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continuous covariates in cure survival models, thereby relaxing the traditional linear

assumption in the two regression parts. This class of models extends the classical

event history models when an unknown proportion of the population under study

will never have the event-of-interest. They are used on data from the German Socio-

Economic Panel (GSOEP) to examine how age at first birth relates to the timing and

quantum of fertility for given education levels of the respondents. It is shown that the

conditional probability of having further children decreases with the mother’s age at

first birth. While the effect of age at first birth in the third birth’s probability model

is fairly linear, this is not the case for the second child with an accelerating decline

detected for women that had their first kid beyond age 30.

Key words: Bayesian P-splines; Births, Cure survival models; Continuous covari-

ates; Double additive models, Fertility studies

1 Introduction

The increase in the age at first parenthood is a key indicator of the second demo-

graphic transition (Lesthaeghe, 1995, 2010; Sobotka, 2008; Sobotka et al., 2011).

Albeit that the onset and pace of this development varied greatly across countries

and in spite of the fact that some European countries have reported that postpone-

ment is even about to come to a halt, late first-time childbearing is a pertinent and

common feature of the fertility patterns in European countries (Frejka and Sardon,

2006; Goldstein et al., 2009).

On the macro level, the great challenge has been to adequately account for the tempo
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effects that have distorted period fertility rates (Billari and Kohler, 2004; Sobotka,

2004). On the micro level, researchers have examined whether and how a late age

at first birth affects parity progression, birth spacing and completed fertility (Marini

and Hodsdon, 1981; Dommaraju, 2009; Bratti and Tatsiramos, 2012; Berrington et al.,

2015). Both approaches have in common that they investigate whether and to which

extent births can be ‘recuperated’ at later ages. In other words: Does the increase in

the age at first birth simply shift the fertility schedule within the life course? Does

it compress it into a shorter time period? Or does a late age at first childbearing

eventually result in a decline in cohort fertility rates?

On the one hand, late age at first parenthood is assumed to result in lower completed

fertility because of the rapid drop in fecundity with women’s age (Billari et al., 2007).

Albeit that the availability of assisted reproduction has fuelled a discussion on the

biological limits of fertility, medical research usually points out that women’s ability

to conceive and bear children declines over time due to the ‘depletion and ageing

of the pool of oocytes stored in both ovaries during the fetal period’ (Velde et al.,

2012, p. 1179). The ability to conceive and bear children declines gradually, but this

process is assumed to accelerate around age 35. For men, fecundity is not subject

to the same mechanisms, but the ability to father a child is nevertheless assumed to

decay over time due to the decline of sperm quality with age (Schmidt et al., 2012;

Johnson et al., 2015).

On the other hand, a late onset of fertility may not necessarily lead to lower com-

pleted fertility, because couples anticipate their impaired possibilities to have children

at later ages. Postponement may be irrelevant for completed fertility, because couples

have the ability to influence the spacing of births and may, thus, ‘squeeze’ their chil-

dren into a shorter time interval. This ‘time squeeze’ has been assumed to particularly
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explain the fertility behaviour of work-oriented women who postpone childbearing to

advance in their career and accelerate childbearing at later ages (Kreyenfeld, 2002;

Gerster et al., 2007; Bartus et al., 2013). Furthermore, it was pointed out that the

correlation between age at first birth and completed fertility was not a solid evidence

of a causal relationship. Women and men who postpone first birth might do so be-

cause they had originally planned to have fewer children. Thus, couples self-select

themselves into late childbearing, depending on their fertility preferences. Further-

more, genetic factors, such as health impairment, are important unobservable factors

that affect the onset as well as completion of fertility (Kohler et al., 1999; Rodgers

et al., 2008).

There is a significant body of empirical studies that has examined the association

of age at first birth and subsequent fertility. However, the studies radically differ in

terms of data and method employed. Schmidt et al. (2012) correlated the period TFR

and the mean age at first birth for several European countries for 2007, but did not

find a strong association between the two measures. Velde et al. (2012) examined the

impact of fertility postponement on involuntary childlessness and total fertility in six

European countries. Based on a simulation with macro-level data, they show that

fertility would have been between 0.03 and 0.05 higher in 2008 if there had been no

postponement since the 1980s. Andersson et al. (2009) rely on Scandinavian register

data to show that early onset of childbearing leads to a higher number of children

among women born between the 1930s and 1950s. The mean number of children is

well above 2 children for women who were age 25 or younger when they had their first

child. For women who postponed first birth beyond age 35, total fertility drops below

1.5 children per woman. The effect of age at first birth on total fertility is linear and

strong. But it is also shown that patterns vary across birth cohorts and countries.
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This paper adds to the discussion on the association between first birth and com-

pleted fertility by employing the promotion time model (Yakovlev and Tsodikov,

1996; Tsodikov, 1998; Chen et al., 1999) initially motivated to analyze cancer data.

