-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by Okayama University Scientific Achievement Repository

A Design-aware Test Code Approach for Code
Writing Problem in Java Programming Learning
Assistant System

Khin Khin Zaw

Graduate School of Natural Science and Technology,
Okayama University,

Okayama, Japan

E-mail: p8ljloji@s.okayama-u.ac.jp

Nobuo Funabiki

Graduate School of Natural Science and Technology,
Okayama University,

Okayama, Japan

E-mail: funabiki@okayama-u.ac.jp

Abstract: To advance Java programming educations, we have developed the Web-based
Java Programming Learning Assistant System (JPLAS) that provides the code writing
problem among the four type problems with different levels. This problem asks a student
to write a Java source code for a given assignment, where the correctness is verified by
running the test code on JUnit. Unfortunately, it is found that even after solving many
simple problems, a lot of students cannot solve harder problems that require multiple
classes/methods, where the proper code design is necessary. In this paper, we propose
a design-aware test code approach for the code writing problem in JPLAS. The design-
aware test code is generated to test any important method in the model code that has
the advisable design for the problem. By writing a code that can pass this test code, a
student is expected to implement the code with the proper classes/methods in the model
code. For evaluations, we asked seven students to write the source code for the breadth-
first-search (BFS) algorithm of a graph without/with using the design-aware test code.
Then, only one student could complete it without it, whereas all of them could do so with
it. Besides, the code quality metrics measured by Metrics plugin for Eclipse showed that
the design-aware test code is very helpful for students to write highly qualitative codes.
These results were also confirmed in other graph algorithms.

Keywords: JPLAS; Design-aware test code; JUnit; Metric Plugin; BFS.

Reference to this paper should be made as follows: K .K. Zaw, N. Funabiki, ‘A Design-
aware Test Code Approach for Code Writing Problem in Java Programming Learning
Assistant System’, Int. J. Space-Based and Situated Computing, Vol. x, No. y, pp.aa—bb.

Biographical notes: Khin Khin Zaw received the B.E. degree in information technology
from Technological University (HmawBi), Myanmar, in 2006, and the M.E. degree in
information technology from Mandalay Technological University, Myanmar, in 2011,
respectively. She has been a lecturer in Yangon Technological University, Myanmar, since
2015. She is currently a Ph.D. candidate in Graduate School of Natural Science and
Technology at Okayama University, Japan. Her research interests include educational
technology and Web application systems. She is a student member of IEICE.

Nobuo Funabiki received the B.S. and Ph.D. degrees in mathematical engineering
and information physics from the University of Tokyo, Japan, in 1984 and 1993,
respectively. He received the M.S. degree in electrical engineering from Case Western
Reserve University, USA, in 1991. From 1984 to 1994, he was with Sumitomo Metal
Industries, Ltd., Japan. In 1994, he joined the Department of Information and Computer
Sciences at Osaka University, Japan, as an assistant professor, and became an associate
professor in 1995. He stayed at University of Illinois, Urbana-Champaign, in 1998, and
at University of California, Santa Barbara, in 2000-2001, as a visiting researcher. In
2001, he moved to the Department of Communication Network Engineering (currently,
Department of Electrical and Communication Engineering) at Okayama University as
a professor. His research interests include computer networks, optimization algorithms,
educational technology, and Web technology. He is a member of IEEE, IEICE, and IPSJ.

https://core.ac.uk/display/160611109?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Int. J. Signal and Imaging Systems Engineering, Vol. z, No. z, 201X 2

1 Introduction

Java has been extensively used in industries as
a reliable and portable object-oriented programming
language, which involves mission critical system for large
enterprises and small-sized embedded system. Thus, the
cultivation of Java programming engineers has been in
high demands amongst industries. A great number of
universities and professional schools are offering Java
programming courses to meet these needs.

To assist Java programming educations, we have
developed the Web-based Java Programming Learning
Assistant System (JPLAS) N. Ishihara, N. Funabiki,
M. Kuribayashi, W.-C. Kao (2010). JPLAS provides
the element fill-in-blank problem N. Funabiki, Tana, K.
K. Zaw (2017), wvalue trace problem K. K. Zaw, N.
Funabiki, and W.-C. Kao (2015), statement fill-in-blank
problem N. Ishihara, N. Funabiki, and W.-C. Kao (2015),
and code writing problem N. Funabiki, Y. Matsushima,
T. Nakanishi, N. Amano (2013) that have different
difficulties to cover a variety of students at different
learning levels. The first two problems are designed for
novice students to study Java grammar and code reading
by filling in the correct words to the blanks in a given
code. The correctness is marked through comparisons
with the correct answers. The third problem requests
students to fill in the blanked statements in a given
code. The correctness is verified by running the test code
on JUnit, JUnit (http://www.junit.org/.) as the test-
driven development (TDD) method K. Beck (2002). It is
designed to fill the gap between the former problems and
the last one. The last problem asks students to write a
source code for a given specification described in natural
language. The correctness is also verified by the test
code.

