

MESTRADO
MULTIMÉDIA - ESPECIALIZAÇÃO EM SOUND DESIGN E MÚSICA INTERACTIVA

LIVE INTERFACE FOR GENERATIVE
RHYTHM SEQUENCING

Nuno Diogo Vaz Loureiro de Oliveira

M
2018

FACULDADES PARTICIPANTES:

FACULDADE DE ENGENHARIA
FACULDADE DE BELAS ARTES
FACULDADE DE CIÊNCIAS
FACULDADE DE ECONOMIA
FACULDADE DE LETRAS

FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Live Interface for Generative Rhythm
Sequencing

Nuno Diogo Vaz Loureiro de Oliveira

Mestrado em Multimédia da Universidade do Porto

Orientador: Prof. Doutor Rui Penha

Coorientador: Prof. Doutor Gilberto Bernardes

July 19, 2018

c© Nuno Loureiro, 2018

Live Interface for Generative Rhythm Sequencing

Nuno Diogo Vaz Loureiro de Oliveira

Mestrado em Multimédia da Universidade do Porto

Aprovado em provas públicas pelo Júri:

Presidente: Prof. Doutor Alexandre Valle de Carvalho
Vogal Externo: Prof. Doutor José Alberto Gomes

Orientador: Prof. Doutor Rui Penha
July 19, 2018

Abstract

Traditional rhythmic sequencing techniques are often not ideal to program complex evolving pat-
terns as they offer only linear control to the player. Techniques available to generate variations of
a programmed rhythm usually rely on simple randomness or complex programming actions that
do not favor the sequencer as a live playing instrument from the musician’s perspective. With
this in mind, our idea was to create an interactive system able to generate rhythmically informed
variations of a pattern previously entered by the user in a direct and familiar real time performative
manner, by means of meaningful generative descriptors providing nuanced control over the com-
plex rhythmic sequencing. To this end, Rhythmicator, a Max/MSP application that automatically
generates rhythms in real time in a given meter was used to tackle the generative process around
the sequence written by the user. The development of the system is based on the Pure Data pro-
gramming environment, having some parts of Rhythmicator’s Max/MSP code been translated and
used for this project. A MIDI controller is used to interact with the system’s Pure Data patch and
MIDI triggers are sent to any MIDI-able device intended.

Keywords: generative rhythm, performative sequencing, real time, rhythmicator, pure data, stochas-
tic model, barlow, metric indispensability, physical control

i

ii

Resumo

As técnicas de sequenciação ritmica tradicionais nem sempre proporcionam o ambiente ideal para
programar padrões complexos e em constante mutação pela natureza linear do seu controlo. As
técnicas disponiveis para a geração de variações de um ritmo programado são vulgarmente susten-
tadas em simples processos de aleatoriedade ou requerem um processo complexo de programação
ritmica que não joga a favor do sequenciador enquanto instrumento performativo do ponto de vista
do músico. Assim, surge a ideia de criar um sistema interactivo capaz de gerar variações ritmi-
camente informadas de uma sequência criada pelo utilizador, através de descritores siginificativos
que possibilitam um controlo performativo, de forma directa e familiar, em tempo real, da sequen-
ciação ritmica. Para o efeito, foi utilizado o Rhythmicator, uma aplicação feita em Max/MSP que
faz geração automática de ritmos em tempo real consoante um determinado compasso, fazendo
a ponte entre a sequência escrita pelo utilizador e o processo generativo. O desenvolvimento
do sistema foi feito no ambiente de programação Pure Data, tendo algumas partes do código de
Max/MSP do Rhythmicator sido traduzidas para o projecto. Um controlador MIDI é utilizado
para interagir com o patch de Pure Data do sistema que, por sua vez, envia mensagens MIDI para
qualquer instrumento que o aceite.

Keywords: ritmo generativo, sequenciação performativa, tempo real, rhythmicator, pure data,
modelo estocástico, barlow, indispensabilidade métrica, controlo físico

iii

iv

Agradecimentos

ao Professor Doutor Rui Penha pela orientação, disponibilidade e acompanhamento ao longo do
mestrado.

ao Professor Doutor Gilberto Bernardes pelo interesse e ajuda no arrancar do projecto.
ao Professor Doutor Georgios Sioros pelo desenvolvimento do Rhythmicator.
ao Diogo Cocharro pela explicação essencial das entranhas do Rhythmicator.
ao Ramires pela ajuda e habilidade em C++.
ao Valter Abreu pelas multiplas ajudas ao longo de todo o processo.
ao Nuno Castro pelos conselhos e pela constante disponibilidade para ajudar.
ao Gui, ao Vasco, aos FUGLY e a todos os meus amigos que contribuiram para este projecto de
uma maneira ou de outra.

aos meus Pais.

à Patrícia.

Nuno Loureiro

v

vi

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Description of the Work . 1
1.3 Structure of the Dissertation . 2

2 State of the Art 3
2.1 Introduction . 3
2.2 A step away from laptop performance . 3
2.3 Rhythm . 5
2.4 Music Sequencing . 6

2.4.1 Rhythmic Generation Models and Generative Sequencers 7

3 From the Sequence Input to the Generative Output 11
3.1 Sequence Analysis . 11

3.1.1 Time Signature Determination and Indispensability Rankings 12
3.2 Generative Rhythm Output . 15

3.2.1 Rhythmic Parameters . 15
3.2.2 Pulse Weight Meddling from Sequence Input 16
3.2.3 Indispensability Ranking’s Rotation . 19
3.2.4 Generation of Extended Variations through Sequencing Effects 20

4 Application to a Simple Rhythm 23
4.1 Density . 24
4.2 Syncopation . 26
4.3 Indispensability Rankings Rotation . 30
4.4 Stability . 32
4.5 Step Divider . 33
4.6 General Demonstration . 34

5 Conclusions and Future Work 37
5.1 Summary . 37
5.2 System’s Analysis . 39
5.3 Contribution of the Work . 39
5.4 Future Work . 40

A Implementation 41
A.1 Brief Explanation of the Pure Data patch . 41

A.1.1 pd getIndispensability . 42
A.1.2 pd rhythmGeneration . 46

vii

viii CONTENTS

A.2 MIDI controller configuration . 50

References 53

List of Figures

2.1 MI Grids. 7
2.2 Tip Top Audio Trigger Riot. 8
2.3 ADDAC402. 8
2.4 Georgios Sioros’ Rhythmicator . 10

3.1 Simple 4/4 pattern in sequencer example in Pure Data 12
3.2 The same 4/4 sequence written with different tempo settings 12
3.3 Binary and tertiary subdivision of 3/4 and 6/8 Time Signatures 13
3.4 Finding the best rotation for a 4 step sequence 14
3.5 Finding the best rotation for a 6 step sequence: binary or tertiary meter 14
3.6 Default rhythmic parameters . 15
3.7 Original and Meddled Weights comparison . 18
3.8 Master, Follower and Rebel Sequencers . 19
3.9 Weight rotation on 8 step sequence . 20
3.10 Sequencer with visual feedback on Step Divider effect 21

4.1 Rhythm originally entered by the user . 23
4.2 Different density settings effect on rhythm (1/2) 24
4.3 Different density settings effect on rhythm (2/2) 25
4.4 Different syncopation settings effect on rhythm (1/2) 26
4.5 Different syncopation settings effect on rhythm (2/2) 27
4.6 Different syncopation variation settings effect on rhythm (1/2) 28
4.7 Different syncopation variation settings effect on rhythm (2/2) 29
4.8 Indispensability rankings rotation effect on rhythm (1/2) 30
4.9 Indispensability rankings rotation effect on rhythm (2/2) 31
4.10 Stable rhythm generation . 32
4.11 Unstable rhythm generation . 32
4.12 Step Divider effect on rhythm . 33
4.13 Regular use of the sequencer (1/2) . 34
4.14 Regular use of the sequencer (2/2) . 35

A.1 Sequencer’s main patch . 41
A.2 pd lastStepAnalysis . 43
A.3 pd seqIndispCorrelation . 45
A.4 pd rhythmGeneration . 46
A.5 pd meddledWeights . 47
A.6 pd scaleDensity . 47
A.7 pd meddledAmplitudeWeights . 48
A.8 pd stepDivider_Stutter . 49

ix

x LIST OF FIGURES

A.9 Arturia Beatstep Pro MIDI mapping . 50

Chapter 1

Introduction

1.1 Motivation

Musical sequencers exist under various formats oriented to different needs. It is common for a

musician to favor a certain style of sequencing regarding the intended output for a given piece.

