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Abstract 19 

Listeria monocytogenes is an opportunistic Gram-positive bacterial pathogen responsible for 20 

listeriosis, a human foodborne disease. Its cell wall is densely decorated with wall teichoic acids 21 

(WTAs), a class of anionic glycopolymers that play key roles in bacterial physiology, including 22 

protection against the activity of antimicrobial peptides (AMPs). In other Gram-positive 23 

pathogens, WTA modification by amine-containing groups such as D-alanine was largely 24 

correlated with resistance to AMPs. However, in L. monocytogenes where WTA modification is 25 

achieved solely via glycosylation, WTA-associated mechanisms of AMP resistance were 26 

unknown. Here, we show that the L-rhamnosylation of L. monocytogenes WTAs relies not only 27 

on the rmlACBD locus, which encodes the biosynthetic pathway for L-rhamnose, but also on 28 

rmlT encoding a putative rhamnosyltransferase. We demonstrate that this WTA tailoring 29 

mechanism promotes resistance to AMPs, unveiling a novel link between WTA glycosylation 30 

and bacterial resistance to host defense peptides. Using in vitro binding assays, fluorescence-31 

based techniques and electron microscopy, we show that the presence of L-rhamnosylated 32 

WTAs at the surface of L. monocytogenes delays the crossing of the cell wall by AMPs and 33 

postpones their contact with the listerial membrane. We propose that WTA L-rhamnosylation 34 

promotes L. monocytogenes survival by decreasing the cell wall permeability to AMPs, thus 35 

hindering their access and detrimental interaction with the plasma membrane. Strikingly, we 36 

reveal a key contribution of WTA L-rhamnosylation for L. monocytogenes virulence in a mouse 37 

model of infection. 38 

 39 

Author Summary 40 

Listeria monocytogenes is a foodborne bacterial pathogen that preferentially infects 41 

immunocompromised hosts, eliciting a severe and often lethal disease. In humans, clinical 42 

manifestations range from asymptomatic intestinal carriage and gastroenteritis to harsher 43 

systemic states of the disease such as sepsis, meningitis or encephalitis, and fetal infections. The 44 

surface of L. monocytogenes is decorated with wall teichoic acids (WTAs), a class of 45 
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carbohydrate-based polymers that contributes to cell surface-related events with implications in 46 

physiological processes, such as bacterial division or resistance to antimicrobial peptides 47 

(AMPs). The addition of other molecules to the backbone of WTAs modulates their chemical 48 

properties and consequently their functionality. In this context, we studied the role of WTA 49 

tailoring mechanisms in L. monocytogenes, whose WTAs are strictly decorated with 50 

monosaccharides. For the first time, we link WTA glycosylation with AMP resistance by 51 

showing that the decoration of L. monocytogenes WTAs with L-rhamnose confers resistance to 52 

host defense peptides. We suggest that this resistance is based on changes in the permeability of 53 

the cell wall that delay its crossing by AMPs and therefore promote the protection of the 54 

bacterial membrane integrity. Importantly, we also demonstrate the significance of this WTA 55 

modification in L. monocytogenes virulence.  56 
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Introduction 57 

Listeria monocytogenes (Lm) is a ubiquitous Gram-positive bacterium and the causative agent 58 

of listeriosis, a human foodborne disease with high incidence and morbidity in 59 

immunocompromised hosts and other risk groups, such as pregnant women, neonates and the 60 

elderly. Clinical manifestations range from febrile gastroenteritis to septicemia, meningitis and 61 

encephalitis, as well as fetal infections that can result in abortion or postnatal health 62 

complications [1]. The most invasive and severe forms of the disease are a consequence of the 63 

ability of this pathogen to overcome important physiological barriers (intestinal epithelium, 64 

blood-brain barrier and placenta) by triggering its internalization and promoting its intracellular 65 

survival into phagocytic and non-phagocytic cells. Once inside a host cell, a tightly coordinated 66 

life cycle, whose progression is mediated by several specialized bacterial factors, enables Lm to 67 

proliferate and spread to neighboring cells and tissues [2, 3]. 68 

The Lm cell wall is composed of a thick peptidoglycan multilayer that serves as a scaffold for 69 

the anchoring of proteins, among which are several virulence factors [4], and of glycopolymers 70 

such as teichoic acids, which account for up to 70% of the protein-free cell wall mass [5, 6]. 71 

These anionic polymers are divided into membrane-anchored teichoic acids (lipoteichoic acids, 72 

LTAs) and peptidoglycan-attached teichoic acids (wall teichoic acids, WTAs). In Listeria, 73 

WTAs are mainly composed of repeated ribitol-phosphate subunits, whose hydroxyl groups can 74 

be substituted with a diversity of monosaccharides [5]. While the polymer structure and the 75 

chemical identity of the substituent groups of LTAs are rather conserved across listeriae [7, 8], 76 

they display a high variability in WTAs, even within the same species [9]. Specific WTA 77 

substitution patterns are characteristic of particular Lm serotypes: N-acetylglucosamine is 78 

common to serogroups 1/2 and 3, and to serotype 4b, but serogroup 1/2 also contains 79 

L-rhamnose, whereas serotype 4b displays D-glucose and D-galactose [10]. The broad structural 80 

and chemical similarity of LTAs and WTAs results in a considerable degree of functional 81 

redundancy, which has complicated the characterization of these macromolecules and the 82 

assignment of specific biological roles. However, studies on Gram-positive bacteria have 83 
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revealed their contribution to important physiological functions (e.g. cell envelope cationic 84 

homeostasis [11], regulation of autolysin activity [12], assembly of cell elongation and division 85 

machineries [13], defense against antimicrobial peptides [14]) and to virulence-promoting 86 

processes, such as adhesion and colonization of host tissues [15, 16].  87 

Antimicrobial peptides (AMPs) are a large family of small peptides (<10 kDa) produced by all 88 

forms of living organisms [17], which constitute a major player of the innate immune response 89 

against microbial pathogens. Despite their structural diversity, the majority of AMPs share both 90 

cationic and amphipathic properties that favor respectively their interaction with the negatively 91 

charged prokaryotic surface and insertion into the plasma membrane [17, 18]. Subsequent pore 92 

formation or other AMP-mediated membrane-disrupting mechanisms induce bacterial death 93 

through direct cell lysis or deleterious interaction with intracellular targets [19]. Bacteria have 94 

evolved multiple strategies to avert killing by AMPs [20, 21]. One strategy consists in the 95 

modification of their cell surface charge, a process achieved mainly by masking anionic 96 

glycopolymers with positively charged groups, thus decreasing their affinity to AMPs. In Gram-97 

positive pathogens, D-alanylation of teichoic acids is a well-characterized mechanism and was 98 

demonstrated to be important for bacterial resistance to host-secreted AMPs [22, 23]. In 99 

contrast, the contribution of WTA glycosylation mechanisms in AMP resistance has not yet 100 

been investigated. 101 

We have previously reported genome-wide transcriptional changes occurring in Lm strain 102 

EGD-e during mouse infection [24]. Our analysis revealed an elevated in vivo expression of the 103 

lmo1081-1084 genes, here renamed as rmlACBD because of the high homology of the 104 

corresponding proteins with enzymes of the L-rhamnose biosynthesis pathway. In this work, we 105 

show that the decoration of Lm WTAs with L-rhamnose requires the expression of not only the 106 

rmlACBD locus but also of rmlT, an upstream-flanking gene encoding a putative 107 

rhamnosyltransferase. We also demonstrate that Lm becomes more susceptible to AMPs in the 108 

absence of WTA L-rhamnosylation and predict that this effect is due to an increase of the Lm 109 

cell wall permeability to these bactericides, which results in a faster disruption of the plasma 110 

membrane integrity with lethal consequences for the bacterial cell. Importantly, we present 111 
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evidence that this WTA tailoring process is required for full-scale Lm virulence in the mouse 112 

model of infection.  113 
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Results 114 

 115 

The rmlACBD locus is required for the presence of L-rhamnose in Lm WTAs  116 

To identify new Lm genes potentially critical for the infectious process, we previously 117 

performed the first in vivo transcriptional profiling of Lm EGD-e. Among the Lm genes 118 

displaying the largest increase in transcription throughout infection, we identified a set of 119 

previously uncharacterized genes that are included in a pentacistronic operon (lmo1080 to 120 

lmo1084) [25]. This operon is found in L. monocytogenes strains belonging to serogroups 1/2, 3 121 

and 7, and is absent from serogroup 4 strains [26] (Fig. 1). Interestingly, aside from Listeria 122 

seeligeri 1/2b strains, this locus is not found in any other Listeria spp., such as the 123 

nonpathogenic Listeria innocua or the ruminant pathogen Listeria ivanovii, which pinpoints it 124 

as a genetic feature of a particular subset of pathogenic Listeria strains and suggests that its 125 

expression may be important to Listeria pathogenesis in humans.  126 

The four proteins encoded by the lmo1081-lmo1084 genes share a high amino acid sequence 127 

homology with the products of the rmlABCD gene cluster. These genes are widely distributed 128 

among Gram-negative (e.g. Salmonella enterica [27], Shigella flexneri [28], Vibrio cholerae 129 

[29], Pseudomonas aeruginosa [30]) and Gram-positive species (e.g. Mycobacterium 130 

tuberculosis [31], Streptococcus mutans [32], Geobacillus tepidamans [33], Lactobacillus 131 

rhamnosus [34]) (Fig. 1), the majority of which being known pathogens or potentially 132 

pathogenic. Despite the inter-species variability observed in the genetic organization of the rml 133 

genes, the respective proteins exhibit a remarkable degree of conservation (Table S1). In light of 134 

this, we renamed the lmo1081-lmo1084 genes to rmlACBD, respectively (Fig. 1).  135 

The RmlABCD proteins catalyze the conversion of glucose-1-phosphate to a thymidine-136 

diphosphate (dTDP)-linked form of L-rhamnose [35] (Fig. S1A), which is a component of the 137 

WTAs from most Listeria strains possessing the rml genes [6]. To address the role of rmlACBD 138 

in Lm WTA glycosylation with L-rhamnose, we constructed an Lm EGD-e derivative mutant 139 

strain lacking the rmlACBD locus (ΔrmlACBD) (Fig. S2A) and investigated if the absence of 140 
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these genes could affect the WTA L-rhamnosylation status. We prepared WTA hydrolysates 141 

from exponential phase cultures of wild type (EGD-e), ΔrmlACBD and a complemented 142 

ΔrmlACBD strain expressing rmlACBD from its native promoter within an integrative plasmid 143 

