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Resumo

A metodologia  tradicional  para  o  exercício  da  Estimação de  Estados  nos  sistemas

elétricos, que tem como base o critério de Mínimos Quadrados / Erro Quadrático Mínimo,

baseia-se em certas suposições sobre os dados. Contudo, há situações excecionais em que há

medições que se tornam contaminadas por erros grosseiros, degradando a estimativa obtida.

Quando é feita uma análise posterior dos resíduos da estimativa, as medições suspeitas (se

existirem) são sinalizadas e removidas de exercícios futuros. Por vezes, medições que não

estão afetadas por erros grosseiros são também sinalizadas e, em certos cenários de erros

grosseiros conformes, poderão não ser detetadas todas as anomalias (se mesmo uma).

Na primeira metade da tese, é feita uma discussão sobre a praticidade matemática de

ambos o  critério  dos  MQ e o critério  da  Correntropia  na abordagem a diversas  situações

quanto  ao  perfil  de  erro  dos  dados.  Vários  autores  recentes  têm provado a utilidade da

Correntropia em lidar com outliers, gerando vários ótimos no espaço de soluções do problema

de otimização dos quais o ótimo global corresponde à solução mais coerente. Além disso, são

também  discutidos  diferentes  tipos  de  métodos  de  otimização,  nomeadamente  métodos

numéricos e meta-heurísticas, quanto às vantagens de cada um para diferentes estratégias de

exploração. Uma breve discussão é feita sobre perfis de erro e o problema particular dos

erros grosseiros conformes nos quais a tese coloca um foco especial.

Na  segunda  metade  da  tese,  são  realizadas  simulações  de  vários  casos  de  erros

grosseiros  para  um  sistema  teste,  desde  um  erro  singular  até  dois  erros  conformes.

Primeiramente, os casos são abordados pela metodologia tradicional de Mínimos Quadrados.

Verifica-se que ela é eficaz em lidar com a maioria dos casos mas não é satisfatória para

casos de dois erros grosseiros e, em especial, quando os erros são conformes. De seguida, é

aplicada  a  Correntropia  e  empregado  um método  numérico,  resultando  que,  enquanto  o

número de falsos positivos se torna nulo nos casos bem-sucedidos, as anomalias ficam por

detetar em alguns casos de erros conformes. O posterior emprego de uma meta-heurística de

enxame para auxiliar  na inicialização do método numérico prova que existe uma solução

coerente em que são propriamente sinalizadas as anomalias, sendo atingida com uma taxa de

sucesso  moderadamente  satisfatória.  Verifica-se  também que  o  método  híbrido  converge

frequentemente para um ótimo local notavelmente decetivo. Com o fim de aumentar a taxa

de sucesso, são testadas algumas definições de parâmetros do método, mecanismos adicionais

e uma extensão do método híbrido, ao que os resultados confirmam a dificuldade em lidar

com os casos problemáticos em questão. Por fim, é testada a utilidade da generalização da

Correntropia com o objetivo de auxiliar a exploração através de uma melhor delimitação das

zonas de convergência.
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Abstract

The  traditional  methodology  for  the  State  Estimation  exercise  in  power  systems,

which adopts the criterion of Least Squares / Minimum Quadratic Error, is based on certain

assumptions on the data. However, there are exceptional situations where measurements

become contaminated by gross errors, degrading the estimate. When a posterior analysis is

done on the residuals  of  the estimate,  suspicious  measurements  (if  any)  are flagged and

removed from futures exercises. Sometimes, measurements that are not affected by gross

errors  are also  flagged, since gross  errors  have cross  influence on other  residuals  of  the

estimate and, in certain scenarios of conforming gross errors, not all the anomalies are be

detected (if even one).

For the first half of the thesis, there is a discussion on the mathematical practicality

of both the Least Squares criterion and the Correntropy criterion on the approach to varying

situations regarding the data error profile. Many recent authors have proven the utility of

Correntropy on dealing with outliers, generating many optima in the solutions space of the

optimisation  problem,  of  which  the  global  optimum  is  the  most  coherent  solution.

Furthermore,  there  is  a  discussion  on  different  kinds  of  optimisation  methods,  namely

numerical methods and meta-heuristics, regarding each one’s advantages for different search

strategies. A brief discussion is had on error profiles and the particular problem of conforming

gross errors on which the thesis puts a special focus.

For the second half of the thesis, simulations of many cases of gross errors are made

for a test system, from a single error up to two conforming errors. Firstly, the cases are

tackled with the traditional Least Squares methodology. It is verified that it is effective in

dealing with the majority of cases but is not satisfactory for cases of two gross errors and,

specially,  when  the  errors  are  conforming.  Afterwards,  Correntropy  is  applied  and  a

numerical  method  is  employed,  resulting  in  that,  whereas  the  number  of  false  positives

becomes null in successful cases, the anomalies remain to be detected in some particular

cases of conforming errors. The posterior employment of a swarm meta-heuristic for aiding in

the initialisation of the numerical method proves that a coherent solution exists at which all

anomalies are properly flagged, being achieved with a moderately satisfactory success rate. It

is  also  verified  that  the  hybrid  method  often  converges  to  a  noticeably  deceptive  local

optimum. With the aim of  improving the success  rate,  some experiments  are made with

parameter settings for the method, additional mechanisms and an extension of the hybrid

method,  with  results  confirming  the  difficulty  in  dealing  with  the  aforementioned

problematic cases. Finally, the utility of the generalisation of Correntropy is tested with the

objective of aiding the exploration by better delimiting convergence zones.
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Chapter 1

Introduction

State Estimation (SE) is an exercise, conducted at power system control centres, that

aims at providing system operators with a coherent image of the system state. The need for a

SE procedure derives from the fact that the measurement data arriving at a SCADA in the

control centre are contaminated by errors, usually small, caused by a variety of sources, and

therefore they do not form a coherent set compatible with the Kirchhoff Laws governing

power networks.

The  thesis’  focus  is  the  exploration  of  conditions  and  consequences  of  two

simultaneously hard conditions sometimes prevailing in power systems State Estimation: the

occurrence of  gross  errors  in data (not  small  errors)  and,  in particular,  conforming gross

errors. This exploration aims at gaining insight on the difficulties of successfully handling such

situations and developing methodologies mitigating the consequences of those problems.

These difficulties have been recognized since long, but no consistent effort is known

to address them in depth. In fact, in most publications in the field, authors generally claim

that their test sets are exempt of conforming errors and that their algorithms, developed to

deal with several circumstances, are nevertheless applied to data sets clean of conforming

errors.  In  order  to  tackle  this  issue,  we  must  firstly  decide  on  how  we  define  error

conformance, since there may be differing opinions. In this thesis, such a definition will be

given hopefully with clarity and comprehension – but, in an introduction of the concept, we

may say  that  conforming errors  are errors  that  are  mutually  coherent  /  concordant;  for

instance, a negative error in a power injection and the same error in a near-by load. This

error concordance (contrary to a random perturbation of divergent errors) creates deceiving

landscapes  rendering  optimization  difficult  –  in  fact,  if  all  measurements  would  have

conforming errors in the same sense, this would bias the state estimation into believing that

the system state is something different altogether from the real state.

To explore the features of such difficult problem and recognize the characteristics of

the landscape of the optimization problem that represents the SE exercise, we had to search

for  an  adequate  technique  and  an  experiment  environment:  a  population-based  meta-

heuristic. The following is the rationale behind such choice:

1. It  is  common knowledge that  SE  based on  a  Least  Squares  criterion  (also

denoted as Minimum Square Error) is not adequate to deal with data sets with gross

errors.  These  contaminate  the  estimation,  introducing  large  deviations  in  the
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regression  surface interpolating the data and causing  the erroneous correction  to

several measurements, suggesting that they had large deviations even if this was not

the case.

2. To circumvent this effect, recently some authors have suggested the use of a

cost function such as Correntropy, which has properties like an M-estimator and, in

theory, is able to deal with outliers, leading to their natural rejection (outliers, since

the  gross  errors  would  be  far  out  of  the  regression  surface  passing  through  the

remaining data).

3. Such function has properties that may lead to an estimation ignoring the gross

errors (based on a regression surface that approximates the "healthy" data and leaves

out the erroneous data). However, in order to do this, the objective function is found

to have local  optima –  at  least,  one optimum that respects  to the "true"  /  most

accurate  /  most  likely  optimum  and  one  corresponding  to  a  regression  surface

interpolating through the outliers.

4. Furthermore, it  seems that conforming errors may induce the presence of

deceiving landscapes, where the optimum is found in a very narrow region while the

remaining landscape seems to hint that the optimum is elsewhere to be found.

The search for multiple optima excludes the possibility of using the classical Gauss-

Newton iterations, which is otherwise traditionally adopted when the regression criterion is

the quadratic LS. 

A population based meta-heuristic will give more flexibility to the search for multiple

optima, thus the choice for Evolutionary Particle Swarm Optimization. However, to speed up

the  search  and  make  it  more  efficient,  a  hybrid  meta-heuristic/gradient  approach  was

devised.

Lastly, the thesis explores the possibility of adopting Generalised Correntropy, either

instead of or even alongside Classical Correntropy, based on the generalised definition of

Gaussian functions, to explore different possibilities by providing the optimization landscape

with new shapes, which might favour the optimization progression.

Because the adoption of a meta-heuristic may prove to be heavy in computing terms,

and as  the  thesis  is  focused on  understanding  the  behaviour  of  distinct  models  and the

interaction of  the cost function landscapes with the algorithmic performances,  the thesis

adopts the traditional DC model to represent power flows. This renders the problem more

manageable in terms of computing effort and allows easier interpretation of the difficulties

that are met.

The conclusions obtained with solving a DC SE problem may be extremely helpful if

one aims at further extending the techniques to a full AC model.
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Chapter 2

State of the art

2.1 – State Estimation in power systems

2.1.1 – Paradigm

In  the  management  of  power  systems,  unpredictability  has  to  be  dealt  with

constantly. It is never possible to follow an exact operation planning, which might have been

made ahead for system operation, as some elements of the system are extremely dynamic,

measuring devices have their own precision classes, data transmission is not fully reliable and

may add noise and data capturing may not be made simultaneously for all measurements,

leading to incoherence. Also, exceptional incidents in the grid may occur, such as faults,

which must be dealt with as they come, often requiring immediate corrective actions – thus,

the need for a precise image of the system state.

In  order  to  deal  with  all  sources  of  imprecision  and  uncertainty  behaviour  and

maintain technical safety in the operation, an information system (residing in a SCADA / EMS –

Supervisory Control And Data Acquisition / Energy Management System) must monitor the

power system. This system is used to periodically gather data from many points in many sub-

grids that are part of the whole grid. Usually, the data are transmitted to local management

centres where they are processed and then sent to centres at higher levels of management,

hierarchically.

Due to certain factors,  which may introduce error  in  the data,  either during  the

measurement process or during the transmission process, affecting data quality before they

arrive at the control centres, data gathering units are massively deployed. Usually, there are

many more measurements than are minimally needed for assessing the state of the power

system at each instant.

Redundancy can help in making a more accurate assessment by compensating for data

imperfection or invalidity / unavailability. Since measurements are imperfect (affected by

error)  and there are more of  them available  than there  are  variables  to  be predicted /

estimated, we must develop a methodology for taking all available data into account and
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building an estimate which is coherent with the Kirchhoff Laws governing the power network.

This is the goal of SE.

The three main steps of a classical power system SE procedure are:

1. topology  processing.  This  refers  to  the  assessment  of  the  current  topology  /

configuration of the grid – which branches are in or out of service; which switches and

breakers are closed or open. This will determine the model of the power system that

is to be considered for the next steps.

