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Resumo 

 Um antibiótico é definido como uma substância química, tanto produzida por microrganismos 

como sintetizada artificialmente, que inibe o crescimento ou mata outros microrganismos. Estas 

substâncias são produzidas naturalmente por muitas bactérias, fungos e plantas. Já desde os tempos pré-

históricos da humanidade que, inconscientemente, se exploram as vantagens dos antibióticos com o fim de 

tratar infeções. Mais recentemente, durante o século XX, certos investigadores começaram a identificar, 

refinar e sintetizar artificialmente antibióticos específicos. Foi o caso da penicilina, o primeiro antibiótico 

da história, específico de bactérias, a ser produzido em massa. Estes eventos contribuíram para dar origem 

à era dos antibióticos e, no decorrer do resto do século, uma multitude de novas classes de antibióticos foi 

descoberta e aprovada para uso humano. No entanto, a taxa de descoberta de novos antibióticos tem vindo 

a diminuir constantemente ao longo dos anos, sendo que nenhuma nova classe de antibióticos foi 

descoberta desde 1997. Além disso, bactérias possuidoras de resistências são geralmente detetadas logo 

após a descoberta de um novo antibiótico, o que aconteceu para cada antibiótico atualmente conhecido. A 

existência de resistências a antibióticos constitui assim um grande problema para os cuidados de saúde 

humanos, pois limita a eficácia de um medicamento que, de outra forma, é altamente eficaz no combate à 

infeção bacteriana. 

As resistências a antibióticos podem surgir através de mutações genéticas, ou trocadas entre 

bactérias (transferência horizontal de genes). Estas resistências são depois tornadas mais prevalentes como 

produto da pressão seletiva exercida pelos antibióticos: matando as bactérias sensíveis e, 

consequentemente, aumentando a frequência relativa das bactérias resistentes. Múltiplas vias podem 

conferir uma resistência idêntica ao mesmo antibiótico, nomeadamente através de: modificações da 

molécula de antibiótico, diminuição da sua penetração através da membrana celular, aumento do efluxo da 

molécula para fora da célula ou alteração dos locais alvo do antibiótico. Os antibióticos tendem a ser mal 

utilizados de amplas maneiras, como por ingestão em excesso, prescrição inadequada e uso não controlado 

na agricultura, bem como devido à falta de conhecimento sobre o uso adequado de antibióticos pelo 

público em geral, fazendo com que as resistências aumentem a sua prevalência e se espalhem a uma taxa 

muito mais rápida do que a esperada e até mesmo causando a génese de variedades de bactérias resistentes 

a múltiplos fármacos simultaneamente. 

Embora existam tratamentos alternativos aos antibióticos, estes têm um efeito muito mais limitado 

quando comparado com os antibióticos, ou ainda têm de superar o uso de antibióticos como a abordagem 

dominante no tratamento de infeções bacterianas. No entanto, um antibiótico nem sempre é necessário no 

tratamento de uma infeção. Uma pessoa saudável possui um sistema imunitário capaz de reconhecer e 

eliminar a maioria dos agentes estranhos ao corpo, como bactérias patogénicas, sem necessidade de ajuda 

externa, como a de um antibiótico. No entanto, uma infeção pode ocasionalmente ser tão grave ou 

invasiva que os antibióticos, ou outros tratamentos, deverão ser fornecidos para prevenir condições de 

risco de vida para o paciente. Um antibiótico também pode não ser suficiente para eliminar todas as 

bactérias patogénicas. No entanto, ao eliminar uma parcela substancial das bactérias suscetíveis aos seus 

efeitos, o sistema imunitário pode então mais facilmente reduzir a carga microbiana, eliminando as 

bactérias patogénicas remanescentes, mesmo aquelas que sejam resistentes ao antibiótico aplicado. A 

combinação dos efeitos de um antibiótico com o funcionamento normal do sistema imunitário deve, 

portanto, produzir uma eliminação facilitada e mais rápida de uma infeção do que se qualquer um dos 

sistemas atuasse sozinho, além de reduzir a probabilidade de qualquer bactéria resistente ao antibiótico 

sobreviver ao tratamento. Por isso, um sistema imunitário funcional é crucial para a sobrevivência de 
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qualquer pessoa. A deterioração do sistema imunitário pode afectar perigosamente o bem-estar de um 

indivíduo, uma vez que qualquer infeção, por menor que seja, pode crescer rapidamente para uma situação 

perigosa, mesmo quando um antibiótico é administrado, como acontece no caso de indivíduos infetados 

pelo VIH. 

Embora já existam muitas maneiras de agir contra a questão do uso inadequado de antibióticos, o 

que escolhemos abordar neste trabalho assenta no ensino do público em geral sobre a forma como os 

antibióticos funcionam e as causas para o aparecimento e/ou aumento de resistências bacterianas, 

nomeadamente como estas podem aumentar a sua prevalência em resultado do referido uso inadequado de 

antibióticos. Alguns exemplos do que já foi feito em todo o mundo por esta causa incluem a 

consciencialização de profissionais de saúde, incorporação de informação relacionada em livros escolares 

e ensino desta problemática na escola. Ainda assim o problema persiste e as resistências a antibióticos 

continuam a ser um problema importante, especialmente em hospitais ou outras instalações de saúde. A 

investigação sobre as resistências a antibióticos e os meios para as superar tornou-se cada vez mais 

popular ao longo dos anos. Este trabalho pretende contribuir para a simplificação do processo de 

investigação através do desenvolvimento de novas ferramentas e tecnologias, e poderá ajudar os 

investigadores a testar mais rapidamente os seus modelos do desenvolvimento da resistência a 

antibióticos, a encontrar novas resistências a antibióticos e a criar novas metodologias de combate a essas 

resistências. Acreditamos que qualquer contribuição feita, tanto para a disseminação de boas práticas no 

uso de antibióticos como para o conhecimento sobre resistências a antibióticos, bem como para o avanço 

da investigação relativa à resistência a antibióticos, são significativos. 

Com este trabalho, procurámos desenvolver uma ferramenta digital de simulação que pudesse ser 

utilizada em dois cenários diferentes: a) por professores, como recurso didático para o ensino das ciências 

e exploração da problemática da resistência a antibióticos, nomeadamente dos seus impactos, formas de 

prevenir a sua génese e propagação e interação com o sistema imunitário humano; e b) por investigadores, 

para ajudar no teste de hipóteses sobre o desenvolvimento de resistências a antibióticos. Em ambos os 

casos o uso de programas de simulação pode ser vantajoso, pois permitem a visualização e manipulação 

de variáveis com base em situações reais em ambiente controlado. Esta ferramenta digital, que faz uso das 

tecnologias atuais, poderá permitir aos alunos exercitar competências científicas fundamentais para o 

desenvolvimento da sua literacia científica e simultaneamente compreender a problemática da resistência 

a antibióticos e o impacto das escolhas individuais neste fenómeno e na saúde individual. Estes objetivos 

de aprendizagem vão ao encontro das diretivas curriculares e programáticas e de metas curriculares em 

vigor para diversas disciplinas lecionadas ao longo do percurso escolar dos alunos em Portugal. 

Simultaneamente a inclusão de diversos parâmetros reais permite também a simulação de contextos reais 

com potencial para serem usados em investigação científica, proporcionando assim aos investigadores um 

grau elevado de liberdade e controlo sobre as suas simulações. 

Em linha com estes objetivos, desenvolvemos o SimulATe, um simulador dos efeitos da 

antibioterapia na dinâmica de populações bacterianas. Este possui uma interface de usuário gráfica e 

permite a simulação de dois cenários distintos: o primeiro simula os efeitos de um antibiótico numa única 

população bacteriana em conjunto com o sistema imunitário humano; o segundo simula o equilíbrio 

natural do microbioma intestinal humano e os efeitos que uma antibioterapia pode ter na sua estabilidade. 

É um simulador altamente configurável que funciona em tempo real e permite a simulação de uma ampla 

gama de cenários de administração de antibióticos. Estes tipos de simulações não são possíveis de obter 

com outras aplicações existentes atualmente, já que estas são ou muito específicas ou não abrangem todos 

os casos que nos propusemos abordar. 
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Abstract 

 Antibiotics are substances either produced by microorganisms or artificial synthesized, which, 

above certain concentrations, can inhibit the growth or kill other microorganisms. Humanity has been 

exploiting antibiotics since pre-history times, but only in the 20th century did mass-production begin, 

allowing for more widespread usage. Nowadays, antibiotics are used extensively worldwide to treat all 

sorts of infections, especially those caused by bacteria. However, the effectiveness of antibiotics is 

severely hindered by the existence of antibiotic resistances. These resistances can emerge in bacteria in a 

variety of different ways, mainly as a result of genetic mutations or horizontal gene transfer and persist 

due to the selective pressure caused by antibiotics. Multi-resistant strains of bacteria can arise and are a 

major cause of concern in many health care facilities, the primary source of these strains. Coupled with the 

fact that the rate of discovery of new antibiotic classes has been steadily declining over the past decades, 

the existence of antibiotic resistances constitutes one of the most serious health care crises of the 21st 

century. 

 Arguably, the main cause of antibiotic resistances persistence in nature is antibiotic misuse, such 

as via overusing, inappropriate prescribing and uncontrolled use in agriculture as well as due to the lack of 

knowledge on appropriate antibiotic usage by the public. Several approaches can be adopted to combat 

antibiotic misuse, including raising awareness among medical professionals, incorporating related 

information in schoolbooks and teaching these issues at school, the latter approach being the one we 

decided to tackle with this work. 

 We developed SimulATe, a simulator of antibiotic therapy effects on the dynamics of bacteria 

populations, with the purpose of being used as an educational tool in the teaching of science, exploring 

antibiotic resistance and the impacts of antibiotic misuse. SimulATe allows the simulation of two distinct 

scenarios: the first simulates the effects of an antibiotic on a single bacteria population alongside the 

human immune system; the second simulates the natural equilibrium of the human gut microbiome and 

the effects an antibiotic therapy can have on its stability. Being a highly configurable real time simulator, 

which allows the simulation of a broad range of antibiotic therapy administration scenarios, SimulATe can 

also be used by both researchers and medical institutions to test antibiotic usage scenarios or the 

development of an infection under antibiotic therapy. 

  

Keywords: Simulation, Antibiotic resistance, Bacteria population, Microbiome 
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1 Introduction 

An antibiotic is defined as a chemical substance, produced by some living organisms or artificially, 

which, above a certain concentration, either inhibits the growth or kills bacteria. These substances are 

naturally produced by many bacteria, fungi and plants, providing an advantage against competing 

microorganisms and infections 1–5. Humanity has been unknowingly exploiting the advantages of 

antibiotics since pre-historical times, and records of ancient civilizations, such as Egypt, China, Serbia, 

Greece and Rome, describe the application of antibiotic producing moulds and plants to treat wounds and 

infections 6 7. During the twentieth century, specific antibiotic agents began being identified and refined as 

well as artificially synthesized by researchers, as was the case with penicillin, the first mass produced 

bacteria-specific antibiotic in history 8 9. During the Second World War the large-scale production of 

penicillin became a necessity, mainly to help the war effort, a decade after its initial discovery in 1928. 

Meanwhile, in 1932, the first sulphonamide based antibiotic drug, prontosil, was discovered and proved to 

be an effective antibiotic against streptococcal and staphylococcal bacterial infections 10. These events 

contributed to effectively give rise to the antibiotic golden age and, throughout the rest of the century, a 

multitude of new antibiotic classes were discovered and approved for human use. All currently known 

antibiotics can be grouped together in classes (Table 1.1) based on the physiological effect (Figure 1.1) 

they have on their target bacteria as well as whether they exert bactericidal (killing) or bacteriostatic 

(halting growth) effects 11. 

 

Table 1.1 Antibiotic Classes. 

Mechanism of action of each class of antibiotic, year of discovery, year introduced to the public and year of the first observation 

of a  microorganism resistant to it. Adapted from K. Lewis et al 11. 

 

Class of Antibiotic Mechanism of Action 
Year 

Discovered 

Year 

Introduced 

Year Resistance 

Observed 

β-lactams (Penicillin) 
Inhibition of cell wall 

biosynthesis 
1928 1938 1945 

Sulphonamides (Prontosil) 
Inhibition of 

dihydropteroate synthetase 
1932 1936 1942 

Aminoglycosides 
Binding of 30S ribosomal 

subunit 
1943 1946 1946 

Tetracyclines 
Binding of 30S ribosomal 

subunit 
1944 1952 1950 

Chloramphenicols 
Binding of 50S ribosomal 

subunit 
1946 1948 1950 

Macrolides 
Binding of 50S ribosomal 

subunit 
1948 1951 1955 

Fidaxomicin 
Inhibition of RNA 

polymerase 
1948 2011 1977 

Glycopeptides 
Inhibition of cell wall 

biosynthesis 
1953 1958 1960 

Oxazolidinones 
Binding of 50S ribosomal 

subunit 
1955 2000 2001 
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Rifamycins 
Binding of RNA 

polymerase β-subunit 
1957 1958 1962 

Quinolones 
Inhibition of DNA 

synthesis 
1961 1968 1968 

Streptogramins 
Binding of 50S ribosomal 

subunit 
1963 1998 1964 

Lipopetides 
Depolarization of cell 

membrane 
1986 2003 1987 

Diarylquinolines Inhibition of F1Fo ATPase 1997 2012 2006 

 

 

Figure 1.1 Antibiotic targets. 

Antibiotic classes and their main targets inside the cell, specifically: cell wall synthesis, cell membrane disruption, DNA and RNA 

synthesis, folic acid metabolism and ribosome functioning. Adapted from G. D. Wright et al 12, distributed under the CC license. 

 

However, the rate of discovery of new antibiotics has been steadily declining over the years, with almost 

no new antibiotic classes discovered since 1997 11, with the exception of Neofiscalin A 13 and Teixobactin 
14. In addition, resistant bacteria are usually detected shortly after the discovery of a new antibiotic, which 

happened to each currently known antibiotic. The existence of antibiotic resistances, therefore, constitutes 

a major setback to human healthcare 11 15, as it limits the effectiveness of an otherwise highly effective 

drug. These antibiotic resistances can emerge naturally, mainly via random gene mutations, or traded 

between individuals via horizontal gene transfers 16–18, and can be made more prevalent as a product of the 

selective pressure exerted by an antibiotic. 

Antibiotic resistances can be achieved through many different biochemical pathways and, usually, 

multiple pathways can confer a similar resistance to the same antibiotic, notably by modifying the 

antibiotic molecule, decreasing the antibiotic penetration and efflux power or changing the antibiotic 

target sites 16. Antibiotics misuse, namely by overusing, inappropriate prescribing and uncontrolled use in 
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agriculture 19 as well as due to the lack of knowledge on appropriate antibiotic usage 20, has been selecting 

resistant and even multidrug-resistant strains of bacteria 21, which has been spreading at a much faster rate 

than expected. This problem, previously predicted by the discoverer of penicillin, Alexander Fleming 22, 

knows no frontiers and is becoming one of the most pressing human healthcare problems. Although there 

are possible alternative treatments to antibiotics, such as passive immunization 23 or phage therapy 24, 

these have a much narrower range of effect than antibiotics or have yet to overcome antibiotic usage as the 

mainstream approach in dealing with bacterial infections. A healthy person possesses an immune system 

capable of recognizing and eliminating most foreign agents to the body, such as pathogenic bacteria, 

without the need for any external help 25, like that of an antibiotic. Nonetheless, occasionally, an infection 

can be so severe or evasive to the immune system that antibiotics, or other treatments, must be supplied to 

prevent life threatening conditions. Antibiotics alone may not suffice at clearing every single infecting 

bacterium. However, by actively eliminating a very large portion of the antibiotic susceptible bacteria, the 

immune system may more easily, and non-specifically, kill all the remaining bacteria, even those strains 

that are resistant to the antibiotic 26 27. Synergistically combining the effects of an antibiotic with that of 

the immune system should, therefore, yield a better and quicker elimination of an infection than if either 

acted alone, while also reducing the likelihood of any resistant bacteria surviving the treatment 26–29. 

Hence, a functioning immune system is crucial to the survivability of any person. The deterioration of the 

immune system may dangerously impact the wellbeing of the individual, as any minor infection can 

quickly grow to an untreatable situation, even when an antibiotic is administered, as happens in the case of 

HIV infected individuals 30 31. 