Unfortunately, in the code writing problem, it is
found that even after solving many simple problems,
most students who are studying Java programming
cannot solve harder problems that require longer codes
composed of multiple classes/methods. For example, the
implementation of a graph theory algorithm is included
in such problems, where the code needs the handling of
the graph data in addition to the algorithm procedure.
The detailed code design is necessary to help students to
find the proper classes and methods in the code.

In this paper, we propose a design-aware test code
approach for the code writing problem in JPLAS. The
design-aware test code tests any important method in
each class in the model source code for the problem,
which describes the detailed code design. For example,
for a graph theory algorithm, this test code tests the
methods in the class for handling the graph data for a
given graph and those in the class for finding the answer.
By writing the source code that passes this test code, the
student is expected to design and implement the source
code using the proper classes/methods.

For evaluations, we first prepared the design-aware
test code for the breadth-first-search (BFS) algorithm of

Copyright © 201X Inderscience Enterprises Ltd.

Copyright © 201X Inderscience Enterprises Ltd.

a simple graph, and asked seven students in our group
to write the corresponding code without and with using
this test code. Then, only one student could complete
it without using the design-aware test code, whereas
all of them completed it with using it. After that, we
asked three of them to write the codes for depth-first-
search (DFS), Prim, Dijkstra, and Kruskal algorithms,
and found that all of them could complete the codes
even without using design-aware test codes, because they
have already become familiar to code implementations
of these similar graph algorithms through the BFS
algorithm. Furthermore, code quality metrics of these
codes were measured by Metrics plugin for Eclipse, where
the results were acceptable. Thus, the design-aware test
code is very helpful for students to complete highly
qualitative codes.

The rest of this paper is organized as follows:
Sections 2 shows related works. Sections 3 and 4 review
JPLAS and the TDD method respectively. Section 5
introduces Metrics plugin for Eclipse. Section 6 presents
the design-aware test code approach for the code writing
problem. Section 7 evaluates our proposal. Finally,
Section 8 concludes this paper with some future works.

2 Related Works

In this section, we discuss some related works.

In Yamamoto (2016.), Yamamoto et al. presented
an improved group discussion system for the active
learning system (ALS) using mobile devices to increase
the examination pass rate. In their previous study, it
was found that the proposed ALS could not increase
the examination pass rate of the students although
the self-learning time was increased. The experimental
evaluation of the improved group discussion system
showed that it can increase the examination pass rate. In
future works, we will consider implementing the group
discussion function with interfaces for mobile devices in
JPLAS, so that students can continue studying Java
programming with proper advises or hints from other
students.

In T. Xue (2017), Xue et al. presented an integrity
verification method for exception handling in service-
oriented software. In this method, they construct state
spaces associated with exception handling, convert the
issue of integrity verification into a model of boundedness
analysis based on CPN, and reduce the size of state
spaces by extending Stubborn Set and Transition
Dependency Graph. The experimental results confirmed
that the method has good generalization abilities. In
future studies, we will study the use of this method for
learning exception handling in JPLAS.

In E. Zhou (2016), Zhou et al. presented an Android
application system using a tablet called Isaly to provide
visual programming environments for educations. In this
proposal, the concept of the state-transition diagram is
used to make a program by a student. Isaly contains

A Design-aware Test Code Approach for Code Writing Problem in Java Programming Learning Assistant System3

several features and user interfaces suitable for the use
in a tablet.

In Z. Zhu (2014), Zhu et al. presented a system for
mining API usage examples from the test code. They
found that the test code can be a good source for API
usage examples that programmers need to know, like our
approach. The test code can provide the information on
small units of a code like functions, classes, procedures,
and interfaces. The information in the test code is
helpful in developing and maintaining a source code,
including the knowledge sharing and transfer among
programmers. However, the repetitive API use in a test
code makes it complicated for programmers to read
it. To address this issue, they studied the JUnit test
code and summarized a set of test code patterns. They
employed a code pattern based heuristic slicing approach
to separate test scenarios in code examples. Then, they
cluster similar API usages to remove redundancy and
provide recommendations for API usage examples for
programmers. In future works, we will study the use of
the design-aware test code for API usage.

In C. Kolassa (2016), Kolassa et al. presented a
system based on JUnit to test the partial code in a
template of a template-based code generator where it
is generated by the template engine. It facilitates the
partial testing of a code by supporting the code execution
in a mocked environment. They adopted TUnit, an
extension of JUnit based on the MontiCore language
workbench H. Grénniger (2008), H. Krahn (2008), H.
Krahn (2010), to support the unit test of an incomplete
code in the mocked environment. By using TUnit, a
code generator template can be tested with mocked
contexts such as mocked variables, mocked templates,
and mocked help functions that are the inputs to the
template. This testing intends to answer the questions:
Is the set of the specified inputs accepted by the code
generator template, e.g., the code can be generated?,
Does the code generator template produce syntactically
valid source code?, and Are the target language context
conditions valid for the generated source code?