2. state estimation calculation. This is the step at which an estimate of the system state

is determined, based on the topology that was obtained in the previous step and on

all the available data from the measurement process.

3. bad data processing. Classically, an analysis of the results from the previous step is

made with the goal of identifying potential anomalies in the data. Suspicious data are

flagged and removed from future procedures until the problem which originated the

anomalies is fixed. 

In modern days, steps 2 and 3 have been subject to attempts to merge them in a

single step, so that bad data processing is not made having as its departure point a result

already contaminated by bad data. Furthermore, there have been proposals to fuse steps 1, 2

and 3 in a single procedure, to avoid processing bad data analysis over results obtained with

an erroneous network topology. 

In this thesis, topology estimation is not addressed. However, the fusion of steps 1

and 2 is in fact addressed through the use of a mathematical modelling that originates this

fusion as a natural process.

2.1.2 – Optimisation problem

Mathematically,  the  problem of  SE  is  formulated  as  a  special  case  of  a  generic

problem  of  regression.  The  idea  is  to  minimise  a  “cost”  which  is  translated  from  the

“difference” between a set of samples / measurements of the system quantities and our

model for the system. The model formulates relations between the system variables or, in

other words, formulates outputs as functions of inputs.

With these regards, the problems of general regression and of SE are optimisation

problems. Their concept only is justified if we are faced with data redundancy, imperfection

and, consequently,  conflict. Having many more samples than unknowns to be determined

makes it impossible to determine a single set of values for the unknowns that match every

possible combination of measurements.

The key differences (from a theoretical perspective) between general regression and

SE are as follows:
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Regression (in general) State Estimation (in particular)

Samples  usually  correspond  to

states  at  many  experimental

instances.

Samples correspond to the power system state

in a single instant in time. While measurements

are known, the  state variables are missing and

to be determined.

The  model  structure  is  a

hypothesis  for  the  system

behaviour  and  its  parameters

are to be determined.

The model structure is assumed as correct and

the state variables (usually voltages/angles) to

be estimated correspond to the parameters in a

general regression model.

The difference between a certain measurement and the respective estimated value,

as a consequence of the estimated state variables, is denoted as a residual. This is different

from an error, which is the difference between a measurement and the true value for a

quantity (therefore being unknown because the true value is unknown as well).

The quality of any regression process is evaluated by a cost function, establishing

some merit order on vectors in the state space or voltages/angles. Also, each measurement

may be affected by a factor which expresses a degree of confidence in it value, in terms of

how  accurate  we  believe  it  to  be  –  usually  related  to  the  precision  of  the  measuring

equipment, but other factors may interfere as well, such as asynchronism in measurement

collection, unreliability in data transmission and equipment failures.

The goal function, which can be written as a cost function to be minimised, will be a

sum of terms.  Each term corresponds to an assumed cost  associated with the respective

residual. The translation from residual to cost is defined by a criterion.

f  =  ∑
k
 [wk*cost(rk)]  ,

rk   =  zk  - hk(x)

(2.1)

where:

 f function to be minimised;

 w measurement weight;

 cost function to be used as the criterion;

 r residual;

 z measurement;

 h model / equation of the quantity, as function (Kirchhoff Laws) of the

system variables;

 x system variables.

Depending on what criterion we choose, the cost of a residual might change and,

therefore, so might the “best” estimate, which is the global optimum of the problem. In

typical  scenarios where the data are affected only by minor errors (noise),  a simple and

traditional criterion (the Minimum Square Error or Least Squares criterion) may be employed

to produce a fairly accurate estimate. In an upcoming chapter, we will discuss other possible

scenarios that could require either additional processing of the data (which is the next step of

the SE procedure) or the use of an alternative criterion.
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2.1.3 – Model for a power system

Regarding our model for power systems, power flows in branches (and, by extension,

power injections in buses) are formulated as functions of voltage drop and angle difference

between buses. Each voltage magnitude and angle are system variables to be determined.

The AC model for the behaviour of active and reactive power flows and injections as

functions of voltage magnitudes and angles is represented by the following set of equations:

Pij  =  -Gij*ui
2 + ui*uj*(Gij*cosθij + Bij*sinθij)

Pi  =  ui*∑
k

[uk*(Gij*cosθij  + Bij*sinθij) ]

Qij  =  Bij*ui
2 + ui*uj*(-Bij*cosθij  + Gij*sinθij)

Qi  =  ui*∑
k

[uk*(-Bij*cosθij + Gij*sinθij) ]

(2.2)

where:

 Pij active power flow from bus i to bus j;

 Pi active power injection at bus i;

 Qij reactive power from bus i to bus j;

 Pi reactive power injection at bus i;

 ui voltage magnitude at bus i;

 θi voltage  angle at bus i;

 Gij element i j of the AC conductance matrix;

 Bij element i j of the AC susceptance matrix;

Based on our knowledge of the typical operation of power systems in the real world,

it is possible to come up with some simplifications / approximations in order to relax the

highly non-linear equations of the AC model into linear ones. This relaxation greatly reduces

the model’s mathematical complexity while still keeping it fairly reliable, considering that

the real world system’s operation is kept within certain boundaries.

The DC (simplified) model for the behaviour of active power flows and injections as

functions of voltage  angles is made up of the following set of equations:

Pij ≈ - Bij*θij

Pi ≈ -∑
k

[Bik*θk]
(2.3)

where:

 Pij active power flow from bus i to bus j;

 Pi active power injection at bus i;

 θi voltage angle at bus i;

 Bij element i j of the DC susceptance matrix.
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2.2 – Regression criteria

2.2.1 – Least Squares

The criterion of Least Squares is the standard, most widely known and most employed

rule  in  the  field  of  data  fitting  for  both  linear  and  non-linear  models.  This  is  also  the

traditional criterion of choice for SE in power systems [1][3].

LS is the rule of translating each residual into a cost by squaring it.

cost(r)  =  r2 (2.4)

With  this  criterion,  the  cost  of  a  residual  grows  at  a  quadratic  /  parabolic  rate

relatively to the growth of the residual. Therefore, the marginal cost (variation of cost by

variation of residual) grows at a linear rate.

Figure 2.1 – LS cost function.

When  employing  LS,  the  estimate  to  be  determined  ends  up  being  a  weighted

quadratic average of the samples. A marginal cost is (approximately) the variation in the total

cost by variation of the residual, either adding or subtracting. Since the marginal cost of a

larger residual is larger than that of a smaller residual, the tendency is for larger residuals to

be brought down and for smaller ones to be amplified, as a trade. A difference between

marginal costs indicates that it is possible to reduce the total cost, and such is the goal of an

optimisation problem.

LS  is  a  rule  of  regression  by  compromise.  Every  sample  in  the  data  set  has  an

unrestrained  (despite  weighted)  impact  on  the  estimate.  If  samples  are  very  coherent  /

closely distributed, the obtained estimate will be very similar to them as well. In this case, LS

fits the bill perfectly and there is no need for additional data processing or other criteria.

The issue comes when samples are not as coherent as we would like them to be. The

presence of a measurement vector component which, by whatever reason, has a very high

deviation  from  a  value  coherent  with  the  rest  of  the  components  (an  outlier)  might

significantly change the estimate that is obtained. Since there would be a residual with a very

large marginal cost if the estimate was to be placed among the other measurements and

since  we  are  fitting  by  compromise,  the  incoherent  measurement  “pulls”  the  estimate

towards itself. The greater the deviation, the greater the displacement of the estimate.

22



Figure 2.2 – LS estimate.

2.2.2 – Correntropy

Instead of dealing with the variance of the residual distribution, as in the LS method

(that actually operates on residuals calculating the summation of quadratic deviations from

the mean), we may resort to dealing with an estimation of the underlying density function of

the residuals. To do this, we must have an estimate of such function, which can be achieved

with Kernel  Density Estimation –  a concept credited to Emmanuel Parzen [9]  and Murray

Rosenblatt. In this process, a kernel / window function, which is non-negative and has a unity

integral,  is  applied  to a  set  of  samples.  Their  summation,  normalized by the  number  of

samples,  gives us an unbiased approximation for the Probability Density Function of a random

independent variable, from which only discrete samples are known.

f(x)  =  
1
n
*∑

k
K(rk  - x, σ ) (2.5)

where:

• f residual / error density function estimation;

• n total number of samples;

• K kernel;

• r residual;

• x random variable;

• σ Parzen window width.
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Figure 2.3 – Probability density function approximation of a random variable by KDE (with
Epanechnikov kernels).

In SE, we will apply the Gaussian kernel to the residuals of a state estimate so as to

determine its likelihood of being the state of operation for the power system.

Correntropy [12][13][18] is an Information Theoretic Learning concept that measures

the similarity between two random variables.

Vσ (X, Y)  =  E [G(X - Y, σ 2I) ] (2.6)

where:

• Vσ Correntropy with deviation σ;

• E expected value;

• G Gaussian kernel;

• X, Y random variables;

• I Identity matrix (independence among XY sample pairs, or errors).

In practice,  the true joint PDF is unknown and, therefore, only an estimate form a

sample of size n is possible.

V̂σ (X, Y)  =  
1
n
*∑

k
G(xk  - yk, σ 2*I)  =  

1
n
*∑

k
G(εk, σ 2*I) (2.7)

where:

• x, y samples of the random variables;

• ε error.

An  Information  Theoretic  Learning  criterion  to  optimize  systems  depending  on

parameters, under supervised learning, is to maximize the Correntropy of the output error

distribution,  known  as  the  Maximum  Correntropy  Criterion.  This  has  several  possible

interpretations, one being that we try to maximize the similarity between the system output

and the target or desired values.

When  applying  this  concept  to  SE,  one  may  think  of  maximizing  the  similarity

between the vector of measurements and the vector of electric values that result from the

estimated values for the state variables (usually voltages and angles).

24



The Correntropy function, unlike LS, is not unimodal. The kernel function originally

adopted is the Gaussian function. The cost term for each residuals becomes:

cost(r) = 1 - exp(-|r/α|2) (2.8)

where:

 α scaling factor, denoted as Parzen window width for other versions of

the Correntropy function*.

*The function described above is written in such way to match with how the SE

problem was defined (minimisation) in section 2.1.2.  Its  most usual presentation is as a

maximisation  process  (MCC  –  Maximum  Correntropy  Criterion).This  also  brings  the

formulation closer to the LS formulation. The LS process induces a Euclidean metric in the

search space; Correntropy is associated with a distinct metric (CIM – Correntropy Induced

Metric [14]) which has a form similar to the objective function adopted in this thesis.

α is related to the range of sensibility / the width of the kernel. It defines the point

at which the function becomes practically insensitive to a residual.

For smaller residuals, the cost function bears resemblance to LS regarding the growth

of the marginal cost. However, if a residual grows indefinitely, its cost becomes restrained

and will converge asymptotically to a certain positive limit (that, regarding the above version

of the Correntropy cost function, equals the unit). As such, its marginal cost becomes fairly

small, falling down to zero. The cost of a very large residual is practically insensible to a

small variation of the residual, contrasting greatly with LS.

FIgure 2.4 – Correntropy cost function.

As was discussed in section 2.2.1, when using LS, the marginal cost of a residual is

highly impacting on the result of the SE exercise. Residuals with larger marginal costs pull the

estimate away from residuals with smaller ones, resulting in that a residual is brought to a

certain degree so that all marginal costs cancel out. It was also discussed that a sample that

“does not fit well” with the remaining data would cause a residual to have a large marginal

cost, noticeably displacing the estimate relatively to the case of it not being present.

