
Applied Computing and Informatics 14 (2018) 28–36
Contents lists available at ScienceDirect

Applied Computing and Informatics

journal homepage: www.sciencedirect .com
Detection of attack-targeted scans from the Apache HTTP Server access
logs
http://dx.doi.org/10.1016/j.aci.2017.04.002
2210-8327/� 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author.
E-mail addresses: merveseyyar@std.sehir.edu.tr (M. Bas� Seyyar), ozgur.catak@tubitak.gov.tr (F.Özgür Çatak), ensargul@sehir.edu.tr (E. Gül).

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier
Merve Bas� Seyyar a,⇑, Ferhat Özgür Çatak b, Ensar Gül a

a _Istanbul S�ehir University, _Istanbul, Turkey
b Tubitak/Bilgem, Kocaeli, Turkey

a r t i c l e i n f o
Article history:
Received 8 January 2017
Revised 25 April 2017
Accepted 26 April 2017
Available online 28 April 2017

Keywords:
Rule-based model
Log analysis
Scan detection
Web application security
XSS detection
SQLI detection
a b s t r a c t

A web application could be visited for different purposes. It is possible for a web site to be visited by a
regular user as a normal (natural) visit, to be viewed by crawlers, bots, spiders, etc. for indexing purposes,
lastly to be exploratory scanned by malicious users prior to an attack. An attack targeted web scan can be
viewed as a phase of a potential attack and can lead to more attack detection as compared to traditional
detection methods. In this work, we propose a method to detect attack-oriented scans and to distinguish
them from other types of visits. In this context, we use access log files of Apache (or ISS) web servers and
try to determine attack situations through examination of the past data. In addition to web scan detec-
tions, we insert a rule set to detect SQL Injection and XSS attacks. Our approach has been applied on sam-
ple data sets and results have been analyzed in terms of performance measures to compare our method
and other commonly used detection techniques. Furthermore, various tests have been made on log sam-
ples from real systems. Lastly, several suggestions about further development have been also discussed.
� 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Contents
1. Introduction . 29
2. Related work. 29
3. System model . 30
3.1. Assumptions . 30
3.2. Data and log generation . 30
3.2.1. Web servers . 30
3.2.2. Damn Vulnerable Web Application (DVWA) . 30
3.2.3. Web vulnerability scanners . 30
3.3. Rules and methodology. 31

4. Results. 35
4.1. Experimental setup . 35
4.2. Model evaluation. 35
4.3. Scan detection on live data. 35
5. Conclusion . 36
Appendix A. Supplementary material . 36

References . 36

http://crossmark.crossref.org/dialog/?doi=10.1016/j.aci.2017.04.002&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.aci.2017.04.002
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:merveseyyar@std.sehir.edu.tr
mailto:ozgur.catak@tubitak.gov.tr
mailto:ensargul@sehir.edu.tr
http://dx.doi.org/10.1016/j.aci.2017.04.002
http://www.sciencedirect.com/science/journal/22108327
http://www.sciencedirect.com

M. Bas� Seyyar et al. / Applied Computing and Informatics 14 (2018) 28–36 29
1. Introduction

The dependency to web systems; consisting of web services and
web applications, is growing with time. From health sector to elec-
tronic commerce (e-commerce), internet usage is needed in all
areas of life. Due to incremental utilization of cloud technology;
there is no doubt that this dependency will increase even more.
However, web environment is hosting billions of users including
malicious ones like script kiddies and cyber terrorists. Malicious
users misuse highly efficient automated scan tools to detect vul-
nerabilities in web applications. Obtaining diagnostic information
about web applications and specific technologies thanks to these
tools is known as ‘‘Reconnaissance” in penetration testing method-
ologies and standards like The Penetration Testing Execution Stan-
dard (PTES). This information gathering phase is the first phase of
all attacks just before exploitation because security vulnerabilities
would lead to threats either directly or indirectly [1]. Because, an
overlooked vulnerability scan may result in a large scale problems
such as information leakage and privacy violation. As a matter of
fact, the detection of these malicious scans becomes very crucial
to prevent web applications from exploitation and to take effective
countermeasures almost immediately.

According to European Network and Information Security
Agency (ENISA) Threat Landscape 2015 (ETL 2015) [2], web based
and web applications attacks are ranked as number two and three
in cyber-threat environment, and their rankings have remained
unchanged between 2014 and 2015. Since web security related
threats have been perpetually evolving, web applications are more
disposed to security risks [3]. Also, attack methods to web applica-
tions are very diverse and their trends continue for a long time. For
instance, although Structured Query Language (SQL) injection and
Cross-Site Scripting (XSS) seem to be at a decreasing rate in 2014,
an increase in their exposures is seen in 2015. Therefore, one may
easily deduce that web systems are in the focus of cyber criminals.

To detect all of mentioned attacks and scans, analyzing the log
files is usually preferred, because anomalies in users’ requests and
related server responses could be clearly identified. Two primary
reasons for this preference are that log files are easily available,
and there is no need for expensive hardware for analysis [4]. In
addition, logs may provide successful detection especially for
encrypted protocols such as Secure Sockets Layer (SSL) and Secure
Shell Daemon (SSHD) [5]. However, the heavier the website’s traf-
fic is, the more difficult the examination of the log files gets. There-
fore, the need for an user-friendly web vulnerability scan detection
tool by analyzing log files seems pretty obvious.