  

1.1 Motivation 

The importance of antibiotics in today’s society is much too high for it to be jeopardized by the 

ever-increasing presence of antibiotic resistances. During the 40’s and 50’s the damages caused by 

antibiotic resistances were mitigated by the high discovery rate of new classes of antibiotics 19 32, but as 

the rate declined, so did the assurance of new antibiotics having lower impact from antibiotic resistances. 

Due to this decline, the occurrence and spreading of antibiotic resistances developed into a serious issue 19 

which, if not controlled, can have huge healthcare related repercussions. 

To fight this problem some steps are necessary 33, from which the most essential are: a) to improve 

public scientific literacy on antibiotic usage and b) to support research on antibiotic development and 

clinical use. 

As stated before, public misinformation and carelessness related to antibiotic use greatly 

contributed to the rise and spread of antibiotic resistances. Promoting public scientific literacy on this 

topic, namely public understanding of antibiotic effects, the impacts of antibiotic misuse and resistance 

evolution are thus essential to overcome this societal problem. Some examples of actions taken around the 

world to foster public scientific literacy on antibiotics usage include raising awareness among medical 

professionals 33, distributing leaflets, the inclusion of this problem, causes and effects in official school 

curricula 34 35 and programs, and the development of educational materials to be used in schools 33 36. Still 

the problem remains, and antibiotic resistances continue to crop up, especially in hospitals or other 

healthcare facilities 19. 

Research into antibiotic resistances and means by which to overcome them are, without a doubt, 

important now more than ever. Streamlining the research process by developing novel technologies and 
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tools can help scientists to more quickly test their models on antibiotic resistance development, finding 

new antibiotic resistances and creating new methodologies to better fight those resistances. 

Therefore, we believe that any contribution made towards both the dissemination of good antibiotic 

usage practices and knowledge about antibiotic resistances as well as the further advancement of research 

regarding antibiotic resistance are significant and worth pursuing. 

  

1.2 Objectives 

With this work we aimed at developing a suitable simulation tool that could be used in two different 

scenarios: a) by professors, to help students develop scientific literacy and competences while exploring 

the problem that is antibiotic resistance and antibiotic misuse; and b) by researchers, to test hypothesis 

regarding antibiotic resistance and treatment efficacy. In both cases the use of simulator software can be 

advantageous, as it allows the manipulation and control of several important parameters and the 

observation of the expected outcomes of several biological scenarios. 

To be useful in the teaching of science and the development of scientific literacy, an educational 

tool should promote opportunities for students: a) to learn scientific contents and how these can be applied 

in daily life, b) engage in scientific inquiry namely in posing questions and formulating hypothesis, 

planning and developing experiments, collecting, treating and interpreting data; c) understand how science 

is produced and the nature of science; d) engage in scientific debates using evidence to choose among 

distinct possibilities 37. In this context, a digital simulator that uses available technology to model the 

expected outcomes of the evolution of antibiotic resistant bacteria, can be a wonderful educational tool as 

it allows: a) students to learn about  antibiotic resistance, its causes, consequences and the impacts of daily 

life choices in both individual and community health, b) engage in scientific inquiry regarding the 

expected outcomes of procedures and biological scenarios in terms of the health of an individual and 

frequency of antibiotic resistant strains of bacteria, planning experiments and interpreting data; c) 

understand the nature of science by, for example, exploring how models are used in science, its limitations 

and potential 38, d) engage in scientific debate about effective practices of controlling infections and 

limiting the frequency increase and spread of antibiotic resistant strains of bacteria. These outcomes are 

aligned with the goals of education and, particularly, science education in Portugal 34 35 39 40 41. 

When researching antibiotic resistance and treatment efficacy, researchers benefit from exploring 

the outcomes obtained in a simulated environment as these can provide guidance and feedback when 

designing real world solutions. By having access to a simulator designed specifically to model the effects 

of antibiotic therapies on bacterial populations, research in this area can be streamlined. 

  

1.3 Contributions 

The main contribution to arise from this dissertation is the development of a computer simulator, 

named SimulATe. This simulator is suitable for fostering students’ scientific literacy on antibiotic 

resistance and promote the development of their scientific skills as well as to be used as a research tool by 

researchers and medical staff. Previously existing software were not suited for these purposes as they were 

either too specific in scope or did not include the required parameters to simulate realistic biologic 

scenarios. 
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This work was presented as a seminar to Bioinformatics students at the Escola Superior de 

Tecnologia do Barreiro. A poster was presented at the conference Frontiers in E3: cE3c 4th Annual 

Meeting. A book chapter regarding the human microbiome was written during the course of this thesis, 

borrowing some of the bibliographical research done for this work as well as the use of SimulATe itself 

(Appendix A). A mini review for the special issue of the Drug Development and Research Journal on 

Overcoming Antibiotic Resistance was written with contributions from this work and will be publicly 

available on September 2018. An educational activity, aimed at 9th grade students, was developed with the 

aim of exploring SimulATe (Appendix B). An article regarding the complete work done in this thesis is 

soon to be submitted to the Oxford’s Biology Methods & Protocols journal. 

   

1.4 Document Structure 

The remaining document is structured as follows: 

Chapter 2, Related Work: Establishes the state of the art and reviews relevant information on bacteria and 

microbiomes, the immune system, antibiotics, antibiotic resistances, the chemostat and existing simulation 

software solutions. 

Chapter 3, Materials and Methods: Describes the chosen programming language, design decisions and the 

mathematical equations used. 

Chapter 4, Implementation: Describes the overall implementation specifications of the program, code 

structure, layout design and components as well as testing procedures. Issues arising during development 

are also described. 

Chapter 5, Results: Outlines usage cases of the program and describes feedback given by testers. 

Chapter 6, Discussion: Discusses the purpose and usability of the program. 

Chapter 7, Conclusions: Summarizes the work performed on this thesis and discusses future work. 

Chapter 8, Source Code and License: Points to software hosting service and license.  
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2 Related Work 

 

2.1 Antibiotics 

Different antibiotics have different spectra of activity depending on the range of bacterial species 

affected and are usually designated as broad- or narrow-spectrum antibiotics accordingly. Certain 

molecular mechanisms, on which antibiotics rely to exert its effects, might not exist on every bacteria, 

therefore the spectrum of activity varies between antibiotics 42 43. Some antibiotics might encompass a 

wider range of bacterial species due to the existence of more common molecular mechanisms, as is the 

case with certain ribosome targeting antibiotics, while other antibiotics target uncommon targets, having a 

narrower spectrum of activity. For an antibiotic to have its effect maximised while also minimising the 

probability of resistances arising, the spectrum of activity of the antibiotic used should be taken into 

account while also having both the antibiotic user and the prescribing doctor adhere to some good-

practises, as proposed by the European Centre for Disease Prevention and Control (ECDC) 19 44: a) avoid 

unnecessary prescriptions; b) strictly follow the antibiotic administration guidelines defined by the 

prescribing doctor or as written on the package; c) avoid large-spectrum antibiotics if narrow-spectrum are 

available for the same ailment; d) avoid narrow-spectrum antibiotics on non-susceptible bacteria; e) avoid 

over or under-dosages; f) avoid interrupting a treatment when symptoms begin to disappear, in other 

words, always follow through with a treatment until the end. 

Even though the role of antibiotic misuse in antibiotic resistance development has been widely 

discussed, as stated in the Introduction of this document, the authors of a recent study have argued that it 

might not have the detrimental effects most medical doctors and researchers think they do 45. 

All currently known antibiotic classes are already summarized in Table 1.1. The most frequently 

used antibiotics in Portugal during 2015, as calculated from ECDC’s ESAC-Net data submitted to TESSy 
46 in 2017, are the following:  

  

Table 2.1 Antibiotic consumption per 1000 inhabitants per day in Portugal. 

Consumption of antibiotics for systemic use expressed in DDD (the average maintenance dose per day for a drug used for its 

main indication in adults) per 1000 inhabitants per day during 2015, as reported by ECDC 44. 

 

Antibiotics Primary care sector Hospital sector 

Beta-lactams (penicillins) 12.2 0.54 

Other beta-lactams 1.56 0.44 

Tetracyclines 0.83 0.02 

Macrolides, lincosamides and streptogramins 3.06 0.16 

Quinolone 2.05 0.15 

Sulphonamides and trimethoprim 0.43 0.07 

Other substances 1.14 0.19 
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In Portugal, penicillins are still the most used antibiotics, both in hospitals and in the primary care sector. 

The most common antibiotic classes/types used in Portugal, as shown in Table 2.1, are: penicillins, 

tetracyclines, macrolides, lincosamides, streptogramins, quinolones, sulphonamides and trimethoprim. 

There has been a growing effort in researching new antibiotics 11 which has resulted in new 

antibiotics, namely Neofiscalin A 13 and Teixobactin 14, that are still under study and testing and thus still 

not available for human use. 

  

2.2 Antibiotic Resistance 

Antibiotic resistances are organized in classes based on their mechanism of action. These classes 

include: Modification or destruction of the antibiotic molecule (ex: Beta-Lactamase), reduced antibiotic 

penetration and efflux (ex: Multidrug Transporters), changes in antibiotic target sites (ex: Vancomycin 

Resistance), and resistance due to global cell adaptations 16 47. 

Antibiotic resistances are acquired either by random mutations or horizontal gene transfers, which 

can occur via several different mechanisms: transformation, transduction and conjugation 17. 

Transformation is the process by which a competent individual bacterium obtains genetic material from 

the environment, usually originating from a bacterium of the same species, and recombines it with its own 

DNA; Transduction is the insertion of foreign DNA into a bacterium by means of a virus; Bacterial 

conjugation involves physical contact between a donor and a receiving bacterium, by means of a 

membrane extension called “sex pilus”, which allow the exchange of genetic material. A successful 

antibiotic resistance, exchanged between individuals via horizontal gene transfer, can become epidemic as 

more individuals acquire it and resist extermination 17. Some environments and community settings can 

even act as reservoirs for certain antibiotic resistance genes, by allowing these resistances to be preserved 

in the population. Example reservoirs include hospitals, nursing homes, childcare facilities, paediatric 

populations, schools and farm animals 17. 

An antibiotic resistance can have effects ranging from a small tolerance to complete resistance to 

certain antibiotics. A new resistance does not usually confer complete resistance to an antibiotic at first, it 

does, however, increase the minimum inhibitory concentration (MIC) for a certain antibiotic class or type 
48. Because of selective pressures caused by the antibiotic, more similar mutations tend to survive, and 

more genetic material can also be exchanged between individuals, increasing the number of resistant 

individuals and raising the MIC even more 49. Ultimately, a bacteria strain can evolve complete resistance 

to an antibiotic this way. 

Genes conferring antibiotic resistances tend to be costly for the bacteria 50, which means that, in the 

absence of antibiotics, these genes can become disadvantageous to bacteria by, for example, lowering their 

fitness. Therefore, the expectation is that these genes will tend not to remain in the gene pool if no 

selective pressure from an antibiotic is present. This means these genes should become scarce if the 

antibiotic source disappears. This is not always the case, however, as these genes can be maintained even 

in the absence of antibiotics due to the existence of additional compensatory mutations 51. A major 

problem with agriculture today is precisely the constant large-spectrum antibiotics that are dumped into 

crop plantations and farm animal feed 19. With antibiotics always present, these antibiotic resistance genes 

are, consequentially, also always present, and in the absence of antibiotics, they subsist in reservoirs, as 

previously mentioned. 
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2.3 Bacteria 

Bacteria are one of the oldest forms of living organisms on earth, having existed for at least 3.8 

billion years 52. Bacteria exist in many shapes and sizes and span more habitats than any other life form, 

ranging from the deepest ocean trenches to the highest mountain peaks, as they can survive in extreme 

conditions. They have considerable influence over the habitats they inhabit by being both primary 

producers and decomposers 53 as well as having symbiotic relationships with most other organisms 53. On 

the human body, symbiotic bacteria can help regulate the metabolism 54, teach and train the immune 

system 55 and digest nutrients that humans wouldn’t otherwise be able to digest 54. On the other hand, 

pathogenic bacteria can cause infections and diseases. The bacterial infective dose is the number of 

pathogenic bacteria necessary for an infection to take hold and varies between bacteria species, some 

species requiring millions of individuals, as is the case with Vibrio cholerae, while other require only a 

few individuals, as is the case with Mycobacterium tuberculosis 56. One of the most effective ways of 

fighting these infectious bacteria is through the use of antibiotics. Still, not all bacteria are equally 

susceptible to the same antibiotics, on the contrary, the susceptibility of different species to the same 

antibiotics varies wildly, sometimes even between individuals of the same species, when mutations occur, 

or antibiotic resistance genes are picked up from the environment 16 32. 

Bacteria species very rarely occupy a habitat alone, and are usually part of a bigger microbial 

community, defined as a microbiome. 

 

2.4 Microbiomes 

A microbiota is defined as a community of microorganisms that share the same habitat. The term 

microbiome can also be used to define the same concept 57, although, with the advent of high-throughput 

genome sequencing, scientists have adopted the word to define the total amount of genes present in a 

given ecosystem 58. Nonetheless, in this work, we adopted the former microbiome definition. 

The human body is home to a large number of different ecosystems and, inhabiting them, are 

different microbiomes, such as those of the oral cavity, nose, different parts of the skin, gut and so forth 59. 

These microbiomes harbour symbiotic, commensal and pathogenic bacteria, some of the most common 

genera of which are Streptococcus in the oral cavity, Propionibacterium on the skin and nose, and 

Bacteroides, Prevotella, and Ruminococcus in the gut 60. The bacterial species that compose these 

microbiomes exist in a dynamic equilibrium and are subject to change at the smallest adjustment in 

temperature, ambient pH and other factors including the addition or removal of certain bacterial species 

and the introduction or shortage of certain nutrients 59. 

 

2.4.1 Human Gut Microbiome 

The human gut microbiome is of particular interest to the scientific community as it can have 

major effects on the development and maintenance of the human body 60–64, with some studies reporting a 

direct relation between the health of a gut microbiome and the health of its human host 64. It’s believed 

that human foetuses have a sterile gut up until birth, when it is first colonized by microorganisms 
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originating from the mother 65 66, which can vary based on birth mode (caesarean or vaginal birth) 67. The 

gut microbiome then matures along with the infant human, being affected by the initial feeding regime, 

milk-based or formula-based diet, and achieving a stable adult configuration at around 3 years of age 63 67. 

The microbiome composition also varies based on geography 67. The most obvious effects of the gut 

microbiome over its host are those related to diet and weight. The diet of an individual directly affects its 

gut microbiome’s composition, and in doing so, the ability to digest certain nutrients may be hindered or 

gained 68–70. This disruption may cause some instability in the normal functioning of the intestine, which 

may lead to long term effects, such as obesity, and more instantaneous effects, such as nausea and 

vomiting, the latter being a common occurrence in intercultural tourists 68 71. In addition to these effects, 

the gut microbiome also greatly affects the immune system by stimulating its development and 

modulating certain immune pathways 55 72. The perturbation of the normal functioning of the gut 

microbiome is associated with dysregulation of the immune system, higher susceptibility to disease and 

may lead to autoimmune diseases 55. Prebiotics and probiotics both have similar effects on the gut 

microbiome, by allowing certain bacteria species to more easily grow or by introducing beneficial bacteria 

directly in the system 73 74. On the other hand, even though they are used to fight off prejudicial bacteria, 

antibiotics cause deeper disruptions by killing symbiotic bacteria, altering the bacterial makeup of the gut 

and allowing the proliferation of other opportunistic bacteria, especially when administering wide 

spectrum antibiotics 75 76. 

The bacterial composition of the human gut microbiome can be in one of three stable states, which 

are neither nation nor continent specific. These states, referred to as enterotypes, designate the group of 

bacterial genera which co-exist in equilibrium in the human gut, and are usually driven by one bacterial 

genus 77. Different enterotypes foresee different reactions of the individual to diet and antibiotics, and can 

be used to predict the existence of numerous disorders such as diabetes or colon cancer 77. An enterotype 

can also be disrupted by dietary changes, antibiotic administration, probiotics, prebiotics and other factors, 

but will always tend to recover if these abnormal situations are not too prolonged or drastic. Enterotypes 

are not a product of body weight, age or gender, but are instead driven by species composition, more 

specifically by the relative abundance of Bacteroides, Prevotella and Ruminococcus bacteria genera. 

