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Low complexity bound on irregular LDPC
belief-propagation decoding thresholds
using a Gaussian approximation

F. Vatta, A. Soranzo, and F. Babich

Sinceirregular low-density parity-check (LDPC) codes are known to
perform better than regular ones, and to exhibit, like thiéve so called
“threshold phenomenon”, this letter investigates a low plaxity upper
bound on belief-propagation decoding thresholds for tkisscof codes
on memoryless BI-AWGN (Binary Input - Additive White Gauessi
Noise) channels, with sum-product decoding. We use a diegli
analysis of the belief-propagation decoding algorithma,, iconsider a
Gaussian approximation for message densities under gevsilution,
and a simple algorithmic method, defined recently, to esénthe
decoding thresholds for regular and irregular LDPC codes.

Introduction: As first noticed by Gallager in his introductory work
to regular LDPC codes [1], these exhibit the so called “thoés
phenomenon”. Namely, an upper bound for the channel noisebea
defined by the noise threshold so that, if the channel noiswistained
below this threshold, the probability of lost informatioancbe made as
small as desired. Later it was shown in [2] thetegular LDPC codes
perform better than regular ones, and exhibit this phenometoo.

LDPC codes are capacity-approaching codes, which mears tha

practical constructions exist that allow the noise thrébihm be set very
close to the theoretical maximum (the Shannon limit) for ensetric
memoryless channel. Thus, the problem of an easy evaluafidhe
threshold, and, in general, of the performance of beliefpagation
decoding (see, e.g., [3] and [4]) is important to allow thesige of
capacity-approaching codes, based on noise thresholdmization.

Maximum Likelihood decoding of LDPC codes is in general not
feasible [3]. Instead, Gallager proposed an iterative slftoding
algorithm, also called belief propagation [5]. Gallagesoahoted that, for
any given channel conditions, it is possible to evaluateptirtormance
of belief propagation by following the evolution of the dibution of
the messages. This idea was extended in [6], where it wasnshow
to apply density evolution efficiently. One difficulty encaared when
applying density evolution is given by the continuous natof the
messages which makes them hard to analyze. As an alterniatiyg
a Gaussian approximation for the message distribution wagoped,
reducing the evolution of the infinite dimensional densipace to the
evolution of a single parameter. In this way, the mean vafiegeneric
check node output message at tkh iteration is simply described as a
function of the check node output message mean value &t the)-
th iteration, thus obtaining a recurrent sequence. With #implified
description, the threshold can be calculated as the lagew&ich that
the recurrent sequence converges but no mathematical dsethere
provided in [7] to determine it.

In [8] it was presented a mathematical method to allow thesenoi
thresholds evaluation using the quadratic degeneracynthdbus
transforming a recurrence relation convergence problem problem
of mathematical analysis. Applying the result of [8] to ttsymptotical
behavior of the recurrent sequence thereby defined, a lowplesity
upper bound to the exact belief-propagation decoding liotds can be
derived. This analysis gives rise to a simple algebraicesgion of the
upper bound on irregular LDPC belief-propagation decodirgsholds
using a Gaussian approximation, valid in the most commoe ¢as.,
when the first non-zero coefficient of thg-uple {\;} is \2), thus
allowing its simple determination from the codes paranseter

Low complexity approximation of the exact belief-propagation decoding
thresholds: Irregular LDPC codes [6] are defined by specifying the
distribution of the node degrees in their Tanner graphs.driiqular,
in the edge-perspective degree distribution, (respectively p;) is
the fraction of edges in the Tanner graph connecting to aedegr
(respectively degreg) variable (respectively check) node. To specify the
degree distribution, the polynomialgz) and p(z) are defined, having
degreed; — 1 andd, — 1, respectively. Thei;-uple {\;} andd.-uple
{p;} both add up to 1.

Since in [7] it is shown that, without great sacrifice in aemy; a
one-dimensional quantity, namely the mean of Gaussianitées)scan
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act as faithful surrogate for the message densities thesselvhich is
an infinite-dimensional vector, we assume that LDPC codessage
distributions for AWGN channels are approximately Gaussiad denote

the means of, andv by mﬁ) anqu(f) at thel-th iteration, respectively.
Moreover, the LLR message, from the channel is assumed to be
Gaussian with meam,,, = 2/02 and variancet/o2, whereo? is the

variance of the channel noise. Defining, as in [8],

dr
9s() =Y pjgsi(1) (1)
j=2
where
d; ]
g5 i =01 -[1-> No(s+G-1p])’ ") (@)

i=iq

(being the functiong(z) defined in [7] ands =m.,), and applying
the method therewith defined, instead of searching the &eewof the
parametes granting the convergence of the sequence

®)

where t; corresponds tOme), we solve a problem of quadratic
degeneracy which can be assigned to a standard software.

When the second derivative’ (t) #0 the problem of quadratic
degeneracy is the system of equations

{ gs(t) =t
gs(t) =1

Its solution (t*,s*) determines an approximation* of the exact

ty=gs(ti—1)

(4)

belief-propagation decoding threshold defined-as= \/Sz

To find the solution of (4), an explicitly invertible approxation
of ¢(z) is needed. In [7], an “ad hoc” approximation by elementary
functions is given (see Eq. (8) in [7]) for< = < 10, which is explicitly
invertible. A graph ofs(z) may be found in [9], where the approximation
of ¢(x) and its inverse were derived using the analysis outlined® [

Upper bound: To determine the upper bound on threshold we need first
of all to determine the asymptotical behaviour of (4) fer co. For this
purpouse, we have to computéz) in (4) with z > 10. To this end, we
add a further invertible approximation of the functigfx), the derivation

of which is given in the Appendix. With this approximatiorefthing
zs(t) = PPt and A = m we can write the following

