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Popular summary in English

Development in neuroscience places increasing demands on management of col-
lected data, especially when interacting directly with single cells (neurons) in
the brains of awake behaving subjects, using so called Brain Machine Interfaces,
i.e. electrodes that directly connect the brain with a computer. The number of
neurons that may be recorded from simultaneously are continuously increasing,
as development in the field has made electrodes smaller, more efficient, and gen-
erally better suited to stay longer periods inside the brain. This has led to major
challenges in handling the amount of information generated when listening to
and communicating with a large number of neurons, which is important both for
basic research, clinical diagnostics and treatment. If, for example, controlling a
prosthetic device using signals from the brain, or detecting an epileptic seizure
for possible intervention, it is important to quickly handle and interpret large
amounts of data from many single neurons at the same time. For later ana-
lysis, it is also important that data stays organized so that a proper diagnosis
or interpretation of the data may be performed after the recording session.

In this thesis, we show how to address these issues by enabling organization and
integration of large amounts of data, for both direct analysis in real time and for
storing for later analysis offline. In paper I, we present a software architecture
for organizing and integrating electrophysiological data by using a data model
together with a software architecture for data transfer. Paper II presents find-
ings providing direct evidence that chronic recordings in primary somatosensory
cortex in awake animals can offer a powerful, and much sought for, model of
the perception of pain magnitude during hyperalgesia, a condition of increased
sense of pain. This model could be applied in both research and the clinic. The
model is superior to previously used models of animal behavior for evaluation
of pain conditions. Principles from paper I are applied, in order to enable faster
comparisons between groups of data. Paper III describes a computationally
highly efficient novel data structure using binary numbers for encoding action
potentials from single neurons, together with a software architecture for hand-
ling sources of data in parallel, for example from different groups of electrodes.
We show how this enables collecting and analyzing signals from millions of neur-
ons and then possibly providing direct feedback to the recorded subject’s brain
in real time.
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Populärvetenskaplig sammanfattning p̊a svenska

Utvecklingen inom neurovetenskap ställer allt högre krav p̊a hantering av in-
samlade data, speciellt när man interagerar direkt med enskilda nervceller i den
vakna hjärnan under l̊anga tidsperioder med hjälp av s̊a kallade Brain Machine
Interfaces, elektroder som direkt kopplar hjärnan till en dator. Antalet nervcel-
ler som kan spelas in samtidigt ökar kontinuerligt, eftersom utvecklingen inom
forskningsfältet har gjort b̊ade elektroderna mindre, effektivare och i allmänhet
bättre lämpade att sitta kvar i hjärnan längre perioder. Detta har lett till stora
utmaningar vid hanteringen av informationen som genereras när man lyssnar
p̊a och kommunicerar med ett stort antal nervceller, vilket är viktigt b̊ade i
grundforskning, klinisk diagnostik och behandling. Om man till exempel styr en
protes med hjälp av signaler fr̊an hjärnan, eller upptäcker ett epileptiskt anfall
för eventuell intervention, s̊a är det viktigt att snabbt hantera och tolka stora
mängder data fr̊an enskilda nervceller. För senare analys är det ocks̊a viktigt
att data förblir organiserade s̊a att en korrekt diagnos eller tolkning fr̊an data
kan utföras efter inspelningstillfället.

I denna avhandling visar vi hur man hanterar dessa problem genom att möjliggöra
organisation och integration av stora mängder data, b̊ade för direkt analys i re-
altid och för lagring för senare analys offline. I artikel I presenterar vi en mjuk-
varuarkitektur för att organisera och överföra elektrofysiologiska data genom
att använda en datamodell tillsammans med en programvara för att integre-
ra data. I artikel II presenteras resultat som ger direkta bevis p̊a att kronis-
ka inspelningar i primära somatosensoriska cortex hos vakna försöksdjur kan
erbjuda en kraftfull och mycket eftersökt modell av smärtuppfattningen vid
hyperalgesi, ett tillst̊and av ökad smärtuppfattning. Denna modelll kan ap-
pliceras inom forskning och sjukv̊ard för att diagnosticera smärta. Det visas
ocks̊a hur denna är bättre än tidigare använda modeller av djurs beteende för
utvärdering av smärtstillst̊and. I detta arbete används principer fr̊an artikel I
för att möjliggöra snabbare jämförelser mellan grupper av data. I artikel III
beskrivs en beräkningseffektiv datastruktur med användning av binära tal för
kodning av aktionspotentialer, signaler fr̊an enskilda nervceller, tillsammans med
en mjukvaruarkitektur för parallel hantering av data, t ex fr̊an olika grupper av
elektroder. Vi visar i artikeln hur dessa ger möjlighet att samla in, analysera och
eventuellt ge direkt återkoppling till hjärnan för miljontals nervceller i realtid.
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Bitcoding the brain
– Integration and organization
of massive parallel neuronal
data

Pauca, sed matura - few, but ripe
— Carl Friedrich Gauss

1 Introduction

The last decades have seen extensive development of neuroscience in general and
particularly in the field of brain machine interfaces. Connecting to, interpreting
and interacting with the activity and signaling of the central nervous system
(CNS) has led to increasing requirements of handling the data generated by
these interfaces, both in terms of data size and complexity. Furthermore, when
interpreting or using neural data in order to control other devices, managing
data in real time has also becomes highly relevant, in order to e.g. respond in
time to make a feedback loop to stimulate the nervous system or to correlate
the presented data to an observed behavior. Through an iterative approach,
first addressing offline data management and applying it in an experimental
electrophysiological setting, and then addressing online data management, this
thesis presents a neuroinformatics architecture that can meet current and fore-
seeable future needs to integrate, organize and interact with large volumes of
electrophysiological data, including signals derived from millions of neurons in
real time.

1



Figure 1: Structure of multipolar neuron. Source: Wikipedia, Author BruceBlaus.

1.1 Neuronal information processing

The human brain is composed of approximately 86 billion neurons, each of
which has a computational capacity, and thus forms the basic informational
processing unit of the brain. Each neuron is connected to up to 10 000 or more
other neurons, and these connections may be formed or removed after learning
in a daunting number of ways. If connections are changed just a little bit, either
in strength or physical location, the computational results of an input will be
different. Thus, the computational complexity of the brain is immense. Yet,
using modern investigative methods we may still uncover many aspects of its
function, both as a whole, and at the level of single neurons.

1.1.1 The neuron

A neuron is a specialized type of cell within the nervous system that receives
chemical signals and converts them to electrical signals. These are then in-
tegrated and transmitted as an action potential across the cell membrane, and
finally converted back to chemical signals. The neuron is composed of different
parts: dendrites, thin appendages that receive the majority of input from other
cells, soma - cell body containing the cell nucleus as well as other organelles like
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mitochondria and endoplasmic reticulum, axon - a longer projection conducting
the electric signal, see Figure 1. The chemical signaling occurs between cells at
the synapses, while the electric signaling mostly occurs between different parts
of the cell. In addition, some cells also communicate with other cells through
electrical synapses using so called gap-junctions.

1.1.2 Chemical and electrical signaling

As a substrate for the chemical signaling, the synaptic axon terminal of one
cell forms vesicles, separate spheres of cell membrane containing neurotransmit-
ters. Chemical signaling then takes place when the axon terminal is electrically
depolarized. As a result of this depolarization, vesicles dock with the cell mem-
brane at the synaptic cleft and release their neurotransmitter substances. This
process is the link between the electrical and chemical signaling. Depending on
the neurotransmitter(s) released, it may act either on excitatory or inhibitory
receptors on the target neuron, resulting in depolarization or hyperpolarization
of the membrane potential. These receptors will open or close ion channels that
in turn change the membrane potential. This change then propagates along the
membrane and if sufficiently strong at the soma, it may initiate an action po-
tential. Usually many excitatory synapses have to cooperate to elicit an action
potential, see Figure 2. The action potential was first described mathematic-
ally in the work of Hodgkin and Huxley (Hodgkin and Huxley, 1952), in one
of the most influential computational biophysical models of the 20th century.
The action potential is also commonly called a “spike”, due to the sharp rise
in voltage during the voltage-gated channel caused depolarization. In the in-
hibitory synapse, the hyper-/repolarization may block other incoming signals as
well as decrease the spontaneous firing of the target neuron. Action potential
generation, also called ”spiking”, signifies one of the major indicators of activity
in the central nervous system, as it directly correlates to the activity of cells.

Other than neurons, the central nervous system also contains glial cells. These
may also take part in the signaling to some extent, as they house receptors that
can cause membrane potential changes in the glial cells. However, glial cells lack
voltage-gated ion channels, which are specific to neurons.

1.2 Brain information processing

The neurons of the central nervous system (CNS) together with the glial cells
form the brain and spinal cord. According to the classical view of CNS organiz-
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Figure 2: Schematic of an action potential. Activated post-synaptic receptors cause a
general dendritic depolarization, which then spreads to the axon hillock at the
soma, where it causes voltage-gated sodium channels, which reside in greater
numbers there, to open and increase the depolarization further. This in turn
results in a sharp rise in potential which then rapidly declines. The depolarization
also causes voltage-gated sodium channels in the vicinity along the axon to
open, resulting in the action potential propagating along the membrane. Source:
(Wikipedia, 2017)

ation and function, the brain and spinal cord typically interact with the envir-
onment through the peripheral nervous system to handle the following tasks:

• Receive information from the environment through sensory organs and
the peripheral nervous system (PNS). Sensory organs are specialized nerve
cells, detecting changes in the environment or within the body. These
specializations take quite different forms, for example free nerve endings
detecting nociception, defined as a sensation that signals harmful or poten-
tially harmful stimuli (Sherrington, 1923). From the sensors, information
is conveyed to the CNS by the PNS. In the CNS, this information may be
used directly in reflexes, e.g. activating a muscle through a motor neuron
or/and be passed on to higher structures in the CNS, such as primary
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sensory cortical areas.

