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Abstract 

Following damage by pore forming toxins (PFTs) host cells engage repair processes and display 

profound cytoskeletal remodeling and concomitant plasma membrane (PM) blebbing. We have recently 

demonstrated that host cells utilise similar mechanisms to control cytoskeletal dynamics in response to 

PFTs and during cell migration. This involves assembly of cortical actomyosin bundles, reorganisation of 

the endoplasmic reticulum (ER) network, and the interaction between the ER chaperone Gp96 and the 

molecular motor Non-muscle Myosin Heavy Chain IIA (NMHCIIA). Consequently, Gp96 regulates 

actomyosin activity, PM blebbing and cell migration, and protects PM integrity against PFTs. In addition, 

we observed that PFTs increase association of Gp96 and ER vacuoles with the cell surface or within PM 

blebs loosely attached to the cell body. Similarly, gut epithelial cells damaged by PFTs in vivo were 

shown to release microvilli structures or directly purge cytoplasmic content. Cytoplasmic purging involves 

profound cytoskeletal remodeling and ER vacuolation, suggesting that our observations recapitulate 

recovery processes in vivo. Here, we discuss our findings in light of the current understanding of PM 

repair mechanisms and in vivo recovery responses to PFTs. 
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Introduction 

 Evolutionary conserved mechanisms allow eukaryotic cells to sustain mechanical and chemical 

stress that injure the PM1-3. The changes in the intracellular concentration of calcium and potassium 

caused by PM rupture initiate recovery processes which depend on the size of the damage, the cell types 

involved and the nature of the inflicted stress (e.g. mechanical injuries or insertion of stable protein pores 

such as those created by bacterial PFTs)1-3. In general, cells engage PM repair pathways, rearrange the 

cytoskeleton, control their metabolic state and activate stress-associated signalling2, 3. 

 PM damage promotes calcium influx, which enhances exocytosis, predominantly of lysosomes. 

These vesicles patch large mechanical wounds (>100 nm)4, and promote acid-sphingomyelinase (ASM) 

release, which generates PM-ceramide domains that engulf PM damage in caveolae-derived 

endosomes2, 5. Stable protein pores cannot be patched and are removed by endocytosis or shedding 

within small PM vesicles (nm size)6. PM shedding may actually constitute an intrinsic repair mechanism 

that senses PFT oligomerisation and is potentiated upon damage and calcium influx7. Shedding depends 

on endosomal sorting complexes required for transport (ESCRT) and is similar to the budding of viral 

particles6-8. In vivo, recovery from PFT-mediated damage appears to involve the cooperation between 

different mechanisms. Host survival requires regulators of both endocytic and exocytic trafficking and 

epithelial cells display increased rates of endocytosis, shedding of PM material9 and/or direct purging of 

cytoplasmic content10. In addition, epithelia compact its cytoskeletal network and display alterations of 

cellular organelles while preserving coherence and functionality10. The fine control of the cytoskeletal 

dynamics is therefore necessary to promote PM recovery11. Indeed, following mechanically-induced PM 

damage, microtubules allow recruitment of distal vesicles while local actin rearrangements and myosin 

activity relief tension facilitate vesicle delivery and provide force to re-establish PM integrity12-16. The 

importance of cytoskeletal dynamics in cells targeted by PFTs remains poorly defined. 

 

Novel regulators of cytoskeletal dynamics protect against PFTs  

 We recently identified the ER chaperone Gp96 and NMHCIIA as regulators of cytoskeletal 

dynamics following PFT-mediated PM damage17. Gp96 and NMHCIIA interact upon PFT intoxication and 

accumulate into distinct bundles at sites of PM blebbing (Figure 1 and Supp Mov 1)17. These processes 

require calcium influx generated by PM damage and occur during Listeria monocytogenes (Lm) infection, 

which depends on the PFT listeriolysin O (LLO). The reorganisation of the actomyosin network is 

mediated by Gp96, which modulates myosin II activity and coordinates PM blebbing during PFT 

intoxication. Both Gp96 and NMHCIIA promote cell survival upon LLO intoxication17.  