On the other hand, in this paper, the design-aware
test code approach is presented for the code writing
problem in JPLAS, so that a student can learn how to
write a complex source code in a harder assignment that
requires multiple classes, by referring the information on
the source code described in the test code, such as the
names of the classes, the methods, the essential variables,
the arguments, the returning data types of the methods,
and the exception handling that are intended by the
teacher. In JPLAS, we have implemented the interfaces
only for a PC browser using a mouse and a keyboard.

3 JPLAS

In this section, we review Java Programming Learning
Assistant System (JPLAS) N. Ishihara, N. Funabiki, M.
Kuribayashi, W.-C. Kao (2010).

3.1 Software Platform

In JPLAS, Ubuntu is adopted for the OS of JPLAS
running on VMware. Tomcat is used as the Web server
for JSP. JSP is a script with embedded Java code within
the HTML code, where Tomcat can return a dynamically
generated Web page to the client. MySQL is adopted as
the database for managing the data.

3.2 Four Problems in JPLAS

In JPLAS, the four types of problems are provided.
For each problem, JPLAS offers service functions for a
teacher to generate and register new problems and for a
student to answer the problems.

3.2.1 Element Fill-in-blank Problem

This problem requires a student to fill in the blank
elements in a given Java code. The correctness of the
answer is marked by comparing them with their original
elements in the code. Thus, the original elements must
be the unique correct answers for the blanks. To help a
teacher to generate an element fill-in-blank problem, we
have proposed a blank element selection algorithm.

3.2.2 Value Trace Problem

This problem is another type of the element fill-in-
blank problem that keeps the nature of filling in blanks
and marking answers by string matching, but requires
much deeper code reading. It questions a student about
actual values of important variables in the code that
implements a fundamental data structure or algorithm.
To generate a value trace problem for a given code, the
blank line selection algorithm is presented, which blanks
the whole data in such a line of the output data from the
code execution that at least one data is changed from
the previous line.

3.2.8 Statement Fill-in-blank Problem

This problem asks a student to fill in the blank
statements in a given Java code. The correctness of
the answer is marked by using the test code on JUnit
as the code writing problem, where the combined code
with the blank one and the answer is tested. To help
a teacher prepare a statement fill-in-blank problem, we
have proposed a blank statement selection algorithm
using the program dependency graph (PDG).

3.2.4 Code Writing Problem

This problem asks a student to write a whole source code
from scratch that satisfies the specifications given by a
test code. The correctness of the code by a student is
marked by using this test code on JUnit. A teacher needs
to prepare the specification and the test code to register
a new assignment in JPLAS.

4 K.K.Zaw et al.

4 TDD Method

In this section, we review the test-driven development
(TDD) method.

4.1 JUint

JPLAS adopts JUnit as an open-source Java framework
to support the TDD method. JUnit can assist the
automatic unit test of a source code or a class. Since
JUnit has been designed with the Java-user friendly
style, including the test code programming, is rather
simple for Java programmers. In JUnit, one test can be
performed by using one method in the library whose
name starts with “assert”. This paper adopts the
“assertEquals” method to compare the execution result
of the source code with its expected value.

4.2 Test Code

A test code should be written by using libraries in JUnit.
Here, the following MyMath class source code is used to
introduce how to write a test code. MyMath class returns
the summation of two integer arguments.

1:public class MyMath{

2: public int plus (int a, int b){
3: return (a+b);

4: }

5:}

Then, the following test code tests the plus method
in the MyMath class.

import static org.junit.Assert.*;

import org.junit.Test;

: public class MyMathTest {

: QTest

public void testPlus(){
MyMath ma = new MyMath();
int result = ma.plus(l, 4);
assertEquals (5, result);

}

= © 00N O WN -

0:}

The test code imports JUnit packages containing test
methods at lines 1 and 2, and declares MyMathTest at
line 3. @Test at line 4 indicates that the succeeding
method represents the test method. Then, it describes
the procedure for testing the output of the plus method.
This test is performed as follows:

1. An instance ma for MyMath class is generated.

2. The plus method for this instance ma.plus is called
with given arguments.

3. The result result is compared with its expected
value using the assertFquals method.

4.8 Features in TDD Method

In the TDD method, the following features can be
observed.

1. The test code represents the specifications of
the source code, because it must describe every
function which will be tested in the source code.

2. The testing process of a source code becomes
efficient, because each function can be tested
individually.

3. The refactoring process of a source code becomes
easy, because the modified code can be tested
instantly.

5 Metrics Plugin for Eclipse

In this section, we introduce Metrics plugin for Eclipse
that is used to measure the code quality metrics in this

paper.
5.1 Software Metrics

Software metrics are used for a variety of purposes
including the evaluation of the software quality and
the prediction of the development/maintenance cost.
Software metrics can be measured from software
products such as source codes and documents. Most of
software metrics are defined on the conceptual modules
of software systems, including files, classes, methods,
functions, and data flows. This means that software
metrics can be measured in any programming language.

At present, a variety of software metrics exist. They
can be classified into basic metrics, complexity metrics,
CK metrics, and coupling metrics. CK metrics indicate
features of object-oriented software, and has been widely
used Y. Higo, A. Saitoh, G. Yamada, T. Miyake, S.
Kusumoto, and K. Inoue (2011), T. G. S. Fil6 and M.
A. S. Bigonha (2015).