For rhythmic purposes step sequencers are the most common, be it on a hardware or software

environment. Although this approach is very capable of reproducing a sequence the user has in

mind, it is limited to the users input and works under a very deterministic set of parameters.

Generative rhythmic pattern generators have been greatly developed and implemented on var-

ious forms of musical production, using visual programming languages softwares, such as Max1,

Pure Data2, or as plug-in extensions in Digital Audio Worlstations (DAWs). Hardware rhyth-

mic sequencers tend to function in a more conservative manner, with the step system as its most

common interface. There are, of course, exceptions, especially in Eurorack3 form, where vari-

ous techniques, like probability or topographic sequencing, for instance, are used and generative

results are produced. This is covered on the next chapter.

1.2 Description of the Work

The initial idea for this project came from a personal need for a drum sequencer that would func-

tion as a directed player, in the sense that the user writes the core of what is one particular pattern

and then, under a set of rules, the sequencer is free to interpret and play variations of it.

The proposed system aims to make the control of generative rhythmic patterns more tangible

to the user - starting from a familiar deterministic standpoint and extending it with generative

possibilities in a powerful and expressive manner.

1www.cycling74.com
2www.puredata.info
3modular synthesizer format introduced by Dieter Doepfer in 1996

1

2 Introduction

The ultimate goal is to create a hardware sequencing system that answers these needs:

• direct and familiar pattern-based interface

• meaningful generative descriptors

• possibility for nuanced and strong rhythmic variation

• immediate complex rhythmic generation

Available solutions were studied with regard to their generative method and user interface. Geor-

gios Sioros’ work on Rhythmicator4 was used as the basis for the rhythmic generation as it pro-

vided a simple interactive experience for the user and a powerful generative engine. Rhythmicator

and other solutions are addressed in more depth on the next chapter.

1.3 Structure of the Dissertation

This chapter introduces the theme and motivation behind the work that is being presented.

On chapter 2, the state of the Art is presented. To contextualize the development of a system

that is intended to break away from the computer, a brief introduction about laptop music and

performance since the 90s and how a candid counter movement is appearing by the hands of

people who want a closer relation with their music instruments is presented. Literature research

was centered around two main aspects: rhythmic generation and rhythmic sequencing. It was

important to analyze the related work that had already been done in order for the system to feel

tangible and expressive to the player, knowing what sequencing techniques were available and

how to accomplish a similar result to the one purposed here.

Next, on chapter 3, a walk-through of the system’s process, from the moment the user inputs a

rhythmic sequence until its generative variations are played, is presented. Issues about the system’s

development on Pure Data and its MIDI control are addressed in Appendix 1.

Chapter 4 shows some examples of how the system transforms the user’s original sequence.

Finally, in the conclusion - chapter 5 - my personal evaluation of the system is presented, as

well as what can be done in the future to further its development.

4www.smc.inesctec.pt/technologies/rhythmicator/

Chapter 2

State of the Art

2.1 Introduction

In this chapter, I am going to briefly address the laptop music movement and how it has started to

give way to a counter movement where performers are keen to work with more tangible interfaces,

both in the studio and in live situations. Next, I am reviewing key rhythmic concepts, which

are fundamental to understand the sequencing and rhythmic generation involved in this work,

and address music sequencing techniques, along with some methods for algorithmic generation

of rhythms and present some relevant related work, primarily focusing on the Georgios Sioros’

Rhythmicator1.

2.2 A step away from laptop performance

Since the 90s, the laptop has gained a major presence in electronic music - the term electronic

used in a broad sense and not directly in regard to dance music. As a powerful tool not only to

control musical devices but to process audio as well, it has become a more than capable portable

and playable studio for a large variety of music artists and performers.

As a musical instrument, it provides the artist a vast and very diverse set of options to produce

sound, which are usually not expensive and in some cases even free. Among these options lies the

chance for an artist to develop a device specifically tailored to his/her needs. This can be made

possible using various programming environments, such as Max, Pure Data, SuperCollider2, or

others, and goes a long way in the artistic development of an own voice by making the tools for

the work him/herself. This will to fabricate the tools for the craft is, of course, common to other

techniques, be it analog or digital, but the computer offers a virtual limitless quality to what its

user can invent.

1http://smc.inesctec.pt/technologies/rhythmicator/
2https://supercollider.github.io/

3

4 State of the Art

Following the ideas of the Futurists and John Cage, in the 90s, musicians and sound artists

became interested in exploring the digital error: noise, crackles and glitches. Much like the pursuit

of imperfections and ’failure’ as an aesthetic in the late 20th century art world [6]. Many times

using software against its purpose, artists became interested in the computer as a sound instrument

like no other and collectives focused on this kind of exploration - then known as glitch - started

forming. At the time, German labels Noton and Rastermusik 3 and Austrian label Mego were

strong forces establishing a movement focused not exactly on a musical style or genre but more

related to the digital emphasis on composing and performing with computers.

The large amount of sound capabilities was not the only characteristic seen as an advantage.

Portability was, and still is, a huge deal to traveling artists. With a laptop, a single artist could

carry an entire studio to a performance without the logistic issues that it previously meant. This

made a big case for sound as an interest by itself, being that in a live laptop performance there is

no apparent causality to what the audience is listening. Even if the audience is able to understand

that what is being played comes from the computer, it is not possible to understand the origin of

each sound.

[8] argues that this separation between sound and causality in laptop music is not derived from

a will to dismiss or disregard the sound source, contrary to the acousmatic music idea of focusing

only on the sound, without its agent and significance [1]. It is instead natural to the laptop as a

sound object which simply does not make it possible for visual interpretation to be comprehen-

sible. In this sense, the laptop can be seen as an instrument to deliver a raw and minimalistic

performance of sound by itself.

Live music performance has always been associated with the human body, be it by the physical

action required in traditional instruments, communication between musicians and even the way

certain instruments effectively make their performers "dance" to play them. This close relation

goes against what is seen in a laptop performance. Even before laptops, when tape was the medium

used for electro-acoustic and other kinds of music exploration, this was already a problem for

composers. It often led to exaggerated performances to try to convey exciting connections between

performers and the sound production [2].

This brings to question the performative quality of the laptop as an instrument. With electronic

music, traditional instruments often give place to music controllers which provide a degree of

interaction between the artist and the computer, that would otherwise be performing the sound

generation outside of the realm of what the audience perceives.

Issues surrounding the link between sound and its origin are different in the studio space and in

a live performance situation. The studio is a place of experimentation for the artist, where creation

is not necessarily limited by performance, as such this lack of comprehensible feedback for the

audience is not a problem for artists. Problems with "in-the-box" composing tend to be related

to the lack of an adapted physical interface an artist might not have and to the will to write in a

more playful manner, moving and touching the physical buttons of dedicated sound objects. The

3Noton and Rastermusik were united in 1997 as Raster-Noton, and now, since 2017, divided again, as Noton and
Raster-Media

2.3 Rhythm 5

flourishing of the interest in new interfaces for musical expression and live interfaces expressed in

communities like the NIME4 [12] or the ICLI conference, recently organized in Porto5, provides

a testimony to the willingness of going beyond the computer screen.