 We characterised further the formation of NMHCIIA bundles during PFT intoxication and found that 

host cells utilise similar mechanisms to regulate cytoskeletal dynamics during recovery of PM integrity 

and cell migration17. (i) PFT-induced actomyosin bundles accumulate proteins found at the trailing edge 



of migrating cells18, 19; (ii) upon PFT intoxication, Gp96 interacts with Filamin-A, an actin cross-linker that 

regulates cell migration20; and (iii) stimulation of cell migration with Wnt5a, which promotes assembly of 

rear-end ER-actomyosin structures, also enhances NMHCIIA-Gp96 interaction. In line with these 

observations, we showed that Gp96 regulates general cytoskeletal organisation and therefore modulates 

cell shape and cell motility17.  

 Recent independent studies have also proposed a role for Gp96 in cytoskeletal organisation, cell 

polarity and cell migration. This may occur through the control of vesicular trafficking and/or interaction 

with different cytoskeletal proteins such as F-actin-capping protein 1, Actin, Radixin and ROCK221, 22. Of 

note, Gp96 is predominantly expressed at early stages of development and contributes to the 

establishment of epithelial gut morphology and apical specification23. Polarised lysosome secretion and 

establishment of cell polarity are regulated by NMHCIIA14, 24. Therefore, it is possible that Gp96 and 

NMHCIIA interact to coordinate vesicular trafficking and cytoskeletal dynamics necessary for the 

definition of cell polarity and for efficient PM repair. Whether NMHCIIA and Gp96 directly interact remains 

unknown. Yet, Gp96 is the ER paralogue of the cytosolic chaperone HSP90, which binds myosin head 

domains and is necessary to coordinate assembly and folding of myosin thick filaments25.  

 Few additional molecules were associated with the cytoskeletal reorganisation following PFT-

mediated PM damage. RhoA and Rac1 GTPases promote actin remodelling26 and Src-family kinases 

mediate microtubule bundling and stabilisation27. The importance of such processes for cell recovery 

from PFT-mediated wounding is uncertain. Nevertheless, GTPases (RhoA, Rac and Cdc42) coordinate 

the assembly and dynamics of actomyosin rings, which promote closure of laser-induced wounds in 

Xenopus oocytes28, and Src, together with myosin light chain kinase (MLCK), regulate PM expansion 

during osmotic stress29. 

 Besides actomyosin reorganisation and simultaneous PM blebbing, cells modify the entire ER 

network following PFT intoxication17, as depicted by the alteration of the characteristic ER reticular 

pattern and formation of vacuoles containing mCherry-Sec61β (a subunit of the ER membrane 

translocon complex Sec61) (Figure 1 and Supp Mov 1). Vacuolation of the ER and other cellular 

organelles has been reported in response to different PFTs in various cell types and in vivo1, 10. The 

relevance of such morphological alteration is not understood and has been mainly associated with 

organelle damage and cell death1. However, following toxin wash-out, cells recover normal actomyosin 

and ER distribution with equivalent kinetics17.  

 Lysosomes and the ER are major intracellular calcium stores and their dynamics are crucial for 

functioning. In particular, the transient distribution of ER and lysosomes to the trailing edge of migrating 

cells directs calcium signalling and assembly of cytoskeletal complexes that mediate tail retraction18. Of 

note, stimulation of such process enhances Gp96-NMHCIIA interaction17. However, the role of the ER 

during recovery from PFT-induced PM damage remains unclear. ER proteins have been detected at PM 

wounds of mechanically injured cells30 and inhibition of ER stress pathways or calcium sequestration 



compromises survival after PFT intoxication31, 32. Whether lysosomes or the ER control calcium signalling 

and actomyosin dynamics during PM repair is still speculation30. Nevertheless, Gp96 regulates calcium 

homeostasis at the ER33.  