(ΔrmlACBD+rmlACBD). Samples were resolved by native PAGE and the gel stained with 144 

Alcian blue to visualize WTA polymer species. A mutant strain unable to synthesize WTAs 145 

(ΔtagO1ΔtagO2) [36] was used to confirm that the detected signal corresponds to WTAs. 146 

Compared to the wild type sample, the ΔrmlACBD WTAs displayed a shift in migration, which 147 

was reverted to a wild type-like profile in WTAs from the ΔrmlACBD+rmlACBD sample (Fig. 148 

2A), indicating that the native WTA composition requires the presence of the rmlACBD genes. 149 

To confirm this, we investigated the WTA carbohydrate composition from these strains. WTA 150 

polymers were isolated from cell walls purified from bacteria in exponential growth phase, 151 

hydrolyzed and analyzed by high-performance anion exchange chromatography coupled with 152 

pulsed amperometric detection (HPAEC-PAD) to detect monosaccharide species. WTA extracts 153 

obtained from ΔrmlACBD bacteria completely lacked L-rhamnose, in contrast to those isolated 154 

from the parental wild type strain (Fig. 2B). The role of rmlACBD in Lm WTA 155 

L-rhamnosylation was definitely confirmed by the analysis of WTAs from 156 

ΔrmlACBD+rmlACBD bacteria, in which L-rhamnose was detected at levels similar to those 157 

observed in the wild type sample (Fig. 2B). Similar observations were made with purified cell 158 

wall samples that contain WTAs still attached to the peptidoglycan matrix (Fig. S3A). The 159 

absence of muramic acid, one of the peptidoglycan building blocks, from WTA extracts (Fig. 160 

2B) indicates that L-rhamnose is specifically associated with WTAs and is not a putative 161 

peptidoglycan contaminant. This is corroborated by the absence of L-rhamnose in purified 162 

peptidoglycan samples (Fig. 2C).  163 

WTAs have been identified as important regulators of peptidoglycan cross-linking and 164 

maturation [37]. To investigate if L-rhamnose decoration of WTAs has any involvement in the 165 

maturation of the Lm peptidoglycan, we performed HPLC analysis of the muropeptide 166 

composition of mutanolysin-digested peptidoglycan samples from wild type, ΔrmlACBD and 167 

ΔrmlACBD+rmlACBD bacteria. No differences in the nature and relative amount of 168 
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muropeptide species were observed between strains (Fig. S3B), ruling out a role for WTA 169 

L-rhamnosylation in the consolidation of the peptidoglycan architecture. Overall, these results 170 

confirm that a functional rmlACBD locus is required for the association of L-rhamnose with Lm 171 

WTAs, likely by providing the molecular machinery responsible for the synthesis of 172 

L-rhamnose. 173 

 174 

RmlT is required for the incorporation of L-rhamnose into Lm WTAs 175 

The rml operon in Lm includes a fifth gene, lmo1080, located upstream of rmlA (Fig. 1), which 176 

codes for a protein similar to the B. subtilis minor teichoic acid biosynthesis protein GgaB, 177 

shown to possess sugar transferase activity [38]. Conserved domain analysis of the translated 178 

Lmo1080 amino acid sequence revealed that its N-terminal region is highly similar (e-value 10
-

179 

22
) to a GT-A family glycosyltransferase domain (Fig. S1B). In GT-A enzymes, this domain 180 

forms a pocket that accommodates the nucleotide donor substrate for the glycosyl transfer 181 

reaction, and contains a signature DxD motif necessary to coordinate a catalytic divalent cation 182 

[39]. This motif is also found within the predicted glycosyltransferase domain sequence of 183 

Lmo1080 as a DHD tripeptide (Fig. S1B). For these reasons, we investigated whether 184 

Lmo1080, which we renamed here RmlT (for L-rhamnose transferase), was involved in the 185 

L-rhamnosylation of Lm WTAs. We constructed an Lm EGD-e mutant strain lacking rmlT (Fig. 186 

S2A) and analyzed the structure and sugar composition of its WTAs as described above. WTAs 187 

isolated from ΔrmlT bacteria displayed a faster migration in gel (Fig. 2A) and did not contain 188 

any trace of L-rhamnose (Fig. 2B), fully recapitulating the ΔrmlACBD phenotype. 189 

Reintroduction of a wild type copy of rmlT into the mutant strain (ΔrmlT+rmlT) resulted in a 190 

phenotype that resembles that of the wild type strain, with regards to WTA gel migration profile 191 

(Fig. 2A) and presence of L-rhamnose in the WTA fraction (Fig. 2B).  192 

To discard the possibility that the deletion of rmlT exerted a negative polar effect on the 193 

downstream expression of rmlACBD, potentially disrupting the synthesis of L-rhamnose used 194 

for WTA glycosylation, we compared the transcription of the rmlACBD genes in the wild type 195 

and ΔrmlT Lm strains by quantitative real-time PCR. Transcript levels were unchanged in the 196 
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ΔrmlT background as compared to the wild type strain (Fig. S2B), indicating that the deletion of 197 

rmlT did not interfere with the transcription of rmlACBD. To definitely confirm that Lm ΔrmlT 198 

still holds the capacity to synthesize L-rhamnose, being only incapable to incorporate it in 199 

nascent WTA polymers, we evaluated the presence of L-rhamnose in the cytoplasmic 200 

compartment of this strain. The intracellular content of early exponential-phase bacteria from 201 

the wild type, ΔrmlACBD and ΔrmlT strains was extracted, hydrolyzed and analyzed by 202 

HPAEC-PAD to compare the sugar composition of cytoplasmic extracts. As shown in Fig. 2D, 203 

a peak corresponding to L-rhamnose was detected in the cytoplasmic samples from the wild 204 

type and ΔrmlT strains, but not from the ΔrmlACBD strain, clearly demonstrating that, as 205 

opposed to ΔrmlACBD bacteria, ΔrmlT bacteria retain a functional L-rhamnose biosynthesis 206 

pathway. These results indicate that the depletion of L-rhamnose observed in ΔrmlT WTAs is a 207 

consequence of the absence of the WTA L-rhamnosyltransferase activity performed by RmlT. 208 

Therefore, we propose RmlT as the glycosyltransferase in charge of decorating Lm WTAs with 209 

L-rhamnose.  210 

 211 

WTA L-rhamnosylation promotes Lm resistance to AMPs 212 

WTAs were previously associated with bacterial resistance against salt stress [40] and host 213 

defense effectors, such as lysozyme [37, 41]. We thus investigated the potential involvement of 214 

WTA L-rhamnosylation in these processes by assessing the growth of the ΔrmlACBD and 215 

ΔrmlT strains in the presence of high concentrations of either NaCl or lysozyme. As shown in 216 

Fig. 3A, no significant difference was observed between the growth of the wild type and the two 217 

mutant strains in BHI broth containing 5% NaCl. Similarly, no difference was detected between 218 

the growth behavior of these strains after the addition of different concentrations of lysozyme 219 

(50 μg/ml and 1 mg/ml) to bacterial cultures in the exponential phase (Fig. 3B). As expected, 220 

we observed an immediate and significant decrease in the survival of the lysozyme-221 

hypersensitive ΔpgdA mutant [42] (Fig. 3B). These data demonstrate that Lm does not require 222 

L-rhamnosylated WTAs to grow under conditions of high osmolarity nor to resist the cell wall-223 

degrading activity of lysozyme. 224 



 

11 

 

WTAs were also found to be involved in bacterial resistance to host-secreted defense peptides 225 

[14, 43]. To investigate the role of WTA L-rhamnosylation in Lm resistance to AMPs, we 226 

evaluated the in vitro survival of wild type, ΔrmlACBD and ΔrmlT Lm, as well as of the 227 

respective complemented strains, in the presence of biologically active synthetic forms of 228 

AMPs produced by distinct organisms: gallidermin, a bacteriocin from the Gram-positive 229 

bacterium Staphylococcus gallinarum [44]; CRAMP, a mouse cathelicidin [45], or its human 230 

homolog LL-37 [46]. After two hours of co-incubation with different AMP concentrations, 231 

surviving bacteria were enumerated by plating in solid media. The overall survival levels of Lm 232 

varied with each AMP, evidencing their distinct antimicrobial effectiveness (Fig. S4). However, 233 

when compared to the wild type strain, the ΔrmlACBD and ΔrmlT mutants displayed a 234 

consistent decrease in their survival levels in the presence of any of the three AMPs (Fig. 3C), 235 

in a dose-dependent manner (Fig. S4). Restoring WTA L-rhamnosylation through genetic 236 

complementation of the mutant strains resulted in an increase of the survival rate to wild type 237 

levels. This result demonstrated the important contribution of L-rhamnosylated WTAs towards 238 

Lm resistance against AMPs, pointing to a role for WTA glycosylation in bacterial immune 239 

evasion mechanisms.  240 

 241 

WTA L-rhamnosylation interferes with Lm cell wall crossing by AMPs 242 

The increased AMP susceptibility of Lm strains defective in WTA L-rhamnosylation suggests 243 

that this process is required to hinder the bactericidal activity of AMPs. Since AMPs generally 244 

induce bacterial death by disrupting the integrity of the plasma membrane, we hypothesized that 245 

the higher susceptibility of the ΔrmlACBD and ΔrmlT mutant strains resulted from an increased 246 

AMP-mediated destabilization of the Lm membrane. In this context, two scenarios were 247 

envisioned: i) AMPs could be binding with higher affinity to the L-rhamnose-deficient Lm cell 248 

wall, or ii) they could be crossing it at a faster pace, thus reaching the membrane more quickly 249 

than in wild type Lm. To explore these possibilities, we first investigated the binding affinity of 250 

the mouse cathelicidin CRAMP towards Lm cell walls depleted of L-rhamnose. For this, we 251 

incubated the different Lm strains with CRAMP for a short period and analyzed by flow 252 
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cytometry the amount of Lm-bound peptide exposed at the cell surface and accessible for 253 

antibody recognition. We detected fluorescence associated with surface-exposed CRAMP in all 254 

strains (Fig. 4A). However, the mean fluorescence intensity (MFI) values were significantly 255 

reduced in both ΔrmlACBD and ΔrmlT mutants, in comparison to wild type Lm and the 256 

complemented strains (Figs. 4A and 4B). This suggests that CRAMP was less accessible to 257 

immunolabeling at the cell surface of Lm lacking L-rhamnosylated WTAs.  258 

The affinity of AMPs towards the bacterial surface is driven by electrostatic forces between 259 

positively charged peptides and the anionic cell envelope [23]. To determine if variations of the 260 