Correntropy is an attempt at preventing the unrestrained impact of marginal costs on

the estimate. The aim is to split the data into different groups of concordant samples (that

are mutually coherent), meaning that these samples have small deviations relatively to one
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another.  The largest  group, which would cover the regular  samples,  should generate the

global  optimum,  whereas  less  numerous  groups,  which  would  cover  anomalous  samples,

should generate local optima. The marginal cost of a large residual at a certain estimate

should be null so that it can no longer disrupt the estimate. In other words, it’s as if samples

with high deviations are “expelled”. In order for it to work, the parameters for the cost

function must be adequately set. A sufficiently narrow window (small enough α), should be

applied.

FIgure 2.5 – Correntropy estimate with insufficient sensibility.

FIgure 2.6 – Correntropy estimate with adequate sensibility.

The cost of the global optimum in the goal function is practically equal only to the

sum of  the  (restrained)  costs  of  the  few residuals  with  respect  to  the  outliers.  For  the

previously enunciated version of the Correntropy function, it equals roughly the number of

said measurements that exist in the data.

Although the globally optimal solution corresponds to a much more likely / accurate

estimate, there is the issue that the landscape will acquire a rough shape with more local

optima as there are more incoherent samples. This is particularly problematic if our intention

is to employ classical numerical methods to solve the problem. We will discuss in section

2.3.1 that these methods are very reliant on initialisation. If a numerical method is to be

initialised at a typical rule-of-thumb solution, there is a risk that it becomes trapped in a

local optimum which happened to be “on the way”. A random initialisation is possible but it

might require multiple runs in hope of placing the agent in the desired convergence zone.

A possible  way  to  ease  the  optimisation  exercise  could  be  to  employ  a  dynamic

landscape strategy. The position of the global optimum depends on the chosen sensibility.

When there is a variation of the sensibility, the optimum shifts its position. It is hoped that, if
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α  was  to  be  gradually  increased,  the  optimum  would  also  “move”  gradually  along  the

landscape. It would make it easier for an agent to follow the optimum’s trail, given a slow

enough sensibility variation and enough time for the agent to relocate properly.

Figure 2.7 – Pursuit strategy (varying α).

Even so, this behaviour is not guaranteed for all cases and depends on the model. It is

also possible that  a  global  optimum and a local  optimum that  are separated by a finite

distance suddenly switch roles, becoming local and global respectively.

There is  also the necessary caution of  not being too aggressive on the sensibility

setting.  If  α  is  too  small,  measurements  which  would  be  considered  coherent  might  be

themselves split into different groups of concordance. In other words, small deviations are

scaled up to become large deviations. A greater number of concordance groups translates to

more local optima on the landscape.

α  → 0 ⇒ cost(r) ≃  0 , r=0
1 , r≠0

(2.9)

Figure 2.8 – Correntropy estimate with exaggerated sensibility.
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2.3 – Methods for optimisation

2.3.1 – Numerical methods

All problems in the field of engineering can be formulated mathematically. However,

not  all  problems  can  be  solved  analytically  or,  at  least,  require  too  many  symbolic

constructions and operations to be performed for that end. Symbolic mathematics is much

more expensive than number crunching, in terms of computational power.

Numerical analysis is an iterative process for solving these more complex problems.

While it does not ditch mathematical analysis in its entirety, it does ditch symbolic operations

and, instead, solves the problem by making use of numerical properties.

Some of these methods are based on the analysis  of the function’s gradient. The

gradient  is  obtained  by  differentiation  and  corresponds  to  the  (approximate)  per-unit

variation of the function’s return value relative to a variation of the value of each variable,

depending on the point of analysis. It is also commonly described as a “slope”.

f'(x)  =  
f(x + Δx) - f(x)
Δx

  ,

Δ x → 0

(2.10)

where:

 f function of variables;

 f’ gradient;

Since  a  function’s  gradient,  which  is  a  vector,  always  points  towards  whichever

“path” leads to an increase in the goal function’s return value, that is what will happen if we

follow such vector with a small enough step. Reversely, following in the opposite direction

leads to a decrease.

The Gradient Descent  method (or  Ascent,  depending on  the goal)  is  a  first-order

optimisation  method.  Iteratively,  the  method  will  move  an  agent  across  the  landscape,

always following the gradient with a step that is (usually) proportional to the gradient. In

other words, it follows the variation of the landscape’s height. The step factor may either be

fixed or change with progress, based on some criterion.

xnext  =  x + s*f'(x) (2.11)

where:

 x current solution;

 xnext next solution;

 s step – positive for maximisation, negative for minimisation.

GD follows the “steepest” path to an optimum. This approach guarantees that an

optimum, which is a point of null gradient, is reached with a degree of precision that depends

on how small the step factor is. If the landscape has only one optimum, such point is globally

optimal and GD will always find it, regardless of initialisation.

The caveat is that, if the landscape has multiple optima, there is a possibility that the

obtained solution is locally (rather than globally) optimal, meaning it is not the best solution.
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This is why adequate initialisation might be vital for GD’s success, when employed to solve

complex non-linear problems. Our knowledge of some problems may help us to build an initial

solution intelligently with either heuristics or rules of thumb, so as hopefully to place the

agent in the convergence zone that contains the global optimum, although this might fail

sometimes.  Heuristics  and rules  of  thumb usually  are employed with  the belief  that  the

problem’s data meets certain typical conditions and this is not always the case.

2.3.2 – Meta-heuristics

Since the early 50s, researchers had already been studying the concept of "meta-

heuristics” that were supposed to be methods that relied on mechanisms of improvement

whose main driving factor is randomness, as an answer to the difficulty on approaching non-

linear  complex optimisation  problems.  Arguably  the  first  noticeable  method of  sorts  was

Simulated Annealing, which consists of causing (small) random perturbations to a candidate

solution and keeping either the original solution or the newly obtained one, based on whether

or not  the solution has improved and, in case it  has not  improved, according to a time-

decreasing-probability.  This  method  employs  only  one  agent.  Other  methods  had  been

conceived that manage a population of many agents and employ mechanisms for information

exchange and coordination between agents. Despite all this, arguably the main culprit for

setting the development of robust meta-heuristics for solving complex problems in motion

was John Henry Holland, with his book Adaptation in Natural and Artificial Systems [24] that

showcased the fairly popular Genetic Algorithms.

Meta-heuristics,  unlike  numerical  methods,  throw  mathematical  analysis  out  the

window and, instead, employ mechanisms that search the surroundings / neighbourhood of

candidate solutions, with reliance on random number generation to guide the search. The

difference  between  a  meta-heuristic  and  a  "brute  force"  Monte  Carlo  approach  is  that,

although a meta-heuristic relies on randomness, it searches the landscape not by sampling

but rather by improvement.

Meta-heuristics may be applied to solve any problem that can be formulated as an

optimisation problem. The goal function is usually addressed as the "fitness" function that

evaluates how "fit" an individual / candidate solution is for the problem at hand.

The aim of meta-heuristics is not to be faster than classical numerical methods in

finding solutions (since randomness is arguably the slowest strategy for that end) but rather

to perform an extensive search of the landscape and, thus, to be more accurate on finding

the best solutions.

The Genetic Algorithms family [26] was the first widely-known set of improvement

mechanisms to mimic the biological evolution of living beings and their interaction with a

natural environment. Conceived by John Henry Holland, it draws inspiration from Darwin's

theory on the evolution of species and suggests the use of recombination and mutation as

mechanisms for gradually improving the fitness of agents.

The recombination mechanism mimics the way that living beings generate offspring. A

child  solution  /  agent  could  be  generated either  simply  as  a  perfect  copy  of  its  parent

solution or from crossing the traits (variables' values) of each parent with a respective mate

parent (or multiple) that could be chosen either at random or based on some criterion: the

fittest agent of the population; the next agent in order; so on.
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child[xi]  =  par1[xi] or par2[xi]

              according to ρcrossover
(2.12)

where:

 child child solution;

 par parent;

 xi variable i, to be inherited;

 ρcrossover crossover rate.

Traits  may  also  be  passed  down  either  directly  or  as  the  result  of  arithmetical

operations between themselves. Differential Evolution, which is a variant of GA, credited to

Kenneth  Price  and  Rainer  Storn.  suggests  building  a  "donor"  vector  from  a  series  of

arithmetical operations between the traits of multiple mate parents and then finally crossing

it with the original parent.

The mutation mechanism mimics the way that living beings undergo changes in their

anatomy in order to better fit in with the environment. The traits of a newly born child may

suffer perturbation. Whatever traits are to be mutated / perturbed could be chosen according

to a rate. The severity of the mutation could be quantified by a factor. Each one of these

parameters could be either fixed or time-varying according to certain intelligent rules.

child[xi]  +=  0 or gauss(0,σ mutation)

               according to ρmutation
(2.13)

where:

 xi variable i, to be mutated;

 σmutation mutation factor;

 gauss random Gaussian distribution;

 ρmutation mutation rate.

After these mechanisms have been applied, children and parents compete in an intra-

family tournament. The fittest individual from a family becomes that family's original parent

for the next generation.

Particle  Swarm Optimisation  [27][28]  is  a  more  recent  retake  on  the  concept  of

emulating the behaviour of living beings for solving optimisation problems, although it moves

away from a biological perspective and into a psychological and sociological one. Conceived

by James Kennedy and Russell Eberhart, in an article of the same name (1995), it suggests the

implementation of personality and tendency into the agents of a population, in terms of habit

and trust (in oneself and in others).

The velocity equation is related to the shift in the agent’s position for each instant

(iteration) and essentially is the sum of three parcels – habit, memory and cooperation. Habit

is proportional to the agent’s velocity for the previous instant. Memory and cooperation are

proportional to the difference vectors from the agent’s current position to specific respective

references. In the memory parcel, such reference is the agent’s personal reference (its own

best finding). In the cooperation parcel, such reference is the swarm’s shared reference,

based on what swarm topology is  being used*.  Each of  the three terms is  affected by a
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weight. The memory and cooperation terms also are affected by a random uniform factor, so

as to promote a more randomised and, thus, wider search.

*Usually, a “global” topology is used, where the shared reference for every particle is the

best solution yet found by the whole swarm. Other topologies are possible, although they

are not used as often.

v  =  whabit*v +

      wmemory*r()*(bpersonal  - p) +

      wcooperation*r()*(bshared - p)

(2.14)

where:

 v velocity;

 p position;

 w... (habit; memory; cooperation) weight;

 b... (personal; shared) reference;

 r random uniform distribution.

The position equation formulates the agent’s position for the current instant as the

addition of the velocity to the position for the previous instant. It is possible to affect the

velocity with a factor, after it has been updated, when adding it to the position, although it is

unclear whether or not this would have a desirable effect.

p  =  p + v (2.15)

Once  all  positions  are  updated,  they  will  compete  with  the  current  references.

Whichever is the fittest becomes the reference for the next instant.

While GA and PSO seem to have radically different architectures, they share some

similarities.  Apart  from  their  selection  mechanisms,  both  also  employ  mechanisms  of

crossover between existing admissible solutions in order to generate new ones. In GA, agents

are crossed with one another during recombination. In PSO, agents are crossed with their

references though the velocity equation.

It is arguably difficult to guess which method is better suited for tackling a specific

kind of problem. Yet, we could argue that a certain mechanism is better suited for a specific

kind of exploration, either wider or narrower:

 GA’s mutation mechanism directly causes small perturbations to a solution, checking

their  immediate  surroundings.  A  narrow  search  may  be  useful  when  an  agent  is

positioned somewhere near an optimum, since it  gives a better chance of quickly

spotting the optimum.

 PSO’s movement mechanism allows agents to fly across the landscape with big steps,

spreading the search to various zones of the landscape. A wide search may be useful

when the agents haven’t explored much of the landscape, since it may enable an

agent to jump into a different and possibly more promising convergence zone.