Therefore, the objectives of this study can be summarized as
follows:

� to detect vulnerability scans.
� to detect XSS and SQLI attacks.
� to examine access log files for detections.

Accordingly, the contributions of the work can be expressed as
follows:

� The motivation of the relevant work is quite different, typically
focusing on machine-learning based predictive detection of
malicious activities. Actually, all machine learning algorithms
have training phase and training data to built a classification
model. In order to increase accuracy of machine learning classi-
fier model, a large scale input training data is needed. In turn, an
increase in memory consumption would occur. As a result,
either the model would turn out to be not trainable, or training
phase would last for days. On the other hand, executing the pro-
posed rule set on access logs does not cause any memory con-
sumption problems. Our script simply runs on Ubuntu
terminal with a single line of code.
� Another negative aspect of focusing on machine learning is
overfitting; referring to a model that models the training data
too well. Using a very complex models may result in overfitting
that may negatively influence the model’s predictive perfor-
mance and generalization ability [6]. Nevertheless, we design
our rules to operate on past data which allows a detailed anal-
ysis of a user’s actions [4] so that the complexity of our
approach is not too high.

� The proposed model addresses the detection of web vulnerabil-
ity scans on web applications by analyzing log files retrieved
from web servers. Since most of the web servers log HTTP
requests by default, data is easily available to be analyzed. Thus,
any extra configuration, installation, purchase or data format
modification are not needed. Furthermore, our analysis is based
upon rule-based detection strategy and we built our rule set on
several features of log entries. As opposed to relevant work, the
number of these features is low enough to make input data less
complex.

� Finally, our work contributes to a better understanding of cur-
rent web security vulnerabilities. For example, we can detect
web vulnerability scanners and learn about vulnerability itself
at the same time.

The rest of the paper is organized as follows: The related work is
presented in Section 2. Section 3 presents our system model in
details. Our model evaluation and real system test results are pre-
sented in Section 4. The concluding remarks are given in Section 5.
2. Related work

Within this section, the most related researches for vulnerabil-
ity scan detection have been reviewed.

Auxilia and Tamilselvan suggest a negative security model for
intrusion detections in web applications [7]. This method is one
of the dynamic detection techniques that is anomaly-based. The
authors propose to use Web Application Firewall (WAF) with a rule
set protecting web applications from unknown vulnerabilities.
When analyzed their rules for Hypertext Transfer Protocol (HTTP)
attacks detection, the rules appears to be generated by checking
the values of some important HTTP header fields, Uniform
Resource Identifier (URI) strings, cookies, etc. Associating WAF,
Intrusion Detection System (IDS), rule engine reasoning together
makes this article interesting.

Goseva-Popstojanova et al. [8] propose a method to classify
malicious web sessions through web server logs. Firstly, the
authors constitute four different data sets from honeypots; on
which several web applications were installed. Afterwards, 43 dif-
ferent features were extracted from web sessions to characterize
each session and three machine learning methods that are Support
Vector Machine (SVM), J48 and Partial Decision Trees (PART) were
used to make the classifications. The authors assert that when all
43 features used in learning period, their method to distinguish
between attack and vulnerability scan sessions attains high accu-
racy rates with low probability of false alarms. This comprehensive
research provides significant contribution in the area of web
security.

Different from log analysis, Husák et al. [9] analyze extended
network flow and parse HTTP requests. In addition to some Open
Systems Interconnection (OSI) Layer 3 and Layer 4 data, the
extracted HTTP information from network flow includes host
name, path, user agent, request method, response code, referrer
and content type fields. To group network flow in three classes
such as repeated requests, HTTP scans, and web crawlers; source
Internet Protocol (IP), destination IP, and requested Uniform
Resource Locator (URL) split into domain and path are used. One

30 M. Bas� Seyyar et al. / Applied Computing and Informatics 14 (2018) 28–36
of the interesting results they obtain is that the paths requested for
HTTP scans are also requested for brute-force attack as well. How-
ever, not only HTTP requests but also HTTP responds should also be
analyzed to get more effective results.

After a learning period of non-malicious HTTP logs, Zolotukhin
et al. [10] analyze HTTP requests in an on-line mode to detect net-
work intrusions. Normal user behavior, anomalies related features
and intrusions detection are extracted from web resources, queries
attributes and user agent values respectively. The authors compare
five different anomaly-detection methods; that are Support Vector
Data Description (SVDD), K-means, Density-Based Spatial Cluster-
ing of Applications with Noise (DBSCAN), Self-Organizing Map
(SOM) and Local Outlier Factor (LOF), according to their accuracy
rates in detecting intrusions. It is asserted that simulations results
show higher accuracy rates compared to the other data-mining
techniques.

Session Anomaly Detection (SAD) is a method developed by Cho
and Cha [11] as a Bayesian estimation technique. In this model,
web sessions are extracted from web logs and are labelled as ‘‘nor-
mal” or ‘‘abnormal” depending on whether it is below or above the
assigned threshold value. In addition, two parameters that are page
sequences and their frequency are investigated in training data. In
order to test their results; the authors use Whisker v1.4 as a tool
for generating anomalous web requests and it is asserted that
The Bayesian estimation technique has been successful for detect-
ing 91% of all anomalous requests. Therefore, two points making
this article different from the others are that SAD can be cus-
tomized by choosing site-dependent parameters; and the false
positive rates gets lower with web topology information.

