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Zusammenfassung
In der vorliegenden Arbeit untersuchen wir Anwendungen und Weiterentwicklun-

gen der Parametrix-Methode. Die Parametrix-Methode stammt ursprünglich aus der
Theorie gewöhnlicher Di�erentialgleichungen und sie ermöglicht eine Reihendarstel-
lung der Übergangsdichte der Lösung einer stochastischen Di�erentialgleichung, wobei
die Summanden Funktionen der Übergangsdichte eines einfachen Markov-Prozesses
sind. Diese Methode ist schon seit vielen Jahren bekannt, es gibt aber immer noch
viele o�ene Probleme.

Die Arbeit ist unterteilt in drei Teile. Zuerst wird die Parametrix-Methode für Dif-
fusionsprozesse und Markov-Prozesse in allgemeinen Situationen eingeführt. Nachdem
wir die wichtigsten Konzepte und Begri�e eingeführt haben, werden wir zeigen, dass
diese Technik auch angewandt werden kann, falls die Koe�zienten nicht glatt sind.

Im zweiten Teil studieren wir, wie anfällig die Übergangsdichten nicht-degenerierter
Di�usionsprozesse und zugehöriger Markov-Prozesse für kleine Änderungen in den
Koe�zienten sind. Diese Fragestellung taucht natürlicherweise z.B. bei Modellen mit
falsch spezi�zierten Koe�zienten oder bei der Untersuchung des schwachen Fehlers des
Euler-Schemas mit irregulären Koe�zienten auf. Für den Beweis unseres Ergebnisses
über die Kontrolle des Fehlers benötigen wir nur Hölder-Annahmen an die Stetigkeit
der Koe�zienten. Diese Ergebnisse wurden von V. Konakov and S. Menozzi zur Anal-
yse des schwachen Fehlers des Euler-Schemas angewandt [V. Konakov, S. Menozzi,
2017, Weak Error for the Euler Scheme Approximation of Di�usions with non-smooth
Coe�cients].

Motiviert von diesen Resultaten versuchen wir im dritten und herausforderndsten
Teil der Arbeit, den schwachen und globalen Fehler im Fall von nicht-glatten Koef-
�zienten in Kolmogorovs degenerierter SDE zu kontrollieren. Solche Di�erentialgle-
ichungen wurden zuerst 1933 von Kolmogorov eingeführt. Indem wir Techniken aus
dem Artikel von V. Konakov, S. Menozzi und S. Molchanov (2010) (in dem die Au-
toren Lipschitz Koe�zienten betrachten) anpassen, ist es jetzt möglich degenerierte
Kolmogorov-Di�usionsprozesse auch unter Hölder-Annahmen zu untersuchen. Um den
schwachen und globalen Fehler in unserem Fall zu berechnen, führen wir die konkrete
Version des Euler-Schemas für die degenerierte Kolmogorov-Gleichung ein, die auch
als Itô-Prozess verstanden werden kann.

Unsere Ergebnisse über die Anfälligkeit der Übergangsdichten für Änderungen in
den Koe�zienten lassen sich auf natürliche Weise vom nicht-degenerierten zum de-
generierten Fall erweitern und sind somit auch für die Kontrolle des schwachen und
globalen Fehlers geeignet. Bei dieser Erweiterung treten jedoch einige strukturelle
Probleme auf, da die beiden Raumvariablen der Übergangsdichte unterschiedliche Zeit-
skalen haben. Diese Aspekte werden auÿerdem in dem Artikel [A. Kozhina, 2016,
Stability of Densities for Perturbed Degenerate Di�usions] diskutiert.

Eines der Hauptergebnisse im letzten Teil erlaubt es uns, den schwachen Fehler



für degenerierte Di�usionsprozesse mit nicht-glatten Koe�zienten zu kontrollieren.
Für den Beweis dieses Ergebnisses haben wir gezeigt, dass die Ableitungen des heat-
kernels bzgl. nicht-degenerierter Variablen in der ersten Komponente der Übergangs-
dichte geeignet beschränkt werden können. Soweit uns bekannt, sind dies die ersten
punktweisen Schranken an die Ableitungen bzgl. der nicht-degenerierten Variablen
unter ausschlieÿlich Hölderstetigkeitsannahmen an die Koe�zienten. Sie erweitern die
bekannten

Schranken von Il'in et al. (1962) im Falle von Kolmogorov-Di�usionsprozessen.
Das quantitative Verhalten der Ableitungen bzgl. der degenerierten Variablen unter
minimalen Glattheitsannahmen zu untersuchen, verbleibt ein interessantes und o�enes
Problem. Schlieÿlich haben wir auch versucht, die Di�erenz von der Übergangsdichte
des Di�usionsprozesses und der Markov-Kette zu kontrollieren. Leider lässt es sich
in diesem Fall nicht vermeiden, Annahmen über die Sensibilität des Kernes bzgl. der
degenerierten Variablen zu stellen, weil Zeitsingularitäten höherer Ordnung sowie ein
nicht beschränkter Transportterm entstehen. Die Zeitsingularitäten höherer Ordnung
führen zu Restriktionen an den Hölder Exponenten, welche in unseren Annahmen
auftauchen.



Abstract
The present thesis investigates applications and developments of the parametrix

technique. The parametrix technique comes from the theory of ODEs. Now it refor-
mulates as a continuity technique that provides a formal representation for the density
of the SDE's solutions in terms of in�nite series involving the density of another, sim-
pler, Markov process. Although the method itself has been known for many years
there are still many open problems.

The project is divided into three parts. Firstly, we are going to introduce the
parametrix method for di�usions and Markov chains in general settings. After pre-
senting main concepts and objects we emphasize that the technique can be fruitfully
used also in case of non-smooth coe�cients.

Secondly, we study the sensitivity of densities of non-degenerate di�usion processes
and related Markov Chains with respect to a perturbation of the coe�cients. Nat-
ural applications of these results appear, for example, in models with misspeci�ed
coe�cients or for the investigation of the weak error of the Euler scheme with irreg-
ular coe�cients. The stability controls have been derived under Hölder continuity
assumptions on coe�cients regularity only. Continuing the research, V. Konakov and
S. Menozzi applied the results mentioned above to study the weak error of the Euler
scheme approximations in their paper[V. Konakov, S. Menozzi, 2017, Weak Error for
the Euler Scheme Approximation of Di�usions with non-smooth coe�cients].

Motivated by these extensions, we continue with the most challenging and di�-
cult part - the weak and global error controls for the case of rough coe�cients to
Kolmogorov's degenerate SDEs in the last part of the thesis. Such equations were
�rst introduced in 1933 by Kolmogorov. Adapting the techniques, introduced in the
paper written by V. Konakov, S Menozzi and S. Molchanov in 2010 (where authors
considered Lipschitz coe�cients), it is now possible to investigate the Holder settings
for degenerate Kolmogorov di�usions. To specify the notation of the weak and global
error in our framework, we also introduce the speci�c version of the Euler scheme for
the degenerate Kolmogorov equation, which can be also seen as an Ito process.

The sensitivity analysis which we need to prove controls for the weak end global
errors naturally extends from the non-degenerate case to the degenerate framework.
However, some structural di�culties appear due to the di�erent time scales for the
�rst and the second space variable of the transition density. These aspects can be also
found in the published article [A. Kozhina, 2016, Stability of densities for perturbed
degenerate di�usions].

One of the key results in the last part provides the weak error controls for de-
generate di�usions with non-smooth coe�cients. To derive that we have proved the
heat kernel derivatives bounds with respect to a non-degenerate �rst component of
the transition density. Up to the best of our knowledge, these are the �rst pointwise
bounds obtained on the derivatives w.r.t. the non-degenerate variables under the sole



Hölder continuity assumption on the coe�cients. They extend the well-known controls
derived by Il'in et al. in 1962 to Kolmogorov di�usions. Investigating the quantitative
behaviour of the derivatives w.r.t. the degenerate variable under minimal smoothness
assumptions remains a very interesting and open problem.

Finally, we studied the controls for the direct di�erence of transition densities
of the di�usion and the Markov chain. Unfortunately, when handling directly the
di�erence of the densities we cannot avoid to control sensitivities of the kernels w.r.t.
to the degenerate variable. Such sensitivities lead to higher time singularities and
make the unbounded transport term appear. The higher time-singularities yield the
stated restriction on the Hölder exponent in our assumptions on the coe�cients.
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Chapter 1

Introduction

Modelling of many natural phenomena is still a challenging question. Data and obser-
vations which we receive from the real word normally contain a lot of inaccuracy and
noisy factors. Using only deterministic models often makes predictions ine�cient and
imprecise. Thus, researchers in many �elds are forced to use concepts with additional
randomness inside.

The possible way to model the uncertainty is to describe the dynamics of the
process in terms of Stochastic Di�erential Equations (SDE further). We are interested
in studying Brownian SDEs of the following form

Zt = z +

∫ t

0

b(s, Zs)ds+

∫ t

0

σ(s, Zs)dWs, (1.1)

where (Ws)s≥0 is an Rk-valued Brownian motion on some �ltered probability space
(Ω,F , (Ft)t≥0,P), Zt is Rm valued, with m ∈ N possibly di�erent of k. The coe�cients
b, σ are respectively Rm and Rm ⊗ Rk valued and s.t. a unique weak solution to (1.1)
exists.

Equation (1.1) appears in many applicative �elds from physics to �nance. Let us
for instance mention Hamiltonian mechanics [Tal02], �nancial mathematics [JYC10]
and biology �simple epidemic model� ([Bai17]; [BY89]).

Except from some very speci�c cases, the SDE (1.1) cannot be solved explicitly and
it therefore seems natural to investigate some related approximation procedures. One
of the simplest e�ective computational methods is still the Euler - Maruyama method,
introduced in the current SDE framework in [Mar55], and which is the analogue of the
Euler method for ordinary di�erential equations. Fix a positive time horizon T > 0,
for a given integer N , representing the number of time steps to be considered along
the time interval [0, T ], introducing the time step h = T/N we de�ne for all t ∈ [0, T ]:

Zh
t = z +

∫ t

0

b(φ(s), Zh
φ(s))ds+

∫ t

0

σ(φ(s), Zh
φ(s))dWs, (1.2)
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where setting ti := ih, i ∈ [0, N ] we de�ne φ(s) = ti whenever s ∈ [ti, ti+1[. From the
above dynamics, we have that Zh is easily simulatable and can be viewed as an Itô
process.

When studying the accuracy of the approximation of the scheme proposed in (1.2)
for the initial SDE (1.1) two main types of errors are usually considered. Historically,
the �rst one to be investigated (see e.g. [Mar55], Gikhman and Skorokhod [GS67],
[GS82]) is the so-called strong error. Namely, for all p ∈ [1,+∞), with the usual
Markovian notations for the processes Zh

s , Zs, started from z at the moment 0:

ES(T, z, h, p) :=
(
Ez[ sup

s∈[0,T ]

|Zh,0,z
s − Z0,z

s |p]
)1/p

. (1.3)

This quantity is called strong in that it measures the distance between the whole paths.
When the coe�cients in (1.1) are Lipschitz continuous in space and at least 1/2-Hölder
continuous in time, it is easily seen from usual stochastic analysis techniques, namely
Itô' s formula Burkholder-Davies-Gundy inequalities and the Gronwall Lemma that:

∃Cp(T, b, σ), ES(T, z, h, p) ≤ Cph
1/2.

On the other hand, in many applications, such as e.g. some derivatives products
in �nance, one is only be interested in the so called weak error between the objects
introduced in (1.1) and (1.2). For a suitable test function f (we remain here a bit
vague about the function space to which f belongs to), one introduces:

EW (T, z, h, f) := Ez[f(Zh,0,z
T )]− Ez[f(Z0,z

T )]. (1.4)

There are two sets of assumptions which guarantee that the convergence rate for
EW (T, z, h, f) is actually of order h. Namely, if

(i) b, σ, f are smooth and without any speci�c non-degeneracy assumptions

or

(ii) b, σ enjoy some structure property (i.e. the generator associated with (1.1) is elliptic
or hypoelliptic) and some smoothness, and for f that enjoys suitable growth conditions
(and that can even be a Dirac mass)

then
|EW (T, z, h, f)| = |Ez[f(Zh,0,z

T − Ez[f(Z0,z
T )]| ≤ C(T, f, σ, b)h. (1.5)

In both cases (i) and (ii) the main tool for the analysis is the correspondence between
Ez[f(Zh

T )] and the solution of a second order parabolic PDE. This correspondence
is provided by the Feynman-Kac representation formula. Precisely, under the above

12



assumptions we have that, with the usual Markovian notations, v(t, z) := E[f(Zt,z
T )]

solves {
(∂t + Lt)v(t, z) = 0, (t, z) ∈ [0, T [×Rm,

v(T, z) = f(z), z ∈ Rm,
(1.6)

where

Ltv(t, z) = 〈b(t, z),∇zv(t, z)〉+
1

2
Tr
(
a(t, z)D2

zv(t, z)
)
, a(t, z) := σσ∗(t, z),

is the generator associated with (1.1). Provided we have some smoothness on v, one
can then write

EW (T, z, h, f) = E[f(Zh,0,z
T )]− E[f(Z0,z

T )] =
N−1∑
i=0

E[v(ti+1, Z
h,0,z
ti+1

)− v(ti, Z
h,0,z
ti )] (1.7)

=
N−1∑
i=0

E
[ ∫ ti+1

ti

{
∂sv(s, Zh,0,z

s ) +∇zv(s, Zh,0,z
s )b(ti, Z

h,0,z
ti )

+
1

2
Tr(D2

zv(s, Zh,0,z
s )a(ti, Z

h,0,z
ti ))

}
ds
]

=
N−1∑
i=0

E
[ ∫ ti+1

ti

{
∂sv + Lsv

}
(Zh,0,z

s )ds
]

+ E
[ ∫ ti+1

ti

{
∇zv(s, Zh,0,z

s ) · (b(ti, Zh,0,z
ti )− b(s, Zh,0,z

s ))

+
1

2
Tr(D2

zv(s, Zh,0,z
s )(a(ti, Z

h,0,z
ti )− a(s, Zh,0,z

s )))
}
ds
]

=
N−1∑
i=0

E
[ ∫ ti+1

ti

{
∇zvε(s, Z

h,0,z
s ) · (b(ti, Zh,0,z

ti )− b(s, Zh,0,z
s ))

+
1

2
Tr(D2

zv(s, Zh,0,z
s )(a(ti, Z

h,0,z
ti )− a(s, Zh,0,z

s )))
}
ds
]
, (1.8)

exploiting the PDE satis�ed by v for the last equality and Itô formula for the third
equality. For a function f in C2+β

b (Rk,R),∀β ∈ (0, 1], for example, the spatial deriva-
tives of v up to order two are globally bounded on [0, T ]. Through Taylor like expan-
sions, when ever (i) or (ii) holds one can control (1.8), deriving that each contribution
in (1.8) has order h2. This leads to the error of order h achieved after summing from
0 to N − 1.

In case (i), which is the one considered in the seminal paper by Talay and Tubaro
[TT90], the smoothness of v is simply derived through stochastic �ow techniques. In
case (ii) let us mention that in the hypoelliptic setting, weak or strong (see Section 4.1.1
for additional details on hypoellipticity), Bally and Talay [BT96a], [BT96b] established
(1.5) for bounded Borel functions f and Dirac masses respectively bases on the controls
of Kusuoka and Stroock [KS84], [KS85] for the derivatives of the density of the di�usion
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process. We carefully mention that, for this method, which anyhow allows to consider
a broad class of potential degeneracies, to apply, the coe�cients are assumed to be
smooth. The estimates on the tangent processes and Malliavin matrices in the works
by Kusuoka and Stroock indeed require such a smoothness. In the uniformly elliptic
case another approach has been developed by Konakov and Mammen [KM00], [KM02]
based on parametrix expansions. The authors also manage to consider Dirac masses
in (1.4).

Parametrix expansions, which roughly consists in approximating the density of a
process with variable coe�cients by the density of the corresponding dynamics with
constant coe�cients, have been a successful tool in many �elds. In particular, when
a good proxy is available (which is, for instance, the case if the coe�cients b ad σ in
(1.1) are non-degenerate and bounded), they allowed to derive the controls needed to
analyse the weak error under rather mild assumptions. We can, for instance, mention
the work of Il'in et al. [IKO62] who derived Gaussian heat kernel for the density of
(1.1) for bounded Hölder coe�cients when σσ∗ is non-degenerate. Such bounds have
been successfully exploited by Konakov and Menozzi [KM17] to derive, in that non-
degenerate Hölder continuous setting, that for b, σ ∈ Cγ/2,γ([0, T ],Rk), γ ∈ (0, 1] and
f ∈ Cβ(Rk,R), β ∈ (0, 1]:

|EW (T, z, h, f)| = |Ez[f(Zh
s )]− Ez[f(Zs)]| ≤ C(T, f, σ, b)hγ/2, (1.9)

improving the previous result by Mikulevi£ius and Platen [MP91] who also obtained
the bound (1.9) for a function f ∈ C2+γ(Rk,R). This additional smoothness was due
to the fact that they based their analysis and the associated Schauder estimates (which
could already be found in [IKO62]). Going back to the heat-kernel directly allows to
notably alleviate the smoothness assumptions on the �nal condition, which might be
useful for applications.

Intuitively, the above convergence rate can be explained from the fact that, in
the low regularity setting, the terms of order greater than one in the telescopic sum
(1.7) cannot be expanded much further. Namely, we can only exploit the γ-Hölder
continuity of the coe�cients which leads to an error controlled by the increments

E[|b(s, Zh
s )− b(φ(s), Zh

φ(s))|] + E[|a(s, Zh
s )− a(φ(s), Zh

φ(s))|] ≤ C(b, σ)hγ/2.

In other words, the convergence rate is closer to the one associated with the strong
error in (1.3).

Now, for many applications, like e.g. neuro-sciences or di�usions in random media,
it is even important to handle rougher coe�cients, for instance piecewise smooth
drifts in (1.1). In that case, the previously mentioned heat-kernel and bounds do not
hold. Motivated by the investigation of the related weak error for Dirac masses test
functions we have developed, with V. Konakov and S. Menozzi, a sensitivity analysis
of the density of (1.1) (when suitable good Gaussian bounds exist) with respect to a

14



perturbation of the coe�cients. This is the �rst main result of the Thesis which led
to the publication [KKM17] and is thoroughly developed in Chapter 3.

Namely, if we introduce the SDE of the form:

dXt = b(t,Xt)dt+ σ(t,Xt)dWt, t ∈ [0, T ], (1.10)

where b : [0, T ]×Rd → Rd, σ : [0, T ]×Rd → Rd⊗Rd are bounded coe�cients that are
measurable in time and Hölder continuous in space (this last condition will be possibly
relaxed for the drift term b). Also, a(t, x) := σσ∗(t, x) is assumed to be uniformly
elliptic. In particular those assumptions guarantee that (1.10) admits a unique weak
solution, see e.g. Bass and Perkins [BP09], [Men11] from which the uniqueness to
the martingale problem for the associated generator can be derived under the current
assumptions.

We now introduce, for a given parameter ε > 0, a perturbed version of (1.10) with
dynamics:

dX
(ε)
t = bε(t,X

(ε)
t )dt+ σε(t,X

(ε)
t )dWt, t ∈ [0, T ], (1.11)

where bε : [0, T ] × Rd → Rd, σε : [0, T ] × Rd → Rd ⊗ Rd satisfy at least the same
assumptions as b, σ and are in some sense meant to be close to b, σ when ε is small.

It is known that, under the previous assumptions, the density of the processes
(Xt)t≥0, (X

(ε)
t )t≥0 exists and satis�es some Gaussian bounds, see e.g Aronson [Aro59]

or [DM10] for extensions to some degenerate cases.
In the Chapter 3 we investigate, applying the parametrix technique, how the close-

ness of (bε, σε) and (b, σ) is re�ected on the respective densities of the associated
processes. Our stability results will also apply to two Markov chains with respective
dynamics:

Ytk+1
= Ytk + b(tk, Ytk)h+ σ(tk, Ytk)

√
hξk+1, Y0 = x,

Y
(ε)
tk+1

= Y
(ε)
tk

+ bε(tk, Y
(ε)
tk

)h+ σε(tk, Y
(ε)
tk

)
√
hξk+1, Y

(ε)
0 = x, (1.12)

where h > 0 is a given time step, for which we denote for all k ≥ 0, tk := kh and the
(ξk)k≥1 are centered i.i.d. random variables satisfying some integrability conditions.
Again, the key tool will be the parametrix representation for the densities of the chains
and the Gaussian local limit theorem.

Let us specify the following assumptions (A) which we use in Chapter 3. Below,
the parameter ε > 0 is �xed and the constants appearing in the assumptions do not
depend on ε.

(A1) (Boundedness of the coe�cients). The components of the vector-valued
functions b(t, x), bε(t, x) and the matrix-valued functions σ(t, x), σε(t, x) are bounded.
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Speci�cally, there exist constants K1, K2 > 0 s.t.

sup
(t,x)∈[0,T ]×Rd

|b(t, x)|+ sup
(t,x)∈[0,T ]×Rd

|bε(t, x)| ≤ K1,

sup
(t,x)∈[0,T ]×Rd

|σ(t, x)|+ sup
(t,x)∈[0,T ]×Rd

|σε(t, x)| ≤ K2.

(A2) (Uniform Ellipticity). The matrices a := σσ∗, aε := σεσ
∗
ε are uniformly elliptic,

i.e. there exists Λ ≥ 1, ∀(t, x, ξ) ∈ [0, T ]× (Rd)2,

Λ−1|ξ|2 ≤ 〈a(t, x)ξ, ξ〉 ≤ Λ|ξ|2,Λ−1|ξ|2 ≤ 〈aε(t, x)ξ, ξ〉 ≤ Λ|ξ|2.

(A3) (Hölder continuity in space). For some γ ∈ (0, 1] , κ <∞, for all t ∈ [0, T ],

|σ(t, x)− σ(t, y)|+ |σε(t, x)− σε(t, y)| ≤ κ |x− y|γ .

Observe that the last condition also readily gives, thanks to the boundedness of σ, σε
that a, aε are also uniformly γ-Hölder continuous.

For a given ε > 0, we say that assumption (A) holds when conditions (A1)-(A3)
are in force. Let us now introduce, under (A), the quantities that will bound the
di�erence of the densities in our main results below. Set for ε > 0:

∆ε,b,∞ := sup
(t,x)∈[0,T ]×Rd

{|b(t, x)− bε(t, x)|},

∀q ∈ (1,+∞), ∆ε,b,q := sup
t∈[0,T ]

‖b(t, .)− bε(t, .)‖Lq(Rd).

Since σ, σε are both γ-Hölder continuous, see (A3), we also de�ne

∆ε,σ,γ := sup
u∈[0,T ]

|σ(u, .)− σε(u, .)|γ,

where for γ ∈ (0, 1], |.|γ stands for the usual Hölder norm in space on Cγ
b (Rd,Rd⊗Rd)

(space of Hölder continuous bounded functions, see e.g. Krylov [Kry96]) i.e. :

|f |γ := sup
x∈Rd
|f(x)|+ [f ]γ, [f ]γ := sup

x 6=y,(x,y)∈(Rd)2

|f(x)− f(y)|
|x− y|γ

.

We eventually set for q ∈ (1,+∞],

∆ε,γ,q := ∆ε,σ,γ + ∆ε,b,q.
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Theorem 3.2.1. Fix ε > 0 and a �nal deterministic time horizon T > 0. Under
assumptions (A), speci�ed before, for q > d, there exist C := C(q) ≥ 1, c := c(q) ∈
(0, 1] s.t. for all 0 ≤ s < t ≤ T, (x, y) ∈ (Rd)2:

pc(t− s, y − x)−1|(p− pε)(s, t, x, y)| ≤ C∆ε,γ,q,

where p(s, t, x, .), pε(s, t, x, .) respectively stand for the transition densities at time t of
equations (1.10), (1.11) starting from x at time s. Also, we denote for a given c > 0

and for all (u, z) ∈ R+ × Rd, pc(u, z) := cd/2

(2πu)d/2
exp(−c |z|

2

2u
). If q = ∞, the constants

C, c do not depend on q.

This and the next theorem will be restated and discussed in Section 3.2.1.
Before stating our results for Markov Chains we introduce two kinds of innovations

in (1.12). Namely:

(IG) The i.i.d. random variables (ξk)k≥1 are Gaussian, with law N (0, Id). In that case
the dynamics in (1.12) correspond to the Euler discretization of equations (1.10) and
(1.11).

(IP) For a given integer M > 2d + 5 + γ, the innovations (ξk)k≥1 are centered and
have C5 density fξ which has, together with its derivatives up to order 5, at most
polynomial decay of order M . Namely, for all z ∈ Rd and multi-index ν, |ν| ≤ 5:

|Dνfξ(z)| ≤ CQM(z),

where we denote for all r > d, z ∈ Rd, Qr(z) := cr
1

(1+|z|)r ,
∫
Rd dzQr(z) = 1.

Theorem 3.2.2. Fix ε > 0 and a �nal deterministic time horizon T > 0. For
h = T/N, N ∈ N∗, we set for i ∈ N, ti := ih. Under (A), assuming that either(IG)
or (IP) holds, and for q > d there exist C := C(q) ≥ 1, c := c(q) ∈ (0, 1] s.t. for all
0 ≤ ti < tj ≤ T, (x, y) ∈ (Rd)2:

χc(tj − ti, y − x)−1|(ph − phε )(ti, tj, x, y)| ≤ C∆ε,γ,q,

where ph(ti, tj, x, .), p
h
ε (ti, tj, x, .) respectively stand for the transition densities at time

tj of the Markov Chains Y and Y (ε) in (1.12) starting from x at time ti. Also:

- If (IG) holds:
χc(tj − ti, y − x) := pc(tj − ti, y − x),

with pc as in Theorem 3.2.1.

- If (IP) holds:

χc(tj − ti, y − x) :=
cd

(tj − ti)d/2
QM−(d+5+γ)

(
|y − x|

(tj − ti)1/2/c

)
.
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Again, if q = +∞ the constants C, c do not depend on q.

Continuing the research, V. Konakov and S. Menozzi applied results mentioned
above to study the weak error of the Euler scheme approximations in the paper
[KM17]. To investigate the weak error for rough drifts, the idea in [KM17] is then
to mollify the drifts. The controls between the densities of the initial di�usion and the
one with molli�ed coe�cients is precisely controlled by the previous result. The same
occurs with the Euler scheme. It therefore remains to control the di�erence between
the densities of the molli�ed di�usion and schemes which can be addressed from pre-
vious results of [KM02] provided the high order derivatives (which explode with the
mollifying parameter) are sharply controlled.

Let us mention that the previous strategy was also used in [KM17] to handle the
Hölder weak error for Dirac masses. In that case, the result of [KM17] can be im-
proved following the approach proposed by Frikha [Fri18] who avoided any smoothing
procedure.

Motivated by the extension of the previous study, we continue with the weak error
controls for the case of rough coe�cients to Kolmogorov's degenerate SDEs in Chapter
4. Namely, we specify the model in (1.1) writing Zt = (Xt, Yt) with:{

dXt = b(Xt, Yt)dt+ σ(Xt, Yt)dWt,

dYt = Xtdt, t ∈ [0, T ],
(1.13)

where b : R2d → Rd, σ : R2d → Rd ⊗ Rd are bounded coe�cients that are Hölder
continuous in space (this condition will be possibly relaxed for the drift term b) and
W is a Brownian motion on some �ltered probability space (Ω,F , (Ft)t≥0,P). In (1.13),
T > 0 is a �xed deterministic �nal time. Also, a(x, y) := σσ∗(x, y) is assumed to be
uniformly elliptic.

We point out that those assumptions (speci�ed below) are actually su�cient to
guarantee weak uniqueness for the solution of equation (1.13), see Remark 4.2.1.

Such equations were �rst introduced in the seminal paper [Kol34] by Kolmogorov.
In that work, he found the explicit expression of the density when the coe�cients
are constants. The parametrix approach in that framework has then been applied by
various authors, Weber [Web51], Sonin [Son67] to the more recent [KMM10] under
various kinds of assumptions. Adapting the techniques introduced in the last quoted
work, which deals with Lipschitz coe�cients, it is now possible to consider the Hölder
setting for the degenerate Kolmogorov di�usions of type (1.13). The sensitivity anal-
ysis naturally extends to this framework. These aspects are detailed in Chapter 4 (see
as well the published article [Koz16]).

Precisely, let us introduce the Euler scheme for the SDE (1.13) �rst. For a �xed
N and T > 0 we de�ne a time grid {0, t1, . . . , tN} with a given step h := T/N , i.e.
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ti = ih, for i = 0, . . . , N and the scheme{
Xh
t = x+

∫ t
0
b(Xh

φ(s), Y
h
φ(s))ds+

∫ t
0
σ(Xh

φ(s), Y
h
φ(s))dWs,

Y h
t = y +

∫ t
0
Xh
s ds.

(1.14)

where φ(t) = ti ∀t ∈ [ti, ti+1). Observe that the above scheme is in fact well de�ned
even though the non degenerate component of the scheme itself appears in the integral.
On every time-step the increments of (Xh

t , Y
h
t )t∈[ti,ti+1], i ≥ 0 are actually Gaussian.

They indeed correspond to a suitable rescaling of the Brownian increment and its
integral on the considered time step, see also Remark 4.2.3.

Let us also denote for a given c > 0 and for all (x, y), (x′, y′) ∈ R2d the Kolmogorov-
type density

pc,K(t, (x, y), (x′, y′)) :=
cd3d/2

(2πt2)d
exp

(
−c
[
|x′ − x|2

4t
+ 3
|y′ − y − (x+ x′)t/2|2

t3

])
.(1.15)

The subscript K in the notation pc,K stands for Kolmogorov-like equations.
We would like to emphasize that in Chapter 4 we are considering time-homogeneous

coe�cients b, σ and specify assumptions precisely.

(AD1) (Boundedness of the coe�cients).
The components of the vector-valued function b(x, y) and the matrix-valued func-

tion σ(x, y) are bounded measurable. Speci�cally, there exists a constant K s.t.

sup
(x,y)∈R2d

|b(x, y)|+ sup
(x,y)∈R2d

|σ(x, y)| ≤ K.

(AD2) (Uniform Ellipticity).
The matrix a := σσ∗ is uniformly elliptic, i.e. there exists Λ ≥ 1, ∀(x, y, ξ) ∈ (Rd)3,

Λ−1|ξ|2 ≤ 〈a(x, y)ξ, ξ〉 ≤ Λ|ξ|2.

(AD3) (Hölder continuity in space).
For some γ ∈ (0, 1] , κ,

|b(x, y)− b(x′, y′)|+ |σ(x, y)− σ(x′, y′)| ≤ κ
(
|x− x′|γ + |y − y′|γ/3

)
.

We say that assumption (AD) holds when conditions (AD1)-(AD3) are in force.

Under mentioned assumptions, we now introduce perturbed versions of (1.13) and
(1.14). Namely, for bε : R2d → Rd, σε : R2d → Rd ⊗ Rd satisfy at least the same
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assumptions as b, σ and are in some sense meant to be close to b, σ for small values of
ε > 0 one denote:{

dX
(ε)
t = bε(X

(ε)
t , Y

(ε)
t )dt+ σ(X

(ε)
t , Y

(ε)
t )dWt,

dY
(ε)
t = X

(ε)
t dt, t ∈ [0, T ],

(1.16)

and similarly:

{
Xε,h
t = x+

∫ t
0
bε(X

ε,h
φ(s), Y

ε,h
φ(s))ds+

∫ t
0
σε(X

ε,h
φ(s), Y

ε,h
φ(s))dWs,

Y ε,h
t = y +

∫ t
0
Xε,h
s ds.

(1.17)

for t ∈ [0, tj), 0 < j ≤ N , where φ(t) = ti ∀t ∈ [ti, ti+1).
Considering as well a speci�c kind of Hölder continuity associated with the intrinsic

scales of the system and the time-homogeneous case we set for ε > 0:

∀q ∈ (1,+∞], ∆d
ε,b,q := |b(., .)− bε(., .)|Lq(R2d).

We also de�ne
∆d
ε,σ,γ := |σ(., .)− σε(., .)|d,γ,

where for γ ∈ (0, 1], |.|d,γ stands for the Hölder norm in space on Cγ
b,d(Rd ⊗ Rd),

which denotes the space of Hölder continuous bounded functions with respect to the
distance d de�ned as follows:

∀(x, y), (x′, y′) ∈ (Rd)2, d
(
(x, y), (x′, y′)

)
:= |x− x′|+ |y′ − y|1/3.

Namely, a measurable function f is in Cγ
b,d(Rd ⊗ Rd) if

|f |d,γ := sup
x,y∈R2d

|f(x, y)|+ [f ]d,γ, [f ]d,γ := sup
(x,y)6=(x′,y′)∈R2d

|f(x, y)− f(x′, y′)|
d
(
(x, y), (x′, y′)

)γ < +∞.

We eventually set ∀q ∈ (1,+∞],

∆d
ε,γ,q := ∆d

ε,σ,γ + ∆d
ε,b,q,

which will be the key quantity governing the error in our results.

Theorem 4.3.1. Fix T > 0. Under AD, for q ∈ (4d,+∞], there exists C := C(q) ≥
1, c ∈ (0, 1] s.t. for all 0 < t ≤ T, ((x, y), (x′, y′)) ∈ (R2d)2:

|(p− pε)(t, (x, y), (x′, y′))| ≤ C∆d
ε,γ,qpc,K(t, (x, y), (x′, y′)),

where p(t, (x, y), (., .)), pε(t, (x, y), (., .)) respectively stand for the transition densities
at time t of equations (1.13), (1.16) starting from (x, y) at time 0.
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Theorem 4.3.5. Fix T > 0 and let us de�ne a time-grid Λh := {(ti)i∈[[1,N ]]}, N ∈ N∗.
Under AD, there exists C ≥ 1, c ∈ (0, 1] s.t. for all 0 < tj ≤ T, ((x, y), (x′, y′)) ∈
(R2d)2:

|pεh − ph|(tj, (x, y), (x′, y′)) ≤ C∆d
ε,σ,γpc,K(tj, (x, y), (x′, y′)),

where pεh(t, (x, y), (., .)), ph(t, (x, y), (., .)) respectively stand for the transition densities
at time t of equations (1.14), (1.17) starting from (x, y) at time 0.

These two theorems will be restated and discussed in Section 4.3.1.
The sensitivity analysis will then be applied, in the �avour of [KM17] to investigate

the weak error associated to a speci�c Euler scheme which had already been considered
in [LM10] for equations of type (1.13). However, to perform the analysis we need to
change assumptions (AD) slightly. Precisely, we have to assume more about Hölder
properties of coe�cients than in (AD).

Instead of (AD3), we assume for some γ ∈ (0, 1] , κ,

|b(x, y)− b(x′, y′)|+ |σ(x, y)− σ(x′, y′)| ≤ κ
(
|x− x′|γ + |y − y′|γ/2

)
.

and denote that as (ÂD3). Thus, we say that assumption (ÂD) holds when conditions
(AD1),(AD2), (ÂD3) are in force.

Theorem 4.4.1. Fix T > 0. Under assumptions (ÂD) for any test function f ∈
Cβ,β/2(R2d) (β−Hölder in the �rst variable and β/2−Hölder in the second variable
functions) for β ∈ (0, 1], there exists C > 0, such that:

|E(x,y)[f(Xh
T , Y

h
T )]− E(x,y)[f(XT , YT )]| ≤ Chγ/2(1 + |x|γ/2).

where γ ∈ (0, 1] stands for the Hölder index of γ, γ/2 Hölder continuous time-homogeneous
functions b, σ.

