
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Gesture Recognition for Human-Robot
Collaborative Assembly

Pedro Miguel Melo

Integrated Master in Informatics and Computing Engineering

Supervisor: Armando Sousa (Ph.D)

Co-Supervisor: Carlos Costa

July 19, 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Aberto da Universidade do Porto

https://core.ac.uk/display/160610012?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Gesture Recognition for Human-Robot Collaborative
Assembly

Pedro Miguel Melo

Integrated Master in Informatics and Computing Engineering

Approved in oral examination by the committee:

Chair: Luís Almeida (Ph.D)

External Examiner: Artur Pereira (Ph.D)

Supervisor: Armando Sousa (Ph.D)
July 19, 2018

Abstract

Human-robot collaboration plays an important role in the industry’s future where robots and hu-
man operators work together in industrial scenarios. In order to properly cooperate with human
workers, robots must be able to communicate in a way that seems natural for humans by means
of an active perception of their surrounding environment. By recognizing and interpreting distinct
gestures performed by their human co-workers during assembly stages, robots could cooperate by
understanding and carrying out given commands.

Solutions for gesture recognition can be obtained combining not only computer vision but also
data fusion and machine learning techniques. In order to be robust such solutions must cope with
the sensors’ limitations, the high number of DoF in the human hand and with the distinct degrees
of occlusions from which they can suffer while handling distinct pieces.

This thesis consists in a solution for live recognition of both static and dynamic gestures tar-
geting cooperative assembly workstations. The data was obtained using both the Senso Gloves
and the Leap Motion. Five distinct hand features were considered for the recognition.

Static gesture recognition is performed using Support Vector Machines. Although state-of-
the-art methodologies for hand pose estimation use convolutional neural networks, the developed
system is able to recognize static gestures with minimal accuracy levels of 80%.

Due to their time dependant nature, dynamic gestures are modeled using Hidden Markov
Models, decision motivated by the existing similarities between gestural communication and oral
speech. To more efficiently train the models the k-Means clusterer algorithm is used. A cluster
optimizer based on the Silhouette value is also used to improve the data clusterization. The de-
veloped system is able to recognize over five distinct gestures with minimal accuracy levels of
75%.

The performance of the presented solution was evaluated using cross-validation techniques
applied over a personal gesture dataset consisting of collaborative assembly operations, allowing
a robot to respond to commands and thus cooperate with humans during workpiece assembly by
means of gestural communication.

Keywords

robotics, computer vision, data fusion, static gesture, dynamic gesture, gesture recognition, human-
robot collaboration, machine learning

i

ii

Resumo

A colaboração humano-robô é central para o futuro da indústria, no qual robôs e operadores hu-
manos trabalham conjuntamente em cenários industriais. Por forma a conseguirem cooperar com
seres humanos, os robôs devem ser capazes de comunicar com os mesmos numa forma o mais
humana possível, através de uma perceção ativa do ambiente circundante. Ao serem capazes de
reconhecer distintos gestos manuais executados pelos operários humanos durante a montagem de
peças, os robôs poderiam cooperar através da interpretação e realização de comandos dados pelo
operador.

Soluções para o reconhecimento de gestos podem ser obtidas combinando técnicas de visão
por computador, de fusão de dados e de machine learning. Por forma a serem robustas, tais
soluções precisam ainda de lidar com as limitações inerentes aos próprios sensores, oclusões e
ainda com o elevado número de DoF da mão humana.

Esta tese consiste numa solução capaz de fazer o reconhecimento ao vivo de gestos estáticos
e dinâmicos, tendo como alvo estações de trabalho de montagem cooperativa. Os dados foram
obtidos utilizando as Senso Gloves e o Leap Motion. O reconhecimento foi feito com base em
cinco características distintas da mão humana.

O reconhecimento de gestos estáticos é feito utilizando Support Vector Machines. Apesar das
metodologias estado-da-arte para estimação de pose utilizarem redes neuronais convolucionais, o
sistema desenvolvido é capaz de reconhecer gestos estáticos com valores de precisão superiores a
80%.

Dada a sua natureza temporal, os gestos dinâmicos são modelados por Modelos Ocultos de
Markov, decisão motivada pelas semelhanças existentes entre a linguagem gestual e o discurso
oral. Para treinar mais eficazmente os modelos, o algoritmo k-Means é utilizado. Um otimizador
de clusters baseado no valor Silhouette é também utilizado para melhorar o clustering dos dados. O
sistema desenvolvido é capaz de reconhecer mais de cinco gestos dinâmicos distintos com valores
de precisão superiores a 75%.

O desempenho da solução apresentada foi avaliada com recurso a técnicas de validação cruzada,
aplicadas sobre um conjunto de gestos criado pessoalmente para operações de montagem colab-
orativa, permitindo que robôs respondam a comandos e cooperem com humanos em linhas de
montagem através de comunicação gestual.

Palavras-Chave

robótica, visão por computador, fusão de dados, gestos estáticos, gestos dinâmicos, reconheci-
mento de gestos, colaboração humano-robô, machine learning

iii

iv

Acknowledgements

To both my supervisors for patiently guiding me.
To my family for supporting me.
To my friends for keeping me motivated and distracted.

Pedro Melo

v

vi

“Acima da verdade estão os deuses.
A nossa ciência é uma falhada cópia

Da certeza com que eles
Sabem que há o Universo.”

Ricardo Reis, in “Odes”.

vii

viii

Contents

1 Introduction 1
1.1 Context . 3
1.2 Research Questions . 3
1.3 Contributions . 4
1.4 Outline . 4

2 Technologies 5
2.1 Camera Systems . 5

2.1.1 Stereo Vision Systems . 5
2.1.2 Time-of-Flight Systems . 5
2.1.3 Structured Light Systems . 6
2.1.4 Example Camera Systems . 7

2.2 Glove-based systems . 9
2.3 Robotic Grippers . 10
2.4 Software Libraries . 12

2.4.1 Robot Operating System . 13
2.4.2 Weka . 13
2.4.3 KValid . 13
2.4.4 Java-ML . 14
2.4.5 LIBSVM . 14
2.4.6 Jahmm . 14

3 Related Work 15
3.1 Hand Tracking and Pose Estimation . 15

3.1.1 Human Hand Modelling . 15
3.1.2 Robot Gripper Modeling . 17
3.1.3 Pose Estimation Pipelines . 17
3.1.4 Hand Acquisition . 17
3.1.5 Tracking and Pose Estimation . 19
3.1.6 Occlusion Handling . 19
3.1.7 Datasets . 20

3.2 Gesture Recognition . 20
3.2.1 Gesture Classification . 21
3.2.2 Hand Data Features . 21
3.2.3 Algorithms for Gesture Recognition . 22

ix

CONTENTS

4 System Architecture 29
4.1 System Overview . 29
4.2 Gesture Dataset . 30

4.2.1 Static Gesture Dataset . 30
4.2.2 Dynamic Gesture Dataset . 31

4.3 System Training . 33
4.4 Gesture Recognition . 35
4.5 Packages and Class Diagrams . 36

5 Results 43
5.1 Graphical User Interfaces . 43

5.1.1 Data Sampler . 43
5.1.2 Data Recorder . 43
5.1.3 Gesture Prompt . 44

5.2 Results . 44
5.2.1 K-Fold Cross Validation . 44
5.2.2 Confusion Matrices . 44

6 Conclusions 49
6.1 Conclusions . 49
6.2 Future Work . 50

References 51

x

List of Figures

2.1 Working principle of a stereo vision system. 6
2.2 3D ToF camera operation. 6
2.3 Working principle of a structured-light system. 7
2.4 Leap Motion device. 7
2.5 Microsoft Kinect V1 . 8
2.6 Kinect V1 pattern projected upon a person. 8
2.7 Microsoft Kinect V2 . 8
2.8 Intel RealSense D435 camera. 9
2.9 Senso Gloves, model DK2. 10
2.10 Schunk parallel gripper. 10
2.11 Robotiq Adaptive 2 finger gripper. 11
2.12 Schunk angular gripper. 11
2.13 Robotiq Adaptive 3 finger gripper. 11
2.14 Goudsmit magnetic gripper. 12
2.15 Versaball gripper. 12
2.16 ROS logo. 13
2.17 Weka logo. 13

3.1 Hand kinematic structure. 16
3.2 Example of geometric based hand model. 16
3.3 Example of mesh based hand model holding an object. 16
3.4 Pipeline for an appearance based approach. 17
3.5 Pipeline for a model based approach. 18
3.6 Comparison between colour and depth images in a low illuminated scenario. . . . 18
3.7 Global hand occlusions. 20
3.8 Distribution of the different gesture styles. 22
3.9 A separable problem, with respective optimal margin and hyperplane. 23
3.10 Performance of several clusterer algorithms for dynamic gesture recognition. . . 24
3.11 Sample data clustering using the k-Means algorithm. 25
3.12 A same dataset clustered with k-Means using distinct k values. 25
3.13 Sample Markov chain for weather prediction. 26
3.14 Sample HMM for weather prediction. 27

4.1 System state machine. 30
4.2 Start gesture . 31
4.3 Home gesture . 31
4.4 Hover gesture . 32
4.5 Next gesture . 32

xi

LIST OF FIGURES

4.6 Open gesture . 32
4.7 Previous gesture . 32
4.8 Stop gesture . 33
4.9 Flow of static gesture data during the training phase. 33
4.10 Flow of dynamic gesture data during the training phase. 34
4.11 Flow of static gesture data during the recognition phase. 35
4.12 Flow of dynamic gesture data during the recognition phase. 36
4.13 UML class model for the clusterers package content. 37
4.14 UML class model for the controllers package content. 38
4.15 UML class model for the filters package content. 38
4.16 UML class model for the gestures package content. 38
4.17 UML class model for the gui package content. 39
4.18 UML class model for the io package content. 39
4.19 UML class model for the models package content. 40
4.20 UML class model for the recognizers package content. 40
4.21 UML class model for the validators package content. 41

5.1 Data sampler graphical user interface. 43
5.2 Data recorder graphical user interface. 44
5.3 K-Fold Cross Validation algorithm. 45
5.4 Scatter plot of the start hand poses obtained using the Senso Gloves. 45
5.5 Scatter plot of the stop hand poses obtained using the Senso Gloves. 46

xii

List of Tables

3.1 Summary of existent field datasets at time of writing. 20

5.1 Confusion matrix for the static gesture recognition module using the Leap Motion. 46
5.2 Confusion matrix for the static gesture recognition module using the Senso Gloves. 47
5.3 Confusion matrix for the dynamic gesture recognition module using the Senso

Gloves. 48
5.4 Confusion matrix for the dynamic gesture recognition module using the Leap Mo-

tion. 48

xiii

LIST OF TABLES

xiv

Abbreviations

3D 3-Dimensional
API Application Programming Interface
CSV Comma Separated Values
DoF Degrees of Freedom
HMM Hidden Markov Model
HSV Hue, Saturation, Value
IMU Inertial Measurement Unit
IR Infrared
ISO International Organization for Standardization
LED Light Emitting Diode
ROS Robot Operating System
SDK Software Development Kit
SLS Structured Light Systems
ToA Time of Arrival
ToF Time of Flight
RGB Red, Green, Blue
SVM Support Vector Machines
UML Unified Modelling Language
USB Universal Serial Bus

xv

Chapter 1

Introduction

The mechanical and cognitive capabilities of robotic systems are growing at an increasing rate,

constantly expanding their range of applications. They can be built to perform “tasks that are

perceived by humans as dirty, dangerous or dull” [dGA16] and can be found not only inside our

homes, cleaning and vacuuming our floors, cooking our meals, but also in the external world,

entertaining us, helping the military forces to protect civilian lives or aiding surgeons during med-

ical procedures, just to mention a few examples. With future technology improvements robots

will also be likely to also perform tasks foreseen for humans as pleasing, although recent studies

[TJN08] show that people prefer to see tasks related to art, evaluation, judgment and diplomacy

being performed by other human being.