Singh et al. [12] have presented an analysis of two web-based
attacks which are i-frame injection attacks and buffer overflow
attacks. For analysis, log files created after attacks are used. They
compare the size of the transferred data and the length of input
parameters for normal and malicious HTTP requests. As a result,
they just have carried out descriptive statistics and have not men-
tioned any detection techniques.

In their work, Stevanovic et al. [13] use SOM and Modified
Adaptive Resonance Theory 2 (Modified ART2) algorithms for
training and 10 features related to web sessions for clustering.
Then, the authors label these sessions as human visitors, well-
behaved web crawlers, malicious crawlers and unknown visitors.
In addition to classifying web sessions, similarities among the
browsing styles of Google, MSN, and Yahoo are also analyzed in
this article. The authors obtain lots of interesting results, one of
which is that 52% of malicious web crawlers and human visitors
are similar in their browsing strategies; which means that it is hard
to distinguish each other.

Another completely different propose a semantic model that is
named ontological model [14]. They assert that attack signatures
are not independent from programming languages and platforms.
As a result, signatures may become invalid after some changes in
business logic. In contrary, their model is extendible and reusable
and could detect malicious scripts in HTTP requests and response.
Also, thanks to ontological model, zero day attacks could be effec-
tively detected. Their paper also includes a comparison between
the proposed Semantic Model and ModSecurity.

There are several differences between our work and the above
mentioned works. Firstly, as in the most of the related works,
checking only the user-agent header field from a list is not enough
to detect web crawlers in the correct way. Correspondingly, we add
extra fields to check to make the web crawler detection more accu-
rate. Additionally, unlike machine learning and data-mining,
rule-based detection has been used in the proposed model. Finally,
in contrast to other works, we prefer to use combined log format in
order to make the number of features larger and to get more con-
sistent results.
3. System model

In this section, we describe how we construct and design the
proposed model in detail. Also, we present our rules with underly-
ing reasons.

3.1. Assumptions

� In access logs, POST data can not get logged. Thus, the proposed
method cannot capture this sort of data.

� Browsers or application servers may support other encodings.
Since only two of them are in the context of this work, our script
cannot capture data encoded in other styles.

� Our model is designed for detection of two well-known web
application attacks and malicious web vulnerability scans, not
for prevention. Thus, working on-line mod is not included in
the context of our research.

3.2. Data and log generation

In this section, tools, applications, virtual environment used
throughout this work and their installation and configuration set-
tings are explained.

3.2.1. Web servers
3.2.1.1. HTTP Server. As mentioned earlier, Apache/2.4.7 (Ubuntu)
Server is chosen as a web server. Apache is known to be the most
commonly used web server. According to the W3Techs (Web Tech-
nology Surveys) [15], as of December 1, 2016; Apache is used by
51.2 percent of all web servers. In addition, it is open source, highly
scalable and has a dynamically loadable module system. Apache
installation is made via apt-get command-line package manager.
Any extra configuration is not necessary for the scope of this work.

3.2.1.2. Apache Tomcat. The Apache Tomcat being an implementa-
tion of the Java Servlet, JavaServer Pages, Java Expression Language
and Java WebSocket technologies, is an open source software [16].
In this work, Apache Tomcat Version 8.0.33 is used. Atlassian JIRA
Standalone Edition (Jira 3.19.0-25-generic #26) is used as a web
application. Access log configuration of Tomcat is set to be similar
to access log entries in Apache.

3.2.2. Damn Vulnerable Web Application (DVWA)
DVWA is a vulnerable PHP/MySQL web application. It is

designed to help web developers find out critical web application
security vulnerabilities by hands on activity. Different from illegal
website-hacking, it offers a totally legal environment to exploit for
security people. Thanks to DVWA; Brute Force, Cross Site Request
Forgery (CSRF), Command Execution, XSS (reflected) and SQL Injec-
tion vulnerabilities could be tested for three security levels; low,
medium, high.

In this work, DVWA 1.0.8 version (Release date: 11/01/2011) is
used. To install this web application, Linux Apache MySQL PHP
(LAMP) Server; including MySql, PHP5, and phpMyAdmin, has
been installed. The reasons for studying with DVWA are to better
understand XSS and SQL Injection attacks and to find out related
payloads substituted in query string part of URIs. In this way, rule
selection to detect these attacks from access logs could be correctly
determined. Also, web vulnerability scanners used in this work,
have scanned this web application for data collection purposes.

3.2.3. Web vulnerability scanners
3.2.3.1. Acunetix. Acunetix is one of the most commonly used com-
mercial web vulnerability scanners. Acunetix scans a web site
according to the determined configurations, produces a report
about the existing vulnerabilities, groups them as high, medium,

M. Bas� Seyyar et al. / Applied Computing and Informatics 14 (2018) 28–36 31
low and informational; and identifies the threat level of the web
application with the related mitigation recommendations. In the
context of this work, Acunetix Web Vulnerability Scanner (WVS)
Reporter v7.0 has been used with default scanning configurations
in addition to site login information.
3.2.3.2. Netsparker. Netsparker is a web application security scan-
ner that is commercial too. Netsparker detects security vulnerabil-
ities of a web application and produces a report including
mitigation solutions. In addition, detected vulnerabilities could
be exploited to confirm the report results. In the context of this
work, Netsparker Microsoft Software Library (MSL) Internal Build
4.6.1.0 along with Vulnerability Database 2016.10.27.1533 has
been used with special scanning configurations including custom
cookie information.
3.2.3.3. Web Application Attack and Audit Framework (W3AF). W3AF
is an open source web application security scanner. W3AF is devel-
Fig. 1. Flow chart of the prop
oped using Python and licensed under General Public License (GPL)
v2.0. Framework is designed to help web administrators secure the
web applications. W3AF could detect more than 200 vulnerabilities
[17]. W3AF has several plug-ins for different operations such as
crawling, brute forcing, and firewall bypassing. W3AF comes by
default in Kali Linux and could be found in ‘‘Applications/Web
Application Analysis/Web Vulnerability Scanners”. W3AF version
1.6.54 has been used with ‘‘fast-scan” profile through audit, crawl,
grep and output plugins.
3.3. Rules and methodology