Lm surface charge contributed to the reduced amount of CRAMP exposed at the surface of 261 

ΔrmlACBD and ΔrmlT bacteria, we compared the surface charge of Lm with or without L-262 

rhamnosylated WTAs. For this, we analyzed the binding of cytochrome c, a small protein with 263 

positive charge at physiological conditions (isoelectric point ~10), to the wild type and mutant 264 

Lm strains. As positive control, we used a mutant strain that cannot modify its LTAs with D-265 

alanine (ΔdltA) and, as a result, displays a higher surface electronegativity and a concomitant 266 

higher affinity for positively charged compounds [14, 47]. As expected, the level of 267 

cytochrome c binding was higher with the ΔdltA strain than with the respective wild type strain, 268 

as illustrated by a decreased percentage of unbound cytochrome c (Fig. 4C). However, no 269 

significant difference in cytochrome c binding levels was observed between ΔrmlACBD, ΔrmlT 270 

and wild type EGD-e strains (Fig. 4C), indicating that the absence of L-rhamnose in WTAs does 271 

not affect the Lm surface charge. This was further corroborated by zeta potential measurements 272 

showing similar pH-dependent variations for both wild type and mutant strains (Fig. S5). 273 

Overall, these results allowed us to discard electrostatic changes as a reason behind the 274 

difference in the levels of CRAMP detected at the Lm cell surface.  275 

To further explore the decreased levels of surface-exposed CRAMP in Lm strains lacking L-276 

rhamnosylated WTAs, we compared total levels of bacterium-associated CRAMP in the 277 

different strains by flow cytometry, following a short incubation with a fluorescently labeled 278 

form of this AMP. The intensity of Lm-associated CRAMP fluorescence was comparable for the 279 

wild type EGD-e, ΔrmlACBD and ΔrmlT strains (Figs. 4D and 4E), indicating that the overall 280 
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peptide levels associated to Lm cells were similar between the different strains. Accordingly, the 281 

residual fluorescence in the supernatants obtained by centrifugation of the bacteria-peptide 282 

suspensions was also similar (Fig. 4F). As positive control we used the ΔdltA strain, which 283 

displayed a significantly stronger peptide binding than its parental wild type strain (Figs. 4D–F). 284 

These data strongly suggest that the increased CRAMP susceptibility of Lm strains lacking L-285 

rhamnosylated WTAs results from an improved penetration of CRAMP through their cell walls. 286 

Altogether, these results showed that L-rhamnosylated WTAs do not interfere with the Lm 287 

surface charge or with the binding efficiency of AMPs, but likely promote Lm survival by 288 

hindering the crossing of its cell wall by these bactericidal molecules. 289 

 290 

WTA L-rhamnosylation delays AMP interaction with the Lm plasma membrane 291 

In light of these results, we then examined whether WTA L-rhamnosylation interfered with the 292 

dynamics of AMP interaction with the Lm plasma membrane. We performed a time-course 293 

study to follow Lm membrane potential changes induced by CRAMP. In live bacteria, the 294 

membrane potential is an electric potential generated across the plasma membrane by the 295 

concentration gradients of sodium, potassium and chloride ions. Physical or chemical disruption 296 

of the plasma membrane integrity leads to the suppression of this potential (depolarization) [48]. 297 

Lm strains were incubated with DiOC2(3), a green fluorescent voltage-sensitive dye that readily 298 

enters into bacterial cells. As the intracellular dye concentration increases with higher 299 

membrane potential, it favors the formation of dye aggregates that shift the fluorescence 300 

emission to red. After stabilization of the DiOC2(3) fluorescence, CRAMP was added to 301 

bacterial samples and the rate of Lm depolarization was immediately analyzed by measuring the 302 

red fluorescence emission decline in a flow cytometer. The decrease in the membrane potential 303 

was consistently greater in the ΔrmlACBD and ΔrmlT strains as compared to wild type Lm, 304 

particularly in the first 10-15 min (Fig. 5A), indicating that the Lm plasma membrane integrity 305 

is compromised faster by the action of CRAMP in the absence of L-rhamnosylated WTAs. To 306 

investigate if increased CRAMP-mediated disruption of the Lm membrane integrity was 307 

associated with increased permeabilization, we monitored in real time the entry of the 308 
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fluorescent probe SYTOX Green into the different Lm strains, following the addition of 309 

CRAMP. This probe only enters into bacterial cells with a compromised membrane and 310 

displays a strong green fluorescence emission after binding to nucleic acids. As expected, when 311 

CRAMP was omitted from the bacterial suspensions, any increase in SYTOX Green-associated 312 

fluorescence was detected (Fig. 5B). However, in the presence of the peptide, the green 313 

fluorescence intensity of samples containing the ΔrmlACBD or ΔrmlT mutants increased earlier 314 

than in samples containing wild type Lm (Fig. 5B), eventually reaching similar steady-state 315 

levels at later time points (Fig. S7). These observations indicate that the CRAMP-mediated 316 

permeability increase of the Lm membrane to SYTOX Green occurs faster in strains lacking L-317 

rhamnosylated WTAs.  318 

To investigate the ultrastructural localization of the peptide, we performed immunoelectron 319 

microscopy on CRAMP-treated wild type and ΔrmlACBD Lm strains. Interestingly, CRAMP-320 

specific labeling was not only detected in the Lm cell envelope, as expected, but also in the 321 

cytoplasm (Fig. 5C), suggesting that this AMP may additionally target components or processes 322 

inside Lm. Comparison of the subcellular distribution of CRAMP between these two bacterial 323 

compartments revealed a preferential cell envelope localization in wild type Lm, which 324 

contrasted with the slight but significantly higher cytoplasmic localization of the peptide in the 325 

ΔrmlACBD strain (Fig. 5D). These observations are in agreement with a model in which 326 

CRAMP crosses the Lm cell wall more efficiently in the absence of WTA L-rhamnosylation, 327 

therefore reaching the bacterial membrane and the cytoplasm comparatively faster.  328 

Finally, to confirm that the presence of L-rhamnosylated WTAs hinders the capacity of AMPs 329 

to flow through the Lm cell wall, we assessed levels of CRAMP retained in purified cell wall 330 

samples from the wild type, ΔrmlACBD and ΔrmlT strains by Western blot. After incubation 331 

with CRAMP, peptides trapped within the peptidoglycan matrix were released by mutanolysin 332 

treatment of the cell wall and quantitatively resolved by SDS-PAGE. Immunoblotting revealed 333 

a small but consistent decrease in the amount of peptide associated with the cell wall from the 334 

two mutant strains in comparison with wild type Lm (Figs. 5E and 5F). This result indicates that 335 

the lack of L-rhamnose in WTAs results in a partial loss of the AMP retention capacity of the 336 



 

16 

 

of virulence it is its covalent linkage to the WTA backbone that is crucial for the successful Lm 364 

host infection. 365 

To evaluate the protective role of WTA L-rhamnosylation against AMPs in vivo, we performed 366 

virulence studies in a CRAMP-deficient mouse model. To determine the influence of WTA L-367 

rhamnosylation in Lm intestinal persistence, we performed oral infections of adult CRAMP 368 

knockout 129/SvJ mice (cramp
-/-

, KO) [49] and of age- and background-matched wild type 369 

mice (cramp
+/+

, WT), with the wild type or ΔrmlACBD Lm strains and monitored the respective 370 

fecal carriage. In both WT and KO mice, we observed comparable dynamics of fecal shedding 371 

of the wild type and ΔrmlACBD strains (Figs. 6E and 6F). In agreement with the comparable 372 

virulence defects observed for WTA L-rhamnosylation-deficient bacteria, following oral or 373 

intravenous inoculation of BALB/c mice (Figs. 6A–D), these results suggest a minor role for 374 

CRAMP in the control of Lm during the intestinal phase of the infection. 375 

We then inoculated WT and KO mice intravenously and quantified bacterial numbers in the 376 

spleen and liver, three days post-infection. In line with what was observed in BALB/c mice 377 

(Fig. 6C), the ΔrmlACBD strain showed significant virulence attenuation in both organs of WT 378 

mice (Fig. 6G). Interestingly, this virulence defect was nearly abolished in KO animals, with the 379 

ΔrmlACBD strain displaying an organ-colonizing capacity similar to wild type bacteria (Fig. 380 

6H). In addition, bacterial loads were higher in the organs of KO mice than in those of WT 381 

animals (Figs. 6G and 6H). These data indicate that, in comparison to their WT congeners, KO 382 

mice are more susceptible to Lm infection, and confirm the in vivo listericidal activity of 383 

CRAMP.  384 

Altogether, these results highlight a key role for host-produced CRAMP in restraining Lm 385 

infection and demonstrate that WTA L-rhamnosylation also promotes resistance to AMPs in an 386 

in vivo context.  387 
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Discussion 388 

Teichoic acids are key players in the maintenance of the Gram-positive cell envelope integrity 389 

and functionality. They are typically decorated with D-alanine and/or a variety of glycosyl 390 

groups, which influence the overall properties of these polymers [9]. Whereas D-alanylation of 391 

WTAs has been demonstrated to contribute towards bacterial defense against AMPs [14, 23], 392 

the involvement of glycosylation in this process has never been investigated. In this study, we 393 

show for the first time that the glycosylation of Lm WTAs with L-rhamnose is mediated by the 394 

WTA L-rhamnosyltransferase RmlT and confers protection against AMPs in vitro and during 395 

mouse infection. Based on our data, we propose that this protection results from a delayed 396 

traversal of the Lm cell envelope by AMPs in the presence of L-rhamnose-decorated WTAs. 397 

Most importantly, we reveal a key role for L-rhamnosylated WTAs in the processes underlying 398 

Lm pathogenesis.  399 

Unlike S. aureus or B. subtilis [22], WTAs in Listeria are not decorated with D-alanine, 400 

undergoing only glycosylation with a small pool of monosaccharides [6, 10]. Among these is L-401 

rhamnose, which is the product of a remarkably conserved biosynthetic pathway that is encoded 402 

by the rmlABCD genes [35]. Interestingly, a significant number of bacteria harboring these 403 

genes are commonly pathogenic [27-32] and have L-rhamnose in close association with surface 404 

components [50, 51]. In Listeria, the rmlACBD locus is only found in certain serotypes of Lm 405 

