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Abstract

The recovery of a deformable visual object’s structure flamimage is a central problem in
computer vision. It is often tackled through the utility ok mear Deformable Model (LDM),
which models variations of a visual object’s shape and ajppeea linearly. This model has
been shown to exhibit excellent modelling capacity whiftraling a compact representation
of variability. However, it suffers from two major drawback Firstly, there are significant
difficulties regarding data collection, where a large numifecorrespondences is generally
required in order to build the statistical models of shapd appearance that parameterise
the LDM. The manual annotation of large databases can tiverbk tedious and error prone.
Secondly, approaches for structure recovery must addnessanflicting goals of accuracy,
reliability and efficiency.

In this thesis, contributions are made to address these tajorrareas of difficulty. In
the first, the problem of automatic correspondence learn@tgyeen pairs of images is tackled
from a Bayesian perspective. The result is a general appribat allows domain knowledge
to be integrated directly into the problem, where adaptatio similar problems are afforded
through an explicit derivation of the involved componenis.the second area of difficulty,
the compromise between accuracy, reliability and effigiensstructure recovery is addressed
through a generic method coined the iterative-discrinneafpproach. Leveraging on the
predictive capacity of discriminative methods and theatige framework of generative fitting,
the approach is shown to exhibit excellent accuracy andhbidity whilst also affording the
most efficient procedure for LDM fitting known to date.

The problem of automatic correspondence learning is poseddirect pairwise registra-
tion problem. Within its Bayesian formulation, it utilisése method of Hierarchical Priors in
order to allow parameterisations of the involved densiitelse optimised in conjunction with
the correspondences. This is a significant step away fromettional approaches that utilise
a fixed parameterisation, requiring a tedious cross vatidgirocedure to determine the best
parameterisation for a particular problem. Furthermdre,groposed approach introduces an
objective criterion with which the quality of the found cespondences can be evaluated. Op-
timisation of the parameterisation and correspondencashigved through thmarginalised
maximum likelihood/maximum a posterigmiocedure that alternates between optimising the
likelihood of the data with respect to the parameterisaiwith marginalisation taken over
the correspondences) and optimising the posterior of thegmondences for a fixed estimate
of the parameterisation. The efficacy of the proposed appramevaluated for the case of
the human face on three types of databases: person spegffe specific and generic person
databases.

The iterative-discriminative approach for LDM fitting makase of a novel fitting objec-
tive in its training procedure callegfror bound minimisationThis objective places emphasis
on the gradual reduction of the spread of training samplestaeir respective optimum by
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minimising the bound over the perturbations of the trairiiaga at each iteration. Since the
objective only needs to be partially satisfied at each immathis approach allows simple re-
gressors to be utilised, which exhibit better efficiency gederalisability in comparison to

more complex ones. Four prototypes of the iterative-disicrative approach are proposed in
order to tackle the problems of linear fitting, nonlineairfdt robust fitting and background in-

variant fitting. The efficacy of the proposed prototypes eleated with regard to the problem
of generic face fitting.

Finally, to facilitate further developments to the work gated in this thesis, implemen-
tations of the various proposed methods are provided aldtigthis dissertation. The De-
formable Model Library DeMoLi b), a C++ Application Programming Interface (API) for
deformable model learning and fitting, provides a flexibléveare framework that builds on
fixed parameterisations of the various flavours of LDMs, ehettensions and developments
in any aspect of their application can be easily augmentéds glatform independent API is
made publicly available for research purposes to encoutagémely dissemination of aca-
demic results.
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Chapter 1

Introduction

The beginning is the end is the beginning.

Smashing Pumpkins
1.1 Motivation

Our world is not a rigid place. Many objects that we encouirieour daily lives exhibit
inherent deformabilities. Understanding the deformatiofh thesedeformable objectéas,
therefore, proven vital in the advancement of many teclgicéd ventures.

Computer vision, a field that studies methods to understaagyés through the automatic
recovery of their structure and its interpretation in thateat of a problem, must therefore
account for these deformations. In fact, due to the limitesleovatory power of images, even
rigid 3D objects can appear to exhibit deformations in argendue to their projection onto the
image as aisual object Here, interpretation denotes the extraction of high lavieirmation
from image structure, which defines the image’s partitignifunctional properties and their
relations to each other. For example, in the context of faaierpretation, this may involve the
extraction of high level information such as: Is there a fiacte image? Is it male or female?
What is his/her emotional state? Who is it? In this case andymaore, perhaps the most
influential issue, which affects the possible deploymentafputer vision applications on
real world problems, is the recovery of the image’s undegystructure, which can be thought
of as a preprocessing step to image interpretation (seed-igl)). The deformations inherent
in manyinterestingobjects adds a degree of difficulty to structure recovergnfimages.

In the past, many attempts have been made that utilise onbase& structure recovery
process for image interpretation. Such methods, whichrgépeitilise powerful and well de-
veloped machine learning algorithms such as Neural Nesvarki Support Vector Machines,
embed a large proportion of the variations exhibited byehdsformable visual objects into
the interpretation process. Examples of these for facegrétion can be found in [57; 69].
Although some impressive results have been reported usismgpproach, implementation dif-
ficulties inherent in these methods have restricted theigeigor large scale deployment. One
of the major sources of difficulty in thigolistic interpretation approach is that deformations
introduce nonlinearities into the visual object’s appaaea For example, when structure re-
covery only involves the detection of an object’s locatior &cale, the functional variation
in pixel values within a rectangle containing a projecteddiject as it rotates follows a non-
linear appearance manifold in pixel space [95]. In orderaimn gufficient accuracy for real
world applications, there needs to be a large corpus ofitigidata containing images of the
object at an extensive range of poses. Although sufficidatlye collections of training data
are now available for many interesting problems, the exdrdinearities caused by the inherent

1
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Avatar Animation

[ ]
& |
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Gender |=9»| Female

- Expression| =] Smiling

G Identity | =9 | Nicole

Appearance  Shape

Graphics Applications Structure Recovery Image Interpretation

Figure 1.1: Structure recovery as a preprocessing step to image ietatjum and graphics applications.
Face images taken from the IMM Face Database [89].

variabilities of a visual object mean that interpretaticuaily involves a highly sophisticated
nonlinear learner that can be computationally expensiev&tuate online. For real world ap-
plications that require a number of different interpretas of the same image, for example
simultaneous visual speech and expression recognitignagiproach can quickly become in-
feasible. Furthermore, the complexity of the predictivediions in the interpretation process
often gives rise to generalisability problems.