As mentioned earlier, our script runs on access log files. The
main reason for this choice is the opportunity for detailed analysis
about users actions. By examining past data, information security
policies for the web applications could be correctly created and
implemented. Additionally, further exploitations could be pre-
vented in advance. Unlike the proposed model, Network Intrusion
osed rule-based model.

32 M. Bas� Seyyar et al. / Applied Computing and Informatics 14 (2018) 28–36
Detection System (NIDS) may not detect attacks when HTTPS is
used [4]. However, working with logs has some disadvantages.
Since log files do not contain all data of HTTP request and response,
some important data could not be analyzed. For example, POST
parameters that are vulnerable to injections attacks could not be
logged by web servers. Another negative aspects are the size of logs
and parsing difficulty. Nevertheless, to solve this problem, we sep-
arate the access log files on a daily basis. Therefore, web adminis-
Table 1
HTTP methods in Acunetix.

HTTP method Number

Connect 2
Get 2758

Options 2
Post 668
Trace 2
Track 2

Total 3434

Table 2
HTTP methods in Netsparker.

HTTP method Number

Get 3059
Head 590

Netsparker 1
Options 14
Post 956

Propfind 14

Total 4634

Table 3
HTTP status codes in Netsparker.

HTTP status code Number

200 177
301 1
302 23
404 494
500 6

Total 701

Table 5
HTTP status codes in Acunetix.

HTTP status code Number

200 598
301 38
302 686
400 44
403 16
404 2022
405 4
406 2
417 2
500 20
501 2

Total 3434

Table 4
HTTP status codes in W3AF.

HTTP status code Number

200 91
302 8
404 30
500 6

Total 135
trators might run our script every day to check for an attack. Lastly,
real-time detection and prevention is not possible with the pro-
posed method which runs off-line. Thus, we could not guarantee
to run on-line. In fact, this approach is conceptually sufficient for
the scope of this work. Differently from the test environment; an
extra module that directly accesses logs, or a script that analyses
logs faster could be developed to use our approach in a live or real
environment.

Our method could be described as rule-based detection. Unlike
anomaly based detection, our rules are static including both black-
list and whitelist approaches. In detail, XSS and SQL injection
detection part of our method is a positive security model; on the
other hand, the rest is a negative security model. Thus, data eva-
sion is tried to be kept at a minimum level. In order to classify IP
addresses in the access log file, we identify three different visitor
types as follows:
 10
00

0

 20
00

0

 30
00

0

 40
00

0

 50
00

0

 60
00

0

 70
00

0

 80
00

0

 90
00

0

10
00

00

11
00

00

Log Lines

0

200

400

600

800

1000

1200

R
un

ni
ng

 T
im

e
(in

 s
ec

on
ds

)

Fig. 2. Time performance of the proposed method.

Table 9
Details of log samples.

Log file Log duration File size Line number IP number

Data Set 1 5 days 43 MB 202,145 3910
Data Set 2 210 days 13.4 MB 34,487 9269
Data Set 3 270 days 7.2 MB 36,310 4719
Data Set 4 90 days 1.3 MB 5936 1795
Data Set 5 90 days 0.48 MB 3554 579

Total 665 days 65.37 MB 282,432 20,272

Table 8
Summary of results for general data set.

IP number Accuracy Precision Recall F1

162 99.38% 100.00% 75.00% 85.71%

Table 6
Details of classified data sets.

Visitor type Log file Line number IP number

Type 1 Normal 62,539 15
Type 2 Web robot 28,804 143
Type 3 Acunetix 6539 1
Type 3 Netsparker 7314 1
Type 3 W3AF 3996 2

Type 1, 2 and 3 Total 109,192 162

Table 7
Confusion matrix.

Actual: Type 3 Actual: Type 1 or 2

Predicted: Type 3 TP = 3 FN = 1
Predicted: Type 1 or 2 FP = 0 TN = 158

Table 10
Data sets test results.

Data set Period IP number Type 3 IP number Type 3 percentage (%)

Data Set 1 2004 10/March 370 13 3.51
11/March 786 20 2.54
12/March 1002 22 2.20
13/March 1960 39 1.99
14/March 1079 21 1.95

Data Set 2 2004 April 3140 1 0.03
May 4546 3 0.07
June 701 6 0.86
July 735 4 0.54
August 189 1 0.53
September 280 0 0.00
October 106 1 0.94

Data Set 3 2005 June 663 1 0.15
July 755 1 0.13
August 577 0 0.00
September 731 1 0.14
October 452 0 0.00
November 623 19 3.05
December 181 1 0.55
January 652 45 6.90
February 802 34 4.24

Data Set 4 2005 1–15/June 160 1 0.63
16–30/June 497 0 0.00
1–15/July 503 0 0.00
16–30/July 280 1 0.36
1–15/August 284 0 0.00
16–30/August 282 0 0.00

Data Set 5 2005 16–31/January 28 0 0.00
1–15/February 176 0 0.00
16–28/February 112 0 0.00
1–15/March 225 3 1.33
16–30/March 28 0 0.00

M. Bas� Seyyar et al. / Applied Computing and Informatics 14 (2018) 28–36 33
� Type 1: Regular (normal) users with a normal (natural) visit.
� Type 2: Crawlers, bots, spiders or robots.
� Type 3: Malicious users using automated web vulnerability
scanners.

