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Sinceirregular low-density parity-check (LDPC) codes are known to
perform better than regular ones, and to exhibit, like them,the so called
“threshold phenomenon”, this letter investigates a low complexity upper
bound on belief-propagation decoding thresholds for this class of codes
on memoryless BI-AWGN (Binary Input - Additive White Gaussian
Noise) channels, with sum-product decoding. We use a simplified
analysis of the belief-propagation decoding algorithm, i.e., consider a
Gaussian approximation for message densities under density evolution,
and a simple algorithmic method, defined recently, to estimate the
decoding thresholds for regular and irregular LDPC codes.

Introduction: As first noticed by Gallager in his introductory work
to regular LDPC codes [1], these exhibit the so called “threshold
phenomenon”. Namely, an upper bound for the channel noise can be
defined by the noise threshold so that, if the channel noise ismaintained
below this threshold, the probability of lost information can be made as
small as desired. Later it was shown in [2] thatirregular LDPC codes
perform better than regular ones, and exhibit this phenomenon, too.

LDPC codes are capacity-approaching codes, which means that
practical constructions exist that allow the noise threshold to be set very
close to the theoretical maximum (the Shannon limit) for a symmetric
memoryless channel. Thus, the problem of an easy evaluationof the
threshold, and, in general, of the performance of belief propagation
decoding (see, e.g., [3] and [4]) is important to allow the design of
capacity-approaching codes, based on noise threshold maximization.

Maximum Likelihood decoding of LDPC codes is in general not
feasible [3]. Instead, Gallager proposed an iterative softdecoding
algorithm, also called belief propagation [5]. Gallager also noted that, for
any given channel conditions, it is possible to evaluate theperformance
of belief propagation by following the evolution of the distribution of
the messages. This idea was extended in [6], where it was shown how
to apply density evolution efficiently. One difficulty encountered when
applying density evolution is given by the continuous nature of the
messages which makes them hard to analyze. As an alternative, in [7]
a Gaussian approximation for the message distribution was proposed,
reducing the evolution of the infinite dimensional density space to the
evolution of a single parameter. In this way, the mean value of a generic
check node output message at thel-th iteration is simply described as a
function of the check node output message mean value at the(l − 1)-
th iteration, thus obtaining a recurrent sequence. With this simplified
description, the threshold can be calculated as the last value such that
the recurrent sequence converges but no mathematical methods were
provided in [7] to determine it.

In [8] it was presented a mathematical method to allow the noise
thresholds evaluation using the quadratic degeneracy theory, thus
transforming a recurrence relation convergence problem ina problem
of mathematical analysis. Applying the result of [8] to the asymptotical
behavior of the recurrent sequence thereby defined, a low complexity
upper bound to the exact belief-propagation decoding thresholds can be
derived. This analysis gives rise to a simple algebraic expression of the
upper bound on irregular LDPC belief-propagation decodingthresholds
using a Gaussian approximation, valid in the most common case (i.e.,
when the first non-zero coefficient of thedl-uple {λi} is λ2), thus
allowing its simple determination from the codes parameters.

Low complexity approximation of the exact belief-propagation decoding
thresholds: Irregular LDPC codes [6] are defined by specifying the
distribution of the node degrees in their Tanner graphs. In particular,
in the edge-perspective degree distribution,λi (respectively ρj) is
the fraction of edges in the Tanner graph connecting to a degree-i
(respectively degree-j) variable (respectively check) node. To specify the
degree distribution, the polynomialsλ(x) andρ(x) are defined, having
degreedl − 1 and dr − 1, respectively. Thedl-uple {λi} and dr-uple
{ρj} both add up to 1.