On these thoughts, perhaps with a junction of the mechanisms of both methods could

be done, we could take advantages from each method in order to improve the search at each

stage of the optimisation process.
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Evolutionary  Particle  Swarm Optimisation  [30],  credited to Vladimiro  Miranda and

Nuno Fonseca and firstly exposed in an article containing its name (2002), is an attempt at

marrying the concepts of GA and PSO together. It borrows the particle swarm’s architecture

and adds evolutionary mechanisms on top.

In EPSO, unlike PSO, the weights are not restrained under a specific static strategy,

are different for each agent and may change in any possible way during the optimisation

problem. This is achieved through perturbing them with mutations in a similar way to how

child solutions are perturbed in GA. However, the mutated weights do not belong to the

original particle, belonging instead to a child particle that is to be spawned afterwards. The

intention is to then apply selective pressure and keep whichever set of weights placed the

respective particle in a better position.

wchild,habit  =  w par,habit + gauss(0,σ habit)

wchild,memory   =  ...

wchild,cooperation  =  ...

(2.16)

where:

 wchild, ... (habit; memory; cooperation) weight of the child particle;

 wpar, ... (habit; memory; cooperation) weight of the parent particle;

 σ... (habit; memory; cooperation) weight’s mutation factor.

The references for each agent are also subject to mutation, although they are only

intended to be “fuzzy”, meaning they are in effect only for the current instant and do not

override the original ones. It is possible either to mutate the shared reference only once

(sharing it among the whole swarm), to mutate the shared reference differently for each

agent, to mutate the personal references or to apply any combination of these approaches.

The velocity and the position must be updated for both the parent particle and a

newly spawned child particle. Both particles have the same starting velocity and starting

position. Since the mutation mechanism already comports randomness, the random uniform

factors  that  would  otherwise  be  present  in  PSO’s  velocity  equation  are  absent  in  EPSO.

Another reason for such approach is that “unintelligent” random factors could conflict with

the  adaptive  strategy  for  the  weights  and  have  undesirable  effects.  Additionally,  a

“stochastic  star”  topology  is  adopted,  in  order  to  tune  the  degree  of  aggregation  /

communication  of  the  swarm.  The  cooperation  term  should  be  present  in  the  velocity

equation only according to a certain rate. The intention is to allow particles to momentarily

free themselves from their attraction towards the shared reference.

bbpersonal[xi]  =  bpersonal[xi] + gauss(0,σb)

bbshared[xi]  =  ...

(2.17)

where:

 bb… (personal; shared) fuzzy reference;

 xi variable i, to be mutated;

 σb (personal; shared) reference’s mutation factor.
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vpar   =  wpar,habit*v +

        w par,memory*(bbpersonal - p) +

        c*wpar,cooperation*(bbshared - p) ,

c  =  0 or 1 according to ρcooperation

vchild   =  wchild,habit*v +

         ...

(2.18)

where:

 vpar parent particle’s velocity;

 vchild child particle’s velocity;

 wpar, … (habit; memory; cooperation) weight of the parent particle;

 wchild, … (habit; memory; cooperation) weight of the child particle;

 ρcooperation cooperation rate.

ppar  =  p + v par

pchild  =  p + vchild

(2.19)

where:

 ppar parent particle’s position;

 pchild child particle’s position.

After all  characteristics have been updated, the population is subjected to two stages of

selection:

1. Children and parents compete in an intra-family tournament, as in GA. Whichever

agent is the fittest overrides the previous one with its position, velocity and weights.

2. Agents now compete with their current references, as in PSO. Whichever is the fittest

becomes the reference for the next instant.

Although  having  two  selection  stages  instead  of  only  one  infuses  EPSO  with  the

possibility of adaptation, it has the downside of doubling the number of evaluations that must

be  performed  for  each  iteration.  However,  the  extra  computational  effort  may  be

compensated  by  an  improvement  in  the  exploration  and  convergence  capabilities  of  the

method.
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Chapter 3

On errors

3.1 – Noise and anomalies

Summing up section 2.1, we need a SE process because the data that are gathered are

imperfect, being affected by errors. Fundamentally, two error profiles may occur, namely:

 noise – small errors which spread across the whole data set. This usually is due to:

◦ imperfections in the characteristics of the instrument;

◦ asynchronism / lag between measurements;

◦ transmission noise.

 anomaly – gross errors which contaminate specific individual measurements. This may

be due to:

◦ instrument malfunctioning;

◦ incorrect topology (from the topology processing step).

The issue of topology errors has different implications than the other issues and is

dealt with in a particular way. Since it deserves a study by itself, it will not be addressed in

the present work.

Noise  rarely  ever  causes  any  issues.  The  first  run  of  the  SE  procedure  finds  an

estimate of the state which is fairly convincing and coherent with the data and there is no

need for further data processing.

Anomalies require some extra effort. An analysis on the residuals of the first obtained

estimate will likely reveal a noticeable degree of incoherence between some data, hinted at

by the sizes of some residuals which are significantly bigger than that of residuals caused by

typical noise. In this situation, we can be certain that the obtained estimate is not at all

accurate  and  must  be  restored.  Bad  data  processing  is  then  done  with  this  objective.

Suspicious measurements, characterised by large residuals, get flagged. Afterwards, a second

estimate for the state is obtained, this time without considering the flagged data. This may

be repeated until no more anomalies are present.

It is important to note that data which gets flagged as “bad” may actually not be

contaminated.
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3.2 – Conforming errors

The traditional  methodologies  for  identifying and removing bad data  from the SE

process are fairly successful in tackling most cases of anomalies, although some. However,

there are exceptional cases where the methodologies may fail in spotting the anomaly.

The difficulty depends on specific details regarding its characteristics. Each anomaly

case is different and is mainly distinguishable by:

 how many gross errors exist in the data set;

 which system variables participate in the equations for the quantities respective to

the affected measurements (and how);

 how conforming the gross errors are among each other, if there are multiple.

Conforming errors may be exceptionally difficult to deal with. They will be a big focus

in the upcoming experiments of the thesis. In these cases, these (multiple) errors usually

“work against” a single measurement that, in reality, may not be contaminated. This results

in the appearance of an optimal estimate with a misleadingly large residual that is actually

respective to the uncontaminated measure, wrongly flagging it to be swept off. In power

systems, error conformance may happen when errors of similar magnitude occur in:

 two buses which are met by a same branch. If the errors in the buses’ power injection

measurements are opposite in polarity, they are conforming and cause conflict with

the measurement of the branch’s power flow.

 one bus and one branch which meet / are adjacent. If the errors in the measurements

of the bus’ power injection and of the branch’s power flow towards the other bus are

equal in polarity, they are conforming and cause conflict with the measurement of

the other bus’ power injection.

Figure 3.1 – Possible cases of error conformance.

Let us consider the example of two buses, 1 and 2, and their interconnecting branch,

which are part of a larger power system. The system is operating at a stationary point. Bus 1

has generation and bus 2 has load. A transitory effect occurs. Now, the measurement at bus 2

accuses an increase in load and the measurement at the branch accuses a similar increase in

flow (from bus  1  to  bus  2).  However,  the measurement  at  bus  1  accuses  a  decrease  in
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generation as well. We can confidently declare that there is an anomaly in the measurement

process, as there is a great mismatch of injection. If considering this section of the system in

isolation (ignoring the neighbouring elements), one of two cases has happened:

1. The measurements at both the branch and bus 2 are contaminated. There actually

was a  decrease in  load at  bus 2  and a decrease  in  flow, conforming with  lesser

generation at bus 1.

2. The  measurement  at  bus  1  is  contaminated.  There  actually  was  an  increase  in

generation at bus 1, conforming with greater flow and greater load at bus 2.

Figure 3.2 – Conflict between measurements.

The tie breaker for this issue can only be the remaining data. The measurements of

the  power  flows  and  injections  of  the  suspicious  elements  must  also  match  with  the

measurements for the neighbouring elements. Mismatches generate residuals at the estimate.

If, for that estimate, there are many residuals that are noticeably larger than residuals which

are usually caused by noise, it hints that the estimate is not coherent with the respective

measurements. Of course, we must find these estimates in order to be able to analyse them

in the first place. The criterion and method to be used in solving the SE exercise is decisive

for that end.

In order to help in understanding the impact of these scenarios on the exercise, a

“toy” case was experimented with. A very small test system was used, consisting only of 3

buses  connected  triangularly  by  3  branches.  By  adopting  the  DC  model,  there  are  2

independent variables (2 phases) and 6 dependent variables (3 injections and 3 flows). A

scenario of conforming gross errors was simulated and some solutions / estimates were taken

from the solutions space.

The following figures display the distribution of residuals, in absolute value, for the

dependent variables of each of these estimates. The horizontal line marks a value that is

considered as being the maximum possible magnitude of typical noise-induced residuals.

Figure 3.3 – Estimate (1) for the toy case.

36



Figure 3.4 – Estimate (2) for the toy case.

Figure 3.5 – Estimate (3) for the toy case.

Notice that:

1. The first estimate is incoherent in general, as many (all, in this case) its residuals

stand above the line (one of which is very large). Therefore, it may be ruled out.

2. The second estimate shows good coherence, as many residuals are seemingly only

caused by noise. It is highly incoherent with 2 particular measurements, suggesting

that they are outliers.

3. The  third  estimate  also  seems  fairly  coherent,  suggesting  that  3  particular

measurements are outliers. However, we already previously have found an estimate

that is coherent with a greater number of measurements.

If we formulate the SE problem using the maximum Correntropy criterion and set its

scaling  factor  equal  to  the  magnitude  marked  by  the  horizontal  line,  these  estimates

correspond to optima in the problem’s solutions space. One of them is the most coherent

estimate,  corresponding  to  the  global  optimum,  whereas  the  other  solutions  are  not  as

coherent, corresponding to local optima.

Since there are only 2 independent variables in this toy case, it is possible to do a 3-

dimensional reconstruction of the solutions space, to allow us to visualise its optima. This

experiment  is  presented  in  the  following  figures,  each  of  which  is  a  projection  of  the

maximum Correntropy space from a certain perspective.

Figures 3.6 – Projection of the solutions space on the variable-function planes (X-Z and Y-Z).
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Figure 3.8 – Projection of the solutions space on the variable-variable plane (X-Y).

Figure 3.9 – Projection of the solutions space from an overview perspective.

Observing the shape of the landscape, we can assess the difficulty of solving the SE

exercise when adopting Correntropy. It  is undoubtedly a useful criterion as a measure of

localised similarity. However, there might be many optima in the landscape, some of which

could have especially misleading basins of attraction.
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Chapter 4

SE via Least Squares

In the upcoming tests, the test system and simulated scenarios described in section 
A.1 of the Annexes are to be considered.

4.1 – SE as a diagnosis procedure

The performance of the LS approach to SE will be evaluated based on its sensitivity

(detection of anomalies) and specificity (detection of regularities). The decision for accusing

a measurement and removing it from future SE processes is based on whether the respective

residual of the obtained estimate surpasses a certain threshold. For the upcoming tests, the

threshold to be considered is 10%  of the system’s base power for both injection and flow

measurements.

True positives TP
Number of correctly identified anomalous

measurements.

True negatives TN
Number of correctly identified regular

measurements.

False positives FP

Number of regular measurements accused as

anomalous.

FP  =  nregularities − TN     (4.1)

False negatives FN

Number of anomalous measurements considered as

regular.

FN  =  nanomalies − TP        (4.2)

For cases where every anomaly is detected (FN = 0), we could consider each of them

as a success. However, in some of those cases where also regularities are falsely accused and,

consequently, removed from the process (until the actual anomalies are found, through other
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means), the redundancy of the system decreases. It would be preferable if it was possible to

keep the number of false positives as low as possible (FP = 0).