Basic metrics include the following metrics:

e number of classes (NOC)

e number of methods (NOM)

e number of fields (NOF)

e number of overridden methods (NORM)
e number of parameters (PAR)

e number of static methods (NSM)

e number of static fields (NSF).

Complezity metrics include the following metrics:
e method lines of code (MLOC)

e specialization index (SIX),

e McCabe cyclomatic complexity (VG)

e nested block depth (NBD).

CK metrics include the following metrics:

e weighted methods per class (WMC)
e depth of inheritance tree (DIT),
e number of children (NSC)

A Design-aware Test Code Approach for Code

e lack of cohesion in methods (LCOM).
Coupling metrics include the following metrics:

e afferent/efferent coupling (CA/CE).

5.2 Metrics Plugin for Eclipse

Until now, a lot of software metric measuring tools
have been developed. Among them, Metrics plugin for
Eclipse by Frank Sauer is the commonly used open
source software plugin for the FEclipse IDE for the
metrics calculation and the dependency analyzer. It
can measure various metrics and display the results
in the integrated view. Actually, 23 metrics can be
measured by this tool, which can be used for the
quality assurance testing, the software performance
optimization, the software debugging, the process
management of software developments such as time or
methodology, and the cost/size estimations of a project
Metric Plugin (http://metrics.sourceforge.net).

5.8 Adopted Seven Metrics

In this paper, we use this tool to measure the necessary
metrics to evaluate the quality of source codes from the
students that pass the test code on JUnit. The following
seven metrics are actually adopted in this paper:

1. Number of Classes (NOC)
This metric represents the number of classes in the
source code.

2. Number of Methods (NOM)
This metric represents the total number of
methods in all the classes.

3. Cyclomatic Complexity (VG)
This metric represents the number of decisions
caused by the conditional statements in the source
code. The larger value for VG indicates that the
source code is more complex and becomes harder
to be modified.

4. Lack of Cohesion in Methods (LCOM)

This metric represents how much the class lacks
cohesion. A low value for LCOM indicates that it
is a cohesive class. On the other hand, the value
close to 1 for LCOM indicates the lack of cohesion
and suggests that the class might better be split
into several (sub)classes. LCOM can be calculated
as follows:

1) Each pair of methods in the class are selected.

2) If they access to the disjoint set of instance
variables, P is increased by one. If they share
at least one variable, () is increased by one. It
is noted that P and @ are initialized by 0.

3) LCOM is calculated by:
P-Q (ifP>Q)

LCOM = 1
{0 (otherwise) S

Writing Problem in Java Programming Learning Assistant Systemb

5 Nested Block Depth (NBD)
This metric represents the maximum number of
nests in the method. It indicates the depth of the
nested blocks in the code.

6. Total Lines of Code (TLC)
This metric represents the total number of lines in
the source code, where the comment and empty
lines are not included.

7. Method Lines of Code (MLC)
This metric represents the total number of lines
inside the methods in the source code, where the
comment and empty lines are not included.

6 Design-aware Test Code Approach for
Code Writing Problem

In this section, we propose the design-aware test code
approach for the code writing problem in JPLAS.

6.1 Concept of Design-aware Test Code

The design-aware test code helps a student to complete
the source code with the high quality for a harder code
writing problem by giving the necessary information to
implement the code. This information can include the
following items for the code:

e important classes and methods

e global variables and their data types used in each
class

e arguments in each method
e returning value in each method

e exception handling

6.2 Problem Generation with Design-aware Test

Code

Generally, in a code writing problem, the test code file,
the input data file, and the expected output data file
should be given to the students by a teacher, in addition
to the problem statement in natural language. Then, a
student is requested to write the source code that passes
every test described in the test code on JUnit. The test
code represents the detailed specifications of the source
code.

The design-aware test code can be prepared after the
qualitative model source code for the problem is prepared
by the teacher. It is expected that the student completes
the qualitative source code for the problem that has
the similar structure with the model source code by
referring this test code. The following steps describe the
generation procedure of the code writing problem using
the design-aware test code:

1. The teacher prepares the statement and the input
data file for the new problem.

6 K.K.Zaw et al.

2. The teacher prepares the model source code that
does not only satisfy every specification of the
problem but has the high quality design.

3. The teacher prepares the expected output data file
by running the model source code. This output file
is used for comparison with the output data file of
the student code to check the correctness.

4. The teacher generates the design-aware test code
from the model source code such that any
important method in the model source code is
tested including the exception handling.

6.3 Ezxample Problem Generation for BFS
Algorithm

In this subsection, we describe the details of
Steps 1, 2, and 3 wusing the BFS algorithm BFS
(http://www.geeksforgeeks.org/breadth-first-traversal-

for-a-graph). It starts at the root node (or arbitrary
node of a graph), and explores the neighbor nodes first,
before moving to the next level neighbors.

6.3.1 Input Data File

To represent a graph, the input data file should contain
the index and the label for every vertex, and the source
verter label and the destination vertex label for every
edge. The following example represents a graph with
eight vertices and seven edges.