Despite not being quite the solution in terms of visual comprehension for the audience, the new

found interest for modular synthesizers, namely the Eurorack format created in 1996 by Dieter

Doepfer, that picked up in the early 2000s, and the growing appearance of grooveboxes6, drum

machines, samplers, pocket synthesizers, seem to make a case for artists who want to express

themselves outside of the computer. Even if the audience does not know exactly what is going

on, by the movement of the performer turning knobs, sliders, among other things, and an overall

active posture not associated with a device that is used for so many things unrelated to music,

these dedicated electronic music instruments may transmit a closer relation between performer

and instrument and contribute to the understanding of the causality of sound production.

On the other hand, the 2000s also saw people proposing a completely opposite way of pro-

viding the audience with causality in laptop music. [13] makes a case for transparency in laptop

music performance, urging performers to show their screen during the performance. This led to

appearance of the Algoraves [7], live coding performances where the audience sees the artist’s

screen.

The dawn of the internet age resulted in strong online DIY and hacking communities with an

open-source philosophy that paved the way for the development of unique musical devices based

on the creator’s needs. By combining the fast style of communication in forums of interface devel-

opers and users with vast catalogs of information, this communities facilitated advances in custom

interfaces [18]. Adding this to the development of very small computers, like the Raspberry Pi7 or

the BeagleBone8, and it was possible for computers to be "disguised" as a fully dedicated musical

instrument while maintaining the processing capabilities they are known for. Recent examples of

this are Critter and Guitari’s Organelle9, which runs its DSP completely on Pure Data patches, and

Monome’s Norns10.

2.3 Rhythm

The purpose of this project is to control generative rhythmic sequences, therefore terms like pulse,

tempo, meter, rhythm and syncopation need to be addressed.

All these concepts derive from how music is perceived in time. When listening to music,

rhythm cognition often comes from a sensation of regular pulse at a particular rate, tempo. Peo-

ple’s ability to clap in sync with a song is a practical demonstration of this pulse [9]. The way

4www.nime.org
5www.liveinterfaces.org
6a self contained instrument for electronic music production
7www.raspberrypi.org/
8www.beagleboard.org/
9www.critterandguitari.com/pages/organelle

10www.monome.org/norns/

6 State of the Art

pulses are accentuated forms a hierarchical grouping of sonic events, where some pulses are per-

ceived as stronger than others, which convey an idea of metrical pattern to the listener.

The idea of a meter in music theory is represented as a time signature. It divides a regular

interval of time by a certain amount of pulses. Because of this, the performer is aware of the

particular periodicity of that time signature and the different values of each beat in a bar, the first

being the most important for the listener to feel the time signature. As an example, in a 4/4 time

signature each bar would have 4 pulses while a 3/4 time signature would have 3.

As the listener’s experience is normally outside of the composition or performance realm of the

piece, the time signature expressed in the music sheet is not necessarily conveyed in the same way

the meter is perceived by the listener. Different accentuations and other composition techniques

may or may not be used to express various changes in what a regular example of a particular

time signature is expected to sound like, leading to metrically ambiguous rhythm if so is intended.

Nevertheless, meter and rhythm are connected as a cognitive process in the listener’s mind, as

meter is identified by regularities on a periodic rhythm [15].

Syncopation is a brief discrepancy of the meter. It can be caused by different accentuation or

articulation of pulses as well as other melodic or harmonic changes [10]. For the listener to feel a

rhythm as a syncopating rhythm, it needs to contrast with a metric regularity present in the rest of

the music. This contrast may be of different nature. It can, of course, be due to a purely rhythmic

reason, by a momentary change of the primary character of the meter, for instance, but it can also

be caused by changing the stress on strong or weaker pulses. Sioros proposes to see syncopation

as a transformation of a non-syncopated rhythm pattern by shifting particular events and accents

from their original position to a neighbor one.

2.4 Music Sequencing

A music sequencer is a device that stores a pattern entered by the user and performs it back

when the user intends. There are various types of music sequencers as different issues need to

be addressed to sequence a melodic line or a rhythmic pattern for example. As the focus of this

project is rhythm, this analysis is centered on rhythm sequencers. Rhythm sequencers are naturally

associated with drum machines and are often called drum sequencers.

The most common types of sequencers are loop sequencers, which simply record and repeat

what the user played, and step sequencers, where the user enters a pattern step by step, each

representing a pulse of the meter, and the machine will read and play it.

Step sequencers come in different kinds. Some synthesizers, like the Roland SH-101, include

sequencers that let the user enter a melodic sequence by playing a note or a rest (silence). Each

note/rest represents a step so it is not needed for the user to play the line as it will not record rhythm.

When the sequence is done, the user can press play and the sequencer will loop through the steps.

Rhythmic step-sequencers work in a different way. Roland’s 606/808/909 drum machines are

examples of this kind of sequencing. The user chooses what drum part to sequence and then

2.4 Music Sequencing 7

selects which steps are going to be triggered. On play, the sequencer goes through all the steps,

checks if they are selected and triggers accordingly.

Both loop and step sequencers are deterministic approaches by nature. Nevertheless some

randomizing functions have been introduced in step sequencers. Some generate small variations

of the pattern entered by the user while others provide the user a completely new random pattern.

This is present in sequencers like the Arturia Beatstep Pro11 and Polyend Seq12 respectively.

Step-sequencers are not limited to a linear format. Make Noise René13, for example, presents

a cartesian step-sequencer. As the steps are organized in a 2 dimensional space, it makes possible

for different paths in the sequence. By modulating this path function, it is possible to generate

rhythmic variation.

2.4.1 Rhythmic Generation Models and Generative Sequencers

Different models for rhythmic generation in real time are available. Some standard procedures

for computer generation of music, such as genetic algorithms, and other evolutionary methods,

stochastic and non-stochastic models, are briefly addressed on this chapter.

Figure 2.1: MI Grids.

A genetic algorithm evolves a population of potential solutions

to a problem in order to solve it. It works using genetic operations,

like crossover and mutation until an acceptable solution is found

by means of a fitness function [5]. For its ability to search a vast

field of possibilities it has been used as a creative tool in music for

the development of music sequences in particular. The complexity

of aesthetic judgments regarding the outcome of the fitness func-

tion makes the real time operation a major concern. A solution

for this issue has been adopted by [4] in kin.genalgorithm, where

they do not use a fitness function, instead they encode several mu-

sical constraints directly in the genetic algorithm’s operators, but

it nonetheless depends on a previous analysis of MIDI loops to

generate a sequence.

Mutable Instruments Grids14 presents another solution. It nav-

igates through an extensive bank of drum loops divided by 3 trig-

ger sections, one for kicks, one for snares and another for hi-hats, each one with an individual

density control. By meddling with the X and Y coordinates of the drum loop map, each drum loop

is constantly being combined with the next, resulting in an ever changing rhythmic sequence if the

user so desires. While there is not a mutation process happening like in kin.genalgorithm and the

user interaction is very simple, it does not provide any specific control over what kind of rhythm

is being played other than more or less hits.

11www.arturia.com/beatstep-pro/overview
12www.polyend.com/seq-sequencer/
13www.makenoisemusic.com/modules/rene
14www.mutable-instruments.net/modules/grids/

8 State of the Art

We distinguish stochastic rhythmic processes as being stationary or weighted [14]. In a station-

ary rhythm the listener perceives an irregular but predictable Gestalt variation, a technique often

used in sound-mass textures using granular synthesis. A weighted rhythmic process implies an

imposition of movement in the stochastic texture. This imposition can be introduced by varying

the density of events, amplitude, bandwidth, spectral centroid or other perceptible time-varying

operation. Stochastic models may be implemented in a very simple manner, like throwing a dice

or a coin in order to select a rhythm pattern, as Cage did, or using more complex algorithms.

Figure 2.2: Tip Top Audio Trigger
Riot.

Tip Top Audio Trigger Riot15 is a probability se-

quencer that fits into this complex stochastic generation

category. It functions as a 4x4 matrix of probabilistic

control over several parameters such as a clock divider,

clock multiplier, step injector, time shifter, clock shifter

and pulse-width modulator, giving the user a high degree

of control over the sequence introduced.