• Integrate the received information by comparing it to current state and
memory of past events. Depending on which types of memories that are in-
volved, different parts of the CNS are involved in the storage and retrieval
of memory; episodic and spatial memory typically involves hippocampus
(Burgess et al., 2002; Moser et al., 2015), while emotional memories (espe-
cially fear) involve the amygdala (LeDoux, 2003), and procedural memory
involves striatum of the basal ganglia (Barnes et al., 2005). The cerebellum
is maybe one of the most striking examples of a feed-forward mechanism
within the central nervous system where sensory inputs are used to, among
other functions, fine-tune motor function. Another important regulative
area of the CNS is the hypothalamus, which regulates autonomic and hor-
monal response to keep homeostasis, for example temperature regulation.
Due to the hypothalamic connections with for example amygdala, this in-
volves memories of past events (LeDoux, 2003). Also, the many different
modalities of sensory input, like vision and somatosensory input needs
to be integrated into a common experience, which typically take place in
association areas like for example parietal association cortex.

• Coordinate a response. Many observed functional relationships between
the areas and cells initiating and governing higher functions are hierarch-
ical in nature, for example in motor control coding for movement direction
of limb (Georgopoulos et al., 1986), or the forward feedback of the cerebel-
lum and the ability of the basal ganglia to select an appropriate response,
given a certain motor and emotional state.

In order to understand information processing in the brain, for example pro-
cessing underlying pain, we need to monitor the neuronal signaling and interact
with it through investigative methods such as electrophysiology to elucidate for
example the relationship between neuronal activity in the brain or spinal cord
and behavior. This interaction may be bidirectional (O’Doherty et al., 2011).
The process of coupling the sensory and motor systems and thus bridging the
input information with the coordination of the motor response, is often referred
to as sensorimotor integration. Its importance is seen when executing a certain
motor behavior in response to specific demands of the environment, mediated
by the central nervous system at different levels (Machado et al., 2010).
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1.3 Brain machine interfaces

The information flow of the brain may be investigated using a Brain Machine
Interface (BMI), typically consisting of a set of electrodes that can measure
the electrophysiological activity of neurons. The related, but more specific term
Brain Computer Interface (BCI), refers to interfaces between nervous tissue and
an external device (a computer) allowing for bidirectional communication. Sig-
nals can then be extracted from the brain to control a device or the brain may
be subjected to stimulation in order to induce neural activity. In therapeutic
settings, the latter may be performed by adapting deep brain stimulation (DBS)
to simultaneously recorded field potentials in patients with Parkinson’s disease
(Little et al., 2013). Although BMI is a more general term, including neuro-
prosthetic devices to compensate for loss of function, the terms are often used
interchangeably. BMI in the more general sense refers to various kinds of in-
terfaces that connect to the brain, even chemical interfaces interacting through
detection and/or release of transmitter substances or a combination of chemical
and electrical interfaces (Bellin et al., 2014).

Electrophysiology concerns the measurement of physiological processes of the
body using electrodes, which thus could be used as a BMI. For neurophysiolo-
gical purposes electrodes may be either non-invasive, placed on the scalp to
record electrical activity (EEG, Electro-Encephalogram), or invasive (Lebedev
and Nicolelis, 2006), inserting electrodes into brain or spinal cord.

EEG has been available since the 1920s when it was introduced by Hans Berger
(Berger, 1931). Since then, EEG has been used in clinical settings for suc-
cessfully diagnosing different neurological diseases such as epilepsy and sleep
disorders. It has also been used for direct neural signal processing in some BMI
applications, where it has had limited success (Farwell and Donchin, 1988; Spiga
et al., 2006; Sutter, 1992; Wolpaw et al., 1991; Kennedy et al., 2000; Hinterber-
ger et al., 2003). Although its non-invasive nature makes it attractive due to
the limited risk of complications, the main problem with EEG is the lack of a
fine grade of activity measure, especially for single neurons; the EEG signal typ-
ically reflects activity in an underlying volume of a couple of cubic centimeters,
in which millions or even billions of neurons may be located.

Microelectrodes placed inside the CNS, on the other hand, are able to capture
single neurons, but lack the overview that EEG provides, see Table 1. In or-
der to record action potentials, electrodes must have the suitable properties,
for example with regard to impedance for relevant frequencies (usually 1 kHz
(Williams et al., 2007).
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Table 1: Time and space resolution for various BMIs. (fMRI=functional Magnetic Reson-
ance Imaging, MEG = Magneto EncephaloGram, VSD= Voltage Sensitive Dyes,
EEG = Electro Encephalo Gram, ECoG = Electro Cortico Gram, MEA = Multi
Electrode Array).

BMI Maximum
sampling rate

Spatial resol-
ution

Scale

fMRI 10 Hz 1 mm3 Whole brain
VSD 500 Hz Single cells Cortex area
MEG 1 kHz 2-3 cm Whole cortex
EEG 100 Hz 2-3 cm Whole cortex
ECoG 1 kHz 1 cm Cortex area
Extracellular electrode 32 kHz 0,01-1 mm Invidual neurons
Patch Clamp 32 kHz 1 μm Parts of neuron

Correlating single unit recordings to observed behavior started to some extent
through the pioneering work of Fetz and coworkers in 1969 (Fetz, 1969), who
showed, by using a reinforcement protocol, that a monkey could learn to con-
trol the firing of a single neuron in its own brain. Since then, the field has
developed, for instance by Georgopolous studies in the 80s (Georgopoulos et al.,
1982, 1986, 1989) that demonstrated how a population vector of neurons to-
gether encoded the movement directions of an arm. During the last couple of
decades the field has grown with many breakthroughs, including for instance
reconstruction of more complex movement, such as following a spiral traject-
ory, from a neuronal population coding (Schwartz, 1994), the general feasibility
of real time control of robotic arms using multi-electrode-array (MEA) record-
ings of cortical neural activity (Wessberg et al., 2000), and, more recently, a
robotic device allowing advanced arm and hand movements has been success-
fully implemented in tetraplegic subjects (Velliste et al., 2008; Hochberg et al.,
2012; Gilja et al., 2012; Collinger et al., 2013). This development has depended
partly on the identification of important principles of motor control, revealed by
neurophysiological investigations of neural activity in awake, behaving animals
(Monfils et al., 2005), and partly on advances within the field of robotics (Vel-
liste et al., 2008). The development of BMI has led to many clinical uses; they
have successfully been used to alleviate symptoms of Parkinson’s disease (Bena-
bid, 2003) and treatment-resistant depression (Mayberg et al., 2005). They have
also been used as a tool for paralyzed and tetraplegic (Hochberg et al., 2006)
patients to communicate. However, their most fundamental scientific benefit
may be the valuable information they provide about how the brain is working,
tapping into its live information flow.
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1.3.1 Challenges of invasive BMI

When electrodes are implanted invasively, an acute inflammatory tissue response
quickly occurs due to the injury caused. This acute reaction often subsides
within 1-2 weeks, after which the implants gets encapsulated These responses
are mediated to a large extent by different types of glia cells, which are activated
by even the slightest pathological change in the CNS, e.g. in inflammation and
trauma (Schouenborg, 2016; Kreutzberg, 1996). By interacting with each other
through inter-cellular signaling, they form a network of cells within the CNS
clearing debris and guiding tissue repair. Their specific response to trauma de-
pends on many factors, e.g. electrode material, insertion method and anchoring
method. The Utah Array (Maynard et al., 1997) was one of the first MEAs
to be adapted, later also for use in humans (Hochberg et al., 2006), however it
affects neural tissue severely (Polikov et al., 2005). The resulting tissue response
has been shown to typically increase impedance over time after implantation,
peaking at around 7 days (Williams et al., 2007), and then diminishing. Given
that the tissue responses not only results in substantial loss of neurons nearby
the implanted electrodes but also the isolation of electrodes from the neurons,
much efforts are currently focusing on how to reduce them to a minimum. From
systematic studies in our and others laboratories it is known that flexible mater-
ials elicit less tissue response than rigid (Köhler et al., 2015), that electrode size
matters, larger electrodes (200 μm) induce larger tissue reactions than smaller
(50 μm) (Thelin et al., 2011) and that the specific weight of the electrodes should
be close to that of the tissue (Lind et al., 2013). By using highly biocompat-
ible embedding gelatin materials tissue responses can be further reduced (Lind
et al., 2010; Köhler et al., 2015). It can therefore be anticipated that these can
be brought to a minimum in the future.

Other than biocompatibility, what is currently holding back the recording of
thousands of neurons? In addition to the general complexity of the number of
neurons and possible recording sites, there are a number of issues that need to
be addressed as they severely limit the information yield. A crucial issue con-
cerns that electrodes may move in the tissue, resulting in changes in the shape of
the action potential. A recorded potential will typically have different shapes at
different positions in 3D space (Einevoll et al., 2013). For this purpose, methods
for tracking spikes over time using various measures have been developed as a
workaround (Bar-Hillel et al., 2006; Dickey et al., 2009; Fraser and Schwartz,
2012). In addition, methods to anchor electrodes in the tissue have also been
devised with promising results (Agorelius et al., 2015). If perfectly biocompat-
ible electrodes which can be stably positioned in the neural circuits existed, we
could find ourselves in a situation where the information yield would increase

8



dramatically, resulting in an explosion of neuronal data that must be organized
properly. For example, we will need to find solutions to store and integrate data
from different sources, ranging from individual electrodes to groups of MEAs
with many thousands of electrodes.

