
P reeclampsia (PE) is defined as hypertension 
accompanied by albuminuria occurring between 

20 weeks of gestation and 12 weeks post-partum in 
pregnant women [1-8].  PE causes severe complications 
such as death and cerebral hemorrhage in the mother,  
and death and growth retardation in the fetus.  PE has a 
major influence on the prognosis of pregnancy.  The 
pathogenesis of PE is explained by the two-stage disor-
der theory proposed by Roberts,  according to which an 
increase in the expression of hypoxia-induced factor-1α 
(HIF-1α) and the collapse of the balance between 
angiogenic and antiangiogenic factors are involved in 

the development of PE [9].  The pathogenesis of PE has 
been reported to differ depending on the severity 
[10 , 11] and onset time [12 , 13],  and the influence on 
the mother’s body and fetus differs depending on the 
type of disease [14-16].  Therefore,  some hitherto 
unknown mechanism might also play a role in the 
pathogenesis of PE.  

Several risk factors have been associated with PE,  
and abnormal glucose metabolism during pregnancy,  
such as that in pregnancy with diabetes and gestational 
diabetes,  complicates PE [17].  In abnormal glucose 
metabolism,  a large amount of glucose incorporated 
into cells might activate protein kinase C (PKC) 
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through a de novo diacylglycerol synthesis pathway [18].  
PKC is a protein family comprising 10 or more iso-
zymes [19].  It phosphorylates the hydroxyl group of the 
serine-threonine residue and plays a central role in 
intracellular signaling pathways such as those involving 
mitogen-activated protein kinase (MAPK),  nuclear 
factor-kappa B (NF-κB),  and nicotinamide adenine 
dinucleotide phosphate oxidase (NADPH oxidase) [20-
22].  The activation of PKC is intimately involved in the 
development of diabetic microangiogenic complica-
tions such as diabetic retinopathy and diabetic nephro-
pathy,  and it has been reported that administration of 
the PKCβ-specific inhibitor ruboxistaurin hydrochlo-
ride (LY333531) improves or suppresses the develop-
ment of diabetic microangiogenic complications [23-
26].

In this study,  we examined whether HIF-1α and 
PKC are involved in the regulation of angiogenic factors 
of the placenta under high-glucose conditions in vitro.  
In addition,  we examined whether the production of 
HIF-1α,  an angiogenic factor,  is inhibited by LY333531.

Materials and Methods

Cell culture. The choriocarcinoma cell line BeWo 
(Japanese Collection of Research Bioresources Cell 
Bank,  Saitoasagi,  Ibaraki,  Osaka) was cultured in 
Ham’s F-12K medium containing 15% fetal bovine 
serum (FBS) and 1% penicillin/streptomycin/ampho-
tericin B (all from Gibco,  Grand Island,  NY,  USA).  
The choriocarcinoma cell line JEG-3 (American Type 
Culture Collection,  Manassas,  VA,  USA) was cultured 
in DMEM containing 10% FBS and 1% penicillin/
streptomycin/amphotericin B (all from Gibco).  The 
trophoblast cell line HTR-8/SVneo (American Type 
Culture Collection,  Manassas,  VA,  USA) was cultured 
in RPMI containing 5% FBS and 1% penicillin/strepto-
mycin/amphotericin B (all from Gibco).  BeWo and 
JEG-3 were plated in medium supplemented with 
10 mmol/L glucose [control glucose concentration;  
control group (CG)] or 25 mmol/L glucose [high-glu-
cose concentration; high-glucose group (HG)] and 
cultured for 6 and 24 h.  HTR-8/SVneo was plated in 
medium supplemented with 10 mmol/L glucose [con-
trol glucose concentration; control group (CG)] or 
25 mmol/L glucose [high-glucose concentration;  
high-glucose group (HG)] and cultured for 24 h.  
1.0 × 106 cells were plated per well.  Where indicated,  

cultures were treated with 200 nM ruboxistaurin hydro-
chloride [24],  a PKCβ-specific inhibitor (LY333531;  
Tocris Bioscience,  Avonmouth,  Bristol,  UK),  and  
10 μM methyl 3-[[2-[4-(2-adamantyl)phenoxy]acetyl]
amino]-4-hydroxybenzoate,  a HIF-1α inhibitor (Santa 
Cruz Biotechnology,  Dallas,  TX,  USA).  The cells were 
cultured under an atmosphere of humidified 5% CO2/air 
at 37°C.  After exposure to various culture conditions,  
the cells were harvested.  Total RNA was extracted from 
the cells according to the protocol included in the 
RNeasy Mini Kit (Qiagen,  Hilden,  Land Nordrhein-
Westfalen,  Germany) and stored at −80°C until analy-
sis.  Supernatants were collected and stored at −30°C 
until analysis.