(1/2a, 1/2b, 1/2c, 3c and 7) and L. seeligeri (1/2b). These serotypes were all shown to have L-406 

rhamnose in their WTAs, except for Lm serotypes 3c and 7 [6], which appear to be unable to 407 

produce this sugar because of mutations within rmlA and rmlB, respectively (Fig. 1). Our results 408 

confirmed that the appendage of L-rhamnose to Lm WTAs requires the products of the 409 

rmlACBD locus. Ultimately, WTA glycosylation is catalyzed by glycosyltransferases, a class of 410 

enzymes that recognize nucleotide-sugar substrates and transfer the glycosyl moiety to a WTA 411 

subunit [52]. In silico analysis of lmo1080, the first gene of the operon including rmlACBD 412 

(Fig. 1) showed that it encodes a protein with putative glycosyltransferase activity. The genomic 413 

location and predicted protein function were strong indicators that this gene might encode the 414 
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transferase involved in the L-rhamnosylation of Lm WTAs. Our data demonstrated that whereas 415 

lmo1080, that we renamed rmlT, is dispensable for rhamnose biosynthesis, it is required for the 416 

addition of L-rhamnose to WTAs in Lm strains with a functional L-rhamnose pathway, thus 417 

validating RmlT as the L-rhamnose-specific WTA glycosyltransferase in Lm. 418 

WTAs are associated with the natural resistance of S. aureus to peptidoglycan-degrading 419 

enzymes, such as lysozyme [37, 41]. In contrast, absence of WTA decoration, but not of the 420 

polymers, was shown to induce an increase of the staphylococcal susceptibility to lysostaphin 421 

[53]. Modifications of the Lm peptidoglycan, such as N-deacetylation [42], were found to 422 

contribute to protection against lysozyme, but the role of WTAs and in particular their 423 

decoration, was never addressed. Our results discard WTA L-rhamnosylation as a component of 424 

the Lm resistance mechanism to this host immune defense protein, as well as its involvement in 425 

the promotion of growth under osmotic conditions. Other innate immune effectors, such as 426 

antimicrobial peptides (AMPs), also target bacterial organisms [54] that in turn have developed 427 

resistance strategies to avoid injury and killing induced by AMPs. Among these strategies is the 428 

reshaping and fine-tuning of cell envelope components to lower AMP affinity to the bacterial 429 

surface [21]. Previous studies showed a clear link between the D-alanylation of WTAs and AMP 430 

resistance [14, 43]. In this context, we found here a similar role for WTA L-rhamnosylation, 431 

showing that, in the absence of L-rhamnosylated WTAs, bacteria exhibit an increased 432 

susceptibility to AMPs produced by bacteria, mice and importantly by humans. Although from 433 

such distinct sources, AMPs used here share a cationic nature that supports their activity. 434 

However, while teichoic acid D-alanylation is known to reduce the cell wall electronegativity 435 

[14], glycosyl substituents of Lm WTAs are neutrally charged and WTA glycosylation should 436 

thus promote AMP resistance through a different mechanism.  437 

It is well established that AMPs induce bacterial death mainly by tampering with the integrity of 438 

the plasma membrane. This can be achieved through multiple ways, all of which are driven by 439 

the intrinsic amphipathic properties of this class of peptides [55]. Nonetheless, the initial 440 

interaction of AMPs with bacterial surfaces is mediated by electrostatic forces between their 441 

positive net charge and the anionic cell envelope [23]. Our data show that, unlike D-alanylation 442 
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[56], WTA L-rhamnosylation does not interfere with the Lm cell surface charge, in agreement 443 

with L-rhamnose being an electrostatically neutral monosaccharide. Importantly, the reduced 444 

levels of surface-exposed CRAMP in Lm strains lacking L-rhamnosylated WTAs suggested 445 

instead that their increased susceptibility to this peptide was correlated with its improved 446 

penetration of the L-rhamnose-depleted Lm cell wall. We confirmed this premise with data 447 

showing that CRAMP-mediated cell depolarization and plasma membrane permeabilization 448 

events occur earlier in WTA L-rhamnosylation-deficient Lm strains. In addition, we also 449 

observed a predominant cytoplasmic presence of CRAMP in these mutant strains, in contrast to 450 

the preferential cell envelope localization in wild type Lm, further suggesting a WTA L-451 

rhamnosylation-dependent kinetic discrepancy in the progression of CRAMP through the Lm 452 

cell envelope. Saar-Dover et al. demonstrated in the WTA-lacking Streptococcus agalactiae 453 

(GBS) that LTA D-alanylation promoted resistance to the human cathelicidin LL-37 by 454 

hindering cell wall crossing and plasma membrane disturbance [57]. They proposed that the 455 

underlying mechanism does not rely on modulation of the surface charge but on LTA 456 

conformation-associated alterations of the cell wall packing density [57]. Our data are in line 457 

with these observations and although we did not detect changes in the cell wall cross-linking 458 

status, we cannot ignore a possible impact of L-rhamnosylation on WTA polymer conformation 459 

accounting for changes in cell wall permeability. If one considers that the peptidoglycan, a 460 

multi-layered and compact structure, is densely populated with WTA polymers decorated with 461 

multiple units of the rather bulky L-rhamnose molecule, spatial constraints and increased cell 462 

wall density need to be accounted. In fact, we showed that purified Lm cell wall depleted of L-463 

rhamnose does not retain CRAMP in its peptidoglycan matrix as effectively as cell wall 464 

containing L-rhamnosylated WTAs. In addition, we have indications that soluble L-rhamnose 465 

interferes with CRAMP activity, improving the survival of WTA L-rhamnosylation mutants of 466 

Lm. These observations suggest a potential interaction between L-rhamnose and AMPs, which 467 

could favor the “retardation effect” that ultimately promotes Lm survival. 468 

We previously reported a significantly increased transcription of rmlACBD during mouse spleen 469 

infection [24], which suggested that WTA L-rhamnosylation is highly activated by Lm to 470 
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successfully infect this host organ. Our infection studies in mice confirmed the importance of 471 

this mechanism for Lm pathogenesis by revealing a significant virulence attenuation of WTA L-472 

rhamnosylation-deficient Lm strains. Surprisingly, the expression of rmlT appeared unchanged 473 

during mouse spleen infection as compared to growth in BHI [24], suggesting that an increased 474 

L-rhamnose biosynthesis could be sufficient to induce an increased WTA L-rhamnosylation and 475 

AMP resistance. Faith et al. also observed a decreased bacterial burden of a serotype 4b Lm 476 

strain lacking the gtcA gene [58], a mutation that resulted in complete loss of galactose 477 

decoration of its WTAs [59]. Interestingly, gtcA is also present in Lm EGD-e, where it appears 478 

to be involved in WTA substitution with N-acetylglucosamine [60], and was shown to 479 

contribute to the colonization of the mouse spleen, liver and brain [61]. However the 480 

mechanism through which this occurs remains unclear. 481 

Virulence studies in mice lacking the CRAMP gene corroborated our in vitro susceptibility data 482 

and revealed the importance of WTA L-rhamnosylation-promoted resistance to AMPs for 483 

Listeria virulence. In vivo data also provided a strong insight into the protective role of CRAMP 484 

against systemic infection by Lm, as had been previously observed with other bacterial 485 

pathogens [49, 62, 63]. Our results on fecal shedding dynamics suggest that the contribution of 486 

CRAMP to the control of Lm during the intestinal phase of infection is minimal. A previous 487 

report showed a negligible enteric secretion of CRAMP in normal adult mice [64], which may 488 

explain the similar shedding behavior of the wild type and ΔrmlACBD strains that were 489 

observed in both mouse strains. In this scenario, infection studies in newborn animals, whose 490 

enterocytes actively express CRAMP [45, 64], may provide conclusive information regarding 491 

the role of WTA L-rhamnosylation in the Lm resistance to CRAMP during the intestinal phase 492 

of the infection. Notwithstanding, CRAMP is actively produced by phagocytes in adult mice 493 

[65]. As a major target for Lm colonization, the spleen is also an important reservoir of 494 

phagocytic cells. We can speculate that WTA L-rhamnosylation is particularly important to 495 

increase the chances of Lm surviving CRAMP-mediated killing during spleen infection. 496 

Considering our data on the Lm susceptibility to LL-37, the human homolog of CRAMP, we 497 

can also envisage this scenario in the context of human infection. 498 
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In conclusion, our work has unveiled for the first time a role for WTA glycosylation in bacterial 499 

resistance to AMPs. We propose that WTA L-rhamnosylation reduces the cell wall permeability 500 

to AMPs, promoting a delay in the crossing of this barrier and in the disruption of the plasma 501 

membrane, thus favoring Lm survival and virulence in vivo. Our findings reveal a novel facet in 502 

the contribution of WTA modifications towards AMP resistance, reinforcing the crucial role of 503 

these Gram-positive surface glycopolymers in host defense evasion.  504 
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Materials and Methods 505 

 506 

Bacterial strains and growth conditions 507 

Bacterial strains used in this study are listed in Table 1. Lm and E. coli strains were routinely 508 

cultured aerobically at 37 ºC in brain heart infusion (BHI, Difco) and Lysogeny Broth (LB) 509 

media, respectively, with shaking. For experiments involving the Lm ΔtagO1ΔtagO2 strain, 510 

bacteria were first cultured overnight at 30 ºC with shaking in the presence of 1 mM IPTG 511 

(isopropyl-β-D-thiogalactopyranoside), washed and diluted (1:100) in fresh BHI and cultured 512 

overnight at 30 ºC with shaking [36]. When appropriate, the following antibiotics were included 513 

in culture media as selective agents: ampicilin (Amp), 100 μg/ml; chloramphenicol (Cm), 514 

7 μg/ml (Lm) or 20 μg/ml (E. coli); erythromycin (Ery), 5 μg/ml. For genetic complementation 515 

purposes, colistin sulfate (Col) and nalidixic acid (Nax) were used at 10 and 50 μg/ml, 516 

respectively.  517 

 518 

Construction and complementation of mutant strains 519 

Lm mutant strains were constructed in the EGD-e background through a process of double 520 

homologous recombination mediated by the suicide plasmid pMAD [66]. DNA fragments 521 

corresponding to the 5’- and 3’-flanking regions of the rmlACBD locus (lmo1081–4) were 522 

amplified by PCR from Lm EGD-e chromosomal DNA with primers 1–2 and 3–4 (Table S2), 523 

and cloned between the SalI–MluI and MluI–BglII sites of pMAD, yielding pDC303. Similarly, 524 

DNA fragments corresponding to the 5’- and 3’-flanking regions of rmlT (lmo1080) were 525 

amplified with primers 15–16 and 17–18 (Table S2), and cloned between the SalI–EcoRI and 526 

EcoRI–BglII sites of pMAD, yielding pDC491. The plasmid constructs were introduced in Lm 527 