 

2.5 Immune System 

The human immune system consists of several tissue groups, organ systems and specialized defence 

cells, which work together to protect the organism against foreign invaders and malfunctioning cells. The 

immune system can be divided in two separate but interconnected immune systems: The innate and the 

adaptive immune systems 78. 

The innate immune system works as a non-specific and non-adaptive first line of defence against 

outside pathogens by physically preventing access to the inside of the body or quickly eliminating those 

threats before they can cause perceptible damage if they manage to surpass the initial physical barriers 78. 

Epithelial surfaces make up the very first line of innate immune defences 78, the skin being the main 

physical barrier present in the human body, while any cavity connecting to the outside world - mouth, 

nose, anus, etc. - is lined with mucous membranes that incorporate antimicrobial proteins and other 

properties which help fight off potential infections. Other bodily secretions include acid from the skin, 

saliva, lacrimal fluid, stomach and vaginal secretions and mucus of the respiratory and digestive 

passageways. Inside the body, the internal innate immune system is composed of antimicrobial proteins 
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and, more predominantly, phagocytes, which indiscriminately and non-specifically ingest pathogens and 

foreign molecules 78. The phagocytes are further divided in to different types of cells, each one with 

different characteristics, but all aiming at identifying foreign intruders: Macrophages are long-lived and 

free to migrate from the bloodstream to the tissue to better fight off infections and can trigger 

inflammation of infected sites 78; Neutrophils ingest pathogens and die shortly after, creating pus in the 

process 78; Natural killer cells roam the body identifying and killing abnormal cells, including the body’s 

own infected or cancerous cells 78. Macrophages can trigger inflammation if the physical barriers are 

breached, by dispersing cytokines and chemokines 78. This reaction is caused locally due to this breach 

and causes vasodilation, increased temperature and metabolic rate of the local cells. When an infecting 

agent overruns the fighting phagocytes, a fever might be triggered, causing the whole body to react to a 

specific infection 78. 

The adaptive immune system, on the other hand, targets specific intruders and the host’s own 

infected or damaged cells while also keeping a record of previous infections 78. The cells of the adaptive 

immune system must be specifically introduced to pathogens before it attacks. This is the foundation of 

vaccination, which relies on the adaptive immune system to recognize attenuated or dead versions of a 

specific pathogen to build up a resistance 79. The adaptive immune system functions alongside the innate 

immune system while also regulating some aspects of it 78. The adaptive immune system is mainly 

comprised of B lymphocytes and T lymphocytes which are, respectively, involved in the humoral immune 

responses and the cell-mediated immune responses 78. 

The humoral immune response is based on antibodies and is performed by B lymphocytes, which 

roam the body in search of antigens. These lymphocytes possess two important characteristics: 

Immunocompetence, the ability to recognize and bind to specific antigens, and self-tolerance, the ability to 

recognize and not attack the body’s own healthy cells 78. These two characteristics are achieved by the 

existence of thousands of different antibodies bound to the lymphocyte’s membrane outer-surface. These 

antibodies differ between individual lymphocytes, which allows for the identification of a vast number of 

foreign molecules and pathogens. When an antigen binds to an antibody on the lymphocyte’s surface, it 

waits for a helper T cell to analyse the antigen 78. After the antigen is analysed and identified as a threat by 

the helper T cell, the lymphocyte starts multiplying and, in the process, transforms into either effector cells 

or memory cells. The memory cells keep a record of the identified antigen while the effector cells produce 

large quantities of the same antibody, which effectively marks the infecting agent for destruction. These 

antibodies, besides marking the pathogen, can prevent it from binding to other cells and, in higher 

numbers, can cause the agglutination of several pathogen cells, which facilitates its ingestion by 

macrophages 78. 

The cell-mediated immune response targets cells specifically, be it infected or cancerous cells. It is 

performed by T cells, which can be divided in to four main cell types: naïve T cells, cytotoxic T cells 

(CD8+ cells), helper T cells (CD4+ cells) and memory T cells 78. Naïve T cells, also referred to as 

precursor cells, are lymphocytes that have not yet identified foreign particles or pathogens, and therefore, 

have not yet transformed into one of the other types of cells. CD8+ cells, cytotoxic T cells, killer cells or, 

more commonly, effector cells, effectively eliminate the identified threat, be it foreign entities or the 

body’s own cells. CD4+ cells, helper T cells, regulate the overall innate and adaptive immune responses 

by analysing the antigens identified by B lymphocytes and other T cells and determining whether an 

immune response is necessary. Memory T cells are lymphocytes which preserve antigens of previously 

identified threats, so that responses to future infections can be more easily and quicker to trigger. For a 

cell-mediated immune response to occur a naïve T cell must first identify a Major Histocompatibility 
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Complex (MHC) receptor on a cell to be defective. For a MHC to be defective something must be 

affecting the cell, be it cancer, a viral infection or a bacterial infection. When this happens the naïve T cell 

begins multiplying and transforms into both cytotoxic T cells and memory cells 78. Helper T cells 

recognize this activity and start producing cytokines, which signal other T cells to multiply. The cytotoxic 

T cells induce apoptosis of the affected cells while memory T cells, once again, retain antigens of the 

identified pathogen so that, in a future infection, the immune response can be faster and more aggressive 

at clearing the infection 78. 

  

2.6 Self-limited Bacterial Infection 

Most human bacterial infections are self-limited due to the effects and performance of the human 

innate and adaptive immune systems 29 80. The application of antibiotics is usually used as a way to reduce 

the magnitude and duration of an infection in individuals with healthy immune systems, which means its 

purpose is not to completely eliminate an infection but instead to help the immune system do it 80. 

Immunosuppressed individuals are more susceptible to acute infections because they have to rely solely 

on manmade antibiotics to completely clear the infections. 

 

2.7 Chemostat 

A chemostat is an apparatus which allows a bacterial population to keep growing while staying 

within a stable concentration range 81–83. This is achieved by having a constant flow of nutrients into the 

bacterial suspension container and an equal constant flow of suspension out of the container, keeping the 

bacterial suspension homogenous and at a constant volume. The nutrient mixture is composed of all the 

necessary growth factors for the specific bacteria population. By modelling the chemostat it is possible to 

simulate a stable bacteria population in an environment like that of the human gut. The generic chemostat 

model is defined by the following two equations 82: 

Bacteria density (N)       (Equation 2.1) 

𝑑𝑁

𝑑𝑡
= 𝜓 ∙ 𝑁 ∙

𝐶

𝑄 + 𝐶
− 𝜔 ∙ 𝑁 

Nutrient density (C)       (Equation 2.2) 

𝑑𝐶

𝑑𝑇
= −𝜀 ∙ 𝜓 ∙ 𝑁 ∙

𝐶

𝑄 + 𝐶
+ 𝜔 ∙ 𝐶0 − 𝜔 ∙ 𝐶 

Bacterial density and nutrient density in the chemostat at any given time are represented by equation 2.1 

and equation 2.2, respectively. Bacteria growth rate is represented by ψ, multiplied by 
𝐶

𝑄+𝐶
, which is the 

Monod equation, composed by the nutrient density C and the half saturation constant Q. This models the 

growth of microorganisms in aqueous environments with a limiting nutrient, where ω is the flow rate of 

nutrients and ε is the nutrient quantity necessary for bacteria duplication. 
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2.8 Existing Software Solutions 

Software similar to SimulATe already exists, although not completely customizable in terms of 

parameters and, usually, not having the same goals in mind 84–88. All the software we analysed had one 

feature in common: all could be used to simulate the effects of antibiotic resistance, in some way. Some 

were even aimed at being used to teach the concept of antibiotic resistance, but none of those allowed for 

a great customization of the simulation. 

The most complex antibiotic resistance simulation we discovered was ARES, Antibiotic Resistance 

Evolution Simulator 89, which allows for the simulation of individual cell compartments and all the 

interactions between them, be it nutrients absorption, antibiotic effects, plasmid exchange and more. All 

elements of the simulation interact and evolve according to a set of predefined rules set by the user. While 

this allows for a great control over the simulation, it also imposes some hurdles to the more casual user, by 

requiring the setup of a cell’s internal structure. It is also not a real time simulation, so the user can’t 

follow the simulation along, only having access to the results when the simulation finishes running. This 

software is, therefore, a great tool for scientific work and could be used in conjunction with SimulATe, but 

not for the teaching of antibiotic resistance to students. 

Nowadays there are many video games with an antibiotic resistance related theme that can be 

effective teaching tools 84–86. They are more engaging to students and can be very useful if used in certain 

teaching scenarios, although very limited in scope and parameter customization. This prevents students 

from simulating distinct scenarios and testing their hypotheses regarding the expected outcomes of these 

simulations. 

Other unpublished software exists, written in scripting languages, which have limited scope and 

functionality but still aim at simulating antibiotic resistance in some form: 10-day Stochastic Simulation of 

E. coli Antibiotic Resistance 87 and Antibiotic Resistance Simulation 88.  
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3 Materials and Methods 

SimulATe was completely written using the Python 2.7.13 90 programming language and was 

developed primarily on a laptop running Windows 10 version 1607 through 1703 with a dual core 

processor and 8GB of RAM, while testing and debugging were mainly carried out on a machine running 

both Windows 7 SP1 and Ubuntu 16.04 with a quad core processor and 8GB of RAM. A MacBook, 

running MacOS Sierra with a dual core processor and 8GB of RAM, was used once to test and debug the 

program on MacOS systems. To help with code development, testing and debugging, we used PyCharm 

Community Edition Integrated Development Environment (IDE) version 2016.3 through 2017.1 91. 

 

3.1 Python Programming Language 

The Python programming language is a free and open source general-purpose programming 

language with a considerably large standard library. Python functionality can be further extended by using 

third party modules. SimulATe is dependent on one such third party module used in the design of the user 

interface, Kivy version 1.10.0 92, which is the backbone of the program. Another module was used during 

development to package SimulATe into a runnable executable on Windows systems, named PyInstaller 

version 3.2.1 93. 

 

3.2 Graphical User Interface Libraries 

Three graphical user interface libraries were deemed as suitable to be used in the development of 

SimulATe: 

• Kivy Framework 92 

• Pygame 94 

• Tkinter 95 

The Kivy Framework is a cross platform python library used for the development of application 

graphical user interfaces. It allows the creation of a user interface composed of different containers called 

layouts. These layouts can in turn contain other layouts and various general user interface elements, called 

widgets, such as buttons, sliders and text fields. Every element is a python class and can, therefore, be 

extended to have any functionality the developer desires. Furthermore, Kivy has its own layout design 

language which simplifies the application layout design development by streamlining the process of 

implementing the classes mentioned above. 

The Pygame library is aimed at game development, and although it is not specifically designed for 

the implementation of user interfaces, it could be used to do so, albeit requiring a longer development time 

and much more code due to the lower level application programming interface (API). Kivy even depends 

on Pygame for some specific functionality but possesses the added benefits of being specifically designed 

for user interface development by having a whole collection of pre-defined widgets and behaviours readily 

available to the developer. 



14 

 

Tkinter is the standard python graphical user interface design package. It is similar to Kivy in many 

ways, although much older, and was set aside mainly because of the old look and feel of the widgets and 

graphics it provides. 

Ultimately, we ended up selecting Kivy as the library with which to develop SimulATe’s user 

interface as it includes many built-in widgets and is relatively easy to learn and use. Kivy, akin to Python, 

also supports third party extensions. SimulATe makes use of one such package, the graph package 96, 

which defines custom widgets designed to display various kinds of plots and graphs generated in real time. 

Matplotlib 97 is a very comprehensive python-plotting library, and was considered as the API for the 

development of the graph generating capabilities of SimulATe, but the graph package was selected instead 

for its simplicity and seamless integration with the Kivy Framework. 

 

3.3 Equations 

SimulATe is a mathematical based simulation program and, therefore, makes use of several 

mathematical equations which include bacterial density, immune system dynamics, antibiotic dynamics 

and nutrient consumption equations. All equations used to define the bacteria-antibiotic-immune system 

interactions were based on a study by Erida Gjini and Patricia Brito 26. Their differential equations were 

converted in difference equations, which are the discrete-time analogues of differential equations, using 

the Euler method. This is done as follows: Consider quantity 𝑋 is governed by 
𝑑𝑋

𝑑𝑡
= 𝑓(𝑋, . . . ). This is 

then changed towards 
𝛥𝑋

𝛥𝑡
= 𝑓(𝑋, . . . ) => 𝛥𝑋 = 𝑓(𝑋, . . . ) ∙ 𝛥𝑡. But 𝛥𝑋 = 𝑋(𝑡 + 𝛥𝑡) − 𝑋(𝑡). Therefore, 

the difference equation becomes:  𝑋(𝑡 + 𝛥𝑡) − 𝑋(𝑡) = 𝑓(𝑋, . . . ) ∙ 𝛥𝑡  or  𝑋(𝑡 + 𝛥𝑡)  =  𝑋(𝑡)  +

 𝑓(𝑋, . . . ) ∙ 𝛥𝑡. The equations are the following: 

  Bacteria density (B)       (Equation 3.1) 

𝐵(𝑡 + 𝛥𝑡) = 𝐵(𝑡) + (𝑟𝐵(𝑡) − 𝑑𝐵(𝑡)𝐼 − 𝛿𝐵(𝑡)𝜂(𝑡)𝐴ₘ(𝑡)) ∙ 𝛥𝑡 

This equation yields a new bacteria density for a given time step, where 𝑡 is time, 𝛥𝑡 is change in time, 𝑟 

is the growth rate of the bacteria, 𝑑 is the rate at which lymphocytes inhibit the bacteria, 𝐼(𝑡) is the 

number of total immune cells, 𝛿 is the rate at which antibiotic inhibits the bacteria, 𝜂(𝑡) is the rate at 

which antibiotic is consumed and 𝐴ₘ(𝑡) is the mean antibiotic concentration on the environment. 

Naïve precursor cells density (N)     (Equation 3.2) 

𝑁(𝑡 + 𝛥𝑡) = 𝑁(𝑡) +
−𝜎𝑁(𝑡)𝐵(𝑡)

𝑘 + 𝐵(𝑡)
∙ 𝛥𝑡 

This equation yields a new naïve precursor cell density for a given time step, where 𝜎 is the maximum 

proliferation rate of the immune cells and 𝑘 is the bacteria density at which the immune response grows at 

half its maximum rate, all other parameters are already defined in Equation 3.1. 

Effector cells density (E)      (Equation 3.3) 

𝐸(𝑡 + 𝛥𝑡) = 𝐸(𝑡) + ((2𝜎𝑁(𝑡) + 𝜎𝐸(𝑡))
𝐵(𝑡)

𝑘 + 𝐵(𝑡)
− ℎ𝐸(𝑡) (1 −

𝐵(𝑡)

𝑘 + 𝐵(𝑡)
)) ∙ 𝛥𝑡 
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This equation yields a new effector cells density (CD8+ cells) for a given time step, where ℎ is the 

maximum decay rate of effector cells. 

 Memory cells density (M)      (Equation 3.4) 

𝑀(𝑡 + 𝛥𝑡) = 𝑀(𝑡) + (𝑓𝐸(𝑡)ℎ (1 −
𝐵(𝑡)

𝑘 + 𝐵(𝑡)
)) ∙ 𝛥𝑡 

This equation yields new memory cells density for a given time step, where 𝑓 is the fraction of effector 

cells which convert to memory cells. 

 Antibiotic uptake (𝜂)       (Equation 3.5) 

𝜂(𝑡) = { 
1 𝑖𝑓 𝑡₁ <= 𝑡 <= 𝑡₁ + 𝑡₂
0 𝑖𝑓 𝑡 < 𝑡₁ 𝑜𝑟 𝑡 > 𝑡₁ + 𝑡₂

 

For the classic treatment case, where 𝑡₁ is the start of antibiotic treatment and 𝑡₂ is the treatment duration, 

or 

Antibiotic uptake (𝜂)       (Equation 3.6) 

𝜂(𝑡) = { 
1 𝑖𝑓 𝐵(𝑡) ≥ 𝛺
0 𝑖𝑓 𝐵(𝑡) < 𝛺 

 

for the adaptive treatment case, where 𝛺 is the defined bacteria density threshold. Both these equations 

yield the state of the antibiotic administration at each time step as a Boolean value, either 0 (antibiotic is 

being administered) or 1 (no antibiotic is being administered). 