 We observed that certain LLO-intoxicated cells appear to expose ER compartments containing 

ER-retention sequence KDEL, Gp96 and Sec61α at the cell surface or within large PM blebs loosely 

attached to the cell body (Figure 2A-C)17. Transmission electron microscopy (TEM) of intoxicated HeLa 

cells confirmed that such vacuoles are detected within large bleb-like structures at the proximity of the 

PM and apparently detached from the cell body (Figure 2D). Thus, upon damage, cells can release ER-

derived compartments to the extracellular environment. Whether the release of ER vacuoles only occurs 

in dying cells or upon organelle damage is still unclear. Yet these processes may constitute a common 

feature of cellular responses to PFTs, since targeting of gut epithelial cells by PFTs in vivo induces 

release of microvilli structures, cytosolic purging, ER vacuolation and rearrangement of the cellular 

cytoskeleton9, 10.  

 PFT-induced PM blebbing was considered to be protective and distinct from PM shedding of PFT 

pores within small vesicles (nm size). Large transient blebs (µm size) presumably promote PM repair by 

buffering injured sites, preventing excess calcium influx and loss of cytosolic content2, 3, 6, 34. Blebs can be 

shed and, during apoptosis, permeabilisation of PM blebs enables the release of cytosolic content 35, 36. 

Thus, it is possible that cytosolic purging and PM blebbing are complementary processes.  Finally, 

increasing evidence supports a role for extruded vesicles during bacterial infections. While some studies 

have suggested that microvesicle release or cytosolic purging may favour elimination of intracellular 

bacteria10, 37, 38, certain bacteria, such as Lm, where propose to disseminate within large bleb-like 

structures39, 40. 

  

Conclusion and future perspectives  

 We have highlighted the importance of NMHCIIA and uncovered an unexpected role for the ER 

chaperone Gp96 in host cell recovery against PFTs. Future studies are now necessary to understand 

how cytoskeletal dynamics interfere with polarised secretion and shedding of cellular material, which 

protect host tissues from PFT attack. Moreover, it will be important to further analyse the physiological 

relevance of recovery mechanisms in the context of bacterial infections: What are the consequences of 

PM blebbing and cytosolic purging in the context of different infections? Are these processes related to 

the shedding of apoptotic bodies and damaged cells from infected epithelia?  

 As PM recovery processes display important evolutionary conserved features2, 3, 11, the ground-

breaking use of amenable models such as zebrafish (Danio rerio) and drosophila (Drosophila 

melanogaster) to the direct visualization of infectious processes in vivo will continue to be of critical 

importance10, 17. 
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Materials and Methods  

Plasmids and antibodies  

Plasmid GFPNMHCIIA (#11347) was obtained from Addgene and mCherry-Sec61-N-18 was a gift from 

M. Davidson through Addgene (# 55130). Rabbit anti-NMHCIIA (Sigma); mouse anti-NMHCIIA (Abcam); 

rat anti-Gp96 (Enzo); mouse anti-Sec61α G-2 (Santa Cruz) were used at 1/200 for immunofluorescence 

microscopy (IF). PM was labelled with FITC-conjugated WGA (Sigma) DNA with 4’,6-Diamidino-2-

phenylindole dihydrochloride, DAPI (Sigma) and IF fluorescently-conjugated secondary antibodies 

(Invitrogen) were used at 1/500.  

Cell Lines and Toxin  

HeLa (ATCC CCL-2) cells were cultivated in DMEM with glucose and L-glutamine, supplemented with 

10% FBS. Cells were maintained at 37 °C in a 5% CO2 atmosphere. Cell culture media and supplements 

were from Lonza. LLO was purified as previously 17 and treatments and washes were carried in Hank's 

Balanced Salt Solution (HBSS) as indicated.  