EGD-e by electroporation and transformants selected at 30 ºC in BHI–Ery. Positive clones were 528 

re-isolated in the same medium and grown overnight at 43 ºC. Integrant clones were inoculated 529 

in BHI broth and grown overnight at 30 ºC, after which the cultures were serially diluted, plated 530 

in BHI agar and incubated overnight at 37 ºC. Individual colonies were tested for growth in 531 
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BHI–Ery at 30 ºC and antibiotic-sensitive clones were screened by PCR for deletion of 532 

rmlACBD (primers 5–6, 7–8, 9–10 and 11–12) and rmlT (primers 19–20) (Table S2). Genetic 533 

complementation of the deletion mutant strains was performed as described [24]. DNA 534 

fragments containing either the rmlACBD or rmlT loci were amplified from Lm EGD-e 535 

chromosomal DNA with primers 13–14 and 21–22 (Table S2), respectively, and cloned 536 

between the SalI–PstI sites of the phage-derived integrative plasmid pPL2 [67], generating 537 

pDC313 and pDC550. The plasmid constructs were introduced in the E. coli strain S17-1 and 538 

transferred, respectively, to the ΔrmlACBD and ΔrmlT strains by conjugation on BHI agar. 539 

Transconjugant clones were selected in BHI–Cm/Col/Nax and chromosomal integration of the 540 

plasmids confirmed by PCR with primers 23 and 24 (Table S2). All plasmid constructs and 541 

gene deletions were confirmed by DNA sequencing. 542 

 543 

Gene expression analyses 544 

Total bacterial RNA was isolated from 10 ml of exponential cultures (OD600=0.6) by the 545 

phenol-chloroform extraction method, as previously described [68], and treated with DNase I 546 

(Turbo DNA-free, Ambion), as recommended by the manufacturer. Purified RNAs (1 μg) were 547 

reverse-transcribed with random hexamers, using iScript cDNA Synthesis kit (Bio-Rad 548 

Laboratories). Quantitative real-time PCR (qPCR) was performed in 20-μl reactions containing 549 

2 μl of cDNA, 10 μl of SYBR Green Supermix (Bio-Rad Laboratories) and 0.25 μM of forward 550 

and reverse primers (Table S2), using the following cycling protocol: 1 cycle at 95 ºC (3 min) 551 

and 40 cycles at 95 ºC (30 s), 55 ºC (30 s) and 72 ºC (30 s). Each target gene was analyzed in 552 

triplicate and blank (water) and DNA contamination controls (unconverted DNase I-treated 553 

RNA) were included for each primer pair. Amplification data were analyzed by the comparative 554 

threshold (ΔΔCt) method, after normalization of the test and control sample expression values 555 

to a housekeeping gene (16S rRNA). For qualitative analysis, PCR was performed in 20-μl 556 

reactions containing 2 μl of cDNA, 10 μl of MangoMix 2× reaction mix (Bioline) and 0.5 μM 557 

of forward and reverse qPCR primers, using the following protocol: 1 cycle at 95 ºC (5 min), 25 558 

cycles at 95 ºC (30 s), 55 ºC (30 s) and 72 ºC (20 s), and 1 cycle at 72 ºC (5 min). Amplification 559 
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products were resolved in 1% (w/v) agarose gel and analyzed in a GelDoc XR+ System (Bio-560 

Rad Laboratories). 561 

 562 

WTA PAGE analysis 563 

Extraction and analysis of Lm WTAs by polyacrylamide gel electrophoresis was performed 564 

essentially as described [69], with the exception that WTAs extracts were obtained from 565 

exponential-phase cultures. Sedimented bacteria were washed (buffer 1: 50 mM MES buffer, 566 

pH 6.5) and boiled for 1 h (buffer 2: 4% SDS in buffer 1). After centrifugation, the pellet was 567 

serially washed with buffer 2, buffer 3 (2% NaCl in buffer 1) and buffer 1, before treatment 568 

with 20 μg/ml proteinase K (20 mM Tris-HCl, pH 8; 0.5% SDS) at 50 ºC for 4 h. The digested 569 

samples were thoroughly washed with buffer 3 and distilled water and incubated overnight 570 

(16 h) with 0.1 M NaOH, under vigorous agitation. Cell wall debris were removed by 571 

centrifugation (10,000 rpm, 10 min) and the hydrolyzed WTAs present in the supernatant were 572 

directly analyzed by native PAGE in a Tris-tricine buffer system. WTA extracts were resolved 573 

through a vertical (20 cm) polyacrylamide (20%) gel at 20 mA for 18 h (4 ºC). To visualize 574 

WTAs, the gel was stained in 0.1% Alcian blue (40% ethanol; 5% acetic acid) for 30 min and 575 

washed (40% ethanol; 10% acetic acid) until the background is fully cleared. Optionally, for 576 

increased contrasting, silver staining can be performed on top of the Alcian blue staining. 577 

 578 

Purification of cell wall components  579 

Cell walls of Lm strains were purified as described before [70], with modifications. Overnight 580 

cultures were subcultured into 1–2 liters of BHI broth (initial OD600=0.005) and bacteria grown 581 

until exponential phase (OD600=1.0–1.5). Cultures were rapidly cooled in an ice/ethanol bath 582 

and bacteria harvested by centrifugation (7,500 rpm, 15 min, 4 °C). The pellet was resuspended 583 

in cold ultrapure water and boiled for 30 min with 4% SDS to kill bacteria and inactivate cell 584 

wall-modifying enzymes. The samples were cleared of SDS by successive cycles of 585 

centrifugation (12,000 rpm, 10 min) and washing with warm ultrapure water until no detergent 586 
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was detected [71]. SDS-free samples were resuspended in 2 ml of ultrapure water and cell walls 587 

disrupted with glass beads in a homogenizer (FastPrep, Thermo Savant). Fully broken cell walls 588 

were separated from glass beads by filtration (glass filters, pore size: 16-40 µm) and from 589 

unbroken cell walls and other debris by low-speed centrifugation (2,000 rpm, 15 min). Nucleic 590 

acids were degraded after incubation (2 h) at 37 °C with DNase (10 µg/ml) and RNase 591 

(50 µg/ml) in a buffer containing 50 mM Tris-HCl, pH 7.0, and 20 mM MgSO4. Proteins were 592 

then digested overnight at 37 °C with trypsin (100 µg/ml) in the presence of 10 mM CaCl2. 593 

Nuclease and proteases were inactivated by boiling in 1% SDS, and samples were centrifuged 594 

(17,000 rpm, 15 min) and washed twice with ultrapure water. Cell walls were resuspended and 595 

incubated (37 °C, 15 min) in 8 M LiCl and then in 100 mM EDTA, pH 7.0, after which they 596 

were washed twice with water. After resuspension in acetone and sonication (15 min), cell walls 597 

were washed and resuspended in ultrapure water before undergoing lyophilization.  598 

To obtain purified peptidoglycan, cell walls (20 mg) were incubated for 48 h with 4 ml of 46% 599 

hydrofluoric acid (HF), under agitation at 4 °C. Samples were washed with 100 mM Tris-HCl, 600 

pH 7.0, and centrifuged (17,000 rpm, 30 min, 4 °C) as many times as necessary to neutralize the 601 

pH. The pellet was finally washed twice with water prior to lyophilization. WTA extracts were 602 

obtained by incubating 1 mg of cell wall with 300 µl of 46% HF (18 h, 4 °C). After 603 

centrifugation (13,200 rpm, 15 min, 4 °C), the supernatant was recovered and evaporated under 604 

a stream of compressed air. The dried WTA residue was resuspended in water and lyophilized.  605 

 606 

Extraction of bacterial cytoplasmic content 607 

The intracellular content of Lm strains was isolated according to a modified version of the 608 

protocol by Ornelas-Soares et al. [72]. Bacterial cultures (200 ml) were grown until early 609 

exponential phase (OD600=0.3), and vancomycin was added at 7.5 µg/ml (5×MIC value [73]) to 610 

induce the cytoplasmic accumulation of the peptidoglycan precursor UDP-MurNAc-611 

pentapeptide. Cultures were grown for another 45 min and chilled in an ice-ethanol bath for 10 612 

min. Bacteria were then harvested by centrifugation (12,000 rpm, 10 min, 4 ºC), washed with 613 

cold 0.9% NaCl, resuspended in 5 ml of cold 5% trichloroacetic acid and incubated for 30 min 614 
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on ice. Cells and other debris were separated by centrifugation (4,000 rpm, 15 min, 4 ºC) and 615 

the supernatant was extracted with 1-2 volumes of diethyl ether as many times as necessary to 616 

remove TCA (sample pH should rise to at least 6.0). The aqueous fraction containing the 617 

cytoplasmic material was lyophilized and the dried residue resuspended in ultrapure water.  618 

 619 

HPLC analyses 620 

To analyze their sugar composition, purified cell wall and peptidoglycan (200 µg each), as well 621 

as cytoplasmic (500 µg) and WTA extracts were hydrolyzed in 3 M HCl for 2 h at 95 °C. After 622 

vacuum evaporation, the samples were washed with water and lyophilized. The hydrolyzed 623 

material was then resuspended in 150 µl of water and resolved by high-performance anion-624 

exchange chromatography coupled with pulsed amperometric detection (HPAEC-PAD). Ten 625 

microliters were injected into a CarboPac PA10 column (Dionex, Thermo Fisher Scientific) and 626 

eluted at 1 ml/min (30 °C) with 18 mM NaOH, followed by a gradient of NaCH3COO: 0–627 

20 mM (t=25–30 min), 20–80 mM (t=30–35 min), 80–0 mM (t=40–45 min). Standards for 628 

glucosamine, muramic acid, L-rhamnose and ribitol (Sigma-Aldrich) were eluted under the 629 

same conditions to enable identification of chromatogram peaks. Data were acquired and 630 

analyzed with the Chromeleon software (Dionex, Thermo Fisher Scientific).  631 

Muropeptide samples were prepared and analyzed as described [74], with minor changes. 632 

Purified peptidoglycan was digested with 200 µg/ml mutanolysin (Sigma-Aldrich) in 12.5 mM 633 

sodium phosphate, pH 5.5, for 16 h at 37 °C. Enzymatic activity was halted by heating at 634 

100 °C for 5 min, after which the digested sample was reduced for 2 h with 2.5 mg/ml of 635 

sodium borohydride (NaBH4) in 0.25 M borate buffer, pH 9.0. The reaction was stopped by 636 

lowering the sample pH to 2 with ortho-phosphoric acid. After centrifugation, the supernatant 637 

was analyzed by reverse phase HPLC. Fifty microliters were injected into a Hypersil ODS 638 