It belongs to the class of cure survival models extending classical event history models

by acknowledging that an unknown proportion of the studied population will never

have the event-of-interest. Bremhorst et al. (2016) motivated their use in fertility

when studying the effect of the educational levels of a woman and of her partner on

second and third parity progression. The motivation for the promotion in a fertility

context works as follows. Assume that at the onset of the process (i.e. direclty after

last birth), the woman has N ∼ P(θ) (Poisson distributed) possible decisive argu-

ments to opt for an additional child. Let F be the proper c.d.f. of the (independent

and identically distributed) latent times Y1, ..., Yn necessary for any of these n argu-

ments to initiate a new pregnancy. Then, one can show that the population survival

and density functions of the event-time are

Sp(t|θ, F ) = exp (−θF (t)) ; fp(t|θ, F ) = θf(t)Sp(t|θ), (1.1)

where f(t) = ∂F (t)
∂t

is the latent density.

In particular, the probability of never becoming pregnant again (or ’cured’ in the

jargon of the survival literature) is

P [N = 0] = exp(−θ) = lim
t→+∞

Sp(t|θ, F ). (1.2)

The expressions of the survival and hazard functions of the susceptible population

can be found, for example in Bremhorst and Lambert (2016, Section 2).

Independent baseline covariates, denoted by x (including a constant ’1’ to multiply

the intercept) and z (without such a constant), may enter, for example, the model

through a log-link on parameter θ and through a Cox model for F (t), respectively,
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yielding

θ(x) = exp(ηθ(x)) with ηθ(x) = αTx (1.3)

F (t|z) = 1− S0(t)
exp(ηF (z)) with ηF (z) = βT z. (1.4)

Tsodikov (2002) proposed, in a frequentist framework, a nonparametric estimation of

the baseline survival function S0(t). Within the Bayesian paradigm, Yin and Ibrahim

(2005) assumed a piecewize exponential distribution, while Bremhorst and Lambert

(2016) opted for a flexible specification of S0(t) using P-splines (Eilers and Marx,

1996, 2010). For recent papers using or extending the promotion time model, we

refer the interested reader to Liu and Shen (2009); Kim et al. (2009); Lopes and

Bolfarine (2012) and Li and Lee (2017).

In this work, instead of assuming a linear effect of the continuous covariates in the

regression parts ηθ(·) and ηF (·) in (1.3) and (1.4), double additive models based on

Bayesian P-splines (Lang and Brezger, 2004) will be specified. Flexible modelling of

continuous covariates were already considered in many different contexts, see Hastie

and Tibshirani (1990) for an early reference and, to cite a few, Wood (2006, 2011)

for an efficient software implementation and Lambert (2013) for their double use in

a semi-parametric Bayesian framework.

The paper is organized as follows : Section 2 and Section 3 define the flexible additive

models using Bayesian P-splines for the continuous covariates and for the logarithm of

the baseline hazard function, respectively. Bayesian inference techniques, including

the specification of the prior distributions and the description of the Metropolis-

within-Gibbs algorithm to sample from the joint posterior are described in Section

4. A simulation study assessing the accuray of the new methodology is presented

in Section 5 while Section 6 focusses on the analysis of the GSOEP datasets. A
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discussion concludes the paper.

2 Flexible regression model for covariate effects

Let xb = (xb1, . . . , x
b
P ) and zb = (zb1, . . . , z

b
Q) be the binary covariate vectors influenc-

ing, respectively, the probability of having the event and its timing for susceptible

subjects. Denote by xc = (xc1, . . . , x
c
R) and zc = (zc1, . . . , z

c
S) the sets of continuous

covariates assumed to take values in (−1, 1) and having an impact on the probability

of being cured and on the timing of the event for susceptible individuals, respectively.

The assumption made on the support of the continuous covariates is not restrictive

since any continuous covariate can be transformed to meet that requirement.