As shown in Fig. 1 in Phase 1, our first step is to detect SQL
injection and XSS attacks. Although different places of HTTP (the
HTTP body, URI) could be used to exploit a vulnerability [4]; we
will analyze path and query parts of the requested URI for
detection.

In detail; for XSS, we use regular expressions to recognize some
patterns such as HTML tags, ‘src’ parameter of the ‘img’ tag and
some Javascript event handlers. Likewise; for SQL injection, we
check the existence of the singlequote, the doubledash, ‘#’, exec()
function and some SQL keywords. In addition, since there is a pos-
10.Mar.0
4

11.Mar.0
4

12.Mar.0
4

13.Mar.0
4

14.Mar.0
4

Days

0

0.5

1

1.5

2

2.5

3

3.5

4

T
yp

e
3

(%
)

Fig. 3. Data Set 1 test results.
sibility for URL obfuscation, Hex and UTF-8 encodings of these pat-
terns are also taken in consideration.

Afterwards, we continue by separating IP addresses of Type 2
from the rest of the access log file in Phase 2. To do this, two differ-
ent approaches are used. Firstly, user-agent part of all log entries is
compared with the user-agent list from robots database that is
publicly available in [18]. However, since this list may not be up-
to-date, another bot detection rules are added. In order to identify
these rules, we use the following observations about web robots:

1. Most of the web robots make a request for ‘‘/robots.txt” file [19].
2. Web robots have higher rate of ‘‘4xx” requests since they usu-

ally request unavailable pages [20–23].
3. Web robots have higher unassigned referrer (‘‘–”) rates [23–25].
Apr May Jun Jul Aug Sep Oct

Months

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
yp

e
3

(%
)

Fig. 4. Data Set 2 test results.

34 M. Bas� Seyyar et al. / Applied Computing and Informatics 14 (2018) 28–36
4. According to the access logs that we analyzed, user-agent
header field of web robots may contain some keywords such
as bot, crawler, spider, wanderer, and robot.

As a result of above mentioned observations, we add some extra
rules to correctly distinguish Type 2 from other visitors.

For the rest our rule set as indicated at Phase 3 in Fig. 1, we con-
tinue by investigating our access log files formed as a result of vul-
nerability scanning mentioned in the previous section. As shown in
Tables 1 and 2, our first immediate observation is that as compared
to Type 2 and Type 1, Type 3’s requests include different HTTP
methods; such as Track, Trace, Netsparker, Pri, Propfind and Quit.
Secondly, as shown in Table 3, Tables 4 and 5; we deduct that
∈
←−

∈

�

←−
∈

←−
←−
←−
←−

” ”

∈ ” ” ” ” ” ” ” ” ”

” ” ∈

←−
∈

�

←−
←−
←−

∈
” ” ” ” ”

�

status codes of Type 3 differ from Type 2 and Type 1. In fact, Type
3 has higher rate of ‘‘404” requests, average of which for Acunetix,
Netsparker and W3AF is 31% in our data set. Thus, we generate a
rule to check the presence of these HTTP methods and the percent-
age of ‘‘404” requests. User-agent header fields of Type 3 could
generally be modified and obfuscated manually at the configura-
tion phase before vulnerability scan. Even so, we made a list of
well-known automated web vulnerability scanners, and compare
it with user-agent header fields. Finally, we notice that these scan-
ners make at least more than 100 HTTP requests in a certain time,
we select this value as a threshold for Type 3 detection.

The pseudo code of the proposedmodel is shown in Algorithm1:

Algorithm 1. Pseudo-Code for Proposed Model.
”

” ” ” ” ” ” ”

1 2 3 4 5 6

15-Day Period

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T
yp

e
3

(%
)

Fig. 6. Data Set 4 test results.

Jun Jul Aug Sep Oct Nov Dec Jan Feb

Months

0

1

2

3

4

5

6

7

T
yp

e
3

(%
)

Fig. 5. Data Set 3 test results.

M. Bas� Seyyar et al. / Applied Computing and Informatics 14 (2018) 28–36 35
4. Results

This section is based on the evaluation of our model against
some important metrics. Moreover, test results of attack detection
on live data are also included.

4.1. Experimental setup

To implement our rules, Python programming language version
3.5 has been chosen. Script is executed on Ubuntu operating sys-
tem mentioned in Section 3.2.2 via terminal. To parse log lines,
‘‘apache-log-parser 1.7.0” which is a Python package has been
used. As well as, we benefit from python libraries that are collec-
tions, datetime, numpy, ua-parser and argparse.

Since therearenot anyactual, publicly available and labelleddata
sets to evaluate ourmodel,we create our data sets. In fact,wedeploy
two different web applications on two different web servers to form
Type 1 and Type 3 traffics. Details are expressed in Section 3.2.2.

Type 1 (normal traffic) is the data set collected from Jira Soft-
ware as a web application running on Tomcat web server during
4 days.The size of the related access log file is 16.3 MB. As shown
Table 6, log file contains 62,539 log entries from 15 different IP
addresses. These requests are generated in a local network.