Our civilization has been automating tasks for a long time, becoming increasingly more pro-

ficient since the first and second industrial revolution, which culminated with the development of

the first industrial robot in the early 60’s by George Devol for factory automation [uni]. Nowa-

days, industrial robots are highly responsible for the existent mass production of goods with lower

costs, since they are faster and more powerful than humans in executing repetitive mechanical

tasks. However, the current industrial manufacturing processes must change since “consumers are

looking for customized products and services”[WHX17]. Industry 4.0 presents a solution to the

industrial problem, by applying better intelligent technologies and by allowing a greater interven-

tion of smart machines such as robots, in the manufacturing process [ZLZ15].

For security reasons industrial robots do not tend to work alongside with human workers in as-

sembly lines. Generally human and robot workplaces are indeed separated in both time and space

[FBS15]. This happens because the machines typically don’t actively perceive their surrounding

environments, merely executing a preprogramed sequence of actions, blindly moving parts at great

velocities and manipulating dangerous tools that can easily cause physical harm to a human body

or even take a life. In the automobile industry, for instance, human workers are completely ex-

cluded from the production lines where robots execute assembly steps, for the reasons mentioned

[KSGV+09]. Due to the need to ensure human safety in industrial environments, the ISO standard

1

Introduction

10218-1:2011 was created. This document specifies both the requirements and guidelines to fol-

low for the inherent safe design, protective measures and information for use of industrial robots

[ISO17].

The so called Industry 5.0 trend states that allowing humans and robots to cooperate in as-

sembly lines would not only lead to an increse in productivity but also allow the manufacturing of

highly customized products[Sit]. Although humans respond and adapt to new tasks quicker, they

are slower and have less power than robots, and are not able to produce with constant quality. De-

spite robots being more powerful and very fast they might not be able to adapt quickly to changes

or even adapt at all. So human-robot cooperation in industrial environments can be interpreted as

a way to combine qualities, for a greater good. Industrial assembly processes could highly benefit

from such cooperation by having the human operator dealing with the variability in the produc-

tion while taking care of tasks that involve manipulation of sensitive, flexible or hard to assemble

components, while having a robot performing operations that require heavy lifting or precise part

placement. Another possible use case is the preparation of assembly kits.

Even though cooperative robots already exist at the time of writing, they work mainly in a

master-slave scheme, where the machine, the slave, blindly repeats learned actions taught by the

human worker, the master, through physical demonstrations. The LBR iiwa robot arm developed

by Kuka 1 is such an example. In order to truly cooperate with humans, robots must be able to

communicate with their human co-workers in a way easily understood by the machine but still be

the most natural as possible for the human beings. Humans tend to communicate most naturally by

articulating gestures using their hands. In fact, when expressing themselves verbally, humans tend

to gesticulate without even noticing it. By actively perceiving the world around and recognizing

as well as interpreting hand gestures performed by their human co-workers, robots could start

cooperating with humans during industrial assembly stages and therefore perform the associated

tasks.

Currently there are already several technologies built that provide hand related data, from

infrared light based sensors to glove-sensing devices. Examples of such devices are the Leap

Motion2 and the Senso Gloves 3, respectably. Although the presented glove-based solution does

not feel completely natural to the human worker as its use implies the attachment of external

devices to the human body, it does not suffer from occlusion problems and has a wider working

area in comparison with the presented infrared light based solution that in addition is sensitive to

light conditions. It should be noted that either the referred devices are targeted for multimedia

applications, hence not being suited for use in real industrial scenarios. However, when used as

a proof of concept, the discussed technologies provide for a cheaper and still reliable mean to

prototype a gesture recognition system targeting such scenarios.

The hand related data provided by such devices is too raw to be directly used by a gesture

recognizer. It is then necessary to first process the hand data using machine learning techniques

1https://www.kuka.com/en-de/products/robot-systems/industrial-robots/lbr-iiwa
2https://www.leapmotion.com/
3https://senso.me/

2

https://www.kuka.com/en-de/products/robot-systems/industrial-robots/lbr-iiwa
https://www.leapmotion.com/
https://senso.me/

Introduction

to refine the data in a multitude of useful ways. There are already several open source software

libraries dedicated to machine learning and data mining.

Equipped with such technologies robot could be programmed not only to recognize human

made gestures, but also being able to cooperate with human workers during a workpiece assembly

leading to an overall improvement in productivity in a set of tasks.

1.1 Context

This work was developed in partnership with the Centre for Robotics in Industry and Intelligent

Systems (CRIIS 4) of INESC TEC given their experience in industrial automation and the develop-

ment of collaborative robotic systems.

1.2 Research Questions

The research questions to be answered with this work are the following:

• How to recognize static gestures? Since static gestures don’t change in time the samples

obtained of the hand data are not correlated. The problem of static gesture recognition can

then be seen either as a pose estimation problem or a classification one, where each sample

of hand data obtained must be classified according to a properly trained model.

• How to recognize dynamic gestures? Unlike static gestures dynamic gestures change

in time and therefore distinct samples of hand data can be correlated. At the same time a

dynamic gesture is hardly performed the exact same way twice, leading to robustness issues.

Instead of individually analysing each obtained sample of hand data, it becomes necessary

to cluster the mentioned data into the smaller movements that compose the overall gesture,

by analysing the data inner variability. The sequence of obtained clusters must always be

similar for a given gesture regardless of how it was performed. In order to allow the gesture

distinction, used statistical models must be able to provide a probabilistic insight about what

is the most probable gesture being performed by the human worker at a given time.

• How to obtain intuitive and ergonomic vocabulary of gestures for assembly operations
In order to ease the recognition process, all gestures in the dataset must be as distinguishable

as possible, while still making sense to the human operator. The gesture distinction can be

optimized by choosing a set of relevant hand features that allow to distinguish every possible

hand pose. By mimicking commonly used hand gestures and standardized military gestures,

a set of meaningful gestures can be obtained.

4http://criis.inesctec.pt/

3

http://criis.inesctec.pt/

Introduction

1.3 Contributions

The goal of this work is to develop a system able to recognize both static and dynamic gestures

using the Senso Gloves, targeting human-robot collaboration in industrial scenarios. The hand data

provided by the Senso Gloves is processed and refined using multiple machine learning algorithms

which will allow each individual gesture to be recognized by training proper statistical models.

The presented solution is a complement to a framework for human-robot cooperative assembly

capable of semantic learning by demonstration that is also being developed at CRIIS.

State-of-the-art methodologies were taken as an inspiration for the proposed solution. To

the author’s knowledge, there is no publicly available dataset for object recognition using both

the same set of gestures and the same capturing device, whereby a ground truth was personally

created.

Since many state-of-the-art methodologies for gesture recognition use the Leap Motion device,

a similar dataset using this technology was also created using an equivalent set of hand features,

as provided by the device. This allowed, not only to compare the system’s performance under

distinct capturing devices, but also to compare its performance, at some extent, to already existing

solutions.

Problems regarding the way the robot must act upon recognizing a gesture fall out of scope of

this project.

The development of the mentioned system aimed to improve human-robot collaboration by

allowing live gestural communication between human and machine during assembly stages.

1.4 Outline

This document is structured as following:

• In chapter 2 a summary of the existing and most relevant technologies in use for either hand

data acquisition, robot grasping and machine learning is made;

• In chapter 3 a revision and summary of state-of-the-art methodologies for hand tracking and

gesture recognition is done;

• In chapter 4 the architecture of the developed system is described;

• In chapter 5 the conducted experiments and the obtained results are exposed and discussed;

• In chapter 6 the final considerations about the work done are made.

4

Chapter 2

Technologies

This chapter presents relevant technologies used for hand tracking, pose estimation and machine

learning. A description of glove-based and 3D image acquisition systems is also done, as well as

an overview of commonly used robotic grippers. Available software libraries are also addressed.

2.1 Camera Systems

A few years ago, cameras that could provide depth measurements, necessary for 3D imaging,

were very expensive. Nowadays there are already available several camera systems that, in spite

of being cheaper, allow for depth measurements within good precision and quality levels.

In this section, an overview of existing and relevant 3D imaging camera systems is made.

2.1.1 Stereo Vision Systems

Stereo vision systems rely upon a pair of cameras to derive depth information about a given scene,

mimicking the internal workings of the human visual system [PKA07]. Such systems work on the

principle of pixel comparison in both the acquired images. If two pixels match, corresponding to

the same object, a point position in the 3D scene can be computed using the triangulation principle

[HRH08]. A graphical representation of a stereo vision system working principle can be seen at

figure 2.1. Widely used in the development of intelligent robots, these systems are initially superior

in terms of safety, undetectable characteristics, cost, operating range, and reliability, comparatively

to other methods [JCP+10]. However, such systems cannot be used for scanning homogeneous

surfaces and demand high processing power and time when pixel matching can’t be easily done.

2.1.2 Time-of-Flight Systems

Time of Flight (ToF), also known as Time of Arrival (ToA), systems work by casting light into a

scene and obtain distance measurements using reflections of the projected light. The projected

5

Technologies

Figure 2.1: Working principle of a stereo vision system. From [HRH08].

light invisible to the human eye, belonging in the IR region, is then captured by an imaging sensor

operating in the same region. In figure 2.2 the working principle of a ToF system is depicted.

Figure 2.2: 3D ToF camera operation. From [Li14].

It should be noted that the projected light is modulated, mainly by square wave modulation,

and that reflected light captured by the system has a phase shift. By translating this shift into

distances, depth information can be obtained [PKA07].

2.1.3 Structured Light Systems

Systems that use light patterns in order to obtain 3D information about a given scene are named

Structured Light Systems (SLS), and consist of a projector and a camera [VM98]. The projec-

tor casts a coded light pattern, typically made of numbered stripes, upon the scene which is later

photographed by the camera. By observing the pattern deformation in the captured scene and map-

ping pixels in the obtained image to a stripe, spacial information about can be derived [PKA07].

In figure 2.3, a graphical representation of the described process can be seen.

6

Technologies

Figure 2.3: Working principle of a structured-light system.

2.1.4 Example Camera Systems

2.1.4.1 Leap Motion

The Leap Motion is a USB device targeting multimedia applications that is able to track and pro-

vide hand data without any physical contact.

Figure 2.4: Leap Motion device.

The device consists of two cameras and three IR LEDs. The device uses the mentioned cameras

to track the IR light emitted by the LEDs (wavelength of 850 nanometres), then using the stereo

triangulation for detecting the location of the nearby objects in the scene. This extracted raw data is

then passed into a software layer, where it is processed in order to extract the desired hand features.

During this process, data fusion techniques are used to "ensure smooth temporal coherence of the

data" [Col].

The last version of the controller has an interaction space of eight cubic feet and is able to

detect both hands up to a height of 80 centimetres relative to the device.