ADDAC 40216 is another example of complex genera-

tive rhythmic sequencing. It is a 4 voice heuristic rhythm

generator with probabilistic and evolutionary modes. It

also has an euclidean rhythm mode, among other more

common options.

Figure 2.3: ADDAC402.

The sweedish manufacturer Elektron17 is famous for the

parameter lock function in their sequencers. This means that

the user can set different values for virtually everything in

each step on a sequence. Together with triggering probabili-

ties, this function provides a high level of stochastic rhythmic

variation while also facilitating changes on the instrument’s

timbre and effects as well.

The options presented above offer a high degree of com-

plexity, nevertheless they come at a cost of a less immediate

approach and a steeper learning curve as interaction with the

devices is rather complex.

Other non-stochastic approaches exist for rhythm gen-

eration like the euclidean algorithm or reflection and toggle

rhythms [17]. While this techniques work well for complex rhythmic performance, it is not possi-

ble for the user to enter a specific pattern.

15www.tiptopaudio.com/trigger-riot/
16www.addacsystem.com/product/addac400-series/addac402
17www.elektron.se/

2.4 Music Sequencing 9

2.4.1.1 Metric Indispensability and Rhythmicator

[3] presented an algorithm that outputs the metrical indispensability for a certain meter. It assigns

a weight to each pulse according to the importance it has in order for the listener to feel the meter

as it is. By providing a metrical hierarchy, this algorithm is capable of flexible results maintaining

an interesting balance with musicality.

[16] devised an approach for automatic rhythm generation where Barlow’s metrical indispens-

ability rankings are used to generate rhythms specific to the given meter. In this sense, the output

of their system is not related to any particular music style, being prone to produce "generic" re-

sults within the meter. Real time control of the performance can be achieved by parameters such as

density of events, amount of syncopation, amount of variation in generation, the metrical strength

of the rhythm being generated and the meter itself. This system was implemented as a Max/MSP

abstraction and a Max4Live device called kin.rhythmicator.

Barlow’s indispensability algorithm has also been used by [11] to develop a sequencer on

Max/MSP that is fully determinate.

Rhythmicator’s algorithm is divided in 2 steps. First, it expects the user to enter a musical meter

and, according to the specified metric subdivision, subdivides it into the corresponding number

of pulses. Each pulse is then assigned a weight value - a ranking measure - depending on its

importance in the meter. The second stage takes the weight values and uses them to generate a

stochastic rhythm.

Weight calculation is done according to Clarence Barlow’s indispensability formula. Depend-

ing on the time signature the user introduces, a stratification algorithm distinguishes between sim-

ple and compound meters, 3/4 and 6/8, for example. If the user chooses a sixteenth note subdi-

vision both a 3/4 and a 6/8 meter have 12 pulses and so it is important to make the distinction.

The algorithm achieves this by decomposing the meter in prime factors and feeding the result to

Barlow’s algorithm which then delivers the indispensability values for the pulses. The pulse with

the highest weight value is considered to be the most indispensable and the lowest to be the less

indispensable.

The stochastic performance is generated once the weight values are calculated. Weight values

are aligned to the corresponding place in a bar and the probability of an event being triggered is de-

rived from its pulse’s weight. The amplitude of triggered events is not related to the probabilities,

it is directly proportional to the pulse’s weights.

The system produces syncopated rhythms by triggering events in strong metrical positions

ahead of time with the probability of the next pulse. Amplitudes are anticipated as well, in order

to dynamically accentuate the pulse. To keep the generation musical, syncopation is limited by 2

rules: too many consecutive syncopated pulses cause the system to automatically stop syncopation

and, because the syncopated feeling suffers when 2 consecutive syncopated events are triggered,

the second pulse will always be mute if the previous one triggered a syncopated event. This

second rule is only enforced in case the consecutive anticipated pulses are less than 3 to prevent

the cancellation of off-beat syncopation.

10 State of the Art

The density parameter works by taking action over the probability of each pulse to trigger. This

action regards the weight of the pulses in order to maintain the meter’s indispensability hierarchy.

Density is then directly related to the metric feel. If density is 0, no events are triggered and thus

there is not information to infer the meter. If Density is at its maximum, all pulses will trigger and

the only way to perceive the meter is the amplitude variation between pulses.

Maximum metrical strength occurs when the events triggered are the most indispensable ones.

This depends on the probability of the pulses and the amplitudes of the generated events. As it

is, the system triggers important pulses more often and with an higher amplitude, to guarantee

metrical stability. Nevertheless, all parameters influence this strength. If pulse triggering proba-

bilities are changed to be similar to each other the meter becomes less evident as a clear hierarchy

of pulses ceases to exist.

Although the stochastic nature of the system results in non-repetitive generation of rhythm, it

is possible to influence the amount and type of variation by means of the Density and Syncopation

parameter. There is also a stable mode that makes the sequencer vary around a random initial

pattern and an unstable mode that gets a new random pattern on every cycle.

Rhythmicator’s interface consists of a meter selection tool, one slider to control density, an-

other slider to control MIDI note velocity, a switch to select between the stable and unstable

modes, a button to re-initialize the rhythmic pattern, a list of probabilities and a circular interface

to control the syncopation and variation parameters.

Figure 2.4: Georgios Sioros’ Rhythmicator

Chapter 3

From the Sequence Input to the
Generative Output

Introduction

We are presenting a generative monophonic trigger sequencer based on the step sequencing tech-

nique that can be grouped in multiple instances to form a sequencing system. Sequencing is

achieved using the MIDI protocol, but the system can easily be adapted to work in different ways,

such as OSC or even CV, with the appropriate hardware tools.

The sequencer has 2 separate stages between the user’s input and the rhythmic output. First, it

has to identify what the intended basis for the rhythmic generation is, which is done via a familiar

step-sequencing technique. On a second part, the rhythmic generation occurs influenced by the

sequence the user wrote and a set of parameters and effects available for its real time control.

The sequencing system described here was developed entirely in Pure Data Vanilla with the

exception of 2 externals1, kin_weights and kin_sequencer, built by Georgios Sioros for his work

on the Rhythmicator. The reason for this port to Pure Data is to be able to integrate the sequencer

in other devices in the future, such as Bela or Raspberry Pi, for example, thus making a complete

standalone sequencer.

An Arturia Beatstep Pro was mapped to serve as a controller for this prototype. A brief expla-

nation of the Pure Data patch as well as the settings for the MIDI controller are available on the

Appendix A - Implementation.

3.1 Sequence Analysis

One of the most important parts of the user interaction in this particular sequencer is the way the

user inputs a new sequence. There are many ways of approaching this, as it was discussed before

in chapter 2, nevertheless, the one chosen was the step sequencing technique, for its simplicity

and overall familiarity within musicians. The user inputs a sequence by simply toggling on or off

1external objects developed by third party users of the Pure Data software

11

12 From the Sequence Input to the Generative Output

each step. Apart from this simple command, the user has the ability to choose how many steps the

sequence has.

Figure 3.1: Simple 4/4 pattern in sequencer example in Pure Data

3.1.1 Time Signature Determination and Indispensability Rankings

For the rhythmic generation to be adequate, the sequencer needs to understand what is the meter

of a given sequence. This was thought to happen automatically in order to keep a simpler work-

flow for the user. The way it works is by analyzing the number of steps present in said sequence.

Classifying time signatures on a step sequencer can be ambiguous as each step is a pulse. This

means that a sequence with 4 steps, or pulses, corresponds to a 4/4 time signature, if each step is

perceived as a quarter note, while a 16 step sequence would mean a 16/4 time signature, which

could just be interpreted as 4 4/4 bars or as 1 4/4 bar where each step represents a sixteenth note

instead.

Another issue is regarding the tempo driving the sequence. In a musical context, if a sequence

with 16 steps, like the one shown before, is felt as a simple 4/4 meter, a sequence with only 4

steps, all of them active, running at a quarter of the tempo would produce the exact same result

and metric feel. The only difference being the resolution available for more intricate rhythmic

patterns, evident in Figure 3.2.