The regression models defined in (1.3) and (1.4) assume that the continuous covari-

ates contribute linearly to the functions ηθ(·) and ηF (·) involved in the conditional

the probability of being cured and in the conditional distribution of the event time

for susceptible subjects. These linearity assumptions can be relaxed by specifying

double additive models for the effects of continuous covariates:

ηθ(x
b, xc) = α0 +αTxb +

R∑
r=1

gθr(x
c
r), (2.1)

ηF (zb, zc) = βTzb +
S∑
s=1

gFs (zcs) (2.2)

The functions gθr(.) and gFs (.) are specified using a linear combination of a large

number (say, L) of cubic B-splines:

gθr(xcr) =
L∑
l=1

φθrlb̃l(xcr) ; gFs (zcs) =
L∑
l=1

φFslb̃l(zcs), (2.3)
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where {b̃1(.), . . . , b̃l(.)} denotes a cubic B-splines basis associated to a predefined num-

ber of equidistant knots on [−1, 1].

To avoid identification issues with the intercept α0 (cf. Eq. 2.1) and with the base-

line distribution of the Cox model (defined in Eq. 2.2), each spline coefficients vector

(φθ1, . . . ,φ
θ
R) and (φF1 , . . . ,φ

F
S ) is constrained to sum at 0.

To ensure smoothness and a linear behaviour in the limiting case, the likelihood is

combined with a second order roughness penalty on finite differences of adjacent B-

spline parameters (Eilers and Marx, 1996, 2010). For example, a second order penalty

associated to the rth continuous covariate having an impact on the probability of the

event is written as τ θr
∑

l

(
∆2φθrl

)2
= τ θr (φ

θ
r)
T (D2)

TD2φ
θ
r, where τ θr is the penalty

parameter and D2 is the difference matrix defined as follows:

D2 =



1 −2 1 0 ... 0

0 1 −2 1 ... 0

...
...

. . . . . . . . .
...

0 0 ... 1 −2 1


.

3 Flexible specification of the baseline distribution

As suggested by Bremhorst and Lambert (2016) in the context of the promotion

time model, the baseline distribution S0(t) (of the Cox model defined in (2.2)) can

be specified in a flexible way through the logarithm of the baseline hazard function

log (h0(t)) :

log (h0(t)) =
K∑
k=1

φkbk(t), (3.1)

where {b1(.), . . . , bK(.)} denotes a cubic B-splines basis associated to a predefined

number of equidistant knots on [0, Tmax], where Tmax is the upper bound of the follow-
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up interval.

Remember that the latent cumulative distribution function F (t) in (1.1) is assumed

to be proper. When a non(semi)-parametric model is proposed for the latent distri-

bution, that assumption can be forced using the zero tail constraint (Taylor, 1995;

Zeng et al., 2006). Accordingly, Bremhorst and Lambert (2016) suggest to fix the

last spline coefficient to a large enough value such that S0(t) smoothly decreases to

0 when approaching the maximum follow-up, thereby translating that a susceptible

subject must have experienced the event of interest by that time. However, when

the population survival function reaches its minimum value long before Tmax (as can

be revealed from the wide plateau in the right tail of the Kaplan Meier estimate of

the population survival, when the maximum censoring time is much larger than the

maximum observed failure time), the estimation of the spline parameters can be nu-

merically instable since no information is available to estimate the spline parameters

supported by knots located in that part of the follow-up interval. Therefore, in this

paper, we suggest to set all the spline parameters associated to knots located over the

maximum observed failure time (i.e. in the plateau of the Kaplan Meier estimate) to

an arbitrary large value (such as 10).

As for the flexible additive models defined in (2.3), a roughness penalty on finite

difference of adjacent B-spline coefficients is used to force smoothness. However, for

the baseline distribution, a third order penalty is used to force a limiting quadratic

behaviour of the logarithm of the baseline hazard for large penalty parameter values.
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4 Bayesian inference

4.1 Likelihood

Let Di = (ti, δi,x
b
i ,x

c
i , z

b
i , z

c
i ) be the set of the observable data of the ith individual

under study, where ti and δi denote the observed survival time and the event indicator

(i.e. δi = 0 if he or she is right censored). Since the data are right censored, the

survival log-likelihood is given by

l(Φ|D) =
I∑
i=1

δi log (hp (ti|Φ,Di)) + log (Sp (ti|Φ,Di)) , (4.1)

where Φ is the set of the model specific parameters.

4.2 Bayesian model

The frequentist roughness penalty introduced by Eilers and Marx (1996, 2010) is

translated in a Bayesian framework by Lang and Brezger (2004) into a multivariate

normal prior distribution for the spline parameters:

φ|τ ∼ NK

(
0, (τP3)−1

)
; (4.2)

φθr|τ
θ
r ∼ NL

(
0,
(
τ θrP2

)−1) ∀r = 1, . . . , R; (4.3)

φFs |τ
F
s ∼ NL

(
0,
(
τFs P2

)−1) ∀s = 1, . . . , S, (4.4)

where Pd = Dd
TDd + εI is a full rank matrix for some small quantity ε (10−6, say).