7

Technologies

2.1.4.2 Kinect

Microsoft Kinect is widely used in projects that require 3D imaging ever since it was initially

developed for the XBox 360 TM video game console. A special adapter to connect the system

to a regular computer was even manufactured, allowing the programming of applications where

the same could be used, outside the XBox development framework. Although its manufacturing

is discontinued, Kinect technology revolutionized the field and is still supported by many open-

source software libraries. The most similar products currently available are produced by Orbbec1.

Kinect V1

Initially the Kinect worked as a SLS system, containing one infrared projector along with an RGB

camera, for adding colour to the acquired point clouds, in the same board, being also equipped

with a multi-array microphone. The projected pattern, using infrared light rays, can be seen in use

in the figure 2.6. The mentioned device can be seen in figure 2.5.

Figure 2.5: Microsoft Kinect V1 Figure 2.6: Kinect V1 pattern projected
upon a person.

Kinect V2

For its second version, Kinect was transformed into a ToF system, being more accurate than its

predecessor. Besides having an adjustable sensing range, Kinect can also capture point cloud data

in a wide range of lighting conditions (as long as the projected IR pattern is still visible by the IR

camera). The mentioned device can be seen in figure 2.7.

Figure 2.7: Microsoft Kinect V2

1https://orbbec3d.com/

8

https://orbbec3d.com/

Technologies

2.1.4.3 Intel RealSense D435 Camera

Intel RealSense D435 is an USB stereo based camera system that consists of a pair of depth sensors,

a RGB sensor and an IR projector allowing for both 3D depth and high-definition colour imaging

up to a maximum distance of 10 meters. The depth information is obtained by using the two depth

cameras that process the IR light casted over the scene by the IR projector, being "ideal for makers,

educators, hardware prototyping and software development" [Int17]. The mentioned device can

be seen in figure 2.8.

Figure 2.8: Intel RealSense D435 camera.

2.2 Glove-based systems

Glove-based systems are composed of a power supply and an array of sensors for data acquisition

and processing, all attached and sewed to a glove, representing "one of the most important efforts

aimed at acquiring hand movement data"[DSD08]. At the time of writing there are already several

commercial examples of such systems.

2.2.0.1 Senso Gloves

Senso Gloves are a wireless glove-based system designed for virtual and augmented reality appli-

cations. Each glove can provide precise hand and fingers data with low frequency by means of

seven IMUs installed in each glove. The mentioned IMUs are distributed one per each finger, one

for the wrist and one for the hand dorsal. The gloves can also provide haptic feedback effect for

every single finger, thanks to a vibration motor placed in each fingertip. Each glove communicates

with a Bluetooth v4 connector, having a maximum range of 20 meters. A battery cycle lasts ten

hours and the gloves are made of a fragile material. The last model of the Senso Gloves can be

seen in figure 2.9.

The Senso Gloves manufacturer provides several SDKs, allowing the development of applica-

tions using the system.

9

Technologies

Figure 2.9: Senso Gloves, model DK2.

2.3 Robotic Grippers

In chapter 5 it is said that the developed system is able to recognize a dynamic gesture called open,

informing the collaborative robot to open its gripper and let go of its content. Besides that, future

work suggestions stated in chapter 6 include the addition of dynamic gestures to individually

control each one of the robotic grippers to be used during an assembly. In this section, a brief

summary of widely used robotic grippers is done.

Grippers are attached to the end of robotic arms enabling object grasping. Contrarily to the

human hand, that has the same shape and workings for all human beings, there exists a wide range

of robotic grippers. Nonetheless, some robots can have their gripper changed accordingly to the

task they are set to execute. The following list, not exhaustive, presents commonly used robotic

grippers:

• Parallel gripper. Used for gripping objects with flat sides, they work by oppositely moving

two parallel plates alongside a same axis in order to grasp the object, either by its outside

edges or by applying pressure on the object inside walls. Additionally, they can be equipped

with sensor systems in order to improve their functionality, process reliability and produc-

tivity. It should be noted that adaptive 2-finger grippers, which fall inside this category, also

have the ability to adapt themselves to the objects shape, making them more robust. An

angular gripper can be seen in figure 2.10.

Figure 2.10: Schunk parallel gripper.2

10

Technologies

Figure 2.11: Robotiq Adaptive 2 finger gripper.3

• Angular gripper. Being used for holding larger objects and with odd shapes, they work by

oppositely moving two plates angularly, approaching the workpiece sideways. Normally,

angular grippers can be adjusted to various angles according to the workpiece to grasp.

They can also be improved by equipping external systems, similarly to parallel grippers. An

angular gripper can be seen in figure 2.12.

Figure 2.12: Schunk angular gripper.4

• Adaptive-3 finger gripper. Being used for grasping mainly cylindrical shapes, they allow

for an even greater flexibility and reliability for any given application, while still allowing

for and adaptable grasping. An adaptive-3 finger gripper can be seen in figure 2.13.

Figure 2.13: Robotiq Adaptive 3 finger gripper.5

2https://schunk.com/de_en/gripping-systems/category/gripping-systems/
schunk-grippers/parallel-gripper/

3http://blog.robotiq.com/topic/2-finger-robot-gripper
4https://schunk.com/de_en/gripping-systems/category/gripping-systems/

schunk-grippers/angular-gripper/
5http://support.robotiq.com/display/IMB/Home

11

https://schunk.com/de_en/gripping-systems/category/gripping-systems/schunk-grippers/parallel-gripper/
https://schunk.com/de_en/gripping-systems/category/gripping-systems/schunk-grippers/parallel-gripper/
http://blog.robotiq.com/topic/2-finger-robot-gripper
https://schunk.com/de_en/gripping-systems/category/gripping-systems/schunk-grippers/angular-gripper/
https://schunk.com/de_en/gripping-systems/category/gripping-systems/schunk-grippers/angular-gripper/
http://support.robotiq.com/display/IMB/Home

Technologies

• Magnetic gripper. Is used to grasp ferromagnetic materials, working either by having an

electromagnet which is turned on and off to accordingly grasp or release the object or by

having an enclosed permanent magnet. In the latter case, the release and grasping operations

are done by moving the magnet with compressed air inserted sideways. It does not allow for

good tracking and pose estimation. An example of magnetic gripper can be seen in figure

2.14.

Figure 2.14: Goudsmit magnetic gripper.6

• Versaball gripper. Consists in a ball, filled with sand like material that softens when air is

pumped into it. While at this state, the ball is pushed against the target object, surrounding

it and acquiring its shape. The ball is then hardened by removing the air through a vacuum

system, allowing it to grasp the desired object. Being generic, this gripper does not allow

for good tracking and pose estimation. The mentioned gripper can be seen in figure 2.15.

Figure 2.15: Versaball gripper.7

2.4 Software Libraries

In order to allow the system training and enable gesture recognition, the obtained hand data must

be processed. Nonetheless, a way to communicate the recognized gesture to the cooperative robot

must also be established. In this section an overview of popular and relevant software frameworks

and libraries for machine learning and robotics is made.

6http://www.goudsmitmagnets.com/industrial-magnetic-systems/magnetic-handling/
robot-end-of-arm-tooling/magnetic-grippers

7http://empirerobotics.com/products

12

http://www.goudsmitmagnets.com/industrial-magnetic-systems/magnetic-handling/robot-end-of-arm-tooling/magnetic-grippers
http://www.goudsmitmagnets.com/industrial-magnetic-systems/magnetic-handling/robot-end-of-arm-tooling/magnetic-grippers
http://empirerobotics.com/products

Technologies

2.4.1 Robot Operating System

The Robot Operating System8 (ROS) is an open-source set of software libraries widely used in

robotics application, aiming to ease robot development. ROS logo can be seen in figure 2.16.

ROS “provides standard operating system facilities such as hardware abstraction, low-level device

control, implementation of commonly used functionalities, message passing between processes,

and package management”[MF13].

Figure 2.16: ROS logo.

ROS was used in the developed system to communicate with the collaborative robot, sending

the instructions it must follow after a given gesture was recognized.

2.4.2 Weka

The Weka9 is an open-source collection of machine learning algorithms for data mining tasks

implemented in the Java programming language, containing tools for data pre-processing, classifi-

cation, regression, clustering, association rules and visualization. Weka logo can be seen in figure

2.17.

Figure 2.17: Weka logo.

The Weka was used to add robustness to the system, by using its implementation of the k-

Means algorithm for clustering the obtained hand data during the training and testing of the dy-

namic gesture recognizer module.

2.4.3 KValid

KValid10 is a free and open-source clustering evaluation package designed for the Weka library,

containing implementations of the Silhouette and Elbow methods. KValid was used in the applica-

tion to optimize the number of clusters obtained by the k-Means clusterer during the training and

testing of the dynamic gesture recognizer module.

8http://www.ros.org/
9https://www.cs.waikato.ac.nz/ml/weka/

10https://github.com/Theldus/KValid

13

http://www.ros.org/
https://www.cs.waikato.ac.nz/ml/weka/
https://github.com/Theldus/KValid

Technologies

2.4.4 Java-ML

Java-ML11 is an open-source collection of machine learning algorithms for data manipulation,

clustering, feature selection and classification. Aiming for simplicity of interface, it was imple-

mented in the Java programming language. This library was used in the developed system as a

provider of more versatile data structures for machine learning (comparatively to the ones provided

by Weka), namely the KD-Trees used in the gesture dictionary module.

2.4.5 LIBSVM

The Library for Support Vector Machines12 (LIBSVM) is a free integrated software for support

vector classification, regression and distribution estimation, that also supports multi-class classifi-

cation. Currently, there are available several implementations of this library in several program-

ming languages. Its implementation in the Java programming language was used for training and

testing the static gesture recognizer module.

2.4.6 Jahmm

Jahmm 13 is an open-source collection of algorithms regarding the training and querying of Hidden

Markov Models (HMM), implemented in the Java programming language. It also provides some

machine learning algorithm. Jahmm was the core element of the implemented module for dynamic

gesture recognition.

A theoretical discussion regarding Hidden Markov Models is made in the following chapter.

11http://java-ml.sourceforge.net/
12https://www.csie.ntu.edu.tw/~cjlin/libsvm/
13https://github.com/KommuSoft/jahmm

14

http://java-ml.sourceforge.net/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://github.com/KommuSoft/jahmm

Chapter 3

Related Work

In this chapter state-of-the-art methodologies for hand tracking, pose estimation and gesture recog-

nition are discussed.

3.1 Hand Tracking and Pose Estimation

In this section the state-of-the-art approaches for tracking and pose estimating of both human

hands and robot grippers are discussed.

3.1.1 Human Hand Modelling

Many state-of-the-art approaches for hand tracking and pose estimation require the use of artificial

3D hand models that are overlapped upon the observed data in order to evaluate a solution’s quality.

This evaluation is carried out by a cost function, whose performance depends highly on the type

of hand model used.

The first step towards human hand modelling is the acquisition of its kinematic structure,

revealing which are the articulated hand parts, the existing connections between themselves and

how they move. All possible hand movements occur around the finger joints and the wrist, leading

to a hand kinematic structure as depicted in the figure 3.1, where each dot corresponds to a different

joint and the bottom square to the wrist. The human hand accounts for a total of 27 DoF [NBT07].

Nonetheless some authors use variants of the presented structure having small differences in total

DoF, in order to reduce the problem dimensionality and increase performance.