1.4 Neuroinformatics

As outlined above, MEA recordings provide the possibility of recording the
activity in a large number of neurons over long periods of time, resulting in a
daunting amount of data that need to be integrated and organized. Moreover,
the large amount of data by no means provides an automatic understanding of
what the activity signifies or how it relates to different aspects of behavior. To
address these two aspects, one needs neuroinformatics, an interdisciplinary field
employing methods and approaches from computer science, information systems,
and integrative biology to identify, analyze, digest, simulate, and compute neur-
oscience data (Polavaram and Ascoli, 2015). In such a role, neuroinformatics
support neurophysiological research by enabling data to be organized and ana-
lyzed. If data is to be truly interacted with in real time, i.e. feed it back to the
subject for stimulation, functions of the nervous system need to be mirrored in
the neuroinformatic system. This means that data is received, stored, compared
with previous feedback, and a response to the recording subject is coordinated.
There is thus a need to clarify how this may be achieved. Specifically, we need to
refine how to efficiently store, integrate, analyze and share electrophysiological
data from different sources.

1.4.1 Electrophysiological BMI signal types

As one of the most basic forms of data from a BMI, the activity deemed to come
from one single neuron is labeled single unit activity (SUA). In order to separ-
ate it from unsorted multi-unit activity (MUA) from many cells, and SUA of
other cells, the thresholded waveforms are sorted according to some criteria, e.g.
waveform shape and amplitude, in a process referred to as spike sorting. The
standard way is to calculate principal components for the waveforms, so called
principal component analysis (PCA), project the waveforms onto a “feature
space” comprising the first three principal components, and perform cluster-
ing in this feature space (Lewicki, 1998). This clustering may be performed
manually, using spike sorting tools, or automatically, using different clustering
algorithms. The result is discretized as a series of timestamps (each indicating
occurrence of one spike) with corresponding waveforms. Once this has been per-
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formed, classification is usually a very fast operation (typically involving a linear
transformation) and may be performed in real time. A fundamental requirement
to be able to identify spikes from a single unit and thereby to be able to monitor
the single unit activity (SUA) is that time between consecutive spikes does not
violate the refractory period of a single neuron; a neuron is limited by the nature
of the action potential generation to fire too often (the sodium channels become
inactive for a certain time, typically slightly more than 1 ms). This may be used
for judging the quality of a spike sorting; if the percentage of violations is greater
than a specific threshold ratio (typically chosen to be 0.1-0.2%), the identified
“unit” is in fact probably composed of more than one unit. Multi-Unit Activity,
MUA, is collected from the higher spectral range of the recorded signal, typic-
ally 600-6000 Hz. The filtered signal is then thresholded, i.e. all waveforms that
cross a voltage level, are considered to be the MUA. The threshold is usually
chosen to be significantly higher than the channel noise (four standard devi-
ations is usually considered reasonable (Quiroga et al., 2004)). The time where
each waveform crosses the threshold (in one direction) is then defined to be the
timestamp of that MUA waveform, resulting in a series of timestamps. As a
complement to unit activity, local field potentials, LFP may be measured. They
are collected from the lower spectral range of the recorded signal, i.e. 1-300 Hz,
in contrast to the unit activity. It is widely assumed that they reflect dendritic
synaptic - i.e. input - activity to a number of closely situated neurons. This
in turn reflects the activity of local neurons in vicinity of the electrode. As
the dendritic input is received in one end of the neuron, the neuron becomes
a dipole (Nunez and Srinivasan, 2006). The local field potential could be con-
sidered the sum of these dipole fields for many neurons (Einevoll et al., 2013).
If they are signaling in synchrony, this will thus be reflected as rhythmically oc-
curring LFP. Furthermore, this synchrony may occur between different parts of
the brain, reflecting functional connectivity between them (Engel et al., 2001).
Although LFPs are considered to contain less information than unit recordings
they provide some complementary information (Bansal et al., 2012).

1.4.2 The electrophysiological information flow

These different types of electrophysiological data (SUA, MUA and LFPs) typ-
ically have the following information flow:

• Subject - The data is recorded as a potential at the electrode. Depending
on impedance, it might pick up different qualities of the electrophysiolo-
gical signals generated by the neurons. Separate stimulation electrodes
may also be utilized for providing feedback to the subject.
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• Acquisition system - integrates data from one or more headstages (which
handle amplification and analog filtering of the signal) and performs di-
gital filtering, typically dividing it into the lower frequency LFP content
and the higher frequency part containing spiking data. The spiking data
is then thresholded and eventually sorted resulting in MUA and SUA (see
above for more details). The acquisition system may also receive requests
to initiate stimulation protocols from the neuroinformatics system.

• Local neuroinformatics system - integrates data from one or more ac-
quisition systems into a data storage. It also analyses data and eventually
sends requests to any of the connected acquisition systems for initiation
of stimulation protocols for the recording subject.

• Remote neuroinformatics system - integrates data from one or more
local acquisition systems into a data storage. This typically concerns off-
line analysis, such as post-experiment data exploration, but could also
concern real time integration.

1.4.3 Data integration - transfer and sharing

In science in general, for example astronomy and physics, much of the progress
is due to the ability to share recorded data between scientists. Yet, the import-
ance of data sharing in neurophysiological research is less clear. Nevertheless,
the past decade has seen increasingly many initiatives to enable sharing of elec-
trophysiology data to a remote neuroinformatics system. However, there are
challenges to convey both the data itself and metadata such as the experimental
setting to other research groups. Metadata may be different and unique to an
experimental setting (Zehl et al., 2016), data may be saved in arbitrary file
formats, which are not directly compatible with each other, and a means to
transfer the data in a structured way to collaborators may be lacking. This has
been addressed in different ways:

• Central data repositories - the user submits data to a central data
repository, hosted by a server providing upload capability and a reserved
physical data space, in which one may choose to share the data with other
neuroscientists. To date, the CARMEN project has been one of the more
successful projects in this type of integration, with data from over 100
neuroscientists (Smith et al., 2007). There are also other initiatives, but
to date they have not attracted as many users to submit data to their
repositories (Gardner, 2004)
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• Defining common languages for exchanging data, for example de-
fining Extensible Markup Language (XML, a markup language for data
exchange in a human readable format) schema definitions, such as Genie
(Gardner et al., 2002)

• Defining common storage formats, such as database schemas, thereby
achieving a common base of information (Gardner, 2004; Garcia and Fourcad-
Trocmé, 2009)

Because of the challenges involved, most data sharing occurs within research
centers, as experimental settings and electrode types differ too much between
research centers for data sharing to be successful. At a research center, where
there may also be acquisition systems from different vendors, there is a need
for an integrated, but localized analysis tools framework, rendering the cent-
ral data repository approach unfeasible. Furthermore, many research centers
develop new analysis tools, requiring access to the data through high-speed
local networks. Some of these tools act on real-time data and may in a Brain
Machine Interface (BMI) application provide control of an artificial device like
a robotic prosthesis based on analysis results of this data; a procedure which
further renders the batch oriented federated approach impractical for some ap-
plications, even though a portal may serve as a valuable repository for data.

1.4.4 Object models

Electrophysiology data has a certain hierarchical structure; an experiment is
composed of one or more recordings, each of which is composed of data from
one or more electrodes, forming a structured data model. Object oriented pro-
gramming (OOP) refers to the concept of structuring data into objects, which
may contain data in form of fields as well as methods with code to handle
the data. Early efforts include introduction of specific objected oriented pro-
gramming languages such as Simula (Dahl and Nygaard, 1966) and Smalltalk
(Goldberg and Robson, 1983). In the early 90s, the “Three Amigos”, Ivar Jac-
obson, Grady Booch and James Rumbaugh, joined efforts as part of Rational
Software in order to develop a unified approach for object oriented analysis and
design (OOAD), commonly referred to as the highly influential Rational Unified
Process (Rational Software, 2011), which provides a structured approach for
constructing an object model from higher level requirements. Design patterns
(Gamma, 1995) refers to the concept of reusing specific ways for this construc-
tion, i.e. to structure software object models and relationships in order to solve
a commonly recurring design problem. To store objects persistently, the most
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used technique has been relational database management systems (RDBMS).
Yet, this is not without problems, since the object model is not directly trans-
latable to the RDBMS entity relationship (ER) model (Codd and F. 1970), as
the latter lacks corresponding ways to model for example inheritance and meth-
ods. In electrophysiology, there have been some efforts to design objects models
with persistence, such as Neo for Python (Garcia et al., 2014).

1.4.5 Lack of common data formats

Although data may be well structured within a single recording, there may exist
many different data formats in a project, for example if using equipment from
different manufacturers, which then have to be translated between each other in
order to allow comparison of data. Currently, many of the manufacturers have
developed their own data formats. These formats fulfill current requirements in
electrophysiological research, for which they have been designed. For tomorrow’s
research and potential clinical applications with as much as millions of neurons
simultaneously recorded, mechanisms for integrating this data across different
channels have not yet been implemented; the user has to resort to individual
analyses per channel.

In order to stimulate data sharing, there have been some initiatives defining a
common data format (Teeters et al., 2015; Smith et al., 2007), although none to
date have found neither commercial nor academic traction. Some of the more
successful and more widely used data models have applied principles of adapting
data such as Neuroshare (Bergel et al., 2011) and Neo (Garcia et al., 2014).These
can handle the offline translation between different formats, but do not work
online.