1: node-number node-label
2: 0 s

3: 1 r

4: 2 w

5: 3 t

6: 4 x

7: 5 v

8: 6 u

9: 7 y

10: source-node target-node
11: s r

12: s w

13: r v

14: w t

15: w x

16: t u

17: x vy

6.3.2 Model Source Code

The model source code should be prepared carefully
by using the proper classes and methods, so that the
measured metrics of the model source code exist in
the desired ranges. For example, the model source code
for BFS can be implemented using the graph class for
handling the graph data, the BF'S class for applying the
algorithm procedure, and the main class for controlling
the whole code. The teacher can obtain the model source
code from textbooks or websites. By comparing the
measured metrics of source codes in them, the teacher
can select the best source code for the model one.

6.3.3 Ezxpected Output Data File

The expected output data file can be obtained by
running the model source code with the input data file.
It describes the expected results of the source code by a
student. For BFS, it includes the selected edges by the
algorithm in the selected order that are described by a
pair of two end node labels.

selec-node pre-node
s

1:
2
3
4.
5:
6 .
7
8
9

< E M o< =R
Mt s R onnon |

6.3.4 Design-aware Test Code

The design-aware test code should be generated by
referring the model source code such that any important
method in the model code must be tested in this
test code. It is possible to apply an automatic test
code generation tool to help the test code generation
JUnit-Tools (http://junit-tools.org/index.php/getting-
started). Then, the test code is generated from the model
source code by the following rules:

1. The class name is given by the test class name +
Test.

2. The method name is given by the test + test
method name.

3. The specific values are specified for the arguments
in the test code by the teacher.

The test code can more clearly describe the
specifications than a description using natural language.
It is expected that the student obtains the information
for the class/method names, the data types, and the
argument settings by reading the test code, before
writing the source code. Because the information in the
test code comes from the model source code, the student
is able to complete the same qualitative source code as
the model code.

6.3.5 Design-aware Test Code Example

The following test code contains the necessary
information to implement a source code for the BFS
algorithm, including the classes, the methods, the
important variables and their data type, the exception
handling, and returning values of method. By reading
the test code carefully and understanding the details, the
student can design and implement the source code that
contains the same classes/methods as the model source
code.

:import static org.junit.Assert.x*;
:import java.io.BufferedReader;
:import java.io.File;

:import java.io.FileReader;

VI SR

9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

20:
21:
22:
23:
24:
25:

26:
27:
28:
29:
30:
31:
32:

33:
34:
35:
36:
37:
38:

39:
40:
41:
42:
43:
44:
45:

46:

47:
48:
49:
50:
51:
52:
53:
54:
65:
56:
57:
58:
59:

60:

61:

A Design-aware Test Code Approach for Code Writing Problem in Java Programming Learning Assistant System7

:import java.io.IOException;
:import java.util.Arrays;
:import org.junit.Test;

:public class BFSTest {

QTest

public void testSimpleGraph() {
SimpleGraph G = new SimpleGraph (5);
boolean a=G.labels instanceof String [];
boolean b=G.edges instanceof boolean [][];
assertEquals(true, a);
assertEquals(true, b);
assertEquals(5,G.labels.length);
assertEquals(5,G.edges.length) ;
assertEquals(5,G.edges[0] .length);

QTest

public void testSetLabel(){
SimpleGraph G= new SimpleGraph(2);
G.setLabel(1, "a");
assertEquals("a",G.labels[1]);

}

QTest

public void testGetLabel(){
SimpleGraph G = new SimpleGraph (2);
G.setLabel(1, "b");
String label=(String)G.getLabel(1);
assertEquals("b",label);

}

QTest
public void testAddEdge(){

SimpleGraph G = new SimpleGraph (3);
G.addEdge (1, 2);
assertEquals(true,G.edges[1][2]);

}

QTest

public void testNeighbours(){

SimpleGraph G = new SimpleGraph(3);

int [] expectedNode = {1,2};

G.addEdge (0,1) ;

G.addEdge(0,2);

assertTrue (Arrays.equals (expectedNode,

G.neighbors(0)));

}

QTest

public void testFindBFS1(){
SimpleGraph G = new SimpleGraph(4);
BFS bfs = new BFS();

.setLabel(0, "a");

.setLabel(1, "b");

.setLabel(2, "c");

.setLabel(3, "e");

.addEdge (0,1) ;

.addEdge (0,2) ;

.addEdge (1,3);

String Path[]=bfs.findBFS(G, 0);

String[] expectedPath=

{ua a", "y an’ "e a", e b"};
assertTrue (Arrays.equals
(expectedPath,Path)) ;

QOO QR0

}

QTest
public void testFindBFS2() throws IOException {
BFS bfs= new BFS();
File testFileName=new File
("./Graph/graphBFS.txt");
File OutFileName=new File

67:
68:
69:
70:

71:
72:
73:

74:

75:
76:
77
78:
79:

80:

81:
82:%}

("D:/Graph/bfsout.txt");
String graph=bfs.readFile(testFileName);
String [] path=bfs.findBFS(graph);
bfs.writeFile(OutFileName, path);

QTest
public void assertReaders() throws IOException {
BufferedReader expected= new BufferedReader
(new FileReader("./Graph/expectedbfsout.txt"));
BufferedReader actual = new BufferedReader
(new FileReader("D:/Graph/bfsout.txt"));
String line;
while ((line = expected.readLine()) != null) {
assertEquals(line, actual.readLine());
}
assertNull("Actual had more lines than
the expected.", actual.readLine());
assertNull ("Expected had more lines than
the actual.", expected.readLine());

Lines from 10 to 19 describe the test method
for two important variables, labels and edges, in
SimpleGraph class. labels has the String data type
and one dimensional array. edges has the Boolean
data type and two dimensional array.