The theorem will be restated in Section 4.4.
We also would like to present our control for the direct di�erence of transition den-

sities p(t, (x, y), (x′, y′)) and ph(t, (x, y), (x′, y′)). The result below is in clear contrast
with the one of Theorem 4.4.1 for the weak error, i.e. when additionally consider an
integration of a Hölder function w.r.t. the �nal (or forward variable). We �nally can
reach a global error of order hβ, β < γ− 1/2 which is close to the expected one in hγ/2

when γ goes to 1.
To improve the above result, we feel that some new advanced approaches to error

analysis should be considered. This means that either the scheme would have to be
modi�ed or the error decomposed very di�erently than in the current huge literature
(from the seminal papers of [KM00] and [KM02] the same lines are considered for the
error decomposition, see e.g. [KM10], [KM17], [Fri18]). Eventually, a speci�c di�culty
of the current model consists in dealing the unbounded transport term.
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Theorem 4.5.1. Fix a �nal time horizon T > 0 and a time step h = T/N,N ∈ N∗
for the Euler scheme. Under assumptions (ÂD), for γ ∈ (1/2, 1] and β ∈ (0, γ − 1

2
),

for all t in the time grid Λh := {(ti)i∈[[1,N ]]} and (x, y), (x′, y′) ∈ R2d there exist C :=
(T, b, a, β), c > 0 such that :

|p(t, (x, y), (x′, y′))− ph(t, (x, y), (x′, y′)|
≤ Chβ(1 + (|x| ∧ |x′|))1+γ) sup

s∈[t−h,t]
pc,K(s, (x, y), (x′, y′)), (1.18)

where pc,K(s, (x, y), (x′, y′)) stands for the Kolmogorov-type Gaussian density (1.15) at
time s.

The theorem will be discussed in Section 4.5.

22



Chapter 2

Parametrix technique

Since the main topic of the thesis is the parametrix technique, its developments and
applications � we would like to start with the short history review on it.

2.1 Review

The parametrix method itself is a classical method in order to construct fundamental
solutions for parabolic type partial di�erential equations using an expansion argument.
This method allows for coe�cients to be less regular than in the Malliavin Calculus ap-
proach. However, the methodology is restricted to cases where the underlying process
is Markov.

The parametix approach has been established in the beginning of XX century as a
perturbation technique for partial di�erential equations theory by Levi [Lev07]. The
original method has been used for approximations of the elliptic linear di�erential
equation solution. In a nutshell the idea consisted of the appropriate separation of
the �main� part and controlling the �remainder�. A common choice for the principal
part consists in considering the solution of the underlying equation with constant
coe�cients.

The technique has been further developed by Hadamard [Had23]. The important
modi�cations of the parametrix method, introduced by Il'in et. all in 1962 [IKO62],
Friedman in 1964 [Fri64] and McKean and I. Singer in 1967 [MS67], provided the
way to use it for SDEs theory. The main point is that the transition density of the
SDE can be found through the fundamental solution of the Cauchy problem for the
corresponding generator. Parametrix in a nutshell allows to get a representation of the
SDE transition density as a sum, where each term contains the transition density of
the more simple Gaussian process. Moreover the method of McKean and Singer does
not require any regularity on the coe�cients of the SDE, besides Hölder continuity
(although it was initially presented under C∞ assumptions).
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As far as we know one of the �rst investigation of the parametrix method for Markov
chains was presented in the paper by Konakov and Mammen in 2000 [KM00], however
local limit theorems for homogeneous Markov chains with continuous state space have
been already given in Konakov and Molchanov [KM85] but the last article was not
really well-known being published in Russian. In the article [KM00] Konakov and
Mammen applied the parametrix method for parabolic PDEs and a modi�cation of the
method � for discrete time Markov chain. As the result they achieved the convergence
rate of order O(n−1/2) for transition densities of triangular array of Markov Chains to
the transition density of the limiting di�usion.

After that, in 2001, the same authors considered the situation of triangular arrays
of Markov random walks that can be approximated by an accompanying sequence of
di�usion processes. The main result consisted in proving that normalized transition
probabilities di�er from transition densities in the di�usion model by rate O(n−1/2).
In particular, local limit theorems for the case that the Markov random walks has
been stated and proved. As in [KM00] the approach was based on application of the
parametrix method.

In 2002 Konakov and Mammen studied the approximation of the density of the
di�usion by the density of the Euler discretization with discretisation step 1

n
in [KM02].

Using the parametrix approach they obtained an asymptotic expansion in powers of
1
n
.
After these improvements some results about Edgeworth type expansions for tran-

sition densities were achieved also by applying the parametrix expansions. In 2005
the article [KM05] appeared with the discussion on Edgeworth type expansion for
the transition densities of triangular arrays of homogeneous Markov chains Xk

n that
converge weakly to the di�usion process.

As the generalization for the previous article the paper [KM07] was published in
2007. The improvements have been done mainly in two directions: the time horizon
T was allowed to converge to 0 and also cases are treated with non - homogeneous
di�usion limit.

Now we come to the key paper on the parametrix topic which is also important for
our current research. In 2010, Konakov, Menozzi and Molchanov presented the paper
[KMM10], where parametrix method has been adapted for a larger class of processes
- namely for degenerate di�usions with rank 2. However not only the density repre-
sentation in terms of parametrix series has been given but also the explicit Gaussian
upper and partial lower bounds has been derived. Due to the series representation,
the authors have provided also a local limit theorem with the usual convergence rate
for an associated Markov chains approximations.

As the continuation in this direction the article [DM10] was published by Delarue
and Menozzi with the full summary on the existing parametrix techniques including
the degenerate case. Two sided bounds for the density of the solution of a system of
n di�erential equations of dimension d have been provided.
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In the frame of degenerate di�usions case discussion we also would like to empha-
size the paper [Men11] due to the proof of the uniqueness of the martingale problem
associated to some degenerate operator inside. The key point is to exploit the strong
parallel between the new technique introduced by Bass and Perkins [BP09] to prove
uniqueness of the martingale problem in the framework of non degenerated elliptic
operators and the parametrix approach to the density expansion.

Later, Konakov and Menozzi also considered a stable driven SDEs cases for the
parametrix application [KM10]. Using a parametrix approach they derived an expan-
sion for the di�erence between the di�usion and the Euler scheme densities.

Even more general framework has been treated in the paper by Menozzi and Huang
[HM16] in 2016 where they considered a stable driven degenerate stochastic di�erential
equation, whose coe�cients satisfy a kind of weak Hörmander condition. Under mild
smoothness assumptions they proved the uniqueness of the martingale problem for the
associated generator using also the parametrix method as a tool.

2.2 Other developments in Parametrix

Bally and Kohatsu-Higa in their paper[BA09] introduced the parametrix method using
a semigroup approach and obtain the probabilistic representation for the density of
the solution to a di�usion equation or for Levy driven SDEs. It's worth to speci�cally
emphasize that they have described two kinds of parametrix methods: the �rst one
- �forward� and second one - �backward� parametrix. To use the �rst version it's
necessary to assume that the coe�cients are C2

b . The second version converges if
the drift coe�cient is bounded and measurable and di�usion coe�cient is bounded,
uniformly elliptic and Hölder continuous.

In his further articles Kohatsu-Higa with his co-authors consider an unbiased sim-
ulation method for multidimensional di�usions based on the parametrix method for
solving partial di�erential equations with Hölder continuous coe�cients [AKH17].

And also studied the parametrix approach applied to so-called skew di�usions to
obtain the existence and the regularity properties of the density and to provide a
Gaussian upper bound [KHTZ16].

As a continuation of the topic we would like to mention a paper by N. Frikha [Fri18].
Applying the results obtained in [AKH17] the author studied the weak approximation
error of a skew di�usion with bounded measurable drift and Hölder di�usion coe�cient
by an Euler-type scheme. A bound for the di�erence between the densities of the skew
di�usion and its Euler approximation was obtained using the parametrix method for
the skew di�usions.

Moreover we would like to emphasize other two papers as nice examples of the
parametrix application. First, in [FH15] studying the development of the Richardson-
Romberg extrapolation method for Monte Carlo linear estimator to the framework of
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stochastic optimization by means of stochastic approximation algorithm, authors also
extended the parametrix expansion results to the derivatives of the densities.

Second, in [FKHL16] authors obtained properties of the law associated to the �rst
hitting time of a threshold by a one-dimensional uniformly elliptic di�usion process
and to the associated process stopped at the threshold. The methodology relied on
the parametrix method that was applied to the associated Markov semigroup.

There is also an interesting direction for the parametrix applications developed
mostly by A. Pascucchi. Although there is a big variety of papers done more or less
in a same �avour it is worth to mention at least the key one. In [FP10] authors in-
troduced their own view on the di�usions transition densities approximations deriving
the technique also from the classical PDE theory. Moreover, authors provided a way
to use the parametrix analogue for pricing and hedging of �nancial derivatives.

2.3 Di�usions

To introduce the technique we would like to start the non-degenerate SDEs. Namely,
as in the Chapter 1, for a �xed given deterministic �nal time-horizon T > 0, we
consider the following multidimensional SDE:

dXt = b(t,Xt)dt+ σ(t,Xt)dWt, t ∈ [0, T ], (2.1)

where b : [0, T ] × Rd → Rd, σ : [0, T ] × Rd → Rd ⊗ Rd are bounded coe�cients
that are measurable in time and W is a Brownian motion on some �ltered probability
space (Ω,F , (Ft)t≥0,P). Also, a(t, x) := σσ∗(t, x) is assumed to be uniformly elliptic,
precisely, there exists λ0 ≥ 1 s.t. for (t, x, ξ) ∈ [0, T ] × Rd × Rd we have λ−1

0 |ξ|2 ≤
〈a(t, x)ξ, ξ〉 ≤ λ0|ξ|2 where |.| stands for the Euclidean norm.

To begin with, we assume that there exists the so-called transition density of (2.1)
which is a fundamental solution associated with the operator ∂t+ Lt, where Lt is the
generator of (2.1) (to get this one can assume Lipschitz continuity for coe�cients in
time and space, i.e.). Precisely, as in the Chapter 1, for all φ ∈ C2

0(Rd,R), z ∈ Rd :

Ltφ(z) =
1

2
Tr(a(t, z)D2

zφ(z)) + 〈b(t, z),∇zφ(z)〉. (2.2)

The existence of the Markov process with such a generator even in the case of β
Hölder continuity, 0 < β ≤ 1 for a and b has been proven in [SV79]. The existence of
the transition density P(Xs ∈ dy|Xt = x) = p(s, t, x, y)dy has been proved in the book
[Fri64], for example.

As it was mentioned in the Chapter 1, are interested in the approximation of the
solution Xt for the SDE

dXt = b(t,Xt)dt+ σ(t,Xt)dWt, t ∈ [0, T ], (2.3)
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For given (s, x) ∈ R+ × Rd, we use the standard Markov notation (Xs,x
t )t≥s to denote

the solution of (2.3) starting from x at time s.
Assume that (Xs,x

t )t≥s has for all t > 0 a smooth density p(t, x, .) (which is the case
if the coe�cients are smooth see e.g. Friedman [Fri64]). We would like to estimate
this density at a given point y ∈ Rd. To this end, we introduce the following Gaussian
inhomogeneous process with spatial variable frozen at y. For all (s, x) ∈ [0, T ]×Rd, t ≥
0 we set:

X̃y
t = x+

∫ t

s

σ(u, y)dWu,

which literally means we freeze the coe�cient σ() at the terminal point x ∈ Rd.
However it is worth to remark that the approach used by Levi [Lev07] and [IKO62]
applied the freezing procedure to the initial point (which seems to be even more natural
decision). The disadvantage of such a solution is that one needs to assume additional
regularity in time. Also the speci�c form without a trend coe�cient is used due to the
boundedness assumption on b(t,Xt). In the general case one should add

∫ t
s
b(u, y)du

to the de�nition of the frozen process.
The density of the frozen process p̃y, which exists due to the uniform elliptic-

ity assumptions on σ, seems to be the most natural "proxy" for the initial density
p(s, t, x, y). It's possible to quantify the distance between them using the Kolmogorov
equations.

Assume for the beginning smoothness for coe�cients in (2.3) and that (Xt)t>0 has
a smooth density. The density of the frozen process satis�es the Kolmogorov Backward
equation: {

∂up̃
y(u, t, z, y) + L̃yup̃

y(u, t, z, y) = 0, s ≤ u < t, z ∈ Rd,

p̃y(u, t, ., y)→
u↑t

δy(.),
(2.4)

where for all ϕ ∈ C2
0(Rd,R), z ∈ Rd:

L̃yuϕ(z) =
1

2
Tr
(
σσ∗(u, y)D2

zϕ(z)
)
,

stands for the generator of X̃y at time u.
On the other hand, since we have assumed the density of X to be smooth, it

must satisfy the Kolmogorov forward equation (see e.g. Dynkin [Dyn65]). For a given
starting point x ∈ Rd at time s,{

∂up(s, u, x, z) = L∗up(s, u, x, z) = 0, s < u ≤ t, z ∈ Rd,

p(s, u, x, .) →
u↓s

δx(.),
(2.5)

where L∗u stands for the formal adjoint (which is again well de�ned if the coe�cients
in (2.1) are smooth) of the generator of (2.1) (see (2.2)).
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Using the Dirac convergences in (2.4) and (2.5) one can derive that:

(p− p̃y)(s, t, x, y) =

∫ t

s

du∂u

∫
Rd
dzp(s, u, x, z)p̃y(u, t, z, y).

After a formal di�erentiating:

(p− p̃y)(s, t, x, y) =

∫ t

s

du

∫
Rd
dz (∂up(s, u, x, z)p̃y(u, t, z, y) + p(s, u, x, z)∂up̃

y(u, t, z, y)) .

Equations (2.4), (2.5) yield the formal expansion below which is initially due to
McKean and Singer [MS67].

(p− p̃y)(s, t, x, y) =

∫ t

s

du

∫
Rd
dz
(
L∗up(s, u, x, z)p̃y(u, t, z, y)− p(s, u, x, z)L̃yup̃

y(u, t, z, y)
)

=

∫ t

s

du

∫
Rd
dzp(s, u, x, z)(Lu − L̃yu)p̃y(u, t, z, y),(2.6)

We eventually take the adjoint for the last equality. Note carefully that the di�eren-
tiation under the integral is also here formal since we would need to justify that it can
actually be performed using some growth properties of the density and its derivatives
which we a priori do not know. Let us now introduce the notation

f ⊗ g(s, t, x, y) =

∫ t

s

du

∫
Rd
dzf(s, u, x, z)g(u, t, z, y)

for the time-space convolution and let us de�ne p̃(s, t, x, y) := p̃y(s, t, x, y), that is in
p̃(s, t, x, y) we consider the density of the frozen process at the �nal point and observe
it at that speci�c point. We now introduce the parametrix kernel:

H(s, t, x, y) := (Ls − L̃s)p̃(s, t, x, y) := (Ls − L̃ys)p̃y(s, t, x, y). (2.7)

With those notations equation (2.6) rewrites:

(p− p̃)(s, t, x, y) = p⊗H(s, t, x, y).

From this expression, the idea then consists in iterating this procedure for p(s, u, x, z)
in (2.6) introducing the density of a process with frozen characteristics in z which is
here the integration variable. This yields to iterated convolutions of the kernel and
leads to the formal expansion:

p(s, t, x, y) =
∞∑
r=0

p̃⊗H(r)(s, t, x, y), (2.8)
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where p̃ ⊗ H(0) = p̃, H(r) = H ⊗ H(r−1), r ≥ 1. Obtaining estimates on p from the
formal expression (2.8) requires to have good controls on the right-hand side. The
remarkable property of this formal expansion is now that the right-hand-side of (2.8)
only involves controls on Gaussian densities.

Observe that up to now we have used the smoothness assumption on the coe�-
cients a lot, however it's possible to have the same representation under the Hölder
assumptions only (see the Chapter 3).

The convergence of the series in (2.8) is in some sense standard (see e.g. [Men11]
or Friedman [Fri64]). We recall for the sake of completeness the key steps.

From direct computations, there exist c1 ≥ 1, c ∈ (0, 1] s.t. for all T > 0 and all
multi-index α, |α| ≤ 8,

∀0 ≤ u < t ≤ T, (z, y) ∈ (Rd)2, |Dα
z p̃(u, t, z, y)| ≤ c1

(t− u)|α|/2
pc(t− u, y − z), (2.9)

where

pc(t− u, y − z) =
cd/2

(2π(t− u))d/2
exp

(
− c

2

|y − z|2

t− u

)
,

stands for the usual Gaussian density in Rd with 0 mean and covariance (t− u)c−1Id.
From (2.9), the boundedness of the drift and the Lipschitz continuity in space of the
di�usion matrix we readily get that there exists c1 ≥ 1, c ∈ (0, 1],

|H(u, t, z, y)| ≤ c1(1 ∨ T 1/2)

(t− u)1/2
pc(t− u, z − y).

Now we present the property which usually called the smoothing property of the
parametrix kernel. Let us illustrate this by deriving the time-singularuty of the �rst
order-convolution.

|p̃⊗H(s, t, x, y)| ≤ ((1 ∨ T 1/2)c1)2B(
1

2
, 1)pc(t− s, y − x)(t− s)

1
2

=
((1 ∨ T 1/2)c1)2

[
Γ(1

2
)
]

Γ(3
2
)

pc(t− s, y − x)(t− s)
1
2 ,

where for a, b > 0, B(a, b) =
∫ 1

0
t−1+a(1−t)−1+bdt stands for the β− function, and using

as well the identity B(a, b) = Γ(a)Γ(b)
Γ(a+b)

for the last inequality. Iterating the convolution
operation, the exponent in time will grow with each iteration:

|p̃⊗H(r)(s, t, x, y)| ≤ ((1 ∨ T 1/2)c1)r+1

r∏
i=1

B(
1

2
,
i+ 1

2
)pc(t− s, y − x)(t− s)

r
2

=
((1 ∨ T 1/2)c1)r+1

[
Γ(1

2
)
]r

Γ(1 + r
2
)

pc(t− s, y − x)(t− s)
r
2 .
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These bound due to the asymptotic of the Gamma function readily yield the con-
vergence of the series as well as a Gaussian upper-bound. Namely

p(s, t, x, y) ≤ c1 exp((1 ∨ T 1/2)c1[(t− s)1/2])pc(t− s, y − x). (2.10)

The upper bound enjoy the semigroup property, i.e. ∀0 ≤ s < u < t ≤ T,∫
Rd
pc(u− t, z − x)pc(s− u, y − z)dz = pc(t− s, y − x),

which allows to propagate the upper bound (2.10) from small times to arbitrary but
�nite time.

2.4 Markov Chains

One of the main advantages of the formal expansion in (2.8) is that it has a direct
discrete counterpart in the Markov chain setting. Indeed, denote by (Y ti,x

tj )j≥i the
Markov chain starting from x at time ti with dynamics:

Ytk+1
= Ytk + b(tk, Ytk)h+ σ(tk, Ytk)

√
hξk+1, Y0 = x, (2.11)

where h > 0 is a given time step, for which we denote for all k ≥ 0, tk := kh and the
(ξk)k≥1 are centered i.i.d. random variables satisfying some integrability conditions.
Observe �rst that if the innovations (ξk)k≥1 have a density then so does the chain at
time tk.

Let us now introduce its generator at time ti, i.e. for all ϕ ∈ C2
0(Rd,R), x ∈ Rd:

Lhtiϕ(x) := h−1E[ϕ(Y ti,x
ti+1

)− ϕ(x)].

In order to give a representation of the density of ph(ti, tj, x, y) of Y ti,x
tj at point

y for j > i, we introduce similarly to the continuous case, the Markov chain (or
inhomogeneous random walk) with coe�cients frozen in space at y. For given (ti, x) ∈
[0, T ]× Rd, tj ≥ ti we set:

Ỹ ti,x,y
tj := x+ h1/2

j−1∑
k=i

σ(tk, y)ξk+1,

and denote its density p̃h,y(ti, tj, x, .). Its generator at time ti writes for all ϕ ∈
C2

0(Rd,R), x ∈ Rd:
L̃h,yti ϕ(x) = h−1E[ϕ(Ỹ ti,x,y

ti+1
)− ϕ(x)].

Using the notation p̃h(ti, tj, x, y) := p̃h,y(ti, tj, x, y), we introduce now for 0 ≤ i <
j ≤ N the parametrix kernel:

Hh(ti, tj, x, y) := (Lhti − L̃
h,y
ti )p̃h(ti + h, tj, x, y).
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Analogously to Lemma 3.6 in [KM00], which follows from a direct algebraic manip-
ulation, we derive the following representation for the density. Assuming boundness
and Lipschitz continuity for coe�cients b and σ with the uniform ellipticity for σ, one
can get for 0 ≤ ti < tj ≤ T that

ph(ti, tj, x, y) =

j−i∑
r=0

p̃h ⊗h Hh,(r)(ti, tj, x, y), (2.12)

where the discrete time convolution type operator ⊗h is de�ned by

f ⊗h g(ti, tj, x, y) =

j−i−1∑
k=0

h

∫
Rd
f(ti, ti+k, x, z)g(ti+k, tj, z, y)dz.

Also g ⊗h Hh,(0) = g and for all r ≥ 1, Hh,(r) := Hh ⊗h Hh,(r−1) denotes the r-fold
discrete convolution of the kernel Hh.

The key point to prove is the direct de�nition of the discrete kernel function. Since

Hh(ti, tj, x, y) =

∫
Rd
h−1[ph(ti, ti+1, x, z)− p̃h(ti, ti+1, x, z)]p̃h(ti+1, tj, z, y)dz.

Using the Markov property we get the following identity:

ph(ti, tj, x, y)− p̃h(ti, tj, x, y) =

j−1∑
k=i

h

∫
Rd
ph(ti, tk, x, z)

×
∫
Rd
h−1[ph(tk, tk+1, z, z

′)− p̃h(tk, tk+1, z, z
′)]p̃h(tk+1, tj, z

′, y)dz′dz

=

j−1∑
k=i

h

∫
Rd
ph(ti, tk, x, z)Hh(tk, tj, z, y)dz

= (ph ⊗h Hh)(ti, tj, x, y).

The expansion (2.12) follows by iterative application of this identity.
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Chapter 3

Stability of di�usion transition

densities

3.1 Introduction

In this Chapter we study the sensitivity of densities of non-degenerate di�usion pro-
cesses and related Markov Chains with respect to a perturbation of the coe�cients.
Natural applications of these results appear in models with misspeci�ed coe�cients or
for the investigation of the weak error of the Euler scheme with irregular coe�cients.

3.2 Stability

For a �xed given deterministic �nal horizon T > 0, let us consider, as in the Chapter
2, the following multidimensional SDE:

dXt = b(t,Xt)dt+ σ(t,Xt)dWt, t ∈ [0, T ], (3.1)

where b : [0, T ]×Rd → Rd, σ : [0, T ]×Rd → Rd⊗Rd are bounded coe�cients that are
measurable in time and Hölder continuous in space (this last condition will be possibly
relaxed for the drift term b) and W is a Brownian motion on some �ltered probability
space (Ω,F , (Ft)t≥0,P). Also, a(t, x) := σσ∗(t, x) is assumed to be uniformly elliptic.
In particular those assumptions guarantee that (3.1) admits a unique weak solution,
see e.g. Bass and Perkins [BP09], [Men11] from which the uniqueness to the martingale
problem for the associated generator can be derived under the current assumptions.

We now introduce, for a given parameter ε > 0, a perturbed version of (3.1) with
dynamics:

dX
(ε)
t = bε(t,X

(ε)
t )dt+ σε(t,X

(ε)
t )dWt, t ∈ [0, T ], (3.2)
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where bε : [0, T ] × Rd → Rd, σε : [0, T ] × Rd → Rd ⊗ Rd satisfy at least the same
assumptions as b, σ and are in some sense meant to be close to b, σ when ε is small.

It is known that, under the previous assumptions, the density of the processes
(Xt)t≥0, (X

(ε)
t )t≥0 exists and satis�es some Gaussian bounds, see e.g Aronson [Aro59]

or [DM10] for extensions to some degenerate cases.
The goal of this Chapter is to investigate how the closeness of (bε, σε) and (b, σ) is

re�ected on the respective densities of the associated processes. Important applications
can for instance be found in mathematical �nance. If the dynamics of (3.1) models
the evolution of the (log-)price of a �nancial asset, it is often very useful to know how
a perturbation of the volatility σ impacts the density, and therefore the associated
option prices.

In the framework of parameter estimation it can be useful, having at hand es-
timators (bε, σε) of the true parameters (b, σ) and some controls for the di�erences
|b − bε|, |σ − σε| in a suitable sense, to quantify the di�erence pε − p of the densities
corresponding respectively to the dynamics with the estimated parameters and the
one of the model.

Another important application includes the case of molli�cation by spatial convo-
lution. This speci�c kind of perturbation is useful to investigate the error between
the densities of a non-degenerate di�usion of type (3.1) with Hölder coe�cients (or
with piecewise smooth bounded drift) and its Euler scheme. In this framework, some
explicit convergence results can be found in [KM17].

More generally, this situation can appear in every applicative �eld for which the
di�usion coe�cient might be misspeci�ed.

Our stability results will also apply to two Markov chains with respective dynamics:

Ytk+1
= Ytk + b(tk, Ytk)h+ σ(tk, Ytk)

√
hξk+1, Y0 = x,

Y
(ε)
tk+1

= Y
(ε)
tk

+ bε(tk, Y
(ε)
tk

)h+ σε(tk, Y
(ε)
tk

)
√
hξk+1, Y

(ε)
0 = x, (3.3)

where h > 0 is a given time step, for which we denote for all k ≥ 0, tk := kh and
the (ξk)k≥1 are centred i.i.d. random variables satisfying some integrability conditions.
Again, the key tool will be the parametrix representation for the densities of the chains
and the Gaussian local limit theorem.

3.2.1 Assumptions and Main Results.

For better readability let us now repeat assumptions, introduced in Chapter 1, which
we use during this Section. Below, the parameter ε > 0 is �xed and the constants
appearing in the assumptions do not depend on ε.

(A1) (Boundedness of the coe�cients). The components of the vector-valued
functions b(t, x), bε(t, x) and the matrix-functions σ(t, x), σε(t, x) are bounded measur-
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able. Speci�cally, there exist constants K1, K2 > 0 s.t.

sup
(t,x)∈[0,T ]×Rd

|b(t, x)|+ sup
(t,x)∈[0,T ]×Rd

|bε(t, x)| ≤ K1,

sup
(t,x)∈[0,T ]×Rd

|σ(t, x)|+ sup
(t,x)∈[0,T ]×Rd

|σε(t, x)| ≤ K2.

(A2) (Uniform Ellipticity). The matrices a := σσ∗, aε := σεσ
∗
ε are uniformly elliptic,

i.e. there exists Λ ≥ 1, ∀(t, x, ξ) ∈ [0, T ]× (Rd)2,

Λ−1|ξ|2 ≤ 〈a(t, x)ξ, ξ〉 ≤ Λ|ξ|2,Λ−1|ξ|2 ≤ 〈aε(t, x)ξ, ξ〉 ≤ Λ|ξ|2.

(A3) (Hölder continuity in space). For some γ ∈ (0, 1] , κ <∞, for all t ∈ [0, T ],

|σ(t, x)− σ(t, y)|+ |σε(t, x)− σε(t, y)| ≤ κ |x− y|γ .

Observe that the last condition also readily gives, thanks to the boundedness of σ, σε
that a, aε are also uniformly γ-Hölder continuous.

For a given ε > 0, we say that assumption (A) holds when conditions (A1)-(A3)
are in force. Let us now introduce, under (A), the quantities that will bound the
di�erence of the densities in our main results below. Set for ε > 0:

∆ε,b,∞ := sup
(t,x)∈[0,T ]×Rd

{|b(t, x)− bε(t, x)|}, ∀q ∈ (1,+∞),

∆ε,b,q := sup
t∈[0,T ]

‖b(t, .)− bε(t, .)‖Lq(Rd).

Since σ, σε are both γ-Hölder continuous, see (A3.3) we also de�ne

∆ε,σ,γ := sup
u∈[0,T ]

|σ(u, .)− σε(u, .)|γ,

where for γ ∈ (0, 1], |.|γ stands for the usual Hölder norm in space on Cγ
b (Rd,Rd⊗Rd)

(space of Hölder continuous bounded functions, see e.g. Krylov [Kry96]) i.e. :

|f |γ := sup
x∈Rd
|f(x)|+ [f ]γ, [f ]γ := sup

x6=y,(x,y)∈(Rd)2

|f(x)− f(y)|
|x− y|γ

.

The previous control in particular implies for all (u, x, y) ∈ [0, T ]× (Rd)2:

|a(u, x)− a(u, y)− aε(u, x) + aε(u, y)| ≤ 2(K2 + κ)∆ε,σ,γ|x− y|γ.

We eventually set for q ∈ (1,+∞],

∆ε,γ,q := ∆ε,σ,γ + ∆ε,b,q, (3.4)
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which will be the key quantity governing the error in our results.
We will denote, from now on, by C a constant depending on the parameters ap-

pearing in (A) and T . We reserve the notation c for constants that only depend on
(A) but not on T . The values of C, c may change from line to line and do not depend
on the considered parameter ε. Also, for given integers i, j ∈ N s.t. i < j, we will
denote by [[i, j]] the set {i, i+ 1, · · · , j}.

We are now in position to state main results of this Chapter, which we have already
mentioned in Chapter 1.

Theorem 3.2.1. Fix ε > 0 and a �nal deterministic time horizon T > 0. Under (A)
and for q > d, there exist C := C(q) ≥ 1, c := c(q) ∈ (0, 1] s.t. for all 0 ≤ s < t ≤
T, (x, y) ∈ (Rd)2:

pc(t− s, y − x)−1|(p− pε)(s, t, x, y)| ≤ C∆ε,γ,q, (3.5)

where p(s, t, x, .), pε(s, t, x, .) respectively stand for the transition densities at time t of
equations (3.1), (3.2) starting from x at time s. Also, we denote for a given c > 0 and

for all (u, z) ∈ R+ × Rd, pc(u, z) := cd/2

(2πu)d/2
exp(−c |z|

2

2u
).

The proof will be given in Section 3.2.4.

Remark 3.2.1 (About the constants). We mention that the constant C := C(q) in (3.5)
explodes when q ↓ d and is decreasing in q. In particular, it can be chosen uniformly
as soon as q ≥ q0 > d.

Before stating our results for Markov Chains we introduce two kinds of innovations
in (3.3). Namely:

(IG) The i.i.d. random variables (ξk)k≥1 are Gaussian, with law N (0, Id), where Id
stands for the identity matrix of size d× d. In that case the dynamics in (3.3) corre-
spond to the Euler discretization of equations (3.1) and (3.2).

(IP) For a given integer M > 2d + 5 + γ, the innovations (ξk)k≥1 are centred and
have C5 density fξ which has, together with its derivatives up to order 5, at most
polynomial decay of order M . Namely, for all z ∈ Rd and multi-index ν, |ν| ≤ 5:

|Dνfξ(z)| ≤ CQM(z), (3.6)

where we denote for all r > d, z ∈ Rd, Qr(z) := cr
1

(1+|z|)r ,
∫
Rd dzQr(z) = 1.

Theorem 3.2.2 (Stability Control for Markov Chains). Fix ε > 0 and a �nal deter-
ministic time horizon T > 0. For h = T/N, N ∈ N∗, we set for i ∈ N, ti := ih.
Under (A), assuming that either(IG) or (IP) holds, and for q > d there exist C :=
C(q) ≥ 1, c := c(q) ∈ (0, 1] s.t. for all 0 ≤ ti < tj ≤ T, (x, y) ∈ (Rd)2:

χc(tj − ti, y − x)−1|(ph − phε )(ti, tj, x, y)| ≤ C∆ε,γ,q, (3.7)

where ph(ti, tj, x, .), p
h
ε (ti, tj, x, .) respectively stand for the transition densities at time

tj of the Markov Chains Y and Y (ε) in (3.3) starting from x at time ti. Also:
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- If (IG) holds:

χc(tj − ti, y − x) := pc(tj − ti, y − x),

with pc as in Theorem 3.2.1.

- If (IP) holds:

χc(tj − ti, y − x) :=
cd

(tj − ti)d/2
QM−(d+5+γ)

(
|y − x|

(tj − ti)1/2/c

)
.

The proof will be given in Section 3.2.5.

3.2.2 On Some Related Applications.

Model Sensitivity for Option Prices.

Assume for instance that the (log)-price of a �nancial asset is given by the dynamics
in (3.1). Under suitable assumptions the price of an option on that asset writes at
time t and when Xt = x as E[f(exp(X t,x

T ))] up to an additional discounting factor. In
the previous expression f is the pay-o� function. For a rather large class of pay-o�s,
say measurable functions with polynomial growth, including irregular ones, Theorem
3.2.1 allows to speci�cally quantify how a perturbation of the coe�cients impacts the
option prices. Precisely for a given ε > 0, under (A):

|Eε(t, T, x, f)| := |E[f(exp(X t,x
T ))]− E[f(exp(X

t,x,(ε)
T ))]|

≤ C∆ε,γ,q

∫
Rd
f(exp(y))pc(T − t, x, y)dy.

This previous control can be as well exploited to investigate perturbations of a model
which provides some closed formulas, e.g. a perturbation of the Black and Scholes
model that would include a stochastic volatility taking for instance σε(x) = σ+ εψ(x)
for some bounded Hölder continuous function ψ and ε small enough. In that case,
assuming that the drift is known and unperturbed, we have ∆ε,γ,∞ = |σε−σ|γ = ε|ψ|γ.

In connection with this application, we can quote the work of Corielli et al. [CFP10]
who give estimates on option prices through parametrix expansions truncating the se-
ries. Some of their results, see e.g. their Theorem 3.1, can be related to a perturbation
analysis since they obtain an approximation of an option price for a local volatility
model in terms of the Black�Scholes price and a correction term corresponding to the
�rst order term in the parametrix series. A more probabilistic approach to similar
problems can be found in Benhamou et al. [BGM10]. However, none of the indicated
works indeed deals with the global perturbation analysis we perform here.
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Weak Error Analysis

It is well known that if the coe�cients b, σ in (3.1) are smooth and a satis�es the non-
degeneracy condition (A3.2), then weak error on the densities for the approximation
by the Euler scheme is well controlled. Precisely, for a given time step h > 0, let us
set for i ∈ N, ti := ih. Introduce now the Euler scheme Xh

0 = x, ∀i ≥ 1, Xh
ti+1

=

Xh
ti

+ b(ti, X
h
ti

)h+ σ(ti, X
h
ti

)(Wti+1
−Wti) and denote by ph(ti, x, .) its density at time

ti. The dynamics of the Euler scheme clearly enters the scheme (3.3). It has been
established in Konakov and Mammen [KM02] (see also Bally and Talay [BT96b] for
an extension to the hypoelliptic setting) that:

|p− ph|(ti, tj, x, y) ≤ Chpc(tj − ti, x, y).

If the coe�cients in (3.1) are not smooth, it is then possible to use a molli�cation
procedure, taking for x ∈ Rd, bε(t, x) := b(t, .) ? ρε(x), σε(t, x) := σ(t, .) ? ρε(x) with
ρε := ε−dρ(x/ε) and ρ ∈ C∞(Rd,R+),

∫
Rd ρ(x)dx = 1, |supp(ρ)| ⊂ K for some compact

set K of Rd. For the mollifying kernel ρε, one then easily checks that for γ-Hölder
continuous in space coe�cients b, σ there exists C s.t.

sup
t∈[0,T ]

|b(t, .)− bε(t, .)|∞ ≤ Cεγ, sup
t∈[0,T ]

|σ(t, .)− σε(t, .)|η ≤ Cεγ−η, η ∈ (0, γ). (3.8)

The important aspect is that we lose a bit with respect to the sup norm when investi-
gating the Hölder norm. We then have by Theorems 3.2.1 and 3.2.2 and their proof,
that, for γ-Hölder continuous in space coe�cients b, σ and taking p = ∞, there exist
c, C s.t. for all 0 ≤ s < t ≤ T, 0 ≤ ti < tj ≤ T, (x, y) ∈ (Rd)2:

|(p− pε)(s, t, x, y)| ≤ CCηε
γ−ηpc(t− s, y − x),

|(ph − phε )(ti, tj, x, y)| ≤ CCηε
γ−ηpc(tj − ti, y − x),

where the constant Cη explodes when η tends to 0.
To investigate the global weak error (p−ph)(ti, tj, x, y) = {(p−pε)+(pε−phε )+(phε−

ph)}(ti, tj, x, y), it therefore remains to analyse the contribution (pε − phε )(ti, tj, x, y).
The results of [KM02] indeed apply but yield |(pε−phε )(ti, tj, x, y)| ≤ Cεhpc(tj−ti, y−x)
where Cε is explosive when ε goes to zero. The global error thus writes:

|(p− ph)(ti, tj, x, y)| ≤ C{Cηεγ−η + Cεh}pc(tj − ti, y − x),

and a balance is needed to derive a global error bound. This is precisely the analysis
which is performed in [KM17]. In this Chapter, we extend to the densities (up to
a slowly growing factor) the results previously obtained by Mikulevi£ius and Platen
[MP91] on the weak error, i.e. they showed |E[f(XT ) − f(Xh

T )]| ≤ Chγ/2 provided
f ∈ C2+γ(Rd,R). Precisely, we obtain through a suitable analysis of the constants
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Cη, Cε, which respectively depend on behaviour of the parametrix series and of the
derivatives of the heat kernel with molli�ed coe�cients, that |p − ph|(ti, tj, x, y) ≤
Chγ/2−ψ(h)pc(tj − ti, y− x) for a function ψ(h) going to 0 as h→ 0. (which is induced
by the previous loss of η in (3.8)). In the quoted work, we also obtain some error
bounds for piecewise smooth drifts having a countable set of discontinuities. This part
explicitly requires the stability result of Theorems 3.2.1, Theorems 3.2.2 for q < +∞.
The idea being that the di�erence between the piece-wise smooth drift and its smooth
approximation (actually the molli�cation procedure is only required around the points
of discontinuity), is well controlled in Lq norm, q < +∞.