In recent yearsdeformable modelbave enjoyed much attention in the computer vision
community as a way to handle deformabilities of visual otgjecThis group of approaches
utilises a more sophisticated structure recovery mecimgnighere deformations are explic-
itly accounted for through model parameterisation. Defaiam induced nonlinearities in the
structure can then be accounted for by the interpretationgss through structure normalisa-
tion. Throughout the years, some ingenious parametansatind their utility have been pro-
posed, such that the applicability of deformable model®ig widespread in human-computer
interaction [59; 138; 140], medical image analysis [98;;11388] and industrial vision [28; 39;
87].

The computer graphics community has also benefited frometelopment of deformable
models. In this field, the recovered deformable structumeoisused to normalise some data
to be interpreted, but rather it is used explicitly for imayathesis. Examples of this include
facial expression transfer [101; 136], avatar animaticf],[Visual speech synthesis [120] and
face de-identification [56] (note that some of these apfitioa involve a crossover with com-
puter vision). In many applications in this field, the use efadmable models has allowed the
automation of many tasks (see [19], for example), whichiptesly required treatment by a
human expert, significantly reducing workload as well asdasing efficiency.

Of particular interest in this thesis is a subclass of deédri® models that will be re-
ferred to throughout this dissertation as timear deformable mod€LDM). Instances of this
subclass have the distinction that they represent defalitiedy both in shape and appear-
ance, as a linear object class (see Figure 1.2). Example®bfsLinclude Active Shape
Models (ASM) [31], Active Appearance Models (AAM) [30] and3Morphable Models
(3DMM) [18]. LDMs recover structure from an image using tlecalled analysis-by-synthesis
approach, whereby the LDM parameters are refined with thectibg of attaining the best fit
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Figure 1.2: An illustration of the LDM learning process along with itsricus components. From a
set of annotated training images, separate linear modedbagie and appearance are learnt through
principle component analysis (PCA).

between the synthesised model’s appearance and that of#ge i(see Figure 1.3 for an illus-
tration). Although any deformable visual object can be niedeby an LDM, it is particularly
well suited to modelling visual objects whose variationg in a much smaller subspace than
their representation. Examples of objects that exhibst kind of variability include numerous
anatomical structures, such as the human face [30]. Oneeafntiin strengths of LDMs is
their compact representation of complex deformations bgetimg the major directions of
variations within the constrained subspace of variability

1.2 Objectives

Despite enjoying an intense level of research over the Bgears, LDMs still suffer from a
number of limiting factors. Most notable amongst these heedifficulties in data collection
for their training, and the trade-off between speed andracgun structure recovery (model
fitting) as well as their robustness to occlusional effeots @nmodelled variabilities. The first
limiting factor arises from the way in which LDMs are parasréted, where deformabilities
of the visual object of interest are represented using &ttal model of variations. These
statistical models require a large number of corresporetete be available across a training
dataset. Manual annotations of large datasets are bothutednd error-prone as well as lack-
ing in repeatability. The second limiting factor is testam® the difficulty of deformable
model fitting. Although LDMs are generally designed with dficéent parameterisation in
mind, the number of parameters to be optimised in structrcevery can still be prohibitive
for many applications. Most methods, therefore, make saaeraptions in the model fitting
procedure in order to improve computational efficiency.sThbwever, leads to reduced fitting
accuracy as well as generalisability. Furthermore, th&fg@emcy driven assumptions do not
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Figure 1.3: An illustration of analysis-by-synthesis on an image takesm the IMM Face
Database [89].Left to right : Input image, initial model estimate, recovered structlter 5 itera-
tions, recovered structure at convergence. Note that th8 &@nnels of the model are reversed (i.e.
BGR) to highlight the model from the image.

generally account for occlusions or unmodelled variabgitwhich are commonly encountered
in real world applications, dramatically limiting the seopf these methods.

The primary goal of this thesis is to at least partially addrine two major drawbacks of the
LDM as described above. To address the problem of data tolkec¢he utility of directpair-
wise methods for automatic correspondence learning is rigtydogestigated. Formulated
within a Bayesian framework, a number of assumptions régaitie generative properties of
deformable model matching, a component of the generatireg@ondence learning problem,
as well as the distribution of their deformations, are itigeded in a principled manner. The
Bayesian framework adopted here also allows all the frearpaters within the problem to be
tuned automatically. This is a problem that has been langgigred in most existing works.
It will be shown that the regularised data fitting problem jeihis the formulation often used
in existing works, can be derived directly from a Bayesiamfalation, and that it constitutes
the case where the parameterisations of the densitiesveét/oh the Bayesian formulation
are known and fixed. Through extensive empirical evaluatmmthe human face, the direct
pairwise method for automatic correspondence learningag/s to be capable of modelling
typical variations such as pose, lighting, expression dedtity. However, it is also discov-
ered that the method is highly sensitive to initialisatiorhere optimisation often terminates
in a local minimum. Nonetheless, the Bayesian frameworkgted here serves as a flexible
method from which further studies can benefit. An examplénefadaptation of the proposed
procedure as a groupwise method, where the linear modédis €@QM’s shape and appearance
are learnt along with the correspondences, is also prasentbis dissertation.