Figure 3.2: The same 4/4 sequence written with different tempo settings

3.1 Sequence Analysis 13

Finally, if one considers that each step represents a quarter note, a sequence with 1 step would

have a 1/4 meter, 2 steps 2/4, 3 steps 3/4 and 4 steps 4/4, etc. A problem rises when the sequence

has a number of steps that allows not only binary division but also tertiary division, which is the

case of a 6 step sequence, for example. In this particular case, the 6 steps could be interpreted as 2

bars of a 3/4 meter or as 1 bar of a 6/8 meter, depending on the sequence, modifying the resolution

of the step, from quarter to eighth note.

Figure 3.3: Binary and tertiary subdivision of 3/4 and 6/8 Time Signatures

When using a step-sequencer, the user does not need specific information about the musical

subdivision each step represents as that is dependent on the relation between the BPM running

the sequencer and the whole context of the music being played. As such, time signature is not of

particular importance, what is absolutely required is for the sequencer to be able to interpret the

metric feel of a given sequence, be it of binary or tertiary subdivision.

There are 3 steps in the sequencer’s detection of the suitable meter. First, the user defines the

number of steps the sequence should have. Then, a sequence is written. It is important to know

that for rhythmic generation purposes, the first pulse of a meter is not necessarily the first step

of the sequence. The first pulse of the meter will be determined by the sequencer as it compares

the indispensability values of the meter with the pattern written by the user. This happens next

as each step of the sequence is multiplied by the according indispensability value. The results of

all operations are then summed. Afterwards, the sequence suffers a rotation and goes again, until

all possible rotations are performed. The rotation with the highest score will then be chosen as

the basis for the rhythmic generation. Sometimes the highest result is shared by more than one

rotation, if so, the rotation chosen is the one closer to the original first step of the sequencer.

Figure 3.4 shows this process being applied to a simple 4 step sequencer.

14 From the Sequence Input to the Generative Output

Figure 3.4: Finding the best rotation for a 4 step sequence

In cases where both binary and tertiary division are possible the process runs twice, comparing

the sequence to both meter’s indispensability values to choose the more appropriate setting. In the

example present in Figure 3.5, it is possible to understand that the meter that better fits the sequence

is of binary subdivision and that its first pulse coincides with the first step of the sequence.

Figure 3.5: Finding the best rotation for a 6 step sequence: binary or tertiary meter

This process takes place every time a step in the sequencer is activated or deactivated as well as

when its number of steps is changed. In the end, it provides information about the most appropriate

metric feel and rotation of the sequence to the generative engine.

3.2 Generative Rhythm Output 15

3.2 Generative Rhythm Output

Sioros’ Rhythmicator functions as an automatic rhythm machine which is not what is intended

here. Nevertheless, its capabilities of real time generation and parametric variation are ideal for

this approach. For it to work on this system, a transformation from automatic active sequencer to

a sequence dependent one must take place.

The Rhythmicator was built around an automatic rhythm sequencer that only needs informa-

tion about the meter, which it gets by means of the meter’s stratification levels. This information

is translated into weight values for each pulse, that are then transformed according to a set of con-

trol parameters. Weight values are scaled by the Density parameter, increasing or decreasing each

pulse’s probability to trigger. Therefore, in order to influence the rhythmic generation action must

be taken on the weight of selected pulses and on how the parameters command Rhythmicator’s

sequencer.

3.2.1 Rhythmic Parameters

Figure 3.6: Default rhythmic parameters

This system uses the same set of parameters as the Rhythmicator as it serves as the basis for the

rhythmic generation. The parameters are more deeply addressed on the Rhythmicator’s section of

the second chapter - State of the Art. Here, a brief explanation of the user interaction is presented.

The user is able to control:

• Density

• Syncopation

• Variation

• Syncopation Variation

• Stability

• Velocity Range

16 From the Sequence Input to the Generative Output

With the exception of the velocity controls, every rhythmic parameter performs its action by

setting the kin_sequencer object to different states.

The density parameter is of severe importance to various other parts of the rhythmic generation

process, addressed in the following sections of this chapter, but its main function is to control the

amount of events that are triggered by cycle. It functions by first influencing the pulses’ weight on

kin_weights, elevating the probability of an event being triggered according to its rank. Minimum

means no event gets triggered and the highest value means maximum density.

Because of the link between metrical feeling and syncopation both parameters are controlled

by the same slider - syncopation. From 0% to 50%, syncopation is set to 0% and metric feel goes

from 0% to 100%. From 50% to 100%, metric feel is set at 100% and syncopation goes from 0%

to 100%.

Highest metrical feeling occurs when all pulses maintain their original weight, the one as-

signed by the kin_weights object. When the metric feel setting is at 0, all pulses have the same

probability of triggering thus ignoring the indispensability ranking.

Sioros’ implementation of syncopation works by anticipating events. The probability of an

event being triggered before its time is higher according to how high this factor is.

Rhythmic variation is controlled by 2 different sliders. Variation controls the overall variation

of the triggered events and syncopation variation is responsible for the amount of variation in

syncopating by anticipating different events in each cycle.

Stability control is also available to the user. It is by default activated in order to lock new

variations to the written sequence but can be deactivated if the user so intends. This generates

completely different variations at each new cycle, although, even if only subtly, because of the

pulse weight meddling section of the system, explained next, the user selected pulses still survive

the instable variations.

The velocity range controls scale the event’s velocity value between a quiet and loud limit, as

in minimum and maximum.

3.2.2 Pulse Weight Meddling from Sequence Input

Step-sequencers function in binary form, if the step is on it plays, if it is off it does not trigger.

Here it is required of the step sequencer to be an influencer rather than a dictator. For that reason,

while the steps activated by the user must increase the weight of that particular pulse, the inactive

steps’ weight should be decreased accordingly to its indispensability ranking - a measure to make

sure the automatic generation is a complement of the sequence written by the user and not of the

same importance. All of the pulses’ weights are, of course, subject to the density of events the

user desires.

The density parameter has different behaviors in the 2 systems. In the Rhythmicator, density

increases or decreases the preset weights of the pulses, going from 0 to 100, 100 meaning that

it is certain for that pulse to be played, maintaining the indispensability hierarchy that character-

izes the meter. This new system approaches density in a distinct manner. The density parameter

3.2 Generative Rhythm Output 17

manipulates selected and unselected steps differently. For better user manipulation, a compro-

mise between the written sequence and the rhythmic generation must be made in such a way that

around the middle point of the density parameter the sequencer plays a rhythm very close - num-

ber of events triggered - to the one written by the user. Therefore the density parameter had to be

configured with that in mind and to give the user better control over lower settings.

Alignment of the user’s sequence and meter - indispensability ranking and the standard pulse

weight - occurs first. After, the weight of each pulse in regard to the Density setting is calculated,

then, the list of weights gets matched with the sequence the user wrote and is influenced by a new

scaling of the density value according to whether or not the step is activated. This scaled density

(SD) is achieved by first dividing the original range in 2: density (D) set to a value lower than 50

and density set to 50 or over.

If D < 50 then:

SD =
0.2×

(
D
10 −5

)2
+7

10

If D ≥ 50 then:

SD =
3D
500

+0.4

Next, the scaled density takes part in extracting the final weight of each pulse. There are 2

different functions to calculate this, 1 for selected steps and another for unselected ones. OW

refers to the original weight of the pulse and MW to the final meddled weight.

If a step is not selected its meddled weight is calculated by:

MW = SD×OW

If a step is selected, the meddled weight is:

MW = 20×OW ×SD2

In the end, as the weight value has to be between 0 and 1, there is a clipping function, limiting

the meddled weights values to that range.