Real-time reverse transcriptase polymerase chain 
reaction. Total RNA (10 μg) was reverse-transcribed 
in 20 μL of reaction solution according to the protocol 
of a high-capacity cDNA reverse transcription kit 
(Applied Biosystems,  Foster City,  CA,  USA).  Amplifi-
cation of soluble fms-like tyrosine kinase-1 (sFlt-1),  
placental growth factor (PlGF),  vascular endothelial 
growth factor (VEGF),  HIF-1α,  and β-actin genes was 
performed.  β-actin was used as an internal control.  
Amplification was performed on a STEP ONE PCR sys-
tem (Applied Biosystems) with initial denaturation at 
95°C for 15 sec,  followed by 50 cycles of annealing at 
60°C with a final extension at 60°C for 1 min.  The 
results of real time PCR were expressed by the compar-
ative CT.  The value of CG in each experiment was set to 
1,  and the value of HG in each experiment was calcu-
lated as the ratio to the value of CG.

Enzyme-linked immunosorbent assay. Culture 
supernatants were assayed for sFlt-1 (Aviscera Bio-
science,  Santa Clara,  CA,  USA),  PlGF (Aviscera 
Bioscience),  and VEGF (Aviscera Bioscience),  using 
enzyme-linked immunosorbent assay (ELISA) kits 
according to the manufacturer’s protocol.  Assays for 
sFlt-1,  PlGF,  and VEGF were performed in BeWo and 
JEG-3 cells.  The concentration of CG in each experi-
ment was set to 1,  and the concentration of HG in each 
experiment was calculated as the ratio to the value of 
CG.

Protein kinase C kinase activity. The kinase 
activity of PKC was assayed in BeWo and JEG-3 cells 
according to the manufacturer’s protocol of the PKC 
kinase activity assay kit (Abcam,  Cambridge,  UK).  
Activation of PKC was calculated as absorbance value of 
the ELISA assay detecting phosphorylated form of spe-
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cific synthetic peptide as a substrate divided by quantity 
of crude protein used per assay.  The activation of PKC 
of CG in each experiment was set to 1,  and the activa-
tion of PKC of HG in each experiment was calculated as 
the ratio to the value of CG.  Samples were collected 
with lysis buffer including protease inhibitor and stored 
at −80°C until analysis.

Statistical analysis. All data are presented as the 
mean percentage of the control ± SE.  Statistical analy-
ses were performed by the Student’s t-test and ANOVA 
for comparison with the control.  The analyses were 
performed using the Software Package for Social 
Science (Armonk,  NY,  USA).  Differences were con-
sidered significant at p < 0.05.

Results

mRNA expressions of sFlt-1, PlGF, and VEGF in 
BeWo and JEG-3 cells under control and high-glucose 
conditions. BeWo and JEG-3 cells were cultured for 
6 h and 24 h under control and high-glucose condi-
tions,  and the mRNA expressions of sFlt-1,  PlGF,  and 
VEGF were examined by real-time PCR.  Expression 
levels in the CG and HG cultured for 6 h did not differ 
significantly.  However,  the mRNA expressions of sFlt-1,  
PlGF,  and VEGF were significantly higher in the HG 
than in the CG cultured for 24 h (Fig. 1A , B , C).

Protein expressions of sFlt-1, PlGF, and VEGF 
under control and high-glucose conditions in BeWo 
and JEG-3 cells. BeWo and JEG-3 cells were cultured 
for 6 h and 24 h under control and high-glucose condi-
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Fig. 1　 BeWo and JEG-3 cells were cultured for 6 h and 24 h under control and high-glucose conditions (CG and HG,  respectively),  and 
the mRNA expressions of sFlt-1,  PlGF,  and VEGF were examined by real-time PCR.  A,  mRNA expression of sFlt-1; B,  mRNA expression 
of PlGF; C,  mRNA expression of VEGF.  White bars＝CG,  black bars＝HG.  Results in all figures are shown as the mean±SEM of data 
from at least 3 separate experiments,  each performed with triplicate samples.  Differences were considered significant at p＜0.05.  The 
results were analyzed by Studentʼs t-test,  24 h CG vs. 24 h HG.



tions,  and the expression levels of the sFlt-1,  PlGF,  and 
VEGF proteins were examined by ELISA.  The levels of 
the sFlt-1,  PLGF,  and VEGF proteins did not differ 
between the CG and HG cultured for 6 h; however,  
the protein levels were higher in the HG than in the CG 
after 24 h of culture (Fig. 2A , B , C).