1.4.6 Organization for faster access

After having been successfully stored in a data structure, data must be analyzed.
This includes algorithmic interpretation of the data to detect signal patterns and
their correlations between each other and to observed physiological phenomena.
However, this task is difficult, especially in the setting with many electrodes.
In order to study spectral content, frequency analysis using Fourier transforms
has been of great help. Most modern EEG analysis software often house these
operations, however not always in real time. For example, EEGlab (Delorme
and Makeig, 2004), Chronux (Bokil et al., 2010), Fieldtrip (Oostenveld et al.,
2011) and OpenElectrophy (Garcia and Fourcad-Trocmé, 2009) enables such
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analysis, of which the three latter deals also specifically with extracellular elec-
trophysiological recordings. Commercially there are many different tools for
offline analysis, such as for example Neuroexplorer. Most of these offline tools
do quite well with fairly large number of electrodes, but most are not construc-
ted for fast analysis of larger datavolumes (> 10 000 electrodes), and cannot
integrate from more than one system at a time.

1.4.7 Closing the data loop - real time interaction

For success in rapid analysis, data has to be structured to facilitate this process
both during and after recordings. When considering large scale electrophysiolo-
gical recordings, some type of compression or data reduction is needed to in-
teract with the data in real time. In computer science, real time computing,
RTC, refers to the concept that hardware and/or software is subject to time
constraints for the computer responding to an input (Ben-Ari, 2006). The exact
time depends on the application domain, but is usually within the range of a
fraction of a second.

Electrophysiological real time analysis is often divided into open-loop and closed
loop. Open-loop refers to recording from a subject, and either analyzing in real
time or offline, but not using the received information for feedback back to
the subject. The definition of real time varies, but is generally expected to be
within milliseconds of the recording instant. The results from the analysis in
an open-loop setting are however not relayed back to the subject but may be
presented to the experimenter directly. In closed loop systems, a stimulation
pattern is fed back to the subject based on the result of the analysis of the
recorded signal. Most of the closed loop setups that have been implemented to
date are for single cell patch-clamp recordings such as LCG (Linaro et al., 2015)
and RELACS (Benda et al., 2007). However, there is promising progress into
real time closed-loop initiatives (Siegle et al., 2017), which currently cover MEA
as input and then providing feedback to subject, including claims of hardware
in development capable of closed-loop interactions with around 1000 channels or
possibly slightly more. However, if recording from a larger number of neurons,
this may not be sufficient; development of electrodes will allow for both increased
number of simultaneous electrodes (Schwarz et al., 2014) as well as more stable
recordings. This will result in better yield in terms of mean number of neurons
recorded per electrode (Agorelius et al., 2015).

In line with these developments DARPA (U.S. Defence Advanced Research Pro-
jects Agency) issued a program in Jan 2016 called NESD (Neural Engineering
System Design, see URL:
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https://www.darpa.mil/program/neural-engineering-system-design).
This program aims to develop an implantable neural interface able to provide
advanced signal resolution and data-transfer bandwidth between the brain and
electronics. Specifically, the program aims to develop a BMI with over one
million neurons. Apart from the challenges in electrode development, as noted
above, the main neuroinformatics challenges of such an undertaking are mainly;
1) the size of the data is difficult to handle, 2) data needs to be integrated so that
analysis across all recorded neurons may be performed and 3) current systems
may perform the recording task in parallel, but lack a mechanism to integrate
to a common memory area when recording from larger number of neurons.

Recording from a single electrode is usually performed with a 32 kHz sampling
rate, resulting in a data acquisition rate of 32kB/s per electrode. With two
neurons in mean per electrode assumed (a rather optimistic assumption, but
with quality electrodes, it may be possible), this results in 16 kB/s per neuron.
The amount of data required to record one million neurons would be 16 GB/s.
Recording for 24 hours would result in 3600 * 24 * 16 GB = 1 382 400 GB or 1
382 TB if storing the raw data as it is. With today’s storage technologies, and
also for a foreseeable near future, the storage of a single 24 h recording would
thus be unfeasible unless direct local access to large data centers is available.
Clearly, some type of compression and carefully considered data organization is
needed.
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2 Purpose

The purpose of this thesis is to develop a neuroinformatics architecture and
data encoding in order to meet current and foreseeable future needs to integrate
and organize data from millions of neurons in a way that enables real time
interaction.
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3 Aims

• Accomplish a concept for integration and organization of data from dif-
ferent data sources

• Validate the concept in an authentic neurophysiological setting

• Accomplish efficient storing of data from one million neurons or more in
real time (<25ms)

• Enable real time analysis of data which in turn enables for instance feed-
back, based on feature extraction and pattern matching
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4 Method

4.1 Data sources

The data in this thesis comes from chronic recordings with invasive electrodes
implanted in awake, freely moving rats and from computer simulations.

4.1.1 Chronic recordings

In paper II, a microwire array electrode was built in house. The array con-
sisted of 29, 12 μm platinum-irridium wires insulated with parylene C (Parat-
ech, Järfälla, Sweden) and embedded in gelatine type A (2% Sigma-Aldrich Co,
Saint Louis, MO, USA) for optimal stiffness during implantation into the cortex
(Lind et al., 2010). Seven rats were anaesthetized i.p. with 6.3 mL/kg solution
of 1 mg/mL Domitor vet (medetomidin hydrochloride; Orion pharma, Turku,
Finland) and 50 mg/mL fentanyl (Braun, Aschaffenburg, Germany), mounted in
a stereotaxic frame and implanted with a microwire array electrode in primary
somatosensory cortex (S1).

Some of the data that was later published in paper II was also used in Paper I.

4.1.2 Simulations

In paper III, we developed a software test suite emulating an acquisition sys-
tem in Python https://www.python.org/ (with critical parts precompiled in
Cython (Behnel et al., 2011)). This allowed us to vary the number of neurons,
run parallel sessions and simulate additional systems (in our tests with a fixed
number of 320 000 neurons per system), which were all simulated on a single
computer with standard hardware (see specifications below) and sent over a
local area network, or simulated on the same computer as the data was stored.
The test suite did not limit the sampling rate to the typically expected maximal
rate of 1000 Hz per neuron, but rather sent data as quickly as possible. If the
system was able to handle at least 1000 Hz per neuron, it was considered to
be successfully able to store the data that may be obtained in a real physiolo-
gical setting. No “new” neurons were created during testing, although the data
format supports it (see Results). Data integrity was ensured by using TCP
(Transmission Control Protocol) for transmission as well as checking for data
size of each transmitted frame. Spike trains were generated to correspond to
an encoded array of integers in sequence (e.g. array of 1001 at time T, array
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of 1002 at time T+1, array of 1003 at time T+2, etc.), interrupted by events
corresponding to firing simultaneously (array of integer (232-1)=4294967295).
Although this exact pattern is unlikely to observe in a live recording, it allows
a demonstration of the capability of the system to detect a given firing pattern.

Ordinary off the shelf hardware was used both for storing and analyzing the data,
as well as for generating the simulated data. A dedicated HP Proliant HL350E
Server with Ubuntu Linux 15.04, 16 GB RAM memory, dual Intel XEON Quad
Core 2.4 GHz processors and a single HP Solid State Drive was used as the server
integrating, analyzing and storing the data. A 10 GBit/s Ethernet network
using copper cabling was used for network transfers. The simulated data was
generated by a HP z400 workstation with 12 GB Ram memory and dual Intel
XEON Quad Core 2.4 Ghz processors. The data from longitudinal tests was
stored on a 2TB Samsung NVMe SSD 960 PRO Solid State Drive.

4.2 Data information flow - management of electrophysiological
data

After recordings or simulations, data was stored as part of a data information
flow, as outlined previously in the Introduction. The focus of the different papers
was as follows:

• Paper I addresses local and remote storage of data, which allows for offline
data sharing and structuring.

• In paper II, the storing and structuring of data is applied to a neuro-
physiological setting and is used to facilitate offline data analysis.

• In paper III, an architecture and data format is presented for both storing
and structuring data offline as well as in real time. Our specific solution
allows for extremely fast data analysis as well as feedback – based on this
analysis – to the recording subject.

4.3 Readouts of pain (II)

Most common animal models of pain and analgesia are based on indirect meas-
ures such as nocifensive behaviours, which cast doubt if they provide valid
measures of pain perception as such. To address this issue, authentic neur-
onal data was obtained in paper II from a new animal model of pain, compris-
ing a more direct readout, including both evoked potentials as well as spiking
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data from individual neurons, via chronically (> 1 month) implanted MEA in
rat primary somatosensory cortex (S1, which is known to be involved in pain
perception in humans). Spike sorting was performed using a fully automatic
k-means based approach supplied by the Fieldtrip toolbox (Oostenveld et al.,
2011). The readouts was compared to commonly used behavioral measures of
pain during development of hyperalgesia. A translational method to induce
hyperalgesia, UVB irradiation of the skin, was used. Localized CO2 laser stim-
ulation was made of twenty skin sites (20 stimulations/site/observation day)
on the plantar hind paw, before and during the time period when enhanced
pain perception is reported in humans after UVB irradiation. In this work, the
database structure developed in paper I was used in order to store the recorded
data for later analysis offline. MySQL (https://www.mysql.com), a standard
database software freely available as open source, was used as database. MAT-
LAB (https://www.mathworks.com), a proprietary programming language and
development environment focused on data analysis, was used as programming
language for the data processing.
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Figure 3: Milestones and deliverables (articles)

5 Results

In order to achieve the aims of this thesis and further progress, the following
milestones were defined (see Figure 3):

1. Define a database infrastructure for offline analysis and allow for data
sharing.

2. Implement database for offline analysis in a neurophysiological research
project in awake freely behaving recording subjects.