For cases where not every anomaly is detected, we will consider each of them as a

failure.

4.2 – Results of the LS approach

Since we are addressing the DC model, which is linear, the LS estimate can be found

algebraically.  If we were addressing the AC model, a numerical method such as Gradient

Descent or Gauss-Newton would be needed instead. In that case, it would be initialised at the

flat start (all angles at zero).

Table 4.1 – Results of the LS approach.

Case TP TN FP FN

1, 2, 4, 7, 10, 14, 15, 16, 17,  19,

20, 21, 22, 23, 24, 27, 29, 31
1 32 0 0

5, 11, 12, 13, 18, 25, 26, 28, 30 1 31 1 0

3, 8, 9 1 30 2 0

6 0 31 1 1

35, 38, 44, 47, 49, 53, 55 2 31 0 0

36, 39, 41, 42, 43 2 30 1 0

33, 34, 40, 45, 54 2 29 2 0

32 1 31 0 1

37, 46, 48, 50, 51, 52 1 30 1 1

The following figures show the residuals of the estimates for some test cases. Notice

how, sometimes, gross errors can have a significant widespread influence on the residuals

profile.

Please refer to section A.2 of the Annexes for the mapping of the residuals (which residual

corresponds to which measurement).
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Figure 4.1 – Residuals of the LS estimate for case nº 22, with 1 TP (correct detection).

Figure 4.2 – Residuals of the LS estimate for case nº 5, with 1 TP and 1 FP (false accusation).

Figure 4.3 – Residuals of the LS estimate for case nº 48, with 1 TP, 1 FP and 1 FN (missed
detection).

Figure 4.4 – Residuals of the LS estimate for case nº 34, with 2 TP and 2 FP.
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Comments

 The traditional strategy works well for a great majority of the cases with a single

gross error. In 3 out of the 12 cases that target injection measurements, 2 FP

occur. This hints that gross errors are more problematic when they contaminate

these kinds of measurements, having a greater influence on the estimate and on

the residuals that it contains.

 On case nº 6: If the residual threshold was 5% (instead of 10%), it would actually

result in a success with 0 FP. The gross error is not “gross enough” to spawn

residuals of greater magnitude, making it more difficult to detect.

 It does not work as well for the cases with two gross errors, where only 7 out of

those 24 cases cause 0  FN and 0 FP.  In  other 7 cases,  not  all  anomalies  are

detected. 5 of those cases are part of  the group of  (6) cases which simulate

conforming errors.
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Chapter 5

SE via maximum Correntropy

5.1 – Attempt with numerical method

In  order to try to give convincing and successful  results  where LS has failed,  the

Correntropy criterion will now be employed. The same test system and scenarios of chapter 4

will be considered. Since the problem can no longer be solved algebraically for Correntropy, a

standard Gradient Descent method will be employed instead. An intelligent initialisation is to

be  used so as  hopefully  to place  the  gradient  agent in  the  best  convergence zone (that

contains the intended solution / best estimate). The strategy is as follows.

1. Find the LS estimate.

2. Find the Correntropy estimate by initialising GD at the LS estimate.

The standard GD method has only one parameter. However, it was given a second

parameter to slightly reduce its step proportionally for every iteration that the solution does

not improve (addressed below as “cooling factor”), making the method increasingly more

precise. The setting to be used is as follows.

initial step 0,14

cooling factor 0,1

The total number of iterations to be performed by GD is 2000.

The setting for the Correntropy function is as follows.

α 0,1
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Table 5.1 – Results for Correntropy approach with numerical method.

Case TP TN FP FN

1 to 31 1 32 0 0

32 to 49, 53 to 55 2 31 0 0

50, 51, 52 0 30 1 2

The following figures show the residuals of the estimates for some successful cases. It

is now possible to more clearly identify the anomalies (for the successful cases), which are

given away by the only large residuals. All the other smaller residuals are due only to noise.

Figure 5.1 – Residuals of the Correntropy estimate for case nº5, with 1 TP.

Figure 5.2 – Residuals of the Correntropy estimate for case nº32, with 2 TP.
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Comments

 This strategy is convincingly successful for 51 out of all the cases. The estimates

that are obtained in these cases generate large residuals which always match the

anomalous measurements and no FP occur.

 It fails for cases nº 50, 51 and 52. The total cost of each estimate is lesser than

the total cost at the intended solution. This indicates that the intended solution is

locally rather than globally optimal and, as such, a smaller value for α is needed

in order to further zone out the gross errors.

Case Cost at estimate Cost at intended solution

50 1,98 2,00

51 1,87 2,00

52 1,94 2,00

Another attempt was made at solving cases nº 50, 51 and 52, with the same method

but this time with the following Correntropy setting.

α 0,06

All results remain the same as shown in table 5.1.

Comments

 This approach still did not solve the problematic cases in study. Nonetheless, the

total cost of each estimate is now greater than the total cost at the intended

solution, which indicates that the sensibility is adequate.

Case Cost at estimate Cost at intended solution

50 3,15 2,00

51 3,07 2,00

52 3,11 2,00
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It is thought that the locations of the optima in the landscape change according to the

settings of the Correntropy parameters. An hypothesis is formulated that, if parameter α is set at

a  greater  value  and  made  to  decrease  gradually  rather  than  being  fixed  and  instantly

establishing a tight sensibility, it would be possible for the gradient agent to follow the global

optimum’s relocation.

The next stage of the current strategy consists of gradually changing landscape so as

hopefully to guide the method towards the best  estimate. After finding the LS estimate, the

method will be run a few successive times. For each run, a new setting of parameters is to be

used and the method will be initialised at the solution which was obtained for the previous run.

The Correntropy settings to be used for each run are as follows.

Run

1 α 0,2

2 0,16

3 0,12

4 0,1

5 0,08

6 0,06

All results remain the same as shown in table 5.1.

The following figures show the errors for each of the Correntropy estimates for cases

nº 50, 51 and 52 which were unsuccessful.

Figure 5.3 – Correntropy estimate for case nº 50 (unsuccessful).

Figure 5.4 – Correntropy estimate for case nº 51 (unsuccessful).
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Figure 5.5 – Correntropy estimate for case nº 52 (unsuccessful).

The following figures show the residuals of each of the estimates. The largest residual

corresponds to the regular measurement which the anomalies / gross errors work against,

being falsely accused. Oppositely, the residuals of the two anomalous measurements which

should be accused blend in with the data. Notice that there are some residuals which, despite

not being large enough to be flagged, are fairly larger than the noise-induced residuals.

 

Figure 5.6 – Residuals of the Correntropy estimate for case nº 50 (unsuccessful).

Figure 5.7 – Residuals of the Correntropy estimate for case nº 51 (unsuccessful).

Figure 5.8 – Residuals of the Correntropy estimate for case nº 52 (unsuccessful).
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Comments

 Cases nº 50,  51 and 52 still  remain to be solved. Despite a tighter sensibility

which sets the true solution as the global optimum, the agent gets trapped at a

local optimum. Interestingly, its position barely shifts between all the successive

runs. This suggests that, rather than an optimum which gradually relocates, its

position is fixed and only its height (cost) changes so that, for a certain value for

parameter α, it stops being the global optimum.

 An additional experiment was made for each of the unsolved cases: the method

was instead initialised at the intended solution for all runs. It was found that, in

the  early  runs,  the  agent  always  "dropped  down"  to  the  same optimum but,

suddenly, no longer moved away from its starting point. This happens for all the

aforementioned cases for a value of α somewhere between 0,09 and 0,08.

 It is important to remember that the aforementioned cases are part of the roster

of  gross  error  conformance  cases  and,  as  such,  are  exceptionally  difficult  to

tackle. For all three cases, there were 0 TP (no anomalies detected) and 1 FP

(one regularity accused).

5.2 – Hybrid method to solve Correntropy SE

The  failure  of  the  previous  strategy  in  finding  the  best  estimates  for  the

aforementioned problematic  cases  is  due to the  inadequate  initialisation  of  the  gradient

agent, although it does work for all the other cases.

An alternate possible strategy could be to randomise the starting position for the

agent, either sampling it from the whole domain of the problem or, more intelligently, from

the vicinity of the LS estimate. The mechanism that is used could be a slight perturbation /

mutation of the reference point. It could otherwise spawn the agent inside a delimited area,

centred on said point. Yet, it is very likely that many agents have to be spawned until one of

them gets properly placed in the convergence zone that contains the best estimate, since

such strategy actually is not sensitive to the shape of the landscape.

Instead, we could  firstly  develop a strategy for  looking  more widely  for  multiple

convergence zones in the landscape and then placing the agent in whichever is the most

“interesting”. We have already discussed, on the matter of meta-heuristics in section 2.3.2,

that these kinds of methods can be quite effective in wide explorations of the landscape and

in quickly finding zones of interest. If a particle swarm manages to find the convergence zone

that contains the global optimum, a gradient agent could then take it from there, converging

much faster towards the optimum.

The third and final strategy which we will employ to tackle cases nº 50, 51 and 52

keeps the Correntropy criterion but will Evolutionary Particle Swarm Optimisation alongside

with GD. It is as follows.

1. Find the LS estimate.

2. Launch EPSO particles / agents, taking the LS estimate in account.
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3. After a few iterations, initialise a GD agent at the best solution which was found by

the swarm (the shared reference).

The exact rule for spawning each particle is as follows:

1. Spawn the particle at random in the domain. This was chosen to be the interval from

-π/2 to π/2 for every angle.

2. Pull the particle towards the “anchor” (LS estimate) according to a certain weight.

The idea is to have each the particle spawn close to but nor right on top of the

anchor. The weight defines how proportionally close to the anchor the particle is

placed, relative to its initial spawn. A weight of 0,95 was used.

The Correntropy setting is kept the same from the previous strategy.

α 0,06

EPSO has many parameters to be tuned. Some affect the method’s performance more

than others. A fairly standard setting is to be used and is as follows.

number of particles 14

maximum initial  speed 0,09

habit initial weight 0,8

memory initial weight 0,2

cooperation initial weight 0,2

habit maximum weight 1,0

memory maximum weight 2,0

cooperation maximum weight 2,0

habit learning factor 0,1

memory learning factor 0,15

cooperation learning factor 0,15

global reference mutation rate random

global reference mutation factor 0,008

cooperation rate 0,8

While  the  initial  speed  for  each  particle  is  limited  to  a  threshold,  it  is  left

unrestrained afterwards.

The mutation rate (probability for the mutation of a variable) for the global reference

is reset randomly for every iteration.

The  total  number  of  fitness  evaluations  to  be  performed  by  EPSO is  14000  (500

iterations for 14 particles).
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From now on, the performance of this methodology and of the upcoming ones will be

evaluated  by  the  success  rate  of  the  method  in  finding  the  intended  solution  /  global

optimum, meaning when 0 FP and 0 FN occur. Some observations will also be made regarding

the rate at which the method gets trapped at exceptionally deceptive local optima. For cases

nº 50, 51 and 52, these optima correspond to the respective Correntropy estimates which

were obtained with the previous strategy. For quick reference and as they are the largest

local optima, they will be addressed as “nearly-global” optima.

Table 5.2 – Results of 20 runs for Correntropy approach with hybrid EPSO GD method.

Case Success rate
Rate  of  convergence  to

nearly-global optimum

50 45% 40%

51 35% 45%

52 35% 45%

The following figures show the residuals of the estimates. For all cases, the anomalies

have now all been correctly identified with no false accusations on regularities.

Figure 5.9 – Residuals of the Correntropy estimate, for case nº 50.