In “order to model the hand, there is a variety of options that depend on the balance required

between accuracy and performance” [Bar16]. These options are:

• Sphere based hand models. Built uniquely from spheres. Despite being simple, are not

anatomical correct.

15

Related Work

Figure 3.1: Hand kinematic structure. From [NBT07].

• Geometry based hand models. Built upon basic geometric primitives. An example of such

model can be seen in figure 3.2.

Figure 3.2: Example of geometric based hand model. From [IOA11].

• Mesh based hand models. Built exclusively out of meshes. Being the most complex type,

they have greater anatomically accuracy. Also require higher computer power. Figure 3.3

show an example of such hand model.

Figure 3.3: Example of mesh based hand model holding an object. Extracted from [SMZ+16].

Additionally, constraints regarding finger extension and movements are usually applied to the

chosen model, in order to reduce the state space of possible hand positions, simplifying both the

tracking and pose estimation. The use of such restrictions also proves useful when dealing with

occlusions, as explained in the following sections.

16

Related Work

3.1.2 Robot Gripper Modeling

As previously stated, robot grippers exist in a variety of shapes and work in several distinct ways.

This leads to complicated issues regarding robot grippers modelling. As a matter of fact, in

[SPM10] it is claimed that “little attention has been put on the use of vision when the robot hand

makes the first contacts on the objects”.

3.1.3 Pose Estimation Pipelines

“Many algorithms used in hand tracking have their roots in methods proposed previously in human

body tracking” [NBT07]. Nowadays, every approach to the problem fall in one of three possible

classifications [Bar16]:

• Appearance based approaches. Also known as discriminative, they estimate “articulated

motion states directly from images by learning the mapping from an image feature space to

the object state space” [CCH05]. Being less computationally expensive, they require large

amount of training data in order to perform full hand pose estimation, being very used in

gesture recognition. The typical pipeline of such approaches can be seen in the figure 3.4.

Figure 3.4: Pipeline for an appearance based approach. From [Bar16].

• Model based approaches. Also known as generative, they try to optimally fit hypothe-

sized hand models with the observed data using a cost function. Thus, previously generated

hyphotesis are taken into account during the calculation of new plausible hand poses. The

resulting hand pose corresponds to the hypothetic hand pose that is closer to the observed

one. An example generative pipeline can be seen in the figure 3.5. As stated in the previ-

ous section, performance can be tuned by either changing the hand model or reducing the

number of DoF.

• Hybrid methods. Combine both the previous methodologies. Initially an appearance-based

pipeline is used to obtain a hand pose which is then passed to a model-based pipeline.

3.1.4 Hand Acquisition

The first step towards hand pose estimation is to process the sensor data in order to distinguish the

hand or gripper from the surrounding environment. This is done through image segmentation.

17

Related Work

Figure 3.5: Pipeline for a model based approach. From [Bar16].

3.1.4.1 Colour Segmentation

The human skin has a very distinct colour allowing for hand detection via colour segmentation.

However, images obtained by cameras tend to use the RGB colour space which are very sensitive

to illumination changes. Authors also use alternative colour spaces, namely the HSV [SMZ+16]

and YCbCr [dCM06] spaces, since they both separate the colour and light intensity components,

being more robust to illumination changes. When nearby objects or background surfaces have

colours similar to the skin colour, this type of segmentation becomes unpractical.

Some authors resorted to using either hand paint or simple colourful gloves [WP09]. In spite

of easing the colour segmentation process, these approaches are considered intrusive. However, if

the worker is obligated to use gloves in the workplace, such solutions should be taken into account.

3.1.4.2 Depth Segmentation

Since depth imaging systems became widely available, researchers started developing ways to use

depth data to recognize and track hands. Comparatively to colour segmented approaches, the hand

can be away from the camera in dark environments and still be detected, leading to illumination

and distance invariant hand detectors. This is depicted in the figure 3.6.

Figure 3.6: Comparison between colour and depth images in a low illuminated scenario. Adapted
from [PYK+12].

Considering the hand as closest to the camera, a simple segmentation can be done based on

depth values, as done in [MN06]. However, due to light reflections, the edges of objects usually

get noisy, complicating the hand recognition process. This problem can be surpassed using back-

ground subtraction techniques followed by morphological operators and mean-shift[WMC+15],

18

Related Work

in order to obtain only the moving parts. It should be noted that such solutions assume that only

the hand to track is moving.

3.1.4.3 Machine Learning Techniques

By using point clouds provided by a Kinect camera, a novel way for 3D scene segmenting was

presented in [CPCC16], using linear regression algorithms, that allow the classification of cloud

points as belonging or not to the hand. It should be noted that present techniques are also applicable

to 3D object segmentation and recognition.

3.1.5 Tracking and Pose Estimation

Generative approaches tend to use either variants of the PSO[IOA11] and the ICP[CPCC16] al-

gorithms, since they transform the pose estimation problem into an optimization one. The PSO

algorithm works by having a swarm of particles randomly disposed in a state space, each one

searching for local function minimum. The best minimum found up to a given moment is known

by all the particles that move in the direction of that point. Once a better minimum is found, the

mentioned value is update. The algorithm ends when all the particles arrive at the same point. ICP

algorithm is similar to the PSO algorithms, minimizing the error in a distinct way. In spite of being

computationally expensive, these approaches were the first to allow continuous hand tracking and

pose estimation. As previously noted, the chosen 3D hand model type influenced the results.

A few years ago, discriminative approaches only allowed for pose estimation of finite sets of

related hand positions, being widely used in gesture recognition. This was due to the reduced

amount of training data available. 3D point cloud data was then processed using both cluster-

ing and data fusion algorithms [WMC+15][PYK+12]. Nowadays, due to recent developments of

machine learning and the existence of relatively large image datasets, both state-of-art discrimina-

tive and hybrid approaches are based upon deep learning technologies. In [DYZ+17], [WPVY17]

and [DWÖG17] a CNN is trained over existing datasets in order to obtain pose estimation from

depth information, with success. Major disadvantage of such solutions include the high volume of

needed training data.

3.1.6 Occlusion Handling

The tracked hand can suffer from the following types of occlusion:

• Partial Occlusions. Occur when fingers overlap or cross, occluding either the palm or each

other;

• Global Occlusions. Occur when portions of the hand surface are occluded by objects being

held, as depicted in figure 3.7.

Both occlusions can be surpassed by applying probabilistic models over the hand anatomy and

kinematic structure. Such is the case in [HSKMG09], where Markov Fields are used to estimate

19

Related Work

Figure 3.7: Global hand occlusions. From [HSKMG09].

the pose of occluded hand joints. This approach is feasible since a joint’s pose only depends on its

adjacent joints’ poses. It then suffices to only detect a subset of joints for each finger.

3.1.7 Datasets

The field of hand tracking and pose estimation “lacks a systematic public benchmark for fair

evaluation of different methodologies” [YYGK17], since existing datasets are either too small

or not compliant with each other. To overcome the related dataset dimension problems, data

augmentation mechanisms were proposed in [DYZ+17].

The table 3.1 contains a summary of existing datasets at time of writing. Particular information

and citations about each dataset can be found at [YYS+17].

Dataset Frames Joints Subjects View point Depth map resolution
Dexter 1 2,137 5 1 3rd 320x240
MSRA14 2400 21 6 3rd 320x240
ICVL 17604 16 10 3rd 320x240
NYU 81009 36 2 3rd 640x480
MSRA15 76375 21 9 3rd 320x240
UCI-EGO 400 26 2 ego 320x240
Graz16 2166 21 6 ego 320x240
ASTAR 870 20 30 3rd 320x240
HandNet 212928 6 10 3rd 320x240
MSRC 102000 22 1 3rd 512x424
BigHand2.2M 2200000 21 10 full 640x480

Table 3.1: Summary of existent field datasets at time of writing. Adapted from [YYS+17].

3.2 Gesture Recognition

In this section state-of-art techniques used for gesture recognition are discussed.

20

Related Work

3.2.1 Gesture Classification

Gesture-based computer interaction can nowadays be done in a multitude of ways that differ in

diversity, complexity and spontaneity [VMSLB13], thus leading to the creation of several possible

gesture taxonomies, based on different classification criteria. In [Kar05], the following type-based

gesture classification is presented:

1. Deictic. Involve pointing to a physical object or to a space region;

2. Manipulative. Involve mimicking with empty hands the movements to be performed by the

machine while manipulating a real physical object;

3. Semaphoric. Involve performing movements using hands, flags or lights that are catalogued

in a gesture dictionary, such that each dictionary entry associates a specific gesture with a

specific meaning or action to be carried out after that gesture is performed. Usually require

the pre-recording of gestures and a system training phase. Semaphoric gestures can be

subdivided into the following way:

(a) Static Gestures. Consist in static poses made by the fingers;

(b) Dynamic Gestures. Gestures whose information can be perceived through movements;

(c) Strokes. Similar to dynamic gestures but consisting of fast stroke-like gesture.

4. Gesticulation. Involve gestures that accompany human speech and clarify it. Their meaning

is also dependant on the speech’s topic and context;

5. Language. Gestures used for sign language;

The presented classification also considers the case where a combination of many gestures

belonging to multiple of the previously stated classes is done.

By analysing figure 3.8 it is possible to observe the predominance of semaphoric gestures

relative to the other individual gesture-type classes.

3.2.2 Hand Data Features

The set of selected hand features must capture the obtained data variability in order to distinguish

all the performed gestures.

The first step towards hand position differentiation consists in finding a set of hand features

that allow to tell which fingers are stretched, to tell which fingers are "open" and "closed", and

how much a finger is stretched. The set of possible hand features used in the developed system for

the stated purpose was the following:

• The distance between each fingertip and the hand palm (F1);

• The angle between two neighbour fingers (F2).

21

Related Work

Figure 3.8: Distribution of the different gesture styles. Extracted from [Kar05].

It is possible for a performed gesture to have different meanings according to the orientation

of the hand palm and the wrist. Therefore doing the same gesture with the palm facing upwards

or downwards results in two distinct gestures. The set of hand features used for the stated purpose

was the following:

• Normalized coordinates of the normal vector to the hand palm (F3);

• Normalized coordinates of the normal vector to the operator’s wrist (F4).

The direction in which the hand is moving must also be taken into account, especially when

dealing with dynamic gestures. For stated purposed the following hand features were used:

• Normalized coordinates of the hand palm velocity vector (F5);

Vector coordinates can take any value within a given range, leading to robustness issues. How-

ever, the information they carry is too precious to the recognition process to just be discarded. If

only the magnitude of the vector coordinates is considered, the vector coordinates can be normal-

ized so that all positive and negative coordinates take a same unique value per class. This preserves

not only the information regarding the palm and wrist orientation, but also the hand direction of

movement while not compromising the system robustness.

3.2.3 Algorithms for Gesture Recognition

The developed system only detects semaphoric gestures. The algorithms used for recognition of

static and dynamic gestures (both pure dynamic and strokes) differ from each other, since the two

types of gestures differ in nature. In this section state-of-the-art gesture recognition algorithms for

each gesture type will be explained.

22

Related Work

3.2.3.1 Static Gesture Recognition

Static gestures don’t change in time and thus the samples of obtained hand data are not correlated.

This characteristics allow us to treat the static gesture recognition problem as another hand pose

estimation problem which can be solved using the previously mentioned hand pose estimation

methodologies, namely through the use of neural networks.

Static gesture recognition can also be seen as a classification problem, where each sample of

obtained hand data must be labelled according to a trained model.