To address the usual trade-off between speed and accuraefdmable model fitting,
a new fitting approach for LDMs is introduced. The approacbkpscifically designed for
flexibility to accommodate the two opposing criteria of airfigt algorithm: the accuracy re-
guirements of a problem and the computational capacitye$iistem that implements it. This
is a major shift in paradigm from the general attitude of eitbuilding the most powerful
model possible with the expectation of increases in contiput@ power in the future [105],
or applying some approximations in order to facilitate aucstl computational burden [30].
This coupling of desired accuracy and computational castiges system engineers greater
flexibility in designing and planning the construction otegrated systems that utilise this
fitting procedure. The approach leverages on the efficiendygeneralisation properties of
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discriminative methods. Training on simulations of redirfg problems, it is shown that this
approach exhibits excellent generalisability on unsestaites of the visual object as well as
affording a flexibility in the level of desired accuracy, whican be tuned based on the needs of
the image interpretation application that uses its re@structure. This is achieved through
the concept of iterative error bound minimisation, wherabgach iteration of the algorithm
computational resources are focused primarily on tacklimgworst case scenarios, minimis-
ing the errors on simulated samples that are furthest frain tresired settings. By virtue of
its iterative framework, the discriminative predictoredressors) need only partially satisfy
the problem’s objective at each iteration, since the cait§nof objective between iterations
gives rise to further overall improvements in future itemas. As such, the approach affords
the utilisation of simple functional forms for its predicspwhich generally exhibit better gen-
eralisability than their more complex counterparts, as aghffording a rapid evaluation. The
approach proposed here is also highly applicable, as icssacan be created using a variety of
model parameterisations, regressors and feature egmgutocedures (that are used to drive
the regressors). As such, a number of prototypes of thisoapprwill be evaluated in this
dissertation, highlighting its applicability. These mtypes include those that utilise linear
and nonlinear regressors as well as one that is robust irréiseqce of occlusional effects. An
extension of the linear prototype that can handle varyirgkfeounds is also presented, where
it is shown that background invariance can be achieved witkacrificing performance.

A secondary goal of this dissertation is to provide a flexdg&ware framework that builds
on fixed parameterisations of the various flavours of LDMserghextensions and develop-
ments in any aspect of their application can be easily autgderfor this, the Deformable
Model Library ©eMoLi b), a C++ Application Programming Interface (API) for defaite
model learning and fitting, is provided along with this ditagon. A number of components
commonly used by LDMs can be found here, such as linear shageppearance model
classes, warping and various other geometric functiongc(Bstes alignment, for example),
as well as full implementations of a number of prominent AAMIa&ASM fitting procedures.
The API also provides a Graphical User Interface (GUI) fouaber of common tasks, such
as manual annotation, linear model viewing, and visuatisabf model fitting and tracking
procedures. Although a number of similar libraries now gxigst have their drawbacks. The
AAM API[113], for example, implements only the original AARtting procedure and is plat-
form dependent (i.e. it is a Windows only API). Another exdenis amt ool s, for which
the source code is not publicly available. In contr@etvbLi b is a platform independent API
whose source code is made publicly available for researmgopas. Finally, it should be noted
that all experiments presented in this dissertation wepmemented usingeMoLi b, allow-
ing reproduction of all results using the publicly availablatabase on which the experiments
were conducted.

1.3 Overview

This dissertation is comprised of six chapters, the first bfc is this introduction. The
chapters are organised in such a way that the reader willfibdayereading the chapters in

*htt p: // www. i sbe. man. ac. uk/ ~bi nf sof t war e/ amt ool s_doc/ i ndex. ht m
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order as conventions and terminology set out in earlier tema@re adopted in the chapters
that follow. This is especially the case for Chapters 4 andtigre the latter is an empirical
evaluation of the former. However, the problems tackled mafters 3 and 4, as well as their
proposed solutions, are separate and distinct. As suchie#iter can freely interchange the
order of these chapters, but is strongly encouraged to éiast Chapter 2.

A brief outline of each of the chapters that follow is giveridve

Chapter 2 comprises a general overview of LDMs. This includes a dedadiscussion of
their common parameterisations and a brief outline of saese tommon representa-
tions. The models described in this chapter serve as a lasise prototypes used in
the experiments of LDM fitting, presented in Chapter 5. A eawiof existing meth-
ods for automatic correspondence learning for LDM buildim@lso presented, where
the strengths and weaknesses of some of the more prominémiasere discussed. Fi-
nally, a taxonomy of existing LDM fitting approaches is prase, grouping the methods
based on their algorithmic realisations.

Chapter 3 presents a rigorous investigation into the utility of dirpairwise approaches for
automatic correspondence learning. The formulation optiodlem within a Bayesian
framework is derived along with a discussion of possibleapaaterisations for the in-
volved densities. The applicability of the approach is eiogily evaluated through
experiments on a face database, testing its performangefson specific, pose specific
and generic person models. Analysis of the results is ptedexiong with suggestions
for further improvements.

Chapter 4 presents théterative-discriminativeapproach for LDM fitting, a novel approach
that leverages on the predictive capacity of discrimimatimethods and the iterative
framework of generative fitting, coupled through the objecbf error bound minimi-
sation. Details regarding its derivation as well as the vatitig factors involved are
discussed with reference to existing fitting approachesei@éprototype methods are
presented that utilise linear and nonlinear regressoredagvextensions that can handle
occlusions and varying backgrounds.

Chapter 5 comprises an investigation into the efficacy of the iteetiNscriminative approach
through experiments on the various proposed prototypegirital evaluations are per-
formed on the difficult problem of generic face fitting withneparisons made against a
number of existing methods for LDM fitting. Analyses of theutlts are presented along
with ideas for further performance gains.

Chapter 6 concludes this dissertation with an overview of contrims$i and mention of di-
rections for future work.
1.4 Mathematical Nomenclature

In order to facilitate a better understanding of the matheralaformulae in this dissertation,
conventions on notations used throughout this thesis asepted below.
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Scalars are written in italics, either in lower or upper-case, foaewle:a andB.