18 From the Sequence Input to the Generative Output

Figure 3.7: Original and Meddled Weights comparison

The indispensability ranking is not only important for the generation of new rhythmic patterns

on the sequencer level but is also required for the understanding of the pulses’ amplitude hierarchy

in the sequence. The amplitude hierarchy accentuates the metric feel and makes possible for events

triggered on lighter pulses to be perceived as ghost notes - notes to be heard in the background of

the main beat. This can be achieved by MIDI velocity or, as several MIDI drum machines do not

have velocity, as a CC message controlling the volume level. There is also an additional level of

control where the user can scale the minimum and maximum values of this amplitude parameter.

Regarding the sequencing process, weights are influenced by density on 2 different stages. The

first one to set the normal weights - on Rhythmicator’s terms - regarding the indicated density and

the second to have these weights manipulated by the sequence written by the user. Here, on the

amplitude stage, each pulse should maintain the same weight despite the density. The first pulse

of the sequence should sound the same whether there is a complex rhythmic pattern playing or

if it is the only active pulse, therefore using the density parameter to scale the amplitude weights

does not make sense. Nevertheless, it is important to manipulate the weights in order for lighter

steps that may have been selected by the user to feel like a strong pulse. This is done by simply

multiplying the weight of each selected pulse by 10. Weight values are also limited at 1 in the end.

3.2 Generative Rhythm Output 19

3.2.3 Indispensability Ranking’s Rotation

This sequencer automatically adapts the indispensability weights to the sequence the user writes

in order to keep the generation in context. In case more than 1 sequencer is running with the same

meter at the same time, it is common for the first pulse of the meter to not be the same for every

one. Furthermore, one of the sequences is likely to force its first pulse on the listener based on the

characteristics of its timbre and the pattern it is playing. A kick drum playing a regular beat will

have a tremendous effect on the way the overall meter is perceived, for example. This generates a

problem whenever the system is used to generate more than one rhythm.

Figure 3.8: Master, Follower and Rebel Sequencers

The solution found was to have a way to declare a sequencer as a Master to which all the

other sequencers would accordingly rotate their pulses’ weights. While this corrected rotation

produces the expected results in terms of a concrete metric feel, some incorrect rotations can also

produce interesting results. As such, a control for the rotation of a sequence was introduced in the

sequencer. In case there is a Master sequence, it follows it by default - Follower - and the user is

then able to rotate the weights - Rebel. There is a red marker indicating the first pulse of the meter

on PD’s GUI. If no Master is selected or the Master’s meter is different, the sequencer assumes

the best rotation of the weights according to the sequence written.

Evidenced in Figure 3.9, the standard weights provide the most suitable match between the

introduced sequence and the meter. Nevertheless, it is possible to find other rotations where some

of the heaviest pulses match other steps selected by the user, like rotation 4, for example. This

results in different accentuations regarding to the overall meter that do not deviate far enough from

the norm to be perceived as out of place and thus making for an interesting rhythmic effect.

20 From the Sequence Input to the Generative Output

Figure 3.9: Weight rotation on 8 step sequence

3.2.4 Generation of Extended Variations through Sequencing Effects

An extra level of rhythmic variation was introduced under the form of a Step Divider. A big

limitation of the step-sequencing technique is that events are limited to the same rhythmic figure.

This effect makes it possible to transform a step into multiple subdivisions in itself. This means

that instead of triggering an event once, the sequencer can trigger a step twice and double the

speed, 4 times at 4 times the speed, etc. As an example, if a step is considered to be a quarter note,

this effect makes the sequencer trigger 2 eighth notes or 4 sixteenth notes instead of 1 quarter note.

The effect is set up in an singular manner for each step with a probabilistic mind set, in order

to get another level of movement in the generation process. After engaging a step, the user can

select between 5 different rhythmic subdivisions of the tempo or, if desired, a randomizer function

can be activated. This function runs every time the step is activated, so the step’s subdivision

is constantly being altered. It is then possible to choose the probability of triggering the effect,

allowing deterministic control over the effect if the possibility is set to 100%. The subdivision

parameter settings are:

1. a second event is triggered 1 step after;

2. a second event is triggered at 1.333 times the tempo;

3. triggers 2 events at 2 times the tempo;

4. triggers 3 events at 3 times the tempo;

5. triggers 4 events at 4 times the tempo;

6. random selection between previous options.

With both parameters set, the effect is placed at the end of the sequencing chain, where if ac-

tivated it re-triggers the same step with an according number of delayed repeats at the appropriate

time measure. There is a second line of steps in the sequencer where the user can get visual feed-

back about the status of the effect on each step: on or off. As the sequence runs, there is another

3.2 Generative Rhythm Output 21

toggle, stepDiv, that is activated and deactivated when the effect gets activated and a small slider

that shows its subdivision, subDiv.

Figure 3.10: Sequencer with visual feedback on Step Divider effect

The Step Divider is also the basis for a Stutter effect. This effect re-triggers the step every

sequencer is on at a constant tempo. The re-triggering tempo subdivision can also be controlled

by the user using the same subdivision parameter as the Step Divider. It is essentially the same

effect set with a 100% probability, but, instead of affecting only the selected instruments, when

activated, it works on every sequence playing.

The system’s general Reset function, which brings all sequencers to the first step - needed

when sequencers running the same amount of steps are dislocated - can also be used as a kind of

stutter, but it will always bring every sequence to the beginning.

22 From the Sequence Input to the Generative Output

Chapter 4

Application to a Simple Rhythm

This particular sequencing system does not provide a constant output when its sequence and set-

tings are exactly the same as variation is an essential part of its identity. As such, the following

examples do not fully represent its behavior. For a more complete understanding, please refer to

the accompanying video.

Examples are intended to demonstrate each function by itself. In order to achieve a better

demonstration the remaining parameters are left on the default settings, unless otherwise stated.

In the end, a general demonstration, where most functions are used, is made.

The order of presentation is:

1. Density

2. Syncopation and Syncopation Variation

3. Indispensability Rankings Rotation

4. Stability

5. Step Divider

6. General Demonstration

$0-pulse is a mere representation of a metronome.

$0-noteOut shows events and their velocities. Each bar represents an event and its height its

velocity.

$0-syncopation signals when an event is syncopated.

Figure 4.1: Rhythm originally entered by the user

23

24 Application to a Simple Rhythm

4.1 Density

Figure 4.2: Different density settings effect on rhythm (1/2)

4.1 Density 25

Figure 4.3: Different density settings effect on rhythm (2/2)

26 Application to a Simple Rhythm

4.2 Syncopation

The first set has no syncopation variation. The second corresponds to an example of how synco-

pation variation influences the rhythm, syncopation is fixed at 75%. Density and variation are left

on their default settings.

Figure 4.4: Different syncopation settings effect on rhythm (1/2)

4.2 Syncopation 27

Figure 4.5: Different syncopation settings effect on rhythm (2/2)

28 Application to a Simple Rhythm

Figure 4.6: Different syncopation variation settings effect on rhythm (1/2)

4.2 Syncopation 29

Figure 4.7: Different syncopation variation settings effect on rhythm (2/2)

30 Application to a Simple Rhythm

4.3 Indispensability Rankings Rotation

Density is set at 75% for a more clear demonstration of the rotation effect on the rhythm generation

around the sequence entered by the user.

Figure 4.8: Indispensability rankings rotation effect on rhythm (1/2)

4.3 Indispensability Rankings Rotation 31

Figure 4.9: Indispensability rankings rotation effect on rhythm (2/2)

32 Application to a Simple Rhythm

4.4 Stability

Density is set at 75% for a more clear demonstration of the stability effect on the rhythm generation

around the sequence entered by the user.

Figure 4.10: Stable rhythm generation

Figure 4.11: Unstable rhythm generation

4.5 Step Divider 33

4.5 Step Divider

Figure 4.12: Step Divider effect on rhythm

34 Application to a Simple Rhythm

4.6 General Demonstration

Figure 4.13: Regular use of the sequencer (1/2)

4.6 General Demonstration 35

Figure 4.14: Regular use of the sequencer (2/2)

36 Application to a Simple Rhythm

Chapter 5

Conclusions and Future Work

This project started from a personal need to have a sequencing system that would be easily pro-

grammable to play complex variable rhythms in a performative way. After a review of different

techniques available, Georgios Sioros’ Rhythmicator was chosen as the generative engine for the

possibility of being modified to be integrated in a deterministic style of sequencing while providing

a meaningful interactive experience for the user.