Due to the fact that high amounts of data are required for proper neural network training and

that the gesture dataset used is personal and has low volume, a suitable classification algorithm was

chosen for static gesture recognition. Due to its simplicity, the Support Vector Machines (SVM)

techniques were chosen.

3.2.3.2 Support-Vector Machines

Support-Vector Machines, also called Support Vector Networks, is a supervised technique for clas-

sification and regression that predicts whether data falls into one of possible categories, according

to the training data. SVM does this by mapping "the input vectors into some high dimensional

feature space Z through some non-linear mapping chosen a priori" [CV95]. Then a hyperplane is

used to accomplish the algorithm goal, separating the data with the largest distance to the nearest

training data points, called the optimal margin of any class thus minimizing the generalization

error of the classifier [Wik17]. Figure 3.9 depicts a classification problem in 2D solved using

SVM.

Figure 3.9: A separable problem, with respective optimal margin and hyperplane. Extracted and
adapted from [CV95].

Besides linear regression, actual implementation of the algorithm allow for non-linear regres-

sion using several available kernels.

23

Related Work

3.2.3.3 Dynamic Gesture Recognition

Dynamic gestures change in time and thus distinct samples of hand data can still be correlated

in time. Besides that, the same dynamic gesture is hardly performed the exact same way twice,

leading to robustness issues. Instead of analysing each obtained sample of hand data, it becomes

necessary to cluster the data in a way that maximizes the uniformity of each cluster, in order

to remove recording noise and to ease the gesture recognition. Figure 3.10 depicts the results

obtained from a comparison between several popular clusterer algorithms under a same dataset

of dynamic gestures. Although the fuzzy c-means algorithm performs better than the remaining

algorithms, the k-Means algorithms is suggested, "if a compromise between time and recognition

rate is tolerable" [PN09].

Figure 3.10: Performance of several clusterer algorithms for dynamic gesture recognition. Ex-
tracted from [PN09].

In order to allow for gesture distinction, proper statistical models must be able to provide prob-

abilistic insight about what is the most probable gesture being performed by the human worker

should be used. Recent researches started relating speech variations to visual gestures, then jus-

tifying the use of Hidden Markov Models, traditionally used in speech recognition, in dynamic

gesture recognition [GVD+16].

24

Related Work

3.2.3.4 k-Means algorithm

A suitable clustering algorithm for dynamic gesture recognition is the KMeans algorithm. k-Means

is an unsupervised learning algorithm for clustering high-dimensional data set into a number of k

clusters which is set a priori. It works by following the presented steps [TT11]:

1. Initialize k centroids into the high-dimensional space. The way the cluster centroids are

initialized is relevant, so that they should be places as far away as possible from each other;

2. Assign each data point to the cluster that has the closest centroid;

3. Recalculate the k cluster centroids;

4. Repeat steps 2 and 3 until the centroids stop moving.

Figure 3.11: Sample data clustering using the k-Means algorithm.

Figure 3.11 depicts both the result of applying this algorithm into a sample data set and the

optimal clusterization for the given dataset.

An inherent problem with the k-Means algorithm is that, in spite of always clustering the data

in k clusters, a non-optimal data clusterization can be achieved since the number of clusters k is

manually inserted and can be poorly chosen, as seen in figure 3.12.

Figure 3.12: A same dataset clustered with k-Means using distinct k values. Extracted from
[TKD+15].

25

Related Work

However, the number of clusters can be optimized using the Silhouette Measure [Rou87]. A

silhouette is a tool used to assess the validity of the clusterization and is constructed to select the

optimal number of clusters [TKD+15]. It can be calculated using equation 3.1, where b(i) stands

for the average distance between the points in cluster i and the centroid of the next closest cluster

and a(i) stands for the average distance between the points in cluster i and the centroid of the same

cluster. s(i) stands for the silhouette value while using i clusters.

s(i) =
b(i)−a(i)

max{a(i);b(i)}
(3.1)

By clustering the same data using different values for k and plotting the obtained silhouette,

the optimal number of clusters i can be found where s(i) is maximized. Disadvantages of using this

method reside in the need to cluster the same data multiple times, which can prove time expensive,

especially when using high volume datasets.

3.2.3.5 Hidden Markov Model

The statistical model used for dynamic gesture recognition was the Hidden Markov Model, due

to the fact that gestures themselves can be seen as a sequence of static and distinct hand poses,

where the probability of having a given pose of a sequence only depends on the previous pose in

the sequence, for a given gesture.

In order to understand Hidden Markov Models it is necessary to first understand Markov

Chains. A Markov chain can be seen as a weighted automaton in which arc’s weight represent

the probability of travelling from a state to another [JM00], as depicted in figure 3.13.

Figure 3.13: Sample Markov chain for weather prediction. Extracted from [JM00] .

A Markov chain is constituted by the following elements:

• The N states in the model;

26

Related Work

• The model state transition probability distribution A, which tells the probability of reaching

a model state from every other state. It should be noted that for any given state, the sum of

transition probabilities must add up to 1;

• The model initial state distribution (π);

• An initial state q0 and a final state qf , independent of any observation.

Additionally, every Markov chain assumes the called Markov assumption, which states that

the probability of being at a given state depends exclusively on the previous state.

Hidden Markov Models are extensions to Markov chains, "whose job is to assign a label

or class to each unit in a sequence, thus mapping a sequence of observations to a sequence of

labels"[JM00]. Besides the previous stated elements, HMMs are also made of the following listed

elements [Rab89, JM00]. A diagram is presented in figure 3.14:

• The possible and distinct observable symbols o from the vocabulary V;

• The observation symbol probability distribution Bj for every possible state j, also called the

emission probabilities, indicating the probability of being in that state when a given symbol

was observed;

Figure 3.14: Sample HMM for weather prediction. Extracted from [JM00] .

It should be noted that the states of a HMM are hidden and a sequence of states transitions

can only be predicted by means of a sequence of exterior and possible observations. Each hidden

state can only produce a single observation. Besides the Markov assumption, every HMM also

assumes the called Output independence assumption, which states that the probability of an

output observation oi depends only on the state that produced the observation 1i and not on any

other states or any other observations.

The Hidden Markov Model "approach to gesture recognition is motivated by the successful ap-

plication of hidden Markov modelling techniques to speech recognition problems. The similarities

between speech and gesture suggest that techniques effective for one problem may be effective for

the other as well" [MYS+97].

27

Related Work

However, in order to be used in real applications, one must be able to solve the so called three

classic problems [Rab89] which are:

1. "How to tell the likelihood of an observation sequence, according to a given model?"
This problem is solved by means of the Forward algorithm, which uses dynamic program-

ming techniques to efficiently compute the observation probability by summing over the

probabilities of all possible hidden state paths that could generate the observation sequence

by implicitly folding each of these paths into a single forward trellis [JM00].

2. "How to tell the most probable sequence of states for a given sequence of observations,
according to a given model?" This problem is solved by means of the Viterbi algorithm,

which uses dynamic programming techniques to select the state that has the highest proba-

bility and backtrack to the path that produced the highest probability using the backpointer

and return the states [Kic16].

3. "How to train a model in order to fit the training data?" This problem is solved by

means of the Baum-Welch algorithm, also called the Forward-Backwards algorithm that

calculates, for each training sequence, the contribution of a sequence to both the transitions

of the model and the emission probabilities. New model parameters are updated until a

log likelihood is smaller than a given threshold or when a defined maximum number of

iterations is passed.

In the developed application only the Baum-Welch and Forward algorithms are used.

28

Chapter 4

System Architecture

In this chapter the architecture of the developed system is discussed.

4.1 System Overview

The developed system works by separately detecting static gestures performed by the user’s left

hand and dynamic gestures performed by the user’s right hand. The system starts by analysing data

coming from the user’s left hand, verifying if the start static gesture is being performed. In that

case, the system also starts analysing information from the user’s right hand in order to recognize

any of the trained dynamic gestures. Figure 4.1 depicts the state machine for the system, where:

• State 0. The system verifies if the user is performing the start static gesture. If so, a START

event occurs. Otherwise a STOP event occurs;

• State 1. The system also starts collecting the user’s right hand until the user stops perform-

ing the start static gesture, leading into a STOP event;

• State 2. The system processes the collected right hand data in order to recognize the most

probable dynamic gesture. To do so, the difference between the certainty levels of the two

most probable gestures is used, in order to avoid ambiguous results. If the stated difference

is greater than 10%, the gesture with greater certainty level is accepted as the most probable

and a DETECTED event occurs. Otherwise a GARBAGE event occurs;

• State 3. The system has recognized a trained dynamic gesture, and communicates the robot

the proper command to be executed.

For simplicity reasons, the developed system is not able to recognize two dynamic gestures in

a row.

29

System Architecture

Figure 4.1: System state machine.

4.2 Gesture Dataset

In this section, the used gesture dataset is introduced and data acquisition mechanisms are dis-

cussed. As mentioned before, static gestures must be performed exclusively with the left hand,

while dynamic gestures must be performed exclusively with the right hand.

Chosen Senso Gloves hand features

At the time of writing, the Senso Gloves are only capable of directly providing the coordinates

at the centre of the hand palm, not giving any direct information regarding the fingers’ joints and

tips coordinates. This issue complicates the retrieval of features F1 and F2 (see subsection 3.2.2).

However, the Senso Gloves provide the Euler angles for every finger (yaw and pitch only, since

it is anatomically impossible for a finger to roll around its central axis). Since yaw is directly

proportional to ideal feature F1 and pitch is directly proportional to ideal feature F2, the values of

those angles were used as a substitute.

Despite providing relevant hand data regarding ideal features F3 and F4, the Senso Gloves

do so in quaternion format and not in the desired unit vector format. This issue was solved by

transforming the quaternion representation into an axis-angle one. The normal vectors to the hand

palm and wrist were then obtained.

The Senso Gloves already provides the hand speed in the desired vector format.

Chosen Leap Motion hand features

Using the Leap Motion API it is already possible to directly obtain the necessary hand data for all

features except F2. Nonetheless, the API provides built-in vector operations, easing the calculation

of the necessary angles. The angles were calculated using the dot product between the vectors that

go from the hand palm to the fingers tips.

4.2.1 Static Gesture Dataset

The developed system is trained to recognize only two static gestures. The first, called the start

gesture, is used to signal the system to start recognizing dynamic gestures. This gesture is done by

closing the hand with the palm facing the ground and then by approximating it to the chest, with

the hand palm now facing forwards.

30

System Architecture

Figure 4.2: Start gesture
Any other gesture performed by the left hand is perceived as a stop gesture, which signals the sys-

tem to stop processing any right hand data until the start gesture is performed again. For training

purposes, a total of 100 samples were obtained for each mentioned static gesture. For testing

purposes, another set of distinct 100 samples were obtained.

4.2.2 Dynamic Gesture Dataset

The dynamic gestures used are summarized in the following list. It should be noted that every

gesture starts with the same closed hand position with the palm facing the ground. For testing

purposes, a total of 10 recordings were obtained for each gesture.

• Home. The robot must return to its initial position. The operator must initially approximate

the closed hand to his chest, then rotate the hand and open the fingers so that the palm faces

the operator’s chest. The final step consists in performing an elbow centered counterclock-

wise rotation of 90 degrees (see figure 4.3);

Figure 4.3: Home gesture

• Hover. The robot must go to the position before initializing the placement operations.