(C18) column (Thermo Fisher Scientific) and muropeptide species eluted (0.5 ml/min, 52 °C) in 639 

0.1 M sodium phosphate, pH 2.0, with a gradient of 5–30% methanol and detected at 206 nm. 640 

 641 



 

27 

 

Intracellular multiplication 642 

Mouse macrophage-like J774A.1 cells (ATCC, TIB-67) were propagated in Dulbecco’s 643 

modified Eagle’s medium (DMEM) containing 10% fetal bovine serum and infection assays 644 

were performed as described [24]. Briefly, cells (~2×10
5
/well) were infected for 45 min with 645 

exponential-phase bacteria at a multiplicity of infection of ~10 and treated afterwards with 646 

20 μg/ml gentamicin for 75 min. At several time-points post-infection, cells were washed with 647 

PBS and lysed in cold 0.2% Triton X-100 for quantification of viable intracellular bacteria in 648 

BHI agar. One experiment was performed with triplicates for each strain and time-point. 649 

 650 

Resistance to salt stress and lysozyme 651 

Lm cultures grown overnight were appropriately diluted in BHI broth and their growth under the 652 

presence of stressful stimuli was monitored by optical density measurement at 600 nm (OD600). 653 

For comparative analysis of Lm resistance to salt stress, bacterial cultures were diluted 100-fold 654 

in BHI alone (control) or BHI containing 5% NaCl. To assess the Lm resistance to lysozyme, 655 

exponential-phase cultures (OD600 ≈ 1.0) were challenged with different doses of chicken egg 656 

white lysozyme (Sigma). A mutant Lm strain hypersensitive to lysozyme (ΔpgdA) was used as a 657 

positive control for susceptibility.  658 

 659 

AMP susceptibility 660 

Bacteria in the exponential phase of growth (OD600=0.7–0.8) were diluted (10
4
 CFU/ml) in 661 

sterile PB medium (10 mM phosphate buffer, pH 7.4; 1% BHI) and mixed in a 96-well 662 

microplate with increasing concentrations of gallidermin (Santa Cruz Biotechnology), CRAMP 663 

or LL-37 (AnaSpec). Bacterial suspensions without AMPs were used as reference controls for 664 

optimal growth/survival. After incubation for 2 h at 37 ºC, the mixtures were serially diluted in 665 

sterile PBS and plated in BHI agar for quantification of viable bacteria. Each condition was 666 

analyzed in duplicate in three independent assays. 667 

 668 
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Cytochrome c binding 669 

Cytochrome c binding assays were performed as described [56]. Bacteria from mid-exponential-670 

phase cultures (OD600=0.6–0.7) were washed in 20 mM MOPS buffer, pH 7.0, and resuspended 671 

in ½ volume of 0.5 mg/ml equine cytochrome c (Sigma-Aldrich) in 20 mM MOPS buffer, 672 

pH 7.0. After 10 min of incubation, bacteria were pelleted and the supernatant collected for 673 

quantification of the absorbance at 530 nm. The mean absorbance values from replicate samples 674 

containing bacteria were subtracted to the mean value of a reference sample lacking bacteria, 675 

and the results were presented for each strain as percentage of unbound cytochrome c. 676 

 677 

Zeta potential measurements 678 

Bacteria (1 ml) from mid-exponential-phase cultures were washed twice with deionized water 679 

and diluted (10
7
 CFU/ml) in 15 mM NaCl solutions adjusted to different pH values (1 to 7) with 680 

nitric acid. Bacterial suspensions (750 μl) were injected into a disposable capillary cell cuvette 681 

(DTS1061, Malvern Instruments) and the zeta potential was measured at 37 ºC in a ZetaSizer 682 

Nano ZS (Malvern Instruments), under an automated field voltage. Samples were measured in 683 

triplicate in three independent assays. 684 

 685 

Flow cytometry analyses 686 

Bacteria from 500 μl of mid-exponential-phase cultures were washed twice with PBS and 687 

treated for 5 min with 5 μg/ml CRAMP or PBS (untreated control). After centrifugation, the 688 

supernatant was removed and PBS-washed bacteria were incubated for 1 h with rabbit anti-689 

CRAMP (1:100, Innovagen), followed by 1 h with Alexa Fluor 488-conjugated anti-rabbit IgG 690 

(1:200, Molecular Probes). Finally, bacteria were fixed with 3% paraformaldehyde for 15 min, 691 

washed and resuspended in PBS. Alternatively, bacteria were similarly treated with an N-692 

terminally 5-FAM-labeled synthetic form of CRAMP (95% purity, Innovagen), washed and 693 

resuspended in PBS. Samples were acquired in a FACSCalibur flow cytometer equipped with 694 

CellQuest software (BD Biosciences) and data were analyzed with FlowJo (TreeStar Inc.). 695 
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Green fluorescence was collected from at least 50,000 FSC/SSC-gated bacterial events in the 696 

FL1 channel (530 nm/20 nm bandpass filter). Fluorescence intensities were plotted in single-697 

parameter histograms and results were presented as the average mean fluorescence intensity 698 

(MFI) value from three independent analyses.  699 

For bacterial membrane potential studies, the lipophilic fluorescent probe DiOC2(3) (3,3-700 

diethyloxacarbocyanine, Santa Cruz Biotechnology) was used as a membrane potential indicator 701 

[48, 75]. Mid-logarithmic phase bacteria were diluted (10
6
 CFU/ml) in PBS with 30 μM 702 

DiOC2(3) and incubated for 15 min in the dark. CRAMP was added to a final concentration of 703 

50 μg/ml and the sample was immediately injected in the flow cytometer. Control samples 704 

treated with PBS or with 1.5 mM sodium azide (uncoupling agent) were analyzed to determine 705 

the fluorescence values corresponding to basal (100%) and null (0%) membrane potential (Fig. 706 

S6). Green and red (FL3, 670 nm/long bandpass filter) fluorescence emissions were 707 

continuously collected from FSC/SSC-gated bacteria for 30 min. After acquisition, a ratio of red 708 

over green fluorescence (R/G) was calculated per event and plotted in the y-axis versus time. A 709 

series of consecutive one-minute-wide gates was applied to the plot and the mean R/G value per 710 

gate was determined. The mean R/G values from uncoupler-treated samples were deducted from 711 

the corresponding values from the untreated and CRAMP-treated samples, and the resulting 712 

values for each condition were normalized as percentage of the initial value (t=1 min). Finally, 713 

the temporal variation of the Lm membrane potential was represented graphically as the ratio of 714 

the normalized values from CRAMP-treated over untreated samples. 715 

 716 

SYTOX Green uptake 717 

Bacterial uptake of the cell-impermeable SYTOX Green dye was used to study membrane 718 

permeabilization induced by CRAMP [57]. Exponential-phase bacteria were washed and 719 

resuspended (10
7
 CFU/ml) in sterile PBS containing 1 μM SYTOX Green (Molecular Probes). 720 

After 20 min of incubation in the dark, bacterial suspensions were mixed in PCR microplate 721 

wells with 50 μg/ml CRAMP or PBS (negative control) for a total volume of 100 μl. The 722 

mixtures were immediately placed at 37 ºC in a real-time PCR detection system (iQ
™

5, Bio-Rad 723 
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Laboratories) and fluorescence emission at 530 nm was recorded every minute following 724 

excitation at 488 nm. 725 

 726 

Binding of AMP to purified cell walls 727 

One-hundred micrograms of purified cell wall were resuspended in 50 μl of 5 μg/ml CRAMP or 728 

PBS (negative control) and gently shaken for 5 min. Samples were centrifuged (16,000 × g, 1 729 

min), washed in PBS and in TM buffer (10 mM Tris-HCl, 10 mM MgCl2, pH 7.4) before 730 

overnight incubation at 37 °C with mutanolysin (400 U/ml) in TM buffer (50 μl). Supernatants 731 

were resolved by tricine-SDS-PAGE in a 16% gel, transferred onto nitrocellulose membrane 732 

and blotted with rabbit anti-CRAMP (1:1000) or mouse anti-InlA (L7.7; 1:1000), followed by 733 

HRP-conjugated goat anti-rabbit or anti-mouse IgG (1:2000, P.A.R.I.S). Immunolabeled bands 734 

were visualized using SuperSignal West Dura Extended Duration Substrate (Pierce) and 735 

digitally acquired in a ChemiDoc XRS+ system (Bio-Rad Laboratories). 736 

  737 

Immunoelectron microscopy 738 

Exponential-phase bacteria treated with 50 μg/ml CRAMP for 15 min at 37 ºC were fixed for 739 

1 h at room temperature (4% paraformaldehyde, 2.5% glutaraldehyde, 0.1 M sodium 740 

cacodylate, pH 7.2), stained with 1% osmium tetroxide for 2 h and resuspended in 30% BSA 741 

(high-purity grade). Bacterial pellets obtained after centrifugation in microhematocrit tubes 742 

were fixed overnight in 1% glutaraldehyde, dehydrated in increasing ethanol concentrations, 743 

and embedded in Epon 812. Ultrathin sections (40–50 nm) were placed on 400-mesh Formvar-744 

coated copper grids and treated with 4% sodium metaperiodate and 1% periodic acid (10 min 745 

each) for antigen retrieval. For immunogold labeling of CRAMP, sections were blocked for 10 746 

min with 1% BSA and incubated overnight (4 ºC) with rabbit anti-CRAMP (1:100 in 1% BSA). 747 

After extensive washing, sections were labeled with 10-nm gold complex-conjugated anti-rabbit 748 

IgG (1:200 in 1% BSA) for 2 h, washed and contrasted with 4% uranyl acetate and 1% lead 749 
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citrate. Images were acquired in a Jeol JEM-1400 transmission electron microscope equipped 750 

with a Gatan Orius SC1000 CCD camera and analyzed using ImageJ software. 751 

 752 

Animal infections 753 

Virulence studies were done in mouse models of the following strains: wild type BALB/c and 754 

129/SvJ (Charles River Laboratories); and CRAMP-deficient (cramp
-/-

) 129/SvJ, which was 755 

bred in our facilities from a breeding pair provided by Dr. Richard L. Gallo (University of 756 