Equations pertaining to each microbiome’s individual genus growth dynamics were based on the 

chemostat equations (equation 2.1 and equation 2.2), and were used as a way to simulate all the different 

factors that are present when a bacteria population grows in the human gut, be it the interaction with other 

bacteria, the flow of nutrients through the gut, the effect of the immune system, the natural growth rate of 

the bacteria and more. These were defined as follows: 

Nutrient concentration (C)      (Equation 3.7) 

𝐶(𝑡 + 𝛥𝑡) = 𝐶(𝑡) + ((𝜔𝐶₀ − 𝜀𝑟𝐵(𝑡) ∙
𝐶(𝑡)

𝑄 + 𝐶(𝑡)
) − 𝜔𝐶(𝑡)) ∙ 𝛥𝑡 

This equation yields a new nutrient concentration for a given time step, where 𝜔 is the rate of nutrient 

flow through the system, 𝐶₀ is the initial nutrient concentration and 𝑄 is the half saturation constant, 

which allows 
𝐶

𝑄+𝐶
 (Monod equation) to be equal to 

1

2
 when 𝑄 = 𝐶. 

Microbiome bacteria density (𝐵𝑚)     (Equation 3.8) 

𝐵𝑚(𝑡 + 𝛥𝑡) = 𝐵𝑚(𝑡) + (𝑟𝐵𝑚(𝑡) ∙
𝐶(𝑡)

𝑄 + 𝐶(𝑡)
− 𝜔𝐵𝑚(𝑡) −  𝑑𝐵𝑚(𝑡)𝐼(𝑡)  −  𝛿𝐵𝑚(𝑡)𝜂(𝑡)𝐴ₘ(𝑡)) ∙ 𝛥𝑡 

This equation is a modified version of the bacteria density equation (Equation 3.1) which yields the 

density of a bacteria belonging to a microbiome, differing on the implementation of the nutrient 

consumption and nutrient availability. 
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Nutrient quantity necessary for bacteria duplication (ε)   (Equation 3.9) 

𝜀 =
𝐶₀(𝑟 − 𝜔) − 𝑄𝜔

𝐵𝑠(𝜓 − 𝜔)
 

This equation yields the nutrient quantity necessary for a bacterium to duplicate, where 𝐵𝑠 is the density at 

which a bacteria population is stable in the microbiome, where there is no immune system. 

 All parameters and default values used and obtained by the preceding equations are described in 

the table below in brief: 

 

Table 3.1 Parameters and default values. 

Short description, default value, range and unit of every parameter used in the preceding equations. 

 

Symbol Description 
Default 

Value 
Range Unit 

B(0) 
Initial antibiotic sensitive bacterial density (Bs) 10 

1 - 100 cell/μl 
Initial antibiotic resistant bacterial density (Br) 2 

N(0) Initial naïve precursor cells density 200 0 - 1500 cell/μl 

E(0) Initial effector cells density 0 fixed cell/μl 

M(0) Initial memory cells density 0 fixed cell/μl 

𝜂(0) Initial antibiotic uptake 0 0 or 1 - 

C(0) Initial nutrient concentration 100 fixed mg/l 

ε Nutrient quantity necessary for bacteria duplication varied 0 - ∞ μg 

𝐵𝑚(0) Initial microbiome bacteria density varied varied cell/μl 

r 
Antibiotic sensitive bacteria growth rate (rs) 3.3 0.1 – 8.0 

day−¹ 
Antibiotic resistant bacteria growth rate (rr) 1.1 0.1 - rs 

d Bacteria lymphocyte inhibition 10−5 10−5 - 10−4 μl/cell/day 

I Number of total immune cells varied 0 - ∞ cell/μl 

𝛿 

Antibiotic sensitive bacteria antibiotic inhibition 

(𝛿s) 
1 0 - 1 l/mg/day 

Antibiotic resistant bacteria antibiotic inhibition (𝛿r) 0.1 0 - ds l/mg/day 

𝐴ₘ Antibiotic mean concentration 6 1 - 120 mg/l 

𝜎 Immune cells’ maximum proliferation rate 2 1.2 – 3.0 day−¹ 

k 
Bacteria density at which the immune response 

grows at half its maximum rate 
105 104 - 105 cell/μl 

h Effector cells’ maximum decay rate 0.35 0.1 – 0.8 day−¹ 

f 
Fraction of effector cells which convert to memory 

cells 
0.1 0.05 – 0.10 - 

𝑡₁ Start of antibiotic treatment 3.5 1 - 15 day 

𝑡₂ Treatment duration 7 3 - 15 day 

𝛺 Bacteria density threshold 106 103 - 107 cell/μl 

𝜔 Rate of nutrient flow 0.1 fixed day−¹ 

Q Half saturation constant 5 fixed - 

𝐵𝑠 Stable bacteria density in the microbiome varied 0 - ∞ cell/μl 
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Most parameters preserve their default values and ranges from the original source study 26, but some were 

changed to allow for more realistic or broad ranged simulation scenarios. The initial naïve precursor cells 

density range was the changed from 15-1500 to 0-1500 to allow the exclusion of the immune system from 

the simulation, this way scenarios without the effects of the immune system can be simulated, including 

non-human in vitro cultures or conditions. The range of the antibiotic mean concentration was also 

changed, from 0.03-128 to 1-120, to allow for better selection of a value in the user interface by removing 

the decimal values. 

  

3.4 Bacteria Dataset 

We asked the authors of the Enterotypes of the human gut microbiome paper 77 for the dataset 

generated in the study with the objective of obtaining the relative frequencies of the bacteria available on 

the average human gut microbiome, and they kindly obliged. We filtered the available Sanger sequence 

data for the top ten most abundant bacteria genera available for each enterotype, excluding unidentified 

genera. We then calculated the relative frequency of each of the top ten genera. We obtained the bacteria 

genera depicted in the following table: 

 

Table 3.2 Most abundant bacteria genera per enterotype. 

Top ten most abundant bacteria genera per enterotype. Relative frequency calculated from the raw Sanger sequence dataset 

generated for the study ‘Enterotypes of the human gut microbiome’  77, as kindly provided by its main author Arumugam M. 

 

Enterotype 1 Enterotype 2 Enterotype 3 

Genus 
Relative 

Frequency 
Genus 

Relative 

Frequency 
Genus 

Relative 

Frequency 

Bacteroides 0.579311132 Prevotella 0.514100163 Bacteroides 0.25850528 

Faecalibacterium 0.116691419 Bacteroides 0.159122669 Bifidobacterium 0.157105162 

Roseburia 0.083290084 Faecalibacterium 0.077149738 Faecalibacterium 0.144911601 

Bifidobacterium 0.062349593 Lachnospiraceae 0.07068057 Lachnospiraceae 0.091303254 

Lachnospiraceae 0.046407791 Roseburia 0.046132131 Alistipes 0.090955237 

Parabacteroides 0.032297551 Collinsella 0.038162789 Akkermansia 0.058831694 

Alistipes 0.022191181 Bifidobacterium 0.025532778 Ruminococcus 0.055381611 

Anaerostipes 0.020859591 Alistipes 0.024677992 Collinsella 0.050654524 

Acidaminococcus 0.020827165 Streptococcus 0.023139472 Blautia 0.045579416 

Collinsella 0.015774493 Coprococcus 0.021301699 Roseburia 0.046772221 
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4 Implementation 

SimulATe contains in its graphical user interface a parameters and options configuration section, a 

graph section and a flow control section. The parameters and options configuration section allows the 

user to set a variety of parameters and options, mostly directly associated with the previously described 

equations, the graph section is where the simulations run in real time and the flow control section is a set 

of widgets that allows the user to start/pause/restart and control de speed of the simulation. This layout 

was implemented by making use of the Kivy Framework while the backend was written as a combination 

of python classes and standalone functions. 

 

4.1 Program Layout 

When running SimulATe, an initial screen is loaded which allows the user to change between the 

two available simulation scenarios - Single Population or Microbiome - by clicking the Scenario button; 

change between display languages - English or Portuguese - by clicking the Language button; or save 

useful data regarding the current simulation such as plot points, the options used and the current graph as 

an image, by clicking the Save button. Simulation flow control buttons are also displayed at the bottom of 

the window but are disabled until a simulation scenario is selected (Figure 4.1). 
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Figure 4.1 Initial program screen. 

First screen that loads when SimulATe is executed, containing the scenario selection and the language selection buttons 

alongside the disabled flow control buttons. 

 

From this point forward, the user will be presented with one of two relatively similar user interfaces, 

depending on the selected simulation scenario, which are both divided into 3 main sections: Parameters 

and Options, Graphs and Simulation Flow Control. 

The Parameters and Options panel is located on the left-hand side of the user interface. It is a 

scrollable panel as there are a lot of parameters and options available in both scenarios, thus we 

determined that being able to scroll through the panel was the best approach to take which would allow us 

to preserve readability and graphical user interface space while still being able to show every parameter 

and option. Most of the differences between the layout of both scenarios occur on the parameters and 

options panel, which are further described on chapters 4.1.1 and 4.1.2. 

The Graph sections of both scenarios are mostly identical. Located on the right-hand side of the 

user interface, this section is where the simulation output is represented in graph form (Figure 4.2). 
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Figure 4.2 Graph section of both scenarios. 

The graph section, in scenarios a) and b), consists of two graphs: A top graph representing densities of resistant and sensitive 

bacterial cells as well as immune system cells, in the single population scenario (a), and relative frequency of each bacteria in the 

microbiome scenario (b), both plotted in a linear x-axis and a logarithmic y-axis. The bottom graph, in scenarios a) and b), 

represents antibiotic concentration and is plotted in a linear x- and y-axis. The x-axis represents time for both graphs. The 

example plot a) is the result of running the simulation with default parameters and the classic treatment type, while plot b) is the 

result of running the simulation for the Gut Enterotype 1 with default antibiotic resistance values and the arbitrary administration 

of antibiotics through the course of a 25-day period until complete intestinal dysbiosis. 

 

Two graphs are always present in each scenario: A top graph which represents cell densities on the single 

population scenario and the relative frequency of each bacteria on the microbiome scenario, while the 

bottom graph represents the antibiotic concentration for both scenarios. On the top graph, up to 4 plots can 

occur during a single population scenario simulation: both antibiotic resistant and sensitive bacteria plots, 

a plot representing the total bacteria density and the immune system plot. On a microbiome scenario 

simulation, up to ten plots can occur, one for each bacteria genus of the selected enterotype. The bottom 

graph always shows just the antibiotic concentration plot, although on the microbiome scenario up to 8 

antibiotic concentration plots can be active at the same time. All these plots have predefined colours, each 

corresponding to a certain group of parameters in the parameters and options panel (refer to Figure 4.3 and 

Figure 4.4). All axes expand automatically when a plot reaches the limits of the graph, allowing the plots 

to be completely visible at any time. The x-axis of both the top and bottom graphs are synchronized and 

will expand equally as the simulation progresses. The y-axis of the top graph is represented in a 

logarithmic scale while the bottom y-axis is represented on a linear scale. The top graph, in the single 

population scenario, also shows a white line representing the host death density parameter whenever the y-

axis expands enough to be able to show the defined value. 

The flow control section of the program, as stated before, is located at the bottom of the user 

interface. This section is comprised of a Start, Pause and Restart button, which execute the expected 

operations of starting the simulation with the currently defined parameters and options, pausing/continue 

the simulation, and restarting the simulation, i.e., preparing the simulation for a new run. A slider is also 

                                                                                                        a)                                                                                                               b) 
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available which allows the speed of the simulation to be changed. The flow control buttons are exactly the 

same in both scenarios and have the same exact functionality. 

 

4.1.1 Parameters and Options: Single Population Scenario 

The parameters and options panel for the single population scenario is depicted in Figure 4.3. This 

panel allows the user to configure all parameters as well as several other available options, most of which 

are directly tied to parameters from the equations described in chapter 3.3, through the use of sliders. At 

the top of the panel the options available on the initial user interface screen are still visible, allowing the 

user to change scenario, language or save simulation data. Below these options are five groups of 

parameters, each group with an assigned colour which directly corresponds to a plot on the graph, 

doubling as a plot legend. All parameters are predefined to a default value as featured on Table 3.1. The 

first group corresponds to parameters related to antibiotic sensitive bacteria, represented by the colour 

green. Its parameters, Initial Density, Growth Rate and Antibiotic Inhibition, which correspond to the 

initial bacteria density (Bs), its growth rate (rs) and the inhibition caused by antibiotics (ds) respectively, 

are identical to the next group of parameters, which are related to antibiotic resistant bacteria (Br, rr and 

dr), represented by the colour red, albeit different initial default values and upper limits of some 

parameters. The third group of parameters is a special group as it does not define a real entity in the 

program. It is a group which contains two parameters shared by both antibiotic sensitive and antibiotic 

resistant bacteria. Those parameters are Lymphocyte Inhibition and Host Death Density, the first being the 

non-specific immune system inhibition of the bacteria population (d) and the second represents an 

arbitrary bacteria density threshold that causes the death of the host, not directly related to any equation 

parameter. This group is represented by the colour grey and corresponds to a plot on the graph that allows 

the user to check the total bacteria density - antibiotic sensitive plus antibiotic resistant bacteria - at a 

glance. The fourth group of parameters corresponds to the immune system and is represented by the 

colour blue. It is comprised of 5 parameters which govern the dynamics of the immune system. The first 

parameter, Initial Precursor Cell Density, allows the user to set the initial density of the immune system 

(N) and disable the immune system by setting a value of 0, which is a method of simulating the absence of 

an immune system in non-animal environments. The following parameter, Proliferation Rate is the rate at 

which the precursor cells transform into effector cells (𝜎). The Half Maximum Growth parameter 

represents the bacteria density at which the immune response grows at half its maximum rate (k), i.e. the 

pathogen density at which the proliferation of precursor immune cells into effector cells is half of its 

maximum. The Effector Cells Decay Rate is the rate at which effector cells die (h) and, lastly, Memory 

Cells Conversion represent the fraction of effector cells that convert into memory cells per day (f). The 

fifth and last group of parameters corresponds to the antibiotic and is represented by the colour blue. It 

consists of the parameter Mean Concentration which represents the average antibiotic concentration 

during treatment in milligrams per litre (𝐴ₘ), and the Treatment Type toggle buttons, which allow the user 

to select the type of treatment to be applied (𝜂). There are three treatment types available, the Classic and 

Adaptive, as defined in the study by Erida Gjini and Patricia Brito 26, and a the User treatment type, 

defined by us. When selecting a treatment type, new related parameters become available as can be seen 

on the right-hand side of Figure 4.3. Delay and Duration are the two parameters available in the Classic 

treatment type, which represent both the number of days between the start of the infection and the 

beginning of treatment (𝑡₁), and the number of days the patient is under antibiotic treatment (𝑡₂), after the 
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initial delay. In the Adaptive treatment type there is only one parameter, Symptoms at Density, which 

represents the threshold of bacteria density at which symptoms occur and antibiotic is applied to the 

system (𝛺). The User treatment type allows the user to administer antibiotic at will, by pressing a single 

ON/OFF button. At last, at the bottom of the panel is a button named Default Values which allows the user 

to reset every parameter to its initial default value. 
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Figure 4.3 Parameters and Options panel of the Single Population scenario. 

The parameters panel for the single population scenario is organized in sections. The first section at the top is composed of 

buttons and drop-down menus akin to the File menu in most computer programs. The following sections contain all the available 

parameters with which to configure the simulation, each section represented by a colour which corresponds to a single plot line 

in the graph. The Antibiotic section presents different options depending on the type of treatment selected, shown on the right. At 

the bottom of the panel is a button named “Default Values” which allows the user to reset every parameter to its default initial 

value. 