The operator’s hand must be opened and rotated 90 degrees counterclockwise, return to

the opened position and then rotate another 90 degrees clockwise, always with the palm

turned downwards (see figure 4.4);

31

System Architecture

Figure 4.4: Hover gesture

• Next. Pass to the next set of instructions. The operator must stretch the index and middle

fingers and perform a circular motion clockwise (see figure 4.5);

Figure 4.5: Next gesture

• Open. Open the robotic gripper. The operator must simply open his right hand, stretching

every finger (see figure 4.6);

Figure 4.6: Open gesture

• Previous. Go back to the previous set of instructions. The operator must stretch the index

finger and perform a counterclockwise circular motion (see figure 4.7);

Figure 4.7: Previous gesture

• Stop. Stops current operation. The operator must raise the index finger and move it 45

degrees to the left, return to original position and then moving the finger 45 degrees to the

right (see figure 4.8).

32

System Architecture

Figure 4.8: Stop gesture

4.3 System Training

In this section the system training sequence is discussed.

Training the Static Gesture Recognizer

The training phase for the static gesture recognizer is schematized in the figure 4.9 and involves

the following steps:

Figure 4.9: Flow of static gesture data during the training phase.

1. The selected device sends continuous left hand data into the sampler module;

2. The sampler module assigns a distinct label to the received hand data, so that each distinct

static gesture has its unique label. The labelled data is then passed to the training module;

3. The training module applies the discussed SVM techniques upon the received labelled data

and outputs a trained model. It should be noted that the RBF kernel provided by LIBSVM

was used.

Training the Dynamic Gesture Recognizer

The training phase for the dynamic gesture recognizer is schematized in the figure 4.10 and in-

volves the following steps:

1. The selected device sends a continuous stream of right hand data into the recorder module;

33

System Architecture

Figure 4.10: Flow of dynamic gesture data during the training phase.

2. The recorder module aggregates the data into separate recordings, so that each recording

contains a single and complete performance of the gesture being recorded. All the record-

ings are then passed into the clusterer module;

3. The clusterer module applies the k-Means algorithm using the Silhouette method to each

of the received recordings in order to optimally cluster the continuous data. Each cluster

is tagged with a local ID, which ranges from 0 up to the optimal value of k - 1 and each

recording is then converted into a sequence of clusters IDs. The obtained local sequence is

passed to the filter module;

4. The filter module applies both a filtering step and a compression step to the sequence of

local IDs. The first step aims to remove existing noise, before it could reach the following

modules. Noise is represented by sporadic IDs in the sequence and is removed by means

of a histogram based filter that applies a fixed sized sliding window over the sequence. For

each iteration, the pivot element assumes the value of the most common ID in the window.

A sliding window size of 9 was used during practical experiments. The most common ID is

calculated using a frequency histogram which maps each ID to the number of occurrences

inside the window. The second step aims to improve the training phase by reducing the

sequence size. This is accomplished by removing consecutive elements with the same ID.

Since two non-related clusters can have the same local ID, is it necessary to translate local

IDs into global ones to avoid confusion during the model training. The processed sequence

is then passed to the dictionary module;

5. The dictionary module converts the sequence of local IDs into a sequence of global cluster

IDs. For that, it assigns an incremental ID to each new distinct cluster centroid. For every

cluster in the sequence, the dictionary calculates the euclidean distance to the most similar

cluster. If the calculated distance is greater than a specified threshold, then a new entry is

added to the dictionary. If the euclidean distance between two cluster centroids is smaller

than a specified threshold, the dictionary returns the ID of the nearest cluster centroid. To

optimize the search for the nearest cluster centroid a KDTree data structure was used. The

sequence of global cluster IDs is then used to train the gesture HMM.

34

System Architecture

6. The HMM module uses the sequence of global cluster IDs to train the gesture HMM using

Baum-Welch algorithm;

7. After all recording sequences from a given gesture are used to train the HMM of that gesture,

it is passed into a serializer module. This step allows the models to be trained once and be

used later on;

8. After every gesture is serialized, the completely updated dictionary can also be serialized in

order to be used during the recognition phase.

4.4 Gesture Recognition

In this section the sequences for gesture recognition are discussed.

Recognizing Static Gestures

The recognition phase for static gestures is schematized in the figure 4.11 and involves the follow-

ing steps:

Figure 4.11: Flow of static gesture data during the recognition phase.

1. The model obtained during the training phase is passed to the predictor module;

2. The selected device passes continuous left hand data into the predictor module;

3. The predictor module, based on the passed model, makes a prediction and labels the hand

pose. The labels match the same labels used during the training phase.

Recognizing Dynamic Gestures

The recognition phase for dynamic gestures is schematized in the figure 4.12 and involves the

following steps:

1. The previously serialized dictionary and HMM during the training stage are now deserial-

ized;

35

System Architecture

Figure 4.12: Flow of dynamic gesture data during the recognition phase.

2. The hand features are obtained from the selected device and inserted into a circular buffer,

creating the necessary temporal sliding window for the recognition of dynamic gestures

while limiting the amount of sensor data that is passed. The content of the circular buffer is

passed to the clusterer module.

3. The data passed to the clusterer module is clustered and converted into a sequence of local

cluster IDs, according to the same processes explained in the previous section;

4. The data is then passed to the filter module to be removed from noise and to be compressed,

according to the same processes explained in the previous section;

5. The sequence of local IDs is passed into the gesture dictionary to be converted into a se-

quence of global cluster IDs;

6. After translating local cluster IDs into global cluster IDs, the sequence of cluster IDs is

passed to each of the deserialized HMMs;

7. Each gesture model sends the probability for the given sequence of global IDs to the com-

parator module, calculated with the Forward algorithm. The task of the comparator module

is to select the most probable gesture based on the passed probability values. Since every

sequence of global IDs is evaluated separately by all the gesture models, it is possible for a

given sequence to be considered highly probable by more than a single HMM, thus leading

to an ambiguous conclusion. The comparator module only recognizes a gesture when the

difference between the two greatest certainty levels is superior to 10%.

4.5 Packages and Class Diagrams

The developed system was divided in the following manner:

1. Clusterers package. This package contains the following classes, that constitute the clus-

terer module:

36

System Architecture

• KMeansCluster class. Wrapper for SimpleKMeans class and the cluster optimizer

provided by the Weka and KValid libraries, respectably. Interfaces with the Gesture-

Dictionary class, to which it passes the local cluster IDs;

• Translator class. Helper class that translates the sequence of cluster IDs using the

global IDs provided by the dictionary module.

Figure 4.13: UML class model for the clusterers package content.

2. Configurations package. This package contains the classes used for setting user defined

constants regarding the device to use, portability issues, clustering and model training fine

tunning;

3. Controllers package. This package contains the controllers for the used, necessary to obtain

and process the required hand features:

• Device interface. Defines the mandatory behaviours for each used device;

• SensoGloves class. Controller for the Senso Gloves model DK-2. The necessary hand

features are obtained through a listener class named SensoGlovesListener;

• LeapMotion class. Controller for the Leap Motion. The necessary hand features are

obtained through a listener class named LeapMotionListener;

• HandType enumeration. Enumeration used to select the hand from which to obtain

the required data.

4. Filters package. This package contains the HistogramFilter class, which is responsible for

the noise removal and compression of the cluster ID sequences produced by the clusterer

module.

5. Gestures package. This package contains the classes that interface between the clusterers

and models:

• GestureDictionary class. Singleton class containing the implementation of the dictio-

nary module. Uses the KDTree data structure provided by the Java-ML library and the

map of IDs necessary for the conversion of local cluster IDs into global ones;

37

System Architecture

Figure 4.14: UML class model for the controllers package content.

Figure 4.15: UML class model for the filters package content.

• DynamicGesture class. Every instance of this class corresponds to a distinct dynamic

gesture. Eases both the clustering of the related recordings and the training of the

underlying HMM.

Figure 4.16: UML class model for the gestures package content.

6. Gui package. This packages contains the following classes, necessary for the sampling and

recording processes, and the only ones to require a graphical user interface:

• DataSampler class. Implementation of the sampler module, that eases the process of

sampling static left hand poses;

38

System Architecture

• DataRecorder class. Implementation of the recorder module, that eases both the

recording of gesture performances and the dataset file system management. It uses

a helper class Recorder necessary to start and stop the recording process.

Figure 4.17: UML class model for the gui package content.

7. Io package. This package contain the following classes, necessary to the creation of files in

specific formats:

• ObservationWriter class. Used by the sampler module when writing to files the ob-

tained static hand data. The used format is required by the SVM algorithms provided

by the LIBSVM library;

• CSVWriter class. Used by the recorder module when writing to files the dynamic

gesture recordings. Outputs in the CSV format are simple to obtain and be used by the

clusterer module.

Figure 4.18: UML class model for the io package content.

8. Models package. This package contain the Hidden Markov class, which acts as a wrapper

to HMM implementation provided by the Jahmm library, easing the model initialization,

training and sequence probability calculation.

9. Recognizers package. This package contains the following classes, responsible for the ges-

ture recognition and model training:

39

System Architecture

Figure 4.19: UML class model for the models package content.

• OfflineTrainer class. Implementation of both the explained pipelines for static gesture

and dynamic gesture training.

• StaticGestureRecognizer class. Implementation of the explained pipeline for static

gesture recognition. It uses the State enumeration, to keep track of the current machine

state as also explained.

• StateMachine. Implementation of the previously presented state machine;

• OnlineRecognizer class. Application entry point, consisting in the implementation of

both the pipelines for static and dynamic gesture recognition. The mentioned circular

buffer is implemented by the CircularBuffer class, and the hand data is obtained by a

Producer thread and consumed by a Consumer thread.

Figure 4.20: UML class model for the recognizers package content.

10. Validators package. This package contains the following classes, responsible for the imple-

mentation of the K-Fold Cross Validation algorithm:

40

System Architecture

• Fold class. Given a set of recordings for a particular gesture, this class contains the

necessary methods to group the recordings into a training set and a testing set, accord-

ing to a defined proportion.

• Dataset class. Eases the management of every fold in the gesture dataset.

• ConfusionMatrix class. Is able to provide the confusion matrixes regarding both the

overall system performance and the performance of the system for each individual

class.

• CrossValidator class. Implementation of the K-Fold Cross Validation algorithm.

Figure 4.21: UML class model for the validators package content.

The mentioned validation algorithm is explained in the next chapter.

41

System Architecture

42

Chapter 5

Results

In this chapter the the experiments done and the obtained results are discussed.

5.1 Graphical User Interfaces

In this section the developed graphical user interfaces are discussed.

5.1.1 Data Sampler

The data sampler graphical user interface consists of a unique window, as depicted in figure 5.1.

Figure 5.1: Data sampler graphical user interface.

The sampler window contains exclusively the sampler button. Every time the button is pressed

the most recent hand data is obtained and stored in a common file, alongside the remaining data

samples. When the window is closed, the sampler application stores the file properly inside the

dataset directory.

5.1.2 Data Recorder

The data recorder graphical user interface also consists of a unique window, as depicted in figure

5.2.

The recorder window contains both the start and stop buttons. Every time the start button

is pressed all the incoming data frames from the device are stored chronologically in a common

43

Results

Figure 5.2: Data recorder graphical user interface.

file, until the stop button is pressed. When that happens, the recording application stores the file

properly inside the dataset directory.