Extension to some Kinetic Models

The results of Theorems 3.2.1 and 3.2.2 should extend without additional di�culties
to the case of degenerate di�usions of the form:

dXt = b(t,Xt, Yt)dt+ σ(t,Xt, Yt)dWt,

dYt = Xtdt,
(3.9)

under the same previous assumptions on b, σ when we consider perturbations of the
non-degenerate components, i.e. for a given ε > 0, (X

(ε)
t , Y

(ε)
t ) where:

dX
(ε)
t = bε(t,X

(ε)
t , Y

(ε)
t )dt+ σε(t,X

(ε)
t , Y

(ε)
t )dWt,

dY
(ε)
t = X

(ε)
t dt.

(3.10)

Indeed, under (A), the required parametrix expansions of the densities associated with
the solutions of equation (3.9), (3.10) are mentioned in Chapter 4 (see also [KMM10]).

A posteriori controls in parameter estimation

Let us consider to illustrate this application a parametrized family of di�usions of the
form:

dXt = b(t,Xt)dt+ σ(η, t,Xt)dWt, (3.11)

where η ∈ θ ⊂ Rd, the coe�cients b, σ are smooth, bounded and the non-degeneracy
condition (A3.2) holds. A natural practical problem consists in estimating the true
parameter η from an observed discrete sample (Xtni

)i∈[0,n] where the (ti)i∈[0,n] form a
partition of the observation interval, i.e. if T = 1, 0 = tn0 < tn1 < · < tnn = 1.

Introducing the contrast:

Un(η) :=
1

n

n∑
i=1

[
log(det(a(η, tni−1))) + 〈a−1(η, tni−1, Xtni−1

)Xn
i , X

n
i 〉
]
,

39



∀i ∈ [1, n], Xn
i :=

Xtni
−Xtni−1√
tni − tni−1

,

and denoting by η̂n the corresponding minimizer, it was shown by Genon-Catalot
and Jacod [GCJ93] that under Pη,

√
n(η̂n−η) converges in law towards a mixed normal

variable S which is, conditionally to F1 := σ[(Xs)s∈[0,1]], centred and Gaussian. For a
precise expression of the covariance which depends on the whole path of (Xt)t∈[0,1] we
refer to Theorem 3 and its proof in [GCJ93].

This means that, when n is large, conditionally to F1, we have on a subset Ω̄ ⊂ Ω
which has high probability, that |η̂n− η| ≤ C√

n
for a certain threshold C. Setting εn =

n−1/2, σεn(t, x) := σ(η̂n, t, x) and with a slight abuse of notation σ(t, x) := σ(η, t, x),
one gets that, on Ω̄:

|σ(t, x)− σεn(t, x)− (σ(t, y)− σεn(t, y))| ≤ |x− y| ∧ Cn−1/2

⇒ |σ − σε|ϑ ≤ (Cn−1/2)1−ϑ, ϑ ∈ (0, 1].

We can then invoke our Theorem 3.2.2 to compare the densities of the di�usions with
the estimated parameter and the exact one in (3.11).

3.2.3 Derivation of formal series expansion for densities

Parametrix Representation of the Density for Di�usions

In the following, for given (s, x) ∈ R+ × Rd, we use the standard Markov notation
(Xs,x

t )t≥s to denote the solution of (3.1) starting from x at time s.
Assume again that (Xs,x

t )t≥s has for all t > s a smooth density p(s, t, x, .) (which is
the case if additionally to (A) the coe�cients are smooth see e.g. Friedman [Fri64]).
We would like to estimate this density at a given point y ∈ Rd. To this end, we again
use the parametrix expansion with respect to the density of the frozen process with
spatial variable frozen at y. For all (s, x) ∈ [0, T ]×Rd, t ≥ s we set for this Chapter:

X̃y
t = x+

∫ t

s

σ(u, y)dWu.

Its density p̃y readily satis�es the Kolmogorov Backward equation:{
∂up̃

y(u, t, z, y) + L̃yup̃
y(u, t, z, y) = 0, s ≤ u < t, z ∈ Rd,

p̃y(u, t, ., y)→
u↑t

δy(.),
(3.12)

where for all ϕ ∈ C2
0(Rd,R), z ∈ Rd:

L̃yuϕ(z) =
1

2
Tr
(
σσ∗(u, y)D2

zϕ(z)
)
,
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stands for the generator of X̃y at time u.
On the other hand, since we have assumed the density of X to be smooth, it

must satisfy the Kolmogorov forward equation (see e.g. Dynkin [Dyn65]). For a given
starting point x ∈ Rd at time s,{

∂up(s, u, x, z) = L∗up(s, u, x, z) = 0, s < u ≤ t, z ∈ Rd,

p(s, u, x, .) →
u↓s

δx(.),
(3.13)

where L∗u stands for the formal adjoint (which is again well de�ned if the coe�cients in
(3.1) are smooth) of the generator of (3.1) which for all ϕ ∈ C2

0(Rd,R), z ∈ Rd writes:

Luϕ(z) =
1

2
Tr
(
σσ∗(u, z)D2

zϕ(z)
)

+ 〈b(u, z), Dzϕ(z)〉.

Equations (3.12), (3.13) yield the formal expansion below which is initially due to
McKean and Singer [MS67].

(p− p̃y)(s, t, x, y) =

∫ t

s

du∂u

∫
Rd
dzp(s, u, x, z)p̃y(u, t, z, y)

=

∫ t

s

du

∫
Rd
dz (∂up(s, u, x, z)p̃y(u, t, z, y) + p(s, u, x, z)∂up̃

y(u, t, z, y))

=

∫ t

s

du

∫
Rd
dz
(
L∗up(s, u, x, z)p̃y(u, t, z, y)− p(s, u, x, z)L̃yup̃

y(u, t, z, y)
)

=

∫ t

s

du

∫
Rd
dzp(s, u, x, z)(Lu − L̃yu)p̃y(u, t, z, y), (3.14)

using the Dirac convergence for the �rst equality, equations (3.13) and (3.12) for the
second one. We eventually take the adjoint for the last equality. Note carefully that
the di�erentiation under the integral is also here formal since we would need to justify
that it can actually be performed using some growth properties of the density and its
derivatives which we a priori do not know.

Let us remind the notation from the Chapter 2:

f ⊗ g(s, t, x, y) =

∫ t

s

du

∫
Rd
dzf(s, u, x, z)g(u, t, z, y)

for the time-space convolution and let us de�ne p̃(s, t, x, y) := p̃y(s, t, x, y), that is in
p̃(s, t, x, y) we consider the density of the frozen process at the �nal point and observe
it at that speci�c point. We also remind the notationn of the parametrix kernel:

H(s, t, x, y) := (Ls − L̃s)p̃(s, t, x, y) := (Ls − L̃ys)p̃y(s, t, x, y). (3.15)
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This yields to iterated convolutions of the kernel and leads to the formal expansion:

p(s, t, x, y) =
∞∑
r=0

p̃⊗H(r)(s, t, x, y), (3.16)

where p̃⊗H(0) = p̃, H(r) = H ⊗H(r−1), r ≥ 1.
And now we come to the main di�erence from the prove which we have in Chapter

2. Since we are working under the Assumption (A3.3) of the just Hölder continuity
of coe�cients, it is not possible to refer directly to previously obtained results for the
density existence or parametrix expansion. However, both facts are still true.

Proposition 3.2.3. Under the sole assumption (A), for t > s, the density of Xx,s
t

solving (3.1) exists and can be written as in (3.16).

Proof. The proof can already be derived from a sensitivity argument. We �rst intro-
duce two parametrix series of the form (3.16). Namely,

p(s, t, x, y) := p̃(s, t, x, y) +
∞∑
r=1

p̃⊗H(r)(s, t, x, y) (3.17)

and

pε(s, t, x, y) := p̃ε(s, t, x, y) +
∞∑
r=1

p̃ε ⊗H(r)
ε (s, t, x, y). (3.18)

Let us point out that, at this stage, p and pε are de�ned as sum of series. The purpose
is then to identify those sums with the densities of the processes Xs,x

t , X
(ε),s,x
t at point

y.
The convergence of the series (3.17) and (3.18) is in some sense standard (see e.g.

[Men11] or Friedman [Fri64]) under (A). We recall for the sake of completeness the
key steps for (3.17).

From direct computations, there exist c1 ≥ 1, c ∈ (0, 1] s.t. for all T > 0 and all
multi-index α, |α| ≤ 8,

∀0 ≤ u < t ≤ T, (z, y) ∈ (Rd)2, |Dα
z p̃(u, t, z, y)| ≤ c1

(t− u)|α|/2
pc(t− u, y − z), (3.19)

where

pc(t− u, y − z) =
cd/2

(2π(t− u))d/2
exp

(
− c

2

|y − z|2

t− u

)
,

stands for the usual Gaussian density in Rd with 0 mean and covariance (t− u)c−1Id.
From (3.19), the boundedness of the drift and the Hölder continuity in space of the
di�usion matrix we readily get that there exists c1 ≥ 1, c ∈ (0, 1],

|H(u, t, z, y)| ≤ c1(1 ∨ T (1−γ)/2)

(t− u)1−γ/2 pc(t− u, z − y). (3.20)
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Now the key point is that the control (3.20) yields an integrable singularity giving
a smoothing e�ect in time once integrated in space in the time-space convolutions
appearing in (3.17) and (3.18). It follows by induction that:

|p̃⊗H(r)(s, t, x, y)| ≤ ((1 ∨ T (1−γ)/2)c1)r+1

r∏
i=1

B(
γ

2
, 1 + (i− 1)

γ

2
)pc(t− s, y − x)(t− s)

rγ
2

=
((1 ∨ T (1−γ)/2)c1)r+1

[
Γ(γ

2
)
]r

Γ(1 + r γ
2
)

pc(t− s, y − x)(t− s)
rγ
2 .

(3.21)

These bounds readily yield the convergence of the series as well as a Gaussian upper-
bound. Namely

p(s, t, x, y) ≤ c1 exp((1 ∨ T (1−γ)/2)c1[(t− s)γ/2])pc(t− s, y − x). (3.22)

An important application of the stability of the perturbation consists in considering
coe�cients bε := b ? ζε, σ := σ ? ζε in (3.18), where ζε is a molli�er in time and space.
For molli�ed coe�cients which satisfy the non-degeneracy assumptions (A3.2), the
existence and smoothness of the density pε for the associated process X(ε) in (3.2)
can be derived from [IKO62]. Observe carefully that the previous Gaussian bounds
also hold for pε uniformly in ε and independently of the mollifying procedure. This
therefore gives that

pε(s, t, x, y) −→
ε→0

p(s, t, x, y), (3.23)

boundedly and uniformly. Thus, for every continuous bounded function f we derive
from the bounded convergence theorem and (3.22) that for all 0 ≤ s < t, x ∈ Rd:

Es,x[f(X
(ε)
t )] =

∫
Rd
f(y)pε(s, t, x, y)dy −→

ε→0

∫
Rd
f(y)p(s, t, x, y)dy. (3.24)

In particular, taking f = 1 gives that
∫
Rd p(s, t, x, y)dy = 1 and the uniform con-

vergence in (3.23) gives that p(s, t, x, . . . ) is non negative. We therefore derive that
p(s, t, x, ·) is a probability density on Rd.

On the other hand, under (A), we can derive from Theorem 11.3.4 of [SV79] that
(Xε

s )s∈[0,T ] ⇒
ε→0

law (Xs)s∈[0,T ]. This gives that for any bounded continuous function f :

E[f(X
(ε),s,x
t )] −→

ε→0
E[f(Xs,x

t )].

This convergence and (3.24) then yield that the random variableXs,x
t admits p(s, t, x, ·)

as a density.
We can thus now conclude that the processes X,X(ε) in (3.1), (3.2) have transition

densities given by the sum of the series (3.17),(3.17).
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Parametrix for Markov Chains

One of the main advantages of the formal expansion in (3.16) is that it has a direct
discrete counterpart in the Markov chain setting. Indeed, denote by (Y ti,x

tj )j≥i the
Markov chain with dynamics (3.3) starting from x at time ti. Observe �rst that if the
innovations (ξk)k≥1 have a density then so does the chain at time tk.

Let us now introduce its generator at time ti, i.e. for all ϕ ∈ C2
0(Rd,R), x ∈ Rd:

Lhtiϕ(x) := h−1E[ϕ(Y ti,x
ti+1

)− ϕ(x)].

In order to give a representation of the density of ph(ti, tj, x, y) of Y ti,x
tj at point

y for j > i, we introduce similarly to the continuous case, the Markov chain (or
inhomogeneous random walk) with coe�cients frozen in space at y. For given (ti, x) ∈
[0, T ]× Rd, tj ≥ ti we set:

Ỹ ti,x,y
tj := x+ h1/2

j−1∑
k=i

σ(tk, y)ξk+1,

and denote its density p̃h,y(ti, tj, x, .). Its generator at time ti writes for all ϕ ∈
C2

0(Rd,R), x ∈ Rd:
L̃h,yti ϕ(x) = h−1E[ϕ(Ỹ ti,x,y

ti+1
)− ϕ(x)].

Using the notation p̃h(ti, tj, x, y) := p̃h,y(ti, tj, x, y), we introduce now for 0 ≤ i <
j ≤ N the parametrix kernel:

Hh(ti, tj, x, y) := (Lhti − L̃
h,y
ti )p̃h(ti + h, tj, x, y).

Analogously to Lemma 3.6 in [KM00], which follows from a direct algebraic manipu-
lation, we derive the following representation for the density which can be viewed as
the Markov chain analogue of Proposition 3.2.3.

Proposition 3.2.4 (Parametrix Expansion for the Markov Chain). Assume (A) is
in force. Then, for 0 ≤ ti < tj ≤ T ,

ph(ti, tj, x, y) =

j−i∑
r=0

p̃h ⊗h Hh,(r)(ti, tj, x, y),

where the discrete time convolution type operator ⊗h is de�ned by

f ⊗h g(ti, tj, x, y) =

j−i−1∑
k=0

h

∫
Rd
f(ti, ti+k, x, z)g(ti+k, tj, z, y)dz.

Also g ⊗h Hh,(0) = g and for all r ≥ 1, Hh,(r) := Hh ⊗h Hh,(r−1) denotes the r-fold
discrete convolution of the kernel Hh.
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3.2.4 Stability of Parametrix Series.

We will now investigate more speci�cally the sensitivity of the density w.r.t. the
coe�cients through the di�erence of the series. For a given �xed parameter ε, under
(A) the densities p(s, t, x, .), pε(s, t, x, ·) at time t of the processes in (3.1), (3.2) starting
from x at time s both admit a parametrix expansion of the previous type.

Stability for Di�usions

Let us consider the di�erence between two parametrix expansions:

|p(s, t, x, y)− pε(s, t, x, y)| = |
∞∑
r=0

p̃⊗H(r)(s, t, x, y)−
∞∑
r=0

p̃ε ⊗H(r)
ε (s, t, x, y)|

≤ |(p̃− p̃ε)(s, t, x, y)|+ |
∞∑
r=1

p̃⊗H(r)(s, t, x, y)−
∞∑
r=1

p̃ε ⊗H(r)
ε (s, t, x, y)|. (3.25)

The strategy to study the above di�erence, using some well known properties of the
Gaussian kernels and their derivatives recalled in (3.19), consists in �rst studying the
di�erence of the main terms.

We have the following Lemma.

Lemma 3.2.5 (Di�erence of the �rst terms and their derivatives). Under (A), there
exist c1 ≥ 1, c ∈ (0, 1] s.t. for all 0 ≤ s < t, (x, y) ∈ (Rd)2 and all multi-index
α, |α| ≤ 4,

|Dα
x p̃(s, t, x, y)−Dα

x p̃ε(s, t, x, y)| ≤ c1

(t− s)|α|/2
∆ε,σ,γpc(t− s, y − x).

Proof. Let us �rst consider |α| = 0 and introduce some notations. Set:

Σ(s, t, y) :=

∫ t

s

a(u, y)du, Σε(s, t, y) :=

∫ t

s

aε(u, y)du. (3.26)

Let us now identify the columns of the matrices Σ(s, t, y),Σε(s, t, y) with d-dimensional
column vectors, i.e. for Σ(s, t, y):

Σ(s, t, y) =
(

Σ1 Σ2 · · · Σd
)

(s, t, y).

We now rewrite:

p̃(s, t, x, y) = fx,y(Θ(s, t, y)), Θ(s, t, y) = ((Σ1)∗, · · · , (Σd)∗)∗(s, t, y),

p̃ε(s, t, x, y) = fx,y(Θε(s, t, y)), Θε(s, t, y) = ((Σ1
ε)
∗, · · · , (Σd

ε)
∗)∗(s, t, y),
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with

fx,y : Rd2 → R

Γ 7→ fx,y(Γ) =
1

(2π)d/2det(Γ1:d)1/2
exp

(
−1

2
〈(Γ1:d)−1(y − x), y − x〉

)
,
(3.27)

where Γ :=


Γ1

Γ2

...
Γd

 and each (Γi)i∈[[1,d]] belongs to Rd. Also, we have denoted:

Γ1:d :=
(

Γ1 Γ2 · · · Γd
)
,

the d × d matrix formed with the entries (Γi)i∈[[1,d]], each entry being viewed as a
column.

The multidimensional Taylor expansion now gives:

|(p̃− p̃ε)(s, t, x, y)| = |fx,y(Θ(s, t, y))− fx,y(Θε(s, t, y))|

=

∣∣∣∣ ∑
|ν|=1

Dνfx,y(Θ(s, t, y)){(Θε −Θ)(s, t, y)}ν

+2
∑
|ν|=2

{(Θε −Θ)(s, t, y)}ν

ν!

∫ 1

0

(1− δ)Dνfx,y([Θ + δ(Θε −Θ)](s, t, y))dδ

∣∣∣∣,
(3.28)

where for a multi-index ν := (ν1, · · · , νd2) ∈ Nd2
, we denote by |ν| :=

∑d2

i=1 νi the length

of the multi-index, ν! =
∏d2

i=1 νi! and for h ∈ Rd2
, hν :=

∏d2

i=1 h
νi
i (with the convention

that 00 = 1). With these notations, from (3.26), (3.27), (3.28) and Assumption (A4)
we get:

|fx,y(Θ(s, t, y))− fx,y(Θε(s, t, y))| ≤ c

{∑
|ν|=1

|Dνfx,y(Θ(s, t, y))|∆ε,σ,γ(t− s)

+ ∆2
ε,σ,γ(t− s)2 max

δ∈[0,1]

∑
|ν|=2

|Dνfx,y([Θ + δ(Θε −Θ)](s, t, y))|
}
.

(3.29)

Since fx,y in (3.27) is a Gaussian density in the parameters x, y, we recall from
Cramer and Leadbetter [CM04] (see eq. (2.10.3) therein), that for all Γ ∈ Rd2

and
any multi index ν, |ν| ≤ 2:

Dνfx,y(Γ) =
1

2|ν|

 d2∏
i=1

(
∂2

∂xb i−1
d
c+1
∂x

i−b i−1
d
cd

)νifx,y(Γ)

 ,
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where b·c stands for the integer part. Hence, taking from (3.29), for all δ ∈ [0, 1],
Γε,δ(s, t, y) := [Θ + δ(Θε −Θ)](s, t, y) yields, thanks to the non-degeneracy conditions
(see equation (3.19)):

|Dνfx,y(Γε,δ(s, t, y))| ≤ c̄1

(t− s)|ν|
fx,y
(
c̄Γε,δ(s, t, y)

)
≤ c̄1

(t− s)|ν|
pc̄(t− s, y − x), (3.30)

for some c̄1 ≥ 1, c̄ ∈ (0, 1].
Thus, from (3.27), (3.28), equations (3.29) and (3.30) give:

|p̃(s, t, x, y)− p̃ε(s, t, x, y)| ≤ c̄1∆ε,σ,γpc̄(s, t, x, y).

Up to a modi�cation of c̄1, c̄ or c1, c in (3.19) we can assume that the statement of the
lemma and (3.19) hold with the same constants c1, c. The bounds for the derivatives
are established similarly using the controls of (3.19). This concludes the proof.

Remark 3.2.2. Observe from equation (3.28) that the previous Lemma still holds with
∆ε,σ,γ replaced by ∆ε,σ,∞ := supt∈[0,T ] |σ(t, .)− σε(t, .)|∞. The Hölder norm is required
to control the di�erences of the parametrix kernels.

The previous lemma quanti�es how close are the main parts of the expansions.
To proceed we need to consider the di�erence between the one-step convolutions.
Combining the estimates of Lemmas 3.2.5 and 3.2.6 below will yield by induction the
result stated in Theorem 3.2.1.

Lemma 3.2.6 (Control of the one-step convolution). For all 0 ≤ s < t ≤ T, (x, y) ∈
(Rd)2 and for q ∈ (d,+∞]:

|p̃⊗H(1)(s, t, x, y)− p̃ε ⊗H(1)
ε (s, t, x, y)|

≤ c2
1pc(s, t, x, y)

{
2(1 ∨ T (1−γ)/2)2[∆ε,σ,γ + Iq=+∞∆ε,b,+∞]B(1,

γ

2
)(t− s)

γ
2

+Iq∈(d,+∞)∆ε,b,qB(
1

2
+ α(q), α(q))(t− s)α(q)

}
,

(3.31)

where c1, c are as in Lemma 3.2.5 and for q ∈ (d,+∞] we set α(q) = 1
2
(1 − d

q
). The

above control then yields for a �xed q ∈ (d,+∞]:

|p̃⊗H(1)(s, t, x, y)− p̃ε ⊗H(1)
ε (s, t, x, y)|

≤ 2C̄2∆ε,γ,qpc(s, t, x, y)(t− s)
γ
2
∧α(q)(B(1,

γ

2
) ∨B(

1

2
+ α(q), α(q))), C̄ = c1(1 ∨ T (1−γ)/2),

(3.32)

which will be useful for the iteration (see Lemma 3.2.7).
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Proof. Let us write:

|p̃⊗H(1)(s, t, x, y)− p̃ε ⊗H(1)
ε (s, t, x, y)| ≤

|p̃− p̃ε| ⊗ |H|(s, t, x, y) + p̃ε ⊗ |H −Hε|(s, t, x, y) =: I + II. (3.33)

From Lemma 3.2.5 and (3.19) we readily get for all q ∈ (d,+∞]:

|p̃− p̃ε|⊗|H|(s, t, x, y)| ≤ ((1∨T (1−γ)/2)c1)2∆ε,γ,qpc(t−s, y−x)B(1,
γ

2
)(t−s)

γ
2 . (3.34)

Now we will establish that for all 0 ≤ u < t ≤ T, (z, y) ∈ (Rd)2 and q = +∞:

|(H −Hε)(u, t, z, y)| ≤ ∆ε,γ,∞
(1 ∨ T (1−γ)/2)c1

(t− u)1− γ
2

pc(t− u, y − z). (3.35)

Equations (3.35) and (3.18) give that II can be handled as I which yields the result
for q = +∞. It therefore remains to prove (3.35). Let us write with the notations of
(3.27):

(H −Hε)(u, t, z, y) :=

[
1

2
Tr

(
(a(u, z)− a(u, y))D2

zfz,y
(
Θ(u, t, y)

))
+ 〈b(u, z), Dzfz,y

(
Θ(u, t, y)

)
〉
]

−
[

1

2
Tr

(
(aε(u, z)− aε(u, y))D2

zfz,y
(
Θε(u, t, y)

))
+ 〈bε(u, z), Dzfz,y

(
Θε(u, t, y)

)
〉
]
.

Thus,

(H −Hε)(u, t, z, y) =
1

2

[
Tr

(
(a(u, z)− a(u, y)){D2

zfz,y
(
Θ(u, t, y)

)
−D2

zfz,y
(
Θε(u, t, y)

)
}
)

− Tr

(
[(aε(u, z)− aε(u, y)− (a(u, z)− a(u, y))]D2

zfz,y
(
Θε(u, t, y)

))]
+

[
〈b(u, z), {Dzfz,y

(
Θ(u, t, y)

)
−Dzfz,y

(
Θε(u, t, y)

)
}〉

− 〈[(bε(u, z)− b(u, z))], Dzfz,y
(
Θε(u, t, y)

)
〉
]
. (3.36)

Observe now that, similarly to (3.30) one has for all i ∈ {1, 2}:

|Di
zfz,y

(
Θ(u, t, y)

)
|+ |Di

zfz,y
(
Θε(u, t, y)

)
| ≤ c̃1

(t− u)i/2
pc̃(t− u, y − z),

|Di
zfz,y

(
Θ(u, t, y)

)
−Di

zfz,y
(
Θε(u, t, y)

)
| ≤ c̃1∆ε,σ,γ

(t− u)i/2
pc̃(t− u, y − z).

Also,

|(aε(u, z)− aε(u, y)− (a(u, z)− a(u, y))| ≤ c∆ε,σ,γ|z − y|γ,
|b(u, z)− bε(u, z)| ≤ c∆ε,b,∞.
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Thus, provided that c1, c have been chosen large and small enough respectively in
Lemma 3.2.5, the de�nition in (3.4) gives:

|(H −Hε)(u, t, z, y)| ≤ (1 ∨ T (1−γ)/2)c1∆ε,γ,∞

(t− u)1−γ/2 pc(t− u, y − z).

This establishes (3.35) for q = +∞. For q ∈ (d,+∞) we have to use Hölder's inequality
in the time-space convolution involving the di�erence of the drifts (last term in (3.36)).
Set:

D(s, t, x, y) :=

∫ t

s

du

∫
Rd
p̃ε(s, u, x, z)〈[(bε(u, z)− b(u, z))], Dzfz,y

(
Θε(u, t, y)

)
〉dz.

Denoting by q̄ the conjugate of q, i.e. q, q̄ > 1, q−1 + q̄−1 = 1, we get from (3.18)
and for q > d that:

|D(s, t, x, y)|

≤ c2
1

∫ t

s

‖b(u, .)− bε(u, .)‖Lq(Rd)du

(t− u)1/2

{∫
Rd

[pc(u− s, z − x)pc(t− u, y − z)]q̄dz
}1/q̄

≤ c2
1∆ε,b,q

∫ t

s

cd
{∫

Rd pcq̄(u− s, z − x)pcq̄(t− u, y − z)dz
}1/q̄

du

(2π)d(1− 1
q̄

)(cq̄)d/q̄(u− s)
d
2

(1− 1
q̄

)(t− u)
1
2

+ d
2

(1− 1
q̄

)

≤ c2
1

(
c(t− s)

2π

) d
2

(1− 1
q̄

)

q̄−
d
2q̄∆ε,b,qpc(t− s, y − x)

∫ t

s

du

(u− s)
d
2

(1− 1
q̄

)(t− u)
1
2

+ d
2

(1− 1
q̄

)
.

Now, the constraint d < q < +∞ precisely gives that 1 < q̄ < d/(d − 1) ⇒
1
2

+ d
2
(1− 1

q̄
) < 1 so that the last integral is well de�ned. We therefore derive:

|D(s, t, x, y)| ≤ c2
1(t− s)

1
2
− d

2
(1− 1

q̄
)∆ε,b,qpc(t− s, y − x)B(1− d

2
(1− 1

q̄
),

1

2
− d

2
(1− 1

q̄
)).

In the case d < q < +∞, recalling that α(q) = 1
2
(1− d

q
), we eventually get :

p̃ε ⊗ |H −Hε|(s, t, x, y) ≤ c2
1pc(t− s, y − x){∆ε,b,q(t− s)α(q)B(

1

2
+ α(q), α(q))

+2∆ε,σ,γ(1 ∨ T (1−γ)/2)(t− s)γ/2B(1, γ/2)}.
(3.37)

The statement now follows in whole generality from (3.33), (3.34), equations (3.35),
(3.18) for q =∞ and (3.37) for d < q < +∞.

The following Lemma associated with Lemmas 3.2.5 and 3.2.6 allows to complete
the proof of Theorem 3.2.1.
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Lemma 3.2.7 (Di�erence of the iterated kernels). For all 0 ≤ s < t ≤ T, (x, y) ∈
(Rd)2 and for all q ∈ (d,+∞], r ∈ N:

|(p̃⊗H(r)−p̃ε⊗H(r)
ε )(s, t, x, y)| ≤ (r+1)∆ε,γ,q

C̄r+1
[
Γ(γ

2
∧ α(q))

]r
Γ(1 + r(γ

2
∧ α(q)))

pc(t−s, y−x)(t−s)r(
γ
2
∧α(q)).

(3.38)

where c, c1 are as in Lemma 3.2.5 and C̄ as in Lemma 3.2.6.

Proof. Observe that Lemmas 3.2.5 and 3.2.6 respectively give (3.38) for r = 0 and
r = 1. Let us assume that it holds for a given r ∈ N∗ and let us prove it for r + 1.

Let us denote for all r ≥ 1, ηr(s, t, x, y) := |(p̃⊗H(r)− p̃ε⊗H(r)
ε )(s, t, x, y)|. Write

ηr+1(s, t, x, y) ≤ |[p̃⊗H(r) − p̃ε ⊗H(r)
ε ]⊗H(s, t, x, y)|+ |p̃ε ⊗H(r)

ε ⊗ (H −Hε)(s, t, x, y)|
≤ ηr ⊗ |H|(s, t, x, y) + |p̃ε ⊗H(r)

ε | ⊗ |(H −Hε)|(s, t, x, y).

Recall now that under (A), the terms |H|(s, t, x, y) and |p̃ε⊗H(r)
ε | satisfy respectively

and uniformly in ε the controls of equations (3.19), (3.20). The result then follows from
the proof of Lemma 3.2.6 (see equation (3.35) for q =∞ and (3.37) for q ∈ (d,+∞))
and the induction hypothesis.

Theorem 3.2.1 now simply follows from the controls of Lemma 3.2.7, the parametrix
expansions (3.17) and (3.18) of the densities p, pε and the asymptotic of the gamma
function.

3.2.5 Stability for Markov Chains.

In this Section we prove Theorem 3.2.2. The strategy is rather similar to the one of
Section 3.2.4 thanks to the series representation of the densities of the chains given in
Proposition 3.2.4.

Recall �rst from Section 3.2.3 that we have the following representations for the
density ph, phε of the Markov chains Y, Y (ε) in (3.3). For all 0 ≤ ti < tj ≤ T, (x, y) ∈
(Rd)2:

ph(ti, tj, x, y) =

j−i∑
r=0

p̃h ⊗h Hh,(r)(ti, tj, x, y),

phε (ti, tj, x, y) =

j−i∑
r=0

p̃hε ⊗h Hh,(r)
ε (ti, tj, x, y).
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Comparison of the frozen densities

The �rst key point for the analysis with Markov chains is the following Lemma.

Lemma 3.2.8 (Controls and Comparison of the densities and their derivatives). There
exist c, c1 s.t. for all 0 ≤ ti < tj ≤ T, (x, y) ∈ (Rd)2 and for all multi-index α, |α| ≤ 4:

|Dα
x p̃

h(ti, tj, x, y)|+ |Dα
x p̃

h
ε (ti, tj, x, y)| ≤ 1

(tj − ti)|α|/2
ψc,c1(tj − ti, y − x),

|Dα
x p̃

h(ti, tj, x, y)−Dα
x p̃

h
ε (ti, tj, x, y)| ≤ ∆ε,σ,γ

(tj − ti)|α|/2
ψc,c1(tj − ti, y − x),

where

- Under (IG):
ψc,c1(tj − ti, y − x) := c1pc(tj − ti, y − x),

- Under (IP):

ψc,c1(tj − ti, y − x) :=
c1c

d

(tj − ti)d/2
QM−d−5

(
|y − x|

(tj − ti)1/2/c

)
.

Proof. Note �rst that under (IG) the statement has already been proved in Lemma
3.2.5. We thus assume that (IP) holds. Introduce �rst the random vectors with zero
mean:

Z̃y
k,j :=

1

(tj − tk)1/2

j−1∑
l=k

σ(tl, y)
√
hξl+1, Z̃

y,(ε)
k,j :=

1

(tj − tk)1/2

j−1∑
l=k

σε(tl, y)
√
hξl+1.

Denoting by qj−k, qj−k,ε their respective densities, one has:

Dα
x p̃

h(tk, tj, x, y) =
1

(tj − tk)(d+|α|)/2 (−1)|α|Dα
z qj−k(z)|z= y−x

(tj−tk)1/2
,

Dα
x p̃

h
ε (tk, tj, x, y) =

1

(tj − tk)(d+|α|)/2 (−1)|α|Dα
z qj−k,ε(z)|z= y−x

(tj−tk)1/2
.

(3.39)

From the Edgeworth expansion of Theorem 19.3 in Bhattacharya and Rao [BR76], for
qj−k, qj−k,ε, one readily derives under (A), for |α| = 0 that there exists c1 s.t. for all
0 ≤ tk < tj ≤ T, (x, y) ∈ (Rd)2,

p̃h(tk, tj, x, y) + p̃hε (tk, tj, x, y) ≤ c1

(tj − tk)d/2
1(

1 + |x−y|
(tj−tk)1/2

)m , (3.40)
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for all integer m < M − d, where we recall that M stands for the initial decay of the
density fξ of the innovations bounded by QM (see equation (3.6)).

We can as well derive similarly to the proof of Theorem 19.3 in [BR76], see also
Lemma 3.7 in [KM00], that for all α, |α| ≤ 4:

|Dα
x p̃

h(tk, tj, x, y)|+ |Dα
x p̃

h
ε (tk, tj, x, y)| ≤ c1

(tj − tk)(d+|α|)/2
1(

1 + |x−y|
(tj−tk)1/2

)m , (3.41)

for allm < M−d−4. Note indeed that di�erentiating in Dα
x the density and the terms

of the Edgeworth expansion corresponds to a multiplication of the Fourier transforms
involved by ζα, ζ standing for the Fourier variable. Hence, from our smoothness
assumptions in (IP), after obvious modi�cations, the estimates of Theorem 9.11 and
Lemma 14.3 from [BR76] apply for these derivatives. With these bounds, one then
simply has to copy the proof of Theorem 19.3. Roughly speaking, taking derivatives
deteriorates the concentration of the initial control in (3.40) up to the derivation
order. On the other hand, the bound in (3.40) is itself deteriorated w.r.t. the initial
concentration condition in (3.6). The key point is that the techniques of Theorem 19.3
in [BR76] actually provide concentration bounds for inhomogeneous sums of random
variables with concentration as in (3.6) in terms of the moments of the innovations.
To explain the bound in (3.40) let us observe that the mth moment of ξ is �nite for
m < M − d.

Equations (3.40) and (3.41) give the �rst part of the lemma. Still from the proof
of Theorem 19.3 in [BR76], one gets, under (A), that there exists C > 0 s.t. for all
multi-indexes ᾱ, |ᾱ| ≤ 4, β̄, |β̄| ≤ m ≤M − d− 5 for all j > k:∫

Rd
|ζ ᾱ|
{
|Dβ̄

ζ q̂j−k(ζ)|+ |Dβ̄
ζ q̂j−k,ε(ζ)|

}
dζ ≤ C, (3.42)

where q̂j−k(ζ), q̂j−k,ε(ζ) stand for the respective characteristic functions of the random
variables Z̃y

k,j, Z̃
y,(ε)
k,j at point ζ.