Activation of protein kinase C under control and 
high-glucose conditions in BeWo and JEG-3 cells.
BeWo and JEG-3 cells were cultured for 24 h under 
control and high-glucose conditions,  and activation of 
PKC was examined by ELISA.  PKC activation was sig-
nificantly higher in the HG than in the CG after 24 h of 
culture (Fig. 3A).  Moreover,  the increase in the mRNA 
expressions of sFlt-1,  PLGF,  and VEGF in the HG was 
suppressed by treatment with 200 nM LY333531 
(Fig. 3B, C , D).

mRNA expression of HIF-1α under control and 
high-glucose conditions in BeWo and JEG-3 cells.
BeWo and JEG-3 cells were cultured for 6 h and 24 h 
under control and high-glucose conditions,  and the 
mRNA expression of HIF-1α was assessed by real-time 
PCR.  HIF-1α mRNA expression was significantly 
higher in the HG than in the CG after 24h of culture 
(Fig. 4A).  Moreover,  treatment with 200 nM LY333531 
suppressed the increase in HIF-1α mRNA expression in 
the HG (Fig. 4B).  The increase in the mRNA expres-
sions of HIF-1α,  sFlt-1,  PlGF,  and VEGF in the HG 
was suppressed by treatment with 10 μM methyl 
3-[[2-[4-(2-adamantyl)phenoxy]acetyl]amino]-4-hy-
droxybenzoate,  a HIF-1α inhibitor (Fig. 5A , B , C , D).

mRNA expressions of sFlt-1, PlGF, VEGF and 
HIF-1α in HTR-8/SVneo cells under control and 
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Fig. 2　 BeWo and JEG-3 cells were cultured for 6 h and 24 h under control and high-glucose conditions (CG and HG,  respectively),  and 
sFlt-1,  PlGF,  and VEGF protein expressions were examined by ELISA.  A,  Expression of sFlt-1; B,  Expression of PlGF; C,  Expression 
of VEGF.  White bars＝CG,  black bars＝HG.  Results in all figures are shown as the mean±SEM of data from at least 3 separate exper-
iments,  each performed with triplicate samples.  Differences were considered significant at p＜0.05.  The results were analyzed by 
Studentʼs t-test,  24 h CG vs. 24 h HG.
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Fig. 3　 BeWo and JEG-3 cells 
were cultured for 24 h under control 
and high-glucose conditions (CG and 
HG,  respectively),  and the activation 
of PKC was examined by ELISA.  A,  
Activation of PKC kinase.  White 
bars＝CG,  black bars＝HG.  The 
PKCβ-specific inhibitor ruboxistaurin 
hydrochloride (LY333531; 200 nM) 
was administered in the cultures,  and 
the mRNA expressions of sFlt-1,  
PlGF,  and VEGF in BeWo cells were 
examined by real-time PCR; B,  
mRNA expression of sFlt-1 ; C,  
mRNA expression of PlGF; D,  
mRNA expression of VEGF.  White 
bars＝CG,  black bars＝HG,  black 
shaded bars ＝HG ＋LY333531.  
Results in all figures are shown as the 
mean±SEM of data from at least 3 
separate experiments,  each per-
formed with triplicate samples.  
Differences were considered signifi-
cant at p＜0.05.  The results of A 
were analyzed by Studentʼs t-test,  
CG vs. HG.  The results of B,  C,  D 
were analyzed by ANOVA,  CG vs. 
HG vs. HG＋LY333531.

Fig. 4　 BeWo and JEG-3 cells 
were cultured for 6 h and 24 h under 
control and high-glucose conditions 
(CG and HG,  respectively),  and the 
mRNA expression of HIF-1α was 
examined by real-time PCR.  A,  
mRNA expression of HIF-1α.  The 
PKCβ-specific inhibitor ruboxistaurin 
hydrochloride (LY333531; 200 nM) 
was administered in the cultures,  and 
the mRNA expression of HIF-1α in 
BeWo cells was examined by real-
time PCR; B,  mRNA expression of 
HIF-1α.  White bars＝CG,  black bars
＝HG,  black shaded bars＝HG＋
LY333531.  Results in all figures are 
shown as the mean±SEM of data 
from at least 3 separate experiments,  
each performed with triplicate sam-
ples.  Differences were considered 
significant at p＜0.05.  The results of 
A were analyzed by Studentʼs t-test,  
24 h CG vs. 24 h HG.  The results of 
B were analyzed by ANOVA,  CG vs. 
HG vs. HG＋LY333531.