3. Refine data structure and define a data format for real time data inter-
change, based on experiences in the implementation.

4. Validate database and data format using simulated data.

5.1 Data sharing infrastructure (I)

Using a database to store data is often sufficient in order to organize data, but
to increase the feasibility for meaningful data sharing, between scientists at the
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Figure 4: Point-to-point connection architecture vs. service bus architecture of an analysis
application. Instead of constructing translators between all different applications,
just one common language has to be defined to which the different applications
transform their data, thereby reducing the integration effort, as translation only
needs to be done once for each entry of data into the service bus. In the
point-to-point case, data would have needed to be translated at every time of
communication between different systems. Figure from paper I

same research center or between research centers, some additional mechanism
for data integration is required as it is often impractical to transfer an entire
database. Furthermore, while a common language is likely to be of importance
for a total integration system, it does not automatically provide a full solution,
since each application would have to use an interpreter for the common language.
In commercial systems, such as supply chain and customer relationship manage-
ment, the challenge of integrating various systems, many by different vendors,
is well-recognized. Some of the principles and common solution patterns in
“Enterprise integration patterns” (Hohpe and Woolf, 2004), may potentially be
applied also to electrophysiology.

In paper I, it is proposed that such an Enterprise integration pattern, a “Service
Bus” architecture, may be used for integration of different types of data(see
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Figure 4), using a service oriented architecture (SOA) interchange of a common
object model through web services. This is referred to in paper I as Core Classes,
the language of integration, as data is translated to this intermediary format.
Such an architecture forms an electrophysiological service bus, in which the data
is translated upon each entry to the neuroinformatic system, see Figure 4. This
provides a means for local integration at the research center level, but also the
possibility to add interfaces to global data repositories. Data is recorded and
then shared after the recording has been finished, resulting in sharing of offline
data. This is different to real time or online which, in an electrophysiological
context, means the ability to process data within 25 ms. In paper III data
sharing was extended to be performed within the limit of this definition of real
time, as the bit-encoded data format permitted more efficient interchange of
data.

5.2 Analysis infrastructure - objects models - (I,II)

The object core data structure of paper I was implemented both as MATLAB
objects and as different entities of the database, a relational database in MySQL.
They are a part of a implementation of abstract factory and decorator design
patterns (Gamma, 1995) in order to cope with integration of data from different
sources into one data model; the abstract factory pattern provides a way to
encapsulate (restricting access to) a creator class (a class that creates other
classes), a factory, without specifying concrete classes, while the decorator allows
for adding behaviors to an individual object without affecting other objects of
the same class, see Figure 5. The base classes of this core data structure form
a tree composed of the following entities from root to leaves :

• Subject - the subject for electrophysiological investigation

• Experiment - a set of recordings, from the same or different animals,
with the purpose of answering a research question

• Recording session - the different recording sessions performed on the
subject in time

• Electrode - the individual electrode recording an electrophysiological sig-
nal

• Event - (at the same level as Electrode) a discrete event of any kind in
time, e.g. onset of a behavior or application of a stimulus

• Unit - The neuronal unit of a recording, as identified by spike sorting.
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Figure 5: The decorator design pattern UML (Unified Modeling Language, a graphical
representation of a software structure) class diagram. The core classes at the
bottom left are the classes that represent fundamental data structure of electro-
physiological entities. Black diamonds denote a composition relationship, while
open diamonds denotes aggregation. They implement the abstract super-class
SpiketrainAnalysisComponent which is connected to a SpiketrainAnalysisDecor-
ator abstract super-class. This class is inherited by different concrete subclasses,
of which two examples are provided here, corresponding to results of the analysis.
The result is a decoupling of the analysis data from the Core Classes.

This core data structure was applied in an authentic neurophysiological setting
in paper II, enabling grouping and selection of data, for example finding all
recordings made at the first day after UV-stimulation.

5.3 Data format for neuroscientific data (III)

When recording with many electrodes and from many units simultaneously,
there are several reasons why it is important that data is integrated in the same
memory area, i.e. so that all of the data may be accessed and used in one
computation simultaneously. In this way it is possible to process data from
all electrodes at the same time, so as to look, for instance, for complex spa-
tiotemporal signaling patterns involving all different structures recorded from.
However, such a multi-structure integration is usually not possible, since the
computer system that is collecting the signals usually can handle only a lim-
ited number of operations in a certain time, for example online spike sorting.
Instead, data is recorded to be analyzed at a later point in time in separate
files. However, in order to store all the neural data in a common database
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one has to overcome the challenge that many data formats and databases do
not support true parallelism. In other words, data cannot be written to a
data structure by multiple processes in real time, especially if considering the
amounts of data that is yielded by parallel MEA recordings. A software archi-
tecture adequate for this context should be able to take advantage of a multi-
processor or multi-core CPU (Central Processing Unit of a computer), where
each processor or core may run its own piece of code separately, but cooper-
ating across a common memory area. An MPI, a message passing interface,
addresses this problem by establishing a standard for communicating among
different processes, both point-to-point as well as collective communication is
supported. To meet this challenge of these processing requirements, during the
development of this thesis, many different formats were systematically tried out,
including relational databases, flat files and different acquisition system vendor
data formats. After considerable and time consuming evaluations and testing,
it became evident that in order to handle the large amounts of data required or
expected, most of them would not suffice, as they could not handle the parallel
I/O (Input/Output) required to support distributed recordings. The final suc-
cessful candidate, HDF5 (https://www.hdfgroup.org), is a data format that
has gotten increasing attention in various biomedical applications (Dougherty
et al., 2009; Mouček et al., 2014; Hanuma Chaitanya et al., 2014; Teeters et al.,
2015), including in Neuroscience. HDF5 supports a large variety of data types,
and is designed for flexible, efficient and parallel (with special MPI support)
I/O also for complex data, including high dimension data. Furthermore, the
support for a large number of high-level languages, such as Java and Python, is
quite appealing, since it enables the data format to be used also in more com-
plex projects. The complexity of the software would be difficult to build using
a lower level language; alternatives such as pure C and C ++ were discarded as
they were deemed to take too much time to implement the desired features in
often needing more extensive development efforts to result in a stable program,
although attractive due to performance as fairly low level languages. Python is
a script-language that has powerful expressional possibilities. Combined with
precompilation using Cython, it also has the performance capabilities required
to process large amounts of data, as shown in paper III. It also has excellent
support for HDF5, due to the h5py library (Collette, 2013), which also supports
parallel Python programs writing to the same HDF5 file. During discussions in
the Electrophysiology task force of the INCF (International Neuroinformatics
Coordinating Facility, https://www.incf.org/) during 2011-2013, which the
author of this thesis was part of, HDF5 was suggested as a candidate for storing
specifically offline electrophysiology data. As a result of that discussion, but also
since the author realized the potential for online data management, considering
the solid parallel processing support, we decided to try HDF5 out as a suitable
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container format (with other more specific data-structures contained within it,
as described in the next section) for storing online data, this undertaking turned
out to be successful, as HDF5 fulfilled (and surpassed) all expected performance
requirements.

5.4 Encoding of spike data to bit code (III)

As data rate transfers in various neurophysiological applications often will be
limited due to hardware and software constraints, it is crucial to use data size as
efficiently as possible, without trading speed. For this purpose, we developed an
encoding algorithm and minimalistic data storage format, in order to allow for
rapid management of real time spiking data, as follows: Each spike is considered
as a binary event in discrete time, either spiking during that period (the length
of the time bin) of time or not, encoded as a single bit during a specific time as
part of a 32-bit integer. Regarding time resolution, due to the refractory period
of a single neuron, it is assumed that no neuron will fire with a frequency greater
than 1000 Hz. This yields an array of 32-bit integers, of length N/32, where N
is the number of neurons recorded in total at the time point (ms), see Figure
6. The array is then saved in the HDF5-file, which supports multiple parallel
encoding for different acquisition systems at different locations in the brain or
from entirely different subjects. These parallel sessions are handled by different
threads of a multiprocessor environment, which are synchronized through MPI.

The input to our system is spike train data, that is waveforms, and time of the
threshold crossing (or other time of detection, if for example a wavelet-based
detection of spikes was used). If recording a large numbers of neurons,say up to
1 million, different systems are encoding a smaller part of the total number of
neurons, although they must share a common timebase. The algorithm is then
as follows (as provided in Ljungquist et al. (2018), paper III):

1. Divide the neurons in segments of 32, each corresponding to a bit in the 32-
bit integer to be encoded. If enough neurons do not exist for a segment,
the reserve bits are set to 0. If new neurons are detected, the reserve
bits are allocated in order. A finite number of segments (N/32) are pre-
allocated in memory and file system cache, covering the maximum number
of neurons expected to be recorded during the session in each acquisition
system. If a segment is filled, a new bit segment from that acquisition
systems segments is allocated. Neurons which are not recognized to have
been identified before will always get “new” IDs. We did not reuse IDs,
but rather created a new bit group to store this information.
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Figure 6: Proposed encoding of spike data in 32-bit integer data grids. At any given time,
each neuron spike/non-spike is encoded as a binary bit (1 or 0) in the corres-
ponding time bin. The binary bits of groups of 32 neurons are then expressed
as a 32-bit integer. The 32-bit integers are then grouped together in a data
grid, where each row corresponds to a specific time bin and each column to the
activity in a group of 32 neurons.

2. For each neuron, if a spike was detected since last transfer, the bit corres-
ponding to that neuron is set to 1, otherwise it is set to 0. The result then
is a 32-bit integer.