To investigate the quantity |Dα
x p̃

h(tk, tj, x, y) − Dα
x p̃

h
ε (tk, tj, x, y)| thanks to (3.39)

de�ne now for all α, |α| ≤ 4, β, |β| ≤ m ≤M − d− 5:

∀z ∈ Rd, Θj−k,ε(z) := zβDα
z (qj−k(z)− qj−k,ε(z)) ,

∀ζ ∈ Rd, Θ̂j−k,ε(ζ) := (−i)|α|+|β|Dβ
ζ (ζα {q̂j−k(ζ)− q̂j−k,ε(ζ)}) . (3.43)

Let us now estimate the di�erence between the characteristic functions. From the
Leibniz formula, we are led to investigate for all multi-indexes β̄, ᾱ, |β̄| ≤ |β|, |ᾱ| ≤ |α|
quantities of the form:

(iβ̄)−1ζ ᾱ(Dβ̄
ζ q̂j−k(ζ)−Dβ̄

ζ q̂j−k,ε(ζ))

= ζ ᾱE
[
(Z̃y

k,j)
β̄ exp[iζ · Z̃y

k,j]− (Z̃
y,(ε)
k,j )β̄ exp[iζ · Z̃y,(ε)

k,j ]
]
.
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Assume �rst that j > k + 1. In that case, set now Z̃y
k,j,1 := Z̃y

k,d(j+k)/2e, Z̃
y
k,j,2 :=

Z̃y
k,j − Z̃y

k,j,1. Denoting similarly Z̃y,(ε)
k,j,1 := Z̃

y,(ε)
k,d(j+k)/2e, Z̃

y,(ε)
k,j,2 := Z̃

y,(ε)
k,j − Z̃

y,(ε)
k,j,1 for the

perturbed process, we get:

(iβ̄)−1ζ ᾱ(Dβ̄
ζ q̂j−k(ζ)−Dβ̄

ζ q̂j−k,ε(ζ)) =

ζ ᾱ

{
E
[
(Z̃y

k,j,1 + Z̃y
k,j,2)β̄ exp[iζ · Z̃y

k,j,1] exp[iζ · Z̃y
k,j,2]

]
− E

[
(Z̃

y,(ε)
k,j,1 + Z̃

y,(ε)
k,j,2 )β̄ exp[iζ · Z̃y,(ε)

k,j,1 ] exp[iζ · Z̃y,(ε)
k,j,2 ]

]}

= ζ ᾱ

{ ∑
l,|l|≤|β̄|

C l
β̄E
[
(Z̃y

k,j,1)l exp[iζ · Z̃y
k,j,1]

]
E
[
(Z̃y

k,j,2)β̄−l exp[iζ · Z̃y
k,j,2]

]

−
∑

l,|l|≤|β̄|

C l
β̄E
[
(Z̃

y,(ε)
k,j,1 )l exp[iζ · Z̃y,(ε)

k,j,1 ]
]
E
[
(Z̃

y,(ε)
k,j,2 )β̄−l exp[iζ · Z̃y,(ε)

k,j,2 ]
]}

= ζ ᾱ

{ ∑
l,|l|≤|β̄|

C l
β̄

{[
E
[
(Z̃y

k,j,1)l exp[iζ · Z̃y
k,j,1]

]
− E

[
(Z̃

y,(ε)
k,j,1 )l exp[iζ · Z̃y,(ε)

k,j,1 ]
]]

E
[
(Z̃y

k,j,2)β̄−l exp[iζ · Z̃y
k,j,2]

]

+ E
[
(Z̃

y,(ε)
k,j,1 )l exp[iζ · Z̃y,(ε)

k,j,1 ]
][
E
[
(Z̃y

k,j,2)β̄−l exp[iζ · Z̃y
k,j,2]

]
− E

[
(Z̃

y,(ε)
k,j,2 )β̄−l exp[iζ · Z̃y,(ε)

k,j,2

]]}}
,

where in the above expression we considered the binomial expansion for multi-indexes
denoting by C l

β̄
:= β̄!

(β̄−l)!l! with the corresponding de�nitions for factorials (see the

proof of Lemma 3.2.5). Introduce now, for a multi-index l, |l| ∈ [[0, |β̄|]], the functions:

Ψᾱ,β̄−l
1 (ζ) := ζ ᾱE

[
(Z̃y

k,j,2)β̄−l exp[iζ · Z̃y
k,j,2]

]
, Ψᾱ,l

2 (ζ) := ζ ᾱE
[
(Z̃

y,(ε)
k,j,1 )l exp[iζ · Z̃y,(ε)

k,j,1 ]
]
,

and

E1,l(ζ) :=
[
E
[
(Z̃y

k,j,1)l exp[iζ · Z̃y
k,j,1]

]
− E

[
(Z̃

y,(ε)
k,j,1 )l exp[iζ · Z̃y,(ε)

k,j,1 ]
]]
,

E2,β̄−l(ζ) :=
[
E
[
(Z̃y

k,j,2)β̄−l exp[iζ · Z̃y
k,j,2]

]
− E

[
(Z̃

y,(ε)
k,j,2 )β̄−l exp[iζ · Z̃y,(ε)

k,j,2

]]
.

Thus, we can rewrite from the previous computations:

(iβ̄)−1ζ ᾱ(Dβ̄
ζ q̂j−k(ζ)−Dβ̄

ζ q̂j−k,ε(ζ)) =
∑

l,|l|≤|β̄|

C l
β̄

{
(E1,lΨ

ᾱ,β̄−l
1 )(ζ) + (E2,β̄−lΨ

ᾱ,l
2 )(ζ)

}
.

(3.44)
Recall from (3.42) that we already have integrability for the contributions Ψᾱ,β̄−l

1 (ζ)
and Ψᾱ,l

2 (ζ). Let us thus start with the control of E1,l(ζ), E2,β̄−l(ζ). We only give details
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for E1,l(ζ), the contribution E2,β̄−l can be handled similarly. We also consider |l| ≥ 2,
since the cases |l| ≤ 2 can be handled more directly. Write:

|E1,l(ζ)| ≤
E[|(Z̃y

k,j,1)l − (Z̃
y,(ε)
k,j,1 )l|] + E[|(Z̃y,(ε)

k,j,1 )l|| exp(iζ · Z̃y
k,j,1)− exp(iζ · Z̃y,(ε)

k,j,1 )|]

≤ C
{
E[|Z̃y

k,j,1 − Z̃
y,(ε)
k,j,1 |(|Z̃

y
k,j,1|

|l|−1 + |Z̃y,(ε)
k,j,1 |

|l|−1] + E[|Z̃y,(ε)
k,j,1 |

|l||ζ||Z̃y
k,j,1 − Z̃

y,(ε)
k,j,1 |]

}
.

Apply now Hölder's inequality with p1 = |l|, q1 = |l|/(|l| − 1) for the �rst term and
p2 = (|l|+1)/|l|, q2 = |l|+1 for the second one so that all the contribution appear with
the same power (in order to equilibrate the constraints concerning the intregrability
conditions). One gets:

|E1,l(ζ)| ≤

C
{
E[|Z̃y

k,j,1 − Z̃
y,(ε)
k,j,1 |

|l|]1/|l|{E[|Z̃y
k,j,1|

|l|](|l|−1)/|l| + E[|Z̃y,(ε)
k,j,1 |

|l|](|l|−1)/|l|}+

|ζ|E[|Z̃y,(ε)
k,j,1 |

|l|+1]|l|/(|l|+1)E[|Z̃y
k,j,1 − Z̃

y,(ε)
k,j,1 |

|l|+1]1/(|l|+1)
}
. (3.45)

The point is now to prove, since we have assumed m ≤ M − d − 5 ⇐⇒ m + 1 ≤
M − d− 4, that there exists c s.t. for all r ≤ m+ 1,

E[|Z̃y
k,j,1 − Z̃

y,(ε)
k,j,1 |

r]1/r ≤ c∆ε,σ,γ, E[|Z̃y
k,j,1|

r]1/r + E[|Z̃y,(ε)
k,j,1 |

r]1/r ≤ c. (3.46)

Let us establish the point for the di�erence, the other bounds can be derived similarly.
De�ne for all i ∈ [[k, j]], M̃i :=

√
h
∑i−1

r=k(σ − σε)(tr, y)ξr+1. The process (M̃i)i∈[[k,j]]

is a square integrable martingale (in discrete time, w.r.t. Fi := Σ(ξr, r ≤ i), Σ-�eld
generated by the innovation up to the current time). Its quadratic variation writes
[M̃ ]i = h

∑i−1
r=k |(σ − σε)(tr, y)|2|ξr+1|2 and the Burkholder-Davies-Gundy inequalities,

see e.g. Shiryaev [Shi96], give for all r ≤M − d− 4:

E[ sup
i∈[[k,j]]

|M̃i|r] ≤ crE[[M̃ ]
r/2
j ] = crh

r/2E[(

j−1∑
i=k

|(σ − σε)(ti, y)|2|ξi+1|2)r/2]. (3.47)

If r = 2 one readily gets:

E[|Z̃y
k,j,1 − Z̃

y,(ε)
k,j,1 |

2] ≤ c2

(tj − tk)
E[ sup

i∈[[k,j]]

|M̃i|2] ≤ c2h

(tj − tk)
∆2
ε,σ,γ

j−1∑
i=k

E[|ξi+1|2] ≤ c̄2∆2
ε,σ,γ.

Let us thus assume r > 2 and derive from (3.47)

E[|Z̃y
k,j,1 − Z̃

y,(ε)
k,j,1 |

r] ≤ cr
(tj − tk)r/2

E[ sup
i∈[[k,j]]

|M̃i|r]

≤ crh
r/2

(tj − tk)r/2
E[(

j−1∑
i=k

|(σ − σε)(ti, y)|r|ξi+1|r)(
j−1∑
i=k

1)r/2(1−2/r)],
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applying Hölder's inequality for the counting measure with p = r/2, q = r/(r − 2) for
the last inequality. This �nally gives:

E[|Z̃y
k,j,1 − Z̃

y,(ε)
k,j,1 |

r] ≤ crh
r/2

(tj − tk)r/2
(j − k)r/2−1∆r

ε,σ,γ

j−1∑
i=k

E[|ξi+1|r] ≤ c̄r∆
r
ε,σ,γ.

Since we have assumed r ≤ m + 1 ≤ M − d− 4, this gives the �rst control in (3.46).
The other one readily follows replacing σ − σε by σ or σε.

From equations (3.45), (3.46) and similar controls for E2,β̄−l(ζ) we �nally derive:

|E1,l(ζ)|+ |E2,β̄−l(ζ)| ≤ C1∆ε,σ,γ(1 + |ζ|).

As a result we have from (3.43) and (3.44):

|Dβ
ζ (ζα(q̂j−k(ζ)−Dβ

ζ q̂j−k,ε(ζ)))|

≤ C∆ε,σ,γ

{ ∑
β̄, |β̄| ≤ |β|

ᾱ = α− (β − β̄).

∑
l,|l|≤|β̄|

(|Ψᾱ,β̄−l
1 (ζ)|+ |Ψᾱ,l

2 (ζ)|)(1 + |ζ|)

}
.

We �nally derive from (3.43) and (3.42) (which thanks to the smoothness assump-
tion on QM in (IP) holds as well for a multi-index ᾱ, |ᾱ| = 5):

|Θj−k,ε(z)| ≤ 1

(2π)d

∫
Rd
|Θ̂j−k,ε(ζ)|dζ ≤ c∆ε,σ,γ. (3.48)

From (3.39) this concludes the proof for j > k + 1. If j = k + 1 the previous
arguments can be simpli�ed and lead to the same results.

Comparison of the parametrix kernels

This step is crucial and actually the key to the result for the Markov chains. We focus
for simplicity on the case q = +∞, for which pointwise controls for the di�erences
between the drift coe�cients are available, and which already emphasizes all the di�-
culties. The case q ∈ (d,+∞) for the drifts could be handled as in Lemma 3.2.6, using
similar Hölder inequalities.

We actually have the following Lemma.

Lemma 3.2.9 (Control of the One-Step Convolution for the Chain.). There exists
c1, c s.t. for all q = +∞ and for 0 ≤ tk < tj ≤ T, (z, y) ∈ (Rd)2:

|(Hh −Hh
ε )(tk, tj, z, y)| ≤ ∆ε,γ,∞

(tj − tk)1−γ/2 Φc,c1(tj − tk, z − y),

with
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- Φc,c1(tj − tk, z − y) = ψc,c1(tj − tk, z − y) under (IG).

- Φc,c1(tj − tk, z − y) = ψc,c1(tj − tk, z − y)
(

1 + |z−y|
(tj−tk)1/2

)γ
, under (IP) ,

where ψc,c1 is de�ned according to the assumptions on the innovations in Lemma 3.2.8.

Proof. The case k = j+1 involves directly di�erences of densities and could be treated
more directly than the case k > j + 1. We thus focus on the latter. Introduce for
k ∈ [[0, N ]], (x,w) ∈ (Rd)2 the one step transitions:

T h(tk, x, w) := b(tk, x)h+ h1/2σ(tk, x)w, T hε (tk, x, w) := bε(tk, x)h+ h1/2σε(tk, x)w,

T h0 (tk, x, w) := h1/2σ(tk, x)w, T hε,0(tk, x, w) := h1/2σε(tk, x)w.

(3.49)

From the de�nition ofHh, Hh
ε , recalling that fξ stands for the density of the innovation,

the di�erence of the kernels writes:

(Hh −Hh
ε )(tk, tj, z, y)

= h−1

∫
Rd
dwfξ(w)

[{
p̃h(tk+1, tj, z + T h(tk, z, w), y)− p̃h(tk+1, tj, z + T h0 (tk, y, w), y)

}
−
{
p̃hε (tk+1, tj, z + T hε (tk, z, w), y)− p̃hε (tk+1, tj, z + T h0,ε(tk, y, w), y)

}]
.

(3.50)

Let us now perform a Taylor expansion at order 2 with integral rest. To this end, let
us �rst introduce for λ ∈ [0, 1] the mappings:

ϕhλ : Rd × Rd −→ R
(T1, T2) 7−→ Tr

(
D2
z p̃
h(tk+1, tj, z + λT1, y)[T2T

∗
2 ]
)
,

ϕhλ,ε : Rd × Rd −→ R
(T1, T2) 7−→ Tr

(
D2
z p̃
h
ε (tk+1, tj, z + λT1, y)[T2T

∗
2 ]
)
,

(3.51)

where T2 is viewed as a column vector and T ∗2 denotes its transpose. Recalling as well
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that ξ is centered we get:

∆Hh,ε(tk, tj, z, y) := (Hh −Hh
ε )(tk, tj, z, y)

=

[〈
Dzp̃

h(tk+1, tj, z, y), b(tk, z)
〉
−
〈
Dzp̃

h
ε (tk+1, tj, z, y), bε(tk, z)

〉]

+h−1

∫
Rd
dwfξ(w)

∫ 1

0

dλ(1− λ)

×

[{
ϕhλ(T

h(tk, z, w), T h(tk, z, w))− ϕhλ(T h0 (tk, y, w), T h0 (tk, y, w))
}

−
{
ϕhλ,ε(T

h
ε (tk, z, w), T hε (tk, z, w))− ϕhλ,ε(T h0,ε(tk, y, w), T h0,ε(tk, y, w))

}]
=: (∆1H

h,ε + ∆2H
h,ε)(tk, tj, z, y), (3.52)

where for i ∈ {1, 2}, ∆iH
h,ε is associated with the terms of order i. The idea is now

to make ∆ε,γ,∞ appear explicitly. The term ∆1H
h,ε is the easiest to handle. We can

indeed readily write:

∆1H
h,ε(tk, tj, z, y)

=

[〈
Dzp̃

h(tk+1, tj, z, y), [b(tk, z)− bε(tk, z)]
〉
−
〈

(Dzp̃
h
ε −Dzp̃

h)(tk+1, tj, z, y), bε(tk, z)
〉]
.

From Assumption (A3.3), equation (3.4) and Lemma 3.2.8 we derive for q = +∞:

|∆1H
h,ε(tk, tj, z, y)| ≤ C∆ε,γ,∞

(tj − tk)1/2
ψc,c1(tj − tk, y − z). (3.53)

The term ∆2H
h,ε is trickier to handle. De�ne to this end:

∆ϕh,ελ (tk, z, y, w) :=
{
ϕhλ(T

h(tk, z, w), T h(tk, z, w))− ϕhλ(T h0 (tk, y, w), T h0 (tk, y, w))
}

−
{
ϕhλ,ε(T

h
ε (tk, z, w), T hε (tk, z, w))− ϕhλ,ε(T h0,ε(tk, y, w), T h0,ε(tk, y, w))

}
.

57



Let us then decompose:

∆ϕh,ελ (tk, z, y, w) :=

[{
ϕhλ(T

h(tk, z, w), T h(tk, z, w))− ϕhλ(T h(tk, z, w), T h0 (tk, y, w))
}

−
{
ϕhλ,ε(T

h
ε (tk, z, w), T hε (tk, z, w))− ϕhλ,ε(T hε (tk, z, w), T h0,ε(tk, y, w))

}]

+

[{
ϕhλ(T

h(tk, z, w), T h0 (tk, y, w))− ϕhλ(T h0 (tk, y, w), T h0 (tk, y, w))
}

−
{
ϕhλ,ε(T

h
ε (tk, y, w), T h0,ε(tk, y, w))− ϕhλ,ε(T h0,ε(tk, z, w), T h0,ε(tk, y, w))

}]
=: (∆1ϕ

h,ε
λ + ∆2ϕ

h,ε
λ )(tk, z, y, w),

(3.54)

and write from (3.52):

∆2H
h,ε(tk, tj, z, y) = h−1

∫
Rd
dwfξ(w)

∫ 1

0

dλ(1− λ)(∆1ϕ
h,ε
λ + ∆2ϕ

h,ε
λ )(tk, z, y, w)

=: (∆21H
h,ε + ∆22H

h,ε)(tk, tj, z, y), (3.55)

for the associated contributions in ∆2H
h,ε. Again, we have to consider these two terms

separately.

Term ∆21H
h,ε. We �rst write from (3.54):

∆1ϕ
h,ε
λ (tk, z, y, w)

=

[{
ϕhλ(T

h(tk, z, w), T h(tk, z, w))− ϕhλ(T h(tk, z, w), T h0 (tk, y, w))
}
−

{
ϕhλ(T

h(tk, z, w), T hε (tk, z, w))− ϕhλ(T h(tk, z, w), T h0,ε(tk, y, w))
}]

+

[{
ϕhλ(T

h(tk, z, w), T hε (tk, z, w))− ϕhλ(T h(tk, z, w), T h0,ε(tk, y, w))
}

−
{
ϕhλ(T

h
ε (tk, z, w), T hε (tk, z, w))− ϕhλ(T hε (tk, z, w), T h0,ε(tk, y, w))

}]
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−

[{
ϕhλ,ε(T

h
ε (tk, z, w), T hε (tk, z, w))− ϕhλ,ε(T hε (tk, z, w), T h0,ε(tk, y, w))

}
−
{
ϕhλ(T

h
ε (tk, z, w), T hε (tk, z, w))− ϕhλ(T hε (tk, z, w), T h0,ε(tk, y, w))

}]

=:
3∑
i=1

∆1iϕ
h,ε
λ (tk, z, y, w). (3.56)

We now state some useful controls for the analysis. Namely, setting:

D(tk, z, y, w) := T h(tk, z, w)T h(tk, z, w)∗ − T h0 (tk, y, w)T h0 (tk, y, w)∗,

Dε(tk, z, y, w) := T hε (tk, z, w)T hε (tk, z, w)∗ − T h0,ε(tk, y, w)T h0,ε(tk, y, w)∗,

we have from (A3.3) and equation (3.4) for q = +∞ :

(|D|+ |Dε|)(tk, z, y, w) ≤ c̄(h2 + h3/2|w|+ h(1 ∧ |z − y|)γ|w|2),

|D −Dε|(tk, z, y, w) ≤ c̄∆ε,γ,∞(h2 + h3/2|w|+ h(1 ∧ |z − y|)γ|w|2). (3.57)

From the de�nition of ϕhλ in (3.51), equation (3.56), the control (3.57) and Lemma
3.2.8, we get:

|∆11ϕ
h,ε
λ |(tk, z, y, w)

≤ c̄∆ε,γ,∞
ψc,c1(tj − tk, y − (z + λT h(tk, z, w)))

(tj − tk)
(h2 + h3/2|w|+ h(1 ∧ |z − y|)γ|w|2).

(3.58)

We would similarly get from Lemma 3.2.8 and (3.57):

|∆13ϕ
h,ε
λ |(tk, z, y, w)

≤ c̄∆ε,γ,∞
ψc,c1(tj − tk, y − (z + λT hε (tk, z, w)))

(tj − tk)
(h2 + h3/2|w|+ h(1 ∧ |z − y|)γ|w|2),

|∆12ϕ
h,ε
λ |(tk, z, y, w)

≤ ψc,c1(tj − tk, y − (z + θλT h(tk, z, w) + (1− θ)λT hε (tk, z, w)))

(tj − tk)3/2

× |(T h − T hε )(tk, z, w)||Dε|

≤ c̄∆ε,γ,∞
ψc,c1(tj − tk, y − (z + θλT h(tk, z, w) + (1− θ)λT hε (tk, z, w)))

(tj − tk)3/2

× (h2 + h3/2|w|+ h(1 ∧ |z − y|)γ|w|2)(h+ h1/2|w|), (3.59)

for some θ ∈ (0, 1), using as well (3.49) and (3.4) for the last inequality. The point is
now to get rid of the transitions appearing in the function ψc,c1 . We separate here the
two assumptions at hand.
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- Under (IG), it su�ces to remark that by the convexity inequality |z − y − Θ|2 ≥
1
2
|z − y|2 − |Θ|2, for all Θ ∈ Rd:

ψc,c1(tj − tk, y − z −Θ) ≤ c1
cd/2

(2π(tj − tk))d/2
exp

(
− c

4

|z − y|2

tj − tk

)
exp

(
c

2

|Θ|2

tj − tk

)
.

Now, if Θ is one of the above transitions or linear combination of transitions, we get
from (3.49):

ψc,c1(tj − tk, y − z −Θ) ≤ c1
(c/2)d/2

(2π(tj − tk))d/2
exp

(
− c

4

|z − y|2

tj − tk

)
exp(

c

2
K2

2 |w|2),(3.60)

up to a modi�cation of c1 observing that h/(tj − tk) ≤ 1 and with K2 as in (A3.1).
Since c can be chosen small enough in the previous controls, up to deteriorating the
concentration properties in Lemma 3.2.8, the last term can be integrated by the stan-
dard Gaussian density fξ appearing in (3.55). We thus derive, from (3.60), (3.58),
(3.59) and the de�nition in (3.56), up to modi�cations of c, c1:

|∆1ϕ
h,ε
λ |(tk, z, y, w) ≤

∆ε,γ,∞hc̄ψc,c1(tj − tk, z − y) exp(c|w|2)

{
1 +

|w|
(tj − tk)1/2

+
|z − y|γ|w|2

tj − tk

}
,

which plugged into (3.55) yields up to modi�cations of c̄, c, c1:

|∆21H
h,ε(tk, tj, z, y)| ≤ c̄

∆ε,γ,∞(1 ∨ T (1−γ)/2)ψc,c1(tj − tk, z − y)

(tj − tk)1−γ/2 . (3.61)

- Under(IP), we only detail the computations for the o� diagonal regime |z − y| ≥
c(tj − tk)

1/2 which is the most delicate to handle. In this case, we have to discuss
according to the position of w w.r.t. y − z. With the notations of (A2), introduce
D := {w̄ ∈ Rd : {Λh}1/2|w̄| ≤ |z − y|/2}. If w ∈ D, then, still from (3.58), (3.59),

(|∆11ϕ
h,ε
λ |+ |∆13ϕ

h,ε
λ |)(tk, z, y, w)

≤ c̄∆ε,,γ,∞
ψc,c1(tj − tk, y − z)

(tj − tk)
(h2 + h3/2|w|+ h(1 ∧ |z − y|)γ|w|2),

|∆12ϕ
h,ε
λ |(tk, z, y, w)

≤ c∆ε,γ,∞
ψc,c1(tj − tk, y − z)

(tj − tk)3/2
(h2 + h3/2|w|+ h(1 ∧ |z − y|)γ|w|2)(h+ h1/2|w|).

On the other hand, when w 6∈ D we use fξ to make the o�-diagonal bound of ψc,c1(tj−
tk, y − z) appear. Namely, we can write:

fξ(w) ≤ c
1

(1 + |w|)M
≤ c

1

(1 + |z−y|
h1/2 )M−(d+4)

1

(1 + |w|)d+4

≤ c
1

(1 + |z−y|
(tj−tk)1/2 )M−(d+4)

1

(1 + |w|)d+4
, (3.62)
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where the last splitting is performed in order to integrate the contribution in |w|3
coming from the upper bound for |∆12ϕ

h,ε
λ | in (3.59). Plugging the above controls in

(3.55) yields:

|∆Hh,ε
21 (tk, tj, z, y)| ≤ ∆ε,γ,∞Φc,c1(tj − tk, z − y)

(tj − tk)1−γ/2 . (3.63)

We emphasize that in the case of innovations with polynomial decays, the control on
the di�erence of the kernels again induces a loss of concentration of order γ in order
to equilibrate the time singularity.

Term ∆22H
h,ε. This term can be handled with the same arguments as ∆21H

h,ε.
For the sake of completeness we anyhow specify how the di�erent contributions appear.
Namely, with the notations of (3.54) and (3.55):

∆2ϕ
h,ε
λ (tk, z, y, w) =∫ 1

0

dµ
{〈

DT1ϕ
h
λ(T

h
0 (tk, y, w) + µ(T h(tk, z, w)− T h0 (tk, y, w)), T h0 (tk, y, w))

, T h(tk, z, w)− T h0 (tk, y, w)
〉

−
〈
DT1ϕ

h
λ,ε(T

h
0,ε(tk, y, w) + µ(T hε (tk, z, w)− T h0,ε(tk, y, w)), T h0,ε(tk, y, w))

, T hε (tk, z, w)− T h0,ε(tk, y, w)
〉}

=
{∫ 1

0

dµ
{〈

DT1ϕ
h
λ(T

h
0 (tk, y, w) + µ(T h(tk, z, w)− T h0 (tk, y, w)), T h0 (tk, y, w)),[

(T h(tk, z, w)− T h0 (tk, y, w))− (T hε (tk, z, w)− T h0,ε(tk, y, w))
]〉}

−
{∫ 1

0

dµ
[〈
DT1ϕ

h
λ,ε(T

h
0,ε(tk, y, w) + µ(T hε (tk, z, w)− T h0,ε(tk, y, w)), T h0,ε(tk, y, w))

−DT1ϕ
h
λ(T

h
0 (tk, y, w) + µ(T h(tk, z, w)− T h0 (tk, y, w)), T h0 (tk, y, w))

]
,

T hε (tk, z, w)− T h0,ε(tk, y, w)
〉}

=: (∆21ϕ
h,ε
λ + ∆22ϕ

h,ε
λ )(tk, z, y, w).

In ∆21ϕ
h,ε
λ we have sensitivities of order 3 for the density, giving time singularities in

(tj − tk)−3/2, which are again equilibrated by the the multiplicative factor:

|T h0 (tk, y, w)[T h0 (tk, y, w)]∗|
×|(T h(tk, z, w)− T h0 (tk, y, w))− (T hε (tk, z, w)− T h0,ε(tk, y, w))|
≤ c̄(h2 + h3/2|w|+ h|w|2)∆ε,γ,∞(h+ h1/2(1 ∧ |z − y|)γ|w|),

where the last inequality is obtained similarly to (3.57) using as well (3.4). The same
kind of controls can be established for ∆22ϕ

h,ε
λ . Anyhow, the analysis of this term leads
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to investigate the di�erence of third order derivatives, which �nally yields contributions
involving derivatives of order four. This is what induces the �nal concentration loss
under (IP), i.e. we need to integrate a term in |w|4 (see also equation (3.62) in which
we performed the splitting of fξ on the o�-diagonal region to integrate a contribution
in |w|3).

We can thus claim that

|∆Hh,ε
22 (tk, tj, z, y)| ≤ ∆ε,γ,∞Φc,c1(tj − tk, z − y)

(tj − tk)1−γ/2 .

Plugging the above control and (3.63) (or (3.61) under (IG) into (3.55) we derive:

|∆Hh,ε
2 (tk, tj, z, y)| ≤ ∆ε,γ,∞Φc,c1(tj − tk, z − y)

(tj − tk)1−γ/2 ,

which together with (3.53) and the decomposition (3.52) completes the proof.

From Lemmas 3.2.8 and 3.2.9 the proof of Theorem 3.2.2 is achieved, under (IG),
following the steps of Lemmas 4.3.3 and 3.2.7, using the Hölder inequalities for the
di�erences of the drift terms for q ∈ (d,+∞).

The point is that we want to justify the following inequality under (IP) and q =
+∞:

|(p̃h ⊗h Hh,(r) − p̃hε ⊗h Hh,(r)
ε )(ti, tj, x, y)| (3.64)

≤ (r + 1)∆ε,γ,∞
{(1 ∨ T (1−γ)/2)c1}r+1

[
Γ(γ

2
)
]r

Γ(1 + r γ
2
)

× cd/2

(tj − ti)d/2
QM−(d+5+γ)

(
y − x

(tj − ti)1/2/c

)
(tj − ti)

rγ
2 .

The only delicate point, w.r.t. the analysis performed for di�usions, consists in con-
trolling the convolutions of the densities with polynomial decay. To this end, we can
adapt a technique used by Kolokoltsov [Kol00] to investigate convolutions of "stable
like" densities. Set m := M − (d+ 5 + γ) and denote for all 0 ≤ i < j ≤ N, x ∈ Rd by

qm(tj − ti, x) := cd

(tj−ti)d/2
QM−(d+5+γ)

(
x

(tj−ti)1/2/c

)
the density with polynomial decay

appearing in Lemmas 3.2.8 and 3.2.9. Let us consider for �xed i < k < j, (x, y) ∈ (Rd)2

the convolution:

I1
tk

(ti, tj, x, y) :=

∫
Rd
dzqm(tk − ti, z − x)qm(tj − tk, y − z). (3.65)

- If |x − y| ≤ c(tj − ti)1/2 (diagonal regime for the parabolic scaling), it is easily seen
that one of the two densities in the integral (3.65) is homogeneous to qm(tj− ti, y−x).
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Namely, if (tk − ti) ≥ (tj − ti)/2, qm(tk − ti, z − x) ≤ cd/2cm
(tk−ti)d/2

≤ (2c)d/2cm
(tj−ti)d/2

≤ c̃qm(tj −
ti, y − x). Thus,

I1
tk

(ti, tj, x, y) ≤ c̃qm(tj − ti, y − x)

∫
Rd
dzqm(tj − tk, y − z) = c̃qm(tj − ti, y − x).

If (tk−ti) < (tj−ti)/2, the same operation can be performed taking qm(tj−tk, y−z) out
of the integral, observing again that in that case qm(tj− tk, y− z) ≤ c̃qm(tj− ti, y−x).

- If |x− y| > c(tj − ti)1/2 (o�-diagonal regime), we introduce A1 := {z ∈ Rd : |x− z| ≥
1
2
|x − y|}, A2 := {z ∈ Rd : |z − y| ≥ 1

2
|x − y|}. Every z ∈ Rd belongs at least to one

of the {Ai}i∈{1,2}. Let us assume w.l.o.g. that z ∈ A2. Then |z − y| ≥ c
2
(tj − ti)1/2 ≥

c
2
(tj − tk)1/2 so that the density qm(tj − tk, y − z) is itself in the o�-diagonal regime.

Write:∫
A2

dzqm(tk − ti, z − x)qm(tj − tk, y − z) ≤
∫
A2

dzqm(tk − ti, z − x)
cm(tk − ti)(m−d)/2

|z − y|m

≤ cm2m(tj − ti)(m−d)/2

|x− y|m

∫
A2

dzqm(tk − ti, z − x) ≤ c̄qm(tj − ti, y − x),

recalling that, under (IP), m > d for the last but one inequality. The same operation
could be performed on A1.

We have thus established that, there exist c̄ > 1 s.t. for all 0 ≤ i < k < j, (x, y) ∈
(Rd)2 :

I1
tk

(ti, tj, x, y) ≤ c̄qm(tj − ti, y − x).

From the controls of Lemma 3.2.9 and following the strategy of Lemma 3.2.7, we will
be led to consider convolutions of the previous type involving Γ functions. The above
strategy thus yields (3.64) by induction.

63



64



Chapter 4

Degenerate di�usions

4.1 Introduction

4.1.1 Hypoellipticity

We would like to study the development and applications of the parametrix technique
for a certain class of degenerate di�usions.

We will speci�cally focus on the Kolmogorov like di�usions (named after the sem-
inal work of Kolmogorov [Kol34] which later on inspired Hörmander's general theory
of hypoellipticity [H�67]). Discussing the hypoellipticity concepts, we would like �rst
to introduce the class of hypoelliptic di�erential operators.

A partial di�erential operator L with C∞ coe�cients in an open set Ω ⊂ Rd is
called hypoelliptic (on Ω) in case for every distribution u in Ω we have that u is a C∞

function in every open set where Lu is a C∞ function.
Although necessary and su�cient conditions for constant coe�cients for L to be

hypoelliptic have been known for quite some time before [H�67] , see e.g. [H�63], the
technique obviously was not adapted for the general case. For instance, Kolmogorov
[Kol34] constructed an example of the fundamental solution of the equation:

∂2u

∂x2
+ x

∂u

∂y
− ∂u

∂t
= f, (4.1)

which is a C∞ function outside the diagonal. This means, the corresponding operator
is hypoelliptic which was not in the framework of the existing su�cient conditions,
derived before [H�67].

Inspired by [Kol34], Hörmander in his paper [H�67] has studied a characterization
of hypoelliptic second order di�erential operators L with real C∞ coe�cients. Namely,
if A0, . . . , An denote a collection of smooth vector �elds on Rd, regarded also as �rst
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order di�erential operators, one can de�ne the second-order di�erential operator:

L :=
1

2

k∑
i=1

A2
i + A0, k < d. (4.2)

Assume that the vector �eldsA1, . . . , Ak, [Al, Am](l,m)∈[0,k]2 , [Al, [Am, An]](l,m,n)∈[0,k]3 , . . .
where [·, ·] stands for the Lie bracketing, span Rd. In this case, Hörmander proved that
the operator L is hypoelliptic.

4.1.2 Kolmogorov's example

As we have already mentioned, in 1934 A. Kolmogorov published the paper [Kol34] in
which he explicitly found the fundamental solution for the parabolic operator:

Lx = k∂2
xx + b∂x + x∂y, b ∈ R, k ∈ R+,

for scalar variables x, y, which precisely writes as:

p̃(t, (x, y), (x′, y′)) =

√
3

2πkt2
×

exp

(
−|x

′ − x− bt|2

4kt
−

3|y′ − y − x′+x
2
t|2

kt3

)
. (4.3)

With the modern language of stochastic calculus it is readily seen that p̃(t, (x, y), (x′, y′))
actually corresponds to the transition density of the Gaussian process with the follow-
ing dynamics: {

X
s,(x,y)
t = x+ b(t− s) + (2k)1/2(Wt −Ws),

Y
s,(x,y)
t = y +

∫ t
s
X
s,(x,y)
u du,

(4.4)

In Hörmander's form , with the notations of the previous paragraph N = 2, L =

1
2
A2

1 + A0, A1 =
(

(2k)1/2∂x
0

)
, A0 =

( b∂x
x∂y

)
so that [A1, A0] =

( 0
∂y

)
and thus,

A1, [A1, A0] have together rank 2.
The corresponding dynamics in (4.4) equivalently rewrites as

d
( Xt

Yt

)
= A0

( Xt

Yt

)
dt+ A1dWt. (4.5)

It is clear that A1A
∗
1 =

( 2k 0
0 0

)
is a degenerate di�usion matrix on R2 ⊗ R2. This

is the reason why such systems as (4.4) are usually called degenerate. Analogously, it
can be seen from (4.5) that, in the di�erential dynamics, the noise only acts on the
�rst component of the system.
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4.1.3 Degeneracy and Hörmander conditions

There are two main families of degenerate di�usions which are considered in modern
analysis, the ones who do ful�ll the strong Hörmander condition, namely those for
which the iterated Lie brackets of the di�usive vector �elds, i.e. those with indexes in
[1, k] in (4.2), span the whole space (like e.g. the Brownian motion on the Heisenberg
group see Gaveau [Gav77]), and the ones who satisfy the so-called weak Hörmander
condition, for which the drift vector �eld, A0 in (4.2), needs to be considered in the Lie
bracketing to span the whole underlying space. As emphasized above, the Kolmogorov
di�usions belong to the second category. Roughly speaking "strong Hörmander" means
that the noise propagates inside the system through the di�usive part only. In contrast,
under the weak Hörmander conditions the drift has a key role in the noise propagation.