Lang and Brezger (2004) suggests a Gamma distribution G(a, b) with mean a
b

as a

prior for the penalty parameters. However, it can be shown that the shape of the

estimated curve could be significanlty influence by the choice of the values of the

hyperparameters a and b. Therefore, in this work and as in Bremhorst and Lambert
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(2016) and in Bremhorst et al. (2016), we suggest to use the robust roughness penalty

prior distribution proposed by Jullion and Lambert (2007):

τ |λ ∼ G
(
ν

2
,
νλ

2

)
; λ ∼ G (a, b) ; (4.5)

τ θr |λθr ∼ G
(
ν

2
,
νλθr
2

)
; λθr ∼ G (a, b) ∀r = 1, . . . , R; (4.6)

τFs |λFs ∼ G
(
ν

2
,
νλFs

2

)
; λFs ∼ G (a, b) ∀s = 1, . . . , S. (4.7)

Jullion and Lambert (2007) showed that if the value of the hyperparameters a and

b are small enough (say, a = b = 10−4), the posterior distribution of ν is close to a

uniform and, therefore, the value of ν would not have any impact on the shape of the

estimate.

Independent normal distributions with a large variance σ2 are used as priors for the

regression parameters:

(α0,α,β) ∼ N1+p+q

(
0, σ2I

)
(4.8)

4.3 Posterior sampling using MCMC

The logarithm of the joint posterior distribution is obtained, using Bayes’ theorem, as

the sum of (4.1), the log-likelihood, and the logarithm of the prior density functions

defined in (4.2)-(4.8).

It can be shown that only the conditional posterior distribution of the penalty pa-
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rameters belongs to a known family of distributions:

τ |φ, λ,D ∼ G
(
ν +K

2
,
νλ+ φTP3φ

2

)
;

λ,D ∼ G
(
a+

ν

2
, b+

ντ

2

)
;

τ θr |φθr, λ
θ
r,D ∼ G

(
ν + L

2
,
νλθr +

(
φθr
)T
P2φ

θ
r

2

)
∀ r = 1, . . . , R;

λθr|τ θr ,D ∼ G
(
a+

ν

2
, b+

ντ θr
2

)
∀ r = 1, . . . , R;

τFs |φFr , λ
F
s ,D ∼ G

(
ν + L

2
,
νλFs +

(
φFs
)T
P2φ

F
s

2

)
∀ s = 1, . . . , S;

λFs |τFs ,D ∼ G
(
a+

ν

2
, b+

ντFs
2

)
∀ s = 1, . . . , S.

Therefore, a Metropolis-within-Gibbs algorithm will be used to sample from the joint

posterior. When subsets of the model parameters are correlated, as with the P-spline

models defined in (2.3) and (3.1), reparametrizing the joint posterior distribution

using an adequate estimation of the posterior correlation structure of the model pa-

rameters might improve the mixing of the posterior chains (Lambert, 2007). Such an

estimation can be achieved using a nonlinear optimizer, based e.g. on the Augmented

Lagrangian method (see, for example Nocedal and Wright (2006, Chapter 17)), en-

abling to deal with linear constraints on the parameters.

To speed up the convergence of MCMC algorithm, the posterior mode of the joint

posterior distribution, for fixed values of λ, λθ1, . . . , λ
θ
R, λ

F
1 , . . . , λ

F
S , is used as initial

values of the MCMC algorithm. For the Metropolis steps and as recommended by

Haario et al. (2001) and Atchadé and Rosenthal (2005), the standard deviation of

the proposal distribution is updated during the burnin period to achieve the target

acceptation rate (23% in a multivariate setting).
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5 Simulation

Table 1: Simulation results for S = 500 replicates: coverage probabilities (in %) of

the 95% credible intervals for each regression parameter.

n = 500 n = 1 000

Cure probability Timing Cure probability Timing

Cure Censored α0 α1 α2 β1 β2 α0 α1 α2 β1 β2

23% 28% 98.4 94.0 94.6 93.2 93.2 99.2 95.2 94.8 94.6 94.2

23% 50% 98.2 92.0 91.8 92.6 90.8 97.4 93.8 94.8 92.2 94.8

48% 53% 98.2 93.0 94.0 93.2 92.2 99.4 95.2 96.2 93.8 94.6

48% 69% 98.2 93.4 92.6 92.0 90.8 98.8 94.2 93.8 91.8 92.8

The numerical performances of the proposed methodology are illustrated through a

simulation study. For all the settings described hereafter, S = 500 replicates of sam-

ple size n = 500 and n = 1 000 were generated. The simulated datasets are analysed

using the model presented in Sections 2 and 3 combined with the Bayesian inference

techniques described in Section 4. The flexible additive models (cf. Eq. 2.3) are

defined using a basis of L = 10 B-splines associated to equidistant knots on (−1, 1)