Lines from 21 to 25 describe the test method for
setLabel method in SimpleGraph, which accepts
two arguments with integer and string data types,
namely index and label, and inserts the information
to labels.

Lines from 27 to 32 describe the test method for
getLabel method, which accepts one argument with
integer data type and returns the corresponding
label from labels.

Lines from 34 to 38 describe the test method for
addEdge method, which accepts two arguments
with integer data types, namely source and target,
and inserts the information to edges.

Lines from 40 to 46 describe the test method for
neighbours method, which accepts one argument
with integer data type, namely index, and returns
the integer array which includes the indexes are
neighboring to the input index.

Lines from 48 to 61 describe the first test method
for findBFS method in BFS class, which accepts
two arguments with the Graph object and the
integer data type and returns a string array which
includes the labels from labels for the selected
indexes and the previous index from them by
BFS. Here, setLabel and addEdge methods in
SimpleGraph class are also described here.

Lines from 63 to 70 describe the second test
method for findBFS method, which accepts one
argument of the string data type and returns the
string array which includes the labels from labels
for the selected indexes and the previous index
from them by BFS. Here, readFile and writeFile

8 K.K.Zaw et al.

methods in BFS class are also described. readFile
method accepts one argument of File object and
returns the string that includes the index and labels
for the graph to be applied to findBFS method.
writeFile method accepts two arguments of the
File object and the string data type array, and
writes the input string array, which includes the
labels from labels for the selected indexes and the
previous index from them by BFS, to the output
file and generate it. This test method throws
the IOFEzception whenever an input or output
operation is failed or interrupted when the program
is executed.

e Lines from 72 to 81 describe the test method that
is used to compare the expected output data file
with the output data file from the source code of
the student.

7 Evaluations

In this section, we evaluate the design-aware test
code approach for the code writing problem through
applications to seven students in our group. For
evaluations, we prepare the design-aware test codes for
five well-known graph algorithms, BFS, DFS, Prim,
Dijkstra, and Kruskal.

7.1 Simple Test Code

To compare the solving performance with the design-
aware test code, we also prepare the simple test codes for
them. The following simple test code for BFS contains
only the test methods for the readFile method, the
writeFile method, and the findBF'S method in the BF'S
class. This simple test code only tests the input data
file reading and output data file writing functions in the
source code, where it does not test the internal functions
of the code.

:import static org.junit.Assert.*;
:import java.io.BufferedReader;
:import java.io.File;

:import java.io.FileReader;
:import java.io.IOException;
:import java.util.Arrays;

:import org.junit.Test;

~No o WN

8:public class BFSTest {

9: QTest

10: public void testFindBFS() throws IOException {

11: BFS bfs= new BFS();

12: File testFileName=new File
("./Graph/graphBFS.txt");

13: File OutFileName=new File
("D:/Graph/bfsout.txt");

14: String graph=bfs.readFile(testFileName) ;

15: String [] path= bfs.findBFS(graph);

16: bfs.writeFile(OutFileName, path);

17: ¥

18: Q@Test

19: public void assertReaders() throws IOException {

20: BufferedReader expected= new BufferedReader
(new FileReader("./Graph/expectedbfsout.txt"));
21: BufferedReader actual = new BufferedReader
(new FileReader("D:/Graph/bfsout.txt"));
22: String line;
23: while ((line = expected.readLine()) != null) {
24: assertEquals(line, actual.readLine());
25: }
26: assertNull("Actual had more lines than
the expected.", actual.readLine());
27: assertNull ("Expected had more lines than
the actual.", expected.readLine());
28: }
29:%}

7.2 Code Completion Results

First, we asked the seven students to write the source
code for BFS using the simple test code, where it was
found that only one student could complete it within
one week. After that, we gave them the design-aware
test code to do the same thing. Then, all of them could
complete it. The students tested source codes by using
the given test code on JUnit from Eclipse.

After every student completed the source code for
BFS using the design-aware test code, we selected three
students who solved it in the shortest time. Then, we
asked them to write the source codes for DFS, Prim,
Dijkstra, and Kruskal algorithms using the simple test
codes, where all of them could complete them. This time,
they did not need design-aware test codes, because they
have known how to design and implement the codes for
the similar graph algorithms from their experiences in
BFS.