A striking fact, which will appear clearly, leading to speci�c di�culties, in the
analysis, is that the weak Hörmander framework intrinsically leads to multi-scale be-
haviours of the underlying di�usion. This is already clearly seen in (4.3), which exhibits
the two characteristic time scales of the Brownian motion and its integral ( namely t1/2

and t3/2 for the standard deviations respectively). We also refer to the works [DM10]
or [CMP15] which deal with two-sided heat kernel estimates which also re�ect multi-
scale behaviors in the weak Hörmander setting (noting as well that the coe�cients in
[DM10] are already Hölder continuous and therefore not in the previously indicated
smooth case) for models generalizing the Kolmogorov example. On the other hand,
we recall that, in the strong Hörmander setting we have a kind a separation between
space and time. It is known from Kusuoka and Stroock [KS85] that for this family
of di�usions, two sided bounds with the usual parabolic scaling in t1/2 holds for the
o�-diagonal terms in the heat kernel estimates when considering the spatial distance
induced by the Carnot metric associated with the vector �elds.

Our research here provides a way how to adapt the parametrix expansion technique
to Kolmogorov-type degenerate di�usions, even for non-smooth Hölder coe�cients in
the dynamics of the SDE, and to the corresponding numerical approximations through
suitable Euler scheme discretizations.

We will in this chapter investigate, for various classes of test functions (namely
Hölder continuous ones and Dirac masses) the so-called weak error. We refer to the
global introduction and to Section 3.2.2 and Section 4.4 for details.

Although Bally and Talay [BT96a], [BT96b] already have investigated the weak
error behavior for the Euler scheme approximation in a general hypoelliptic setting
(weak or strong) for time homogeneous coe�cients in the SDE, they only considered
the case of smooth coe�cients which lead to a usual convergence rate of order h, with
h being the time discretization step of the scheme.

However, we will focus on rough coe�cients. In this framework, we rely, even
more than in the case of smooth coe�cients, on the controls of the density of the
underlying SDE. Precisely, we need to establish sharp heat-kernel and gradient bounds.
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Such bounds have naturally been obtained for smooth coe�cients through Malliavin
calculus techniques, see [KS84], [KS85]. In the current setting of Hölder coe�cients,
the parametrix approach seems more adapted, since we cannot hope to handle tangent
�ows or Malliavin covariance matrices. To perform the analysis we will establish in
the Kolmogorov case the analogue to the heat kernel and gradient estimates achieved
in [IKO62] for the non-degenerate case in the Hölder setting for the coe�cients.

To derive convergence rates for the weak error we also establish some stability
results for the di�usion and scheme transition densities with respect to small pertur-
bations of the coe�cients. The result is of interest in itself. It is in the current context
crucial in the sense that our main controls on the derivatives of the underlying heat
kernel (see Theorem 4.4.2) only provide gradient bounds in the non-degenerate direc-
tions. The smoothing procedure of the coe�cients (molli�cation) allows to directly
exhibit some underlying PDE which kills the �rst order terms in the error analysis.

4.1.4 General models

The mentioned article [Kol34]has led to many research on the topic of so-called degen-
erate Kolmogorov SDEs. One of the most general model which allow to apply Gaussian
bounds to the transition density has been studied by F. Delarue and S. Menozzi in
their paper [DM10]. Precisely, it has a form of:

dX1
t = F1(t,X1

t , . . . , X
n
t )dt+ σ(t,X1

t , . . . , X
n
t )dWt,

dX2
t = F2(t,X1

t , . . . , X
n
t )dt,

dX3
t = F3(t,X2

t , . . . , X
n
t )dt,

. . .

dXn
t = Fn(t,Xn−1

t , Xn
t )dt, (4.6)

where Wt stands for the d-dimensional Brownian motion and ∀i, 1 ≤ i ≤ n, (X i
t)t≥0 ∈

Rd.
A typical example for (4.6) is a system of n coupled oscillators, each moving verti-

cally and being connected to the nearest neighbours directly, the �rst oscillator being
forced by a random noise.

In the general case when n ≥ 2, such systems appear in heat conduction models
(see for example the original papers by Eckmann et al. [EPRB99] and Rey-Bellet and
Thomas [RBL00] when the chain is forced by two heat baths; see also the paper by
Bodineau and Lefevere [BL08] ).

For the case of smooth coe�cients in (4.6) the existence of a density for (X1
t , . . . , X

n
t ),

seen as an Rnd -valued vector, may be seen as a consequence of Hörmander's theorem.
Understanding the structure of the density under general hypoelliptic conditions (i.e.
for more general systems than (4.6)) is something very di�cult. The reason may be
explained as follows: there may be many ways for the underlying noise to propagate
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into the whole system, and therefore, many di�erent time scales for the propagation
phenomenon.

In the article [DM10] the authors considered uniformly Lipschitz continuous (Fi)i∈[1,n]

(or suppose for i = 1 that the drift of the non degenerate component F1 is measurable
and bounded) and uniformly Hölder continuous in space uniformly elliptic di�usion
matrix. Under such assumptions they established Gaussian Aronson like estimates for
the density of (4.6) over compact time interval for Hölder index γ greater than 1/2.
To derive this a "formal" parametrix expansion has been used, considering a sequence
of equations with smooth coe�cients for which Hörmander's theorem guaranteed the
existence of the density, see e.g. Hörmander [H�67].The estimates did not depend on
the derivatives of the molli�ed coe�cients but only on the γ- Hölder continuity as-
sumed. However to pass to the limit in the described procedure some uniqueness in
law is needed. It was precisely derived in [DM10] through viscosity type techniques
which do not exploit the underlying smoothing e�ects of the parametrix kernel. This
is what led to the restriction on the Hölder exponent.

Exploiting such a smoothing e�ect, S. Menozzi proved in [Men11] the well posedness
of the martingale problem for the generator associated with the SDE (4.6) in the Hölder
setting without any restriction on the Hölder index γ. Thus, together with results from
[DM10] it gives that for all γ in (0, 1] the unique weak solution for (4.6) exists and
admits for all t > 0 a density that satis�es Aronson like bounds.

4.1.5 Model [KMM10]

For simplicity we would like to come back to another model, considered by V. Konakov,
S. Molchanov and S. Menozzi in [KMM10] and describe the parametrix derivation in
details. Worth to emphasize that results mentioned in [KMM10] have been achieved
under Lipschitz continuity assumptions on coe�cients which partly can be relaxed
to Hölder continuity according to [DM10], [Men11]. The parametrix representation
achieved in [KMM10] allows to give a local limit theorem with the usual convergence
rate for the associated Markov chain approximation. We anyhow mention that, the
generic Markov chain approximation setting leads to additional technicalities, namely
an aggregation procedure of the randomness is needed in order that the transitions
at the considered aggregated time have a density. We refer to the quoted work for
additional details.

Namely, in [KMM10] the following di�usions has been studied:

{
Xt = x+

∫ t
0
b(Xs, Ys)ds+

∫ t
0
σ(Xs, Ys)dWs,

Yt = y +
∫ t

0
Xsds,

(4.7)
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with the generator such that: ∀φ ∈ C2
0(R2d),∀(x, y) ∈ R2d,

Lφ(x, y) =
1

2
Tr

(
a(x, y)D2

xφ(x, y)

)
+ 〈b(x, y),∇xφ(x, y)〉+ 〈x,∇yφ(x, y)〉, (4.8)

where (Wt)t≥0 is a standard d− dimensional Brownian motion de�ned on some
�ltered probability space (Ω,F , (Ft)t≥0,P) satisfying the usual assumptions.

Exactly this model can be used dealing with Asian options, Xt can be associated
with the dynamics of the underlying asset and its integral Yt is involved in the option
payo�. Typically, the price of such options writes Ex[ψ(XT , T

−1YT )], where for the
put (resp. call) option the function ψ(x, y) = (x − y)+ (resp.(y − x)+), see [BPV01].
It is, thus, useful in this framework to speci�cally quantify how a perturbation of the
coe�cients impacts the option prices.

The cross dependence of the dynamics of Xt in Yt is also important handling
kinematic models or Hamiltonian systems. For a given Hamilton function of the form
H(x, y) = V (y) + |x|2

2
, where V is a potential and |x|

2

2
the kinetic energy of a particle

with unit mass, the associated stochastic Hamiltonian system would correspond to
b(Xs, Ys) = −(∂yV (Ys)+F (Xs, Ys)Xs) in (4.7), where F is a friction term. When F > 0
natural questions arise concerning the asymptotic behaviour of (Xt, Yt), for instance,
the geometric convergence to equilibrium for the Langevin equation is discussed in
Mattingly and Stuart [MSH02], numerical approximations of the invariant measures
in Talay [Tal02], the case of high degree potential V is investigated in Hérau and Nier
[HN04].

4.2 Parametrix in the degenerate case

In this section we would like to introduce the parametrix technique which is possible
to perform even under Hölder continuity assumptions for coe�cients applying some
regularization procedure.

The unboundedness of the �rst order term imposes a more subtle strategy than in
non-degenerate case for the choice of the frozen Gaussian density. We have to take
into consideration the "geometry" of the deterministic di�erential equation associated
to the �rst order terms of the operator. In other words, the corresponding �ow must
appear in the frozen density.

We would like to keep considering the model similar to (4.7) but with Hölder
continuity assumptions for coe�cients instead of Lipschitz, namely, we consider Rd ×
Rd−valued processes that follow the dynamics:{

dXt = b(Xt, Yt)dt+ σ(Xt, Yt)dWt,

dYt = Xtdt, t ∈ [0, T ],
(4.9)
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where b : R2d → Rd, σ : R2d → Rd ⊗ Rd are bounded coe�cients that are Hölder
continuous in space (this condition will be possibly relaxed for the drift term b) and
W is a Brownian motion on some �ltered probability space (Ω,F , (Ft)t≥0,P). In (4.9),
T > 0 is a �xed deterministic �nal time. Also, a(x, y) := σσ∗(x, y) is assumed to be
uniformly elliptic.

We point out that those assumptions (speci�ed below) are actually su�cient to
guarantee weak uniqueness for the solution of equation (4.9), see Remark 4.2.1.

4.2.1 Assumptions

For better readability we now repeat assumptions for this Chapter, which we have
introduced in 1.

(AD1) (Boundedness of the coe�cients).
The components of the vector-valued function b(x, y) and the matrix-valued func-

tion σ(x, y) are bounded measurable. Speci�cally, there exists a constant K s.t.

sup
(x,y)∈R2d

|b(x, y)|+ sup
(x,y)∈R2d

|σ(x, y)| ≤ K.

(AD2) (Uniform Ellipticity).
The matrix a := σσ∗ is uniformly elliptic, i.e. there exists Λ ≥ 1, ∀(x, y, ξ) ∈ (Rd)3,

Λ−1|ξ|2 ≤ 〈a(x, y)ξ, ξ〉 ≤ Λ|ξ|2.

(AD3) (Hölder continuity in space).
For some γ ∈ (0, 1] , 0 < κ <∞,

|b(x, y)− b(x′, y′)|+ |σ(x, y)− σ(x′, y′)| ≤ κ
(
|x− x′|γ + |y − y′|γ/3

)
.

Observe that the last condition also readily gives, thanks to the boundedness of
σ that the di�usion matrix a is also uniformly γ and γ/3 -Hölder continuous with
respect to the variables x and y respectively.

We say that assumption (AD) holds when conditions (AD1)-(AD3) are in force.

Remark 4.2.1. We point out that (AD) actually guarantees the well posedness of
the martingale problem for the generator associated with the SDE (4.9) which in
turns imply weak well-posedness for (4.9). If b = 0 this readily follows from [Men11].
The weak well-posedness would in fact hold for any γ1, γ2 ∈ (0, 1], meant to be the
respective Hölder continuity indexes for the variables x, y, in (A3) (see e.g. Theorem
2.1 therein). Similarly, the well posedness would still hold for (4.9) for any bounded
measurable b. The key point in the approach of [Men11] is indeed to have a so-
called smoothing e�ect in time of an underlying �parametrix" kernel (introduced in
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the current work in de�nition (4.18) below), which precisely holds for bounded drifts
in the non-degenerate component (see again Theorem 2.1 in [Men11] and controls in
Lemma (4.2.1) below).

We will denote, from now on, by C a constant depending on the parameters ap-
pearing in (AD) and T . We reserve the notation c for constants that only depend on
(AD) but not on T . The values of C, c may change from line to line.

4.2.2 Parametrix expansion. Di�usion

Although we have a lot in common with the parametrix technique presented in Chapter
2, there are also some special properties which we need due to the structure of (4.9).

Namely, the �rst step of the parametrix for degenerate di�usions also consists
in approximating the transition density p(T, (·, ·), (x′, y′)) by a known Gaussian den-
sity p̃T,(x

′,y′)(T, (·, ·), (x′, y′)). The choice obeys the following idea: in short time,
p(T, (·, ·), (x′, y′)) and p̃T,(x

′,y′)(T, (·, ·), (x′, y′)) are to be close. We would like to em-
phasize that in our case, due to the measurability and boundedness of the function
b(·, ·) it is just enough to use such a speci�c form of the Gaussian proxy, where the
initial system does not depend on the trend function. Similarly to the non-degenerate
case in Chapter 2 we have not incorporated the dependency on b(·, ·) into the frozen
process directly.

For non-smooth coe�cients in (4.9) but satisfying (AD), it is then possible to use a
molli�cation procedure, taking bη(x, y) := b ? ρη(x, y), ση(x, y) := σ ? ρη(x, y), x, y ∈
Rd where ρη is a smooth mollifying kernel and ? stands for the usual convolution
operation and η ∈ [0, 1],�the case η = 0 by de�nition will correspond to the initial
process in (4.9).

For molli�ed coe�cients, the existence and smoothness of the density pη for the
associated process (Xη

s , Y
η
s ) follows from the Hörmander theorem (see e.g. [H�67]).

Thus, we can apply the parametrix technique directly for pη.
Fixing the terminal point (x′, y′) at time T , we �nally introduce the Gaussian

system of the form:{
dX̃

T,(x′,y′)
η,t = x+ ση(x

′, y′ − x′(T − t))dWt,

dỸ
T,(x′,y′)
η,t = y + X̃

T,(x′,y′)
η,t dt.

(4.10)

Since the model (4.10) de�nes the Gaussian process, the transition density of (4.10)
(p̃
T,(x′,y′)
η (t, (x, y), (x̂, ŷ)))0<t≤T ;(x,y),(x̂,ŷ)∈R2d exists.
Observe that in our settings the SDE (4.10) itself integrates as(

X̃
0,(x,y),T,(x′,y′)
η,t

Ỹ
0,(x,y),T,(x′,y′)
η,t

)
= Rt

(
x
y

)
+

∫ t

0

RuBση(RT−u

(
x′

y′

)
)dWu, (4.11)
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where Rt =

(
Id×d 0d×d
tId×d Id×d

)
− the resolvent matrix associated with the linear system

and B =

(
Id×d
0d×d

)
.− the embedding matrix from Rd to R2d.

In particular, for a �xed t > 0 and a given starting point (x, y) in (4.11), we can
write now the exact form of the transition density at time t for the frozen process:

p̃t,(x
′,y′)

η (t, (x, y), (x′, y′))

=
1

(2π)ddet(Cη
t )1/2

exp

(
−1

2
〈(Cη

t )−1(Rt

(
x
y

)
−
(
x′

y′

)
), Rt

(
x
y

)
−
(
x′

y′

)
〉
)
,

where Cη
t =

∫ t
0
Rt−uBσησ

∗
η(x
′, y′ − x′(t− u))B∗R∗t−udu.

We have already introduced in (4.8) the generator for (4.9) and now it comes to
the de�nition of the frozen process (4.11) generator (L̃

t,(x′,y′),η
s )0≤s<t≤T :

L̃t,(x
′,y′),η

s φ(x, y) =
1

2
Tr

(
aη(x

′, y′ − x′(t− s))D2
xφ(x, y)

)
+ 〈x,∇yφ(x, y)〉. (4.12)

The density p̃η then readily satis�es the Kolmogorov Backward equation:
∂up̃η(t− u, (x, y), (x′, y′)) + L̃

t,(x′,y′),η
u p̃η(t− u, (x, y), (x′, y′)) = 0,

0 < u < t, (x, y), (x′, y′) ∈ R2d,

p̃η(t− u, (·, ·), (x′, y′)) →
t−u↓0

δ(x′,y′)(.).

(4.13)

On the other hand, since the density of (Xη
s , Y

η
s ) is smooth, it must satisfy the

Kolmogorov forward equation (see e.g. Dynkin [Dyn65]). For a given starting point
(x, y) ∈ R2d at time 0,{

∂upη(u, (x, y), (x′, y′))− L∗pη(u, (x, y), (x′, y′)) = 0, 0 < u ≤ t, (x, y) ∈ R2d,

pη(u, (x, y), .) →
u↓0

δ(x,y)(.),

(4.14)

where L∗ stands for the adjoint (which is well de�ned since the coe�cients are smooth)
of the generator L in (4.8).

Let us remind for a given c > 0 and for all (x, y), (x′, y′) ∈ R2d the Kolmogorov-type
density, introduced in Chapter 1:

pc,K(t, (x, y), (x′, y′)) :=
cd3d/2

(2πt2)d
exp

(
−c
[
|x′ − x|2

4t
+ 3
|y′ − y − (x+ x′)t/2|2

t3

])
,

(4.15)
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which also enjoys the semigroup property, i.e. for any 0 ≤ s < t ≤ T,∫
R2d

pc,K(s, (x, y), (w, z))pc,K(t− s, (w, z), (x′, y′))dwdz = pc,K(t, (x, y), (x′, y′)).(4.16)

The subscript K in the notation pc,K stands for Kolmogorov-like equations, and
pc,K(t, (x, y), (·, ·)) denotes the transition density of

(
Xc,K
t , Y c,K

t

)
:=

(
x+

√
2Wt

c1/2
, y +

∫ t

0

Xc,K
s ds

)
.

Observe carefully that the density in (4.15) exhibits a multiscale behaviour. The
non degenerate component has at time t the usual di�usive scale in t1/2 correspond-
ing to the self-similarity index or typical scale of the Brownian motion, whereas the
degenerate one has, in small time, a "faster" typical behaviour in t3/2 corresponding
to the standard scale of the integral

∫ t
0
Wsds. By "faster", we mean that the time

normalization in the exponential deviation bounds appearing in (4.15) are bigger in
small time, i.e. t−3/2 ≥ t−1/2 for the typical scales or standard deviations.

From direct computations on Gaussian density, it follows that for any indexes α, β,
such that |α| ≤ 4, |β| ≤ 2:

∃C > 0, ∀α = (α1, α2), |α| ≤ 4, (4.17)

|Dα
xD

β
y p̃

t,x′,y′
η (t, (x, y), (x′, y′))| ≤ C

t|α|/2+3|β|/2pc,K(t, (x, y), (x′, y′)).

We adopt the following convention: p̃η(T −s, (x, y), (x′, y′)) stands for p̃T,(x
′,y′)

η (T −
s, (x, y), (x′, y′)).

The key quantity in the parametrix method is the kernel function which writes
similarly as in the non-degenerate case:

∀η ∈ [0, 1] Hη(t, (x, y), (x′, y′)) := (Lη − L̃t,(x′,y′),η)p̃η(t, (x, y), (x′, y′)), (4.18)

where Lη denotes the same operator as in (4.8), but with molli�ed coe�cients bη and
ση.

Note carefully that in the above kernel Hη, because of the linear structure of the
degenerate component in the model, the most singular terms, i.e. those involving
derivatives w.r.t. y, i.e. the fast variable, vanish.

Let us now remind the notation for

f ⊗ g(t, (x, y), (x′, y′)) =

∫ t

0

du

∫
R2d

dzdwf(u, (x, y), (w, z))g(t− u, (w, z), (x′, y′))

as the time-space convolution.

74



Using the standard molli�cation argument and applying forward and backward
Kolmogorov equations one can derive

(pη − p̃η)(t, (x, y), (x′, y′)) = pη ⊗Hη(t, (x, y), (x′, y′))

=

∫ t

0

du

∫
R2d

pη(u, (x, y), (w, z))Hη(t− u, (w, z), (x′, y′))dwdz,

and after the iteration procedure one get the formal expansion:

pη(t, (x, y), (x′, y′)) =
∞∑
r=0

p̃η ⊗H(r)
η (t, (x, y), (x′, y′)), (4.19)

Obtaining estimates on pη from the formal expression (4.19) requires to have good
controls on the right-hand side. Precisely thanks to (4.17), we �rst get that there exist
c1 > 1, c > 0 s.t. for all u ∈ [0, t),

|Hη(t− u, (w, z), (x′, y′))|

≤ 1

2
Tr {aη(w, z)− aη(x′, y′ − x′(t− u))}D2

wp̃η(t− u, (w, z), (x′, y′))

+〈bη(w, z), Dwp̃η(t− u, (w, z), (x′, y′))〉

≤
[
C|w − x′|γ + |z − (y′ − x′(t− u))|γ/3

2(t− u)
+

C

(t− u)1/2

]
×pc,K(t− u, (w, z), (x′, y′))

≤ c1

(
1 ∨ T (1−γ)/2

) pc,K(t− u, (w, z), (x′, y′))
(t− u)1−γ/2 . (4.20)

We can establish by induction the following key result.

Lemma 4.2.1. There exist constants C ≥ 1, c > 0 s.t. for all η ∈ [0, 1] one has for
all r ∈ N∗, (t, (x, y), (x′, y′)) ∈ (0, T ]× (R2d)2: ∣∣p̃η ⊗H(r)

η (t, (x, y), (x′, y′))
∣∣

≤ Cr+1trγ/2B
(

1,
γ

2

)
×B

(
1 +

γ

2
,
γ

2

)
× · · · ×B

(
1 +

(r − 1)γ

2
,
γ

2

)
×pc,K(t, (x, y), (x′, y′)),

recalling that H(r)
η := H

(r−1)
η ⊗Hη.

Proof. The result (4.17) in particular yields that ∃C2 > 0,∀u ∈ (0, t], p̃η(t−u, (x, y), (w, z)) ≤
C2pc,K(t− u, (x, y), (w, z)) uniformly w.r.t. η ∈ [0, 1].
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Setting C := c1

(
1 ∨ T (1−γ)/2

)
∨ C2, we also obtain uniformly in η

|p̃η ⊗Hη(t, (x, y), (x′, y′))|

≤
∫ t

0

du

∫
R2d

p̃η(u, (x, y), (w, z))|Hη(t− u, (w, z), (x′, y′))|dwdz,

≤
∫ t

0

du

∫
R2d

C2pc,K(u, (x, y), (w, z))
1

(t− u)1−γ/2pc,K(t− u, (w, z), (x′, y′))dwdz

≤ C2tγ/2B
(

1,
γ

2

)
pc,K(t, (x, y), (x′, y′)),

using the semigroup property (4.16) in the last inequality and whereB(p, q) =
∫ 1

0
up−1(1−

u)q−1du denotes the β−function. By induction on r:∣∣p̃η ⊗H(r)
η (t, (x, y), (x′, y′))

∣∣
≤ Cr+1trγ/2B

(
1,
γ

2

)
×B

(
1 +

γ

2
,
γ

2

)
× · · · ×B

(
1 +

(r − 1)γ

2
,
γ

2

)
×pc,K(t− s, (x, y), (x′, y′)), r ∈ N∗,

which means that the sum of the series (4.19) is uniformly controlled w.r.t. η ∈
[0, 1].

These bounds imply that the series representing the density of the initial process
pη(t, (x, y), (x′, y′)) could be expressed as (4.19) yield and the following bound uni-
formly in η ∈ [0, 1]: pη(t, (x, y), (x′, y′)) ≤ c1pc,K(t, (x, y), (x′, y′)).

From the bounded convergence theorem one can derive that

pη(t, (x, y), (x′, y′)) −→
η→0

∞∑
r=0

p̃⊗H(r)(t, (x, y), (x′, y′)) := p(t, (x, y), (x′, y′)),

(4.21)

uniformly in (t, (x, y), (x′, y′)), where p̃(u, (x, y), (w, z)) := p̃0(u, (x, y), (w, z)) andH(r)(t−
u, (w, z), (x′, y′)) := H

(r)
0 (t− u, (w, z), (x′, y′)).

Due to the uniform convergence in η (which implies the uniqueness in law):∫
R2d

f(z, w)pη(t, (x, y), (w, z))dwdz −→
η→0

∫
R2d

f(z, w)p(t, (x, y), (w, z))dwdz,

for all continuous and bounded f . The well-posedness of the martingale problem
and the same technique as in Theorem 11.4.2 from [SV79] then give that the process
(Xt, Yt) has the transition density which is exactly the sum of the parametrix series
p(t, (x, y), (x′, y′)).
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Remark 4.2.2. Although our model (4.9) does not totally ful�ll the framework of
Theorem 11.4.2 from [SV79] one can derive the same result following every step of the
proof. Namely, the only Theorem which is used in the proof by Stroock and Varadhan
and not so clear in our framework is Th. 9.2.12 in [SV79]. Namely, we need to derive
that in our case that ∀η ∈ [0, 1], t ∈ [0, T ], (x, y) ∈ R2d and h = (h1, h2) ∈ R2d small:

lim
|h|→0

sup
η

∫
R2d

|pη(t, (x, y), (w, z))− pη(t, (x, y), (w + h1, z + h2))|dwdz = 0. (4.22)

The equation (4.22) can be proved in the same technique as in [SV79] taking into
account the fact transition densities of the SDEs with molli�ed coe�cients bη, ση are
smooth and the limit of the parametrix sum is a continues function.

Thus, we have proved the below proposition.

Proposition 4.2.2. Under the sole assumption (AD), for t > 0, the transition density
of the process (Xt, Yt) solving (4.9) exists and can be written as the series in (4.19)
with η = 0.

Parametrix expansion. Scheme

Let us introduce the approximation scheme for (4.9). For a �xedN and T > 0 we de�ne
a time grid {0, t1, . . . , tN} with a given step h := T/N , i.e. ti = ih, for i = 0, . . . , N
and the scheme{

Xh
t = x+

∫ t
0
b(Xh

φ(s), Y
h
φ(s))ds+

∫ t
0
σ(Xh

φ(s), Y
h
φ(s))dWs,

Y h
t = y +

∫ t
0
Xh
s ds.

(4.23)

where φ(t) = ti ∀t ∈ [ti, ti+1). Observe that the above scheme is in fact well de�ned
even though the non degenerate component of the scheme itself appears in the integral.
On every time-step the increments of (Xh

t , Y
h
t )t∈[ti,ti+1], i ≥ 0 are actually Gaussian.

They indeed correspond to a suitable rescaling of the Brownian increment and its
integral on the considered time step, see also Remark 4.2.3.

Remark 4.2.3. The speci�c version of the Euler scheme we perform for the model (4.9)
gives us directly the existence of the one step Gaussian transition density whereas in
the generic Markov settings of [KMM10] some "aggregations" are needed. Namely,
under assumptions (A) the discretization scheme (4.23) admits a Gaussian transition
density: for all (x, y) ∈ R2d, 0 < j ≤ N,A ∈ B(R2d) (where B(R2d) stands for the
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Borel σ−�eld of R2d) we get:

P[(Xh
tj
, Y h

tj
) ∈ A|(Xh

0 , Y
h

0 ) = (x, y)]

=

∫
(R2d)j−1×A

ph(h, (x, y), (x1, y1))ph(h, (x1, y1), (x2, y2))× . . .

×ph(h, (xj−1, yj−1), (xj, yj))dx1dy1dx2dy2 . . . dxjdyj

=:

∫
A

ph(tj, (x, y), (xj, yj))dxjdyj,

where the notation ph(h, (xi, yi), (xi+1, yi+1)), i ∈ [0, N − 1], stands for the density of

a Gaussian random variable with mean

(
xi + b(xi, yi)h

yi + xih+ b(xi, yi)h
2/2

)
and non degen-

erate covariance matrix

(
a(xi, yi)h a(xi, yi)h

2/2
a(xi, yi)h

2/2 a(xi, yi)h
3/3

)
. Two-sided Gaussian bounds

of Kolmogorov type for the scheme transition density ph(tj, (x, y), (xj, yj)) have been
established in [LM10].

As for the di�usion density, we would like to take the advantage of applying
the parametrix technique to the discretization scheme transition density (4.23) as
in [LM10]. We �rst need to introduce the frozen version for the scheme (4.23) and the
discrete counterpart of the time-space convolution kernel. From this we can derive the
parametrix representation for the density of the discretization scheme.

For �xed points (x, y), (x′, y′) ∈ R2d, the �xed �nal time tj,0 ≤ j ≤ j′ ≤ N we
de�ne (

X̃h
t , Ỹ

h
t

)
t∈[0,tj ]

(
≡
(
X̃
h,(x′,y′,tj)
t , Ỹ

h,(x′,y′,tj)
t

)
t∈[0,tj ]

)
by
(
X̃h

0 , Ỹ
h

0

)
= (x, y), and ∀t ∈ (0, tj) :{

X̃h
t = x+

∫ t
0
σ(x′, y′ − x′(tj − φ(s)))dWs,

Ỹ h
t = y +

∫ t
0
X̃h
v dv = y + xt+

∫ t
0

∫ v
0
σ(x′, y′ − x′(tj − φ(s)))dWsdv,

(4.24)

where φ(t) = ti, ∀t ∈ [ti, ti+1).
Let us emphasise that

∫ t
0

∫ v
0
σ(x′, y′ − x′(tj − φ(s)))dWsdv =

∫ t
0
(t − v)σ(x′, y′ −

x′(tj − φ(s)))dWs :=
∫ t

0
(t − v)σ̃φ(s)dWs (the equality means that processes are equal

in distributions) as two Gaussian processes with zero-means and the same covariance
matrices. Setting ∀s ∈ [0, tj], ãφ(s) = σ̃φ(s)σ̃

∗
φ(s), recall from (AD2) condition that

ãφ(s) is symmetric, one can �nally obtain that the covariance matrix Σh
tj
of the vector

(X̃h
tj
, Ỹ h

tj
) is equal to

Σh
tj

=

( ∫ tj
0
ãφ(s)ds

∫ tj
0

(tj − s)ãφ(s)ds∫ tj
0

(tj − s)ãφ(s)ds
∫ tj

0
(tj − s)2ãφ(s)ds

)
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The frozen process also depends on tj through an additional term in the di�usion
coe�cient. From now on, p̃h,tj′ ,(x

′,y′) denotes the transition density of the discretization
scheme (4.24) and let us emphasize that for the frozen coe�cients, we will denote
for simplicity p̃h,tj ,(x

′,y′)(tj′ , (x, y), (·, ·)) =: p̃h(tj′ , (x, y), (·, ·)) - the transition density
between times 0 and tj′ ≤ tj of the frozen Markov chain.

Let us now introduce the discrete counterpart of the parametrix kernel considered
for the continuous objects in (4.18). To this end, for a su�ciently smooth func-
tion ψ : R2d → R and �xed (x′, y′) ∈ R2d, j ∈ (0, N ] de�ne operators

(
Lh
)
and(

L̃h
)(
≡
(
L̃h,tj ,(x

′,y′)
))

Lhf(tj, (x, y), (x′, y′)) =

h−1

[∫
R2d

ph(h, (x, y), (u, v))f(tj − h, (u, v), (x′, y′))dudv

−f(tj − h, (x, y), (x′, y′))

]
,

L̃hf(tj, (x, y), (x′, y′)) =

h−1

[∫
R2d

p̃h(h, (x, y), (u, v))f(tj − h, (u, v), (x′, y′))dudv

−f(tj − h, (x, y), (x′, y′))

]
.

De�ne the discrete kernel Hh by

Hh(tj, (u, v), (x′, y′)) =

(
Lh − L̃h

)
p̃h(tj − h, (u, v), (x′, y′)), 0 ≤ j ≤ N. (4.25)

From the previous de�nition, for all 0 ≤ j ≤ N

Hh(tj, (u, v), (x′, y′)) = h−1

∫
R2d

[
ph−p̃h

]
(h, (u, v), (w, z))p̃h(tj−h, (w, z), (x′, y′))dwdz.

Analogously to Lemma 3.6 in [KM00], which follows from a direct algebraic ma-
nipulation, it has been derived in [LM10] that the transition density of the scheme
admits the following representation.

Proposition 4.2.3 (Parametrix Expansion for the Euler scheme). Assume that the
assumptions (AD) are in force. Then

ph(tj, (x, y), (x′, y′)) =

j∑
r=0

(
p̃⊗h H(r)

h

)
(tj, (x, y), (x′, y′)), (4.26)
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for the discrete time convolution type operator ⊗h de�ned by

(g ⊗h f)(tj, (x, y), (x′, y′)) =

j−1∑
i=0

h

∫
R2d

g(ti, (x, y), (u, v))f(tj − ti, (u, v), (x′, y′))dudv,

where g⊗hH(0)
h := g, and for all r ≥ 1, H

(r)
h = Hh⊗hH(r−1)

h denotes the r−fold discrete
convolution of the kernel Hh. W.r.t. the above de�nition, we use the convention that
p̃h ⊗h H(r)

h (0, (x, y), (x′, y′)) = 0, r ≥ 1.

4.3 Stability results

In this section we are going to study the sensitivity of the transition densities of some
Kolmogorov like degenerate di�usion processes with respect to a perturbation of the
coe�cients of the non-degenerate component.

4.3.1 Stability for perturbed di�usions

We now introduce a perturbed version of (4.9) with dynamics:{
dX

(ε)
t = bε(X

(ε)
t , Y

(ε)
t )dt+ σε(X

(ε)
t , Y

(ε)
t )dWt,

dY
(ε)
t = X

(ε)
t dt, t ∈ [0, T ],

(4.27)

where bε : R2d → Rd, σε : R2d → Rd⊗Rd satisfy at least the same assumptions as b, σ
and are in some sense meant to be close to b, σ for small values of ε > 0. In particular,
from Proposition 4.2.3 we have that (X

(ε)
t , Y

(ε)
t ) admits a density.

The goal of this Section is to investigate how the closeness of (bε, σε) and (b, σ) is
re�ected on the respective densities of the associated processes.

In many applications (misspeci�ed volatility models or calibration procedures) it
can be useful to know how the controls on the di�erences |b− bε|, |σ−σε| (for suitable
norms) impact the di�erence pε − p of the densities corresponding respectively to the
dynamics with the perturbed parameters and the one of the model.

Let us now introduce, under (AD), the quantities that will bound the di�erence
of the densities in our main results below. Set for ε > 0:

∀q ∈ (1,+∞], ∆d
ε,b,q := |b(., .)− bε(., .)|Lq(Rd).

Since σ, σε are both γ-Hölder continuous, see (A3), we also de�ne

∆d
ε,σ,γ := |σ(., .)− σε(., .)|d,γ,
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where γ ∈ (0, 1], |.|d,γ stands for the Hölder norm in space on Cγ
b,d(Rd,Rd ⊗ Rd),

which denotes the space of Hölder continuous bounded functions with respect to the
distance d de�ned as follows:

∀(x, y), (x′, y′) ∈ (Rd)2, d
(
(x, y), (x′, y′)

)
:= |x− x′|+ |y′ − y|1/3. (4.28)

Namely, a measurable function f is in Cγ
b,d(Rd,Rd ⊗ Rd) if

|f |d,γ := sup
x∈Rd
|f(x)|+ [f ]d,γ, [f ]d,γ := sup

(x,y)6=(x′,y′)∈R2d

|f(x, y)− f(x′, y′)|
d
(
(x, y), (x′, y′)

)γ < +∞.