5.1.3 Gesture Prompt

In order to know which gesture is being recorded or sampled, an input form is presented to the user

asking for the gesture name. This information is then used by the application to store the samples

and recordings in a structured way inside the file system automating the training and recognition

processes.

5.2 Results

In this section the obtained results are discussed.

5.2.1 K-Fold Cross Validation

In order to better evaluate the gesture recognizer module performance, a K-Fold Cross Validation

was executed, since the number of recordings per dynamic gesture is low. By using the men-

tioned technique it was possible to utilize the entire volume of recordings to both train and test the

recognizer module, optimizing its use and obtaining a better estimate of the overall performance.

The K-Fold Cross Validation algorithm initially divides the entire dataset into folds, each con-

taining a same number of data files. Then, a given percentage of those folds are used to train the

system while the remaining folds are used for testing. The algorithm iterates over the dataset, until

every fold were used to both test and train the system, as depicted in figure 5.3.

For the developed system, 70% of the dataset was used for training and the remaining 30%

was used for testing.

5.2.2 Confusion Matrices

Table 5.1 corresponds to the confusion matrix for the static gesture recognition module while

using the Leap Motion. Table 5.2 is the analogous matrix using the Senso Gloves. Henceforward

for every confusion matrix presented the rows represent the real gesture name and the columns

represent the name of the recognized gesture.

44

Results

Figure 5.3: K-Fold Cross Validation algorithm [Joa18].

Both matrices show that using either the Leap Motion or the Senso Gloves it is possible to

correctly recognize the start static gestures at least 60% of the time and the stop static gesture at

least 99% of the time.

The lower recognition rates for the start gesture are due to the fact that the set of chosen hand

features is not completely adequated to the dataset. In fact, the scatter plots for the start hand poses

and stop hand pose depicted in figures 5.4 and 5.5, respectively, show that the data obtained for

both gestures is to close to each other. This complicates the obtention of an ideal hyperplane while

using SVM to train the model. However the scatter plots additionally show that the start hand

data contains either the lowest or the greatest values per feature used, lying in the extremes of the

plotted lines. This property allows to explain the 79% rate of successful classifications. The start

recognition rate could be then improved by changing the way the hand normal, the hand velocity

and the wrist normal vectors are processed. As previously stated, the components of these vectores

are discretized in -1, 0 or 1 in order to increase the system robustness. Therefore, increasing the

number of possible discrete values would allow a better static gesture recognition.

Figure 5.4: Scatter plot of the start hand poses obtained using the Senso Gloves.

45

Results

start stop
start 63.0% 37.0%
stop 0.0% 100.0%

Table 5.1: Confusion matrix for the static gesture recognition module using the Leap Motion.

Figure 5.5: Scatter plot of the stop hand poses obtained using the Senso Gloves.

Nonetheless, since there are only two possible static gestures, the mentioned rate of correct

recognitions for the start gesture, although not ideal, must not be perceived as alarming, since it is

preferred for the robot to not do anything by default.

The difference of 16% between devices can be explained by the Senso Gloves greater robust-

ness to hand occlusions and environmental noise.

Table 5.3 corresponds to the confusion matrix for the dynamic gesture recognition module

while using the Senso Gloves. The garbage labelled column and row tell the proportion of times

the system did neither mistook a dynamic gesture for another gesture nor could recognize the

gesture within high levels of certainty.

The diagonal of the obtained matrix shows that using the Senso Gloves it was possible to

correctly recognize every dynamic gesture at least 75% of the time, except for the hover gesture

which was confused with the open gesture 33% of the times. This result can be explained given the

fact that the steps required to perform an open gesture are similar to the steps required to perform

a hover gesture. In fact, the first gesture can then be seen as a subset of the second, and their

HMM must have a relevant degree of resemblance, leading to the obtained results. The results

for the hover gesture recognition could be improved by changing the gesture, so that no gesture

can be seen as a subset of another. By reducing either the mandatory distance between entries

in the dictionary module or the minimum certainty level during the training phase, the variability

46

Results

start stop
start 79.0% 21.0%
stop 1.0% 99.0%

Table 5.2: Confusion matrix for the static gesture recognition module using the Senso Gloves.

between the gestures could theoretically be improved, despite interfering with the recognition of

the remaining gestures.

Table 5.4 corresponds to the confusion matrix for the dynamic gesture recognition module,

while using the Leap Motion.

The diagonal of the this matrix shows that using the Leap Motion it was possible to recog-

nize every dynamic gesture, although with lower certainty in comparison with the Senso Gloves,

except for the previous gesture. This gesture was equally recognized as the stop gesture exactly

half of the times it was not mistaken by garbage. These conflicts can also be explained with sim-

ilarity issues, since both rely on the use of the index finger in circular movements that can’t be

correctly distinguished unless a proper tuning of the clustering algorithm properties is done, pos-

sibly compromising the recognition of the remaining gestures. A similar confusion between the

hover gesture and the open gesture also occurred, but only 8% of the times. The obtained results

for the home gesture can easily be explained by referring the limited working area of the device.

Although positioned in a way that allowed to visualize the entire user torso and arms, the device

showed difficulties in obtaining the correct hand pose when the same was positioned too far away

from the device surface, often swapping the hand palm orientation. It should be mentioned that

every recording using the Leap Motion was performed in a dark environment, in order to minimize

the noise introduced into the system by ambient light.

Although equivalent the sets of hand features used by the Senso Gloves and the Leap Motion

are distinct therefore explaining the different results obtained under the same training and testing

conditions. The better results using the Senso Gloves can also be interpreted as a direct result of

their immunity to total and partial hand occlusions, light conditions and arm extension.

47

Results

home hover next open previous stop garbage
home 75.0% 0.0% 0.0% 0.0% 0.0% 0.0% 25.0%
hover 0.0% 17.0% 0.0% 33.0% 0.0% 0.0% 50.0%
next 0.0% 0.0% 92.0% 0.0% 0.0% 0.0% 8.0%
open 0.0% 0.0% 0.0% 75.0% 0.0% 0.0% 25.0%

previous 0.0% 0.0% 0.0% 0.0% 92.0% 8.0% 0.0%
stop 0.0% 0.0% 0.0% 0.0% 0.0% 83.0% 17.0%

garbage 0.0% 3.0% 0.0% 0.0% 0.0% 0.0% 98.0%

Table 5.3: Confusion matrix for the dynamic gesture recognition module using the Senso Gloves.

home hover next open previous stop garbage
home 25.0% 17.0% 0.0% 0.0% 0.0% 0.0% 58.0%
hover 0.0% 67.0% 0.0% 8.0% 0.0% 0.0% 33.0%
next 0.0% 0.0% 42.0% 0.0% 0.0% 0.0% 58.0%
open 0.0% 0.0% 0.0% 83.0% 0.0% 0.0% 17.0%

previous 0.0% 0.0% 0.0% 0.0% 25.0% 25.0% 50.0%
stop 0.0% 0.0% 0.0% 0.0% 17.0% 67.0% 17.0%

garbage 8.0% 0.0% 0.0% 0.0% 0.0% 0.0% 92.0%

Table 5.4: Confusion matrix for the dynamic gesture recognition module using the Leap Motion.

48

Chapter 6

Conclusions

In this section the project conclusions are stated and an analysis of possible future work is also

discussed.

6.1 Conclusions

The following conclusions were reached based on the developed work :

• Correct recognition of both static and dynamic gestures can be achieved using the Senso

Gloves, on average, at least 89% of the times for static gestures and at least 76% of the

times for dynamic gestures. These results proved better than those obtained using the Leap

Motion, under the same testing conditions, mainly due to the gloves’ robustness to occlu-

sions and bigger working area;

• It is possible to train a static gesture recognizer using Support Vector Machines with cer-

tainty levels above 79% up to 99%, while requiring a lesser data volume and computation

power than those required by alternative neural network approaches, at least in cases where

the number of static gestures to be recognized is small;

• Due to its ability to encode time changing gestures into sequences of finite states, Hidden

Markov Models proved to be a good statistical model for gestural language;

• It is possible to train a dynamic gesture recognizer using the k-Means clustering algorithm

with certainty levels ranging from 75% up to 92%. Although the use of the Silhouette value

for optimizing the number of clusters increases the necessary time to cluster the hand data,

the system was able to still recognize gestures within periods of time smaller than 1 second,

since both algorithms are less computationally expensive comparatively to other clustering

algorithms. The experiments made also show that the dictionary module must be well tuned,

since either complete gestures or gesture subsets might appear as if clusterized in the same

way, leading to severe recognition problems;

49

Conclusions

• The gestures to be recognized must be as simple, short and as distinct as possible, in order

to ease the clusterization process and model training. Gestures following these criteria were

better recognized. Equally the set of selected hand features must be chosen in order to

increase the variability of the hand poses during the recording and live recognition phases.

6.2 Future Work

Future work may include the addition of extra dynamic gestures that would allow to either control

the robot position with the hand, by means of rotating the thumb as in a gamepad joystick or to

control the robotic gripper being used in a much more dedicated fashion besides the generic open

gesture. The developed system would be more practical, at least from the human point of view, if

two or more dynamic gestures could be performed in a row.

Future work may also include the implementation of other clustering algorithms in an attempt

to obtain better results, namely density based clustering algorithms such as the DBSCAN algo-

rithm. By properly weighting the hand features, even better results could be obtained.

The worker’s safety should never be set aside, even in the most utopic human-robot collabo-

rative scenario. Using the Senso Gloves haptic feedback system, a haptic mechanism for human

safety could be developed, warning the human worker that his hands are to close to the robotic

arm. Such system could be implemented using the absolute position tracking capabilities of the

Senso Gloves along with 3D sensors positioned in the workspace.

50

References

[Bar16] E. Barsoum. Articulated Hand Pose Estimation Review. ArXiv e-prints, 2016.

[CCH05] Wen-Yan Chang, Chu-Song Chen, and Yi-Ping Hung. Appearance-guided particle
filtering for articulated hand tracking. In 2005 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR’05), volume 1, pages 235–242
vol. 1, June 2005.

[Col] Alex Colgan. How does the leap motion controller work?

[CPCC16] Pasquale Coscia, Francesco A. N. Palmieri, Francesco Castaldo, and Alberto Cav-
allo. 3-D Hand Pose Estimation from Kinect’s Point Cloud Using Appearance
Matching, pages 37–45. Springer International Publishing, Cham, 2016.

[CV95] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Mach. Learn.,
20(3):273–297, September 1995.

[dCM06] T. E. de Campos and D. W. Murray. Regression-based hand pose estimation from
multiple cameras. In 2006 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’06), volume 1, pages 782–789, 2006.

[dGA16] M. M. A. de Graaf and S. Ben Allouch. Anticipating our future robot society:
The evaluation of future robot applications from a user’s perspective. In 2016 25th
IEEE International Symposium on Robot and Human Interactive Communication
(RO-MAN), pages 755–762, 2016.

[DSD08] L. Dipietro, A. M. Sabatini, and P. Dario. A survey of glove-based systems and
their applications. IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews), 38(4):461–482, July 2008.

[DWÖG17] Endri Dibra, Thomas Wolf, A. Cengiz Öztireli, and Markus H. Gross. How to
refine 3d hand pose estimation from unlabelled depth data ? In Fifth International
Conference on 3D Vision (3DV), Qingdao, China, October 10-12, 2017, 2017.