Vectors are written in lower-case non-italic boldface, with coments separated by spaces,

for example:
a a
v=Tla b o =a;b;d=|b|=| b (1.1)
C C

is a column vector, where denotes the vector or matrix transpose. The type of brackets
is chosen in the context of an equation to clarify the expwsit Elements of a vector
are represented by the lower-case italic vector name withranthesised index as its
subscript. For examplev;) is the ! element of vectow. The size of a vector is
represented by a parenthesised number as its supersorigtxdmple: v(™ is ann-
length vector. Sub-vectors are represented by the rangeeiintices, for example:
v(2:5) denotes the 4-length vector comprising of elements 2 to % iwiclusive. If no
starting or ending index is specified, then the sub-vectaoisists of elements to the
beginning or end of the vector, respectively, for exampig:) comprises all elements

of v from the 7" element onwards.

Matrices are written in upper-case non-italic boldface, for example

M:[ab;cd]:[z Z}:(iﬁ) (1.2)

The type of brackets is chosen in the context of the equatiariatrify the exposition.
Elements of a matrix are represented by the italic, uppse-caatrix name with a paren-
thesised index as their subscript, for examplg; ;) is the element in thé" row and;™
column. The size of the matrix is represented by its parasighd superscript, for exam-
ple: M("*™) s a matrix withn rows andm columns. Sub-matrices are represented by
the range in the indices, for exampl®l(,.5 ;.3) denotes thg4 x 3) matrix comprising
the second to fifth rows aM and its first to third column inclusive. If no endpoints
are set, then the sub-matrix consists of elements to the ftichiocolumn or row, for
example:M, .y denotes the first row d¥1.

Vector diagonalisation is represented by the di&g operator, where each element of the
vector is placed in the diagonal entries of the matrix, fareple:

diag{v} = diag{[a; b; |} =

oS O R

0 0
b 0] . (1.3)
0 c

Vector of constants are typeset as the boldface of the number, for exanipte:[1; ... ; 1]
or0=1[0;...;0]

Inner product of two vectors is represented by the.) operator, for example:

(v,w) =viw. (1.4)



8 Introduction

Matrix vectorisation is represented by the vg¢ operator, which takes each column of a
matrix and concatenates them into a vector, for example:

vec{M} =ved{[a b; c d]} =[a; c; b;d]. (1.5)

Matrix determinant is represented by the de} operation.

Kronecker product is represented by the symbol, for example:

a b aN bN
M®N_[c d}®N_[cN dN} (1.6)
Identity matrices are typeset as:
1 ... 0
I=|: 0 i (1.7)
0 1

Sets are typeset using curly bracketsi, b, ¢} or {x;} V.

Spatial set within a triangle is denoted by tfix;, x;,x;}, where the triangle vertices are
X, X; andxy.

Spatial set within a convex hull is denoted by hufls}, wheres = [z1; y1; ... 5 Zn 5 Yn |
is a vector containing the 2D points defining the convex hull.

Functions are typeset in the upper-case Ralph Smith’s Formal ScripF@ font, for exam-
ple: % (x;p). Here,p are the variables o andx are the dependents.

Function composition is denoted by the the symbol, for example:
F(G(x;v)) =F o9 (x;v). (1.8)

When composing functions with multiple variables, the able resulting from the eval-
uation of the composed function is set as the diamond symkolaplace holder):

F(G(%;v);p) = F(O;p) oG (x;v). (1.9)

Expectation of a function is denoted:
Ep(x) [yx ] > (110)

where the expectation is taken with respect to the prolaloiénsity functiorp(x).



Chapter 2

Linear Deformable Models

.. and I've seen it before

.. and I'll see it again

... yes I've seen it before

... just little bits of history repeating.

Propellerheads

The Linear Deformable Model (LDM) is perhaps one of the mashmon mathematical tool
used to represent deformable visual objects. The compigienvcommunity started utilising
this model for use in analysis-by-synthesis type problemtlse early 1990s. Since then, signif-
icant advances have been made in improving their reprasengwer and the computational
efficiency of their use, as well as opening up new domains pliegtion.

In this chapter, a detailed review of LDMs is presented. Asppertaining to the various
parameterisations of its different flavours are discussefidction 2.1, concentrating on the
representation of both its shape and appearance as a lisjeat dass. Existing approaches for
automatic correspondence learning and model buildingfirtstearea to which this dissertation
contributes, are reviewed in Section 2.2. The various iegisaipproaches to LDM fitting,
the second topic on which this dissertation contributes, discussed in Section 2.3, where
approaches are grouped according to their algorithmigsegdns. This chapter concludes in
Section 2.4 with an overview and a brief discussion of relabpics.

2.1 Parameterisation

There currently exist a number of different flavours of LDMglie literature, each of which is
specialised to a particular type of visual object. For exae Active Shape Model (ASM)
was designed to model visual objects with strong boundaatufes, such as the outline of a
human hand and bones in medical images, the Active Appealdodel (AAM) was designed
to handle objects that exhibit a large amount of appearaadation within its class and the
3D Morphable Model (3DMM) extends the AAM’s representatmewer to the 3D surface
domain, explicating the true dimensionality of the objesinly modelled as well as affording a
higher fidelity in detail. Despite their apparent differeacunder the guise of slightly different
names and acronyms, their underlying mathematical frameisaery similar. However, they
differ in their fitting procedure. One of the main common fastamongst the various LDM
flavours, is their intrinsic representation of shape antutexas a linear object class.

9
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Figure 2.1: Homologous point set: Corresponding points across difteireages relating the same
physically meaningful location(a): Example of homologous points for the human face taken fram th
IMM Face database [89]b): Example of homologous points for the left ventricle with opea taken
from [112].