The previous control in particular implies for all ((x, y), (x′, y′)) ∈ (R2d)2:

|a(x, y)− a(x′, y′)− aε(x, y) + aε(x
′, y′)| ≤ 22−γ(K + κ)∆d

ε,σ,γd
γ
(
(x, y), (x′, y′)

)
.

We eventually set ∀q ∈ (1,+∞],

∆d
ε,γ,q := ∆d

ε,σ,γ + ∆d
ε,b,q,

which will be the key quantity governing the error in our results.

Theorem 4.3.1 (Stability Control). Fix T > 0. Under (AD), for q ∈ (4d,+∞],
there exists C := C(q) ≥ 1, c ∈ (0, 1] s.t. for all 0 < t ≤ T, ((x, y), (x′, y′)) ∈ (R2d)2:

|(p− pε)(t, (x, y), (x′, y′))| ≤ C∆d
ε,γ,qpc,K(t, (x, y), (x′, y′)),

where p(t, (x, y), (., .)), pε(t, (x, y), (., .)) respectively stand for the transition densities
at time t of equations (4.9), (4.27) starting from (x, y) at time 0.

Proof. We will now investigate more speci�cally the sensitivity of the density w.r.t. the
coe�cients perturbation through the di�erence of the series. From Proposition 4.2.2 ,
for a given �xed parameter ε, under (A) the densities p(t, (x, y), (·, ·)), pε(t, (x, y), (·, ·))
at time t of the processes in (4.9), (4.27) starting from (x, y) at time 0 both admit a
parametrix expansion of the previous type.

Let us consider the di�erence between the two parametrix expansions for (4.9) and
(4.27) in the form (4.19):

|p(t, (x, y), (x′, y′))− pε(t, (x, y), (x′, y′))|

≤
+∞∑
r=0

|p̃⊗H(r)(t, (x, y), (x′, y′))− p̃ε ⊗H(r)
ε (t, (x, y), (x′, y′))|.

Since we consider perturbations of the densities with respect to the non-degenerate
component, following the same steps as in [KKM17] one can show that the Lemma
below holds:
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Lemma 4.3.2 (Di�erence of the �rst terms and their derivatives). There exist c1 ≥
1, c ∈ (0, 1] s.t. for all 0 < t, (x, y), (x′, y′) ∈ R2d and all multi-index α, |α| ≤ 4,

|Dα
x p̃(t, (x, y), (x′, y′))−Dα

x p̃ε(t, (x, y), (x′, y′))| ≤
c1∆d

ε,σ,γpc,K(t, (x, y), (x′, y′))

t|α|/2
.

Lemma 4.3.3 (Control of the one-step convolution). For all 0 < t, (x, y), (x′, y′) ∈
R2d:

|p̃⊗H(1)(t, (x, y), (x′, y′))− p̃ε ⊗H(1)
ε (t, (x, y), (x′, y′))|

≤ c2
1

{
(1 ∨ T (1−γ)/2)2[∆d

ε,σ,γ + Iq=+∞∆d
ε,b,+∞]B(1,

γ

2
)t

γ
2

+Iq∈(4d,+∞)∆
d
ε,b,qB(

1

2
+ α(q), α(q))tα(q)

}
pc,K(t, (x, y), (x′, y′)),

(4.29)

where c1, c are as in Lemma 4.3.2 and for q ∈ (4d,+∞) we set α(q) = 1
2
− 2d

q
.

Proof. Let us write:

|p̃⊗H(1)(t, (x, y), (x′, y′))− p̃ε ⊗H(1)
ε (t, (x, y), (x′, y′))| ≤

|(p̃− p̃ε)⊗H(t, (x, y), (x′, y′))|+ |p̃ε ⊗
(
H −Hε

)
(t, (x, y), (x′, y′))| := I + II. (4.30)

From Lemma 4.3.2 and (4.20) we readily get for all q ∈ (4d,+∞]:

I ≤ ((1 ∨ T (1−γ)/2)c1)2∆d
ε,γ,qpc2,K(t, (x, y), (x′, y′))B(1,

γ

2
)t

γ
2 . (4.31)

To estimate (II) let us �rst consider H −Hε more precisely:

(H −Hε)(t− u, (w, z), (x′, y′)) (4.32)

=
1

2
Tr

{
a(w, z)− a(x′, y′ − x′(t− u))− aε(w, z) + aε(x

′, y′ − x′(t− u)

}
×D2

wp̃(t− u, (w, z), (x′, y′))

+
1

2
Tr

{
aε(w, z)− aε(x′, y′ − x′(t− u))

}[
D2
w(p̃− p̃ε)

]
(t− u, (w, z), (x′, y′))

+〈b(w, z)− bε(w, z), Dwp̃(t− u, (w, z), (x′, y′))〉
+〈bε(w, z), Dw(p̃− p̃ε)(t− u, (w, z), (x′, y′))〉

:=

(
∆1
εH + ∆2

εH

)
(t− u, (w, z), (x′, y′))

+〈b(w, z)− bε(w, z), Dwp̃(t− u, (w, z), (x′, y′))〉
+〈bε(w, z), (Dwp̃−Dwp̃ε)(t− u, (w, z), (x′, y′))〉.
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Since functions a(w, z), aε(w, z) are Hölder uniformly continuous and (4.17) holds
than:

|∆1
εH|(t− u, (w, z), (x′, y′))|

≤
c∆d

ε,γ,∞

(
|w − x′|γ + |z − y′ + x′(t− u)|γ/2

)
pc,K(t− u, (w, z), (x′, y′))

(t− u)

≤ c∆d
ε,γ,∞

pc2,K(t− u, (w, z), (x′, y′))
(t− u)1−γ/2 .

From Lemma 4.3.2 and Hölder uniform continuity of the function aε(x, y) it follows:

|∆2
εH|(t− u, (w, z), (x′, y′))

≤
c∆d

ε,γ,∞

(
|w − x′|γ + |z − y′ + x′(t− u)|γ/3

)
pc,K(t− u, (w, z), (x′, y′))

(t− u)

≤ c∆d
ε,γ,∞

pc̃2,K(t− u, (w, z), (x′, y′))
(t− u)1−γ/2 .

Thus, the fact that |b(w, z) − bε(w, z)| ≤ c∆d
ε,b,γ and (4.17) give the control for

q = +∞. Namely,

|(H−Hε)(t−u, (w, z), (x′, y′))| ≤
(
1 ∨ T (1−γ)/2

)
c1∆d

ε,γ,∞

[
pc,K(t− u, (w, z), (x′, y′))

(t− u)1−γ/2

]
.

(4.33)

For q ∈ (4d,+∞) we use Hölder inequality in the time-space convolution involving
the di�erence of the drifts (last term in (4.32)). Set

D(t, (x, y), (x′, y′))

:=

∫ t

0

du

∫
R2d

p̃ε(u, (x, y), (w, z))〈[bε(w, z)− b(w, z)], Dwp̃(t− u, (w, z)(x′, y′))〉dwdz.

Denoting by q̄ the conjugate of q, i.e. q, q̄ > 1, q−1 + q̄−1 = 1, we get from (4.17) and
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for q > d that:

|D(t, (x, y), (x′, y′))| ≤ c2
1

∫ t

0

du

(t− u)1/2
‖b(., .)− bε(., .)‖Lq(Rd)

×
{∫

R2d

[pc,K(u, (x, y), (w, z))pc,K(t− u, (w, z), (x′, y′))]q̄dwdz
}1/q̄

≤ c2
1∆d

ε,b,q

∫ t

0

3d/qc2d

(2π)2d/q(cq̄)2d/q̄

×
{∫

R2d

pcq̄,K(u, (x, y), (w, z))pcq̄,K(t− u, (w, z), (x′, y′))dwdz
}1/q̄ du

u2d/q(t− u)
1
2

+2d/q

≤ c2
1

(√
3ct2

2π

)d/q

q̄
d
q̄∆d

ε,b,qpc,K(t, (x, y), (x′, y′))

∫ t

0

du

u2d/q(t− u)
1
2

+2d/q
.

Now, the constraint 4d < q < +∞ precisely gives that 1
2

+ 2d(1 − 1
q̄
) < 1 so that

the last integral is well de�ned. We therefore derive:

|D(t, (x, y), (x′, y′)|

≤ c2
1t

1
2
−2d/q∆d

ε,b,qpc,K(t, (x, y), (x′, y′))B(1− 2d/q,
1

2
− 2d/q).

In the case 4d < q < +∞, recalling that α(q) = 1
2
− 2d

q
, we eventually get :

|p̃ε(s, (x, y), (w, z))⊗
(
H −Hε

)
(t− u, (w, z), (x′, y′))|

≤ c2
1pc,K(t, (x, y), (x′, y′)){∆d

ε,b,qt
α(q)B(

1

2
+ α(q), α(q))

+2∆d
ε,σ,γ(1 ∨ T (1−γ)/2)tγ/2B(1, γ/2)}.

(4.34)

The statement now follows in whole generality from (4.30), (4.31), (4.17) for q =∞
and (4.34) for 4d < q < +∞.

The following Lemma associated with Lemmas 4.3.2 and Lemma 4.3.3 allows to
complete the proof of Theorem 4.3.1.

Lemma 4.3.4 (Di�erence of the iterated kernels). For all 0 < t ≤ T, (x, y), (x′, y′) ∈
(R2d)2 and for all r ∈ N:

|(p̃⊗H(r) − p̃ε ⊗H(r)
ε )(t, (x, y), (x′, y′)| (4.35)

≤ Crr∆d
ε,γ,q

 t
rγ
2

Γ
(
1 + rγ

2

) +
t

(r+2)γ
2

Γ
(

1 + (r+2)γ
2

)
 pc,K(t, (x, y), (x′, y′)).
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Proof. Observe that Lemmas 4.3.2 and Lemma 4.3.3 respectively give (4.35) for r = 0
and r = 1. Let us assume that it holds for a given r ∈ N∗ and let us prove it for r+ 1.

Let us denote for all r ≥ 1,
ηr(t, (x, y), (x′, y′)) := |(p̃⊗H(r) − p̃ε ⊗H(r)

ε )(t, (x, y), (x′, y′))|. Write

ηr+1(t, (x, y), (x′, y′)) =
∣∣(p̃⊗H(r) − p̃ε ⊗H(r)

ε )⊗H(t, (x, y), (x′, y′))
∣∣

+
∣∣p̃ε ⊗H(r)

ε ⊗ (H −Hε)(t, (x, y), (x′, y′))
∣∣

≤ ηr ⊗ |H| (t, (x, y), (x′, y′)) +
∣∣p̃ε ⊗H(r)

ε

∣∣⊗ |(H −Hε)| (t, (x, y), (x′, y′)).

Now, ηr is controlled by the induction hypothesis, |H| - through (4.20), Lemma 4.2.1
provides bounds for the convolution p̃ε⊗H(r)

ε and the di�erence |(H −Hε)| is controlled
in (4.33). Thus, the induction hypothesis we get the result.

Theorem 4.3.1 now simply follows from the controls of Lemma 4.3.4, the parametrix
expansions (4.9) and (4.27) of the densities p, pε and the asymptotic of the Gamma
function.

Stability for perturbed Euler schemes

Let us describe precisely the analogue of the scheme (4.23) with perturbed coe�cients
as in (4.27) which approximates the process (4.27) with perturbed coe�cients bε, σε:{

Xε,h
t = x+

∫ t
0
bε(X

ε,h
φ(s), Y

ε,h
φ(s))ds+

∫ t
0
σε(X

ε,h
φ(s), Y

ε,h
φ(s))dWs,

Y ε,h
t = y +

∫ t
0
Xε,h
s ds.

(4.36)

for t ∈ [0, tj), 0 < j ≤ N , where φ(t) = ti ∀t ∈ [ti, ti+1).
Recall �rst from the Section 4.2.2 that we have the following representations for

the densities ph and phε :

ph(tj, (x, y), (x′, y′)) =

j∑
r=0

p̃h ⊗h H(r)
h (tj, (x, y), (x′, y′)),

phε (tj, (x, y), (x′, y′)) =

j∑
r=0

p̃hε ⊗h H
(r)
ε,h(tj, (x, y), (x′, y′)),

where Hε,(r)
h is de�ned analogously to H(r)

h in (4.25) with Lh, L̃h, p̃h changed respec-
tively by their perturbed counterparts in ε.

Theorem 4.3.5. Fix T > 0 and let us de�ne a time-grid Λh := {(ti)i∈[[1,N ]]}, N ∈ N∗.
Under (A), there exists C ≥ 1, c ∈ (0, 1] s.t. for all 0 < tj ≤ T, ((x, y), (x′, y′)) ∈
(R2d)2, q ∈ (4d,+∞]:

|pεh − ph|(tj, (x, y), (x′, y′)) ≤ C∆d
ε,γ,qpc,K(tj, (x, y), (x′, y′)),
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where pεh(t, (x, y), (., .)), ph(t, (x, y), (., .)) respectively stand for the transition densities
at time t of equations (4.23), (4.36) starting from (x, y) at time 0.

The closeness of "main" parts p̃h and p̃hε in the above expansions can be derived
analogously to Lemma 1 [KKM17] as the di�erence between two Gaussian densities
with the small di�erences in means and covariances. The only point we would like to
emphasize - the Kolmogorov-like density pc,K which stands in the bounds due to the
control for the scheme transition density in the degenerate case. The complete proof
could be found in [LM10], Theorem 2.1, (b).

Lemma 4.3.6 (Control and Comparison of the densities and their derivatives). There
exist c1 ≥ 1, c ∈ (0, 1] s.t. for all 0 < tj ≤ T, (x, y), (x′, y′) ∈ R2d and all multi-index
α, |α| ≤ 4,

|Dα
x p̃

h(tj, (x, y), (x′, y′))−Dα
x p̃

h
ε (tj, (x, y), (x′, y′))| ≤

c1∆d
ε,σ,γpc,K(tj, (x, y), (x′, y′))

t
|α|/2
j

.

where the last inequality holds for all η ∈ (0, γ) due to the molli�cation procedure.

Proof. According to the de�nition

p̃hε (tj, (x, y), (x′, y′)) =
1

t2dj det(V
ε
j )1/2

G

(V ε
j )−1/2

 x′−x√
tj

y′−y−xtj
t
3/2
j

 , (4.37)

where

V ε
j =

(
1
tj

∫ tj
0
ãεφ(s)ds

1
t2j

∫ tj
0
ãεφ(s)(tj − s)ds

1
t2j

∫ tj
0
ãεφ(s)(tj − s)ds

1
t3j

∫ tj
0
ãεφ(s)(tj − s)2ds

)

and ∀z ∈ R2d, G(z) = exp(−|z|2/2)(2π)−d stands for the density of the standard
Gaussian vector of R2d. We emphasize that, in (4.37) we introduced the matrix V ε

j

which is non-degenerate and has order one, i.e. there exists c := c(AD) ≥ 1 s.t.
c−1I2d ≤ Vj ≤ cI2d. The matrix V ε

j then acts on the components renormalized at their

intrinsic scales, namely

 x′−x√
tj

y′−y−xtj
t
3/2
j

.

Taking the result from Lemma 4.3.6, the control for the di�erence |p̃h−p̃hε |(tj, (x, y), (x′, y′))
comes from the closeness of two Gaussian densities with the same mean and slightly
di�erent covariance matrices Vj and V ε

j , recalling that by the de�nition V 0
j is equal to

Vj.
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As |detVj − detV ε
j | ≤ C(T, d)∆d

ε,σ,γ for any j ≤ N , where C(T, d) stands for the
constant which depends only on the �xed time T and the dimension d. Also due to
the de�nition of detVj , it has the �rst order in time.

Thus,

|p̃h − p̃hε |(tj, (x, y), (x′, y′))

≤ 1

(2π)dt2dj

(
1

det(Vj)1/2
− 1

det(V ε
j )1/2

)
exp

−1

2
〈V −1

j

 x′−x√
tj

y′−y−xtj
t
3/2
j

 ,

 x′−x√
tj

y′−y−xtj
t
3/2
j

〉


+
1

(2π)dt2dj det(V ε
j )1/2

(
exp

−1

2
〈V −1

j

 x′−x√
tj

y′−y−xtj
t
3/2
j

 ,

 x′−x√
tj

y′−y−xtj
t
3/2
j

〉


− exp

−1

2
〈(V ε

j )−1

 x′−x√
tj

y′−y−xtj
t
3/2
j

 ,

 x′−x√
tj

y′−y−xtj
t
3/2
j

〉
)

≤ C(T, d)∆ε,σ,γpc,K(tj, (x, y), (x′, y′)),

where the di�erence between two exponents of scalar products can be control as usual
- using the �rst order Taylor expansion. Dealing with α : |α| > 0 brings us additional
polynomials multiplied with each exponents - the same as for the frozen densities for
the di�usions.

Lemma 4.3.7 (Control of the One-Step Convolution for the Chain). For all β ∈ (0, γ),
0 < ti ≤ T, (x, y), (x′, y′) ∈ R2d there exists Cβ such that:

|Hh(ti, (u, v), (x′, y′))−Hh,ε(ti, (u, v), (x′, y′))| ≤
Cβ∆d

ε,γ,∞

t
1−γ/2
i

pc,K(ti, (u, v), (x′, y′))

Proof. 1. One step transition.
Note that if ti = h, the transition probability p̃h(ti − h, (·, ·), (x′, y′)) is the Dirac
measure δx′,y′ so that

Hh(h, (x, y), (x′, y′))

= h−1

(
E[δx′,y′(X

h
h , Y

h
h )|Xh

0 = x, Y h
0 = y]− E[δx′,y′(X̃

h
h , Ỹ

h
h )|X̃h

0 = x, Ỹ h
0 = y]

)
,

= h−1

(
ph(h, (x, y), (x′, y′))− p̃h(h, (x, y), (x′, y′))

)
.
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As ph(h, (x, y), (x′, y′)), p̃h(h, (x, y), (x′, y′)) are Gaussian densities, one can get

Hh(h, (x, y), (x′, y′)) = h−1(2
√

3)d ×
(G( (h1/2σ(x, y))−1(x′ − x− b(x′, y′)h)

2
√

3(h3/2σ(x, y))−1(y′ − y − x+x′

2
h)

)
h2d(det(a(x, y)))1/2

−
G

(
(h1/2σ(xh

′
, yh

′
))−1(x′ − x)

2
√

3(h3/2σ(xh
′
, yh

′
))−1(y′ − y − x+x′

2
h)

)
h2d(det(a(xh′ , yh′)))1/2

)
,

where (xh
′
, yh

′
) := (x′, y′ − x′h).

Applying the same technique for the perturbed version of the kernel function we
get

Hh,ε(h, (x, y), (x′, y′)) = h−1(2
√

3)d ×
(G( (h1/2σε(x, y))−1(x′ − x− bε(x, y)h)

2
√

3(h3/2σε(x, y))−1(y′ − y − x+x′

2
h)

)
h2ddet(aε(x, y))1/2

−
G

(
(h1/2σε(x

h′ , yh
′
))−1(x′ − x)

2
√

3(h3/2σε(x
h′ , yh

′
))−1(y′ − y − x+x′

2
h)

)
h2d(det(aε(xh

′ , yh′)))1/2

)
.

As a result, the di�erence between kernel functions in the case of one-step transition
could be estimated as the di�erence between Gaussian densities with close coe�cients

as in the Chapter 4. Also due to the fact that

∣∣∣∣( x
y

)
−
(
xh
′

yh
′

)∣∣∣∣ ≤ |x′− x|(1 + h
2
) +

|y′ − y − x+x′

2
h| it follows that ∃c > 0, C ≥ 1 s.t

|Hh(h, (x, y), (x′, y′))−Hh,ε(h, (x, y), (x′, y′)| ≤ Ch−1+γ/2∆d
ε,γ,∞pc,K(h, (x, y), (x′, y′)).

Case ti > h. Recall that for all 0 < i ≤ N

Hh(ti, (u, v), (x′, y′)) = h−1

∫
R2d

[
ph − p̃h

]
(h, (u, v), (w, z))p̃h(ti − h, (w, z), (x′, y′))dwdz.

(4.38)

Set (xh, yh) := (x, y + hx), (x′h,i, y
′
h,i) := (x′, y′ − x′ti). De�ne ∀(u, v) ∈ R2d,

Bh(u, v) :=

(
b(u, v)h

b(u, v)h2/2

)
, Σh(u, v) =

(
h1/2σ(u, v) 0

h3/2σ(u, v)/2 h3/2σ(u, v)/(2
√

3)

)
.

Introducing for all (x, y), (w, z), (x′, y′) ∈ (R2d)3 transitions: Ph

(
(w, z), (x′, y′)

)
:=

Σh(w, z)

(
x′

y′

)
, Th

(
(x, y), (w, z), (x′, y′)

)
:= Bh(x, y) + Ph

(
(w, z), (x′, y′)

)
, we can
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rewrite (4.38)

Hh(ti, (x, y), (x′, y′)) = h−1

∫
R2d

dudvG(u, v)

×

{[
p̃h

(
ti − h,

(
xh
yh

)
+ Th

(
(x, y), (x, y), (u, v)

)
, (x′, y′)

)
− p̃h

(
ti − h,

(
xh
yh

)
, (x′, y′)

)]

−

[
p̃h

(
ti − h,

(
xh
yh

)
+ Ph

(
(x′h,i, y

′
h,i), (u, v)

)
, (x′, y′)

)
− p̃h

(
ti − h,

(
xh
yh

)
, (x′, y′)

)]}
.

According to the Taylor expansion at order one:

Hh(ti, (x, y), (x′, y′)) = h−1

∫
R2d

dwdzG(w, z)

∫ 1

0

dη

×
{
Dxp̃

h

(
ti − h, (xh, yh) + ηTh

(
(x, y), (x, y), (w, z)

)
, (x′, y′)

)
×
(
Th

(
(x, y), (x, y), (w, z)

))(x)

−Dxp̃
h

(
ti − h, (xh, yh) + ηPh

(
(x′h,i, y

′
h,i), (w, z)

)
, (x′, y′)

)
×
(
Ph((x

′
h,i, y

′
h,i), (w, z))

)(x)}
+{

h−1

∫
R2d

dwdzG(w, z)

∫ 1

0

dη

×
{
Dyp̃

h

(
ti − h, (xh, yh) + ηTh

(
(x, y), (x, y), (w, z)

)
, (x′, y′)

)
×
(
Th((x, y), (x, y), (w, x))

)(y)

−

Dyp̃
h

(
ti − h, (xh, yh) + ηPh

(
(x′h,i, y

′
h,i

)
, (w, z)), (x′, y′)

)
×
(
Ph

(
(x′h,i, y

′
h,i), (w, x)

))(y)}
:= (Mh

1 +Rh
1)(ti, (x, y), (x′, y′)),

where Dx, Dy denotes the di�erentiation w.r.t. the �rst and the second components
respectively, (x) and (y) denote (1 : d) and (d+ 1 : 2d)

As we are interested in the di�erence |Hh −Hh,ε|(ti, (u, v), (x′, y′)) it is enough to
estimate the closeness of Rh

1 , R
h,ε
1 and Mh

1 ,M
h,ε
1 .

We need to recall two following controls which has been mentioned before in (4.17).
Let µ = (µ1, . . . , µd) ∈ Nd, ν = (ν1, . . . , νd) ∈ Nd be multi-indices. We have, ∃c >
0, C ≥ 1,∀(µ, ν), |µ| ≤ 3, |ν| ≤ 4,∀0 < i ≤ N, (x, y), (x′, y′) ∈ R2d,

|Dν
xD

µ
y p̃

h(ti, (x, y), (x′, y′))| ≤ C(ti)
−(|ν|/2+3/2|µ|)pc,K(ti, (x, y), (x′, y′)).

Observe as well that there exists C > 0 s.t.

|Th
(

(x, y), (x, y), (w, z)

)(x)

−Ph
(

(x′h,i, y
′
h,i), (w, z)

)(x)

| ≤ C(h+|(x, y)−(x′h,i, y
′
h,i)|γh1/2|(w, z)|),
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|Th
(

(x, y), (x, y), (w, z)

)(y)

−Ph
(

(x′h,i, y
′
h,i), (w, z)

)(y)

| ≤ C(h2+|(x, y)−(x′h,i, y
′
h,i)|γh3/2|(w, z)|)

since b(·, ·) is bounded and the di�erence between Σ(x, y) and Σ(x′h,i, y
′
h,i) can be

controlled due to the Hölder continuity.

As in the article [LM10] expanding termsDxp̃
h

(
ti, (xh, yh)+ηTh

(
(x, y), (x, y), (w, z)

)
, (x′, y′)

)

and Dyp̃
h

(
ti, (xh, yh) + ηTh

(
(x, y), (x, y), (w, z)

)
, (x′, y′)

)
at order 2 around (xh, yh)

in Mh
1 one can get:
Hh(ti, (x, y), (x′, y′)) = H(ti, (x, y), (x′, y′)) + (Rh

1 +Rh
2)(ti, (x, y), (x′, y′)) where, we

have denoted, with a slight abuse of notationH(ti, (x, y), (x′, y′)) = (L−L̃)p̃h(ti, (x, y), (x′, y′))
whereas from the continuous case H(ti, (x, y), (x′, y′)) = (L − L̃)p̃(ti, (x, y), (x′, y′)).
Pay attention that a priori, p̃h(ti, (x, y), (x′, y′)) 6= p̃(ti, (x, y), (x′, y′)). The only di�er-
ence between those two objects is in the covariance matrices for which the backward
transport of the �nal point is taken in continuous time in p̃ and in discrete time in
δph.

Rh
2(ti, (x, y), (x′, y′)) := 〈−b(x′, y′), Dxp̃

h

(
ti − h, (xh, yh), (x′, y′)

)
〉+

1

2
Tr

{(
a(x, y)− a(x′h,i, y

′
h,i)

)
D2
xp̃

h

(
ti − h, (xh, yh), (x′, y′)

)}

The di�erence between |H−Hε|(ti, (x, y), (x′, y′)) can be controlled as in (4.33). There
exist c ∈ (0, 1], c3 ∈ (0, 1] such that for 0 < ti ≤ T and all (x, y), (x′, y′) ∈ R2d

|H −Hε|(ti, (u, v), (x′, y′))| ≤
(

1 ∨ T
1−γ

2

)
c3∆d

ε,γ,∞
pc,K(ti, (x, y), (x′, y′))

(ti)1−γ/2 .

Using the de�nition of Rh
1(ti, (x, y), (x′, y′)) and the telescoping sums combined with

bounds for the derivatives of the frozen transition density one can get:

|
(
Rh

1 −R
h,ε
1

)
(ti, (x, y), (x′, y′))| = h−1

∫
R2d

dwdzG(w, z)

∫ 1

0

dη

×
{
Dyp̃

h

(
ti − h, (xh, yh) + ηTh

(
(x, y), (x, y), (w, z)

)
, (x′, y′)

)
×
(
Th((x, y), (x, y), (w, x))

)(y)

−Dyp̃
h

(
ti − h, (xh, yh) + ηPh

(
(x′h,i, y

′
h,i), (w, z)

)
, (x′, y′)

)
×

(
Ph((x

′
h,i, y

′
h,i), (w, x))

)(y)}
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−h−1

∫
R2d

dwdzG(w, z)

∫ 1

0

dη{
Dyp̃

h
ε

(
ti − h, (xh, yh) + ηT εh

(
(x, y), (x, y), (w, z)

)
, (x′, y′)

)
×

(
T εh

(
(x, y), (x, y), (w, x)

))(y)

−Dyp̃
h
ε

(
ti − h, (xh, yh) + ηP ε

h

(
(x′h,i, y

′
h,i), (w, z)

)
, (x′, y′)

)
×

(
P ε
h

(
(x′h,i, y

′
h,i), (w, x)

))(y)}
≤
(

1 ∨ T
1−γ

2

)
c2∆d

ε,γ,∞
pc,K(ti, (x, y), (x′, y′))

t
1−γ/2
i

.

Also the di�erence |Rh
2−R

h,ε
2 |(ti, (x, y), (x′, y′)) can be held according to the bound-

edness of b(·, ·), bε(·, ·), Hölder properties of a(·, ·), aε(·, ·) and bounds for the derivatives

|Dα
x p̃

h

(
ti − h, (xh, yh), (x′, y′)

)
|.

|
(
Rh

2 −R
h,ε
2

)
(ti, (x, y), (x′, y′))|

= 〈bε(x′, y′)− b(x′, y′), Dxp̃
h

(
ti − h, (xh, yh), (x′, y′)

)
〉

+〈bε(x′, y′),

(
Dxp̃

h
ε −Dxp̃

h

)(
ti − h, (xh, yh), (x′, y′)

)
〉

−1

2
Tr

{(
a(x, y)− a(x′h,i, y

′
h,i)− aε(x, y) + aε(x

′
h,i, y

′
h,i)

)
D2
xp̃

h

(
ti − h, (xh, yh), (x′, y′)

)

−1

2
Tr

{(
aε(x, y)− aε(x′h,i, y′h,i)

)(
D2
xp̃

h
ε −D2

xp̃
h

)(
ti − h, (xh, yh), (x′, y′)

)}

≤
∆d
εγ∞pc,K(ti − h, (xh, yh), (x′, y′))

(ti − h)1−γ/2 .

Thus, we �nally have proved the Lemma.

Lemma 4.3.8 (Di�erence of the iterated kernels). For all ti, i ∈ (0, j] ,tj ≤ T ,
(x, y), (x′, y′) ∈ R2d and r ∈ N:

|(p̃h ×H(r)
h − p̃

h
ε ×H

(r)
h,ε)(ti, (x, y), (x′, y′))| (4.39)

≤ Cr∆d
ε,γ,∞

 t
rγ
2
i

Γ
(
1 + rγ

2

) +
t

(r+2)γ
2

i

Γ
(

1 + (r+2)γ
2

)
 pc,K(ti, (x, y), (x′, y′)).
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Proof. Observe that Lemmas 4.3.6 gives (4.39) for r = 0. Let us assume that it holds
for a given r ∈ N∗ and let us prove it for r + 1.

Let us denote for all r ≥ 1,
ηr(ti, (x, y), (x′, y′)) := |(p̃h ⊗H(r) − p̃hε ⊗H

(r)
h,ε)(ti, (x, y), (x′, y′))|. Write

ηr+1(ti, (x, y), (x′, y′)) ≤
∣∣∣(p̃h ⊗H(r)

h − p̃
h
ε ⊗H

(r)
h,ε)⊗Hh(ti, (x, y), (x′, y′))

∣∣∣
+
∣∣∣p̃hε ⊗H(r)

h,ε ⊗ (Hh −Hh,ε)(ti, (x, y), (x′, y′))
∣∣∣

≤ ηr ⊗ |Hh| (ti, (x, y), (x′, y′)) +
∣∣∣p̃hε ⊗H(r)

h,ε

∣∣∣⊗ |(Hh −Hh,ε)| (ti, (x, y), (x′, y′)).

Thus,from the induction hypothesis, similarly to Lemma 4.3.4, we get the result.

Through the Lemma 4.3.8 one can prove the Lemma 4.3.5.

4.4 Weak error

In the same manner as in the article [KM17] we would like to consider the analogue
to the di�erence between the degenerate di�usion and it's Euler scheme in the case of
non-smooth coe�cients.

Remark 4.4.1. We would like to emphasize that for our error controls, we need to
consider γ/2 for the Hölder index of the degenerate second variable. According to the
existing literature, see e.g. Lunardi [Lun97] or Priola [Pri09], concerning Schauder es-
timates for PDEs associated with generators deriving from (4.9), one could expect this
regularity to be γ/3 which corresponds to the homogeneity index of the degenerate
variable (see again the above references or Bramanti et al. [MGEE10] or [Men18] for
some related applications to harmonic analysis). The current index appears through
our analysis because of some speci�c properties of the model, namely the increment
over time step of the degenerate component needs to be handled (unbounded coef-
�cient). This precisely leads to the indicated restriction (see Theorem 4.5.1 and its
proof).

There are two kinds of quantities we would be interested in while studying approx-
imations of the SDE's solution. First, we can focus on the analogue to (1.4):

Ew(f, (x, y), T, h) := E(x,y)[f(Xh
T , Y

h
T )]− E(x,y)[f(XT , YT )], (4.40)

where f is a test function that lies in a suitable functional space. The second quantity
we will be interested in concerns directly the di�erence of the densities. We have
indicated above that the Euler scheme (4.23) has a density enjoying Gaussian bounds.
We can refer to the Chapter 4 to justify that, under the current Assumptions (AD),
the di�usion in (4.9) itself has a density. The existence of the density also follows
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from the well-posedness of the martingale problem associated with the generator of
(4.9) and the estimates in Theorem 4.4.2. We will try to quantify, for a given time
t ∈ {(ti)i∈[[0,N ]]}, in terms of h the di�erence

Ed((x, y), (x′, y′), t, h) := (p− ph)(t, (x, y), (x′, y′)), (4.41)

where p(t, (x, y), (x′, y′)) (resp. ph(t, (x, y), (x′, y′)) denotes the density of the unique
weak solution of the SDE (4.9), at time t and point (x′, y′) when the starting point at
time 0 is (x, y) (resp. Xh given by the Euler scheme (4.23) at time t and point (x′, y′)
when the starting point at time 0 is (x, y)).

To perform the further analysis we have to assume more about Hölder properties
of coe�cients as it has been already mentioned in Remark 4.4.1. Namely, instead of
(AD3), we assume for some γ ∈ (0, 1] , κ,

|b(x, y)− b(x′, y′)|+ |σ(x, y)− σ(x′, y′)| ≤ κ
(
|x− x′|γ + |y − y′|γ/2

)
.

and denote that as (ÂD3). Thus, we say that assumption (ÂD) holds when conditions
(AD1), (AD2),(ÂD3) are in force.

Remark 4.4.2. Due to the boundedness of coe�cient (ÂD3) is included in (AD3),
meaning that all previous results, achieved under (AD3) still hold under (ÂD3).

Our �rst main result, which we have already mentioned in Chapter 1, is the fol-
lowing theorem.

Theorem 4.4.1. Assume (ÂD) holds and �x T > 0. For any test function f ∈
Cβ,β/2(R2d) (β−Hölder in the �rst variable and β/2−Hölder in the second variable
functions) for β ∈ (0, 1], there exists C > 0, such that for E1 as in (4.40):

|Ew(f, (x, y), T, h)| ≤ Chγ/2(1 + |x|γ/2).

Proof. Denote, using Markovian notations, v(t, x, y) := E[f(X
t,(x,y)
T , Y

t,(x,y)
T )] =

∫
R2d p(T−

t, (x, y), (x′, y′))f(x′, y′)dx′dy′. Now, well posedness of the martingale problem yields
that v is actually a weak solution of the PDE:{

(∂tv + Lv)(t, x, y) = 0,

v(T, x, y) = f(x, y), (x, y) ∈ R2d,
(4.42)

where L stands for the generator of (4.9) at time t, i.e. for all ϕ ∈ C2
0(R2d,R), (x, y) ∈

R2d,

Lϕ(x, y) = b(x, y) · ∇xϕ(x, y) + x∇yϕ(x, y) +
1

2
Tr(a(x, y)D2

xϕ(x, y)).
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Pay attention that, even though we have good controls on the spatial gradients for
the non-degenerate variables, see again Theorem 4.4.2 below, in the current degener-
ate setting this does not yield that v is a classical solution to (4.42). Indeed, it does
not seem to be an easy task to directly control pointwise, under our mild Hölder as-
sumption (ÂD) 1, the derivatives w.r.t. degenerate variable of the density p expressed
as a convergent parametrix sum (see once more the proof of Theorem 4.4.2 for the
parametrix expansion of the density). We also mention that similar features appear
in the papers who handle Schauder estimates for PDEs related with (4.9). In [Lun97]
and [Pri09] the derivatives w.r.t. to the non-degenerate variable are controlled up to
order 2, whereas for the degenerate variable(s) the bounds obtained are for Hölder
moduli of continuity of v (w.r.t. to those variables).