Figure 5.10 – Residuals of the Correntropy estimate, for case nº 51.
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Figure 5.11 – Residuals of the Correntropy estimate, for case nº 52.

The following figures show the progress of successful runs.

Side note: the implementation of the method was done for function maximisation, hence the

polarity of the fitness function (negative cost) in the figures.

Figure 5.12 – Progress of the hybrid method, for case nº 50.

Figure 5.13 – Progress of the hybrid method, for case nº 51.
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Figure 5.14 – Progress of the hybrid method, for case nº 52.

Comments

 We could  say  that  this  strategy  is  fairly  successful  for  all  cases.  Even  if  the

method fails to reach the global optimum for some runs, this is not a problem, as

long as the method is allowed to do enough runs to arrive at the intended solution

at least once. Since this solution is globally optimal (lowest total cost), it will be

the estimate of choice in the end of the process.

Even with  fairly  satisfactory  results,  it  may be possible to improve the  method’s

success rate by adjusting its settings and employing additional mechanisms. The upcoming

tests will be directed at this goal.

Only  case nº 50 will  be addressed for  now. When a conclusion has been reached

regarding the best combination of settings and mechanisms, then cases nº 51 and 52 will be

addressed as well.

5.2.1 – Swarm size and cooperation probability

For the previous tests, the number of particles that were spawned was equal to the

number of variables plus one (for good measure), as this is a fairly standard setting. Intuition

would  tell  us  that  a  greater  number  of  particles  is  always  better  since  it  increases  the

chances that one of them steps into an interesting zone of the landscape. By this logic, we

could  spawn hundreds  or  even more.  Well…  that  approach  would  defeat  the  purpose  of

employing a particle swarm method in the first place, since each iteration becomes heavier

(and we might as well just do massive random sampling and try to win the lottery). The

benefit of having more particles should be assessed considering the same number of allowed

fitness evaluations to be performed – how better is a bigger swarm with the same available

resources.

The cooperation rate / probability parameter plays an important role in the behaviour

of the swarm. For the previous tests, it was set at a standard value of 80%. This translates to

a high degree of communication among the swarm which is expected to make all particles
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share  their  efforts  on  the  same  zone.  On  the  other  hand,  it  is  expected  that  a  low

cooperation probability disaggregates the swarm, leaving each particle to its own personal

exploitations. This seems to be beneficial since a particle is allowed to leave the flock and

come across  yet  an  undiscovered  zones.  However,  since  the  swarm is  disaggregated,  an

interesting zone may be left poorly explored as other members do not come helping.

Some tests were made for different configurations of the aforementioned parameters

(while keeping all the others).

Table 5.3 – Results of 20 runs for Correntropy approach for case nº 50 with different swarm
settings.

Configuration
Success

rate

Rate  of  convergence  to

nearly-global optimum

1
number of particles 70

55% 35%
cooperation rate 80%

2
number of particles 14

40% 30%
cooperation rate 20%

3
number of particles 70

35% 55%
cooperation rate 20%

Comments

 A bigger swarm seems to help slightly with the convergence, even considering a

proportionally smaller number of EPSO iterations (only 100).

 On the other hand, a low cooperation rate seems to badly affect the performance

of the method when employed either by itself or even with a greater swarm size.

Possibly, one or more particles would come across the convergence zone of the

global optimum but, because of lack of focused effort, the zone is left poorly

explored.
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Figure 5.15 – Progress of the hybrid method with 5 times more particles.

5.2.2 – Penalised re-initialisation

In the previous tests for the problematic cases that were done with the hybrid EPSO

GD  method,  the  rates  of  convergence  towards  the  nearly-global  optima  have  been

interestingly high. This makes some sense since the conformance of gross errors generates a

locally optimal solution with nearly as low a total cost / as high Correntropy as the best

estimate, making it exceptionally deceptive.

If we were to place a “probe” at this local optimum and gradually push it towards the

global  optimum in  a  straight  line,  we  would  notice  that  the  density  distribution  of  the

residuals, built by applying the Correntropy kernel to the residuals, changes very little at a

larger scale but undergoes interesting changes if we take a closer look at specific regions.

This experiment may be visualised in the following figure, for case nº 50.

Figure 5.16 – Residuals density distributions at different points between the global and
nearly-global optima inclusive for case nº 50.
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The two next figures are a zoom on different regions of the previous figure.

Figure 5.17 – Zoom of figure 5.16 on the highest peaks.

Notice how the global optimum, which is the intended solution for the SE problem, is

the point of maximum Correntropy (highest degree of correlation between the estimate and

the measurements).  However,  the Correntropy of  the local  optimum is  very high as well

because of gross error conformance. The point at which the convergence zones split for case

nº 50 is somewhere between the local optimum and 50% of the way through towards the

global optimum.

Figure 5.18 – Zoom of figure 5.16 on the lowest peaks.

At the local optimum, such residual is the one which contradicts the conforming gross

errors. At the global optimum, the two residuals that stand out correspond to said errors. As

the probe moves gradually from one optimum to the other, the regularity is “pulled” into the

region of aggregated kernels and the anomalies are “expelled”, each to its side as, in case nº

50, the two errors have opposite polarities.

In an attempt to turn into a success each run where the method converges to the

nearly-global optimum, the current strategy will be extended with a re-initialisation as such:

1. After a first run, the hybrid method will be relaunched from the LS estimate.

2. For this next run (and subsequent others), a penalty will be applied to the fitness of

particles that get too close to the solution which was found in the first run.

With this approach, we hope that the basin of attraction of the deceptive optimum

becomes an “off-limit” zone, preventing the swarm from settling on the same optimum again.
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The penalty  will  be applied if  the distance between a particle  and the previously  found

optimum is smaller than a threshold.

The Euclidean distance that separates the two contesting optima for case nº 50 is

roughly 0,044 (radians). While this is privileged information (since this is a simulation and we

would not have access to it in a real situation), we could take it into account on parameter

tuning  it  only  for  the  sake  of  proving  the  mechanism’s  potential  usefulness  and  then

eventually develop a strategy for tuning the parameter in the absence of such information.

Some tests were made with different values for the penalty threshold distance. Also,

the cooperation rate will be experimented with again so as to check how well it complements

the new mechanism. The swarm size to be set is 70 particles.

Table 5.4 – Results of 20 runs for Correntropy approach for case nº 50 with use of the penalty
mechanism.

Configuration Success rate
Rate  of  convergence  to

nearly-global optimum

1
cooperation rate 80%

40% 40%
penalty distance 0,03

2
cooperation rate 20%

30% 25%
penalty distance 0,03

3
cooperation rate 80%

50% 30%
penalty distance 0,04

4
cooperation rate 20%

55% 15%
penalty distance 0,04

Comments

 While a penalised re-initialisation could be helpful for pushing the swarm away

from the deceptive optimum at which it landed first, it seems not to have as

significant of a benefit as was expected at first. In some cases, the swarm is still

not repelled away from the deceptive optimum. In other cases,  the swarm rather

seems to settle more often on other local optima.

 The configuration with longer threshold distance and lower cooperation rate is

the better performing. This may be justified in that particles are not “forced” as

much to explore prematurely near the nearly-global optimum, which is now “off-

limits”.

 In a sense, it is somewhat plausible that preventing the swarm from nearing the

nearly-global affects the search in a slightly negative way. Maybe, once found

(considering no penalty), said optimum would usefully bring the search towards

that region, where the global optimum is also located.
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Figure 5.19 – Progress of the hybrid method with penalty.

5.2.3 – Multi-gradient

The  expected  behaviour  of  a  particle  swarm  method  like  EPSO  is,  through  an

exchange of information, to bring the particles increasingly closer over time, at a certain rate

(cooperation rate), so as to more finely exploit the most interesting zone yet found. As such,

the personal references of the particles are more distant from each other at an early instant

but, later on, get placed around the best (shared) reference of the whole swarm. A trade-off

must be made. Do we:

 give  the  swarm  plenty  of  time  and  better  communication  for  more  quickly

aggregating the swarm around a zone while potentially leaving other zones in the

landscape undiscovered?

 prevent the swarm from communicating and aggregating too much around a single

zone but risk leaving all the other discovered zones poorly explored?

The problem with the second hypothesis is that a lone particle, by itself, is inefficient

at converging to the optimum of a convergence zone because of the rule which dictates its

movement – big leaps and oscillation. However, if a reference inside such zone gets turned

into a gradient agent, the agent is able to more quickly find the optimum. This actually is the

foundation for  employing GD after  EPSO, only that  we have been doing it  for  the global

reference only.

What  if  we  let  the  swarm  spread  to  many  zones  and  then  turn  every  personal

reference into a gradient agent? Whatever the configuration is for the particle swarm, some

references might still end up very close if two or more particles happen to come across the

same  interesting  zone.  In  this  situation,  spawning  a  gradient  agent  for  each  of  these

references would be an unnecessary waste of computational effort, since all the agents would

meet at the same location (the optimum).

In the upcoming tests, we will assess the benefit of spawning multiple gradient agents

along  the  landscape,  after  the  swarm  season,  at  the  cost  of  a  greater  consumption  of

resources. The spawning rule is as follows (after the swarm season).

1. Sort the personal references of the swarm by descending order of their fitness (lower

total cost first).
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2. Spawn the first gradient agent from the first best reference.

3. For every other reference to follow in order, check its Euclidean distance to every

other already existing gradient agent.

a) If the distance is greater than a threshold, spawn a new gradient agent at the

reference;

b) If not, no agent is spawned.

Some experiments were made with the new aforementioned mechanism. Different

configurations for EPSO were used, regarding the cooperation rate. The swarm size was set at

70 particles. Also, the test with configuration nº 4 (presented below) was made using the

penalty mechanism.

Table 5.5 – Results of 20 runs for Correntropy approach for case nº 50 with multi-gradient
extension.

Configuration
Success

rate

Rate  of  convergence  to

nearly-global optimum

1

cooperation rate 80%

50% 20%agent  spawn

distance
0,02

2

cooperation rate 20%

60% 30%agent  spawn

distance
0,02

3

cooperation rate 20%

75% 20%agent  spawn

distance
0,01

4

cooperation rate 20%

80% 15%
agent  spawn

distance
0,01

penalty distance 0,03

Table 5.6 – Statistics of the spawn of extra agents for Correntropy approach for case nº 50.
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Configuration 

nº

Extra  agents  spawn rate  for  ...  (number of)

agents Average

number  of

extra agents1 2 to 4 5 to 9
10  or

more

1 20% 5% 0% 0% 0,3

2 55% 25% 5% 0% 1,7

3 5% 35% 50% 10% 5,4

4 5% 20% 25% 50% 9,7

Comments

 For the test where a high cooperation rate is set, the number of extra agents that

were spawned is generally very small. This matches our earlier discussion of the

influence of said rate on the speed of aggregation of the swarm. Because the

particles quickly came together, their personal references ended up too close for

the spawning of many gradient agents to be justifiable.

 On the other hand, for the tests with a low cooperation rate, more extra agents

are  spawned and even more  so  for  an ever  smaller  spawn threshold  distance

(which is expected). The increase in the success rate, regarding previous tests

without the multi-gradient mechanism, hints at what has been discussed earlier in

that  at  least  one  particle  finds  the  convergence  zone  but  its  finding  would

otherwise get “muffled” by a more interesting estimate found elsewhere.

 However, we should still take into consideration that greater computational effort

was needed as the cost for higher success rates.

 Even alongside the multi-gradient, the penalty mechanism seems not to boost the

success rate significantly. Actually, it has a higher spawn rate of extra agents,

which consumes more resources – roughly double that of not applying penalty.