For Type 2 traffic, an external traffic that is open to the internet
is needed. To this end, we make use of three different access log
files retrieved from a company website. In detail, log files contain
crawling data collected during 13 days from requests of several
web robots. The size of the related access log files is totally
6.4 MB, and log files contain 28,804 log entries from 143 different
IP addresses as shown Table 6.

To generate Type 3 traffic, DVWA running on Apache HTTP Ser-
ver is used as a web application. Before scanning, the security level
of DVWA is configured as low security. Moreover, we scan this
application via Acunetix, Netsparker and W3AF as web vulnerabil-
ity scanners. Firstly, DVWA is scanned for 22 min and 22 s with
Acunetix. Secondly, DVWA is scanned for 19 min and 56 s with
Netsparker. Lastly, DVWA is scanned for 2 min and 6 s with
W3AF. The details of the related access log files are summarized
as Type 3 in Table 6.

For the evaluation of the proposed model, we combine all men-
tioned access log files into one file that is our general data set.
Then, we run our Python script on the mentioned data set.

4.2. Model evaluation

Initially, to evaluate the proposed model, we compute the con-
fusion matrix where TP, FN, FP, and TN denote true negatives, false
negatives, false positives, and true negatives respectively as shown
in Table 7.

After, we evaluate the following measures:

accuracyðaccÞ ¼ ðTNþ TPÞ
ðTNþ FNþ FPþ TPÞ

precisionðprecÞ ¼ ðTPÞ
ðTPþ FPÞ

recallðrecÞ ¼ ðTPÞ
ðTPþ FNÞ

F1 score ¼ ð2TPÞ
ð2TPþ FPþ FNÞ ð1Þ

More specifically, the accuracy provides the percentage of Type 3
that are detected correctly. The precision determines the fraction
of IP addresses correctly classified as Type 3 over all IP addresses
classified as Type 3. The recall (a.k.a. sensitivity) is the fraction of
IP addresses correctly classified as Type 3 over all IP addresses of
Type 3. Finally, the F1-score is a harmonic mean of precision and
recall. As a result, our model has 99.38% accuracy, 100.00% preci-
sion, 75.00% recall and finally 85.71% F1 score as we can see in
Table 8.

Fig. 2 illustrates the relation between the line number of the log
files and the running time. It is clear that the running time rises
steadily as the number of the lines increases.
4.3. Scan detection on live data

We have built or model according to the data sets mentioned in
Section 4.1. Additionally, we test our model according to several
large-scale, live, not labelled and publicly available data sets. In
this section, we share our test results illustrated in tables and
graphs.

In accordance with this purpose, we have used log samples
from real systems [26]. As stated in the related web source, these
samples are collected from various systems, security devices,
applications, etc.; and neither Chuvakin nor we did not sanitize,
anonymized or modified them in any way. Since they include HTTP
access logs, we have chosen the log samples named Bundle 9, Bun-
dle 7, Bundle 1, Bundle 4 and Bundle 3. For the rest of the work,
these bundles are expressed as Data Set 1, Data Set 2, Data Set 3,
Data Set 4 and Data Set 5 respectively. Details of these data sets
are shown in Table 9.

In order to test the log samples, Data Set 1, Data Set 2, Data Set
3, Data Set 4 and Data Set 5 are divided into daily, monthly,

1 2 3 4 5

15-Day Period

0

0.2

0.4

0.6

0.8

1

1.2

1.4
T

yp
e

3
(%

)

Fig. 7. Data Set 5 test results.

36 M. Bas� Seyyar et al. / Applied Computing and Informatics 14 (2018) 28–36
monthly, 15-day and 15-day periods respectively. Related details
are expressed in Table 10.

Type 3 percentage of each data set is shown in Figs. 3–7.

5. Conclusion

In this work, we studied web vulnerability scans detection
through access log files of web servers in addition to detection of
XSS and SQLI attacks. In accordance with this purpose, we used
rule-based methodology. Firstly, we examined the behavior of
the automated vulnerability scanners. Moreover, we implemented
our model with a Python script. Afterwards, our model has been
evaluated based on data we have collected. Finally, we tested our
model on the log samples from real systems.

It is clear that our method has very high probability of detection
and low probability of false alarm. More specifically, the accuracy
and the precision rates of our model are 99.38%, 100.00% respec-
tively. More importantly, malicious scans can be captured more
precisely because different types of scanning tools including both
open source and commercial tools were examined. Therefore, our
results indicates that static rules can detect successfully web vul-
nerability scans. Besides, we have observed that our model func-
tions properly with larger and live data sets and correctly detects
Type 3 IP addresses.

As shown in the Fig. 2, the relation between the number of lines
of the log files and the running time is linear. As a result, how long
a log file would be analyzed, could be predicted in advance.

The results presented in this work may enhance researches
about malicious web scans and may support the development of
attack detection studies. Also, if security analysts or administrators
execute the proposed python script several times within the same
day, he/she could prevent most of the web related attacks.

Future work considerations related to this work are twofold. In
the first place, one could make our model possible to analyze other
log files such as audit log and error log. Secondly, in addition to the
scope of this work; different from SQLI and XSS attacks, other well-
known web application attacks like CSRF could be addressed too.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.aci.2017.04.002.

References

[1] E.M. Hutchins, M.J. Cloppert, R.M. Amin, Intelligence-driven Computer
Network Defense Informed by Analysis of Adversary Campaigns and
Intrusion Kill Chains, vol. 1, API, 2011, URL <https://books.google.com.
tr/books?id=oukNfumrXpcC>.