From the beginning there was also a concern in developing a system that would be able to

be taken away from a computer based setting, as the prototype here presented, to a standalone

device. Therefore, the system was developed using open source software Pure Data which makes

its integration on mini computers like the Raspberry Pi or BeagleBone, especially with the Bela

cape, possible and feasible.

A summary of every step of the work, from the sequence entered by the user to the generative

output, is presented next. An analysis of the system is made after. Then, the contribution it

represents for the subject is addressed. Finally, future work is discussed.

5.1 Summary

This projects consists of a generative monophonic trigger sequencer that can be grouped in mul-

tiple instances to form a sequencing system. It works via MIDI, but can, with further work, be

adapted to work with OSC or even CV. As mentioned before, the generative engine is based on

Georgios Sioros’ Rhythmicator and uses his kin_weights and kin_sequencer externals.

The sequencer is divided in 2 separate stages. First the sequence entered by the user is analyzed

and then the generative engine generates a rhythm accordingly.

37

38 Conclusions and Future Work

Once the user enters a rhythm on the step-sequencer, the operations performed by the system

are the following:

1. Analysis of the amount of steps the sequence has and subsequent attribution of the according

indispensability rankings.

2. Correlation of the meter’s indispensability values and the sequence entered by the user.

3. In case the amount of steps allows binary and tertiary subdivision, the first and second steps

are performed again for tertiary subdivision.

4. The rotation with the best score in the correlation process is selected as the basis for the

rhythmic generation.

This process provides the generative engine information about the most appropriate metric feel

and the sequence’s indispensability rankings rotation

Rhythmicator is an automatic rhythm generator, which is not what is intended in this project.

As such, a way was devised to influence how its generation happens, forcing it to output rhythm

centered around the sequence entered by the user.

Rhythmicator’s engine only needs information about the meter and the stratification level it

is supposed to work on. This information is translated into weight values for each pulse. These

values are transformed according to the Rhythmicator’s density parameter and function as trigger

probabilities. Depending on the density value more or less events will be triggered, but the weight

values guarantee the original pulse hierarchy of the meter. It was on this level that action was

taken to influence the Rhythmicator’s rhythmic output. Weight values were subject to a second

stage of influence, in which selected steps would have their probability increased and unselected

ones would have their probability decreased (with regard to the original hierarchy).

After meddling with the original weight values, the engine is ready to generate variations of

the sequence entered by the user according to the density, syncopation, variation, syncopation

variation and stability settings.

As the system automatically detects the metric indispensability rankings’ rotation, in case

more than 1 sequencer is running with the same meter at the same time, it is possible for the first

pulse of the meter to not be the same for every sequencer. This may result in conflicting rhythmic

generation as the sequence’s meters are dislocated from one another.

To prevent this from happening automatically, a command to make 1 of the sequencers act as a

master sequencer was introduced. Nevertheless, in case meter dislocation is intended it is possible

to overwrite this function and declare a different first pulse for the meter.

Finally, to provide another level of complexity to the resulting rhythms, a probability con-

trolled step divider and a stutter effect were added.

5.2 System’s Analysis 39

5.2 System’s Analysis

The process of influencing the original weights of the pulses with the sequence entered by the user

proved to be successful. Nevertheless, it creates a big gap between selected and unselected steps

which result in a considerable difference in velocity values. This can be corrected using the loud

and quiet controls. In fact, this option makes it possible to dial up or down the generated events,

providing another level of control over the rhythmic generation.

As the way the Rhythmicator’s engine is implemented works with a fixed stratification level

for each meter, syncopation does not work on different subdivision levels. When an event is

syncopated, it is triggered exactly one step ahead of time. It is still a noticeable effect and produces

interesting rhythmic variation, nevertheless, even though different subdivisions can be triggered

with the step divider effect, it would be an improvement to have syncopation work on a deeper

level. Using the syncopation variation setting, it is possible to make the sequencer syncopate

different pulses which also contributes to a more natural feeling of syncopation.

The weight difference between selected and unselected steps not only affects velocity, it also

influences the way the engine deals with the metric feel and stabilization. Selected steps make

it very hard for the system to generate a rhythm completely detached from the meter’s original

feel. The same happens for the stability function. When unstable, the rhythm generated should

be considerably different at every new cycle which does not happen as the system places selected

steps in a much higher hierarchic level.

Rotation of the indispensability rankings is a powerful tool when combined with the velocity

range controls. It provides a quick way to generate rhythms with different accentuations.

The step divider is a great tool to generate significant variation in a sequence. By controlling the

probability of the effect being triggered and randomizing the subdivision setting, the rhythm gen-

erated can be constantly changing while maintaining the same rhythmic characteristics intended

by the user.

5.3 Contribution of the Work

The sequencing system proposed here is able to deliver complex rhythms by means of a direct and

familiar sequencing approach to the user. Even though the lack of an interface capable of providing

visual feedback makes the system dependent on the computer screen, its use in a performance

environment is straight forward as everything is controlled from the MIDI device.

This project was done with an open-source mentality. Some issues, especially related to the

MIDI implementation need further work to be ready for other users, however, when ready, every-

thing will be available online. With the exception of the 2 open source externals developed by

40 Conclusions and Future Work

Georgios Sioros, everything was done using Pure Data Vanilla, which makes the further develop-

ment of the system by other interested parties possible and guarantees its future compatibility with

PD to a certain extent.

5.4 Future Work

Future work can be done to further develop this sequencing system. The intention to develop

a standalone generative rhythm sequencer stands. However, there are also other areas that can

benefit from more development:

• Syncopation works in a very limited way. Making the syncopation work on the next strati-

fication level could result in a more interesting effect.

• It would be interesting to have another effect line similar to the step divider that could be

programmable to affect a parameter via MIDI CC. It could be used to change the instru-

ment’s pitch, sample or length, for example.

• Pattern memories could be introduced to have the possibility of preparing rhythms before-

hand for a performance or even to store different rhythms as parts of a song.

• MIDI controllers needs to be easily configured, as it was mentioned before.

• As of now, the system’s is controlled by a metro object on Pure Data. Proper transport

controls and MIDI tempo information need to be implemented. The possibility of having

the system work as a MIDI master or slave to other MIDI devices would also make it better

to function with other MIDI sequencers.

For a standalone sequencer to be developed there is also work to be done regarding the in-

terface design, specially regarding how the user gets visual feedback about the settings of each

individual sequencer as well as a general overview of the whole system.

Appendix A

Implementation

As it was previously stated in the document, all programming took place in Pure Data Vanilla

with the exception of the kin_weights and kin_sequencer externals developed by George Sioros

for Rhythmicator. Both Pure Data and the Sioros’ externals are open-source.

A.1 Brief Explanation of the Pure Data patch

Figure A.1: Sequencer’s main patch

Above, in Figure A.1, the main patch of the Sequencer is shown. It provides the user control

over everything related to the rhythm generation with visual feedback. On the bottom part it is

possible to see the different elements that constitute the system. Tempo and Play/Stop information

come from an external main abstraction.

41

42 Implementation

A.1.1 pd getIndispensability

This sub-patch is responsible for the analysis of the sequence. It is divided in 2 parts. First,

on lastStepAnalysis, it checks the amount of steps the sequence has and defines the possible in-

dispensability rankings by getting the possible stratification levels from the number of steps and

feeding them to the indispenser abstraction made by Gilberto Bernardes. In case the sequence

has only 4 steps, for example, the indispensability ranking is easy to infer, as there is only one

stratification option: 3 0 2 1. However, further action is required to understand if a 6 step sequence

is of binary or tertiary subdivision: 5 0 3 1 4 2 or 5 0 2 4 1 3. These rankings are stored in a text

object and passed on to the second stage.