2.1.1 Parameterising Shape

The shape of an LDM, whether describing a 3D object or a 2Dalisbject, is generally
represented by a set of poir{téx; }!|x; € R}, whereD is the dimensionality of the model
points (2D or 3D). This is in contrast to the representatibmore general deformable models,
which represent shapes by functionals such as curvesgsirot Fourier descriptors specific
to the particular object being modelled [111; 143]. The poi; in an LDM, commonly
coinedlandmarks are often chosen to correspond to physically meaningfdtions on the
visual object, which are consistently located in any insgawithin the visual object’s class.
An example is the outer corner of the eye for the visual obgtess of human faces (see
Figure 2.1). Despite the various landmark configuratioesingd by the set of pointgx;}”
for each face, the location of a landmaxk always corresponds to the same physical point
in all faces. Although the landmarks, and hence the phygicakaningful points, can be
chosen arbitrarily, in practice, points correspondingaitesit visual features, such as corners
and edges, are most often used as they allow more reliablaahannotations.

For mathematical treatment, the shape of an LDM is usuatlsesented as @sn)-length
vector, consisting of an ordered concatenation of the iddal landmarks:

S=[X1; ... Xn ], (2.1)

wheren is the number of landmarks defining the visual object’s sh&pather than directly
parameterising the visual object’s shape through landrwdtions, LDMs afford a much
more compact representation that is decomposed intosidrand extrinsic accounts of shape
variability.

Intrinsic Shape Variation

The intrinsic or local shape variation of LDMs generally aacts for shape deformabilities
that are independent of the imaging conditions. These nieftions are accounted for here by
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Figure 2.2: (a): Example of the first two modes of intrinsic shape variatioa buiman face built using
the IMM Face database [89]b): Example of the first two modes of intrinsic shape variatiorhef
left ventricle built using the database described in [LEch mode of variation is varied betwees
standard deviations of the mean shape, keeping the othiaisiotparameters at zero.

a linear combination of modes of variation:

F(ps): RM: — RP" = 5 + ®,p (2.2)
where.#; is the intrinsic shape generating functiah®s™ is the mean shapa{”*"*+) is
a matrix of concatenated modes of intrinsic shape variaa'rmhngs) are the intrinsic shape
parameters, which define coordinates within the subspaaensd by®,. An example of
intrinsic shape variation is illustrated in Figure 2.2. §hépresentation is appropriate for de-
formable objects where the distribution of the shapes caadeguately approximated by a
low-rank or degenerate Gaussian. Examples of objects #vat previously been successfully
represented in this way include the human face [43; 18] angenous other anatomical struc-
tures [32]. Representing objects using a linear model, gitier distribution of the elements of
ps do not follow that of a Gaussian or uniform distribution, gasult in shape instantiations
that are not physically realisable. Examples of this inelatjects with rotating components
or those exhibiting significant 3D view changes [103].

For many visual objects, the number of modes of varialiiris much smaller than the size
of the shape vectob,n, resulting in a compact representation for modelling nsié¢ shape
variability. These modes of variation are commonly fourrdtigh the application of Principle
Component Analysis (PCA) on a set of extrinsically alignkdpes{s;}¥ (see Section 2.1.1),
retaining only the subset of modes that account for the ntwjof variation within the set.



12 Linear Deformable Models

Applying Singular Value Decomposition (SVD) to the covada matrix:

=|

N N
_ 1 ey T R a
C= N1 E_l (8; —8)(s; —s)" =UXU" where s= E_l Si, (2.3)

the modes of variation are generally chosen as\ithesigenvectors corresponding to thé;-
largest eigenvalues:

®,=U; 1., Where {Vi<j:3;y>%;,}- (2.9)

The choice ofd/, is something of a ‘black art’ that often depends on otheeddtimposed
on the model. Listed in the following are a few common apphesdo its selection:

e If the variance of noise? in the estimates df is known, then\/, is set to the maximum
number such that ,;, as) > o2

¢ Find thekneein the eigenspectrum of. However, in many problems, a clear decrease
in the eigenspectrum between the last mode of variation aisgns not easily distin-
guishable. Typically, the eigenspectrum of real datasstd to taper off smoothly (see
Figure 2.3). This is particularly the case for visual obgeftr which a truncated linear
model is an approximation.

e Set a required reconstruction accuracy and incrdésentil the required accuracy over
every shape in the training set is achieved. This approaghires significant domain
knowledge, both of the visual object and the fitting regimevitich it will be used.
Alternatively, a cross-validation procedure can be w@diswhereby the dataset is parti-
tioned into training and test set&/,; can then be incrementally increased until the model
overlearns the data, which can be determined by an incragbke reconstruction error
on the test set. However, this procedure can be computlticxpensive, especially
for the appearance model that requires similar treatmeet$&ction 2.1.2).

e Utilising parallel analysis, the data’s eigenspectrumadspared to the eigenspectrum
of a randomised version of the data [114]. Although this epph requires no domain
knowledge, it has a tendency to underfit the data.

e Assume a certain proportion of the total variation in théniray set is due to noise:

M
=1 (i,
M > d% (2.5)

Dgn
doin1 2(i)

Here,d is commonly chosen to be a fairly large proportion, such & 9598%.

In practice, by far the most popular out of these is the laghote which is sufficient for many
cases.
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Figure 2.3: Logarithmic plot of the eigenspectrum of a linear shape rhduldlt from non-aligned and
aligned training shapes. The alternating Procrustesmakgm method was used for alignment.