Immunofluorescence Microscopy 

Cells were fixed in 3% paraformaldehyde (15 min), quenched with 20 mM NH4Cl (1 h), permeabilized 

with 0.1% Triton X-100 (5 min), and blocked with 10% BSA in PBS (30 min). Antibodies were diluted in 

PBS containing 1% BSA. Coverslips were incubated for 1 h with primary antibodies, washed three times 

in PBS and incubated 45 min with secondary antibodies. DNA was counterstained with DAPI (Sigma). 

Coverslips were mounted onto microscope slides with Aqua-Poly/Mount (Polysciences). Images were 

collected with a confocal laser-scanning microscope (Leica SP5II) and processed using ImageJ64 or 

Adobe Photoshop software. 

Live imaging and quantification of PM blebbing of LLO-treated cells 

Cells seeded into Ibitreat μ-dishes (Ibidi), simultaneously transfected with GFPNMHCIIA and 

mcherrySEC61, maintained in HBSS at 37°C with 5% CO2 were imaged using an Andor Revolution XD 

Spinning-disk confocal system with an EMCCD iXonEM+ camera, 488 nm lase lines, and a Yokogawa 

CSU-22 unit on an inverted microscope (IX81; Olympus), driven by Andor IQ live-cell imaging software. 

LLO (0.5 nM) was added 10 min after initial image acquisition. Differential interference contrast (DIC) 

images and GFP fluorescent datasets with 0.5 μm Z-steps were acquired using a UPLSAPO 100x/1.40 

objective lens every 15 sec. ImajeJ64 was used for image sequence analysis and video assembly. 

 

 

 



Figure Legends 

Figure 1 – Redistribution of NMHCIIA and ER network upon LLO treatment  
Sequential frames of time-lapse confocal microscopy sequence of LLO-treated HeLa cells expressing 

simultaneously GFPNMHCIIA and mCherrySec61. LLO was added to culture medium 10 seconds before 

t0. DIC – differential interference contrast. Highlighted inset depicts ER structures within NMHCIIA 

bundles and PM blebs.  

 

Figure 2 – Exposure of ER and Gp96 at blebs from LLO treated cells 

 (A) Confocal microscopy Z-stack projections of HeLa cells treated with LLO (0.5 nM, 15 min) and 

immunolabelled for the C-terminal sequence present in ER resident proteins, ER-KDEL (red), NMHCIIA 

(green) and stained with DAPI (blue). Orthogonal views and 3D projections illustrate exposure of ER 

vacuoles at the cell surface (arrow). (B-C) Confocal microscopy images of HeLa cells left untreated or 

treated with LLO and immunolabelled for (B) ER-Gp96 (blue), NMHCIIA (green) and stained with 

FITCWGA (Plasma membrane, PM-red) and DAPI (white), or (C) Sec61 (red), NMHCIIA (blue) and 

stained with FITCWGA (green) and DAPI (white). Insets and arrows indicate NMHCIIA-positive PM blebs 

containing Gp96 or Sec61, loosely attached to the cell body. Arrow-heads show cortical NMHCIIA-Sec61 

within the cell body. All scale bars are 10 μm. (D) Longitudinal TEM images of HeLa cells left untreated 

or treated with 0.5 nM LLO for 15 min. ER - ER cisternae in untreated cells and ER vacuoles in LLO-

treated cells; N - nucleus. Arrows show vesicles and bleb-like structures at the proximity of the PM 

containing ER vacuoles and apparently detached from the cell body.  

 

Supplementary Movie 1 - NMHCIIA and ER rearrangements during PFT-induced PM blebbing 
Time-lapse confocal microscopy analysis of LLO-treated HeLa cells expressing simultaneously 

GFPNMHCIIA and mCherrySec61 used in Figure 1. Sequential frames were acquired every 15 seconds 

(10 frames per second display rate). LLO was added to culture medium 10 seconds before t0. Scale bar -

10 μm. DIC – differential interference contrast. GFPNMHIIA fluorescence image corresponds to a z-stack 

projection. Inset highlight depict sites where NMHCIIA bundles occur where it is possible to observe 

association between ER structures and NMHCIIA bundles. 

 

  