Whereas some of the swarm’s references would join close together around the

local optimum when there is no penalty (potentially reducing the number of extra

spawns), it is possible that they instead scatter around the optimum’s “zone of

avoidance”, becoming more distant from each other, increasing the number of

extra spawns. However, since this is the zone of the local optimum, the extra

effort is in vain. Thus, the use of this mechanism alongside the multi-gradient

may not pay off.
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Figure 5.20 – Progress of the hybrid method with multi-gradient mechanism.

Additional tests will be made, now addressing cases nº 51 and 52 employing multi-

gradient configuration nº 3 described in table 6.5.

Table 5.7 – Results of 20 runs for Correntropy approach for cases nº 51 and 52 with multi-
gradient extension.

Case Success rate
Rate  of  convergence  to

nearly-global optimum

51 65% 35%

52 60% 30%

Table 5.8 – Statistics of the spawn of extra agents for Correntropy approach for cases nº 51
and 52.

Case nº
Extra agents spawn rate for ... (number of) agents Average number

of extra agents1 2 to 4 5 to 9 10 or more

51 20% 5% 0% 0% 6,9

52 55% 25% 5% 0% 7,8

Comments

 Cases nº 51 and 52 seem a little more difficult to tackle than case nº 50, even

with the multi-gradient mechanism. Although more agents are spawned for both

cases than for case nº 50, the success rate is slightly lower.
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5.3 – Generalised Correntropy strategy for SE

So  far,  we  have  been  using  the  Gaussian  distribution  as  the  Correntropy  kernel

function. It is fairly satisfactory in giving us the answers we want, provided we find the global

optimum of the optimisation problem. This simply was our choice. We could use any other

kernel that we feel is adequate for the exercise.

In a generalised version of the Gaussian distribution, instead of squaring the fraction

of the variable by the scaling factor, its exponent becomes another function parameter. We

can import this parameterisation to Correntropy and the function becomes as follows:

cost(r) = 1 - exp(-|r/α|β) (5.1)

where:

• β shaping factor.

Figure 5.21 – Generalised Correntropy.

β is  related to  the  steepness  of  the kernel.  It  defines  the  contrast  in  sensibility

between residuals which stand at the inner region of the kernel.

In Classical Correntropy, β is set as a square (2). For a larger β, the inner region of

the  kernel  becomes  flattened,  since,  in  such  region,  this  parameter  is  the  exponent  for

powers of numbers which are much smaller than the unit. In theory, an infinitely large  β

would give the kernel the shape of a random uniform distribution or, in another perspective,

a low-pass filter.

β → ∞ ⇒ cost(r) ≃
 0 , |r| < α
 1 - exp(-1) , |r| = α
 1 , |r| > α

(5.2)
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Figure 5.22 – Generalised Correntropy estimate with large β. The landscape becomes divided
into various flat sections at different heights.

In this light, β could change the behaviour of the method that is employed to tackle

the problem, as there could be certain points that, with an increase in β, could be placed at

a much lower height than with a classical Gaussian kernel. This may be particularly useful in a

hypothetical  situation  where  an  agent  comes  across  both  the  precise  position  of  a  local

optimum and a point which is barely inside the global optimum’s convergence zone / at its

border. Depending on the Correntropy settings, the best candidate solution of the two could

change.A larger β gives convergence zones a wider “event horizon” and may aid in capturing

agents which happen to pass nearby, potentially leading to a shift in the focus of the search.

Figure 5.23 – Capture strategy (large β). Convergence zones are better delimited.

Taking  the  same  toy  example  that  was  experimented  with  in  chapter  3  for  the

purpose of visualisation (3-bus system, conforming gross errors simulation), a reconstruction

of the same solutions space was made, still adopting the maximum Correntropy criterion with

the same α but now in its generalised version with a large β. This is displayed in the following

figures. Notice how the convergence zones are now more clearly delimited.
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Figure 5.24 – Projection of the solutions space on the variable-variable plane (X-Y).

However, β must also be tuned with care so as not to convert a local optimum into

the global  optimum (taking that  role away from the true / intended solution).  This may

happen since, for a larger β:

 residuals which are smaller than α shrink in cost;

 residuals which are slightly larger than α grow in cost;

 residuals which are much larger than α already have their costs peaked.

If a certain optimum whose residual profile / spectre contains mostly small residuals

that sit slightly below α, a great increase in the shaping factor means that the costs of all

these residuals get greatly reduced and become insignificant. This may significantly reduce

the total cost of an (local) optimum.

The final upcoming tests are aimed at assessing the benefit of using the Generalised

Correntropy function with a different value for  β. As has been just discussed, it is possible

that flattening the convergence zones on the landscape by increasing β helps to better delimit

those zones. Particles which then enter those zones will find points of lower cost than before,

which may be a deciding factor for which references are kept at certain stages of the search.

Nonetheless, the effectiveness of a larger β is tightly intertwined with α. It is possible that,

for an increase in β, the deceptive optimum which was otherwise local becomes global if

more of its residuals stand below α than for the otherwise global optimum. A few runs of the

EPSO  GD  hybrid  method  were  made  for  each  case,  with  the  following  settings  for  the

Correntropy cost function, in order to test this hypothesis.

α 0,06

β 8

In actuality, this is exactly what happens for cases nº 50, 51 and 52. Here follow the

costs for the most optimal estimates which were found.
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Case Cost at estimate Cost at intended solution

50 1,24 2,00

51 1,18 2,00

52 1,27 2,00

The following figures shows the residuals of the estimate for case nº 50 and the costs

of  the  residuals,  both  with  Classical  Correntropy  and  with  Generalised  Correntropy.  The

obtained estimate for this setting of β is slightly different than the deceptive optimum which

had been found in previous tests. Notice that all residuals with the exception of one now

stand below α (0,06). With the larger β, these residuals are not penalised in cost as much

and,  thus,  this  estimate  gets  a  lower  cost  than the  deceptive  optimum for  the  Classical

Correntropy setting. For the same reason, it gets a lower cost than the intended solution

since it only has a single large residual instead of two, whereas the cost of the intended

solution is roughly equal to the number of anomalous measurements (= 2).

Figure 5.25 – Residuals of the Generalised Correntropy (β = 8) global optimum (not the
intended solution).

Figure 5.26 – Costs of the residuals shown in figure 7.4, for Classical Correntropy.

Figure 5.27 – Costs of the residuals shown in figure 7.4, for Generalised Correntropy.
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As such, if  we launch the EPSO GD hybrid method for a few runs with this static

Correntropy setting, the “best” (lowest cost) solution that will be found will be the one which

is  not  intended.  Of  course,  if  parameter  α  is  tuned  to  be  even  tighter,  eventually  the

deceptive optimum becomes local again because its smaller residuals become larger than α

and  grow  in  cost.  However,  finding  an  optimum  becomes  even  more  difficult  as  the

convergence zones become narrower.

Instead, we will employ a dynamic landscape strategy in order to still take advantage

of the better delimitation, where two different settings for Correntropy are used, swapping

from one to the other amidst the process. These two settings are the following.

Correntropy

setting

1 α 0,06 β 8

2 0,06 2

 The hybrid EPSO GD method with the will still be employed, firstly without additional

mechanisms or multi-gradient. The strategy is as follows:

1. Find the LS estimate (as always).

2. Launch EPSO particles from said estimate, with Correntropy setting nº 1.

3. After  the  swarm  season,  launch  the  gradient  agent  from  the  swarm’s  shared

reference, keeping the same Correntropy settings.

4. After  the  gradient  season,  relaunch the  gradient  agent  from its  previously  found

solution, this time with Correntropy setting nº 2.

Table 5.9 – Results of 20 runs for Generalised Correntropy approach with hybrid EPSO GD
method.

Case Success rate
Rate  of  convergence  to

nearly-global optimum

50 45% 30%

51 30% 50%

52 25% 35%

Comments

 The success rates with the new Correntropy strategy barely change relatively to

the Classical Correntropy approach. This is justifiable by what has been verified

on what happens to the nearly-global optima. Since their residuals only contain a

residual larger than  α, that respects to the regularity and whose cause is gross

error  conformity,  their  costs  become  much  lower  and  they  are  kept  as  the

solution of the first Correntropy stage every time they are found.
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The problem is that, even if the intended solution was found in the first Correntropy

stage, it gets replaced by the deceptive optimum.

Next, we will experiment with the same Correntropy strategy but now using multi-

gradient extension, launching it firstly from the personal references of the swarm season for

Correntropy setting nº1 and then relaunching it from the solutions of the first gradient season

now with Correntropy setting nº2. It is expected that the method firstly finds the deceptive

optimum (since it is the global optimum for Correntropy setting nº 1). However, it is hoped

that at least one particle falls into the intended solution’s convergence zone and keeps its

reference there. This is will then guarantee that, when the second multi-gradient season is

launched with the Classical Correntropy setting (β = 2), the intended solution, which will now

be the global optimum instead, will be found. The strategy is as follows:

Table 5.10 – Results of 20 runs for Generalised Correntropy approach with multi-gradient
extension.

Case Success rate

Rate  of  convergence  to

nearly-global optimum

(1st Correntropy stage)

Rate  of  convergence  to

nearly-global optimum

(2nd Correntropy stage)

50 100% 100% 0%

51 95% 100% 5%

52 85% 100% 15%

Table 5.11 – Statistics of the spawn of extra agents for Generalised Correntropy approach.

Case

Extra agents spawn rate for ... (number of) agents
Average  number  of

extra agents
1 2 to 4 5 to 9 10 or more

1 0% 10% 20% 70% 13,6

2 0% 0% 30% 70% 12,3

3 0% 20% 30% 50% 13,7

The following figures show the progress of a successful run for case nº 50 during each

of the Correntropy stages.
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Figure 5.28 – Progress of the hybrid method for case nº 50 (swarm season and multi-gradient
season) with Generalised Correntropy.

Figure 5.29 – Progress of the relaunched multi-gradient season for case nº 50 with Classical
Correntropy.

The following figure shows the aggregated progress of a successful run for all cases.

The sudden "dip" of progress that is seen roughly halfway through is the instant at which the

Generalised Correntropy stage / first gradient season ends and the Classical Correntropy stage

/ second gradient season starts. This dip indicates that the cost of the deceptive optimum

grows as we change the landscape. Somewhere nearby, and agent that had previously settled

on the zone of the intended solution now finds its way to the exact location of the optimum,

which is now global.

Figure 5.30 – Full progress for all aggregated seasons, for case nº 50.
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Figure 5.31 – Full progress for all aggregated seasons, for case nº 51.

Figure 5.32 – Full progress for all aggregated seasons, for case nº 52.

Comments

 The success rates have spiked up noticeably with this new approach but so has

the computational effort for each run. Even if the methodology was refined and

hypothetically  achieved a 100%  success  rate  for  all  cases,  it  is  still  uncertain

whether there would be advantage in using this strategy over running the hybrid

method without the multi-gradient extension a few times.

 Arguably, the number of iterations for the swarm season and for the gradient

seasons could be better  adjusted in order to save some effort,  by applying a

stop / convergence criterion for each season. Also with that same aim, a limit

could be set on the number of extra gradient agents that may spawn, tuned hand

in hand with the penalty threshold distance.

 For  the  first  multi-gradient  season,  the  deceptive  optima  were  always  the

estimates at which the method settled. This is confirmation that a Correntropy

setting with a larger value for β than for Classical Correntropy may not be reliable

as a static setting.
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Chapter 6

Conclusions

6.1 – On the results

The  thesis  focused  on  providing  insight  on  the  difficulty  of  handling  anomalous

situations that occur in power systems SE, specifically the particular problem of conforming

gross errors that may demand an alternate approach than what is currently adopted. Some

alternative methodologies where tested to tackle this issue, with varying degrees of success

but all commonly confirming that the difficulty exists. In more detail:

• SE via LS is still a reliable approach in the majority of scenarios. It deals well with

single  gross  errors,  sometimes  resulting  in  1  or  2  FP  (false  positives)  but  always

detecting the anomaly. For cases with two gross errors, the occurrence of FP is more

common. It fails to detect all anomalies for some cases with gross error conformity.