Extrinsic Shape Variation

To facilitate a compact model of intrinsic shape variatiotie effects of extrinsic (global)
shape variations must be accounted for separately. Thésesaxvariations account for the
different geometrical conditions under which the visuglkeabis observed. It can be thought
of as the projection of the intrinsic shape, defined inrtiedel frameonto theimage frame
This projection consists of a composition of the intrindi@ge generating functioy; with
the projection function:

y(psags): §RMS+GS - %Dsn = yg(OS gs) © %(ps)a (26)

where.7 is the projection function, parameterisedgﬁs).
For 2D LDMs, the projection function is generally chosenrasgimilarity transform:

Fy(s;8s): R x R - R = <I(”><") ® [Z ;ﬂ) s+ 1M g [igﬂ , 2.7
Yy
whereg, = [a; b; t, ; t, |. Here,a andb define the parameterisation of a scaled rotation

matrix, with:
a=s cos(f) and b= s sin(h), (2.8)

where s and # denote the scale factor and rotation angle, respectivelghduld be noted
here, that in some works, such as [45; 139], the parametierisaf the shape generation
function is simplified by extending the linear intrinsic \dions to account for the extrinsic
variations. This is achieved by concatenatig; y1;...;Zn;Un], [~U1;Z1;..-; —YN; TN,
[1;0;...;1;0] and[0;1;...;0; 1] to the columns ofp, in Equation (2.2). Approximating the
similarity transform in this way does not apply the rotaiand scalings to the linear modes
of intrinsic variation, only to the mean shape. Although timenodelled scaling in the intrin-
sic variations can be accounted for by directly scaling themeterg,, since the rotations
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are not modelled, the expressive power of this parametienisa limited. Furthermore, the
combination of a rotated mean with an unrotated basis cault issmplausible shapes.

For 3D LDMs, the projection function takes the form of a 3D jpadion, or one of its
various approximations. Shown below is the weak-persgegirojection model commonly
used in 3DMMs:

(s:gs): RO x R R = (IW") ® SR) s+1M @[t t,], (2.9

whereg, = [ s;veqR) ; t, , ty |. Here,R(2%3) contains the first two columns of a rotation
matrix.

Extrinsic Alignment

As the training se{s} generally consists of annotations in the image frame, thest first
bealignedbefore applying PCA to obtain a linear shape model, in orerihimise the effects
of extrinsic shape variations from the training set. An appiate objective to optimise is the
compactnessf the linear model built from the aligned shapes. Compastiemost effectively
measured by the number of modes of intrinsic shape varidtipnHowever, since the amount
of noise in the annotations is generally unknown, it is diffito apply this measure in practice.

One of the most common extrinsic alignment methods is aatiter approach utilising
Procrustes alignment [52] to align each shape to the meageinthen recomputing the mean,
repeating these alternating steps until some convergeiteeéan is met. However, since Pro-
crustes alignment assumes an isotropic error on each poaiignment, this procedure may
result in a biased estimate that does not achieve optimapaoimess. Another solution is to
iteratively learn the model, interleaving model buildingdditting steps. However, fitting a lin-
ear model with extrinsic variations composed is a nonliqeacess, increasing the likelihood
of the procedure terminating in a local minimum. Recentliinaar closed form solution to
the problem of automatic intrinsic and extrinsic model astion was proposed in [142]. The
method required/; to be seta-priori and uses the basis constraint to make the problem well
posed. However, concerns regarding the robustness of tiisaadh in the presence of mea-
surement noise was expressed in [21], requiring the cofvecio be used to obtain accurate
results. This problem stems from the maximum-likelihocahriework from which the linear
solution was derived, which places no prior on the intrirskiape parameters.

Nonetheless, the simple alternating procedure describedeahas been used widely for
shape alignment and gives sufficiently accurate alignnmnoltaining a reasonably compact
shape model in many scenarios. It should be noted here,\tbatveith poor extrinsic align-
ment, the resulting model may still be useful, despite sofmthe extrinsic variation being
modelled in the intrinsic linear model. Figure 2.3 illus&sithe utility of extrinsic shape align-
ment for compact linear shape model building. Here, alignnieeachieved using the tangent
space alignment method [43], where each shape is trangfotonthe tangent space of the
mean. Note that the similarity aligned model exhibits a mmmpact spectrum compared
to the translation aligned model, which in turn is more cootghan the model built from
unaligned shapes.
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2.1.2 Parameterising Appearance

The appearance model of an LDM represents how the visuattobjenterest appears in an
image. Its utility here is twofold. First and foremost, itgenerally used to measure the fit be-
tween an image and the model at its current parameter sefseg Section 2.3.2). The second
utility is a graphics one, in which instances of the object lba synthesised for animation-type
applications (see [121], for example). The appearance haiden LDM can incorporate a
large amount of information about the visual object, sucmatti-plane representations (i.e.
RGB images), processed image pixels (i.e. Gabor wavelatsyaxel values for 3D LDMs.
These representations generally depend on the type oflwobject as well as the intended
application of the model.

Regardless of the types of features used, an instance ofxhEslappearance is generally
represented as a vectorised image:

a=|[vy;...;vp], (2.10)
wherevZ(D“) denotes the appearance of tffepixel out of P, in a model withD, imaging
planes. To maintain a fixed number of pixels over all moddhimses, for ease of mathematical
treatment, the appearance is generally defined for locatiothin a prespecified regiof? in
the so called “canonical frame”. For the AAM and 3DMKA,is generally defined as the set of
all pixels within the convex hull of a predefined shape, whsreonvention the mean shape
is often used. Other methods, such as the ASM or the ActiveuFe®lodel [67], utilise a local
appearance representation around each of the shape’sdetslin this framé&. To evaluate
the fitting quality of a particular configuration of the LDM@rameters, the imagedsopped
onto the canonical frame through the utilisation of a waggdimction:

W (x;s): R2 x RP" — 2, (2.11)

that denotes the location of a pixel in the canonical framejegted into the image frame,
expressed through the current shajrethe image frame. For appearance synthesis, the inverse
of # is utilised. Figure 2.4 illustrates the process of appezgamopping and synthesis. The
type of warping function to be used here will generally depen the type of visual object
being modelled. However, most instances of LDM'’s utilisexaditype of function, regardless

of the object being modelled. For example, the AAM utilisee piecewise affine warp, the
3DMM utilises a direct interpolation function (due to itsrde shape representation), and the
ASM utilises a profile extraction function. As with the shapedel described in Section 2.1.1,
the appearance model is also composed of intrinsic anchsixtvariations. In the following,
each of these sources of variation are discussed in turn.