California, USA) [49]. Infections were performed in six-to-eight week-old specific-pathogen-757 

free females as described [76]. Briefly, for oral infections, 12-h starved animals were inoculated 758 

by gavage with 10
9
 CFU in PBS containing 150 mg/ml CaCO3, while intravenous infections 759 

were performed through the tail vein with 10
4
 CFU in PBS. In both cases, the infection was 760 

carried out for 72 h, at which point the animals were euthanatized by general anesthesia. The 761 

spleen and liver were aseptically collected, homogenized in sterile PBS, and serial dilutions of 762 

the organ homogenates plated in BHI agar. For analysis of Lm fecal carriage, total feces 763 

produced by each infected animal (n=5 per strain) up to a given time-point were collected, 764 

homogenized in PBS and serial dilutions plated in Listeria selective media (Oxoid) for bacterial 765 

enumeration. Mice were maintained at the IBMC animal facilities, in high efficiency particulate 766 

air (HEPA) filter-bearing cages under 12 h light cycles, and were given sterile chow and 767 

autoclaved water ad libitum. 768 

 769 

Ethics Statement 770 

All the animal procedures were in agreement with the guidelines of the European Commission 771 

for the handling of laboratory animals (directive 2010/63/EU), with the Portuguese legislation 772 

for the use of animals for scientific purposes (Decreto-Lei 113/2013), and were approved by the 773 

IBMC Animal Ethics Committee, as well as by the Direcção Geral de Veterinária, the 774 

Portuguese authority for animal protection, under license PTDC/SAU-MIC/111581/2009. 775 

 776 
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Statistical analyses 777 

Statistical analyses were performed with Prism 6 (GraphPad Software). Unpaired two-tailed 778 

Student’s t-test was used to compare the means of two groups; one-way ANOVA was used with 779 

Tukey’s post-hoc test for pairwise comparison of means from more than two groups, or with 780 

Dunnett’s post-hoc test for comparison of means relative to the mean of a control group. Mean 781 

differences were considered statistically non-significant (ns) when p value was above 0.05. For 782 

statistically significant differences: *, p≤0.05; **, p≤0.01; ***, p≤0.001.  783 
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Figure Legends 1059 

 1060 

Fig. 1. Genes encoding the L-rhamnose biosynthesis pathway are distributed in listeriae 1061 

and other bacterial species. Comparison of the genomic organization of the L-rhamnose 1062 

pathway genes in the genus Listeria and other bacteria. The corresponding species and strains 1063 

are indicated on the left (Lmo, Listeria monocytogenes; Lin, Listeria innocua; Lse, Listeria 1064 

seeligeri; Liv, Listeria ivanovii; Lwe, Listeria welshimeri; Smu, Streptococcus mutans; Mtu, 1065 

Mycobacterium tuberculosis; Sen, Salmonella enterica serovar Typhimurium; Sfl, Shigella 1066 

flexneri; Pae, Pseudomonas aeruginosa) and listerial serotypes are indicated on the right. Genes 1067 

are represented by boxed arrows and their names are provided for strain EGD-e. Operons are 1068 

underlined by dashed arrows and homologs of the rml genes are shown with identical colors. 1069 

Numbered gaps indicate the genetic distance (Mb, mega base pairs) between rml genes located 1070 

far apart in the chromosome. Bacterial genomic sequences were obtained from NCBI database 1071 

and chromosomal alignments assembled using Microbial Genomic context Viewer and Adobe 1072 

Illustrator. 1073 

 1074 

Fig. 2. A functional rml operon is required for glycosylation of Lm WTAs with 1075 

L-rhamnose. (A) Alcian blue-stained 20% polyacrylamide gel containing WTA extracts from 1076 

logarithmic-phase cultures of different Lm strains. (B–D) HPAEC-PAD analyses of the sugar 1077 

composition of the (B) WTA, (C) peptidoglycan and (D) cytoplasmic fractions isolated from the 1078 

indicated Lm strains. Samples were hydrolyzed in 3 M HCl (2 h, 95 ºC), diluted with water and 1079 

lyophilized before injection into the HPLC equipment. Standards for ribitol (Rib), L-rhamnose 1080 

(Rha), glucosamine (GlcN), and muramic acid (Mur) were eluted under identical conditions to 1081 

allow peak identification.  1082 

 1083 

Fig. 3. WTA L-rhamnosylation promotes Lm resistance against AMPs. (A) Growth of Lm 1084 

strains in BHI broth supplemented with 5% NaCl. A growth curve of wild type EGD-e in the 1085 
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absence of 5% NaCl was included as a control for optimal growth. (B) Growth of mid-1086 

exponential-phase Lm strains untreated (black symbols) or challenged with 50 μg/ml (gray 1087 

symbols) or 1 mg/ml (white symbols) of lysozyme. Optical density of the shaking cultures was 1088 

monitored spectrophotometrically at 600 nm. (C) Quantification of viable bacteria after 1089 

treatment of mid-exponential-phase Lm strains (2 h, 37 ºC) with gallidermin (1 μg/ml), CRAMP 1090 

or LL-37 (5 μg/ml). Averaged replicate values from AMP-treated samples were normalized to 1091 

untreated control samples and the transformed data expressed as the percentage of surviving 1092 

bacteria relative to wild type Lm (set at 100). Data represent mean±SD of three independent 1093 

experiments. *, p≤0.05; ***, p≤0.001. 1094 

 1095 

Fig. 4. WTA L-rhamnosylation interferes with the Lm cell wall crossing by AMPs. (A and 1096 

B) Flow cytometry analysis of Lm surface-exposed CRAMP levels in mid-exponential-phase 1097 

Lm strains, following incubation (5 min) in a 5-μg/ml solution of the peptide and 1098 

immunolabeling with anti-CRAMP and Alexa Fluor 488-conjugated antibodies. (A) 1099 

Representative experiment showing overlaid histograms of CRAMP-treated (solid line) and 1100 

untreated (dashed line) samples, with mean fluorescence intensity (MFI) values from treated 1101 

samples indicated by vertical dashed lines. (B) Mean±SD of the MFI values of CRAMP-treated 1102 

samples from three independent experiments. (C) Cell surface charge analysis of Lm strains 1103 

deficient for WTA L-rhamnosylation as determined by cytochrome c binding assays. Mid-1104 

exponential-phase bacteria were incubated with equine cytochrome c (0.5 mg/ml), centrifuged 1105 

and the supernatant was recovered for spectrophotometric quantification of the unbound protein 1106 

fraction. Values from Lm-containing samples are expressed as the percentage of unbound 1107 

cytochrome c relative to control samples lacking bacteria. Data represent the mean±SD of three 1108 

independent experiments. (D and E) Flow cytometry analysis of total Lm-associated CRAMP 1109 

levels in mid-exponential-phase Lm strains, following incubation (5 min) with a 5-μg/ml 1110 

solution of fluorescently labeled peptide (5-FAM-CRAMP). (D) Representative experiment 1111 

showing overlaid histograms of FAM-CRAMP-treated (solid line) and untreated (dashed line) 1112 

samples, with MFI values from treated samples indicated by vertical dashed lines. (E) 1113 
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Mean±SD of the MFI values of 5-FAM-CRAMP-treated samples from three independent 1114 

experiments. (F) Fluorometric quantification of the unbound CRAMP fraction in the 1115 

supernatant of suspensions of mid-exponential-phase Lm strains, following incubation (5 min) 1116 

with a 5-μg/ml solution of 5-FAM-CRAMP. Data are expressed as the percentage of unbound 1117 

fluorescent peptide relative to control samples lacking bacteria, and represent the mean±SD of 1118 

three independent experiments performed in triplicates. ns=not significant, p>0.05; **, p≤0.01; 1119 

***, p≤0.001. 1120 

 1121 

Fig. 5. WTA L-rhamnosylation delays AMP interaction with the Lm plasma membrane. 1122 

(A) Depolarization rate of Lm strains in response to CRAMP. Mid-exponential-phase bacteria 1123 

pre-stained (15 min) with 30 μM DiOC2(3) were challenged with 50 μg/ml CRAMP and 1124 

changes in the membrane potential, expressed as the ratio of CRAMP-treated versus untreated 1125 

samples, were monitored during 30 min. Data represent the mean±SD of three independent 1126 

experiments. (B) SYTOX Green uptake kinetics of Lm strains in response to CRAMP-mediated 1127 

membrane permeabilization. Exponential-phase bacteria were incubated (37 ºC) with PBS 1128 

(white symbols) or 50 μg/ml CRAMP (black symbols), in the presence of 1 μM SYTOX Green, 1129 

and the increase in green fluorescence emission was recorded over time. (C and D) 1130 

Transmission electron microscopy analysis of the subcellular distribution of CRAMP in 1131 

immunogold-labeled sections of mid-exponential-phase wild type and ΔrmlACBD Lm strains 1132 

treated with 50 μg/ml CRAMP (15 min, 37 ºC). (C) Representative images of contrasted 1133 

sections of Lm cells showing CRAMP-specific gold labeling (10-nm black dots). Scale bar: 0.2 1134 

μm. (D) Quantification of the subcellular partition of CRAMP labeling in wild type and 1135 

ΔrmlACBD Lm strains, for two independent assays. The percentages of cell envelope- and 1136 

cytoplasm-associated gold dots per bacterium were quantified (at least 90 cells per strain) and 1137 

the results expressed for each strain as mean±SD. (E and F) Western blot analysis of levels of 1138 

CRAMP bound to purified cell wall of different Lm strains. Purified cell wall (100 μg) was 1139 

incubated with CRAMP (5 min), washed and digested overnight with mutanolysin. (E) 1140 

Supernatants from mutanolysin-treated samples were resolved in 16% Tris-tricine SDS-PAGE 1141 
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and immunoblotted for CRAMP. The Lm cell wall-anchored protein InlA was used as loading 1142 

control. (F) Quantification of the relative CRAMP levels represented as the mean±SD of four 1143 

independent blots. *, p≤0.05; **, p≤0.01. 1144 

 1145 

Fig. 6. WTA L-rhamnosylation is necessary for AMP resistance in vivo and Lm virulence. 1146 

(A–D) Quantification of viable bacteria in the spleen and liver recovered from BALB/c mice 1147 

(n=5), three days after (A and B) oral or (C and D) intravenous infection with sub-lethal doses 1148 

of indicated Lm strains. Data are presented as scatter plots, with each animal indicated by a dot 1149 

and the mean indicated by a horizontal line. (E and F) Quantification of the fecal shedding of 1150 

wild type or ΔrmlACBD Lm strains after oral infection of (E) wild type (WT, cramp
+/+