(for the relocated and rescaled continuous covariates) while a basis with K = 15 B-

splines was taken on the follow-up interval to model (the log hazard of) the baseline

distribution (cf. Eq. 3.1). The results presented in Tables 1 and 2 and in Figures 1-6

are based on one MCMC chain of length 75 000 including a burnin period of length

25 000. The z-scores of the Geweke convergence diagnostics (not reported) were used

to assess the convergence of the Markov chains (Geweke, 1992).

Two percentages of cured individuals were considered: 23% and 48%. The percent-
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ages of right censored subjects among the susceptible sub-population are controlled

by two censoring distributions: a Weibull distribution with mean 17.86 and standard

deviation 6.49 and an Exponential distribution with mean 18.18. Both are truncated

at Tmax = 25, the upper bound of the follow-up, leading to 5% and more than 20%

of right censored susceptible subjects, respectively. Since the baseline distribution is

specified, in each setting, as a Weibull distribution with mean 8 and standard devi-

ation 4.18, the sufficiently long follow-up assumption is respected. Indeed, less than

0.1% of the event occur after time Tmax = 25 under this distribution.

Let W1,W2 ∼ Bin(1, 0.5) and W3,W4 ∼ U(−1, 1) be the four independent covariates

having simultaneously an impact on the probability of the event and on its timing for

the susceptible sub-population. For each setting, one defines xb = (W1,W2) = zb,

(β1, β2) = (0.4,−0.4), xc = (W3,W4) = zc, f θ1 (.) = gF2 (.) and f θ2 (.) = gF1 (.), where

f θ1 (x) = x
2

and f θ2 (x) = sin(2πx)
1.5

. The value of α is tuned in each setting to reach the

target percentage of cure subjects.

Figure 1 shows a negligible bias of the posterior medians (as estimators) for all regres-

sion parameters in each setting. The variability of the estimates increases with the

percentage of right censored subjects among the susceptible sub-population. Not sur-

prisingly, an increase of the proportion of right censored subjects is more influential

on the precision of parameter estimates than a comparable increase in the percent-

age of cured units. The coverage probabilities of the 95% credible intervals for all

the regression parameters (see Table 1) are close to their nominal value except for

the intercept α0 in the regression model for the cure probability where the coverage

probabilities are to high.

Figures 2 and 5 illustrate the estimations of a linear effect of a continuous covariate

on the probability of having the event and on its timing for the susceptible sub-
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population. In each setting and in both parts of the model, the linear trend is cap-

tured without bias by the flexible additive models. As expected, the accuracy of the

estimates increases with the sample size and decreases when the percentage of right

censoring increases.

The estimation of a sine-like effect of a continuous covariate on the probability of

being cured is pictured in Figure 3. In each considered scenario, the additive model

was able to recover the nonlinear shape. However, when the percentage of right cen-

soring is important, a small bias (becoming negligible when the sample size increases)

appears in the area where the concavity of the curve changes, as illustrated on the

fourth row of Figure 3). This issue is more pronounced when estimating the nonlinear

effect on the timing of the event for the susceptible subjects, as shown in Figure 4.

This can be explained by the decreasing information on the regression parameters in

the Cox model for susceptible subjects when the percentage of right censored units

increases. Regarding accuracy, the same conclusions as for the estimation of the lin-

ear effects hold.

Table 2 reports the coverage probabilities of the 95% simultaneous credible inter-

valsfor the additive terms in the two regression models and estimated using MCMC

with the technique described in Held (2004). The estimated coverages are all close

to their nominal values except for the nonlinear term gF1 (·) involved in the regression

model for the timing of the event for susceptible individuals, when information is

very sparse (typically when the sample size and the percentage of events are simul-

taneously small), leading to an oversmoothed estimate. Table 2 also reveals that for

replicates yielding a credible region that does not contain the true additive term, the

average proportion of the (-1,1) covariate support leading to a coverage of the true

value is quite satisfactory.



16 Bremhorst et al.

Finally, the same conclusions as for the other functions estimates hold for the esti-

mation of the baseline distribution, pictured in Figure 6.

Figure 1: Simulation results for S = 500 replicates: boxplots of the errors of the

regression parameter estimates (the posterior medians) for each considered scenario.