7.8 Metric Results for BFS

The seven software metrics in Section 5.3 were measured
for these completed codes of the students using Metrics
plugin for Eclipse. Table 1 shows the measured metric
results of the eight source codes for BF'S by them. In this
table, the student S1 completed the source codes both
with the simple and design-aware test codes.

Actually, the student S1 has studied the Java
programing only for three months in our group, where
the other students have studied it for at least one year.
S1 has never made similar graph theory programs that
require multiple classes/methods. In this experiment,
S1 spent one week to complete this programming task.
The skill of S1 is supposed to be lower than the others.
Thus, the source code by S1 using the simple test code
uses only one class where the procedures of the graph
data handling and the search algorithm are implemented
together.

When the metric values are compared between the
two source codes of S1, VG, LCOM, TLC, and MLC are
much worse for the simple test code than those for the
design-aware one, as shown in Table 1. Particularly, the
metric value for VG becomes very large. It means that
this source code is very complex and becomes hard to be
modified or extended.

A Design-aware Test Code Approach for Code Writing Problem in Java Programming Learning Assistant System9

Table 1 Comparison of metric values for BFS algorithm
using proposal.

Metrics S1 S1 | 52 | 83| S4 | S5 | S6 | S7
(simple)

1 NOC 1 2 2 3 2 5 2 2
2 | NOM 7 11 10 11 11 19 9 9
3 VG 18 4 5 4 5 2 7 6
4 NBD 3 4 4 4 3 2 4 4
5 | LCOM 0.9 0.37 | 0.5] 0.5 | 0375 | 0.7 | 0.5 | 0.5
6 TLC 142 120 | 143 | 137 | 144 157 | 114 | 121
7| MLC 102 87 | 104 | 93 | 102 | 88 | 81 | 88

Besides, the metric value for LCOM was close to
1 in Table 1, because the member variables (public
attributes) and methods in the class were used without
being shared with other classes. This class should be
split into two or more classes. On the other hand,
the seven source codes using the design-aware test
codes have good metrics where VG is 2-7, and LCOM
is 0.3-0.7. It has been known that the desired VG
should be less than 20, and LCOM should not be close
to 1 Metric Plugin (http://metrics.sourceforge.net).
Thus, these source codes can be recognized as highly
qualitative codes.

7.4 Metric Results for Four Graph Algorithms

Table 2 shows the measured metric results of the 12
source codes for the remaining four algorithms by three
students. In DFS, every code has good metrics where VG
is 2-4 and LCOM is 0-0.7 respectively. It is noted that
DFS is the most similar to BF'S among them.

However, in the remaining algorithms, VG for S3 is
always larger than that for other students, and LCOM
by S3 is always zero. The reason is that S3 implements
the source codes using only one class, which results in no
cohesion between classes and becomes complex and hard
to be modified. In this case, it is necessary to redesign
the code with multiple classes by using the design-aware
test code.

In each algorithm, VG for S5 is always smaller than
that for S3 and S4, whereas LCOM for S5 is larger
than that for S3 and S4. From NOC and NOM, S5 uses
more classes such as the node class, the edge class, their
subclasses, and the encapsulated class for Encapsulation,
and more methods than other students. As a result, the
cohesion between classes are necessary.

Encapsulation is a technique to protect the
important attributes from any unauthorized access.
These attributes can be hidden from the other classes,
and can be accessed through the public methods defined
in the class containing them. In FEncapsulation, the
important attribute or data member to be protected
is defined as private so that it can only be accessed
within the same class. No outside class can access to this
private data member. Then, the public getter and setter
methods are defined in the class so that it can be read
or updated from the outside class.

8 Conclusion

In this paper, we proposed the design-aware test code
approach for the code writing problem in JPLAS. The
design-aware test code tests any important method in
the model source code that has the advisable design for
the problem. By writing a code that can pass this test
code, a student is expected to design and implement
the code using the proper classes/methods in the model
code. For evaluations, seven students were encouraged
to solve the code writing problem for the breadth-first-
search (BFS) algorithm of a graph without/with the
design-aware test code. Then, the use of the design-aware
test code drastically increased the number of completing
students. Besides, the code quality metrics measured by
Metrics plugin for Eclipse showed that the design-aware
test code was very helpful to write highly qualitative
codes. These results were also confirmed in other graph
algorithms. In future works, we will prepare design-
aware test codes for other problems and assign them to
students in Java programming courses.

References

N. Ishihara, N. Funabiki, M. Kuribayashi, and W.-C.
Kao, “ A proposal of software architecture for Java
programming learning assistant system,” Proc. AINA-
2017, pp. 64-70, March 2017.

N. Funabiki, Tana, K. K. Zaw, N. Ishihara, and
W.-C. Kao, “A graph-based blank element
selection algorithm for fill-in-blank problems in Java
programming learning assistant system,” TAENG
Int. J. Computer Science, vol. 44, no. 2, pp. 247-260,
May 2017.

K. K. Zaw, N. Funabiki, and W.-C. Kao, “A proposal of
value trace problem for algorithm code reading in Java
programming learning assistant system,” Inf. Eng.
Express, vol. 1, no. 3, pp. 9-18, Sep. 2015.