) and (F) 1151 

CRAMP knockout (KO, cramp
-/-

) 129/SvJ mice (n=5). Total feces produced by each animal at 1152 

specific time points were collected and processed for bacterial enumeration in Listeria-selective 1153 

agar media. Data are expressed as mean±SD. (G and H) Quantification of viable bacteria in 1154 

spleens and livers recovered from (G) wild type (WT, cramp
+/+

) and (H) CRAMP knockout 1155 

(KO, cramp
-/-

) 129/Sv mice (n=5), three days after intravenous infection with sub-lethal doses 1156 

of wild type or ΔrmlACBD Lm strains. Data are presented as scatter plots, with each animal 1157 

represented by a dot and the mean indicated by a horizontal line. *, p≤0.05; **, p≤0.01; ***, 1158 

p≤0.001.  1159 
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Tables 1160 

Table 1. Plasmids and bacterial strains 
Plasmid or strain Code Relevant characteristics Source 

Plasmids 

pMAD  Gram-negative/Gram-positive shuttle 

vector; thermosensitive replication; Ampr 

Eryr  

[66] 

pPL2  L. monocytogenes phage-derived site-

specific integration vector; Cmr 

[67] 

pMAD(ΔrmlACBD) pDC303 pMAD with 5’- and 3’-flanking regions 

of rmlACBD locus; Ampr Eryr 

This study 

pPL2(rmlACBD)  pDC313 pPL2 with rmlACBD locus and 5’- and 

3’-flanking regions; Cmr 

This study 

pMAD(ΔrmlACBD)   pDC491 pMAD with 5’- and 3’-flanking regions 

of rmlT; Ampr Eryr 

This study 

pPL2(rmlT) pDC550 pPL2 with rmlT sequence and 5’- and 3’-

flanking regions; Cm
r
 

This study 

E. coli strains 

DH5α  Cloning host strain; F- Φ80lacZΔM15 

Δ(lacZYA-argF) U169 recA1 endA1 

hsdR17(rk
-, mk

+) phoA supE44 thi-1 

gyrA96 relA1 λ- 

Life 

Technologi

es 

S17-1  Conjugative donor strain; recA pro hsdR 
RP4-2-Tc::Mu-Km::Tn7 

[77] 

L. monocytogenes strains 

EGD-e  wild type; serotype 1/2a [78] 

EGD-e ΔpgdA  EGD-e pgdA (lmo0415) deletion mutant [42] 

EGD-e ΔrmlACBD  DC307 EGD-e rmlACBD (lmo1081–4) deletion 

mutant 

This study 

EGD-e ΔrmlACBD::pPL2(rmlACBD)  DC367 EGD-e rmlACBD (lmo1081–4) deletion 

mutant complemented with 

pPL2(rmlACBD) (pDC313); Cmr 

This study 

EGD-e ΔrmlT  DC492 EGD-e rmlT (lmo1080) deletion mutant This study 

EGD-e ΔrmlT::pPL2(rmlT) DC553 EGD-e rmlT (lmo1080) deletion mutant 

complemented with pPL2(rmlT) 

(pDC550); Cmr 

This study 

EGD-e ΔtagO1ΔtagO2::pLIV2(tagO1)  EGD-e tagO1 (lmo0959) and tagO2 

(lmo2519) double deletion mutant 

complemented with pLIV2(tagO1), 

expressing tagO1 under the control of an 

IPTG-inducible promoter; Cmr 

[36] 

EGD BUG600 wild type; serotype 1/2a [79] 

EGD ΔdltA BUG2182 EGD dltA (LMON_0982) deletion 

mutant 

[80] 

 1161 

  1162 
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Supporting Information 1163 

 1164 

Fig. S1. Proteins involved in Lm WTA L-rhamnosylation. (A) Schematic diagram of the L-1165 

rhamnose biosynthesis pathway (adapted from [31, 35]). Each of the RmlACBD proteins 1166 

catalyzes one of the four reaction steps that convert glucose-1-phosphate into nucleotide-linked 1167 

L-rhamnose. dTTP, thymidine triphosphate; PPi, pyrophosphate; NADP, nicotinamide adenine 1168 

dinucleotide phosphate. (B) Alignment of the amino acid sequences of B. subtilis 168 GgaB 1169 

(GenBank: AAA73513.1) and Lm RmlT (GenBank: NP_464605.1). Boxed sequences 1170 

correspond to the GT-A glycosyltransferase fold domain, as predicted by the NCBI Conserved 1171 

Domain Search. The GT-A family signature DxD motif is highlighted in dark gray. The 1172 

numbers indicate the position of the last amino acid in each line. Protein sequence alignments 1173 

were obtained with ClustalW2 and edited with UCSF Chimera. 1174 

 1175 

Fig. S2. Genetic characterization of Lm strains used in this study. (A) Genotypes and gene 1176 

expression of the constructed Lm strains were confirmed by PCR and RT-PCR. (B) Comparison 1177 

of the rmlACBD transcription levels in ΔrmlT versus wild type Lm strains by quantitative real-1178 

time PCR. Data represent the mean±SD of three independent analyses. *, p≤0.05.  1179 

 1180 

Fig. S3. HPLC analyses of the cell wall sugar and muropeptide composition from Lm 1181 

strains. (A) HPAEC-PAD analysis of the sugar composition of cell wall purified from Lm 1182 

strains. Samples were hydrolyzed in 3 M HCl (2 h, 95 ºC), diluted with water and lyophilized 1183 

before injection into the HPLC equipment. Standards for ribitol (Rib), L-rhamnose (Rha), 1184 

glucosamine (GlcN), and muramic acid (Mur) were eluted under identical conditions to allow 1185 

peak identification. (B) Reverse-phase HPLC analysis of the muropeptide composition from 1186 

different Lm strains, following overnight digestion of purified peptidoglycan samples with 1187 

mutanolysin and reduction with NaBH4. Muropeptide species (monomeric, dimeric, trimeric, 1188 

etc.) were eluted with a 5–30% methanol gradient and detected by UV absorption at 206 nm. 1189 
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 1190 

Fig. S4. Dose-dependent survival response of Lm strains to different AMPs. Quantification 1191 

of viable bacteria after treatment of mid-exponential-phase Lm strains (2 h, 37 ºC) with 1192 

increasing concentrations of gallidermin, CRAMP or LL-37. The average replicate values from 1193 

AMP-treated samples were expressed as percentage of surviving bacteria relative to the values 1194 

of the respective untreated control samples (set at 100). Data represent mean±SD of three 1195 

independent experiments. Asterisks indicate statistical significance between wild type and 1196 

mutant strains (*, p≤0.05; ***, p≤0.001), while hashes indicate statistical significance between 1197 

mutant and respective complemented strains (#, p≤0.05; ###, p≤0.001). 1198 

 1199 

Fig. S5. Zeta potential profile of wild type and WTA L-rhamnosylation mutant Lm strains.  1200 

 1201 

Fig. S6. Determination of the Lm membrane potential magnitude by flow cytometry. The 1202 

membrane potential of untreated and sodium azide (1.5 mM)-treated suspensions of DiOC2(3)-1203 

stained wild type EGD-e suspensions was analyzed (see Materials and Methods) to determine 1204 

the red/green fluorescence ratio values corresponding, respectively, to a basal (100%) and null 1205 

(0%) membrane potential. 1206 

 1207 

Fig. S7. SYTOX Green uptake kinetics of Lm strains in response to CRAMP-mediated 1208 

membrane permeabilization. Exponential-phase bacteria were incubated (37 ºC) with PBS 1209 

(white symbols) or 50 μg/ml CRAMP (black symbols), in the presence of 1 μM SYTOX Green, 1210 

and the increase in green fluorescence emission was recorded over 115 min. 1211 

 1212 

Fig. S8. Growth of Lm strains in broth and inside eukaryotic host cells. (A) Stationary-1213 

phase cultures were diluted 100-fold in BHI broth and incubated at 37 °C in aerobic and shaking 1214 

conditions. Optical density values at 600 nm (OD600) from each culture were measured every 1215 

hour. (B) Intracellular multiplication in J774A.1 murine macrophages. Cells (2×10
5
/well) were 1216 
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infected (45 min) with Lm, treated with 20 μg/ml gentamicin (75 min) and lysed at 2, 5, 7 and 1217 

20 h post-infection for quantification of intracellular viable bacteria in BHI agar. 1218 

 1219 

Table S1. Homology between the RmlACBD proteins of Lm EGD-e and other strains and 1220 

species. 1221 

 1222 

Table S2. Primers. 1223 
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Lm cell wall, which induces an enhanced AMP targeting of the Lm plasma membrane and 337 

consequent bacterial killing. 338 

All combined, these data support a model where the L-rhamnosylation of WTAs alters the Lm 339 

cell wall permeability to favor the entrapment of AMPs. This obstructive effect hinders AMP 340 

progression through the cell wall and delays their lethal interaction with the plasma membrane. 341 

 342 

WTA L-rhamnosylation is crucial for AMP resistance in vivo and Lm virulence  343 

To evaluate the importance of WTA L-rhamnosylation in Lm pathogenicity, we assessed the in 344 

vivo virulence of Lm strains lacking L-rhamnosylated WTAs. BALB/c mice were inoculated 345 

orally with wild type, ΔrmlACBD or ΔrmlT strains, and the bacterial load in the spleen and liver 346 

of each animal was quantified three days later. The proliferative capacity of both ΔrmlACBD 347 

and ΔrmlT mutant strains was similarly reduced in both organs, although more significantly in 348 

the liver (Figs. 6A and 6B). To determine if the decreased virulence of the mutant strains was 349 

due to a specific defect in the crossing of the intestinal epithelium, BALB/c mice were 350 

challenged intravenously, bypassing the intestinal barrier. Three days post-infection, the 351 

differences between mutant and wild type strains, in both organs, were similar to those observed 352 

in orally infected animals (Figs. 6C and 6D), thus discarding any sieving effect of the intestinal 353 

epithelium on the decreased splenic and hepatic colonization by both ΔrmlACBD and ΔrmlT. 354 

Importantly, organs of mice infected intravenously with the complemented strains 355 

(ΔrmlACBD+rmlACBD and ΔrmlT+rmlT) displayed bacterial loads comparable to wild type 356 

Lm-infected organs (Figs. 6C and 6D). The attenuated in vivo phenotype of the ΔrmlACBD and 357 

ΔrmlT strains was not caused by an intrinsic growth defect, as demonstrated by their wild type-358 

like growth profiles in broth or inside eukaryotic cells (Fig. S8). These results confirmed the 359 

involvement of the rml operon in virulence, revealing a significant contribution of WTA 360 

L-rhamnosylation to Lm pathogenesis. Importantly, the in vivo attenuation of the ΔrmlT strain, 361 

which is unable to append L-rhamnose to its WTAs but is able to synthesize the L-rhamnose 362 

precursor, showed that although L-rhamnose biosynthesis is required to achieve optimal levels 363 
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