Since in [7] it is shown that, without great sacrifice in accuracy, a
one-dimensional quantity, namely the mean of Gaussian densities, can

act as faithful surrogate for the message densities themselves, which is
an infinite-dimensional vector, we assume that LDPC codes message
distributions for AWGN channels are approximately Gaussian and denote
the means ofu andv by m

(l)
u andm(l)

v at thel-th iteration, respectively.
Moreover, the LLR messageu0 from the channel is assumed to be
Gaussian with meanmu0 = 2/σ2

n and variance4/σ2
n, whereσ2

n is the
variance of the channel noise. Defining, as in [8],

gs(t) =

dr
∑

j=2

ρjgs,j(t) (1)

where

gs,j(t) = φ−1
(

1−
[

1−

dl
∑

i=i1

λiφ(s+ (i− 1)t)
]j−1) (2)

(being the functionφ(x) defined in [7] ands=mu0 ), and applying
the method therewith defined, instead of searching the last value of the
parameters granting the convergence of the sequence

tl = gs(tl−1) (3)

where tl corresponds tom(l)
u , we solve a problem of quadratic

degeneracy which can be assigned to a standard software.
When the second derivativeg′′s (t) 6=0 the problem of quadratic

degeneracy is the system of equations
{

gs(t) = t
g′s(t) = 1

(4)

Its solution (t∗, s∗) determines an approximationσ∗ of the exact

belief-propagation decoding threshold defined asσ∗ :=
√

2
s∗

.

To find the solution of (4), an explicitly invertible approximation
of φ(x) is needed. In [7], an “ad hoc” approximation by elementary
functions is given (see Eq. (8) in [7]) for0<x< 10, which is explicitly
invertible. A graph ofφ(x) may be found in [9], where the approximation
of φ(x) and its inverse were derived using the analysis outlined in [10].

Upper bound: To determine the upper bound on threshold we need first
of all to determine the asymptotical behaviour of (4) fort→∞. For this
purpouse, we have to computeφ(x) in (4) with x≥ 10. To this end, we
add a further invertible approximation of the functionφ(x), the derivation
of which is given in the Appendix. With this approximation, defining
zs(t) :=

s+(i1−1)t
2

andAj :=
1

(j−1)2λ2
i1

, we can write the following

Lemma: As t→∞, gs(t) becomes:

gs(t) = 2

dr
∑

j=2

ρjW(Ajzs(t)e
zs(t)) (5)

Proof: When t→∞, since, as shown in [9], the functionφ(x) has a
rapid decrease inx, only the first terms of

∑dl
i=i1

λiφ(s+ (i− 1)t) are
important in Eq. (1). Thus, we can simplify that sum to:

dl
∑

i=i1

λiφ(s+ (i− 1)t) = λi1φ(s+ (i1 − 1)t) + O(λi2φ(s+ (i2 − 1)t))

(6)
beingλi1 andλi2 the first and second nonzeroλi ’s, respectively, and
observing that, in most practical cases, neverλi2 is largely greater than
λi1 , and that they are both very significant. By the development

(1 − x)n =1− nx+ O(x2), x→ 0 (7)

gs,j(t) = φ−1((j − 1)λi1φ(s+ (i1 − 1)t)[1 + O(φ(s+ (i1 − 1)t))])
(8)

where we usedφ(s+ (i2 − 1)t)≪ φ(s+ (i1 − 1)t). Then

φ(gs,j(t)) = (j − 1)λi1φ(s+ (i1 − 1)t)[1 + O(φ(s+ (i1 − 1)t))]
(9)

Using the approximation (21) and ignoring theO(·) term:

φ(gs,j(t)) =

√

π

s+ (i1 − 1)t
e−

s+(i1−1)t−4log((j−1)λi1
)

4 (10)
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and, applying (22),

gs,j(t) = 2W
( s+ (i1 − 1)t

2
e

s+(i1−1)t−4log((j−1)λi1
)

2

)

(11)

This can be rewritten as

gs,j(t) = 2W(Ajzs(t)e
zs(t)) (12)

and applying (1) we get the result.
�

With gs(t) given in (5) and remembering thatdW (x)
dx

= 1
x+eW(x) :

g′s(t) = 2

dr
∑

j=2

ρj
z′s(t)e

zs(t)(1 + zs(t))

zs(t)ezs(t) + eW(Ajzs(t)e
zs(t))−logAj

(13)

Applying (4) to (5) and (13) we get:







2
∑dr

j=2 ρjW(Ajzs(t)ezs(t)) = t

2
∑dr

j=2 ρj
z′s(t)e

zs(t)(1+zs(t))

zs(t)ezs(t)+e
W(Ajzs(t)e

zs(t))−logAj
= 1

(14)

Its solution(s∗, t∗), obtained applying the instruction set produced in

[8], determines the boundσ∗ =
√

2
s∗

, which is valid∀i1.

