type of random structural analysis, is a result of a significant
number of samples analysed in a probabilistic sense.

The procedure has been applied to two experimental tests. The
former is the well-known test carried out by Ochsendorf concern-
ing a semi-circular arch made by 16 blocks subjected to horizontal
settlements at both the supports. The numerical simulations of the
test, provided by Ochsendorf himself and recently by Coccia and
co-authors, show a little overestimation of the ultimate admissible
displacement with respect to the experimental observations. In
this paper has been demonstrated that the overestimation (about
6.8%) of the ultimate condition obtained by a structure with nom-
inal geometry could be corrected by including uncertainties in the
model. In particular, it has been shown that considering an error
between 1% and 2% of the dimensions of the blocks, the experimen-
tal results could be better reproduced. The latter test refers to a
segmental arch, made of 37 bricks, on a springing support with
an inclination of 45� on the horizontal. Also in this case the numer-
ical simulations carried out on the nominal geometry has provided
Please cite this article in press as: Zampieri P et al. Collapse displacements of m
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an overestimation of the ultimate displacement (about 13.8%) with
respect to the experimental results, while including the geometri-
cal uncertainties in the model with an error of 3% of the brick
dimensions a more consistent estimation of the actual structural
capacity can be achieved.

Finally, the obtained results highlight that the uncertainties
effects cannot be neglected in the performance evaluations of
experimental tests and, even more, this aspect should be consid-
ered more in general in structural analysis. The role of uncertain-
ties will be as significant as the level of structural and/or
material degradation will be. The choice of the tolerance level,
which describes the irregularities in the statistical model, determi-
nes the quality of the results and must be defined in function of the
case in exam. In this context, geometrical safety factors could be
introduced, in order to take into account the uncertainties effects
on the analysis of actual structures.
Acknowledgments

The Authors gratefully acknowledge support from the Italian
Ministry of Education, University and Scientific Research, within
the PRIN National Grant 2015 project ‘‘Advanced mechanical
modeling of new materials and structures for the solution of
2020 Horizon challenges’’ (Prot. 2015JW9NJT).
References

[1] Heyman J. The stone skeleton. Int J Solids Struct 1966;2:249–79.
[2] Heyman J. The safety of masonry arches. Int J Mech Sci 1969;11:363–85.
[3] Heyman J. Why ancient cathedrals stand up: the structural design of masonry.

Ingenia 2001;10(19):23.
[4] Romano A, Ochsendorf JA. The mechanics of gothic masonry arches. Int J Archit

Herit 2010;4(1):59–82.
[5] Cocchetti G, Colasante G, Rizzi E. On the analysis of minimum thickness in

circular masonry arches. Appl Mech Rev 2011;64(5). 051002.1–051002.22.
[6] Makris N, Alexakis H. The effect of stereotomy on the shape of the thrust-line

and the minimum thickness of semicircular masonry arches. Arch Appl Mech
2013;83:1511–33.

[7] Alexakis H, Makris N. Limit equilibrium analysis and the minimum thickness of
circular masonry arches to withstand lateral inertial loading. Arch Appl Mech
2014;84:757–72.

[8] Dimitri R, Tornabene F. A parametric investigation of the seismic capacity for
masonry arches and portals of different shapes. Eng Fail Anal 2015;52:1–34.

[9] Cavalagli N, Gusella V, Severini L. Lateral loads carrying capacity and minimum
thickness of circular and pointed masonry arches. Int J Mech Sci 2016;115–
116:645–56.
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