3. Each integer in its position of the array to be sent is set to the resulting
value, yielding a N/32 length array.

4. The array, which now encodes whether the neurons recorded by the ac-
quisition system fired or not during the latest millisecond, is sent to data
storage (HDF5 file in our system) for concatenation with previously recor-
ded arrays and arrays from the other acquisition systems.

The actual encoding into a bit format is a transformation that may also be
described by the matrix3 operation A ∗B = C, where A is j x k x l matrix with

3A matrix is the mathematical concept of a rectangular array of numbers arranged in rows
and columns

27



j = number ofneurons, k = window size and l = 32, B:

[
1 21 22 . . . 2i−1 . . . 231

]

and C is a m x n matrix with m = number of neurons and n = window size.
Also, this encoding could be implemented by both CPUs and GPUs (Graphical
Processing Unit) efficiently. In paper III, the encoding is performed in less than
a millisecond for one million neurons.

5.5 Enabling storage of large scale recordings (III)

Even if data is stored in a structured way such as object orientation, any refine-
ment of the object structure has to be traded for speed; inserting objects for
every single data point might result in a slowly responding system due to the
complex structure. One way to go around this is to store binary items of time
series data in so called BLOBs, binary large objects, a common way of storing
data in larger pieces. However, in a BLOB, performance drops with data sizes
over a couple of megabytes (Stancu-Mara et al., 2014), which was also our ex-
perience during the implementation of paper I and II. Using relational databases
in data intense real time applications is thus not feasible, although it might be
fine for offline applications. In paper III we developed, therefore, a multith-
readed software architecture using precompiled code for increasing speed, which
was capable of storing data from millions of neurons simultaneously, integrating
data from different acquisition systems and performing analysis of data across
channels. The results yielded a capability of storing data corresponds to storing
data of 3.2 million neurons in real time, see Figure 7. As a part of the perform-
ance investigation, the most powerful configuration was found to be integrating
from different remote systems over a 10 GBit Ethernet, in contrast to integrat-
ing from a local system (handled by one computer), thus confirming the benefits
of a distributed architecture for a BMI neuroinformatics system, comprised of
many subsystems collaborating to produce data in a common data structure.

The data encoding and format vas validated through a process in which the be-
fore transmission and encoding was randomly pregenerated, with same random
data for each message of 20 bins, except for every 40th message, starting with
the 21st, where in bin 0 (out of 20) of the message, all bits of the integer are set
to spiking. In the HDF5 file, which integrates from different sources, this may
be observed in bin 420 and every 800th bin thereafter.
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Figure 7: Boxplots of throughput in samples/s as a function of number of neurons for a
simulation with data A) from a single system generating data locally, B) from
a single system sending data over 10 GbE LAN. Throughput in samples/s as a
function of number of systems C) from an increasing number of systems generat-
ing data locally, D) from an increasing number of systems sending data over 10
GbE LAN. For C and D the number of neurons were fixed at 320 000 /system.
Boxplots are constructed with a 95% confidence interval. The blue dashed lines
show the samples per second corresponding to the theoretical limit from the test
success criteria with the sampling rate of 1000 Hz per neuron, which, as may be
seen, the tested architecture is well above.

5.6 Comparison between cortical readouts and behavioral tests
(II)

Paper III provides means to immediately process and access data, for example
in visualization, plotting and pattern recognition of data, by providing the data
structure. During the analysis of the evoked potential and spiking data from
paper II, the analysis process was sometimes hindered by slow access to data,
for example in grouping and plotting of data, that a data structure provid-
ing faster access to data would be more beneficial to the analysis process. As
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some of the recordings were also discovered to have relatively low quality, online
analysis directly during the acquisition of the neural data would have been bene-
ficial to allow corrections of the recording, for example directly during electrode
implantation, such as with the software architecture developed in paper III.

In paper II, we demonstrate a 2–10 fold significant enhancement of cortical
activity evoked from both irradiated and adjacent skin. The time course cor-
responded to previously reported enhancement of pain magnitude during de-
velopment of primary and secondary hyperalgesia in humans (Gustorff et al.,
2013). In contrast, withdrawal reflexes were only significantly increased from
the irradiated skin area and this increase was significantly delayed as compared
to activity in S1, which had an earlier peak in both potential and neuronal data.
The present findings thus give direct evidence that, provided an efficient data
handling system is used, chronic recordings in S1 in awake animals can offer
a powerful translational model of the perception of pain magnitude during hy-
peralgesia, with a potential also for real time evaluation, especially if combined
with the data format and system architecture from paper III.
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6 Discussion

6.1 Highlights

In this thesis, a novel data format is presented that allows, for the first time,
integration and organization of electrophysiological data, not only offline, but
also in real time, making possible extremely fast online analysis and closed loop
feedback. Due to its highly efficient encoding, this format enables fast storing,
transferring and analysis of data from millions of neurons in parallel, thus meet-
ing present and future neuroinformatics challenges in the use of BMI. Although
other challenges related to recording quality and stability over time remain, the
novel data format and encoding principles provide powerful research tools in
neuroscience and will also open up novel clinical applications by making pos-
sible for instance complex pattern recognition and real time interaction with
neuronal readouts, both in animal models and in clinical diagnostic or thera-
peutic applications.

6.2 Data format for real time neuronal data

The data format enables real time integration and organization of neuronal
data from a very large number of neurons. In fact, in trials on a standard
computer, we show in the present thesis that data from recordings of a couple
of millions of neurons can be handled. We also show that the data format is
both memory and performance efficient and hence the analysis capabilities are
extensive. This enables complex operations on the data, such as identifying
specific, but complex patterns of neuronal activity, either over time, in the same
set of neurons, or across different sets of neurons. Importantly, this feature
is crucial for advanced analyses of causal relationships between, for instance,
neuronal activity patterns and different aspects of motor (and other) behavior.
The performance efficiency of the data format also makes it a powerful tool
for investigating interactions in real time. For instance, if a certain part of a
specified set of neurons is active at any point in or period of time, excitatory or
inhibitory electrical stimulation may be sent back to the subject in real time,
as shown in Figure 8. In the present thesis, this has been shown to be possible,
again using a standard computer, within a physiologically relevant time, i.e.
in less than 25 milliseconds. Importantly, complex pattern recognition may
in principle be extended to any arbitrary activity pattern, such as an activity
pattern over time or activity with a specific frequency. Alternatively, specific
populations of neurons with assumed functional roles may be stimulated and
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Figure 8: Example of pattern matching, as tested in paper III, using the bit code format.
A pattern is sought, in which 4 neurons are firing, indicated by green boxes. In
the last row, it is indicated the share of how many neurons that are matching. In
the example, an observed firing pattern is deemed matching if 75% of the sought
neurons are firing in the observed pattern, indicated by a red line around the time
bin. This may then act as a trigger for a stimulation or inhibition sent back to
the subject. In paper III this type of matching was able to be performed in less
than one millisecond for one million neurons, and a signal indicating triggering
stimulation sent back within 25 ms.

changes in subsequent neuronal activity patterns or behaviors may be analyzed.

6.3 Spike train data encoding

6.3.1 Performance

When recording neuronal activity using a BMI, a spike (action potential) is
typically represented by 1) time – when the spike occurred, i.e. the time for
threshold crossing, 2) waveform shape – the potential change measured by the
electrode around the time of threshold crossing and 3) neuronal identity – which
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neuron was the origin of the measured action potential. In practice, time and
waveform shape are used to determine neuronal identity by a computational
process called spike sorting (Lewicki, 1998). A method often used for spike
sorting is principal component analysis (PCA). This allows all spikes to be
projected onto an orthogonal base of, typically, the first two or three principal
components (PC). In previous work from our laboratory (Thorbergsson et al.,
2010), it has been shown that the first six PCs account for 99% of the variance
in waveform shape. However, once the identities of the neurons have been
determined, the waveform shapes are not necessary for the analysis to be carried
out, as a given single neuron tends to have the same waveform shape over time,
unless the recording electrode is moving. Thus, with highly stable electrodes,
such as those being developed by our laboratory, time and neuronal ID are
sufficient for representing neuronal action potentials in the form of spikes.

Spike trains are usually represented with either of the following data structures:

1. A 1-dimensional (1D) array of neuronal unit IDs (as integers) for all of
the n data samples together with a 1D array of n spike times (usually
represented with float data type in microseconds since system start).

2. A binary 2-dimensional (2D) array, i.e. a matrix, of elements cij denoting
if unit j in column j is spiking in time bin i, where the time has been
binned at a specific binning frequency, usually at 1000 Hz.

Acquisition system vendors almost exclusively use the first alternative to rep-
resent spike train data. It is more efficient in memory for the total amount
of data used, especially for neurons that are spiking at relatively low frequen-
cies. By contrast, the second alternative allows for simultaneous computation
across units using matrix operations, albeit with some loss of time resolution,
since spikes are binned. Furthermore, since the only information required to be
stored in a single bin is if a neuron is spiking or not, a binary digit (0 or 1;
also referred to as bit) is sufficient to encode a spike. If using the bit encod-
ing proposed in the present thesis, in which the bits of an integer are used to
represent individual neurons, a single 32-bit integer may represent 32 neurons.
For a single spike, the first alternative above is using 64 bits (32 bits for each
integer of time and 32 bits for ID), while the second alternative is using only one
bit, thus a 64-fold performance difference in terms of storage efficiency. When
it comes to analysis, for instance to determine if a set of neurons is spiking or
not, the performance difference between the first and the second alternatives is
even greater. All that is required to determine if 32 neurons are spiking in a
specific pattern is a bitwise comparison of two integers, which in most processor
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architectures is a very fast computational operation. These factors explain the
performance efficiency of the new encoding format (see paper III), and also why
the format is so suitable for computational purposes – it simply does not need
to be converted further for computations to be carried out. This applies and
extends also to modern processor architectures such as GPUs, which due to
their suitability for large array operations may be readily combined with our
new data format to achieve unprecedentedly efficient processing of signals from
millions of neurons simultaneously (or even billions, if more powerful computers
than ordinary laptops would be used).