With aj :=−2log((j − 1)λi1 ), Eq. (11) can be rewritten as

gs,j(t) = 2W
(

zs(t)e
zs(t)+aj

)

(15)

Assuming that the following simplified approximation holds

gs,j(t)≃ 2W
(

(zs(t) + aj)e
zs(t)+aj

)

, (16)

calling x := zs(t) + aj , and beingW (xex)≡ x for x> 0, we find
another asymptotical expression forgs,j(t) which is much simpler than
the one obtained in (12):

gs,j(t)≃ 2x=2(zs(t) + aj) = s+ (i1 − 1)t − 4log((j − 1)λi1 )
(17)

Applying (1) and getting its first derivative, we may rewrite(14) as:

{

s+ (i1 − 1)t − 4logλi1 − 4
∑dr

j=2 ρj log(j − 1) = t

i1 − 1 = 1
(18)

Its solution is:

s∗approx = 4logλi1 + 4

dr
∑

j=2

ρj log(j − 1) (19)

Using the Jensen’s inequality
∏dr

j=2(j − 1)ρj ≤
∑dr

j=2 ρj(j − 1), we
may write the following upper bound on (19):

s∗approx ≤ s∗Jensen = 4logλi1 + 4log
(

dr
∑

j=2

(j − 1)ρj

)

(20)

Taking the simple algebrical expressions (19) and (20),σ∗ =
√

2
s∗

gives two further bounds on threshold, both valid only fori1 =2.

Numeric results: For the irregular rate-1/2 LDPC codes reported in [6],
we report in Table 1 theσ∗ values found with density evolution in [6]
together with the upper bounds forσ we found in the present work,
namely σ∗

approx =
√

2/s∗approx (from (19)), σ∗

Jensen =
√

2/s∗Jensen
(from (20)), andσ∗ =

√

2/s∗ (solution of (14)).

Conclusions: In this letter, the derivation of low complexity upper
bounds on belief-propagation decoding thresholds was addressed, using
the algorithmic method proposed in [8]. The results showed good
agreement with the threshold values found with density evolution in [6].

Table 1: Bounds on decoding thresholds of good rate-1/2 codes listed in [6].

dl 5 15 20 30
i λi λi λi λi

2 0.32660 0.23802 0.21991 0.19606
3 0.11960 0.20997 0.23328 0.24039
4 0.18393 0.03492 0.02058
5 0.36988 0.12015
6 0.08543 0.00228
7 0.01587 0.06540 0.05516
8 0.04767 0.16602
9 0.01912 0.04088
10 0.01064
14 0.00480
15 0.37627
19 0.08064
20 0.22798
28 0.00221
30 0.28636

j ρj ρj ρj ρj

6 0.78555
7 0.21445
8 0.98013 0.64854 0.00749
9 0.01987 0.34747 0.99101
10 0.00399 0.00150

σ∗ 0.9194 0.9622 0.9649 0.9690

σ∗

approx 0.971728 0.987091 1.02193 1.05493
σ∗

Jensen 0.969081 0.986917 1.01966 1.05485
σ∗ 0.97173 0.987094 1.02193 1.05493

Appendix: Approximation of φ(x) for x≥ 10: In [7], the following
approximation (called herêφ(x)) was used forφ(x) whenx is large

φ(x)≃ φ̂(x) :=

√

π

x
e−

x
4 (21)

which we found invertible by means of the Lambert-W function. Being
W(·) the Lambert-W function, the inverse ofφ̂(x) is

φ−1(y)≃ φ̂−1(y) = 2W
( π

2y2

)

(22)
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