The scenarios are numbered as follow : 1 = 23% of cured and 28% of right censoring;

2 = 23% of cured and 50% of right censoring; 3 = 48% of cured and 53% of right

censoring; 4 = 48% of cured and 69% of right censoring
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Figure 2: Simulation results: estimation of gθ1(x1) = x1
2

. S = 500 replicates (one

gray curve per data set) with sample size n = 500 (left) or n = 1 000 (right). Each

row refers to a percentage of cured and right censored individuals. The solid line

corresponds to the true function and the dashed line is the pointwise median of the

500 estimated curves.
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Figure 3: Simulation results: estimation of gθ2(x2) = sin(2πx2)
1.5

. S = 500 replicates

(one gray curve per data set) with sample size n = 500 (left) or n = 1 000 (right).

Each row refers to a percentage of cured and right censored individuals. The solid

line corresponds to the true function and the dashed line is the pointwise median of

the 500 estimated curves.
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Figure 4: Simulation results: estimation of gF1 (z1) = sin(2πz1)
1.5

. S = 500 replicates

(one gray curve per data set) with sample size n = 500 (left) or n = 1 000 (right).

Each row refers to a percentage of cured and right censored individuals. The solid

line corresponds to the true function and the dashed line is the pointwise median of

the 500 estimated curves.
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Figure 5: Simulation results: estimation of gF2 (z2) = 0.5z2. S = 500 replicates (one

gray curve per data set) with sample size n = 500 (left) or n = 1 000 (right). Each

row refers to a percentage of cured and right censored individuals. The solid line

corresponds to the true function and the dashed line is the pointwise median of the

500 estimated curves.
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Figure 6: Simulation results: estimation of the baseline distribution S0(t). S = 500

replicates (one gray curve per data set) with sample size n = 500 (left) or n = 1 000

(right). Each row refers to a percentage of cured and right censored individuals. The

solid line corresponds to the true function and the dashed line is the pointwise median

of the 500 estimated curves.
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Table 2: Simulation results for S = 500 replicates: coverage probabilities (in %) of

the 95% simultaneous credible regions. In brackets: replicates for which the credi-

ble region does not contain the true additive term: average proportion of the (-1,1)

covariate support for which the true additive term belongs to the simulatenous cred-

ible region. The true functions are defined as gθ1(xc1) = 0.5xc1 ; gF1 (zc1) = sin(2πzc1) ;

gθ2(xc2) = sin(2πxc2)); g
F
2 (zc2) = 0.5zc2.

Cure probability Timing

n Cure Censored gθ1(x
c
1) gθ2(x

c
2) gF1 (z

c
1) gF2 (z

c
2)

500

23% 28% 96.6 (92.54) 96.0 (95.22) 91.4 (93.22) 96.0 (91.47)

23% 50% 96.8 (91.11) 93.6 (93.25) 87.4 (92.30) 95.6 (88.60)

48% 53% 97.8 (94.21) 93.8 (93.52) 84.6 (93.69) 96.6 (89.11)

48% 69% 97.4 (93.57) 91.0 (92.77) 78.6 (91.23) 96.2 (90.97)

1 000

23% 28% 98.4 (89.43) 97.8 (94.12) 96.8 (96.61) 97.6 (93.20)

23% 50% 96.6 (95.08) 96.8 (94.50) 93.4 (95.46) 96.6 (91.28)

48% 53% 98.8 (94.36) 99.2 (97.89) 97.4 (94.99) 96.8 (94.12)

48% 69% 98.2 (92.32) 95.6 (96.07) 90.4 (92.64) 96.8 (91.85)
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6 Application

Table 3: Descriptive statistics of the independent covariates for all mothers at risk of

an additional birth.

Continuous variables (in years) Second birth Third birth

Age at 1st birth (mother)

Mean 27.9 26.4

Median 28.0 26.0

std 4.8 4.7

Age at previous birth (partner)

Mean 30.6 32.7

Median 30.0 32.0

std 5.5 5.1

Birth interval 1st/2nd child

Mean - 3.6

Median - 3.0

std - 2.2

Education levels Frequency

Mother

Low 340 393

Medium 936 959

High 231 238

Partner

Low 311 309

Medium 901 945

High 295 336

Data for this analysis comes from the German Socio-Economic Panel (GSOEP). The

GSOEP is the longest standing household panel survey in Europe (Wagner et al.,

2007). Interviews are conducted with all household members aged 17 and older (and
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since recently also with younger respondents) and are repeated every year. The

original sample included West German households and an oversample of foreigners.