To circumvent this di�culty we need to introduce a smoothing procedure of the
coe�cients.

Molli�cation procedure.
Let us specify the molli�cation procedure. Namely, for a small parameter ε, we smooth
suitably the coe�cients and the function f introducing:

bε(x, y) := b ? ρε(x, y) =
∫
R2d b(u, v)ρε(x− u, y − v)dudv,

σε(x, y) := σ ? ρε(x, y) =
∫
R2d σ(u, v)ρε(x− u, y − v)dudv,

fε(x, y) := f ? ρε(x, y) =
∫
R2d f(u, v)ρε(x− u, y − v)dudv, (4.43)

where ? stands for the spatial convolution and ρε is a spatial molli�er, i.e.

ρε(x, y) = ε−3dρ(x/ε, y/ε2), ρ ∈ C∞(R2d),

∫
R2d

ρ(x, y)dxdy = 1, |supp(ρ)| ⊂ K,

for some compact set K ⊂ R2d.
According to the notations and the Hölder and boundness properties of the coe�-

cients one can prove:

|b− bε| ≤
∣∣∣∣∫

R2d

(b(x, y)− b(x− uε, y − vε2)ρ(u, v)dudv

∣∣∣∣ .
From the Hölder continuity of b:

sup
(x,y)∈R2d

|(b− bε)(x, y)| ≤ Cρε
γ, Cρ := κ

∫
R2d

(|u|γ + |v|γ/2)ρ(u, v)dudv.

1Observe that if the coe�cients were smooth, the Konakov and Mammen trick would also give

the pointwise controls on the derivatives w.r.t. y.
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The same analysis can be performed for σε and fε so that σε and fε satis�es Hölder
conditions. This gives

|b− bε|+ |σ − σε| ≤ Cεγ,

|f − fε| ≤ Cεβ. (4.44)

As the result we get the following controls for closeness of coe�cients:

sup
(x,y)∈R2d

|b(x, y)− bε(x, y)| ≤ Cεγ,

sup
(x,y)∈R2d

|f(x, y)− fε(x, y)| ≤ Cεβ,

∀η ∈ (0, γ), sup
(x,y)∈R2d

|σ(x, y)− σε(x, y)|+ |(σ − σε)|η

≤ Cη(ε
γ + εγ−η) ≤ Cηε

d̂,γ−η,

where

∀(x, y), (x′, y′) ∈ (Rd)2, d̂
(
(x, y), (x′, y′)

)
:= |x− x′|+ |y′ − y|1/2. (4.45)

Namely, a measurable function f is in Cγ
b,d(Rd,Rd ⊗ Rd) if

|f |d̂,γ := sup
x∈Rd
|f(x)|+ [f ]d̂,γ, [f ]d̂,γ := sup

(x,y)6=(x′,y′)∈R2d

|f(x, y)− f(x′, y′)|
d̂
(
(x, y), (x′, y′)

)γ < +∞.

Following the arguments of Chapter 4 since we can control the closeness between
the transition densities correspond to SDEs with molli�ed and non-molli�ed coe�-
cients, it is then possible to control the di�erence between transition densities of the
corresponding di�usions. Namely, under (ÂD), the exist Cη ≥ 1, c ≤ 1, s.t. for all
0 ≤ i < j ≤ N, (x, y), (x′, y′) ∈ (R2d)2:

|(p− pε)(tj, (x, y), (x′, y′)| ≤ Cηε
γpc,K(tj, (x, y), (x′, y′)), (4.46)

and, similarly, it is established in the Chapter 4 that the same control holds for the
scheme (4.23) and its associated perturbation:

|(ph − pεh)(tj, (x, y), (x′, y′)| ≤ Cηε
γpc,K(tj, (x, y), (x′, y′)), (4.47)

where pc,K has been denoted in (4.15).
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With these notations and controls at hand we rewrite our initial error as:

E1(f, (x, y), T, h) = E[f(X
h,0,(x,y)
T , Y

h,0,(x,y)
T )]− E[f(X0,x,y

T , Y 0,x,y
T )]

= E[f(X
h,0,(x,y)
T , Y

h,0,(x,y)
T )]− E[fε(X

ε,h,0,(x,y)
T , Y

ε,h,0,(x,y)
T )]

+E[fε(X
ε,h,0,(x,y)
T , Y

ε,h,0,(x,y)
T )]− E[fε(X

ε,0,(x,y)
T , Y

ε,0,(x,y)
T )]

+E[fε(X
ε,0,(x,y)
T , Y

ε,0,(x,y)
T )]− E[f(X0,x,y

T , Y 0,x,y
T )]

=:
3∑

k=1

E1k,ε(f, (x, y), T, h), (4.48)

where the notation (X
ε,t,(x,y)
t , Y

ε,t,(x,y)
t )) stands for the solution of the SDE obtained

replacing the coe�cients in (4.9) with bε, σε. The solution exists due to the additional
smoothness we assumed w.r.t. (4.9). Let us �rst control E11,ε(f, (x, y), T, h) which we
again split into two parts:

E11,ε(f, (x, y), T, h) = E[fε(X
ε,0,(x,y)
T , Y

ε,0,(x,y)
T )]− E[fε(X

0,x,y
T , Y 0,x,y

T )]

+E[fε(X
0,x,y
T , Y 0,x,y

T )]− E[f(X0,x,y
T , Y 0,x,y

T )]

=:
(
E111,ε + E112,ε

)
(f, (x, y), T, h).

Now, from the Gaussian upper-bound for the density, deriving from Theorem 4.4.2
above, and similarly to inequality (4.44) (which does not exploit the boundedness of
the considered function), we get:

E112,ε ≤ C

∫
R2d

pc,K(T − t, (x, y), (x′, y′))|(fε − f)(x′, y′)|dx′dy′ ≤ Cεβ.

On the other hand, the stability result (4.46) yields:

E111,ε ≤ Cηε
γ

∫
R2d

pc,K(T − t, (x, y), (x′, y′))|fε(x′, y′)|dx′dy′

≤ Cη

∫
R2d

(
pc,K(T − t, (x, y), (x′, y′))|fε(x′, y′)− fε(x′ − x, y′ − y − x(T − t))|

+ pc,K(T − t, (x, y), (x′, y′))||fε(x′ − x, y′ − y − x(T − t))|dx′dy′

≤ Cηε
γ(1 + |RT−t

(
x
y

)
|β),

where Ru :=

(
Id 0d

(T − t)Id Id

)
, exploiting as well the Young inequality for the last

control. This �nally gives:
E11,ε −→

ε→0
0. (4.49)
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The sensitivity result (4.47) for the scheme would yield similarly:

E13,ε −→
ε→0

0. (4.50)

We now focus on the contribution E12,ε for which we can rely on a PDE type anal-
ysis technique. Such an approach had �rst been used in the context of non-degenerate
Hölder continuous Euler schemes by Mikulevi£ius and Platen [MP91] through Schauder
estimates. This in particularly required the �nal test function to be smooth (speci�-
cally f ∈ C2+γ for γ-Hölder continuous coe�cients b, σ). This approach was extended
in [KM17] using direct control bounds on the heat-kernel allowing that way to consider
only β-Hölder continuous test functions β ∈ (0, 1].

The point here is that, through the regularization we are able to use pointwise
bounds of the derivatives of the function

vε(t, x, y) := E[fε(X
ε,t,(x,y)
T , Y

ε,t,(x,y)
T )] =

∫
R2d

pε(T − t, (x, y), (x′, y′))fε(x
′, y′)dx′dy′

and to control as well pointwise and uniformly in ε small enough, under (Â), the
spatial derivatives of vε w.r.t. the non-degenerate component.

Observe that, since fε, bε, σε are smooth, it is readily seen, from the smoothness of
vε and the Markov property (see e.g. [TT90]), that vε satis�es the PDE

{
(∂tvε + Lεvε)(t, x, y) = 0,

vε(T, x, y) = fε(x, y), (x, y) ∈ R2d,

where Lε stands for the generator associated with SDE obtained replacing the coe�-
cients in (4.9) with bε, σε, i.e. for all ϕ ∈ C2

0(R2d,R), (x, y) ∈ R2d,

Lεϕ(x, y) = bε(x, y) · ∇xϕ(x, y) + x∇yϕ(x, y) +
1

2
Tr(aε(x, y)D2

xϕ(x, y)).

For the further analysis we have to apply the Ito formula directly to the scheme
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(4.23) viewed as an Ito process exploiting Hölder continuity of coe�cients.

E12,ε = E[fε(X
ε,h,0,(x,y)
T , Y

ε,h,0,(x,y)
T )]− E[fε(X

ε,0,(x,y)
T , Y

ε,0,(x,y)
T )]

=
N−1∑
i=0

E[vε(ti+1, X
ε,h,0,(x,y)
ti+1

, Y
ε,h,0,(x,y)
ti+1

)− vε(ti, Xε,h,0,(x,y)
ti , Y

ε,h,0,(x,y)
ti )] (4.51)

=
N−1∑
i=0

E
[ ∫ ti+1

ti

{
∂svε(s,X

ε,h,0,x,y
s , Y ε,h,0,x,y

s ) +∇xvε(s,X
ε,h,0,x,y
s , Y ε,h,0,x,y

s )

× bε(X
ε,h,0,x,y
ti , Y ε,h,0,x,y

ti ) +Xε,h,0,x,y
s ∇yvε(s,X

ε,h,0,x,y
s , Y ε,h,0,x,y

s )

+
1

2
Tr(D2

xvε(s,X
ε,h,0,x,y
s , Y ε,h,0,x,y

s )a(Xε,h,0,x,y
ti , Y ε,h,0,x,y

ti ))
}
ds
]

=
N−1∑
i=0

E
[ ∫ ti+1

ti

{
∂svε + Lεvε

}
(Xε,h,0,x,y

s , Y ε,h,0,x,y
s )ds

]
+ E

[ ∫ ti+1

ti

{
∇xvε(X

ε,h,0,x,y
s , Y ε,h,0,x,y

s ) · (bε(Xε,h,0,x,y
ti , Y ε,h,0,x,y

ti )

− bε(X
ε,h,0,x,y
s , Y ε,h,0,x,y

s ))

+
1

2
Tr(D2

xvε(X
ε,h,0,x,y
s , Y ε,h,0,x,y

s )(a(Xε,h,0,x,y
ti , Y ε,h,0,x,y

ti )

− a(Xε,h,0,x,y
s , Y ε,h,0,x,y

s )))
}
ds
]

=
N−1∑
i=0

E
[ ∫ ti+1

ti

{
∇xvε(s,X

ε,h,0,x,y
s , Y ε,h,0,x,y

s ) · (bε(Xε,h,0,x,y
ti , Y ε,h,0,x,y

ti )

− bε(X
ε,h,0,x,y
s , Y ε,h,0,x,y

s ))

+
1

2
Tr(D2

xvε(s,X
ε,h,0,x,y
s , Y ε,h,0,x,y

s )(a(Xε,h,0,x,y
ti , Y ε,h,0,x,y

ti )

− a(Xε,h,0,x,y
s , Y ε,h,0,x,y

s )))
}
ds
]
, (4.52)

exploiting the PDE satis�ed by vε for the last equality.
To complete the analysis we �rst need to control ∇xvε(s, x, y) and D2

xvε(s, x, y)
uniformly in ε ∈ (0, 1]. Moreover, we will also exploit the Hölder properties of bε and
aε in order to control di�erences bε(X

ε,h,0,x,y
ti , Y ε,h,0,x,y

ti ) − bε(X
ε,h,0,x,y
s , Y ε,h,0,x,y

s ) and
aε(X

ε,h,0,x,y
ti , Y ε,h,0,x,y

ti )− aε(Xε,h,0,x,y
s , Y ε,h,0,x,y

s ).
To achieve bounds for the heat kernel derivatives we refer the reader to Theorem

4.4.2 below.

Theorem 4.4.2. Under (ÂD), for any t ∈ [0, T ] and |α| ≤ 2 there exist C ≥ 1, c ∈
(0, 1] such that, for ε ∈ [0, ε0], for ε0 > 0 small enough,

|Dα
xpε(t, (x, y), (x′, y′))| ≤ C

t|α|/2
pc,K(t, (x, y), (x′, y′)).
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Let us postpone the proof to Appendix, Section 4.6.

Remark 4.4.3. The result of the Theorem 4.4.2 is of interest by itself. Up to the best
of our knowledge, these are the �rst pointwise bounds obtained on the derivatives
w.r.t. the non-degenerate variables under the sole Hölder continuity assumption for
the coe�cients in (4.9). They extend to Kolmogorov di�usions the well-known controls
derived by Il'in et al. [IKO62]. Investigating the quantitative behaviour of the deriva-
tives w.r.t. the degenerate under minimal smoothness assumptions remains a very
interesting and open problem. Provided the coe�cients are Lipschitz, the Konakov
and Mammen trick should apply to get the expected control, namely the normalized
Kolmogorov density multiplied by an additional singularity of the characteristic order
in time, here (T − t)−3/2. Finding out the minimal assumption yielding such a bound
is rather challenging.

Coming back to the proof of Theorem 4.4.1, we derive from the control in Theorem
4.4.2 that for

Dα
xvε(t, x, y) =

∫
Rd
Dα
xpε(T − t, (x, y), (x′, y′))[fε(x

′, y′)− fε(RT−t

(
x
y

)
)]dx′dy′,

the following inequality holds:

|Dα
xvε(t, x, y)| ≤ C

∫
R2d

[fε]Cβ,β/2pc,K(T − t, (x, y), (x′, y′))

(T − t)α/2

×
{
|x′ − x|β + |y′ − (y + (T − t)x|β/2

}
dx′dy′,

(4.53)

where [f ]Cβ,β/2 := sup(x,y) 6=(x′,y′)
|f(x,y)−f(x′,y′)|
dβ((x,y),(x′,y′))

, dβ((x, y), (x′, y′)) := |x−x′|β+|y−y′|β/2.
To have the same scale as in the exponent in (4.15) let us rewrite (4.53) taking

into account that:

|x′ − x|β + |y′ − y − x(T − t)|β/2 = (T − t)β/2
(
|x′ − x|

(T − t)1/2

)β
+(T − t)β/2

(
|y′ − y − (x+x′)(T−t)

2
− (x−x′)(T−t)

2
|

(T − t)

)β/2

≤ C(T − t)β/2
( |x′ − x|

(T − t)1/2

)β
+

(
|y′ − y − (x+x′)(T−t)

2
|

(T − t)3/2

)β/2
 (4.54)

From (4.15) and (4.54) one can get, up to a modi�cation of the constant c to c̄:

|Dα
xvε(t, x, y)| ≤

∫
R2d

C[fε]Cβ,β/2pc̄,K(T − t, (x, y), (x′, y′))

(T − t)α/2−β/2
dx′dy′

≤ C[fε]Cβ,β/2

(T − t)|α|/2−β/2
. (4.55)
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Plugging (4.55) into (4.52) we get:

|E12,ε| ≤ C[fε]Cβ,β/2

∫ T

0

ds

{
E
[
|bε(Xε,h,0,x,y

s , Y ε,h,0,x,y
s )− bε(Xε,h,0,x,y

φ(s) , Y ε,h,0,x,y
φ(s) )|

] 1

(T − s)1/2−β/2

+ E
[
|aε(Xε,h,0,x,y

s , Y ε,h,0,x,y
s )− aε(Xε,h,0,x,y

φ(s) , Y ε,h,0,x,y
φ(s) )|

] 1

(T − s)1−β/2

}
, (4.56)

where φ(s) = ti for s ∈ [ti, ti+1), i = 0, . . . , N − 1.
Let us denote Ψε(x, y) for any of two functions bε(x, y) or aε(x, y) cause they are

both satis�es the same Hölder continuity assumptions. Following introduced notations,
we are tempted to bound

E
[
|Ψε(X

ε,h,0,x,y
s , Y ε,h,0,x,y

s 0)−Ψε(X
ε,h,0,x,y
φ(s) , Y ε,h,0,x,y

φ(s) )|
]

≤ [Ψε]Cγ,γ/2
{
E
[
|(Xε,h,0,x,y

s −Xε,h,0,x,y
φ(s) |γ

]
+ E

[
|Y ε,h,0,x,y
s − Y ε,h,0,x,y

φ(s) |γ/2
]}

From the de�nition (4.23) of the approximation scheme:

E
[
|(Xε,h,0,x,y

s −Xε,h,0,x,y
φ(s) |γ

]
= E

[∣∣∣bε(Xε,h,0,x,y
φ(s) , Y ε,h,0,x,y

φ(s) )(s− φ(s)) + σ(Xε,h,0,x,y
φ(s) , Y ε,h,0,x,y

φ(s) )(Ws −Wφ(s))
∣∣∣γ]

≤ C(|bε|∞ ∨ |σε|∞)hγ/2.(4.57)

To control the error in the second component we cannot compensate the transport
so we have to keep the dependency on the starting point in the �nal bound:

E
[
|(Y ε,h,0,x,y

s − Y ε,h,0,x,y
φ(s) |γ/2

]
= E

[∣∣∣∣∫ s

φ(s)

Xε,h,0,x,y
u du

∣∣∣∣γ/2
]

≤ sup
s∈[0,T ]

E
[∣∣Xε,h,0,x,y

s

∣∣γ/2]hγ/2 ≤ Chγ/2|x|γ/2. (4.58)

Applying controls in (4.57) and (4.58) for (4.56) we have a �nal control for the
E12,ε:

|E12,ε| ≤ C(a, b, fε, T )hγ/2(1 + |x|γ/2). (4.59)

which proves the statement of the Theorem 4.4.2.

Remark 4.4.4 (About the convergence order). We want to stress that in the mild
smoothness setting we consider, the convergence rate appearing in (4.59) is similar to
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the one appearing when considering the strong error. Indeed, since we cannot hope to
go beyond the expansion of order 2 for the PDE satis�ed by vε (at least with controls
uniform in ε) we are led to compare the increments of the Euler scheme (4.23) at the
power corresponding to the Hölder exponent.

Remark 4.4.5. The rate hγ/2(1 + |x|γ/2) holds even for tests functions f ∈ Cβ1,β2(R2d),
(β1, β2) ∈ (0, 1]2. The idea is to suitably handle the last steps according to the β1, β2.
We refer to [KM17] for the non-degenerate case.

Our second result, already mentioned in the Introduction (Chapter 1), provides
bounds on the di�erence between the densities Ed.

4.5 Global error

Theorem 4.5.1. Fix a �nal time horizon T > 0 and a time step h = T/N,N ∈ N∗
for the Euler scheme. Under assumptions (ÂD), for γ ∈ (1/2, 1] and β ∈ (0, γ − 1

2
),

for all t in the time grid Λh := {(ti)i∈[[1,N ]]} and (x, y), (x′, y′) ∈ R2d there exist C :=
(T, b, a, β), c > 0 such that :

|p(t, (x, y), (x′, y′))− ph(t, (x, y), (x′, y′)|
≤ Chβ(1 + (|x| ∧ |x′|))1+γ) sup

s∈[t−h,t]
pc,K(s, (x, y), (x′, y′)), (4.60)

where as in (4.15) pc,K(s, (x, y), (x′, y′)) stands for the Kolmogorov-type gaussian den-
sity at time s.

The proof is given below in Section 4.5.1. The above result is in clear contrast
with the one of Theorem 4.4.1 for the weak error, i.e. when additionally consider an
integration of a Hölder function w.r.t. the �nal (or forward variable). The point is that
such an integration allows to exploit directly the spatial bounds of Theorem 4.4.2 on the
underlying heat-kernel (with possibly molli�ed coe�cients). When handling directly
the di�erence of the densities we cannot avoid to control sensitivities of the kernels
w.r.t. to the degenerate variable. Such sensitivities lead to higher time singularities
and make the unbounded transport term appear. The higher time-singularities yield
the stated restriction on the Hölder index γ. The unbounded transport gives the term
|x|∧|x′| in the above bound. We �nally can reach a global error of order hβ, β < γ−1/2
which is close to the expected one in hγ/2 when γ goes to 1.

To improve the above result, we �ll that some new advanced approaches to error
analysis should be considered. This means that either the scheme would have to be
modi�ed or the error decomposed very di�erently than in the current huge literature
(from the seminal papers of [KM00] and [KM02] the same lines are considered for the
error decomposition, see e.g. [KM10], [KM17], [Fri18]). Eventually, a speci�c di�culty
of the current model consists in dealing the unbounded transport term.
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4.5.1 Proof of Theorem 4.5.1

The basic idea to prove Theorem 4.5.1 consists in applying parametrix expansion to
both densities p(t, (x, y), (x′, y′)), ph(t, (x, y), (x′, y′). The convergence of the parametrix
series expansion for the solution of (4.9) and the scheme (4.23) follows from Section
4.2 above.

In order to derive bounds for the di�erence of densities in (4.60), let us introduce
for 0 ≤ j < j′ ≤ N ∀(x, y), (x′, y′) ∈ R2d × R2d,∗,

pd(tj, (x, y), (x′, y′)) :=
∑
r∈N

p̃⊗h H(r)(tj, (x, y), (x′, y′)). (4.61)

From (4.20) and the semigroup property (4.16) it follows that p̃⊗hH(tj, (x, y), (x′, y′)) ≤
C(b, T, γ)t

γ/2
j B(1, γ

2
)pc,K(tj, (x, y), (x′, y′)) which is by induction yields that for all

r ≥ 1, ∀(x, y), (x′, y′) ∈ R2d × R2d,∗,

|p̃⊗h H(r)(tj, (x, y), (x′, y′))| ≤ Crt
rγ/2
j

r∏
i=1

B

(
1 +

(i− 1)γ

2
,
γ

2

)
pc,K(tj, (x, y), (x′, y′))

with C := C(λ, γ)(|b|∞T
1−γ

2 + 1).
From the last inequality we readily get that the series in (4.61) converges absolutely

and uniformly on R2d × R2d,∗ and that ∀(x, y), (x′, y′) ∈ R2d × R2d,∗,

pd(tj, (x, y), (x′, y′)) ≤ Eγ/2,1(C(|b|∞T 1/2 + T γ/2)pc,K(tj, (x, y), (x′, y′))). (4.62)

As the result we decompose the total global error into two terms:

|(p− ph)(ti, (x, y), (x′, y′))| ≤ |(p− pd)(ti, (x, y), (x′, y′))|+ |(pd− ph)(ti, (x, y), (x′, y′))|.

Error bound on pd − ph (same discrete convolution)

Remark that for r ≥ 1 as it can be decomposed with the classical approach from
[KM02] (see also [Fri18] and [KM17] for connections with the current Hölder settings).

p̃⊗h H(r) − p̃⊗h H(r)
h

=
((
p̃⊗N H(r−1)

)
⊗h (H −Hh)

)
+
((
p̃⊗N H(r−1) − p̃⊗h H(r−1)

h

)
⊗h Hh

)
.

For the sum from r = 1 to r =∞ it yields:

pd − ph = pd ⊗h (H −Hh) + (pd − ph)⊗h Hh.

By induction, for 0 ≤ j < j′ ≤ N one gets for all (x, y), (x′, y′) ∈ R2d × R2d,∗,
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(pd − ph)(tj, (x, y), (x′, y′)) =
∑
r≥0

{pd ⊗ (H −Hh)} ⊗h H(r)(tj, (x, y), (x′, y′)). (4.63)

As the result, it is su�cient for us to establish the right control for each term in
the sum (4.63).

Lemma 4.5.2. Under assumptions (ÂD), for all 0 ≤ j < j′ ≤ N, for all (x, y), (x′, y′) ∈
R2d × R2d,∗, one has

|{pd ⊗ (H −Hh)} ⊗h H(r)(tj, (x, y), (x′, y′))| ≤ Chγ/2pc,K(ti, (x, y) (4.64)

for some constant c := c(λ, γ) ≥ 1 and a non decreasing positive fuction T → C :=
C(T, b, σ).

Proof. First, let us consider the �rst step separately. For j = 1 directly from the kernel
function de�nition it follows that:

(H −Hh)(tj, (w, z), (ŵ, ẑ))

= 〈b(ŵ, ẑ)Dxp̃(tj, (w, z), (ŵ, ẑ))〉+
1

2
Tr
{

(a(w, z)− a(ŵ, ẑ − ŵtj))D2
wp̃(tj, (w, z)(ŵ, ẑ))

}
−h−1(ph − p̃h)(tj, (w, z), (ŵ, ẑ)).

From (4.20) it follows that:

|〈b(ŵ, ẑ)Dxp̃(tj, (w, z), (ŵ, ẑ))〉+
1

2
Tr
{

(a(w, z)− a(ŵ, ẑ − ŵtj))D2
wp̃(tj, (w, z)(ŵ, ẑ))

}
|

≤ C(|b|∞t2−γ/2j + 1)
1

t
1−γ/2
j

pc,K(tj, (w, z), (ŵ, ẑ)).

In [LM10] authors achieved the following control to prove Lemma 4.1( see [LM10],
Appendix, A1, proof of Lemma 4.1, the case (b) which absolutely covers our model
and assumptions):

h−1(ph − p̃h)(tj, (w, z), (ŵ, ẑ)) ≤ C(T, b, σ)

t
1−γ/2
j

pc,K(tj, (w, z), (ŵ, ẑ)) for tj = h.

Combining the last two estimates together one cat get for tj = h, ∀(w, z), (ŵ, ẑ) ∈
R2d × R2d,∗ :

|(H −Hh)(tj, (w, z), (ŵ, ẑ))| ≤ (|H|+ |Hh|)(tj, (w, z), (ŵ, ẑ))

≤ C

t
1−γ/2
j

pc,K(tj, (w, z), (ŵ, ẑ)), (4.65)
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where T → C := C(T, b, σ) is a non-decreasing positive function.
Now we do a decomposition: ∀i ∈ [2, N ]

pd ⊗ (H −Hh)(ti, (x, y), (w, z))

=
i−2∑
k=0

h

∫
R2d

dudvpd(tk, (x, y), (u, v))(H −Hh)(ti − tk, (u, v), (w, z))

+h

∫
R2d

pd(ti−1, (x, y), (u, v))(H −Hh)(h, (u, v), (z, w))dudv.

(4.66)

From (4.62), (4.65) and the semigroup property (4.16), we derive:

h

∣∣∣∣∫
R2d

pd(ti−1, (x, y), (u, v))(H −Hh)(h, (u, v), (w, z))dudv

∣∣∣∣
≤ Ch

h1−γ/2pc,K(ti, (x, y), (w, z)), (4.67)

where T → C := C(T, b, σ) is a positive non-decreasing function.
Let us again mention the paper [LM10]. We would like to emphasize that under

previous assumptions for coe�cients in our model, according to the paper, there exist
a constant c := c(λ, γ) > 1 such that for all 1 < j < j′ ≤ N :

|H(tj, (x, y), (x′y′))−Hh(tj, (x, y), (x′y′))| ≤ C

t
1−γ/2
j

pc,K(tj, (x, y), (x′, y′)) (4.68)

where T → C = C(T, b, σ) is a positive non-decreasing function. The case j = 1 has
been already proved in (4.65).

From (4.62), (4.68) and the semigroup property (4.16) one gets:∣∣∣∣∣
i−2∑
k=0

h

∫
R2d

dudvpd(tk, (x, y), (u, v))(H −Hh)(ti − tk, (u, v), (w, z))

∣∣∣∣∣
≤ Chγ/2pc,K(ti, (x, y), (w, z)).

Due to all the previous estimates, we derive

∀i ∈ [2, N ], |pd ⊗h (H −Hh)(ti, (x, y), (w, z))| ≤ Chγ/2pc,K(ti, (x, y), (w, z)),

where T → C := C(T, b, σ) is a non-decreasing positive function and (4.64) follows by
induction.

From Lemma 4.5.2, we obtain ∀(x, y), (x′, y′) ∈ R2d × R2d,∗ :

|(pd − ph)(ti, (x, y), (x′, y′))| ≤ C(T, b, σ)hγ/2pc,K(ti, (x, y), (x′, y′)).

(4.69)
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Remark 4.5.1. We would like to emphasize that up to now the bound we have in
(4.69) is much better which has been stated in the Theorem 4.5.1. This term can be
controlled better since we do not feel the explosion which comes for p − pd when we
basically have to investigate the di�erence between the time integral and the Riemann
sums.

Error bound on p− pd

It still remains to control the di�erence p− pd. For r ≥ 1, we write the decomposition
according to the same iteration procedure as in [KM02],

p̃⊗H(r) − p̃⊗h H(r) =

[(
p̃⊗H(r−1)

)
⊗H −

(
p̃⊗H(r−1)

)
⊗h H

]
+

[(
p̃⊗H(r−1)

)
−
(
p̃⊗H(r−1)

)]
⊗h H.

Summing up from r = 1 to ∞ we get

p− pd = p⊗H − p⊗h H + (p− pd)⊗h H.

As in the paper [KM17]:

(p− pd)(tj, (x, y), (x′, y′)) = (p⊗H − p⊗h H)(tj, (x, y), (x′, y′))

+(p− pd)⊗h H(tj, (x, y), (x′, y′))

=
∑
r≥0

(p⊗H − p⊗h H)⊗h H(r)(tj, (x, y), (x′, y′)), (4.70)

The key point is thus to control |p⊗H − p⊗h H|.
For that purpose let us write:

(p⊗H − p⊗h H)(tj, (x, y), (x′, y′))

=

j−1∑
k=0

∫ tk+1

tk

du

∫
R2d

{p(u, (x, y), (w, z))H(tj − u, (w, z), (x′, y′))

− p(tk, (x, y), (w, z))H(tj − tk, (w, z), (x′, y′))}dwdz

=

j−1∑
k=0

{∫ tk+1

tk

du

∫
R2d

{[p(u, (x, y), (w, z))− p(tk, (x, y), (w, z))]

× H(tj − u, (w, z), (x′, y′))}dwdz
}

+

j−1∑
k=0

{∫ tk+1

tk

du

∫
R2d

{p(tk, (x, y), (w, z))
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× [H(tj − u, (w, z), (x′, y′))−H(tj − tk, (w, z), (x′, y′))]}dwdz
}

=: (Dd,1 +Dd,2)(tj, (x, y), (x′, y′)). (4.71)

• Bounds for the term Dd,1.

- For k = 0, one readily gets:∣∣∣∣∣
∫ h

0

du

∫
R2d

{[p(u, (x, y), (w, z))− p(0, (x, y), (w, z))]H(tj − u, (w, z), (x′, y′))}dwdz

∣∣∣∣∣
≤ Cpc,K(tj, (x, y), (x′, y′))

∫ h

0

du

(tj − u)1−γ/2 ≤
Ch

(tj)1−γ/2pc,K(tj, (x, y), (x′, y′))

≤ Chγ/2pc,K(tj, (x, y), (x′, y′)). (4.72)

- For k ∈ [1, j − 1] we are interested to control the sum:

j−1∑
k=1

∫ tk+1

tk

du

∫
R2d

{p(u, (x, y), (w, z))− p(tk, (x, y), (w, z))}H(tj − u, (w, z), (x′, y′))dwdz.

(4.73)

To proceed with the case for k ≥ 1 one needs the following result:

Lemma 4.5.3. Under (ÂD) there exist constants C(λ, γ), c := c(λ, γ) ≥ 1 such that
for all t ∈ [0, T ] for all r ≥ 0, for all (x, y), (x′, y′) ∈ R2d × R2d,∗ and 0 < s ≤ t ≤ T
one has

|p̃⊗H(r)(tk + (u− tk), (x, y), (x′, y′))− p̃⊗H(r)(tk, (x, y), (x′, y′))|

≤ Eγ/2,1(1 + |x|1+γ/2)Cr+1t
rγ/2
k

{
(u− tk)γ/2

tk
+

(u− tk)
t
3/2
k

}

×
r−1∏
i=1

B(1 +
(i− 1)γ

2
,
γ

2
)

∫ 1

0

dλpc,K(tk + λ(u− tk), (x, y), (x′, y′)) (4.74)

from which it follows that

|p(tk + (u− tk), (x, y), (x′, y′))− p(tk, (x, y), (x′, y′))|

≤ C(b, T )Eγ/2,1(1 + |x|1+γ/2)

{
(u− tk)γ/2

tk
+

(u− tk)
t
3/2
k

}

×
∫ 1

0

dλpc,K(tk + λ(u− tk), (x, y), (x′, y′)). (4.75)
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Proof. Let us start with the base for the induction. To control the di�erence between
frozen densities at the step r = 0 one can write, applying the mean-value theorem and
the Kolmogorov equation, takeing s = u− tk for a moment:

p̃(tk + s, (x, y), (x′, y′))− p̃(tk, (x, y), (x′, y′))

= s

∫ 1

0

∂τ p̃(tk + λs, (x, y), (x′, y′))|τ=tk+λsdλ

= s

∫ 1

0

1

2
Tr(a(x′, y′ − x′(tk + λs))D2

xp̃(tk + λs, (x, y), (x′, y′)))

+ 〈x,∇yp̃(tk + λs, (x, y), (x′, y′))〉

≤ Cs

∫ 1

0

[
1

(tk + λs)
+

|x|
(tk + λs)3/2

]
p̃(tk + λs, (x, y), (x′, y′))

≤ Cs

(
1

tk
+
|x|
t
3/2
k

)∫ 1

0

dλp̃(tk + λs, (x, y), (x′, y′)). (4.76)

So (4.74) is valid for r = 0. Now proceeding by induction we assume that (4.74) is
valid for r ≥ 0. By a change of variables one has:

p̃⊗H(r+1)(tk + s, (x, y), (x′, y′))− p̃⊗H(r+1)(tk, (x, y), (x′, y′))

=

∫ tk+s

0

dτ

∫
R2d

p̃⊗H(r)(τ, (x, y), (w, z))H(t+ s− τ, (w, z), (x′, y′))dwdz

−
∫ tk

0

dτ

∫
R2d

p̃⊗H(r)(τ, (x, y), (w, z))H(tk − τ, (w, z), (x′, y′))dwdz

=

∫ tk+s

tk

dτ

∫
R2d

p̃⊗H(r)(tk + s− τ, (x, y), (w, z))H(τ, (w, z), (x′, y′))dwdz

+

∫ tk

0

dτ

∫
R2d

{p̃⊗H(r)(tk + s− τ, (x, y), (w, z))

−p̃⊗H(r)(tk − τ, (x, y), (w, z))}H(τ, (w, z), (x′, y′))dwdz

= I + J.

From (4.20) and Lemma 4.2.1 one can get

|I| ≤ Cr+2

t
1−γ/2
k

(∫ tk+s

tk

(tk + s− τ)rγ/2dτ

) r∏
i=1

B

(
1 +

(i− 1)γ

2
,
γ

2

)
pc,K(tk, (x, y), (x′, y′))

≤ s

tk
Cr+2t

(r+1)γ/2
2

k

r∏
i=1

B

(
1 +

(i− 1)γ

2
,
η

2

)
)pc,K(tk, (x, y), (x′, y′)),

where we used that s = u− tk ∈ [0, h] for the last inequality.
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For the second term to full �ll the induction assumption in time let us decompose
J = J1 + J2, where:

J1 =

∫ tk/2

0

dτ

∫
R2d

{p̃⊗H(r)(tk + s− τ, (x, y), (w, z))

−p̃⊗H(r)(tk − τ, (x, y), (w, z))}H(τ, (w, z), (x′, y′))dwdz

J2 =

∫ tk

tk/2

dτ

∫
R2d

{p̃⊗H(r)(tk + s− τ, (x, y), (w, z))

−p̃⊗H(r)(tk − τ, (x, y), (w, z))}H(τ, (w, z), (x′, y′))dwdz.

First, assume that s = u − tk ∈ [0, tk/2]. That means s ∈ [0, tk − u] for all
u ∈ [0, tk/2] so that we can apply the induction hypothesis and get:

|J1| ≤ Cr+2s(1 + |x|1+γ/2)

[
1

tk
+

1

t
3/2
k

](∫ tk/2

0

(tk − τ)rγ/2τ−(1−γ/2)dτ

)

×

(
r−1∏
i=1

B

(
1 +

(i− 1)γ

2
,
γ

2

))∫ 1

0

dλpc,K(tk + λs, (x, y), (x′, y′))

≤ Cr+2s(1 + |x|1+γ/2)

[
1

tk
+

1

t
3/2
k

]
t
(r+1)γ/2
k

r∏
i=1

B(1 +
(i− 1)γ

2
,
γ

2
)

×
∫ 1

0

dλpc,K(tk + λs, (x, y), (x′, y′)).