high-glucose conditions. HTR-8/SVneo cells were 
cultured for 24 h under control and high-glucose con-
ditions,  and the mRNA expressions of sFlt-1,  PlGF,  
VEGF and HIF-1α were examined by real-time PCR.  
The mRNA expressions of sFlt-1,  PlGF,  VEGF and 
HIF-1α were significantly higher in the HG than in the 
CG cultured for 24 h (Fig. 6A , B , C , D).

Discussion

In this study,  we demonstrated that the expressions 
of sFlt-1,  PlGF,  and VEGF increased significantly 
under high levels of glucose.  The activation of PKC was 
increased in the HG,  and 200 nM LY333531 sup-
pressed the increase in the mRNA expressions of sFlt-1,  
PlGF,  and VEGF in the HG.  In addition,  HIF-1α 
mRNA expression was also significantly elevated in the 

HG,  and LY333531 administration suppressed this 
increase.  The expressions of HIF-1α,  sFlt-1,  PlGF,  and 
VEGF in the HG were also suppressed by administra-
tion of 10 μM methyl 3-[[2-[4-(2-adamantyl)phenoxy]
acetyl]amino]-4-hydroxybenzoate.

The expression of HIF-1α and antiangiogenic factors 
such as sFlt-1 and soluble endoglin (sEng) might be 
closely linked with the pathogenesis of PE [27-29].  The 
levels of antiangiogenic factors such as sFlt-1 are known 
to be elevated [30-32] — and those of angiogenic factors 
such as PlGF to be decreased [33] — in the pathogenesis 
of PE.  There have been conflicting reports in regard to 
the vasculogenic and angiogenic factor VEGF (i.e.,  
whether the levels of VEGF are increased or decreased 
in PE) [34 , 35].  However,  it is clear that the collapse of 
the balance between these angiogenic and antiangio-
genic factors is important in the pathogenesis of PE,  
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Fig. 5　 BeWo cells were cultured for 24 h under control and high-glucose conditions (CG and HG,  respectively),  and the HIF-1α inhibitor 
methyl 3-[[2-[4-(2-adamantyl)phenoxy]acetyl]amino]-4-hydroxybenzoate was administered in the cultures.  We examined the mRNA expres-
sions of HIF-1α,  sFlt-1,  PlGF,  and VEGF by real-time PCR.  A,  mRNA expression of HIF-1α; B,  mRNA expression of sFlt-1; C,  mRNA 
expression of PlGF; D,  mRNA expression of VEGF.  White bars＝CG and HG,  black bars＝CG＋HIF-1α inhibitor and HG＋HIF-1α 
inhibitor.  Results in all figures are shown as the mean±SEM of data from at least 3 separate experiments,  each performed with triplicate 
samples.  Differences were considered significant at p＜0.05.  The results were analyzed by Studentʼs t-test,  CG vs. CG＋HIF-1α inhibitor 
and HG vs. HG＋HIF-1α inhibitor.



and might be responsible for various clinical findings in 
the disorder.  

In this study,  HIF-1α,  sFlt-1,  PlGF,  and VEGF lev-
els were elevated in BeWo,  JEG-3 and HTR-8/SVneo 
cells in the HG.  In the placenta of pregnant women 
with abnormal glucose metabolism,  when maternal 
blood glucose control is poor,  the number of immature 
villi of the narrow intervillous space increases and isch-
emic changes occur in peripheral villi in the placenta 
[36].  Angiogenesis and chorangiosis occur as a result of 
persistent hypoxia and ischemia in the villi [37],  
whereas maternal blood pressure might be elevated and 
fetal growth restriction might occur in such cases.  
These pathological changes in the placenta resemble 
those occurring in the placenta of pregnant women with 
PE [36].  In the placenta exposed to high glucose levels,  
increases in the levels of HIF-1α and the angiogenic 
factors sFlt-1,  PlGF,  and VEGF are expected.