  

4.1.2 Parameters and Options: Microbiome Scenario 

The parameters and options section for the microbiome scenario is similar to the single population 

scenario as it is divided in groups, albeit different parameters and options (Figure 4.4). Below the menu 

buttons at the top of the panel is the gut enterotype selection button which allows the user to select one of 

the three available human gut enterotypes. This is the only available button at first and all the remaining 

parameters and options, because they are related to a specific enterotype, only make themselves available 

after an enterotype is selected. After selecting an enterotype, more parameters and options become 

available below the enterotype selection button, starting with the Antibiotic Inhibition group of parameters 

which includes ten buttons, one for each bacteria genus of the current selected enterotype. Each of these 

buttons has an associated colour which relates to the plot on the graph and, when pressed, spawns a new 

set of sliders which allow the user to set the individual antibiotic resistance for each antibiotic. Each slider 

has a predefined value by default which was randomly generated. No value representative of reality was 

used here because these values could change drastically between individual humans. However, these can 

be updated with values better resembling reality in case an antibiogram is generated for one of the 

available bacteria, for example, in a personalized medicine treatment approach. At the bottom of the set of 

antibiotic resistance sliders is a button which resets the values back to their original default values. The 

next group of parameters, named Antibiotic Concentrations, allow the user to set each antibiotic 

concentration independently of the other antibiotics by using its respective slider and administer each 

antibiotic individually by using its respective ON/OFF button. Each of these antibiotics has an associated 

colour representative of it respective plot in the graph and will affect each bacteria genus differently 

depending on the set antibiotic resistance value. At the end of the panel are two buttons, which allow the 

user to reset both the antibiotic concentration and the administering status of all antibiotics 

simultaneously. 
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Figure 4.4 Parameters and Options panel of the Microbiome scenario. 

The parameters panel for the microbiome scenario is also organized in sections. The first section at the top corresponds to the 

menu buttons exactly as it appears in the single population scenario. The following sections allows the user to select the active 

enterotype which, when selected, will load its corresponding options below it. The next section encompasses all ten available 

bacteria genera for the selected enterotype and allows the user to specify each antibiotic resistance for each genus individually. 

The last section contains all antibiotics available for use along with a slider to set its concentration and a button to activate each 

antibiotic. At the bottom of the panel is a set of buttons, “Stop Administration” and “Default Concentrations”, which allow the 

user to reset both the antibiotic concentration and the administering status of all antibiotics at once. 

 

4.2 Code Structure 

Code and resource files of SimulATe were organized in a folder structure, as pictured on Figure 4.5. 

 

 

Figure 4.5 Folder structure of SimulATe’s code and resource files. 

All code, image files and text strings purposely developed for SimulATe are represented here. 
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The root directory – SimulATe folder - has two folders and an assortment of different files: The 

.gitignore file is related to the version control system (VCS) used, git 98; the LICENSE and README files 

are both informative to the user as they describe both the license under which SimulATe is released as well 

as general information on how to install and run the program, the latter is intended to be used as the partial 

front page of the GitHub online repository of the program alongside the screenshot.png; both 

pyinstaller_build_for_mac.sh and pyinstaller_build_for_windows.bat files are used to build executable 

versions of SimulATe for MacOS and Windows system; install_dependencies.py is a python script used to 

install all the necessary dependencies needed to run SimulATe; the SimulATe.pyw script is the entry point 

of the program, i.e., it is the file the user should run to start SimulATe; the wiki images folder contains a 

variety of images and screenshots of SimulATe which are used exclusively on the wiki of the program, 

hosted online at the same GitHub repository. The remaining bin folder is where almost all the code is 

located. 

The bin folder contains four folders, two .py files and one .txt file: The options.txt file is where 

SimulATe checks for saved configurations, in this case, the last language set by the user; the __init__.py is 

a python file that marks the current folder as a python package and enables python scripts within it to be 

used inside other python scripts via importing; the global_variables.py is the script that initializes most of 

the custom classes implemented for this program as well as other functions, specifically, it loads the text 

strings related to the selected language, initializes the necessary bacteria, antibiotics and immune system, 

initializes some extra plots and appends those to the main graph area. The four folders contained in bin are 

described in the following subchapters. 

 

4.2.1 classes folder 

This folder contains four classes, two related to bacteria, Bacteria.py and Microbiome.py, and the 

other two related to antibiotics, Antibiotic.py and AntibioticAssortment.py. The Bacteria.py and 

Antibiotic.py classes are intended to represent both individual bacteria and antibiotics respectively and are 

very similar, in that their instances are initialized with a name, a colour and a plot object and both have get 

methods that allow access to most of the initialized properties. Microbiome.py and 

AntibioticAssortment.py on the other hand are intended to represent groups of bacteria – microbiomes - 

and groups of antibiotics, respectively, and are also very similar, as instances of these classes initialize and 

maintain a group of bacteria or antibiotics respectively, create the graph section where every respective 

plot will be shown in the main program and initialize functions that detect when to expand the graph axes. 

Both classes also implement get methods for most of the initialized properties. 

 

4.2.2 deps folder 

This folder contains some third-party code dependencies needed for the graph generation capabilities 

of SimulATe. The kivy_graph folder contains the graph Kivy module, which implements a widget that can 

generate a variety of different plots and graphs and. Although most dependencies should already be 

installed before attempting to run the program, this dependency is explicitly included because the 

garden.bat file used to run the Kivy modules installer crashes when trying to launch from directories with 
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names that include white spaces. This has already been fixed on the project’s GitHub page, but, as of the 

time of this writing, it was still not included in the main repository used when downloading Kivy, this 

means that the average user would still download the affected version and thus SimulATe might not be 

able to run. To avoid this problem, we decided to directly include the graph module with the SimulATe. 

 

4.2.3 functions folder 

This folder contains three scripts and a __init__.py file. The equations.py script contains all the 

equations discussed in chapter 3.3 implemented as python functions which simply return a value 

calculated from the inputted parameters. It also contains a couple of functions which calculate all the 

necessary equations simultaneously for a certain time step of a simulation. The graphs.py script includes a 

single function which implements the logic behind the expansion of the axes of the graph when a plot 

reaches its limits. Lastly, the helper_functions.py script implements two classes used in multiple places 

around the whole code. The first class, NewColor, generates non-overlapping colours for all bacteria and 

antibiotics. This class was implemented initially as way to get new randomly picked colours every time 

the program was started, but that was deemed as too confusing for users. Now a seed is set in the random 

generator so that, every time the program initializes, the same colours are generated. The second class, 

XMLTextParser, is a XML parser which analyses and extracts text strings from the language defining 

XML file. This parser is used at the program start to set the initial language and every time the user 

changes language. 

 

4.2.4 ui folder 

This folder contains five .kv files, a python file, a XML file, an icon and a __init__.py. The icon is just 

an image used as the program icon. The text.xml file contains all the text strings used by the program in 

two different languages. The .kv files are kv language files, a file structure parsed by Kivy, which define 

the program user interface. The dynamic_classes.kv defines general classes while the remaining .kv files 

make use of those classes to define the user interface layout and some function calls and user interface 

elements interaction logic. Lastly, the ui.py script is the main backbone of the program as it implements 

most of the main user interface classes used, initializes and keeps track of an enormous amounts of 

variables and defines most of the functions which characterize the interactivity and overall use of the 

program. 

 

4.3 Hindrances During Development 

During the development of SimulATe we came across a few issues. The first issue, which happened 

earlier in development, is related to the model of bacteria growth and interaction used. At first, we pursued 

the use of an agent based model 99 as the basis of our simulation instead of the mathematical based model 

that is now part of SimulATe. This earlier model consisted of a matrix of squares – agents - which would 

either be empty or inhabited by different bacteria populations. These bacteria could then grow to the 

adjacent squares or shrink by abandoning squares. We eventually deemed this approach not suitable for 
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the kinds of simulations we wanted to perform because we would need to implement a lot more 

characteristics of the simulation pertaining to the inherent 2D space of the simulation, than when 

compared to a mathematical based simulation. 

Another issue we found was the fact that there was a lack of data regarding the duplication rate of 

the bacteria we wanted to simulate (refer to Table 3.1). We associated this lack of information to the type 

of bacteria in question: symbiotic human gut bacteria. Researchers tend to analyse the human microbiome 

as a whole and not each species or genus individually, which does not provide the individual growth rates 

for each species or genus. Also, most bacteria in the human gut are symbiotic and non-threatening to the 

human health, therefore there is not much interest in studying them when compared to other pathogenic 

bacteria. We tried to overcome this problem by making use of a tool called Growthpred 100, which tries to 

predict growth rates by analysing codon usage bias in the bacterial genomes, but we quickly found out that 

this tool required a data set of highly expressed genes in order to obtain a growth rate prediction, 

information which was virtually non-existent for the bacteria we wanted analysed. 

 

4.4 Testing 

SimulATe was tested primarily on a Windows machine with subsequent testing done on a Linux and 

a MacOS machine, as stated in the Materials and Methods chapter. Code testing was performed manually 

and through the use of the testing and debugging functionality of the chosen IDE, PyCharm. The usability 

of the program was tested by having volunteers use the program for the first time without prior knowledge 

of its functionalities. Questions, reactions and time lost in trying to understand the layout of the program 

were taken into account and helped to further develop the program.  
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5 Results 

To overcome the limitations imposed by existing software-based learning and simulation tools related 

to antibiotic resistance we developed SimulATe, a computer program that simulates the effect of antibiotic 

therapy on bacterial populations and the role of antibiotic resistance on the sustainability of bacterial 

communities in the human gut. SimulATe allows the simulation of: a) bacterial growth under the effect of 

an antibiotic and the immune system; b) different antibiotic treatment protocols; c) the disruption of the 

human gut microbiome caused by the administration of antibiotics among those that are more commonly 

prescribed for human health. SimulATe runs these simulations in real time and allows a wide range of 

parameter configuration. SimulATe can be applied in developing the scientific literacy and skills of 

students and to explore the learning goals defined in the official Portuguese school programs for: 6th grade, 

Natural Sciences curriculum, when the appropriate use of antibiotics is taught; 9th grade, Natural Sciences, 

when the concept of antibiotic resistance is introduced and related to the misuse of antibiotics; 11th grade, 

Biology and Geology, when natural selection and artificial selection is introduced; 12th grade, Biology, 

when immunity is disease control is taught 34 35 101 102. We also developed an educational activity that 

makes use of SimulATe aimed at 9th grade students (Appendix B). This activity aims at developing 

scientific skill, critical thinking and engage students in scientific debates related with the misuse of 

antibiotics and the increase of antibiotic resistance. It also aims at fostering students’ engagement and 

their active role in finding and implementing solutions to reduce the problem of bacteria resistance. 

To better represent the range of situations this program can be used to simulate we performed some 

exemplifying simulations, described in the following subchapters. 

  

5.1 Usage Cases 

All usage cases were simulated using SimulATe. The final graphs were modified to include a small 

plot legend, better alignment of the values on the axes and the removal of the background colour. 

  

5.1.1 Single Population Scenario Usage Cases 

The first example, related to the first simulation scenario, represents the dynamics of a human gut 

infected by a regular pathogenic bacterial population and its interaction with the host’s immune system - a 

self-limited bacterial infection - which corresponds to the default program parameters without any kind of 

treatment. 
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Figure 5.1 Dynamics of the infection by a bacterial population (self-limited bacterial infection). 

Simulated dynamics of the infection by a regular bacterial population, consisting of both antibiotic sensitive (green) and 

antibiotic resistant (red) individuals, and its interaction with the immune system (blue) in a virtual human body environment. 

Values on the x-axis represent time measured in days since the beginning of the infection and values on the y-axis represent the 

density of both bacterial and immune system cells, measured in cells/μl. To obtain this graph, parameters in the SimulATe 

application were set to their default values and no treatment was selected (User Treatment set to OFF). 

 

The infection starts at time 0 and the bacterial population, which includes antibiotic sensitive and 

antibiotic resistant sub-populations, begins to grow exponentially. Shortly after the first day of infection, 

the immune response is triggered. Six days after the start of the infection the bacteria reaches its peak 

density and starts to quickly succumb to the immune system, and at day 8 the infection is eliminated. 

 The second example compares the effect of a normal antibiotic therapy against the effect of the 

early termination of that same therapy.  
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Figure 5.2 The effect of the early termination of antibiotic therapy. 

Effects of the administration of an arbitrary antibiotic (purple). The top graph, for both a) and b), represents the same bacterial 

populations, immune system and axis as in Figure 5.1. The bottom graph’s x-axis, for both a) and b), represent time measured in 

days since the beginning of the infection and values on the y-axis represent concentration of antibiotic in mg/L. In both a) and b) 

the antibiotic is administered at a concentration of 6 mg/L starting 3.5 days after infection. To obtain these graphs, parameters in 

the application were set to their default values, the classic treatment was selected, and the duration parameter was set differently 

for each scenario (a=7, b=3). In all cases, the simulation stops when both bacteria reach a density of 0. 

 

Both infections are treated with the same antibiotic. In the case of Figure 5.2a) the antibiotic treatment is 

taken until the end (7 days), resulting in a light infection, which causes the elimination of the antibiotic 

a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

b) 
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sensitive bacteria while the antibiotic resistant bacteria are eliminated solely by the immune system 

around ten days after. The total bacteria density never reaches a very high value. In the case of Figure 

5.2b) the therapy is interrupted earlier, after just 3 days. This causes the infecting bacteria to reach higher 

densities and, thus, can possibly cause death of the host. In case the host survives, the infection is cleared 

much faster than Figure 5.2a) because the immune system is much more stimulated by the high levels of 

bacterial cells. This is an example of the most frequent case of antibiotic misuse, according to the ECDC 
44, which is the cessation of the antibiotic therapy as soon as the symptoms disappear. 

 The third example addresses the effect of the delayed start of antibiotic treatment. 
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Figure 5.3 Effect of the delayed start of the antibiotic therapy. 

Comparing the delayed versus “normal” start of the antibiotic therapy. The same bacterial populations, immune system and axis 

present in Figure 5.2 are also represented here. In a) treatment starts 3.5 days after infection and the treatment has a duration of 

5 days (the full extent of the treatment is represented in a dashed line). In b) the treatment is delayed by just half a day and, with 

the same 5-day duration as in a). To obtain these graphs, parameters in the application were set to their default values except for 

the antibiotic mean concentration, which was set at 20 mg/L. The classic treatment was selected with a duration of 5 days and the 

delay parameter was set differently for each scenario (a=3.5, b=4). In all cases, the simulation stops when both bacteria reach a 

density of 0. 

 

Both antibiotic therapies have the same duration but start at slightly different times. In Figure 5.3a) the 

treatment starts at three and a half days after infection and is enough to fight off the infection. In Figure 

a) 

 

 

 

 

 

 

 

 

 

 

 

 

b) 
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5.3b) with just a half day of delay when compared to Figure 5.3a), the infection is able to survive the 

treatment, causing a resurgence of antibiotic resistant bacteria a few weeks later, which rise to the same 

levels of density as at the start of the treatment, later eliminated by the immune system. Yet another 

example of one of the most common cases of antibiotic misuse, according to the ECDC, which is the 

delayed administration of antibiotics in critically ill patients. 

The fourth example represents the use of antibiotics in immunosuppressed individuals. 

 

 

Figure 5.4 Administration of antibiotics in immunosuppressed individuals. 

Potential risk of the administration of antibiotics in immunocompromised individuals. Same axis and plots as in Figure 5.2. In a) 

a bacterial infection runs its course without the interference of an antibiotic to hinder its growth, causing the host to die (death 

threshold represented by a brown dashed line at a density of 108 cell/μl). In b) and antibiotic therapy is applied, beginning 3.5 

days after infection, where the host survives. b) can be further compared with Figure 5.2a), in which a normal immune system is 

in effect. To obtain these graphs, parameters in the application were set to their default values except for the immune system 

related parameters, which were set as follows: initial precursor cell density = 15 cell/μl, proliferation rate = 1.2 day-1 (min), half 

maximum growth = 104 cell/μl (min), effector cell decay rate = 0.8 day-1 (max), memory cells conversion = 0.05 (min). Host death 

density was also set to 9.99e14 cell/μl (max) to prevent host death. While no treatment was selected for a) (User treatment set to 

OFF), in b) the classic treatment was selected with default parameters. In all cases, the simulation stops when both bacteria 

reach a density of 0. 

a) 

 

 

 

 

 

 

 

b) 
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In the case of Figure 5.4a), because no antibiotic therapy is applied and as this specific individual has a 

compromised immune system, it is not able to subvert the bacterial development and dies 5 days after the 

initial infection because the infecting bacteria is able to reach extremely high densities, which easily 

causes the death of the host. In Figure 5.4b), although the immune system is still compromised, with the 

help of an antibiotic treatment it is able to fight off the infection, although really close to the death 

threshold. 

  

5.1.2 Microbiome Scenario Usage Cases 

The first case, related to the second simulation scenario, represents the effects of a combination 

antibiotic therapy on the human gut microbiome. 