• Using a criterion based on Correntropy helps to cast out the outliers and find the most

coherent estimate. A numerical method with intelligent initialisation is sufficient for

most cases, although yet again conforming gross errors cause problems since they

generate a deceptive local optimum in the solutions space at which the method gets

trapped.

• The employment of a population based meta-heuristic for exploration of the solutions

space, alongside the numerical method for faster convergence, proves successful in

finding the desired solution / global optimum given that enough runs are performed.

Nonetheless,  the  rate  of  convergence  towards  the  aforementioned  deceptive

optimum is nearly as high as the success rate, even for multiple different settings for

the method’s parameters and with the use of additional mechanisms. An extension of

the  hybrid  method  by  launching  the  numerical  method  from multiple  interesting

solutions found by the meta-heuristic improves the success rate but might require

much greater computational effort.

• The  generalisation  of  the  Correntropy  function  has  usefulness,  as  we  can  better

delimit  convergence  zones  for  the  agents  to  find,  but  it  may  affect  the  optima

undesirably  or  require  a  more  aggressive  Correntropy  setting  that  hinders  the
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optimisation  process.  The  adoption  of  a  dynamic  landscape  with  different  stages

corresponding to different Correntropy settings boosts the success rate significantly.

Although all tests in this thesis were done adopting the DC power model, the work

demonstrates how hard it is to overcome the problems caused by conforming gross errors.

Conforming gross errors create a very deceptive landscape that makes convergence difficult ,

even for meta-heuristics that usually show quite a good success rate in multi-modal problems.

The  Maximum Correntropy  Criterion  (including  in  its  modern  form of  Generalised

Correntropy) allows the desired (correct) state variables estimation to stand out as the global

optimum of the optimization problem defined as the SE formulation – however, this global

optimum, in the cases tested, seems to have a very narrow basin of attraction, in contrast

with a deceptive local optimum formed by the conforming gross errors. This explains why the

optimization algorithms that were experimented could not easily find the correct solution and

were lured into an erroneous solution.

It must be said that conforming gross errors is most certainly a rare event, so in a

control centre this situation is will not occur often. However, the confidence of operators can

only improve if the methods and tools available, that work on data collected and put together

at the SCADA, are proven to be robust. This thesis has demonstrated how hard this task might

be,  and  why  it  is  necessary  to  continue  to  develop  work  to  understand  the  impact  of

conforming gross errors and algorithmic solutions to overcome them.

6.2 – Future work

The tests that were carried out are by no means exhaustive. A relatively small test

power  system  was  considered  and  its  DC  model  was  adopted.  Also,  the  same  point  of

operation (load profile) was considered throughout. More experimentation could be done with

the hybrid method in terms of different parameter settings and additional useful mechanisms

and also in terms of resource usage / iterations, so as to save resources (time) while keeping

the same effectiveness.

Even so, the conclusions taken from the outcomes of the tests can be generalised and

used as reference for future experiments. Concretely, in the future:

• Test power systems could be approached using the AC model. Different topologies,

redundancy factors and the consideration of reactive power in the measurements may

originate other interesting potential situations of anomaly of varying difficulty.

• Situations with a greater number of conforming gross errors (three or more) could be

simulated.  It  would  be  interesting  to  see  up  to  how  many  can  be  successfully

detected for a same instance.

• In order to make the hybrid EPSO GD method, or other methods, more efficient and

competitive at tackling Correntropy SE, a parallelised implementation could be done

in a GPU (Graphical Processing Unit) or any other device with that purpose.

• Further research could be done on the usefulness of Generalised Correntropy. Other

parameter settings that are more carefully tuned and eventually used as the stages of

a dynamic landscape strategy as the one presented may result in higher success rates.

Also  on  the  topic  of  Correntropy,  new  strategies  could  be  developed  in  which

different kernels could be applied to certain measurements with varying degrees of

coherence or suspicion, based on some rule.
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Annexes

A.1 – Test system and simulated scenarios

The test system to be used is an example from IEEE’s database of power systems for

this purpose and is composed by 14 buses and 19 branches. The problem of State Estimation is

formulated considering the system’s DC model.

Figure A.1 – IEEE’s 14-bus test system.

A fixed point of operation is to be considered for all tests. The quantities for such

point of operation regarding the DC model are presented in the following table.
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Table A.1 – Point of operation (DC) for the test system.

Bus  angle (rad) Power injection (p.u.) Branch Power flow (p.u.)

1 0,0000 2,190 1 – 2  1,479

2 -0,0875 0,183 1 – 5 0,711

3 -0,2263 -0,942 2 – 3 0,701

4 -0,1850 -0,478 2 – 4 0,553

5 -0,1585 -0,076 2 – 5 0,408

6 -0,2632 -0,112 3 – 4 -0,241

7 -0,2464 0,000 4 – 5 -0,628

8 -0,2464 0,000 4 – 7 0,294

9 -0,2787 -0,295 4 – 9 0,168

10 -0,2792 -0,090 5 – 6 0,415

11 -0,2733 -0,035 6 – 11 0,107

12 -0,2711 -0,061 6 – 12 0,065

13 -0,2718 -0,135 6 – 13 0,131

14 -0,2976 -0,149 7 – 8 0,000

7 – 9 0,294

9 – 10 0,018

9 – 14 0,149

10 – 11 -0,072

12 – 13 0,004

In order for the system to have a moderate redundancy, regarding the available data

for the SE exercise, the measurements to be considered are:

 power injections for all buses.

 power flows for all branches.

In total,  there are  33 measurements in the measurement set. Since there are  13

system variables (voltage angles, one for each bus, excluding bus 1 which is the reference

bus), this set gives the system a redundancy degree of (roughly) 2,5.

With regards to noise and gross error simulation, the power injections for buses 7 and

8 are to be excluded from the possible targets for contamination since these buses have

neither active generation nor active load. The injections, which equal the sum of all power

flows into said buses, should always cancel out. As such, they may be considered as perfect

(pseudo) measurements.

The anomaly profiles to be simulated are:

1. a single gross error in a flow measure, for every branch.

2. a single gross error in an injection measure, for every bus.

3. a gross error in a flow measurement and another in an injection measure, for some

combinations of a bus and a branch which are non-adjacent.
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4. a gross error in a flow measurement and another in an injection measure, for some

combinations of a bus and a branch which are adjacent, subdivided into:

a) conflicting errors.

b) conforming errors.

The magnitude for each gross error is sampled from between  20% and  40% of the

system’s base power (per unit). In cases of non-adjacent elements, the polarity of each error

is chosen at random. In cases of adjacent elements, the polarity was purposefully chosen to

forge conforming errors. Also, small noise was spread across the data, being sampled from a

normal distribution with standard deviation equal to 1% of the base power.

The following tables list the cases to be simulated. The “target(s)” field refers to the

measurement(s)  which is  (are)  to be contaminated and the “error(s)”  field  refers to the

error(s) of said measurement(s), where:

• P i active power injection at bus i;

• P i – j active power flow from bus i to bus j.

Here follow the cases with single gross errors.

Table A.2 – Test cases with single gross errors.

Nº Target Error Nº Target Error

1 P 1 -0,20 13 P 1 – 2 +0,33

2 P 2 -0,40 14 P 1 – 5 -0,22

3 P 3 +0,40 15 P 2  – 3 -0,24

4 P 4 -0,34 16 P 2 – 4 +0,37

5 P 5 +0,35 17 P 2 – 5 -0,31

6 P 6 -0,20 18 P 3 – 4 +0,38

7 P 9 -0,36 19 P 4 – 5 -0,25

8 P 10 +0,39 20 P 4 – 7 +0,24

9 P 11 +0,38 21 P 4 – 9 -0,23

10 P 12 -0,23 22 P 5 – 6 +0,30

11 P 13 -0,30 23 P 6 – 11 -0,33

12 P 14 -0,38 24 P 6 – 12 -0,21

25 P 6 – 13 +0,32

26 P 7 – 8 -0,34

27 P 7 – 9 +0,31

28 P 9 – 10 +0,33

29 P 9 – 14 -0,22

30 P 10 – 11 +0,38

31 P 12 – 13 +0,23

Here follow the cases with two gross errors, which were each built from merging two

cases of single errors together. The cases with non-adjacent elements are on the left table
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and the cases with adjacent elements are on the right table. Cases with conforming errors are

highlighted since they are a focus of the thesis.

Table A.3 – Test cases with two gross errors.

Nº Targets Errors Nº Targets Errors

32
P 1 -0,20

44
P 1 -0,20

P 2 – 3 -0,24 P 1 – 2 +0,33

33
P 2 -0,40

45
P 2 -0,40

P 4 – 5 -0,25 P 2 – 4 +0,37

34
P 3 +0,40

46
P 3 +0,40

P 4 – 9 -0,23 P 3 – 4 +0,38

35
P 4 -0,34

47
P 4 -0,34

P 1 – 5 -0,22 P 4 – 7 +0,24

36
P 5 +0,35

48
P 5 +0,35

P 12 – 13 +0,23 P 2 – 5 -0,31

37
P 6 -0,20

49
P 6 -0,20

P 10 – 11 +0,38 P 6 – 13 +0,32

38
P 9 -0,36

50
P 9 -0,36

P 2 – 5 -0,31 P 7 – 9 +0,31

39
P 10 +0,39

51
P 10 +0,39

P 5 – 6 +0,30 P 10 – 11 +0,38

40
P 11 +0,38 52 P 11 +0,38

P 2 – 4 +0,37 P 6 – 11 -0,33

41
P 12 -0,23

53
P 12 -0,23

P 3 – 4 +0,38 P 6 – 12 -0,21

42
P 13 -0,30

54
P 13 -0,30

P 7 – 9 +0,31 P 12 – 13 +0,23

43
P 14 -0,38

55
P 14 -0,38

P 6 – 12 -0,21 P 9 – 14 -0,22

A.2 – Figure mapping

A residuals figure displays the distribution of the residuals for a certain estimate.

Each residual is mapped to its respective measurement as follows, where:

• P i active power injection at bus i (per unit of system base power);

• P i – j active power flow from bus i to bus j (per unit of system base power).
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Table A.4 – Mapping of residuals.

1 P 1 2 P 2 3 P 3 4 P 4

5 P 5 6 P 6 7 P 7 8 P 8

9 P 9 10 P 10 11 P 11 12 P 12

13 P 13 14 P 14 15 P 1 – 2 16 P 1 – 5 

17 P 2 – 3 18 P 2 – 4 19 P 2 – 5 20 P 3 – 4 

21 P 4 – 5 22 P 4 – 7 23 P 4 – 9 24 P 5 – 6 

25 P 6 – 11 26 P 6 – 12 27 P 6 – 13 28 P 7 – 8 

29 P 7 – 9 30 P 9 – 10 31 P 9 – 14 32 P 10 – 11 

33 P 12 – 13 

An errors figure displays the errors of the variables’ values for a certain estimate.

Each error is mapped to its respective variable as follows, where:

• θ i voltage angle at bus i (radians).

Table A.5 – Mapping of errors.

1 θ 1 2 θ 2 3 θ 3 4 θ 4

5 θ 5 6 θ 6 7 θ 7 8 θ 8

9 θ 9 10 θ 10 11 θ 11 12 θ 12

13 θ 13 14 θ 14
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