It has been reported that PlGF levels are low in cases 
of PE caused by remodeling failure of the spiral artery in 
early pregnancy.  However,  in an earlier study,  we 
reported that sFlt-1 levels were lower and PlGF levels 

were higher in an obese group of pregnant women who 
developed PE than in a non-obese group of pregnant 
women who developed PE.  Moreover,  the pathogene-
sis of PE in pregnant women with high insulin resis-
tance (e.g.,  obesity) differs from the pathogenesis of PE 
caused by remodeling failure of the spiral artery in early 
pregnancy [38].  In the present study,  the levels of PlGF 
and VEGF were also increased,  similarly to those of 
HIF-1α and sFlt-1,  in the HG.  Therefore,  the placenta 
under high levels of glucose exhibits increased produc-
tion of PlGF and VEGF as well as HIF-1α and sFlt-1,  
suggesting that the pathogenesis of PE in pregnant 
women with high insulin resistance (including those 
with conditions such as obesity) and abnormal glucose 
metabolism might differ from the pathogenesis of PE 
caused by remodeling failure of the spiral artery in early 
pregnancy.  Thus,  an imbalance between these angio-
genic and antiangiogenic factors is implicated in the 
development of PE.

The activation of PKC caused by hyperglycemia has 
been found to be related to blood vessel abnormalities 
in the retina,  kidneys,  and cardiovascular system [20].  
Activation of PKC has also been reported to activate 
MAPK,  NF-κB,  and NADPH oxidase [20-22].  MAPK,  
the phosphoinositide 3-kinase-Akt (PI3K-Akt) pathway,  
and the mammalian target of rapamycin pathway 
(mTOR) pathway are key signaling pathways in angio-
genesis.  Ras in the MAPK pathway is activated by PKC 
[39].  Activated Ras in turn activates the Pl3K-Akt path-
way,  and the Pl3K-Akt pathway increases the produc-
tion of HIF-1α via the mTOR pathway [40 , 41].  That is,  
activation of PKC increases the production of HIF-1α 
via the MAPK,  PI3K-Akt,  and mTOR pathways.  
NF-κB also increases the production of HIF-1α [42].  In 
this study,  the activation of PKC was significantly 
higher in the HG than in the CG after 24 h of culture.  
Further,  the increase in the mRNA expression levels of 
HIF-1α,  sFlt-1,  PlGF,  and VEGF in the HG with 
LY333531 treatment was suppressed,  and the increase 
in the mRNA expression levels of sFlt-1,  PlGF,  and 
VEGF in the HG with methyl 3-[[2-[4-(2-adamantyl)
phenoxy]acetyl]amino]-4-hydroxybenzoate treatment 
was also suppressed.  Therefore,  the activation of PKC 
in villous cells under high-glucose conditions might 
increase the production of HIF-1α,  angiogenic factors 
and antiangiogenic factors,  and cause the collapse 
between angiogenic factors and antiangiogenic factors 
via the MAPK,  NF-κB,  PI3K-Akt,  and mTOR path-
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Fig. 6　 HTR-8/SVneo cells were cultured for 24 h under control 
and high-glucose conditions (CG and HG,  respectively),  and the 
mRNA expressions of sFlt-1,  PlGF,  VEGF and HIF-1α were exam-
ined by real-time PCR.  A,  mRNA expression of sFlt-1; B,  mRNA 
expression of PlGF; C,  mRNA expression of VEGF; D,  mRNA 
expression of HIF-1α.  White bars＝CG,  black bars＝HG.  Results 
in all figures are shown as the mean±SEM of data from at least 3 
separate experiments,  each performed with triplicate samples.  
Differences were considered significant at p＜0.05.  The results 
were analyzed by Studentʼs t-test,  24 h CG vs. 24 h HG.



ways (Fig. 7).  
Important limitations of this study should be 

acknowledged.  First,  the study was performed only in 
vitro,  and thus the extensibility of the findings to an in 
vivo setting is uncertain.  In addition,  we used human 
choriocarcinoma cell lines and a human trophoblast cell 
line,  rather than normal placental cells.  In the future,  
these experiments should be replicated using cells 
derived from the normal placenta.

In conclusion,  we demonstrated that in human cho-
riocarcinoma cells and human trophoblast cells under 
high-glucose conditions,  the production of HIF-1α and 
angiogenic factors increased and PKC was activated.  In 
addition,  the inhibition of PKC and HIF-1α suppressed 
the production of angiogenic factors,  suggesting the 
possibility of controlling the vascular lesions of the pla-
centa in pregnancies complicated with abnormal glu-
cose metabolism via the PKCβ and HIF-1α pathways.  
Although further in vivo study will be needed,  our 
results suggest that in the clinical setting,  agents such as 
the PKCβ-specific inhibitor LY333531 could control or 
prevent the development of PE in pregnant women with 
abnormal glucose metabolism.
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