[DYZ+17] X. Deng, S. Yang, Y. Zhang, P. Tan, L. Chang, and H. Wang. Hand3D: Hand Pose
Estimation using 3D Neural Network. ArXiv e-prints, 2017.

[FBS15] Marco Faber, Jennifer Bützler, and Christopher M. Schlick. Human-robot Coop-
eration in Future Production Systems: Analysis of Requirements for Designing an
Ergonomic Work System. Procedia Manufacturing, 3(Supplement C):510 – 517,
2015.

51

REFERENCES

[GVD+16] Archana Ghotkar, Pujashree Vidap, Kshitish Deo, Carole A. Vogler, Dimitri N.
Metaxas, and Shanablehand K. Assaleh. Dynamic hand gesture recognition using
hidden markov model by microsoft kinect sensor. 2016.

[HRH08] S. Hussmann, T. Ringbeck, and B. Hagebeuker. A Performance Review of 3D TOF
Vision Systems in Comparison to Stereo Vision Systems, pages 103 – 20. Rijeka,
Croatia, 2008.

[HSKMG09] H. Hamer, K. Schindler, E. Koller-Meier, and L. V. Gool. Tracking a hand manipu-
lating an object. In 2009 IEEE 12th International Conference on Computer Vision,
pages 1475–1482, 2009.

[Int17] Intel® RealSense™ Depth Camera D400-Series Datasheet . Technical report, Intel,
08 2017.

[IOA11] Nikolaos Kyriazis Iason Oikonomidis and Antonis Argyros. Efficient model-
based 3d tracking of hand articulations using kinect. In Proceedings of the
British Machine Vision Conference, pages 101.1–101.11. BMVA Press, 2011.
http://dx.doi.org/10.5244/C.25.101.

[ISO17] ISO. ISO 10218-1:2011 - robots and robotic devices – safety requirements for
industrial robots – part 1: Robots. Available at https://www.iso.org/
standard/51330.html, December 2017.

[JCP+10] S. Jin, J. Cho, X. D. Pham, K. M. Lee, S. K. Park, M. Kim, and J. W. Jeon. FPGA
design and implementation of a real-time stereo vision system. IEEE Transactions
on Circuits and Systems for Video Technology, 20(1):15–26, Jan 2010.

[JM00] Daniel Jurafsky and James H. Martin. Speech and Language Processing: An Intro-
duction to Natural Language Processing, Computational Linguistics, and Speech
Recognition. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1st edition, 2000.

[Joa18] By Joan.domenech91. K-fold cross validation, 2018. [CC BY-SA 3.0
(https://creativecommons.org/licenses/by-sa/3.0)], from Wikimedia Commons.

[Kar05] Maria Karam. A taxonomy of gestures in human computer interaction. 2005.

[Kic16] Supongkiba Kichu. Viterbi Algorithm. http://https://pt.slideshare.
net/skjo2/viterbi-algorithm/, 2016. [Online; accessed 6-June-2018].

[KSGV+09] Jong-Hwan Kim, Shuzhi Sam Ge, Prahlad Vadakkepat, Norbert Jesse, Abdullah Al-
Mamun, Sadasivan Puthusserypady, Ulrich Rückert, Joaquin Sitte, Ulf Witkowski,
Ryohei Nakatsu, Thomas Braunl, and Jacky Baltes. Advances in robotics, fira
roboworld congress 2009, incheon, korea, august 16-20, 2009. proceedings. 5744,
01 2009.

[Li14] Larry Li. Time-of-Flight Camera – An Introduction. Technical report, Texas Instru-
ments, 05 2014.

[MF13] Aaron Martinez and Enrique Fernandez. Learning ROS for Robotics Programming.
Packt Publishing, 2013.

52

https://www.iso.org/standard/51330.html
https://www.iso.org/standard/51330.html
http://https://pt.slideshare.net/skjo2/viterbi-algorithm/
http://https://pt.slideshare.net/skjo2/viterbi-algorithm/

REFERENCES

[MN06] Zhenyao Mo and U. Neumann. Real-time hand pose recognition using low-
resolution depth images. In 2006 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’06), volume 2, pages 1499–1505, 2006.

[MYS+97] Byung-Woo Min, Ho-Sub Yoon, Jung Soh, Yun-Mo Yang, and Toshiaki Ejima.
Hand gesture recognition using hidden markov models. In 1997 IEEE Interna-
tional Conference on Systems, Man, and Cybernetics. Computational Cybernetics
and Simulation, volume 5, pages 4232–4235 vol.5, 1997.

[NBT07] Mircea Nicolescu, Richard D. Boyle, and Xander Twombly. Vision-based hand
pose estimation: A review. Computer Vision and Image Understanding, 108(1):52
– 73, 2007.

[PKA07] David Page, Andreas Koschan, and Mongi Abidi. Methodologies and techniques for
reverse engineering–the potential for automation with 3-d laser scanners, 10 2007.

[PN09] J.S. Prasad and G.C. Nandi. Clustering method evaluation for hidden markov model
based real-time gesture recognition. pages 419 – 23, 2009.

[PYK+12] Sangheon Park, Sunjin Yu, Joongrock Kim, Sungjin Kim, and Sangyoun Lee. 3d
hand tracking using kalman filter in depth space. EURASIP Journal on Advances in
Signal Processing, 2012(1):36, Feb 2012.

[Rab89] Lawrence R. Rabiner. A tutorial on hidden markov models and selected applications
in speech recognition. In PROCEEDINGS OF THE IEEE, Volume: 77, Issue: 2,
pages 257–286, 1989.

[Rou87] Peter J. Rousseeuw. Silhouettes: A graphical aid to the interpretation and validation
of cluster analysis. Journal of Computational and Applied Mathematics, 20:53 –
65, 1987.

[Sit] Yes, industry 5.0 is already on the horizon. http://www.machinedesign.
com/industrial-automation/yes-industry-50-already-horizon.
Accessed: 2018-01-30.

[SMZ+16] Srinath Sridhar, Franziska Mueller, Michael Zollhoefer, Dan Casas, Antti
Oulasvirta, and Christian Theobalt. Real-time joint tracking of a hand manipulating
an object from rgb-d input. In Proceedings of European Conference on Computer
Vision (ECCV), October 2016.

[SPM10] J.J. Sorribes, M. Prats, and A. Morales. Visual tracking of a jaw gripper based on
articulated 3d models for grasping. pages 2302 – 7, Piscataway, NJ, USA, 2010.

[TJN08] Leila Takayama, Wendy Ju, and Clifford Nass. Beyond dirty, dangerous and dull:
What everyday people think robots should do. In Proceedings of the 3rd ACM/IEEE
International Conference on Human Robot Interaction, HRI ’08, pages 25–32, New
York, NY, USA, 2008. ACM.

[TKD+15] Tippaya Thinsungnoen, Nuntawut Kaoungku, Pongsakorn Durongdumronchai, Kit-
tisak Kerdprasop, and Nittaya Kerdprasop. The clustering validity with silhouette
and sum of squared errors. 2015.

[TT11] Velmurugan T and Santhanam T. A survey of partition based clustering algorithms
in data mining: An experimental approach. 10, 03 2011.

53

http://www.machinedesign.com/industrial-automation/yes-industry-50-already-horizon
http://www.machinedesign.com/industrial-automation/yes-industry-50-already-horizon

REFERENCES

[uni] Unimate - the first industrial robot. https://www.robotics.org/
joseph-engelberger/unimate.cfm. Accessed: 2017-12-31.

[VM98] R. J. Valkenburg and A. M. McIvor. Accurate 3d measurement using a structured
light system. Image and Vision Computing, 16(2):99 – 110, 1998.

[VMSLB13] Fereydoon Vafaei, Brian M Slator, Juan Li, and Benjamin Braaten. Taxonomy of
gestures in human computer interaction, 12 2013.

[WHX17] Lin Wang, Jinfeng He, and Songjie Xu. The application of industry 4.0 in cus-
tomized furniture manufacturing industry. volume 100, pages 03022 (4 pp.) –, 2017.

[Wik17] WikiBooks. Support Vector Machines. https://en.wikibooks.org/wiki/
Support_Vector_Machines, 2017. [Online; accessed 6-June-2018].

[WMC+15] Xingyu Wu, Xia Mao, Lijiang Chen, Yuli Xue, and Alberto Rovetta. Depth image-
based hand tracking in complex scene. Optik - International Journal for Light and
Electron Optics, 126(20):2757 – 2763, 2015.

[WP09] Robert Y. Wang and Jovan Popović. Real-time hand-tracking with a color glove. In
ACM SIGGRAPH 2009 Papers, SIGGRAPH ’09, pages 63:1–63:8. ACM, 2009.

[WPVY17] C. Wan, T. Probst, L. Van Gool, and A. Yao. Dense 3D Regression for Hand Pose
Estimation. ArXiv e-prints, 2017.

[YYGK17] S. Yuan, Q. Ye, G. Garcia-Hernando, and T.-K. Kim. The 2017 Hands in the Million
Challenge on 3D Hand Pose Estimation. ArXiv e-prints, 2017.

[YYS+17] S. Yuan, Q. Ye, B. Stenger, S. Jain, and T.-K. Kim. BigHand2.2M Benchmark:
Hand Pose Dataset and State of the Art Analysis. ArXiv e-prints, April 2017.

[ZLZ15] Keliang Zhou, Taigang Liu, and Lifeng Zhou. Industry 4.0: towards future indus-
trial opportunities and challenges. pages 2147 – 52, 2015.

54

https://www.robotics.org/joseph-engelberger/unimate.cfm
https://www.robotics.org/joseph-engelberger/unimate.cfm
https://en.wikibooks.org/wiki/Support_Vector_Machines
https://en.wikibooks.org/wiki/Support_Vector_Machines

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Research Questions
	1.3 Contributions
	1.4 Outline

	2 Technologies
	2.1 Camera Systems
	2.1.1 Stereo Vision Systems
	2.1.2 Time-of-Flight Systems
	2.1.3 Structured Light Systems
	2.1.4 Example Camera Systems

	2.2 Glove-based systems
	2.3 Robotic Grippers
	2.4 Software Libraries
	2.4.1 Robot Operating System
	2.4.2 Weka
	2.4.3 KValid
	2.4.4 Java-ML
	2.4.5 LIBSVM
	2.4.6 Jahmm

	3 Related Work
	3.1 Hand Tracking and Pose Estimation
	3.1.1 Human Hand Modelling
	3.1.2 Robot Gripper Modeling
	3.1.3 Pose Estimation Pipelines
	3.1.4 Hand Acquisition
	3.1.5 Tracking and Pose Estimation
	3.1.6 Occlusion Handling
	3.1.7 Datasets

	3.2 Gesture Recognition
	3.2.1 Gesture Classification
	3.2.2 Hand Data Features
	3.2.3 Algorithms for Gesture Recognition

	4 System Architecture
	4.1 System Overview
	4.2 Gesture Dataset
	4.2.1 Static Gesture Dataset
	4.2.2 Dynamic Gesture Dataset

	4.3 System Training
	4.4 Gesture Recognition
	4.5 Packages and Class Diagrams

	5 Results
	5.1 Graphical User Interfaces
	5.1.1 Data Sampler
	5.1.2 Data Recorder
	5.1.3 Gesture Prompt

	5.2 Results
	5.2.1 K-Fold Cross Validation
	5.2.2 Confusion Matrices

	6 Conclusions
	6.1 Conclusions
	6.2 Future Work

	References