A.1 Brief Explanation of the Pure Data patch 43

Figure A.2: pd lastStepAnalysis

44 Implementation

On the second part of this sub-patch, seqIndispCorrelation, the rankings are compared to all

possible rotations of the sequence to see which one is the best match. In case the highest score

is shared by more than one rotation it is chosen the one closer to the original first step of the

sequencer. The output of this sub-patch consists of the metric indispensability ranking and the

chosen rotation that is later applied to kin_weights values and feeds the kin_sequencer generative

engine.

A.1 Brief Explanation of the Pure Data patch 45

Figure A.3: pd seqIndispCorrelation

46 Implementation

A.1.2 pd rhythmGeneration

The rhythmGeneration sub-patch is where the triggering of events takes place. After receiving

the according indispensability ranking, the kin_sequencer object is ready to generate rhythms

controlled by the Density, Syncopation and Variation parameters. However, as the kin_sequencer

is slaved to the sequence written by the user, it is first required to rotate the indispensability weights

based on the information gathered before on the getIndispensability sub-patch. If Rotation is used

as an effect, it is on this level that it works.

Figure A.4: pd rhythmGeneration

A.1 Brief Explanation of the Pure Data patch 47

The manipulation of the rhythm generation by the written sequence happens in the meddled-

Weights abstraction as explained in chapter 3. Amplitude meddling occurs on the meddledAmpli-

tudeWeights abstraction.

Figure A.5: pd meddledWeights
Figure A.6: pd scale-
Density

48 Implementation

Figure A.7: pd meddledAmplitudeWeights

A.1 Brief Explanation of the Pure Data patch 49

At the end of the sequencing chain lies the Step Divider and Stutter effect which passes a float

value that doubles as a trigger and as the according velocity for the triggered sound. This velocity

value is then scaled between the Quiet and Loud limits set by the user.

Figure A.8: pd stepDivider_Stutter

Finally, the float number the sequencer outputs has to be translated into a message according to

the desired sound module. Each sequencing module is assigned to a MIDI channel and whenever

an event is triggered a bang and a velocity message (velocity is sent as MIDI CC #7 to control the

volume of the event) are sent through it to play the chosen sound module. This output configuration

can be easily configured in a different manner by the user to control different types of devices.

50 Implementation

A.2 MIDI controller configuration

The ideal way to control this sequencing system in a performative manner would be to have a

dedicated physical controller. For now, the prototype is controlled by an Arturia Beatstep Pro and

the mapping was thought out to have as much "knob per function" as possible.

Figure A.9: Arturia Beatstep Pro MIDI mapping

The top pad row selects the instrument(s). By selecting one, or more instruments, the user can

enter a rhythm using the 16 buttons. If more than one instrument is selected, the entered steps

affect all selected instruments. With the exception of the global tempo and step divider related

controls, knobs function in the same way.

Bottom pad row:

• The play/pause button starts and pauses the sequencing system

• Reset makes the sequence go to the first step - this can be used as a stop button after pausing

the sequence or it can be used as a rhythmic effect with the sequence running.

• The step divider toggle lets the user access the step divider sequencer. While activated, the

user can press a step and choose the subdivision and probability settings for the step divider

effect.

• The stutter effect is activated automatically when the pad is pressed and the user can control

its subdivision with the step divider subdivision knob.

A.2 MIDI controller configuration 51

• The master button makes the active instrument the master.

• By activating the last step pad, it is possible to select what is the last step of the active

instruments’ sequence.

• The clear button deletes the selected steps on the active instruments. If the step divider pad

is activated it deletes the step divider’s information.

• The mute button activates or deactivates the selected instruments.

52 Implementation

References

[1] James Andean. Sound and narrative: Acousmatic composition as artistic research. 06 2014.

[2] Curtis Bahn, Tomie Hahn, and Dan Trueman. Physicality and feedback: A focus on the body
in the performance of electronic music. 01 2001.

[3] Clarence Barlow and Henning Lohner. Two essays on theory. Computer Music Journal,
11(1):44–60, 1987.

[4] Gilberto Bernardes, Carlos Guedes, and Bruce Pennycook. Style emulation of drum patterns
by means of evolutionary methods and statistical analysis. 04 2015.

[5] John Biles. Genjam: A genetic algorithm for generating jazz solos. in: Proceedings of the
19th international computer music conference (icmc). pages 131–137, 09 1994.

[6] Kim Cascone. The aesthetics of failure: "post-digital" tendencies in contemporary computer
music. Computer Music J., 24(4):12–18, December 2000.

[7] Nick Collins and Alex McLean. Algorave: Live performance of algorithmic electronic dance
music. In Proceedings of the International Conference on New Interfaces for Musical Ex-
pression, pages 355–358, 2014.

[8] Vitor Joaquim Paredes Fernandes. O papel do laptop performer enquante agente transfor-
mador das práticas musicais. PhD thesis, Universidade Católica Portuguesa, 2015.

[9] W. Tecumseh Fitch. Rhythmic cognition in humans and animals: distinguishing meter and
pulse perception. Frontiers in Systems Neuroscience, 7:68, 2013.

[10] Francisco Gómez, Andrew Melvin, David Rappaport, Godfried T Toussaint, et al. Mathe-
matical measures of syncopation. In BRIDGES: Mathematical Connections in Art, Music
and Science, pages 73–84, 2005.

[11] Morgan Jenks. Lr.step, an algorithmic drum sequencer. In Proceedings of the International
Computer Music Conference 2016, pages 71–73. ICMC, 2016.

[12] Alexader R. Jensenius and Michael J. Lyons, editors. A NIME Reader: Fifteen Years of New
Interfaces for Musical Expression, volume 3. Springer International Publishing, 2017.

[13] Alex McLean. Angry - /usr/bin/bash as a performative tool, 2003. Accessed: 2018-06-25.

[14] Curtis Roads. Composing Electronic Music: A New Aesthetic. Oxford University Press,
2015.

[15] Georgios Sioros. Syncopation as Transformation. PhD thesis, Faculdade de Engenharia da
Universidade do Porto, 2015.

53

54 REFERENCES

[16] Georgios Sioros and Carlos Guedes. A formal approach for high-level automatic rhythm
generation. In Reza Sarhangi and Carlo H. Séquin, editors, Proceedings of Bridges 2011:
Mathematics, Music, Art, Architecture, Culture, pages 233–240. Tessellations Publishing,
2011.

[17] Godfried T. Toussaint. Generating “good” musical rhythms algorithmically. 2010.

[18] Owen Vallis and Ajay Kapur. Community-based design: The democratization of musical
interface construction. Leonardo Music Journal, -(21):29–34, 2011.

	Front Page
	Table of Contents
	List of Figures
	1 Introduction
	1.1 Motivation
	1.2 Description of the Work
	1.3 Structure of the Dissertation

	2 State of the Art
	2.1 Introduction
	2.2 A step away from laptop performance
	2.3 Rhythm
	2.4 Music Sequencing
	2.4.1 Rhythmic Generation Models and Generative Sequencers

	3 From the Sequence Input to the Generative Output
	3.1 Sequence Analysis
	3.1.1 Time Signature Determination and Indispensability Rankings

	3.2 Generative Rhythm Output
	3.2.1 Rhythmic Parameters
	3.2.2 Pulse Weight Meddling from Sequence Input
	3.2.3 Indispensability Ranking's Rotation
	3.2.4 Generation of Extended Variations through Sequencing Effects

	4 Application to a Simple Rhythm
	4.1 Density
	4.2 Syncopation
	4.3 Indispensability Rankings Rotation
	4.4 Stability
	4.5 Step Divider
	4.6 General Demonstration

	5 Conclusions and Future Work
	5.1 Summary
	5.2 System's Analysis
	5.3 Contribution of the Work
	5.4 Future Work

	A Implementation
	A.1 Brief Explanation of the Pure Data patch
	A.1.1 pd getIndispensability
	A.1.2 pd rhythmGeneration

	A.2 MIDI controller configuration

	References