[2] European Union Agency for Network and Information Security (ENISA), ENISA
Threat Landscape 2015. URL <https://www.enisa.europa.eu/publications/
etl2015>, 2016 (accessed November 29, 2016).

[3] D.V. Bernardo, Clear and present danger: interventive and retaliatory
approaches to cyber threats, Appl. Comput. Infor. 11 (2) (2015) 144–157,
http://dx.doi.org/10.1016/j.aci.2014.11.002, URL <http://
www.sciencedirect.com/science/article/pii/S2210832714000386>.

[4] R. Meyer, Detecting Attacks on Web Applications from Log Files. URL <https://
www.sans.org/reading-room/whitepapers/logging/detecting-attacks-web-
applications-log-files-2074>, 2008 (accessed December 12, 2016).

[5] D.B. Cid, Log Analysis using OSSEC. URL <http://www.academia.edu/8343225/
Log_Analysis_using_OSSEC>, 2007 (accessed November 29, 2016).

[6] Wikipedia, Overfitting. URL <https://en.wikipedia.org/wiki/Overfitting>, 2016
(accessed December 27, 2016).

[7] M. Auxilia, D. Tamilselvan, Anomaly detection using negative security model in
web application, in: 2010 International Conference on Computer Information
Systems and Industrial Management Applications (CISIM), 2010, pp. 481–486,
http://dx.doi.org/10.1109/CISIM.2010.5643461.

[8] K. Goseva-Popstojanova, G. Anastasovski, R. Pantev, Classification of malicious
web sessions, in: 2012 21st International Conference on Computer
Communications and Networks (ICCCN), 2012, pp. 1–9, http://dx.doi.org/
10.1109/ICCCN.2012.6289291.

[9] M. Husák, P. Velan, J. Vykopal, Security monitoring of http traffic using
extended flows, in: 2015 10th International Conference on Availability,
Reliability and Security, 2015, pp. 258–265, http://dx.doi.org/10.1109/
ARES.2015.42.

[10] M. Zolotukhin, T. Hämäläinen, T. Kokkonen, J. Siltanen, Analysis of http
requests for anomaly detection of web attacks, in: 2014 IEEE 12th
International Conference on Dependable, Autonomic and Secure Computing,
2014, pp. 406–411, http://dx.doi.org/10.1109/DASC.2014.79.

[11] S. Cho, S. Cha, Sad: web session anomaly detection based on parameter
estimation, Comput. Secur. 23 (4) (2004) 312–319, http://dx.doi.org/10.1016/
j.cose.2004.01.006, URL <http://www.sciencedirect.com/science/article/pii/
S0167404804000264>.

[12] N. Singh, A. Jain, R.S. Raw, R. Raman, Detection of Web-Based Attacks by
Analyzing Web Server Log Files, Springer India, New Delhi, 2014, http://dx.doi.
org/10.1007/978-81-322-1665-0_10, pp. 101–109.

[13] D. Stevanovic, N. Vlajic, A. An, Detection of malicious and non-malicious
website visitors using unsupervised neural network learning, Appl. Soft
Comput. 13 (1) (2013) 698–708, http://dx.doi.org/10.1016/j.
asoc.2012.08.028, URL <http://www.sciencedirect.com/science/article/pii/
S1568494612003778>.

[14] A. Razzaq, Z. Anwar, H.F. Ahmad, K. Latif, F. Munir, Ontology for attack
detection: an intelligent approach to web application security, Comput. Secur.
45 (2014) 124–146, http://dx.doi.org/10.1016/j.cose.2014.05.005, URL <http://
www.sciencedirect.com/science/article/pii/S0167404814000868>.

[15] W3Techs (Q-Success DI Gelbmann GmbH), Usage Statistics and Market Share
of Apache for Websites. URL <https://w3techs.com/technologies/details/ws-
apache/all/all>, 2009–2017 (accessed December 12, 2016).

[16] The Apache Software Foundation, Apache Tomcat. URL <http://tomcat.apache.
org> (accessed December 24, 2016).

[17] w3af.org, w3af. URL <http://w3af.org>, 2013 (accessed December 12, 2016).
[18] The Web Robots Pages, Robots Database. URL <http://www.robotstxt.org/db.

html> (accessed September 4, 2016).
[19] M.C. Calzarossa, L. Massari, D. Tessera, An extensive study of web robots

traffic, in: Proceedings of International Conference on Information
Integration and Web-based Applications & Services, IIWAS ’13, ACM,
New York, NY, USA, 2013, pp. 410:410–410:417, http://dx.doi.org/10.1145/
2539150.2539161.

[20] M.D. Dikaiakos, A. Stassopoulou, L. Papageorgiou, An investigation of web
crawler behavior: characterization and metrics, Comput. Commun. 28 (8)
(2005) 880–897, http://dx.doi.org/10.1016/j.comcom.2005.01.003, URL
<http://www.sciencedirect.com/science/article/pii/S0140366405000071>.

[21] M. Dikaiakos, A. Stassopoulou, L. Papageorgiou, Characterizing Crawler
Behavior from Web Server Access Logs, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2003, http://dx.doi.org/10.1007/978-3-540-45229-4_36.

[22] M.C. Calzarossa, L. Massari, Analysis of Web Logs: Challenges and Findings,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2011, http://dx.doi.org/
10.1007/978-3-642-25575-5_19, pp. 227–239.