Since its initiation in 1984, the SOEP has been extended several times. One of the

most significant extensions was the inclusion of an Eastern German subsample in the

year 1990 when German reunification was ratified. For our analysis, we use data from

wave 2014 (Release 31.1). We restrict the analysis to the period 1984 − 2013. Our

focus is the analysis of second and third birth transitions. Thus, we omit childless

women from the investigation. Furthermore, we restrict the analysis to women aged

17 − 49 who became under risk of having a second or third child after they entered

the panel study. By doing so, we disregard left truncated observations. We have also

decided to censor the cases 15 years after previous birth. Although our analysis mainly

focusses on the mother, we also considered some characteristics of the co-residential

partner. Omitted are all respondents who did not have a partner at last birth. We

also omitted all cases with missing information on education or of any of the partners.

Finally, we restricted the sample to women who had their preceding child in Western

Germany. This restriction is attributed to the large East-West differences in fertility

behaviour that prevailed after reunification. Also migrant women were omitted, as

migrant fertility would require a separate investigation. Finally, we dropped cases

from the so-called high income sample so that the analyses are not distorted due to

the oversampling of high-income groups.

The dependent variables are the progression to the second and third child with time

measured since the preceding birth. Transition to second and third births are studied

separately. For both studies, the data are analysed using the extended promotion time

model defined in (1.1) with (1.3) and (1.4) as expressions for the link functions ηθ(.)

and ηF (.) combined with the Bayesian inference methodology presented in Section 4.
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The convergence of the resulting posterior chains (of length 150 000 with a burnin

period of 50 000) were assessed by the trace plots and using convergence diagnostics

tools such as those proposed by Geweke (1992). Our key independent variable is

the age of the mother at first birth. We furthermore control for partner’s age at the

previous birth. For third birth, we also consider the duration between the first and

second births. We control for the education levels of the mother and of her partner

described as being either low (less than a vocational degree), medium (a vocational

training degree) or high (a university or college degree). Education is handled as a

time-constant covariate and was fixed at its value at the occasion of the last birth

(see Table 3 for the descriptive statistics). The final sample comprises 1 507 one-

child mothers and 1 590 two-child mothers. Among the one-child mothers, 57% had

a second child by the end of the follow-up. Among the two-child mothers, 22.8% had

a third child.

6.1 Second birth

In a first step, we investigate second birth behaviour. Our interest is mainly the

effect of mother’s age at first birth. The results from this covariate are presented on

the first row of Figure 7. The left panel shows the estimated additive term gθ(age)

in (1.3) quantifying the effect of mothers’s age at first birth on the probability of

having a second child for given education levels and age of the partner at first birth.

There is a clear negative nonlinear effect: the older a woman at first birth, the lower

the probability of having a second child with an accelerating decline when the first

birth occured after 30. This finding is compatible with medical studies that indicate

a decline of fecundity over time and a rapid deterioration in the mid 30s. If the
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interpretation was correct, one would assume that this effect is less pronounced for

males. The results for partner’s age at previous (first) birth, pictured on the bottom

left graph of Figure 7, might partially support this claim. However, although second

birth probabilities still decline, in particular if the partner was 40 or older at first

birth, the sample size is too small to assert it with a 90% confidence level.

Figure 7: Estimation of the conditional effect the mother’s age at first birth (row 1)

and of the age at first birth of her partner (row 2) on the probability of having a second

child (left) and on the timing of a second birth for the susceptible women (right). Dark

(resp. light) grey region coincides with the 95% (resp. 90%) simultaneous credible

region.

The results from the other covariates, namely the education levels of the two partners,

are displayed in Table 4. The results corroborate earlier investigations with the

German Socio-Economic Panel that focused on the effect of education on fertility in

cure fraction models (Bremhorst et al., 2016). For given ages of the two partners,
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highly educated women display a significantly higher probability of having a second

child compared to medium or less educated women. In addition, having a highly

educated partner significantly increases that probability compared to other couples.

On the other hand, education does not have a significant effect on fertility timing (for

given ages of the partners at first birth).

Table 4: Transition to second birth - Posterior median and 95% (HPD) credible

interval of for the regression parameter associated to categorical covariates.