Intrinsic Appearance Variation

The intrinsic or local appearance model of an LDM accountgf@anges in the visual object’s
appearance, which are independent of imaging conditiosswith intrinsic shape variations,

!Note that this kind of appearance representation is useuhpity for fitting rather than synthesis.
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;. ' J Synthesised Appearance Appearance Projected Onto
bl The Image Frame

Modes of Appearance Variation

Figure 2.4: lllustration of appearance synthesis in an LDM.

the appearance variations are also represented by a lioesdnitation of modes of variation:
A(pa): RM — RO =a+ @.p, (2.12)

where «7 is the intrinsic appearance generating functiaf?=?) is the mean appearance,
QEID“PXM“) is a matrix of concatenated modes of intrinsic appearandaticm andpfz a)
are the intrinsic appearance parameters. An example ofsicdrappearance variation is illus-
trated in Figure 2.5.

The procedure for obtaining the intrinsic appearance misdéle same as that for shape,
described in Section 2.1.1. The main difference here coscére dimensionality of the ap-
pearance vectasn. Since the number of pixels withif® is generally much larger than the
number of available training images (a notable exceptiongoiie ASM'’s representation), di-
rectly performing SVD on the covariance matrix will, in geale be extremely costly. As such,

an alternate approach is often utilised. Let the covariamatix be written as:
1
C:NAAT where A=[a-a ... a—al. (2.13)

Here,a is the extrinsically normalised cropped image. SircA” and AT A share the same
non-zero eigenvalues [86], and the eigenvectorAaf’ corresponding to these eigenvalues
are related to the eigenvectorsAf A through:

&, =Ad, where ATA=3,AdT =&, diag[ ;... ; \v]) &L, (2.14)

then the non-zero eigenvalues of the covariance matrix lagid ¢orresponding eigenvectors
can be computed by performing SVD on the small&rx N) matrix AT A. Note that when
using this approach, the columns @f, may require re-normalising since they will not, in
general, be of unit length.

In the more general case, when the number of imagésvery large, performing SVD on
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Figure 2.5: (a): Example of the first two modes of intrinsic appearance viarator a human face
learnt from the IMM Face database [8%b): Example of the first two modes of intrinsic appearance
variation for the left ventricle learnt from the databaseatided in [112]. Each mode of variation is
varied betweent3 standard deviations of the mean shape, keeping the othérsictparameters at
zero.

AT A may still be intractable. In such cases, methods for incréah&VD must be employed.
The method proposed in [20], which decomposes the matrix- US:V by incrementally
adding one column oA to the equation system. The resulting eigenvalueA aifre then the
positive square roots of the nonzero eigenvalueA Af’, and the left-hand singular vectdis

of A are particular eigenvectors AfA” [86]. However, when no truncation is utilised (i.e. the
number of modes is allowed to increase with every additiahe&lervation), this incremental
procedure can also be too expensive since each step requvakch SVD operation on a
matrix the size of the current number of modes. As discugs§2Di, incremental SVD yields
significant computational savings only when the number ofl@soof A is kept at a number
much smaller than the size &. To make the computation of the appearance covariance
tractable for large problems, the number of appearance sndganust be chosea-priori.

Extrinsic Appearance Variation

As with shape, to facilitate a compact intrinsic model of egance, the effects of extrinsic
(global) appearance variation should be accounted foraegha These extrinsic variations ac-
count for the different imaging (lighting) conditions umaehich the visual object is observed.
The appearance of a visual object is then synthesised byagingpthe intrinsic and extrinsic

appearance generating functions:

A (Pa,8a): RMTCe — RPF = o7,(0184) 0 F(pa), (2.15)
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@ (b)

Figure 2.6: (a): Example of the first two modes of combined appearance vanidtir a human face
learnt from the IMM Face database [89): Example of the first two modes of combined appearance
variation for the left ventricle learnt from the databassdatided in [112]. Each mode of variation
is varied betweent:3 standard deviations, keeping the other parameters at Mwte that the LDM
instance used here is an AAM. As such, the model’s trianguias shown to illustrate the simultaneous
variation in shape, along with appearance.

where7, is the extrinsic lighting generating function, paramesedi bygflG“).

The most common model of extrinsic appearance variatidmeidinear lighting model:
Ty(a;84): RPF x R? — RPP = a4 d1PeP), (2.16)

whereg, = [ ¢; d ], with ¢ denoting the global lighting gain antfidenoting the bias. Nor-
malising the linear lighting effects over the training setdlves an iterative process, similar to
the generalised Procrustes alignment of shapes, wheredppexl images are aligned, in the
linear lighting model sense, to the mean image, and the m@agasance recomputed.

In the case of 3DMMs, a more accurate generative model oinsidrlighting effects is
utilised. The standard Phong [46] model is often chosen, lenere the diffuse and specular
reflections on a surface are approximately described. Tiamves a parameterisation of am-
bient light, the direction and intensity of directed lighpecular reflectance of the object, and
the angular distribution of specular reflections (see [I0dHetails).

2.1.3 Combined Appearance Parameterisation

In some cases it is beneficial to account for the correlati®te/een the intrinsic shape and
appearance of an LDM. This parameterisation, commonly irs@AMs, is denoted theom-

bined appearance model, as opposed toititeependentppearance model described previ-
ously. For visual objects exhibiting strong correlatiortvieen shape and texture, this repre-
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sentation generally exhibits a more compact representgtian its independent counterpart.

Using the intrinsic shape and appearance models deschnbeibysly, the optimal param-
eters for every image in the training set can be obtained.trBli@ng set for the combined ap-
pearance model then consists of a concatenatign ahdp, into the vectoke = [W ps; pa |,
for each training image. Her8YV is a diagonal scaling matrix, which accounts for difference
between the units of measurement in shape and appearancemwan choice forw is
an isotropic diagonal matrix where the diagonal entriessateo the ratio between the sum-
squared eigenvalues of the independent shape and appeanadels.