N. Ishihara, N. Funabiki, and W.-C. Kao, “ A proposal
of statement fill-in-blank problem using program
dependence graph in Java programming learning
assistant system,” Inf. Eng. Express, vol. 1, no. 3, pp.
19-28, Sep. 2015.

N. Funabiki, Y. Matsushima, T. Nakanishi, and N.
Amano, “ A Java programming learning assistant
system using test-driven development method,”
TAENG Int. J. Computer Science, vol. 40, no. 1, pp.38-
46, Feb. 2013.

JUnit, http://www.junit.org/.

K. Beck, Test-driven development: by example, Addison-
Wesley, 2002.

N. Yamamoto, “ An improved group discussion system
for active learning using smart-phone and its

10 K.K.Zaw et al.

Table 2 Metric values for four algorithms without using proposal.

Metrics DFS Prim Dijkstra Kruskal

S3 | S4 | S5 | S3 | 5S4 | S5 | S3 | S4 | S5 | S3 | 54| 55

NOC 2 2 6 1 4 8 1 4 6 1 3 7
NOM 5 9 23 3 15 | 35 3 14 23 3 8 29

VG 3 4 2 15 6 2 11 10 3 20 9 2

NBD 3 3 2 5 4 2 4 5 3 6 4 2
LCOM | 0 |05] 07 | O 0.5 | 0.7 0]033] 07 0 0.5 | 0.7
TLC 74 | 124 | 189 | 108 | 205 | 299 | 107 | 195 | 203 | 123 | 141 | 250
MLC 49 | 58 | 109 | 93 | 114 | 190 | 91 | 109 | 121 | 105 | 64 | 154

experimental evaluation,” Int. J. Space-Base. Situated
Comput., vol. 6, no. 4, pp. 221-227, 2016.

T. Xue, S. Ying, Q. Wu, X. Jia, X. Hu, X. Zhai, and
T. Zhang, “ Verifying integrity of exception handling
in service-oriented software,” Int. J. Grid. Utility
Comput., vol. 8, pp. 17-21, 2017.

E. Zhou, Z. Niibori, S. Okamoto, M. Kamada, and
T. Yonekura, “IslayTouch: an educational visual
programming environment for tablet devices”, Int. J.
Space-Based and Situated Computing, vol. 6, no. 3,
pp. 183-197, 2016.

Z. Zhu, Y. Zou, B. Xie, Y. Jin, Z. Lin, and L. Zhang,
“ Mining API usage examples from test code,” Proc.
IEEE Int. Conf. Soft. Mainte. Evo., pp. 301-310, 2014.

C. Kolassa, M. Look, K. Miiller, A. Roth, D. Rei, and B.
Rumpe, “TUnit —unit testing for template-based code
generators,” Proc. Modellierung Conf., pp. 221-236,
2016.

H. Gronniger, H. Krahn, B. Rumpe, M. Schindler, S.
Volkel, “MontiCore: A framework for the development
of textual domain specific languages,” Proc. Int. Conf.
Soft. Eng. (ICSE), 2008.

H. Krahn, B. Rumpe, S. Vélkel, “ MontiCore: Modular
development of textual domain specific languages, ”
Proc. Int. Conf. Model. Tech. Tool. Comp. Perform.
Evaluation, pp. 297-315, 2008.

H. Krahn, B. Rumpe, S. Voélkel, “MontiCore: “A
framework for compositional development of domain
specific languages,” Int. J. Software Tool. Tech.
Transfer, vol. 12, no. 5, pp. 353-372, Sep. 2010.

Y. Higo, A. Saitoh, G. Yamada, T. Miyake, S. Kusumoto,
and K. Inoue, “A pluggable tool for measuring
software metrics from source code,” Proc. IWSM-
MENSURA, pp. 2-12, 2011.

T. G. S. Fil6 and M. A. S. Bigonha, “A catalogue of
thresholds for object-oriented software metrics,” Proc.
SOFTENG, pp. 48-55, 2015.

Metric Plugin, http://metrics.sourceforge.net.

BFS, http://www.geeksforgeeks.org/breadth-first-
traversal-for-a-graph.

JUnit-Tools,
started.

http://junit-tools.org/index.php/getting-

Graph Java, http://www.sanfoundry.com/java-program.
Fundamental Java, http://www.sber.jp/books.

E. Zhou, Z.Niibori, S.Okamoto, M. Kamada,
T.Yonekura, “IslayTouch:An educational visual
programming environment for tablet devices” , Int.
J. Space-Based and Situated Computing, Vol. 6, No.
3, pp.183-197, 2016.

N.Yamamoto, “An improved group discussion system for
active learning using smartphone and its experimental
evaluation ", Int. J. Space-Based and Situated
Computing, Vol. 6, No. 4, pp.221-227, 2016.

Tong Xue, Shi Ying, Qing Wu, Xiangyang Jia, Xiaohui
Hu, Xiaoying Zhai, Tao Zhang , “ Verifying integrity
of exception handling in service-oriented software ”
International Journal of Grid and Utility Computing

, Vol. 8, No. 1, pp.7-21, 2017.