Probability Timing

Est HPD95% Est HPD95%

Intercept -0.696 [-1.478 ; -0.010] - -

Mother’s education (ref. Middle)

Low -0.147 [-0.378 ; 0.069] 0.061 [-0.231 ; 0.354]

High 0.367 [0.047 ; 0.644] -0.171 [-0.561 ; 0.198]

Partner’s education (ref. Middle)

Low 0.108 [-0.126 ; 0.335] -0.233 [-0.524 ; 0.066]

High 0.406 [0.146 ; 0.653] 0.020 [-0.310 ; 0.336]

6.2 Third birth

In a second step, we examined the effect of mother’s age at first birth on third birth

behaviour (for a given time interval between the first two births, a given partner’s age

at second birth and given education levels of the partners). The results of the impact

of women’s age at first birth on third birth parity progression is illustrated on the

first row of Figure 8. The top left graph shows a very strong (linear) negative effect
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of age at first birth on the probability of having a third child. The top right graph

surmises that the conditional effect of age at first birth on the timing of third birth for

susceptible two-child women is positive, suggesting that women squeeze their further

children into shorter birth intervals. In particular women who had their first child

after age 30 tend to accelerate third birth transition. However, a larger number of

births will be needed to claim it with at a 95% confience level. The bottom left graph

of Figure 8 displays the conditional effect of the time elapsed between the first two

births on parity progression. It suggests that the longer the time interval between

the first two children, the smaller the probability of having a third child. Since no

significant conditional effect was found for the partner’s age at second birth on the

probability or on the timing of having a third child, the estimated effects are not

reported.

Table 5 reports the effect of women’s and partner’s education levels. It corroborates

the findings in Bremhorst et al. (2016): While the mother’s education level does not

significantly affect the third birth probability, a U-shaped effect for the partner’s edu-

cation is suggested with medium educated partner significantly less likely to progress

to a third child.
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Figure 8: Estimation of the conditional effect of mother’s age at first birth (row

1) and of the time elapsed between the first and the second births (row 2) on the

probability of having a third child (left) and on the timing of a third birth for the

susceptible women (right). Dark (resp. light) grey region coincides with the 95%

(resp. 90%) simultaneous credible region.



30 Bremhorst et al.

Table 5: Transition to third birth - Posterior median and 95% (HPD) credible

interval of for the regression parameter associated to categorical covariates.

Probability Timing

Est HPD95% Est HPD95%

Intercept -2.197 [-3.292 ; -1.173] - -

Mother’s education (ref. Middle)

Low 0.218 [-0.060 ; 0.501] -0.279 [-0.647 ; 0.079]

High 0.290 [-0.131 ; 0.711] -0.082 [-0.596 ; 0.435]

Partner’s education (ref. Middle)

Low 0.435 [0.152 ; 0.728] -0.371 [-0.754 ; -0.006]

High 0.704 [0.363 ; 1.038] 0.056 [-0.373 ; 0.475]

7 Discussion

This paper has used cure survival models to estimate the effect of age at first parent-

hood on fertility progression in Germany. To reach that goal, we considered double

additive models to specify in a flexible way the effect of continuous covariates in

cure fraction models. With this tool we tried to detect non-linearities in the effect

of mother’s age at first birth on the progression to a second and third child. Our

analysis shows that age at first birth has a diverging effect on timing and quantum.

While a high age at first birth seems to accelerate parity progression (specially for

third birth) for susceptible women, it reduces the overall chances of having further

children. This important finding underscores the relevance of cure fraction models in

fertility research. Standard event history models easily generate misleading results
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because they conflate the effect of timing and quantum (see Bremhorst et al., 2016,

Section 4.3 for more details). Cure survival models overcome this shortcoming, but

have unfortunately not diffused much in social science research.

An important limitation of our study was the limited sample size. We had about

1 500 women at risk of second and another 1 500 at risk of third birth at our dis-

posal. However, we often were unable to generate significant results. Due to the

small sample size, we were neither able to study effect heterogeneities. In particular,

we were unable to analyse the interaction effects of education and age at first birth.

This is unfortunate because earlier studies have pointed out that the ‘meaning’ of

age at birth depends on level of education (Hoem, 1996; Kreyenfeld, 2002; Bartus

et al., 2013). While highly educated women regularly postpone childbirth in order to

advance in their career, lowly educated women who postpone parenthood are a select

group, possibly with impaired abilities to have children. Thus, one would assume

that age at first birth has a stronger effect on the probability of having a second or

third child for lowly than for highly educated women.

From a theoretical point of view, a possible extension would be to develop a statistical

tool to test the linearity of the effects of continuous covariates. To reach that goal,

non-linear perturbations could be added to the linear specification of the continuous

covariates in (1.3) and (1.4). These nonlinear perturbations would be described using

P-splines with a first order penalty and a zero mean to force a flat limiting behaviour

of the correction for large values of the corresponding penalty parameter. An in-

spection of the simultaneous credible region for the correction and of the posterior

of the associated penalty parameter could then be used to assess whether a linear

approximation of the target additive term makes sense.
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