Considering a sampling rate for the binary 2D array with 1000 bit/s, this cor-
responds to, for the ID and timestamp 1D format, a maximum spiking rate
per neuron of 1000/64 = 16 Hz. Over this rate of firing, the 1D format is us-
ing more memory per spike. However, during for example burst mode firing of
thalamic neurons (Sherman and Guillery, 1996), or during high-frequency dis-
charges in a large number of neurons, so called neuronal avalanches, seen in cor-
tical synchronization in awake subjects (Petermann et al., 2009), the individual
neuronal firing rate may increase to many times this value. Thus, a system
based on timestamp and unit ID for spike data would not be able to cope with
the information. On the other hand, the bit format is currently more memory
intensive as compared to representing spikes with unit ID and timestamp for
firing rates below 16 Hz. It is important to point out in the present context
that during a given time bin most neurons are not spiking. This is crucial since
storing, for a large number of neurons, the instances (or information about)
when an individual neuron is non-spiking, would make the suggested bit code
format take quite a lot of space, even given its compression (each spike being
represented only by a single bit). Therefore, when storing spike trains in a bin-
ary 2D structure, as described above, it is highly advantageous to represent the
result as a sparse matrix, i.e. a matrix where most elements have the value of
zero. Sparse matrices may be stored in different ways, which take advantage of
the sparseness in order to save space. Most frequently used in arithmetic such
as matrix multiplication is the Compressed Sparse Column format (CSC), in
which values are read first by column, a row index is stored for each value, and
column pointers are stored. Despite the fact that a sparse matrix representation
was used during the encoding of the firing pattern to a bit pattern in the present
thesis (paper III), a standard matrix format was used for transmission of data
over Ethernet, as the Numpy (Oliphant, 2007) internal buffer very conveniently
and efficiently serializes the data for transfer, which then may be efficiently
de-serialized back into standard matrix format. Since HDF5 does not have a
standard format for storing data into sparse matrix format, data is stored as
non-compressed integer arrays in HDF5 data files. Although there is a data type
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in HDF5 for a string of bits, a so called bitfield (see documentation of HDF5 at
https://www.hdfgroup.org, HDF5 Predefined Datatypes), we were not able to
use it as it is not represented in the h5py interface. In future work, a specific
sparse matrix format for bit arrays may be investigated and implemented for
further increased performance, possibly also using a supplemental data format
as base in addition to HDF5.

6.3.2 Information theoretical efficiency

The proposed encoding of spike data is saving space, but the question is whether
it is also reducing information. Importantly, unnecessary information, for ex-
ample large amounts of non-spiking data, should not be transmitted. The data
format may, as a complement to the above analysis, be evaluated based on
principles of information theory, which concerns transmission, processing, ex-
traction and utilization of information, as first formulated by Shannon in his
seminal paper ”A Mathematical Theory of Communication” (Shannon, 1948).

A central concept in information theory is entropy, also called Shannon (or
Information) entropy, in order to separate it from the thermodynamical concept
of entropy. Shannon entropy measures the information degree of content (which
is not the same as size) of a signal. For a symbol composed of n number of
binary digits, also commonly referred to as bits, Shannon entropy H is defined
as:

H = −
n∑

i=1

pi log2(pi)

where pi is the probability for the i-th (of the total number of n) possible binary
value to occur. If the receiver has prior knowledge of all the values (they all
have a probability of either 0 or 1 to occur), no information is considered to
have been transmitted and the Shannon entropy is 0. If, on the other hand, the
receiver cannot predict the value of a transmitted bit to be either a 0 or a 1, pi
will be 0.5 and the Shannon entropy will have the value of 1. An efficient coding
is one where the Shannon entropy is close to 1.

Information theory has been used in neuroscience for analyzing the nature of
neural coding, for example the information contents in LFPs and neuronal spike
trains respectively (Quiroga and Panzeri, 2009), but also for investigating the
importance of timing of individual spikes in relation to each other (Borst and
Theunissen, 1999). The Shannon entropy for the bit encoding, if represented
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with a standard format is quite low, since neurons more often are not spiking
than spiking (at least if assuming a 1000 Hz sampling rate). However, if rep-
resenting the firing pattern matrix as a sparse matrix, fewer bits are needed
to transfer the message and the encoding becomes more efficient with higher
entropy for each transferred symbol, as only the spiking activity is transferred.
It is then assumed that if spike is not received, the neuron is non-spiking. With
this increased efficiency, sparse matrix representation of the proposed bit code
format is more efficient from an information theory perspective than if trans-
ferring also non-spiking data as well as if transferring timestamps and neuronal
unit IDs.

6.3.3 Robustness and vulnerabilities

As the neuronal identity is central to the prosed encoding format, it is important
that this identity is valid for units over time. The encoding handles spike train
data and it is required that all units are identified properly, so that all spikes sent
for encoding represent single unit and not multi-unit activity. This assumes that
a correct online spike sorting and tracking is performed by each recording system,
a process that is not trivial. Despite recent progress (Rossant et al., 2016), spike
sorting still remains a challenge. The tracking also is problematic as recordings
obtained separately in time are often sorted separately and the result is a set of
single units for each recording (Rey et al., 2015). The units in these different
sets may then either: 1) correctly be mapped onto a unit of the same cell 2)
erroneously be mapped onto a unit of another cell or 3) lack a corresponding cell.
The causes for the two latter outcomes are mainly biocompatibility issues, such
as variations in distance between electrode and neuron due to tissue movements,
tissue reactions and reorganization of tissue around electrode and loss of neurons
nearby electrode immune response, as discussed in the Introduction. In order
to ameliorate these problems, any features that are (relatively) stable over a
certain time may be used for tracking a specific neuron. To date, the following
features indicating stability of single unit activity (SUA) over time have been
used for tracking:

1. Waveform shape - Due to the properties of a neuron, the shape of the
action potential waveforms usually is the same over time, a feature which
also is the basis for spikesorting. It is therefore natural to make use of
this feature also for keeping track of cells, and waveform shape thus has
become the most commonly used feature for SUA stability, by calculating
the cross correlation coefficient for the averaged sorted waveforms (Jackson
and Fetz, 2007; Dickey et al., 2009) or to calculate the Pearson’s correlation
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coefficient computed between the two averages of the sorted waveforms
(Dickey et al., 2009). A recent study (Eleryan et al., 2014) uses a set of
four waveform-based measures, correlation coefficient, normalized peak-
to-peak height difference, normalized time-to-time difference, and peak
matching. Another study by Fraser and Schwartz (Fraser and Schwartz,
2012) also utilized waveform shapes.

2. Interspike interval (ISI) histogram shape - one pioneering study
in following neurons over time (Dickey et al., 2009) used the ISI shape
together with waveform shape for tracking neurons. Neurons may however
have different preferred firing modes and thus ISI characteristics (Chen
and Fetz, 2005) that differ during different brain states (indicated by for
example different EEG spectra) (Wörgötter et al., 1998). Algorithms have
now been developed that may accurately assess unit stability across days
with minimal human expert intervention (Eleryan et al., 2014), using ISI
characteristics.

3. Physiological context - neuron-stimuli/behavior relationship - correla-
tion between neuronal activity and behavioral states, in which the neurons
also adapt their behavior, have been shown to be stable over longer time
periods, for example in their different roles in idle or active motor states
(Velliste et al., 2014),

4. Population dynamics - from the relation with the activity of other neur-
ons (correlation in time domain) or by relating it to LFPs (phase locking
or Spike Field Coherence) (Berke et al., 2004).

A tool that visualizes all the features and provides decision support for letting
an experimenter decide if what appears to be two different neurons as indicated
by spike sorting, in fact are one and the same neuron would be highly valuable.
We have developed software that utilizes a subset of features that is relatively
stable over time for tracking single units during discontinuous recordings from
cortical or striatal neurons. We have also implemented classification software
using these features, which allows for tracking of neurons, (Ljungquist et al.,
2010). This work is not covered further in this thesis, but could be used as an
evaluation if recordings are suitable to be encoded into the proposed bit coding
format; if units from a specific multielectrode array (MEA, one out of possibly
many from a single subject) in general are stable over time, the data from that
MEA could be considered ready for encoding. For example, the ratio of stable
neurons (neurons present during two disjunctive recordings) to the total number
of identified neurons, could be used as a measure of recording quality. Other
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groups have since our tool was first published developed similar tools (Eleryan
et al., 2014; Fraser and Schwartz, 2012), which use subsets of these features.

During recordings, these tools need data to operate on and evaluate stability for
that data. Therefore, they may readily be combined with the software architec-
ture proposed in the present thesis (paper III). For spike tracking purposes, a
secondary storage for spike waveforms was proposed as a feature of this architec-
ture. This secondary spike waveform storage would only record a subset of the
neurons at a given time and cycle through all the neurons periodically in order
to track the waveforms shape progression of all neurons. The waveform storage
may reside on the same computer as the spike data storage, since it does not
require extensive bandwidth. This would also facilitate practical rapid access
if using waveforms in analysis calculations. A further development in future
work for storing the waveform data in an efficient way could be to make use of
principal components (as described in (Thorbergsson et al., 2010)) for reducing
the waveform data as well as providing a feature space for tracking changes in
waveform shape over time.