 

 

Figure 5.5 Effects of antibiotic combination therapy on the human gut microbiome. 

Complete dysbiosis of the human gut caused by the administration of an antibiotic combination. The top graph contains 10 plots, 

each pertaining to a bacteria genus present in the human gut. The values in the y-axis represent the relative frequency of that 

genus in the human gut microbiome while values in the x-axis represent time. The bottom graph contains 2 plots, one for each of 

the antibiotics used. The x- and y-axis, in this case, represent time and antibiotic concentration in mg/L, respectively. A penicillin 

and quinolone antibiotics were used. All bacteria are stable at a predefined value, representing normal gut activity. During the 

first 5 days a bacterial infection (not shown) runs its course on the body of the individual. At day 5 an antibiotic combination 

therapy is administered, which immediately disrupts the microbiome. During the next 3 days each bacteria population present in 
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the gut dies under the combination antibiotic pressure. The time it takes for a bacteria population to die is determined by the 

strength of the antibiotic resistance it carries. Faecalibacterium and Lachnospiraceae are the first populations to die, while 

Bifidobacterium is the last. To obtain these graphs, the “Gut Enterotype 1” of the “Microbiome” scenario was chosen, all 

parameters were set to their default values, and at day 5 both penicillins and quinolones antibiotics were administered (with a 

slight delay to allow the plots to be better perceived). The simulation ended when all bacteria populations were eliminated. 

 

This type of antibiotic combination is usually applied in cases of infection by multidrug-resistant bacteria 
103. In this example, we assume the patient is infected with such a multidrug-resistant bacterium. Five days 

after the initial infection the patient checks-in at the hospital or goes to a medical appointment and begins 

treatment with a combination of penicillin and quinolone antibiotics. During the next 3 days, while the 

treatment is active, all bacteria populations in the patient’s gut, sensitive to any of the prescribed 

antibiotics, die one by one due to the effects of the combination antibiotics. Despite the outcome of the 

treatment on the target bacteria, the microbiome is severely affected and will require some time to recover. 

This does not happen frequently for most antibiotic combination therapies, as these antibiotics not always 

affect every bacteria genus present in the gut. Nonetheless, it is representative of what might happen for 

more aggressive combination antibiotic therapies that include several antibiotics. 

 The second case represents the disruption of the microbiome after the administration of an 

antibiotic and the eventual return to equilibrium after the end of the treatment. 

  

 

Figure 5.6 Disruption and return to equilibrium of the microbiome's dynamics after antibiotic therapy. 

Ability of the human gut microbiome to return to its stable configuration after a major disruption. All plots and axis are the same 

as in Figure 5.5. A penicillin antibiotic was used. Again, the microbiome is stable and is disrupted by the administration of an 
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antibiotic, used to treat some infection. In this case, the antibiotic treatment has a duration of 5 days, from day 5 to day 10. 

During that period each bacteria genus in the microbiome is affected, 5 dying off completely. After the treatment is over, the 

remaining bacterial genus recover after a period of 4 days. Without any outside addition the dead bacteria won’t appear again in 

the population. To obtain these graphs, the “Gut Enterotype 1” of the “Microbiome” scenario was chosen, all parameters were 

set to their default values, and at day 5 penicillins antibiotics were administered. The treatment ended at day 10. 

The patient suffers from an infection which the medical personnel tries to treat with a penicillin antibiotic. 

As a side effect of this treatment, symbiotic sensitive bacteria in the gut die alongside the pathogenic 

bacteria. Some bacteria genera are completely eliminated from the microbiome. When the treatment ends, 

the surviving bacteria regrow and repopulate the gut, returning to a similar stable configuration as before, 

but with a now impaired microbial diversity, which can impact the patient’s nutrient absorption 

mechanisms, lead to gut infections by undesirable or opportunistic bacteria and more. 

  

5.2 Feedback 

We obtained feedback from several sources throughout the development of the program. Apart 

from the mandatory friends and family criticism, the most important feedback was that given by a group 

of high school and university professors which kindly agreed to sit and watch a presentation along with a 

demonstration of SimulATe. Those professors were: Sara Aboim PhD, Professor at the Escola Superior de 

Educação do Politécnico do Porto, where she teaches Biology, Geology and Natural Sciences; André 

Rodrigues MSc, high school Professor; Lucinda Motta, Biology, Geology and Natural Sciences high 

school Professor and author of many high school science books; Xana Sá Pinto PhD, Professor at Escola 

Superior de Educação do Politécnico do Porto. Most of the criticism focused around the accessibility and 

interpretation of the program by high school students such as the usability and position of some buttons or 

the text description of some parameters. It was suggested several times, even by other people, that the 

sliders controlling the values of the parameters should be able to collapse so that only the text would be 

visible as compared to always showing everything, reducing the overall clutter of the user interface and 

making it much easier to interpret. Making the parameters section completely collapsible would also help 

by allowing the user to only show sections he deems as relevant at any given time. Having tooltips that 

would, at a glance, explain what each parameter, button and slider does would also be a much welcome 

feature that would diminish the reliance on an outside documentation. The existence of a y-axis on the 

right side of the graph area would also help with the interpretation of the simulated plots as it is being 

generated. The ability to load the saved data for a given simulation was also a main point of criticism, 

followed by the idea of having predetermined saved configurations for certain scenarios or bacteria 

profiles, which could then be loaded and used in a simulation. Some of these criticisms were built into the 

program but, because of the lack of time, we were not able implement some of the feedback that required 

more time to be implemented. The group of high school professors did show interest in the program and 

could recognize the teaching potential that SimulATe can have. They have also shown interest and have 

suggested that we provide continued education for teachers so that they may be able to use SimulATe as a 

science teaching tool. 

A seminar was also given at the Escola Superior de Tecnologia do Barreiro to a group of 

Bioinformatics students, under the supervision of Rita Ponce PhD, lecturer at the same institution, which 

allowed for further discussion about several aspects of the program, as well as being the first time the 

program was ever presented to students of the same area of expertise. 
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People of different backgrounds, including Bioinformatics, Designers, Ecologists, Microbiologists 

and Software Engineers have also given their opinions and feedback. We tried to follow most of the 

advices and feedback given although some were too divergent from the original program idea to 

implement in such a late time in the development cycle.  
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6 Discussion 

SimulATe consists of two separate simulation scenarios: 

The first scenario - Single Population scenario - simulates the combined effects of antibiotic 

administration and the immune system on the densities of both resistant and sensitive bacteria in a single 

pathogenic bacterial population. This simulation does not take into account the medium on which the cells 

are developing, possible nutrients needed for growth or any other third-party interactions as these 

behaviours are not predicted by the equations used in this situation. 

The second scenario - Microbiome scenario - was designed to simulate the effects of the most 

commonly administered antibiotics in humans, in Portugal during 2015, on different human gut 

microbiomes. As defined in a study by Arumugam et al 77, the human gut can harbour three different 

stable microbial compositions, named enterotypes, which were simulated in this scenario by having the 

top ten most abundant bacteria genera of each enterotype at their respective mean abundance levels in an 

artificial stable configuration. The ten available bacteria genera for each enterotype are in a stable 

configuration, which can be perturbed by the use of antibiotics. This simulation does not include the 

explicit effect of the immune system, as these are all gut dwelling, non-pathogenic and symbiotic bacteria, 

which do not warrant any specific immune response, and any existing residual effect associated with 

fluctuations in the bacterial composition are already taken into account when calculating the artificial 

stable configuration. This simulation does not consider repopulation of dead or extinct bacterial genera 

and there are no opportunistic infections by outside microorganisms. 

In the first scenario (Figure 6.1) a bacteria population must first be defined along with the immune 

system by using the available parameters described in the Materials and Methods chapter, although all 

parameters are set to default values on start-up.  
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Figure 6.1 User interface of the Single Population scenario. 

User interface for the single population scenario, composed of a scrollable “parameters and options” panel (described in Figure 

4.3) on the left-hand side which contains all the parameters and options necessary to control the simulation; an initially empty 

graph canvas containing 2 graphs, one for bacterial and immune system cells (top) and another for antibiotic concentration 

(bottom) (described in Figure 4.2); and a flow control section which allows the user to start/pause/restart as well as control the 

speed of the simulation. 

 

Then, one of the three available antibiotic treatments must be selected for the simulation to be able to 

proceed. The Classic treatment represents the situation where a person gets infected by a certain bacteria 

genus at time zero. After a few days (delay) that person starts to feel the symptoms of the infection, which 

prompts a visit to the hospital where a specific antibiotic treatment is prescribed for a predetermined 

amount of time (duration). Both the delay and the duration are variable and can be set by the user. The 

Adaptive treatment represents the treatment of a closely monitored patient, as is the case with patients in 

the intensive care unit of a hospital, where an antibiotic is administered every time the density of the 

infecting bacteria surpasses a certain predefined threshold, assuming the bacterial density can be 

determined accurately. The User treatment represents the case where a person has full control of the 

antibiotic dosage and timing of the administration, meaning that the antibiotic can be taken at will, at any 

time and for any amount of time. This case can represent the self-medication practice without any 

professional surveillance or guidelines. After all parameters and options are set, the user can finally start 

the simulation by clicking the start button which initializes the real-time generation of the graphs. These 

graphs represent the outcome of the equations that govern the simulation, explained in the Materials and 
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Methods chapter. This outcome can vary widely depending on both the initial conditions and on the 

conditions the user is able to alter during a simulation run (refer to the Usage Cases subchapter). 

The second scenario simulates a human gut microbiome under the effect of one or more antibiotic 

treatments over time, assuming the individual is healthy, the microbiome is in a stable equilibrium with 

the immune system and does not harbour infectious bacteria. 

 

 

Figure 6.2 User interface of the Microbiome scenario. 

User interface for the microbiome scenario, composed of a scrollable “parameters and options” panel (described in Figure 4.4) 

on the left-hand side which contains all the parameters and options necessary to control the simulation for each individual 

enterotype; an initially empty graph canvas containing 2 graphs (described in Figure 4.2), one for the relative frequency of each 

bacteria genus (top) and another for the antibiotic concentration of each available antibiotic (bottom); and a flow control section 

which allows the user to start/pause/restart as well as control the speed of the simulation. 

 

This microbiome is defined by first selecting an enterotype, which defines the assortment of bacteria 

genera that are most prevalent, and then by selecting the resistance to each available antibiotic 

individually for each genus, although, once again, each bacteria genus has these values set to a randomly 

generated default at start-up. Each one of the three enterotype is its own separate simulation and its output 

graph represents the relative frequency of each one of the ten bacteria genera alongside the antibiotic 

concentration of each antibiotic. 
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The user can then start the simulation which, once again, initiates the real-time generation of the 

graph. At this time, the antibiotics can be administered at will. In this scenario, because the microbiome is 

in a state of equilibrium, the outcomes only vary if an antibiotic is administered at all. After stopping 

administering antibiotics, the microbiome will return to a steady state configuration similar to the initial 

state. In the cases where one or more bacteria genera dies, this steady state will differ from the initial state, 

as caused by the reduction in microbial diversity. 

With the wide range of possible outcomes available for each scenario, the teaching possibilities are 

quite extensive. Be it the analysis of the effect of different antibiotic therapies on different gut microbiome 

compositions, the dynamics of different bacteria populations with different immune systems status, among 

others, SimulATe can be used to simulate it. This program allows for a more interactive teaching of 

antibiotic resistance and the effect of antibiotic therapies on bacterial communities. Users can follow a 

simulation in real time, stop it, resume it, change some values on the fly and watch the instant 

repercussions of those changes. With a real antibiogram and bacterial profile data, this program could 

even be used to somewhat foresee the evolution of certain infections and certain antibiotic treatments. 

We could not find similar existing computer programs used in high school as educational tools. There 

are, however, a few antibiotic resistance simulators of bacteria, but they either add to much complexity to 

the simulation, as is the case with ARES 89, or are overly simplified. 

Although the mathematical model used to perform the simulations is already a very suitable model 

and encompasses a handful of details not seen on other simpler models, it could still be improved with 

even more realistic parameters such as nutrient consumption rate, effect of the type of medium on which 

the bacteria proliferate, the impact of plasmids and quorum sensing on the growth speed of the bacteria, 

and more. A different and superior model could also be used altogether, if such model were to be 

developed. 

As a final note we would like to emphasize that SimulATe makes use of a relatively simple model. 

There are many physiological characteristics that the model does not encompass. For example, it does not 

take into account horizontal gene transfer between sensitive and resistant bacteria nor the effect of the 

antibiotic concentration in the triggering of horizontal gene transfer. The first scenario only simulates one 

bacterial population, so interaction between different species are not considered. The second scenario 

assumes a constant microbiome, when in real life a human gut microbiome is much more malleable and is 

prone to colonization by outside bacteria or even recolonization by previously existing bacteria.  
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7 Conclusions 

Antibiotics are still widely misused worldwide 20. This is due, in part, to the misinformation that is 

still passed around the population despite the effort employed by many health organizations to combat that 

misinformation with actual reliable and fact-based information. In Portugal, the science curriculum 

includes the mandatory teaching of antibiotic resistance, but not many informatics-based teaching tools 

exist that help teach this subject. Therefore, this project focused on the development of a computer 

program, named SimulATe, with the aim of being used as a tool in the teaching of antibiotic resistance. 

This program simulates the effect of an antibiotic therapy on bacteria populations. It allows two 

distinct simulation scenarios: one of more generic characteristics, enabling the configuration of several 

parameters for either the antibiotic therapy and a single bacteria population, allowing it to be used to 

simulate a large amplitude of antibiotic therapy scenarios; and another specific to the human gut 

microbiome, simulating the natural equilibrium of the microbiome and the effects a possible antibiotic 

therapy can have on its stability and phylogenetic diversity and composition. Besides being used to help 

teaching antibiotic resistance evolution to students, it could eventually be used by healthcare institutions, 

such as hospitals, to get a rough simulation predicting the effect a certain antibiotic could have on a certain 

infection. 

We started developing SimulATe as an agent-based program 99. We quickly ran into unexpected 

problems, which prompted us to change the mathematical model 26, as the foundation of SimulATe. The 

final product is a program that can simulate antibiotic-bacteria interactions in real time based on the 

provided parameters. We also tested some example scenarios in SimulATe which were all consistent with 

reality. 

In summary, this work concluded with the creation of a simulation tool which will probably be useful 

in the teaching of antibiotic resistance. 

 

7.1 Future Work 

Further work can still be done to improve the program, namely the implementation of the options 

file in the more standardized .cfg config file format, instead of the current text file, along with the 

implementation of a read/write function by using the ConfigParser module available in the Python 

standard library. All configurations of the program would also be migrated to this config file and loaded at 

start-up. The behaviour of the Save button would be modified to save a config file with all the parameters 

of the current active scenario, instead of the current behaviour, which creates a text file containing all the 

parameters. A Load button would also be implemented which would allow a user to load the config files 

generated when saving a simulation. 

A new treatment type option would be implemented in the Single Population scenario. This new 

treatment type would function like the Classic treatment type but instead of having a static mean antibiotic 

concentration when administered, the concentration would start at 0, grow to the defined value and then 

decrease based on pharmacokinetics data, in a sigmoid-like fashion. This new treatment would have the 

added benefit of allowing for the compatibility with certain bacterial behaviour such as the SOS response 

or heightened horizontal gene transfer rate when in sub-minimum inhibitory concentration of antibiotics, 

and would also be compatible with the enrichment of pre-existing mutations in susceptible bacteria as well 
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as the selection of de novo mutations and increased mutagenesis rate 49. These latter additions would also 

be implemented. 

The Microbiome scenario would be made more robust, with the addition of several biological 

interactions between species within the same microbiome and the possibility of gene exchange via 

horizontal gene transfer. 

We would like to be able to have real values pertaining to the antibiotic susceptibility of each 

bacteria genus in the Microbiome scenario. As it stands now, each bacteria population is given a random 

susceptibility value to each antibiotic, but this could be changed if we were able to get the necessary data 

to define those values. Unfortunately, this is very unlikely, as most of the research done in antibiotic 

resistance is focused on pathogenic bacteria, which do not normally inhabit the healthy human gut. 

Personalized antibiograms might help but only on a case-by-case scenario. 