Now, if s ∈ (tk/2, tk] one writes J1 = J1
1 + J2

1 with:

J1
1 =

∫ tk/2

0

dτ

∫
R2d

{
p̃⊗H(r)(tk − τ +

tk
2

+ (s− tk
2

), (x, y), (w, z))

− p̃⊗H(r)(t− τ +
tk
2
, (x, y), (w, z))

}
H(τ, (w, z), (x′, y′))dwdz,

J2
1 =

∫ tk/2

0

dτ

∫
R2d

{
p̃⊗H(r)(tk − τ +

tk
2
, (x, y), (w, z))

− p̃⊗H(r)(tk − τ, (x, y), (w, z))

}
H(τ, (w, z), (x′, y′))dwdz.

From the induction hypothesis and (4.20) using that tk/2 ≤ tk − τ for τ ∈ [0, tk/2]
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one has:

|J1
1 | ≤ Cr+2(1 + |x|1+γ/2)

∫ tk/2

0

(s− tk
2

)

{
1

tk
2

+ (tk − τ)
+

1

( tk
2

+ (tk − τ))3/2

}
×(tk − τ +

tk
2

)rγ/2τ−(1−γ/2)dτ

(
r∏
i=1

B(1 +
(i− 1)γ

2
,
γ

2
)

)

×
∫ 1

0

dλpc,K(tk + λs, (x, y), (x′, y′))

≤ Cr+2(1 + |x|1+γ/2)s

[
1

tk
+

1

t
3/2
k

]
t
(r+1)γ/2
k

r∏
i=1

B(1 +
(i− 1)γ

2
,
γ

2
)

×
∫ 1

0

dλpc,K(tk + λs, (x, y), (x′, y′)).

Using the similar argument with s ≥ tk/2:

|J2
1 | ≤ (1 + |x|1+γ/2)s

[
1

tk
+

1

t
3/2
k

]
Cr+2t

(r+1)γ/2
k

r∏
i=1

B

(
1 +

(i− 1)γ

2
,
γ

2

)
×
∫ 1

0

dλpc,K(tk + λs, (x, y), (x′, y′)),

which yields

|J1| ≤ (1 + |x|1+γ/2)s

[
1

tk
+

1

t
3/2
k

]
Cr+2t

(r+1)γ/2
k

r∏
i=1

B

(
1 +

(i− 1)γ

2
,
γ

2

)
×
∫ 1

0

dλpc,K(tk + λs, (x, y), (x′, y′))

The last term J2 is given by the sum of three terms:

J1
2 = −

∫ s

0

dτ

∫
R2d

p̃⊗H(r)(τ, (x, y), (w, z))H(tk − τ + s, (w, z), (x′, y′))dwdz,

J2
2 =

∫ tk/2+s

tk/2

du

∫
R2d

p̃⊗H(r)(τ, (x, y), (w, z))H(tk − τ + s, (w, z), (x′, y′))dwdz,

J3
2 =

∫ tk/2

0

dτ

∫
R2d

p̃⊗H(r)(τ, (x, y), (w, z))

× {H(tk − τ + s, (w, z), (x′, y′))−H(tk − τ, (w, z), (x′, y′))}dwdz.
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Using (4.20) and (4.2.1) one can get as usual:

|J1
2 | ≤ Cr+2

(∫ s

0

τ rγ/2
1

(tk + s− τ)1− γ
2

dτ

)
r−1∏
i=1

B

(
1 +

(i− 1)γ

2
,
γ

2

)
pc,K(tk, (x, y), (x′, y′))

≤ s

tk
Cr+2t

(r+1)γ
2

k

r∏
i=1

B

(
1 +

(i− 1)γ

2
,
γ

2

)
pc,K(tk, (x, y), (x′, y′))

and similarly

|J2
2 | ≤ Cr+2 1

t
1−γ/2
k

(∫ tk/2+s

tk/2

τ rγ/2dτ

)
r∏
i=1

B

(
1 +

(i− 1)γ

2
,
γ

2

)
pc,K(tk, (x, y), (x′, y′))

≤ s

tk
Cr+2t

(r+1)γ
2

k

r∏
i=1

B

(
1 +

(i− 1)γ

2
,
γ

2

)
pc,K(tk, (x, y), (x′, y′)).

To control |J3
2 | we need to derive bounds for the kernel time sensitivity

H(t− τ + s, (w, z), (x′, y′))−H(t− τ, (w, z), (x′, y′)).

Lemma 4.5.4.

|H(tk − τ + s, (w, z), (x′, y′))−H(tk − τ, (w, z), (x′, y′))|

≤ C

{
s

(t− τ)2−γ/2 +

(
sγ/2|x′|γ/2

(tk − τ)
+

s|x′|γ/2

(tk − τ)2−γ/2 +
s|w|(1 + |x′|γ/2)

(tk − τ)5/2−γ/2

)}

×
∫ 1

0

dλpc,K(tk − τ + sλ, (w, z), (x′, y′)). (4.77)

Proof. According to the de�nition (4.18):

H(tk − τ + s, (w, z), (x′, y′))−H(tk − τ, (w, z), (x′, y′))
= b(w, z)Dwp̃(tk − τ + s, (w, z), (x′, y′))− b(w, z)Dwp̃(tk − τ, (w, z), (x′, y′))

+
1

2
Tr

((
a(w, z)− a(x′, y′ − (tk − τ + s)x′)

)
D2
wp̃(tk − τ + s, (w, z), (x′, y′))

)

− 1

2
Tr

((
a(w, z)− a(x′, y′ − (tk − τ)x′)

)
D2
wp̃(tk − τ, (w, z), (x′, y′))

)
.
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Let us estimate the most singular term. Others can be handled similarly.(
a(w, z) − a(x′, y′ − (tk − τ + s)x′)

)
D2
wp̃(tk − τ + s, (w, z), (x′, y′))

−
(
a(w, z) − a(x′, y′ − (tk − τ)x′)

)
D2
wp̃(tk − τ, (w, z), (x′, y′))

=

(
a(x′, y′ − (tk − τ)x′)− a(x′, y′ − (tk − τ + s)x′)

)
D2
wp̃(tk − τ + s, (w, z), (x′, y′))

+

(
a(w, z) − a(x′, y′ − (tk − τ)x′)

)(
D2
wp̃(tk − τ + s, (w, z), (x′, y′))

−D2
wp̃(tk − τ + s, (w, z), (x′, y′))

)
:= ∆H1 + ∆H2.

The term ∆H1 is easier to control using just Hölder property of a and the standard
estimation for the derivative of the frozen density D2

wp̃, see (4.17).

|∆H1| = |a(x′, y′ − (tk − τ)x′)− a(x′, y′ − (tk − τ + s)x′)|

×|D2
wp̃(tk − τ + s, (w, z), (x′, y′))| ≤ |s|γ/2|x′|γ/2Cpc,K(tk − τ + s, (w, z), (x′, y′)

tk − τ + s
.(4.78)

The control for |∆H2| is more involved. We have to derive the sensitivity of frozen
density derivatives with respect to the time-variable, actually, to bound |D2

wp̃(tk− τ +
s, (w, z), (x′, y′))−D2

wp̃(tk − τ + s, (w, z), (x′, y′))|, namely:

|D2
wp̃(tk − τ + s, (w, z), (x′, y′))−D2

wp̃(tk − τ + s, (w, z), (x′, y′))| =

≤ C|s||
∫ 1

0

dλ∂vD
2
wp̃(τ, (w, z), (x

′, y′)|v=tk−τ+λs|

≤ C|s|
∫ 1

0

{
dλ|a(x′, y′ − x′(tk − τ + λs))|D4

wp̃(tk − τ + λs, (w, z), (x′, y′))|

+2|DwDzp̃(tk − τ + λs, (w, z), (x′, y′))|

+|w||D2
wp̃(tk − τ + λs, (w, z), (x′, y′))|

}
(4.79)

using the Kolmogorov equation, applied to the frozen density for the last step.
Thus, due to the control in (4.17), we get the following bounds for |∆H2| :

|∆H2| ≤ C|s|
{

1

(tk − τ)2−γ/2 +
|w|

(tk − τ)5/2−γ/2

}
(1 + |x′|γ/2)

×
∫ 1

0

dλpc,K(tk − τ + λs, (w, z), (x′, y′)). (4.80)

Together (4.78) and (4.80) provide the statement of the Lemma 4.5.4.
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Thus, from Lemma 4.5.4 it yields the �nal control:

|J3
2 | ≤

∫ tk/2

0

dτ

∫
R2d

Cr+1τ rγ/2
r−1∏
i=1

B

(
1 +

(i− 1)γ

2
,
γ

2

)
pc,K(τ, (x, y), (w, z))

× (1 + |x′|1+γ/2)

{
s

(tk − τ)2−γ/2 +
sγ/2

(tk − τ)
+

s

(tk − τ)5/2−γ/2

}

×
∫ 1

0

dλpc,K(tk − τ + sλ, (w, z), (x′, y′))dwdz. (4.81)

The term s
(tk−τ)2−γ/2 in the convolution directly leads to prove the induction hypothesis

: ∫ tk/2

0

dτ

∫
R2d

Cr+1τ rγ/2
r−1∏
i=1

B

(
1 +

(i− 1)γ

2
,
γ

2

)
pc,K(τ, (x, y), (w, z))

×

{
s

(tk − τ)2−γ/2

}∫ 1

0

dλpc,K(tk − τ + sλ, (w, z), (x′, y′))dwdz

≤ s

tk
Cr+2t

(r+1)γ
2

k

r∏
i=1

B

(
1 +

(i− 1)γ

2
,
γ

2

)∫ 1

0

dλpc,K(tk + sλ, (x, y), (x′, y′)),(4.82)

thus, we have to concentrate on the other two terms sγ/2

(tk−τ)
+ s

(tk−τ)5/2−γ/2 in (4.81)
and �nd out which term dominates on the current interval.

Since on the interval we are considering tk − τ > tk/2 > s it is true that: sγ/2

(tk−τ)
>

s
(tk−τ)2−γ/2 .

The �rst term again lead us to the standard computations as in (4.82) and the
second term can be bounded with sγ/2

(tk−τ)
.

Finally,∫ tk/2

0

dτ

∫
R2d

Cr+1(1 + |x′|1+γ/2)τ rγ/2
r−1∏
i=1

B

(
1 +

(i− 1)γ

2
,
γ

2

)
pc,K(τ, (x, y), (w, z))

×

(
sγ/2

(tk − τ)
+

s

(tk − τ)2−γ/2 +
s

(tk − τ)5/2−γ/2

)∫ 1

0

dλpc,K(tk − τ + sλ, (w, z), (x′, y′))dwdz

≤
∫ tk/2

0

dτ

∫
R2d

Cr+1τ rγ/2
r−1∏
i=1

B

(
1 +

(i− 1)γ

2
,
γ

2

)
pc,K(τ, (x, y), (w, z))

sγ/2(1 + |x′|1+γ/2)

(tk − τ)

×
∫ 1

0

dλpc,K(tk − τ + sλ, (w, z), (x′, y′)) (4.83)
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which together with (4.82) gives us the �nal control

|J3
2 | ≤

sγ/2(1 + |x′|1+γ/2)

tk
Cr+2t

(r+1)γ
2

k

r∏
i=1

B

(
1 +

(i− 1)γ

2
,
γ

2

)∫ 1

0

dλpc,K(tk + sλ, (x, y), (x′, y′)),

Taking together:

|J1| ≤

[
s

tk
+
s|x|
t
3/2
k

]
Cr+2t

(r+1)γ/2
k

r∏
i=1

B(1 +
(i− 1)γ

2
,
γ

2
)

∫ 1

0

dλpc,K(tk + λs, (x, y), (x′, y′)),

|J2| ≤
sγ/2(1 + |x′|γ/2)

tk
Cr+2t

(r+1)γ
2

k

r∏
i=1

B

(
1 +

(i− 1)γ

2
,
γ

2

)∫ 1

0

dλpc,K(tk + sλ, (x, y), (x′, y′)),

and equilibrating with |x| and |x′|:

s|x|
(tk)3/2

≤ s[|x− x′|+ |x′|]
t
3/2
k

=

[
|x− x′|
t
1/2
k

t
1/2
k + |x′|

]
s

t
3/2
k

=
s

t
2−γ/2
k

+
s|x′|
t
3/2
k

.

yields to the proof of the induction hypothesis (4.74) .

Directly from Lemma 4.75, (4.20), (4.2.1) and the inequality (tk)
−1 ≤ 2(tj)

−1 for
1 ≤ k ≤ j/2, one can get:

|(4.73)| ≤ C(b, T )Eγ/2,1

j−1∑
k=1

∫ tk+1

tk

du

∫
R2d

(1 + |x|1+γ/2)

{
(u− tk)γ/2

tk
+

(u− tk)
t
3/2
k

}

×
∫ 1

0

dλpc,K(tk + λ(u− tk), (x, y), (w, z))
pc,K(tj − u, (w, z), (x′, y′))

(tj − u)1−γ/2 dwdz

= C(b, T )Eγ/2,1

j−1∑
k=1

∫ tk+1

tk

du

∫
R2d

{
(u− tk)γ/2(1 + |x|1+γ/2)

tk

}

×
∫ 1

0

dλpc,K(tk + λ(u− tk), (x, y), (w, z))
pc,K(tj − u, (w, z), (x′, y′))

(tj − u)1−γ/2 dwdz

+C(b, T )Eγ/2,1

j−1∑
k=1

∫ tk+1

tk

du

∫
R2d

{
(u− tk)(1 + |x|1+γ/2)

t
3/2
k

}

×
∫ 1

0

dλpc,K(tk + λ(u− tk), (x, y), (w, z))
pc,K(tj − u, (w, z), (x′, y′))

(tj − u)1−γ/2 dwdz

=: ∆1D
d,1 + ∆2D

d,1
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For all η ∈ (0, γ) it holds:

∆1D
d,1 ≤ C(b, T )Eγ/2,1

j−1∑
k=1

∫ tk+1

tk

du

∫
R2d

{
(u− tk)

γ−η
2 (1 + |x|1+γ/2)

t
1−η/2
k

}

×
∫ 1

0

dλpc,K(tk + λ(u− tk), (x, y), (w, z))
pc,K(tj − u, (w, z), (x′, y′))

(tj − u)1−γ/2 dwdz

≤ C(b, T )Eγ/2,1(1 + |x|1+γ/2)h
γ−η

2 sup
ū∈[tj−h,tj ]

pc,K(ū, (x, y), (x′, y′)), (4.84)

∆1D
d,2 ≤ C(b, T )Eγ/2,1

j−1∑
k=1

∫ tk+1

tk

du

∫
R2d

{
(u− tk)γ−η(1 + |x|1+γ/2)

t
1/2+γ/2
k

}

×
∫ 1

0

dλpc,K(tk + λ(u− tk), (x, y), (w, z))
pc,K(tj − u, (w, z), (x′, y′))

(tj − u)1−γ/2 dwdz

≤ C(b, T )Eγ/2,1(1 + |x|1+γ/2)h
γ−η

2 sup
ū∈[tj−h,tj ]

pc,K(ū, (x, y), (x′, y′)). (4.85)

Thus,

|Dd,1| ≤ |(4.72)|+ |(4.84)|+ |(4.85)|
≤ C(b, T )Eγ/2,1h

γ−η
2 (1 + |x|1+γ/2) sup

ū∈[tj−h,tj ]
pc,K(ū, (x, y), (x′, y′)), (4.86)

for η ∈ (0, γ).

• Bounds for the term Dd,2.

j−1∑
k=0

∫ tk+1

tk

du

∫
R2d

p(tk, (x, y), (w, z))[H(tj − u, (w, z), (x′, y′))−H(tj − tk, (w, z), (x′, y′))]dwdz(4.87)

As usual, consider the case k = 0 separately:∫ h

0

du

∫
R2d

p(0, (x, y), (w, z))[H(tj − u, (w, z), (x′, y′))−H(tj, (w, z), (x
′, y′))]dwdz

=

∫ h

0

du

∫
R2d

H(tj − u, (x, y), (x′, y′))−H(tj, (x, y), (x′, y′))]dwdz

≤ C

∫ h

0

du

∫
R2d

|H(tj − u, (x, y), (x′, y′))|+ |H(tj, (x, y), (x′, y′))]|dwdz

≤ Ch

t
1−γ/2
j

pc,K(tj, (x, y), (x′, y′)) ≤ Chγ/2pc,K(tj, (x, y), (x′, y′)). (4.88)
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The result in Lemma 4.5.4 yields for k > 1:

∫ tk+1

tk

du

∫
R2d

p(tk, (x, y), (w, z))[H(tj − u, (w, z), (x′, y′))−H(tj − tk, (w, z), (x′, y′))]dwdz

≤
∫ tk+1

tk

du

∫
R2d

C(1 + |x′|1+γ/2)pc,K(tk, (x, y), (w, z))

{
(u− tk)

(t− u)2−γ/2 +
(u− tk)γ/2

(t− u)
+

(u− tk)
(t− u)5/2−γ/2

}

×
∫ 1

0

dλpc,K(t− u+ (u− tk)λ, (w, z), (x′, y′))dwdz (4.89)

To equilibrate with the most singular term (u−tk)|x′|(1+|x′|γ/2)

(t−u)5/2−γ/2 we have to balance
with the parameter β:

(u− tk)β

(t− u)5/2−γ/2−(1−β)

(u− tk)(1−β)

(t− u)(1−β)
≤ C

(u− tk)β

(t− u)5/2−γ/2−(1−β)
,

To have the integrable singularity one has to impose the following conditions on γ
and β: 5/2− γ/2− (1− β) < 1, which is only possible if γ/2 > 1/2 + β. This is a key
point - from now we have to assume that the Hölder index γ is at least bigger than 1/2.
And the parameter beta have to be chosen as following: 0 < β < γ − 1/2. Basically,
we can just rewrite γ := 1/2 + β for some β ∈ (0, 1/2]. Under mentioned assumptions
we can achieve the total rate of convergence hβ, β ∈ (0, 1/2] which, according to the
restrictions we imposed before, means in case γ is close to 1 (getting closer to Lipschitz
assumptions on coe�cients) one can get the "standard" convergence rate of hγ−1/2.

As the result, for any β ∈ (0, 1/2], summing (4.89), one has:

j−1∑
k=1

∫ tk+1

tk

du

∫
R2d

p(tk, (x, y), (w, z))

× [H(tj − u, (w, z), (x′, y′))−H(tj − tk, (w, z), (x′, y′))]dwdz

≤ C

j−1∑
k=1

∫ tk+1

tk

du

∫
R2d

pc,K(tk, (x, y), (w, z))
(u− tk)β(1 + |x′|1+γ/2)

(t− u)5/2−γ/2−(1−β)

×
∫ 1

0

dλpc,K(t− u+ (u− tk)λ, (w, z), (x′, y′))dwdz

≤ C(b, T )(1 + |x′|1+γ/2)hβ sup
ū∈[tj−h,tj ]

pc,K(ū, (x, y), (x′, y′)) (4.90)

|Dd,2| ≤ (4.88) + (4.90) ≤ C(b, T )(1 + |x′|1+γ/2)hβ sup
ū∈[tj−h,tj ]

pc,K(ū, (x, y), (x′, y′)).(4.91)
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From (4.86) and (4.91) we �nally get:

(p⊗H − p⊗h H)(tj, (x, y), (x′, y′)) = (Dd,1 +Dd,2)(tj, (x, y), (x′, y′))

≤ C(b, T )Eγ/2,1h
γ−η

2 |x|(1 + |x|γ/2) sup
ū∈[tj−h,tj ]

pc,K(ū, (x, y), (x′, y′))

+C(b, T )(1 + |x′|1+γ/2)hβ sup
ū∈[tj−h,tj ]

pc,K(ū, (x, y), (x′, y′)) (4.92)

Consequently, we also obtain

|(p⊗H − p⊗h H)⊗h H(tj, (x, y), (x′, y′))| (4.93)

≤ C2((1 + |x|1+γ/2) ∨ (1 + |x′|1+γ/2))t
γ/2
j hβB(1,

γ

2
) sup
ū∈[tj−h,tj ]

pc,K(ū, (x, y), (x′, y′)),

where T → C(T, b, σ) is non decreasing function.
and by induction, for r ≥ 0 :

|(p⊗H − p⊗h H)⊗h H(r)(tj, (x, y), (x′, y′))| (4.94)

≤ Cr+1((1 + |x|1+γ/2) ∨ (1 + |x′|1+γ/2))hβt
r γ

2
j

r∏
i=1

B
(

1 + (i− 1)
γ

2
,
γ

2

)
× sup

ū∈[tj−h,tj ]
pc,K(ū, (x, y), (x′, y′)). (4.95)

Plugging this in (4.70), due to the asymptotic of the Gamma function, one gets:

|(p− pd)(ti, (x, y), (x′, y′))|
≤ C(T, b, σ, γ, β)((1 + |x|1+γ/2) ∨ (1 + |x′|1+γ/2))hβ sup

ū∈[tj−h,tj ]
pc,K(ū, (x, y), (x′, y′)).

Combining with (4.69) we complete the proof of the theorem 4.5.1.
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4.6 Appendix

Proof of Theorem (4.4.2).

Proof. For the sake of simplicity, we consider the most singular case of ε = 1.
We start from the parametrix representation as usual. The basic strategy is to

consider derivatives for the main part at �rst and then - for the reminder term. Having
bounds for the main term from (4.17) we turn to the rest of the parametrix sum.

Dα
xp(t, (x, y), (x′, y′)) = Dα

x p̃(t, (x, y), (x′, y′)) +
∞∑
r=1

Dα
x

[
p̃⊗Hε,(r)(t, (x, y), (x′, y′))

]
,

for |α| = 1, 2.
Since the �rst order direvation gives an integrable singularity in the time, we don't

have any problems for |α| = 1.
The case |α| = 2 we have to discuss precisely. Let us denote

R(t, (x, y), (x′, y′)) :=
∞∑
r=1

p̃⊗H(r)(t, (x, y), (x′, y′)) = p̃⊗ Φ(t, (x, y), (x′, y′)),

Φ(t, (x, y), (x′, y′)) :=
∞∑
r=1

H(r)(t, (x, y), (x′, y′)).

Inequality (4.20) for H then yields for all r ∈ N∗, 0 < t ≤ T, (x, y), (x′, y′) ∈ (R2d)2:

|H(r)(t, (x, y), (x′, y′))| ≤ ((1∨T (1−γ)/2)c1)r
r−1∏
i=1

B(
γ

2
, 1+(i−1)

γ

2
)pc,K(t, (x, y), (x′, y′))t−1+ rγ

2 ,

(4.96)
with the convention

∏0
i=1 = 1. We thus derive that for all 0 < t ≤ T, (x, y) ∈ (Rd)2:

|Φ(t, (x, y), (x′, y′))| ≤ C

t1−γ/2
pc,K(t, (x, y), (x′, y′)). (4.97)

Then,

Dα
xR(t, (x, y), (x′, y′)) = lim

τ→0

∫ t/2

τ

du

∫
R2d

Dα
x p̃(u, (x, y), (w, z))Φ(t− u, (w, z), (x′, y′)dwdz

+

∫ t

t/2

du

∫
R2d

Dα
x p̃(u, (x, y), (w, z))Φ(t− u, (w, z), (x′, y′))dwdz

=: lim
τ→0

Dα
xR

τ (t, (x, y), (x′, y′)) +Dα
xR

f (t, (x, y), (x′, y′)). (4.98)
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The contribution Dα
xR

f (t, (x, y), (x′, y′)) does not exhibit time singularities in the
integral, since on the considered integration set u ≥ 1

2
t.

Thus, from inequalities (4.17) and (4.97):

|Dα
xR

f (t, (x, y), (x′, y′))| ≤ C

(t− s)(|α|−γ)/2
pc,K(t, (x, y), (x′, y′)). (4.99)

We should put more e�ort in the estimation of the rest part:Dα
xR

τ (t, (x, y), (x′, y′)).
For |α| = 2 we apply some kind of the cancellation properties of the Gaussian kernels
as in [KM17].

Introduce for an arbitrary κ1, κ2 ∈ R2d: Ĉt :=
∫ t

0
Rt−uBa(κ1, κ2)B∗R∗t−udu,

Rs =

(
Id 0d
sId Id

)
, B =

(
Id×d
0d×d

)
and

p̃κ
1,κ2

(u, (x, y), (w, z)) =

exp

(
− 1

2
〈Ĉε,−1

u Z,Z〉

)
(2π)ddet(Ĉε

u(κ
1, κ2))1/2

,

Z :=

(
w − x

z − y − xu

)
. (4.100)

Hence, for all multi-index α, |α| = 2:∫
R2d

Dα
x p̃

κ1,κ2

(u, (x, y), (w, z))dwdz = 0. (4.101)

Introducing the centering function cα(u, (x, y), (w, z)) := (Dα
x p̃

κ1,κ2
(u, (x, y), (w, z)))|(κ1,κ2)=(x,y),

we derive that:

Dα
xR

τ (t, (x, y), (w, z)) =

∫ t/2

τ

du

∫
R2d

(Dα
x p̃− cα)(u, (x, y), (w, z))Φ(t− u, (w, z), (x′, y′))dwdz

+

∫ t/2

τ

du

∫
R2d

cα(u, (x, y), (w, z))(Φ(t− u, (w, z), (x′, y′))− Φ(t− u, (x, y + xu), (x′, y′))dwdz

:= (Rτ,1 +Rτ,2)(t, (x, y), (x′, y′)),

(4.102)

exploiting the centering condition (4.101) to introduce the last term of the �rst
equality.

Since cα(u, (x, y), (w, z)) contains p̃κ
1,κ2

(u, (x, y), (w, z)))|(κ1,κ2)=(x,y) as a `true` den-
sity w.r.t. (w, z) we can cancel with Φ(t− u, (x, y + xu), (x′, y′)).
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We recall that

|cα(u, (x, y), (w, z))| ≤ C

u
pc,K(u, (x, y), (w, z)).

On the one hand, the terms Dα
x p̃(u, (x, y), (w, z)), cα(u, (x, y), (w, z)) di�er in their

frozen coe�cients (respectively at point w, z and x, y). Moreover there is no back-
�ows w.r.t. the second variable in cα(u, (x, y), (w, z)). Exploiting the Hölder property
in space of the molli�ed coe�cients, it is then seen that:

|(Dα
x p̃− cα)(u, (x, y), (w, z))| ≤ C

[
|w − x|γ

u
+
|z − y − xu|γ

u

]
pc,K(u, (x, y), (w, z))

≤ C

u1−γ/2pc,K(u, (x, y), (w, z)),

where the last inequality comes from the standard absorbation of the additional time
singularity with the Gaussian density pc,K(u, (x, y), (w, z)). Thus, from (4.97):

|Rτ,1(t, (x, y), (x′, y′))| ≤ C

t|α|−γ
pc,K(t, (x, y), (x′, y′)). (4.103)

The key idea to control the contribution of the rest part is to use the smoothing
e�ect comes from the kernel Φ.

Lemma 4.6.1. For Au := {(w, z) ∈ R2d : |w − x| + |z−y−xu|
u

≤ ct1/2} (recall as well
that u ∈ [0, t

2
]) one has:

|Φ(t− u, (x, y + xu), (x′, y′))− Φ(t− u, (w, z), (x′, y′))|

≤ C

(t− u)1−γ/4

(
|x− w|γ/2 + |z − y − ux|γ/2

)
pc,K(t− u, (w, z), (x′, y′)). (4.104)

Proof. From the de�nition of Φ and the smoothing e�ect of the kernel H in (4.96), it
su�ces to prove that on the set Āu := {z, w ∈ R2d : |x−w|+ |z−y−xu|

u′−u ≤ c(u′− u)1/2}:

|H(u′ − u, (x, y + xu), (x′′, y′′))−H(u′ − u, (w, z), (x′′, y′′))|

≤ C
|x− w|γ/2 + |z − y − xu′|γ/2

(u′ − u)1−γ/4 pc,K(u′ − u, (w, z), (x′′, y′′)), (4.105)

for u′ ∈ (u, t], u ∈ [0, t/2]. Observe that Āu ⊂ Au.
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Let us �rst prove (4.105). We concentrate on the second derivatives in H which
yield the most singular contributions:

Tr((a(x, y + xu)− a(x′′, y′′ − x′′(u′ − u)))D2
xp̃(u

′ − u, (x, y + xu), (x′′, y′′))

−Tr((a(w, z)− a(x′′, y′′ − x′′(u′ − u)))D2
xp̃(u

′ − u, (w, z), (x′′, y′′))
= Tr((a(x, y + xu)− a(w, z))D2

xp̃(u
′ − u, (x, y + xu), (x′′, y′′)))

−Tr((a(w, z)− a(x′′, y′′ − x′′(u′ − u)))

×(D2
xp̃(u

′ − u, (w, z), (x′′, y′′))−D2
xp̃(u

′ − u, (x, y + xu), (x′′, y′′))) =: I + II.

(4.106)

Then, from (4.17),

|I| ≤ C
|x− w|γ + |z − y − xu|γ

(u− u′)
pc,K(u′ − u, (w, z), (x′′, y′′))

≤ C|x− w|γ/2 + |z − y − xu|γ/2

(u− u′)1−γ/4 pc,K(u′ − u, (w, z), (x′′, y′′))) (4.107)

using that (w, z) ∈ Āu for the second inequality. Now, from the explicit expression of
the second order derivatives in (4.100), (AD2) and usual computations we also derive:

|II| ≤

(
|w − x′′|γ + |z − (y′′ − (u′ − u)x′′)|γ

)∫ 1

0

dλ

(u′ − u)2d
exp

(
−

{
|w − x′′ + λ(x− w)|2

c(u′ − u)

+
|y′′ − z − (u− u′)w + λ(y + xu− z)|2

c(u′ − u)3

})
×

(
|w − x|

(u′ − u)3/2
+
|y + xu− z|
(u′ − u)5/2

)
.

(4.108)

Due to Āu de�nition the term |w−x|
(u′−u)3/2 + |y+xu−z|

(u′−u)5/2 brings the singularity of order
1

u′−u . Moreover

−|w − x
′′ + λ(x− w)|2

c(u′ − u)
− |y

′′ − z − (u− u′)w + λ(y + xu− z)|2

c(u′ − u)3

≤ −|w − x
′′|2

c(u′ − u)
− |y

′′ − z − (u− u′)w|2

c(u′ − u)3
−

(
|x− w|2

c(u′ − u)
+
|y + xu− z|2

c(u′ − u)3

)
,(

|x− w|2

c(u′ − u)
+
|y + xu− z|2

c(u′ − u)3

)
≤ C for (w, z) ∈ Āu.
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Finally,

(4.108) ≤ C(|w − x′′|γ + |z − (y′′ − (u′ − u)x′′)|γ)
(u′ − u)(u′ − u)2d

exp

{
− |w − x

′′|2

c(u′ − u)
− |y

′′ − z − (u− u′)w|2

c(u′ − u)3

}

≤ C|x− w|γ/2 + |z − y − xu|γ/2

(u− u′)1−γ/4 pc,K(u′ − u, (w, z), (x′′, y′′))).

using the usual convexity argument for the last inequality. Thus, we have proved
(4.105) on Āu ⊂ Au.

Recalling that we want to establish (4.104) on Au, we consider the rest case: if
(w, z) 6∈ Āu, we get from (4.96):∫ t

u

du′
∫
Ācu

|H(u′ − u, (x, y − xu), (x′′, y′′))−H(u′ − u, (w, z), (x′′, y′′))|

×|(
∑
i≥2

H(i))(t− u′, (x′′, y′′), (x′, y′)|dx′′dy′′

≤
∫ t

u

du′
∫
Ācu

C

(u′ − u)1−γ/2 (pc,K(u′ − u, (x, y − xu), (x′′, y′′)) + pc,K(u′ − u, (w, z), (x′′, y′′)))

×|x− z|
γ/2 + |y − w − xu|γ/2

(u′ − u)γ/4
C

(t− u′)1−γ pc,K(t− u′, (x′′, y′′), (x′, y′))dx′′dy′′

≤ C

∫ t

u

∫
Ācu

du′

(u′ − u)1−γ/4
|x− w|γ/2 + |y + xu− z|γ/2

(t− u′)1−γ

×

{
pc,K(t− u, (w, z), (x′, y′)) + pc,K(t− u, (x, y + ux), (x′, y′))

}
dx′′dy′′

exploiting that (w, z) ∈ Ācu.
Let us consider precisely the compatibility of pc,K(t − u, (x, y + xu), (x′, y′)) and

pc,K(t− s, (x, y), (x′, y′). Observe that,

pc,K(t− u, (x, y + xu), (x′, y′)) ≤ C

(t− u)2d
exp

{
−

[
|x− x′|2

t− u
+
|y + ux+ x(t− u)− y′|2

(t− u)3

]}
≤ Cpc,K(t, (x, y), (x′, y′)),

(4.109)

recalling that t− u is of order t for the last inequality.
As the result, we have proved (4.105) and completed the proof of the Lemma.
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Then, we can derive from (4.17), (4.102) and (4.104):

|Rτ,2(t, (x, y), (x′, y′))| ≤ C2

∫ t/2

τ

du

∫
Au

|x− w|γ/2 + |y − z − xu|γ/2

u
pc,K(u, (x, y), (w, z))

which now compatible to absorb the singularity× 1

(t− u)1−γ/4pc,K(t− u, (w, z), (x′, y′))dwdz

+
C

tγ/4

∫ t/2

τ

du

∫
ACu

|x− w|γ/2 + |y − z − xu|γ/2

u
pc,K(u, (x, y), (w, z))

×{|Φ(t− u, (w, z), (x′, y′))|+ |Φ(t− u, (x, y − xu), (x′, y′))|}dwdz.
(4.110)

On the complementary set Acu it holds:

|
∫ t/2

τ

du

∫
Acu

cα(u, (x, y), (w, z))(Φ(t− u, (w, z), (x′, y′))− Φ(t− u, (x, y + xu), (x′, y′))dwdz|

≤ 1

tγ/4

∣∣∣∣∣
∫ t/2

τ

∫
Acu

|w − x|γ/2 + |z − (y + ux)|γ/2

u
pc,K(u, (x, y), (w, z))

×

[
|Φ(t− u, (w, z), (x′, y′))|+ |Φ(t− u, (x, y + xu), (x′, y′))|

]
dwdz

∣∣∣∣∣
≤ 1

tγ/4

∣∣∣∣∣
∫ t/2

τ

du

∫
Acu

1

u1−γ/4
1

(t− u)1−γ/2pc,K(u, (x, y), (w, z))

×

[
pc,K(t− u, (w, z), (x′, y′)) + pc,K(t− u, (x, y + xu), (x′, y′))

]
dwdz

∣∣∣∣∣
(4.111)

Plugging (4.109) that into (4.111) one can get the bound on Acu:

|
∫ t/2

τ

du

∫
Acu

cα(u, (x, y), (w, z))(Φ(t− u, (w, z), (x′, y′))− Φ(t− u, (x, y + xu), (x′, y′))dwdz|

≤ 1

tγ/4
pc,K(t, (x, y), (x′, y′))

∣∣∣∣∣
∫ t/2

τ

du

u1−γ/4
1

(t− u)1−γ/2

∣∣∣∣∣ ≤ C

t1−γ/2
pc,K(t, (x, y), (x′, y′)).

(4.112)

thus, taking Lemma 4.6.1 into account, we have:
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∣∣Rτ,2(t, (x, y), (x′, y′))
∣∣ ≤ C

∫ t/2

τ

du

∫
Au

|x− w|γ/2 + |y − z − xu|γ/2

u
pc,K(u, (x, y), (w, z))

× 1

(t− u)1−γ/4pc,K(t− u, (w, z), (x′, y′))dwdz +
C

t1−γ/2
pc,K(t, (x, y), (x′, y′))

≤ C

t1−γ/2
pc,K(t, (x, y), (x′, y′)),

which together with (4.103), (4.102), (4.99) and (4.98) gives the statement of the
Section.
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