Lemma: Ast — oo, gs(t) becomes:

dr

9s(t) =2 " pyW(A;zs(t)e™ (M)
=2

©)

Proof: Whent — oo, since, as shown in [9], the functiop(z) has a
rapid decrease im, only the first terms oEfl:il Aid(s+ (1 — 1)t) are
important in Eq. (1). Thus, we can simplify that sum to:

a4
D Xio(s + (i = 1)t) = Xiy ¢(s + (i1 — 1)t) + O(Nigd(s + (i2 — 1)t))

i=iy

(6)
being A\;; andX;, the first and second nonzerq's, respectively, and
observing that, in most practical cases, nevgris largely greater than
Xi, » and that they are both very significant. By the development

1-—2)"=1—nz+0(?), -0 @)
95,5 (1) = ¢~ 1((G = DAi d(s + (in = DO[1 + O(e(s + (i — 1)t))}(23)

where we used(s + (i2 — 1)t) € ¢(s + (41 — 1)t). Then

#(9s,5(1)) = (G — DXiy (s + (11 — D1 + O(¢(s + (i1 — 1)1))]

9
Using the approximation (21) and ignoring tH¢-) term:
T s+(i1—l)t—4log((j—l))\i1) 10
s,5(t)) = N
$90.0(0) = | T e 7 (10)
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and, applying (22),

o s+ (ip — 1)t s+(i1—1)t—4log((G=1)A;;)
gS’J(t)—2W<fe 2 ) (11)
This can be rewritten as
95,3 (1) = 2W (A 25 (1)e* (1) (12)
and applying (1) we get the result.
|
With g (¢) given in (5) and remembering thm W
zs(t) 1 + zs
_22 ” (0Ot 2 (1) 13)
— Z‘s(t ezs(t) _;’_eW(A zs(t)e?s(t))— IOEA
Applying (4) to (5) and (13) we get:
2597, py WA 25 (t)es V) =t
, 2 (Be*s M (1424()) _ (14)
2 Zj:Q bi zs(t)eZS(f)+eW(AjzS(t)ezs (t))flogAJ' =1

Its solution(s*, t*), obtained applying the instruction set produced in
[8], determines the boungt* =
With a; := —2log((j — 1) s

2, which is validvi, .
1), Eq. (11) can be rewritten as

92.3(8) =2W (2 (e (O+03 ) (15)

Assuming that the following simplified approximation holds

905 (1) 2 2W ((2a(t) + ay)em= O Fes ) (16)
calling « := z5(t) + a;, and beingW (ze*) =« for = >0, we find
another asymptotical expression @y ; (t) which is much simpler than
the one obtained in (12):

gs,j(t) 220 =2(2s(t) + aj) = s+ (i1 — 1)t —4log((j — 1)i;)
17)
Applying (1) and getting its first derivative, we may rewr(fiel) as:

: dr C 1) —
{ s + (i1 — 1)t — dloghs;, — 43757, pjlog(j — 1) =t (18)
i1—1=1
Its solution is:
dr
S;pprox = 410g)‘i1 +4 Z pleg(j - 1) (19)
j=2

Using the Jensen's inequaliffi™, (j — 1)*7 < 397, p;(j — 1), W
may write the following upper bound on (19)

dr

approx S SJensen 410g>"i1 + 410g ( Z(J - 1)Pj>
j=2

(20)

Taking the simple algebrical expressions (19) and (20)= \/SZ*
gives two further bounds on threshold, both valid onlyifoe 2.

Numeric results. For the irregular rate-1/2 LDPC codes reported in [6],
we report in Table 1 the* values found with density evolution in [6]
together with the upper bounds fer we found in the present work,
namely o3, o0 = 1/2/Sipprox (oM (19)), 05 rcon = v/2/5 ensen

(from (20)), ands* = /2/s* (solution of (14)).

Conclusions: In this letter, the derivation of low complexity upper
bounds on belief-propagation decoding thresholds waseaddd, using

the algorithmic method proposed in [8]. The results showeddg

agreement with the threshold values found with densityigian in [6].

Table 1: Bounds on decoding thresholds of good rate-codes listed in [6].

d; 5 15 20 30

7 i i Ai A

2 0.32660 | 0.23802 | 0.21991 | 0.19606

3 0.11960 | 0.20997 | 0.23328| 0.24039

4 0.18393 | 0.03492 | 0.02058

5 0.36988 | 0.12015

6 0.08543| 0.00228

7 0.01587 | 0.06540| 0.05516

8 0.04767 | 0.16602

9 0.01912| 0.04088

10 0.01064

14 0.00480

15 0.37627

19 0.08064

20 0.22798

28 0.00221

30 0.28636
R Pj | Pj pi | i ]

6 0.78555

7 0.21445

8 0.98013 | 0.64854 | 0.00749

9 0.01987 | 0.34747| 0.99101

10 0.00399 | 0.00150
[ o© | 09194 | 0.9622 | 0.9649 | 0.9690 ]
a:{pprox 0.971728| 0.987091| 1.02193| 1.05493
07 oneen | 0.069081| 0.986917| 1.01966| 1.05485

o* 0.97173 | 0.987094| 1.02193| 1.05493

Appendix: Approximation of ¢(z) for = >10: In [7], the following
approximation (called herg(x)) was used for(z) whenz is large

o(a) = d(z) = @a%

which we found invertible by means of the Lambert-W functigeing
W(-) the Lambert-W function, the inverse éfz) is

o )~ ) =2W (577

(1)

(22)
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