Making the user interface more focused and clean by allowing the user to hide and collapse certain 

parameters or buttons would allow for a better user experience by reducing the amount of information on 

the screen. 

Changes related to Pyinstaller would also be addressed. As of now there is only an executable for 

the Windows OS, meaning that for both Linux OS and Mac OS the user must go through the process of 

installing all the dependencies required to run the program. This is prone to errors and may be a difficult 

process for less computer literate users, even though the documentation available for SimulATe describes 

the installation process for all three OS’s mentioned. With an executable for each OS this would not be a 

problem as the user would only be required to download and run an executable, specifically made for their 

OS. This would be done with the Pyinstaller python module the same way it was done for Windows, but 

further and better tested. Reducing the executable to a single file would also be a very good modification, 

as it would simplify the usability of the program. 

Implementing a way for the user to give feedback would allow for better bug correction, feature 

implementation and testing. 

Having a web version as well as a handheld version (Android and/or iOS) of the simulator would 

also be a good idea, as it would allow the program to reach a wider audience as well as eliminate most 

system related dependencies. 

We would like to define some proper usability testing procedures to better test the user interface of 

the program and detect possible design issues. A survey would accompany these tests to collect more data 

on the overall experience the average user has with the program. 

Testing the simulator in a school environment with the support of a science school teacher would 

help us collect data on the performance of the simulator in these conditions and would contribute to a 

better and more robust simulator.  
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8 Source Code and License 

The SimulATe program is publicly accessible on GitHub (https://github.com/Kronopt/SimulATe) and 

is licensed under the GNU General Public License v3.0.  

https://github.com/Kronopt/SimulATe
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Appendix A 

BioClub - Mutualistic symbiosis: implications and applications 

 

"Who's in charge: you, or your bacteria? Mutualistic interactions with and between your microbes.” 

 

Pedro David1, Xana Sá-Pinto2,3, Teresa Nogueira1 

 

Illustration (Fig. 2): Sara Algarvio 

 

 
1 cE3c – Centro de Ecologia, Evolução e Alterações Ambientais, Faculdade de Ciências, Universidade de 

Lisboa, 1749-016 Lisboa, Portugal 

 
2 CIDTFF.UA – Centro de Investigação em Didáctica e Tecnologia na Formação de Formadores, 

Universidade de Aveiro, Campus Universitário, 3810-193 Aveiro, Portugal  

portugal 

 
3 P.Porto: ESE – Escola Seuperior de Educação, Politécnico do Porto, Rua Dr. Roberto Frias, 602 4200-465 

Porto Portugal 

 

 

Close your eyes. Imagine one ecosystem with soft and hard substrates,  100% moist, temperature 

between 34 and 37ºC all year around and abundant food resources.  Imagine a second ecosystem: dry, 

with significant temperature fluctuations, high UV exposure and a relatively high substrate instability. 

Now open your eyes and closely observe these ecosystems. No, we are not describing tropical forests or 

sand deserts, we are talking about you! More specifically we are talking about your mouth {van Houte, 

1972} and your hand’s skin {Grice, 2011} {Cundell, 2016}, two of the several ecosystems present in 

your body that harbour a large and diverse community of microbes including bacterial, viral, archeal and 

fungal species {Lloyd-Price, 2016}. This community of microbes living in your body includes 

commensal, mutualistic and even a few (most probably opportunistic) pathogenic species {Consortium, 

2012} which, as a whole, are referred to by microbiologists as a microbiome {Lederberg, 2001}. Telling 

you what microbes live within/on you is not an easy task, as the characterisation of the microbiomes of 

hundreds of people shows these communities are variable and dependent on factors such as body 

surface area, gender, age, diet, daily life habits, ethnicity and geography, health status and your own 

genome {Cundell, 2016} {Lloyd-Price, 2016} {Consortium, 201}. But whichever microbes you carry, 

they are for sure affecting your health. People tend to better know microbes by the diseases they cause, 

but human microbiomes have been shown to be essential for our health, ensuring certain functions like 

the ability to completely digest some nutrients like carbohydrates and providing metabolic pathways 

that complement those encoded by our genome (reviewed in {Lloyd-Price, 201}, {Kilian, 2016} and 

{Yong, 2017}). We feed them, and they work for us. In fact, at this moment, your microbes are actively 



54 

 

regulating the pH of some of your body areas, fighting other (possibly pathogenic) microbes, providing 

you with resistance to infections, educating and regulating your immune system to avoid or decrease 

autoimmune diseases and exaggerated immune responses, and digesting some of the food you ingested 

and producing nutrients that are essential to you {Lloyd-Price, 2016} {Kilian, 2016} and {Yong, 2017}. 

Other essential functions of a healthy human microbiome includes gene activity regulation, and the 

differentiation and maturation of some of our organs and tissues {Kilian, 2016} {Yong, 2017} {Brown, 

1977}.  

 

Taken together the genomes of the bacteria and viruses residing in the human gut encode 3.3 million 

genes. These are so essential in supplementing our genome {Konkel, 2013} that, in the Nature 

Magazine number 464 of march 2010, Liping Zhao called “Our Other Genome” to all the genes belonging 

to the microbes of our microbiome. So how much of you are actually you and how much of your body 

functions are ensured by your cells? According to Martin Blaser (a specialist in the human microbiome) 

from the nearly 30 trillion cells in our bodies, only less than a third is human, and the remaining 70 to 

90% are microbial. And approximately 99% of the unique genes in  your body are indeed bacterial {, 

2017} and these are encoding functions that are essential for your health. As Ed Yong says “I contain 

multitudes” {Yong, 2017}. In fact, excluding the vaginal area, reduced species diversity in human 

microbiomes is usually associated with pathologies {Lloyd-Price, 2016}. The the lack of species that 

perform some of these essential functions in gut microbiome is associated with obesity, inflammatory 

bowel disease, types 1 and 2 diabetes, and in skin is associated with atopic dermatitis and psoriasis 

(reviewed in {Lloyd-Price, 2016}). But these can also be due to the reduction of species with similar 

functions in the community (functional redundancy) which may turn microbial communities more 

susceptible to changes in their environment (such as diet changes, pathogenic infections, medication, or 

others) and less able to recover from these {Bodelier, 2011} {Lloyd-Price, 2016}. Yet how have your 

microbiomes’ diversity developed, how does it change over time and what factors affect it? We will now 

focus on the most studied microbiome, the human gut microbiome, as a model to answer these 

questions and understand the role and function of our microbiomes.  

 

Your gut harbours a wide variety of microbes {Eckburg, 2005} {Hold, 2002} {Suau, 1999}, which most 

probably have been co-existing in a fairly stable equilibrium since your adulthood, and dominated by the 

phyla Firmicutes, Bacteroidetes and Actinobacteria. An equilibrium is usually defined by the existence 

and abundance of 3 types of bacteria: Bacteroides, Prevotella or Ruminococcus. Each of these bacteria 

genus defines a different microbiota group, known as an enterotype {Arumugam, 2011}, where the 

predominant above mentioned bacteria establish positive interactions with some other bacterial groups, 

and negative interactions with some others, which are thus not favoured and disappear. Although mostly 

stable, your enterotype can be disturbed by changes in your habits such as when you change your diet, 

take antibiotic, probiotics, prebiotics and other factors. The good new is it will recover most of the times 

if these unusual situations are not too prolonged or radical. 

 

During the normal development of a human baby, several factors influence the maturation process of 

the gut microbiome before it finally settles on an enterotype, starting-off immediately after birth. It’s 

believed that human babies have a sterile gut up until birth, and is then immediately colonized by 



55 

 

microorganisms originating from the mother. Babies born via a vaginal birth are first colonized by 

microbes originating from the mother’s vaginal canal and intestines, while infants born via C-section are 

mainly colonized by microbes originating from the mother’s skin and neighbouring environments. So, if 

you were born via vaginal birth, you were most probably a baby initially dominated by bacterias such as 

Lactobacillus, Prevotella and Sneathia, but if you were a caesarean baby, you were probably initially 

colonised by Staphylococcus, Corynebacterium, and Propioni having lower counts of Bifdobacteria, 

Escherichia coli, and Bacteroides fragilis and higher Clostridia, Klebsiella and Clostridium difficile counts 

{Vaishampayan, 2010} {Fitzpatrick, 2008} {Gerding, 1995} {Thomas, 2003} {Adlerberth, 2007} 

{Dominguez-Bello, 2010}. If you were a preterm baby, you most probably had a delayed development 

of your gut microbiota, and were initially colonized predominantly by Coliforms, Enterococci and 

Bacteroides {Blakey, 1982}. Most of your initial colonizers were facultative anaerobes, like Streptococci 

and E. coli, which were then succeeded by Staphylococcus, Enterococcus and Lactobacillus that 

contributed to develop an anaerobic environment making your gut available to more bacterial species 

{Fanaro, 2003} {Orrhage, 1999}. But your microbiome was also influenced by the type of feeding 

regime that you went through while baby: breast-feeding, infant milk formulas or a combination of both. 

These feeding regimes introduce and allow different species to develop thus shapping the microbiome 

{Collado, 2009} {Voreades, 2014}. The gradual introduction of solid foods in babies’ diet further helps 

the gut microbiome to mature {Edwards, 200}. During this period of adaptation to the new diet the 

microbiome is still not stable enough, meaning its bacterial composition can easily change, taking up to 3 

years to stabilize {Bergstrom, 2014} {Vaishampayan, 2010}. Other aspects can affect either the 

development or the already stabilized gut microbiome. An overweight mother most likely affects her 

baby microbiome, which ends up having a different bacterial composition when compared to babies of 

average weight mothers {Collado, 2010}. Prebiotics and probiotics both have similar effects on the gut 

microbiome, by allowing certain bacteria species to more easily grow or by introducing beneficial 

bacteria directly in the system {Holzapfel, 2002} {Wang, 1993}. Antibiotics, on the other hand, even 

though they are used to fight off harmful bacteria, they can also affect beneficial species, especially wide 

spectrum antibiotics {Finegold, 1983}. On adult gut microbiomes, the factor that more deeply impacts 

its composition is diet {Voreades, 2014} but, by simply living on different geographical locations, 

and/or in countries at different levels of development, different people can have different gut 

microbiome compositions, and extended migrations can permanently change the gut microbiota 

{Fallani, 2010}. 

 

According to Martin Blaser, ancient transmission of microbes from mother to child would be: “oral (pre-

mastication of food), mammary, through breastfeeding and cutaneous (contact with skin), vaginal 

(passage through birth channel)”. However, modern human practices in industrialized countries - such 

as: “early-life antibiotics, dental amalgams, bottle feeding, early / extensive bathing and Cesarian 

section” - has been reducing microbe mother to child transmission of the indigenous microbiota, 

lowering microbial richness of the human microbiome from generation to generation {Cho, 2012} 

{Blaser, 2016} {Blaser, 2009}.  

 

Antibiotics kill or stop the growth (proliferation) of microorganisms in a microbiome. Exposure to 

antibiotics affect different bacteria in different ways, and thus alter the composition of the microbiome 
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through time. In developed countries, humans are continuously exposed to antibiotics, either from 

medical prescriptions for infections treatment or prophylactic purposes, but also, passively, from the 

agricultural and livestock maneuvers {Larsson, 2014}. Antibiotics exert a differential selective pressure 

on bacteria that populate the intestine as each bacteria has a different susceptibility to antibiotics. 

Antibiotic exposure may lead to the extinction of the most susceptible species, and even if the treatment 

is prolonged or made up of a combination of different antibiotics, it may lead to the extinction of several 

species, with a concomitant a decrease in microbial diversity {Dethlefsen, 2008}. 

 

Figure 1 represents the evolution of the relative frequencies of a hypothetic bacterial community 

composed of ten different types of bacteria (genus, species, strains…). While under antibiotic therapy, 

the entire bacterial community is exposed to the antibiotic; those bacteria that are susceptible will 

decrease in frequency and eventually disappear leading to a disruption of the microbial equilibrium – 

dysbiosis. After treatment, the microbiome tends to restore its equilibrium. However bacterial diversity 

can be impaired and unable to restore some physiologic functions of the healthy intestine, by function 

loss.  

 

 

 
 

Fig. 1 Evolution of the relative frequencies of different types of bacteria of a microbiome. Shortly after day 3 the 

microbiome was exposed to an antibiotic for 3 days.  

 

 

Since different microorganisms are associated with different metabolic functions, or production of 

compounds, intestinal physiology may be compromised or impaired. Some bacteria, due to their fitness 

or ability to produce natural protective antibiotics and stimulate immunity, plays a protective role in 

healthy gut by exerting a colonization resistance to pathogenic bacteria {Kristie, 2014} {Sophie, 2014}. 

Therefore, the decrease of the diversity and/or on the protective bacterial load in the microbiome allows 

opportunistic colonization of the intestinal lumen by harmful microorganisms that normally are unable 

to out compete the dominant organisms. In fact,  microbiome dysbiosis increase the susceptibility to 

pathogens as it can be unable to restrict proliferation of opportunists (usually some less frequent 

bacterial pathogens) that are able to trigger an infection. It may also leads to other disease states such 

as: inflammatory bowel disease, ulcerative colitis, rheumatoid arthritis, type 1 diabetes, obesity, atopy 

and asthma {Yong, 2017} {Turnbaugh, 2009; Turnbaugh, 2009; Turnbaugh, 2007}. 
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In fact dysbiosis (due to antibiotherapy or other causes) is similar to equilibrium disruptions in other 

ecossystems. Figure 2 represents a forest ecosystem decimated by a fire (left side of the figure). In this 

environment, the lack of some key species - like the predator owl – will disrupt the ecossytem 

equilibrium allowing the proliferation of invading organisms – the rat prey. Reforestation with 

endogenous species (represented by the water can on the right-hand side of the figure) allows the 

restoration of the healthy ecosystem that keeps invasive (harmful) species at low, non-threatening 

levels.  

 

 
 

Fig. 2 Representation of the effect of reforestation and repopulation of a burned forest (where there was extinction 

of species) that restore ecossystem equilibrium and prevents the colonization by harmful invasive species. 

 

 

Clostridium sp. can be one of these harmfull opportunistic colonizers of the human gut. They are 

fastidious growing gram-positive spore-forming bacilli, mostly strict anaerobes. As they share a thick cell 

wall, they can persist as spores in a vegetative or dormant state when the environmental conditions are 

unfavourable. The spores are very resistant and thus very difficult to eliminate. They can be the 

etiological agents of nosocomial infections and are a concern in hospitals and health care facilities 

{Vincent, 2015} as many species of this genus are able to synthesise and release an arsenal of toxins 
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that are very harmful to the human host and can cause human disease such as: botulism, gas gangrene, 

sepsis or tetanus. 

 

One example is Clostridium difficile that can naturally colonize the gut microbiome of healthy individuals, 

yet in very low densities. During the last few decades specimens of C. difficile has begun to be detected in 

stool cultures of patients with gastrointestinal disease that have underwent antibiotic therapy {Gerding, 

1995}{Thomas, 2003}. Antibiotherapy, in particular with antibiotics such as: ampicillin, clindamycin, 

fluoroquinolones, and cephalosporins, have been associated with the microbiota disruption (dysbiosis), 

and overgrowth of C. difficile. C. difficile is able to generate an opportunistic infection by producing and 

releasing two similar toxins: enterotoxin (TcdA) and cytotoxin (TcdB) {Pérez-Cobas , 2015}. They are 

both responsible for triggering pseudomembranous colitis (PMC), an inflammatory disease that involves 

damage of the intestinal mucosa, a severe ulceration of the colon, haemorrhagic necrosis, and eventually 

septicaemia when bacteria enter the bloodstream, a situation that can cause septic shock and death 

{Theriot, 2016} {Theriot, 2016}. They can also code for an arsenal of other virulence factors, like 

adhesins, that allow them to stick to human cells, and hyaluronidase that dissolves tissues, allowing the 

progression of the bacteria. 