6.4 Clinical applications

As outlined in the Introduction, BMI are gradually finding increased clinical use
and this development strongly emphasizes the importance of neuroinformatics.
For example in prosthetics applications guided by neuronal readouts, data needs
to be integrated, analyzed and organized in real time in order to be able to
control the prosthetic device, possibly also using sensory feedback. With the
developed bit code, implementation of such systems, involving data from millions
of neurons is not only possible, but clearly feasible.

A recent comprehensive review of the literature on neural prosthetics reveals that
it is often not specified how data is stored (Lebedev and Nicolelis, 2017), except
to indicate which specific acquisition system was used. Most likely, the format
specified by the system manufacturer is used. For offline data, this is sufficient
for most projects, as long as the files are well organized. However, during multi-
trial experiments, such as presented in the present thesis (paper II), keeping
track of all recordings quickly becomes very challenging, especially if data is
integrated for analysis. For online real time data, lacking a specific format leads
to development of experiment specific protocols and applications. For example,
in a study of neuroprosthetic control by an individual with tetraplegia (Collinger
et al., 2013), it is specified that unit activity was converted to firing rate in 30
ms bins and low pass-filtered using an exponential smoothing function with a
450 ms window. Although successful in this particular application, a finer level
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of detail may be needed for finer control applications, requiring for example
information about complex collaborative firing patterns with millisecond onset
and offset. The bit code data format provides such possibilities.

Clinical applications are, however, not limited to neuroprosthetics, but could
be used also for example to reliably detect epileptic seizures, where it could be
combined with an interactive stimulation device to alleviate or counteract up-
coming seizures. Epilepsy is a chronic disorder of the brain that affects people
of all ages. According to WHO (World Health Organization), approximately
50 million people worldwide have epilepsy, making it one of the most common
neurological diseases globally. For the individual neuron, firing patterns reflect-
ing seizure onset and termination may appear evident (Truccolo et al., 2011).
However, these patterns are in fact different in different neurons; some neur-
ons are increasing their firing rate, while others decrease their firing. It is thus
crucial to be able to discern the patterns of individual neurons. To this end,
a BMI with neuroinformatic backend using the bit-code and software architec-
ture, as specified in paper III, could easily find these individual patterns. One
recent study showed a promising application of dorsal column stimulation (DCS)
for decreasing seizure frequency and duration (Pais-Vieira et al., 2016), which,
for example, could be used to alleviate the detected upcoming seizure. Other
foreseeable applications are Deep Brain Stimulation for treating movement dis-
orders, depression or persistent or intermittent pain guided by detected neuronal
patterns of activity.

6.5 Cortical readouts as a translational model for pain

We showed in paper II that chronic cortical measurements in the awake rat can
replicate many features of pain perception in humans (Gustorff et al., 2013),
in particular pain magnitude, whereas motor responses do not. This suggests
that cortical recordings, using chronically implanted BMI and appropriate in-
formation analysis, can provide a more valid measure of pain magnitude than
commonly used models based on motor responses (Woolf, 2012).

The finding that motor responses in rodents do not correlate well to human
perception of pain is not surprising since it is known that motor responses
are organized by other neuronal systems than those directly involved in pain
perception. Moreover, the control of and processing of information in motor
systems such as those underlying spinal reflex responses or coordination and
adaptation of movements (e.g. cerebellum) are known to be strikingly different
from systems devoted mainly to sensory aspects, such as the spinothalamocor-
tical pathways (Schouenborg, 2008). Rats, monkeys and humans have similar
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spinothalamic pain termination targets in the thalamus, the VPL (Ventral pos-
terolateral) nucleus, CL (Central Lateral) nucleus and the posterior complex
(Mehler, 1962, 1969; Lund and Webster, 1967; Zemlan et al., 1978; Peschanski
et al., 1983; Willis et al., 2001, 1979). The main target of the VPL is the S1
(primary sensory) cortex (Kenshalo and Isensee, 1983; Andersson et al., 1997).
Thus, the S1 cortex of the rat, as used in paper II, appears to be a suitable and
translational target for the study of pain perception. The concept of deciphering
pain related signals directly from cortical recordings with chronically implanted
BMI in awake freely moving animals suggests that, it is possible to gain pro-
found insights into the pain experience of animals, something that has been
missing previously. It should be kept in mind, though, that pain is a complex
phenomenon, and other dimensions of pain than pain magnitude, such as affect-
ive dimensions will most likely require recordings from other brain areas than
the S1 cortex. It may also be speculated that similar recordings can provide
powerful translational models also of, for instance, itch.

6.6 Conclusion and perspective

The novel data format presented in this thesis allows an unprecedented integ-
ration and organization of electrophysiological data offline, but perhaps most
importantly also directly in real time. The key innovative step was to develop
a bit code representation of spiking data, which dramatically facilitates all sub-
sequent computational processes. The capabilities for fast storing and trans-
ferring of data allows massive parallel recordings including millions of neurons
simultaneously, but also complex analyses in order to provide direct feedback
to the subject recorded from, using for example machine learning. The prin-
ciples of database organization proposed in the thesis, not only the bit code data
format, but also an object model with design patterns and service bus archi-
tecture, may be readily used to organize and integrate data for a wide range of
research projects, thus providing a much-needed infrastructure for present and
future electrophysiological research.

The main practical limitation of the suggested bit code format is the need for
stable and high-quality input from the neurophysiological recordings (as also
discussed above). The tissue reaction to the recording electrode is one of the
main limiting factors. During the efforts to address this issue, it has been
found previously at the NRC that flexible electrode materials elicit less tissue
response than rigid (Köhler et al., 2015), that electrode size matters, with small
electrodes provoking less reaction (Thelin et al., 2011), that the specific weight
of the electrodes should be close to that of the tissue (Lind et al., 2013), and that
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by using embedding gelatin materials tissue responses can be further reduced
(Lind et al., 2010; Köhler et al., 2015). Another factor limiting recording quality
is electrode stability in the tissue, as moving electrodes will be unable to follow
signals from single neurons. To this end, methods to anchor electrodes in the
tissue have also been devised at the NRC with promising results (Agorelius
et al., 2015). Further work is however needed and is currently in progress.

Further work also involves a more complete implementation of all the proposed
architecture of paper III for more extensive electrophysiological data analysis.
Such a full implementation would include for example the waveform storage,
which could be combined with a dimensionality reduction using principal com-
ponents as described in (Thorbergsson et al., 2010) for minimizing the wave-
form data to relevant features, as well as providing a base for tracking unit
waveform stability over time. Also, the integration of multiple data modalities,
such as imaging, with electrophysiological data remains to be carried out. This
could be used together with existing methods for analysis of binned represent-
ations of massive parallel spike train data such as detection of synfire chain (a
feed-forward network of neurons with many layers) activity and sequences of
synchronous neuronal events (Schrader et al., 2008; Torre et al., 2016).

Data from large amounts of neurons will be managed well by the bit code format,
but the subsequent analysis will be daunting if performed manually in order to,
for example, identify signaling patterns by visual inspection of spike train data.
Although visualization tools exist to make this task easier, complex patterns,
such as phase shifted spike trains or intermittent firing patterns across many
neurons will still be difficult to detect, especially without a priori knowledge of
what to look for. Here, modern computational power with AI and machine learn-
ing may be of great use. Machine learning refers to the capability of computers
to learn without being explicitly programmed. It is part of the greater concept of
artificial intelligence (AI), which also includes machines carrying out tasks in an
intelligent manner. There are many different algorithms for machine learning,
for example decision trees, support vector machines, clustering and deep learn-
ing. In particular, deep learning, which is intended to mimic the computations of
the human brain, has come to recent attention as prices of specific computational
hardware adapted and designed for solving these types of problems have fallen.
All commercially available speech recognition systems (for example Amazon Al-
exa, Google Now and Apple Siri) are built based on principles of deep learning.
When analyzing neuroscientific data, often some a priori knowledge about the
problem domain is assumed. For example, if analyzing an observed motor pat-
tern, not only which neurons to record from must often be known, but also
which spatiotemporal computational correlation that are sought, for example a
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specific relationship in firing phase of physically close neurons. The alternative
is to discover these relations in a more a posteriori manner, by observing if a
pattern exists after data has been collected e.g. in correlation to a behavior or
stimulus. For larger number of neurons, this has to date been difficult due to
the sheer computational power needed. With the capabilities given by the data
format of paper III with large amounts of data resulting from millions of cells
recording at the same time, this alternative is within reach. The binary bit code
data format of paper III enables fast processing and analysis of the recorded
data. In particular, it would enable binarized neural network classifiers, which
are deep neural networks constrained to operate on data and have weights that
are binary (Courbariaux et al., 2016), to operate on the recorded data. These
types of classifiers have recently been highlighted due to their significantly lower
computational and power cost in implementations. They have been shown to
have both very high throughput (in the range of Tera operations per second,
TOPS) and very low latency (for most datasets in the millisecond range) in clas-
sifier implementations on FPGAs (Field-programmable-gate-array) (Umuroglu
et al., 2016; Fraser et al., 2017) when benchmarking pattern recognition on es-
tablished test data sets . In addition to impressive computational results, power
consumption needed for calculations is comparably low (Umuroglu et al., 2016).
If successfully implemented in the domain of neuroinformatics, machine learning
would enable complex pattern classification in real time, thus providing many
new neurophysiological insights by being able to classify and detect various sig-
naling patterns of millions of neurons and determine how they correlate with
observed physiological processes in real time, at a time scale comparable and
relevant to real world neural computations. However, this remains future work.
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