[23] D. Stevanovic, A. An, N. Vlajic, Feature evaluation for web crawler detection
with data mining techniques, Expert Syst. Appl. 39 (10) (2012) 8707–8717,
http://dx.doi.org/10.1016/j.eswa.2012.01.210, URL <http://
www.sciencedirect.com/science/article/pii/S0957417412002382>.

[24] A.G. Lourenço, O.O. Belo, Catchingweb crawlers in the act, in: Proceedings of the
6th International Conference on Web Engineering, ICWE ’06, ACM, New York,
NY, USA, 2006, pp. 265–272, http://dx.doi.org/10.1145/1145581.1145634.

[25] D. Stevanovic, A. An, N. Vlajic, DetectingWeb Crawlers fromWeb Server Access
LogswithDataMiningClassifiers, Springer BerlinHeidelberg, Berlin,Heidelberg,
2011, http://dx.doi.org/10.1007/978-3-642-21916-0_52, pp. 483–489.

[26] A. Chuvakin, Public Security Log Sharing Site. URL <http://log-
sharing.dreamhosters.com>, 2009 (accessed December 15, 2015).

http://dx.doi.org/10.1016/j.aci.2017.04.002
https://books.google.com.tr/books?id=oukNfumrXpcC
https://books.google.com.tr/books?id=oukNfumrXpcC
https://www.enisa.europa.eu/publications/etl2015
https://www.enisa.europa.eu/publications/etl2015
http://dx.doi.org/10.1016/j.aci.2014.11.002
http://www.sciencedirect.com/science/article/pii/S2210832714000386
http://www.sciencedirect.com/science/article/pii/S2210832714000386
https://www.sans.org/reading-room/whitepapers/logging/detecting-attacks-web-applications-log-files-2074
https://www.sans.org/reading-room/whitepapers/logging/detecting-attacks-web-applications-log-files-2074
https://www.sans.org/reading-room/whitepapers/logging/detecting-attacks-web-applications-log-files-2074
http://www.academia.edu/8343225/Log_Analysis_using_OSSEC
http://www.academia.edu/8343225/Log_Analysis_using_OSSEC
https://en.wikipedia.org/wiki/Overfitting
http://dx.doi.org/10.1109/CISIM.2010.5643461
http://dx.doi.org/10.1109/ICCCN.2012.6289291
http://dx.doi.org/10.1109/ICCCN.2012.6289291
http://dx.doi.org/10.1109/ARES.2015.42
http://dx.doi.org/10.1109/ARES.2015.42
http://dx.doi.org/10.1109/DASC.2014.79
http://dx.doi.org/10.1016/j.cose.2004.01.006
http://dx.doi.org/10.1016/j.cose.2004.01.006
http://www.sciencedirect.com/science/article/pii/S0167404804000264
http://www.sciencedirect.com/science/article/pii/S0167404804000264
http://dx.doi.org/10.1007/978-81-322-1665-0_10
http://dx.doi.org/10.1007/978-81-322-1665-0_10
http://dx.doi.org/10.1016/j.asoc.2012.08.028
http://dx.doi.org/10.1016/j.asoc.2012.08.028
http://www.sciencedirect.com/science/article/pii/S1568494612003778
http://www.sciencedirect.com/science/article/pii/S1568494612003778
http://dx.doi.org/10.1016/j.cose.2014.05.005
http://www.sciencedirect.com/science/article/pii/S0167404814000868
http://www.sciencedirect.com/science/article/pii/S0167404814000868
https://w3techs.com/technologies/details/ws-apache/all/all
https://w3techs.com/technologies/details/ws-apache/all/all
http://tomcat.apache.org
http://tomcat.apache.org
http://w3af.org
http://www.robotstxt.org/db.html
http://www.robotstxt.org/db.html
http://dx.doi.org/10.1145/2539150.2539161
http://dx.doi.org/10.1145/2539150.2539161
http://dx.doi.org/10.1016/j.comcom.2005.01.003
http://www.sciencedirect.com/science/article/pii/S0140366405000071
http://dx.doi.org/10.1007/978-3-540-45229-4_36
http://dx.doi.org/10.1007/978-3-642-25575-5_19
http://dx.doi.org/10.1007/978-3-642-25575-5_19
http://dx.doi.org/10.1016/j.eswa.2012.01.210
http://www.sciencedirect.com/science/article/pii/S0957417412002382
http://www.sciencedirect.com/science/article/pii/S0957417412002382
http://dx.doi.org/10.1145/1145581.1145634
http://dx.doi.org/10.1007/978-3-642-21916-0_52
http://log-sharing.dreamhosters.com
http://log-sharing.dreamhosters.com

	Detection of attack-targeted scans from the Apache HTTP Server access logs
	1 Introduction
	2 Related work
	3 System model
	3.1 Assumptions
	3.2 Data and log generation
	3.2.1 Web servers
	3.2.1.1 HTTP Server
	3.2.1.2 Apache Tomcat

	3.2.2 Damn Vulnerable Web Application (DVWA)
	3.2.3 Web vulnerability scanners
	3.2.3.1 Acunetix
	3.2.3.2 Netsparker
	3.2.3.3 Web Application Attack and Audit Framework (W3AF)

	3.3 Rules and methodology

	4 Results
	4.1 Experimental setup
	4.2 Model evaluation
	4.3 Scan detection on live data

	5 Conclusion
	Appendix A Supplementary material
	References