  

Treating PMC may involve long-term antibiotic therapy. But a decade ago, The New York Times reported 

the case of a woman that was admitted to a Minnesota state hospital in 2008, with severe diarrhoea due 

to C. difficile infection, unresponsive to a cocktail of antibiotics, that had lost over 12 Kg weight in eight 

months. The physician Alexander Khoruts tried a non-canonical new procedure: to ask the husband of 

the patient to donate a stool sample to be transplanted into her intestine. Not only the woman survived 

the fatal infection, she had recovered overnight and got cured. Two weeks after transplantation a 

microbiological analysis showed clearly that her husband’s bacteria had recolonized and replaced her 

abnormal gut microbiome. Faecal transplantation has been used for over 50 years, but now it is a very 

promising and very demanded medical procedure for a myriad of diseases linked to the gut microbiome 

{LeBeau, 2014} {Borody, 2012} {Kang, 2017}. Since then faecal microbiota transplant ("stool 

transplant") has been repeatadly used in recurrent debilitated patients {Gerding, 1995}{Cohen, 2017} 

{Fitzpatrick, 2008}{Rao, 2016}. During faecal microbiota transplantation (FMT) a healthy individual 

donates its intestinal microbiota to restore the intestinal environment of a diseased individual. A stool 

sample from a healthy person is blended in a saline solution and surgically injected into recipient patient, 

either through the nose or mouth into the small bowel, or into the colon by colonoscopy. The new 

colonizers composed of an healthy community will restore the protective effect against harmful bacteria 

like Clostridia. This effect is represented in the right part of the cartoon (Fig.2), by the water can (that 

symbolizes an enrichment with bacterial strains that restore an equilibrium in a microbiome), and the 

owl that represents the protective effect of the healthy microbiome against opportunistic pathogens like 

Clostridia. Recent studies confirmed that FMT is a useful and valuable tool to treat various chronic 

gastrointestinal diseases as it increases significantly the species richness {Gu, 2016}. 

 

The impacts of microbiome dysbiosis and the effects of faecal transplantations clearly highlight that you 

are not the only one in charge of your body and your health. You count with the indispensable help of a 

https://en.wikipedia.org/wiki/Intestinal_mucosa
https://en.wikipedia.org/wiki/Intestinal_mucosa
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community of millions of microscopic helpers that complement your own genome and cells. Keeping 

these community healthy is fundamental for your own health! 

 

 

ACKNOWLEDGEMENTS: 

This work is financially supported by National Funds through FCT – Fundação para a Ciência e a Tecnologia, I.P., 

under the project UID/CED/00194/2013. XSP is supported by Programa Operacional Capital Humano, Portugal 

2020, European Social Fund and National Funds FCT/MEC (PIDDAC), through the SFRH/BPD/103613/2014 research 

grant. 

 

 

REFERENCES: 

(2017). "Meet Your Microbiome."   Retrieved 28-07-2017, from http://www.amnh.org/explore/science-

topics/health-and-our-microbiome/meet-your-microbiome. 

Adlerberth, I., D. P. Strachan, et al. (2007). "Gut microbiota and development of atopic eczema in 3 

European birth cohorts." Journal of Allergy and Clinical Immunology 120(2): 343-350. 

Arumugam, M., J. Raes, et al. (2011). "Enterotypes of the human gut microbiome." Nature 473(7346): 

174-180. 

Bergstrom, A., T. H. Skov, et al. (2014). "Establishment of Intestinal Microbiota during Early Life: a 

Longitudinal, Explorative Study of a Large Cohort of Danish Infants." Applied and Environmental 

Microbiology 80(9): 2889-2900. 

Blakey, J. L., L. Lubitz, et al. (1982). "Development of Gut Colonisation in Pre-term Neonates." Journal of 

Medical Microbiology 15(4): 519-529. 

Blaser, M. J. (2016). "Antibiotic use and its consequences for the normal microbiome." Science (New 

York, N.Y.) 352(6285): 544-545. 

Blaser, M. J. and S. Falkow (2009). "What are the consequences of the disappearing human microbiota?" 

Nat Rev Microbiol 7. 

Bodelier, P. (2011). "Toward Understanding, Managing, and Protecting Microbial Ecosystems." Frontiers 

in Microbiology 2(80). 

Borody, T. J. and A. Khoruts (2012). "Fecal microbiota transplantation and emerging applications." Nat 

Rev Gastroenterol Hepatol 9(2): 88-96. 

Brown, J. P. (1977). "Role of gut bacterial flora in nutrition and health: a review of recent advances in 

bacteriological techniques, metabolism, and factors affecting flora composition." CRC Crit Rev Food Sci 

Nutr 8. 



60 

 

Cho, I. and M. J. Blaser (2012). "The human microbiome: at the interface of health and disease." Nat Rev 

Genet 13(4): 260-270. 

Cohen, N. A. and N. Maharshak (2017). "Novel Indications for Fecal Microbial Transplantation: Update 

and Review of the Literature." Digestive Diseases and Sciences 62(5): 1131-1145. 

Collado, M. C., S. Delgado, et al. (2009). "Assessment of the bacterial diversity of breast milk of healthy 

women by quantitative real-time PCR." Letters in Applied Microbiology 48(5): 523-528. 

Collado, M. C., E. Isolauri, et al. (2010). "Effect of mother's weight on infant's microbiota acquisition, 

composition, and activity during early infancy: a prospective follow-up study initiated in early 

pregnancy." The American Journal of Clinical Nutrition 92(5): 1023-1030. 

Consortium, T. H. M. P. (2012). "Structure, function and diversity of the healthy human microbiome." 

Nature 486(7402): 207-214. 

Cundell, A. M. (2016). "Microbial Ecology of the Human Skin." Microbial Ecology. 

Dethlefsen, L., S. Huse, et al. (2008). "The pervasive effects of an antibiotic on the human gut microbiota, 

as revealed by deep 16S rRNA sequencing." PLoS Biol 6. 

Dominguez-Bello, M. G., E. K. Costello, et al. (2010). Delivery mode shapes the acquisition and structure 

of the initial microbiota across multiple body habitats in newborns. 

Eckburg, P. B., E. M. Bik, et al. (2005). "Diversity of the human intestinal microbial flora." Science 308. 

Edwards, C. A. and A. M. Parrett (2002). "Intestinal flora during the first months of life: new 

perspectives." British Journal of Nutrition 88(S1): s11-s18. 

Fallani, M., D. Young, et al. (2010). "Intestinal Microbiota of 6-week-old Infants Across Europe: 

Geographic Influence Beyond Delivery Mode, Breast-feeding, and Antibiotics." Journal of Pediatric 

Gastroenterology and Nutrition 51(1): 77-84. 

Fanaro, S., R. Chierici, et al. (2003). "Intestinal microflora in early infancy: composition and 

development." Acta Pædiatrica 92: 48-55. 

Finegold, S. M., V. L. Sutter, et al. (1983). Normal indigenous intestinal flora. Human intestinal microflora 

in health and disease. D. J. Hentges. New York, Academic Press, Inc. 

Fitzpatrick, F., A. Oza, et al. (2008). "Laboratory diagnosis of Clostridium difficile-associated disease in the 

Republic of Ireland: a survey of Irish microbiology laboratories." Journal of Hospital Infection 68(4): 315-

321. 

Gerding, D. N., S. Johnson, et al. (1995). "Clostridium Difficile-Associated Diarrhea and Colitis." Infection 

Control &#x0026; Hospital Epidemiology 16(8): 459-477. 

Grice, E. A., H. H. Kong, et al. (2009). "Topographical and temporal diversity of the human skin 

microbiome." Science 324. 

Grice, E. A. and J. A. Segre (2011). "The skin microbiome." Nat Rev Micro 9(4): 244-253. 



61 

 

Gu, J.-L., Y.-Z. Wang, et al. (2016). "Gut microbiota community adaption during young children fecal 

microbiota transplantation by 16s rDNA sequencing." Neurocomputing 206: 66-72. 

Higgins, M. W. (1984). "The Framingham Heart Study: review of epidemiological design and data, 

limitations and prospects." Prog Clin Biol Res 147. 

Hold, G. L., S. E. Pryde, et al. (2002). "Assessment of microbial diversity in human colonic samples by 16S 

rDNA sequence analysis." FEMS Microbiol Ecol 39. 

Holzapfel, W. H. and U. Schillinger (2002). "Introduction to pre- and probiotics." Food Research 

International 35(2): 109-116. 

Kang, D.-W., J. B. Adams, et al. (2017). "Microbiota Transfer Therapy alters gut ecosystem and improves 

gastrointestinal and autism symptoms: an open-label study." Microbiome 5: 10. 

Kilian, M., I. L. C. Chapple, et al. (2016). "The oral microbiome - an update for oral healthcare 

professionals." Br Dent J 221(10): 657-666. 

Konkel, L. (2013). The Environment Within: Exploring the Role of the Gut Microbiome in Health and 

Disease. Environmental Health Perspective. 121. 

Kristie, M. K., Y.-D. Sophie, et al. (2014). "Effects of Antibiotics on Human Microbiota and Subsequent 

Disease." Annual Review of Microbiology 68(1): 217-235. 

Larsson, D. G. J. (2014). "Antibiotics in the environment." Upsala Journal of Medical Sciences 119(2): 108-

112. 

LeBeau, S. and A. Khoruts (2014). "Fecal Microbiota Transplantation: An Interview With Alexander 

Khoruts." Global Advances in Health and Medicine 3(3): 73-80. 

Lederberg, J. (2001) "'Ome Sweet 'Omics-- A Genealogical Treasury of Words." The Scientist Volume,  

DOI:  

Lloyd-Price, J., G. Abu-Ali, et al. (2016). "The healthy human microbiome." Genome Medicine 8(1): 51. 

Orrhage, K. and C. E. Nord (1999). "Factors controlling the bacterial colonization of the intestine in 

breastfed infants." Acta Pædiatrica 88: 47-57. 

Pérez-Cobas , A., A. Moya, et al. (2015). "Colonization Resistance of the Gut Microbiota against 

Clostridium difficile." Antibiotics 4(3): 337. 

Rao, K. and N. Safdar (2016). "Fecal microbiota transplantation for the treatment of Clostridium difficile 

infection." Journal of Hospital Medicine 11(1): 56-61. 

Shafquat, A., R. Joice, et al. (2014). "Functional and phylogenetic assembly of microbial communities in 

the human microbiome." Trends in Microbiology 22(5): 261-266. 

Sophie, Y.-D., A. Marie-Claire, et al. (2014). "Gastrointestinal Microbiota-Mediated Control of Enteric 

Pathogens." Annual Review of Genetics 48(1): 361-382. 

Suau, A., R. Bonnet, et al. (1999). "Direct analysis of genes encoding 16S rRNA from complex 

communities reveals many novel molecular species within the human gut." Appl Environ Microbiol 65. 



62 

 

Theriot, C. M., A. A. Bowman, et al. (2016). "Antibiotic-Induced Alterations of the Gut Microbiota Alter 

Secondary Bile Acid Production and Allow for <em>Clostridium difficile</em> Spore Germination and 

Outgrowth in the Large Intestine." mSphere 1(1). 

Theriot, C. M. and V. B. Young (2016). "Interactions Between the Gastrointestinal Microbiome and 

Clostridium difficile." Annual review of microbiology 69: 445-461. 

Thomas, C., M. Stevenson, et al. (2003). "Antibiotics and hospital-acquired Clostridium difficile-

associated diarrhoea: a systematic review." Journal of Antimicrobial Chemotherapy 51(6): 1339-1350. 

Turnbaugh, P. J. and J. I. Gordon (2009). "The core gut microbiome, energy balance and obesity." J 

Physiol 587. 

Turnbaugh, P. J., M. Hamady, et al. (2009). "A core gut microbiome in obese and lean twins." Nature 457. 

Turnbaugh, P. J., R. E. Ley, et al. (2007). "The human microbiome project." Nature 449. 

Vaishampayan, P. A., J. V. Kuehl, et al. (2010). "Comparative Metagenomics and Population Dynamics of 

the Gut Microbiota in Mother and Infant." Genome Biology and Evolution 2: 53-66. 

van Houte, J., R. J. Gibbons, et al. (1972). "Ecology of Human Oral Lactobacilli." Infection and Immunity 

6(5): 723-729. 

Vincent, C. and A. Manges (2015). "Antimicrobial Use, Human Gut Microbiota and Clostridium difficile 

Colonization and Infection." Antibiotics 4(3): 230. 

Voreades, N., A. Kozil, et al. (2014). "Diet and the development of the human intestinal microbiome." 

Frontiers in Microbiology 5: 494. 

Wang, X. and G. R. Gibson (1993). "Effects of the in vitro fermentation of oligofructose and inulin by 

bacteria growing in the human large intestine." Journal of Applied Bacteriology 75(4): 373-380. 

Yong, E. (2017). Nós, os microbios e uma visão alargada da vida. Lisboa, Círculo de Leitores.  



63 

 

Appendix B 

To take or not to take: what to do in antibiotic treatments. 

 

 

Problem: To take or not to take: what to do in antibiotic treatments. 

Curricular contextualisation in Portugal: 9th grade. Individual and community health: 1.6- relate 

antibiotic misuse with frequency increase of antibiotic resistance. 

 

Predicted time needed: 120 minutes 

 

Educational goals: 

• Recognize the importance of keeping effective antibiotics 

• Understand the effects of antibiotic misuse for individual health and for the evolution of 

antibiotic resistant bacteria. 

• Understand the principles of natural selection and how this process leads to 

environmental adaptation 

• Recognize how science knowledge can be used to inform our daily life choices and how it 

impacts individual and social well being 

• Understand the applications of mathematical models in science and their limitations and 

be able to use these to test predictions and hypotheses. 

• Develop scientific skills namely data analyses, data interpretation, scientific discussion 

based on scientific evidence.   
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To take or not to take: what to do in antibiotic treatments. 

 

 

Case: To take or not to take: what to do in antibiotic treatments 

 

Discussion leading questions: 

• What was the change observed in the frequency of resistant bacterial during the first 
and second day of infection and what was the cause for such change? 

• What was the change observed in the frequency of resistant bacterial during the 3rd and 
5th of infection and what was the cause for such changes? 

• How do you explain the differences in outcomes between the distinct simulated 
scenarios in Table 1? 

• During the simulation, what factor caused the decrease of antibiotic resistant bacteria? 

Last Monday, João’s classmate has coughed the entire day. On the following day, João started to feel 

sick and with fever. On Wednesday, three days after he was with his classmate, João went to the doctor 

who diagnosed him with a bacterial infection and prescribed him an antibiotic that he would had to take 

for 8 days. João immediately started the prescribed treatment and two days after he was already feeling 

perfectly well. He then started to wonder if he should still take the antibiotic. In fact, he had recently 

read an article in a magazine about scientific studies suggesting that people should interrupt antibiotic 

treatment as soon as they were no symptoms.  

 

To help João decide about what to do, run the software SimulATe using the parameters that match his 

infection history (depicted above) and fill in Table 1 with the expected results for each possible 

alternative option. 

 

Infection history parameters: 

Default options for all parameters except  

Symptoms at infectious level of 104 

Death infectious level - 108 

Antibiotic treatment starting three days after the infection 
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To take or not to take: what to do in antibiotic treatments. 

 

• Based on these results what advises would you give to João? 

• Would these results hold for other infections with distinct parameters? What would be 
your predictions and how can you test these? 

• Will the simulator results always be true? What could be the limitations to the use of this 
simulator results? And how can we apply the results of this simulator to inform our 
choices? 

• From your results what is the best procedure to treat the infection and avoid the 
frequency increase of resistant bacteria? 

 

References and additional sources of information: 

https://www.ted.com/talks/maryn_mckenna_what_do_we_do_when_antibiotics_don_t_work_
any_more 

https://www.youtube.com/watch?v=znnp-Ivj2ek 

 

Additional activities: 

✓ Ask your students to make an educational campaign in school to promote the wise use 
of antibiotics by other students.   

https://www.ted.com/talks/maryn_mckenna_what_do_we_do_when_antibiotics_don_t_work_any_more
https://www.ted.com/talks/maryn_mckenna_what_do_we_do_when_antibiotics_don_t_work_any_more
https://www.youtube.com/watch?v=znnp-Ivj2ek
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To take or not to take: what to do in antibiotic treatments. 

 

Appendix 1: Table1 – Please fill this table with SimulATe results 

 

Scenario Relative Frequency of bacteria resistant to 
antibiotic at the 

Final result of João’s choices 

Initial 
infection 

3rd day 5th day 8th day 

No antibiotic 
treatment  

     

Prescribed 
antibiotic 
treatment  

     

Prescribed 
antibiotic 
treatment 
interrupted at 
the 5th day 

     

Prescribed 
antibiotic 
treatment 
interrupted at 
the 5th day and 
restarted at 
the 6th day 

     

 