By applying PCA on these training vectors, a combined apgpear model is obtained.
New instances of the intrinsic shape and texture parametarshen be synthesised using:
c = ®. p., whered,. is the((M; + M,) x M.) combined appearance basis matrix @lﬁ%c)
is a vector of combined appearance parameters. Note thahe¢la of the training data is
zero, since the parameters are obtained from the applicafi® CA on the same training set,
independently over the shape and appearance. The cholde cén be made using the same
techniques as described in Section 2.1.1 for the shape model

With this parameterisation, the linear shape and appearan€quations (2.2) and (2.12)
exhibit a change in their basis modes of variation:

&, =W '®, and B, =B, B, where &, = |BMxMe), Q%XW] .
(2.17)
The linear shape and texture are now both driverppyather than byp, andp, separately.
Figure 2.6 illustrates the effects of varying the combinpgdemrance parameters on the syn-
thesised model's shape and appearance.

2.1.4 Other Representations

The method for modelling shape and appearance variabflilefmrmable visual objects, de-
scribed in the previous sections, is by far the most commantdiits simplicity and compact
representation. However, it is by no means the only approdehhis section, some other
existing approaches are briefly discussed, along with tlwirain of application.

Sparse Linear Modelling

Although the variance maximising orthogonal bases for rmad@ppearance obtained by PCA
are able to represent variability within an object clas$waitelatively small number of param-

eters, these modes of variation exhibit the charactetistitglobal deformations are preferred
over local ones. This can compound the effects due to chasreelations between deforma-

tions inherent in a limited size training set. As many instirey characteristics of an object’s

variation are spatially localised (an example of this is disgface), an uncorrelated basis may
be suboptimal for exploratory analysis. In light of this Ipiem, some authors have proposed
an alternative representation of an object’s variabiligttdirectly favours locality.

An interesting method to apply here is the Independent CompoAnalysis (ICA). This
method was used in [130] to represent statistical shape Isxdddg131] a comparison between
ICA and PCA for MR cardiac segmentation using the AAM is preésd. Pathology detection
using an ICA based AAM is described in [116] and [117].
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Another representation that favours locality can be olethioy applying an orthomax ro-
tation to the principle components obtained through PCArapgsed in [115]. The result
of applying this rotation to the uncorrelated bases sparseset of modes with strong local
correlations. One of the advantage of this representas@ompared to ICA or sparse PCA is
that this rotation can be obtained for very high dimensialzi such as appearance.

Nonlinear Modelling

Although the linear model class assumption works well in ynapplications, such as frontal
faces and a number of medical image problems, in the caseeveh&aussian distribution
is a poor approximation of the true distribution of the obgeshape and/or appearance, the
following two problems result: (1) the model can reach ilvahape/appearance regions and
(2) alack of compactness can result. To tackle this probéemumber of authors have proposed
nonlinear models to parameterise deformable visual ahject

LDM flavours that exhibit only a small number of landmarks;lsas the ASM and AAM,
afford the application of powerful nonlinear modelling tecques. In [103], Kernel PCA
(KPCA) [107] was utilised to account for the nonlinear védas in the shape of visual ob-
jects that exhibit large pose changes. The intention ofgukiRCA is to restrict the possible
instantiations of the model to valid shapes on the obje¢tape manifold. Here, the valid
shape region was defined by placing an upper bound on the osdtikach of the normalised
KPCA components in a similar manner to linear PCA, where #rameters are often bounded
to lie within +3 standard deviations of the mean. In [129], it was arguedtthatmethod of
restriction is invalid in the kernel space since the KPCA ponents do not behave in a sim-
ilar manner to linear PCA components (i.e. zero KPCA comptmeorrespond to shapes
far from the data and absolute values of all components avademl). They then proposed
restricting the KPCA parameters by placindoaver bound on the allowed ‘proximity data
measure’, the distance from the origin in KPCA space. Thijsistified through the insight
that the sub-manifold of the data is bounded and bracketmttan. In either case, the main
difficulty of KPCA is that the construction of shapes from a&eKPCA parameters requires
a nonlinear optimisation. Although affordable for shaped £xhibit a relatively small number
of dimensions, their extrapolation to texture modellingna generally viable due to its high
dimensionality, often in excess dH000 pixels.

Perhaps the simplest, albeit inelegant, solution to nealimppearance modelling is to
partition the space into subspaces where linear approxingtare reasonable. In [34] the
nonlinear variations in shape and texture of a human faoeighit upon by large in-plane pose
changes, are tackled by partitioning the appearance spaed lon the pose of the face. A more
principled partitioning scheme is presented in [26], wheBaussian mixture model (GMM)
is trained on a talking mouth sequences using ExpectatioxifMsation [14]. In order for
the mixture membership evaluations to be computationedigtable, the GMM is defined over
the space of PCA parameters of the whole set. Although thithedeavoids the reliance on
heuristic parameters and partitioning such as pose,litatjuires the number of partitionings
to be seta-priori. Furthermore, it models only nonlinearities within the spdice defined by
the PCA modes, restricting its representative capacithigdibear PCA model.

Despite the large literature on nonlinear distribution eitidg and manifold learning, they
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have rarely been implemented in the context of an LDM. As idlesd above, the main diffi-
culty is in modelling the appearance, which resides in a fagghi dimensional space. As most
LDM applications are aimed towards alignment and trackorgine performance considera-
tions become the most pressing issue, negating some ofilefilseof improved representation
accuracy afforded by nonlinear modelling.

2.2 The Automatic Learning of Correspondences

One of the main drawbacks of LDMs is that they require aniaiat relating the same physical
locations across the whole training set. Manually annogatarge datasets is both tedious
and error prone. Furthermore, when a dense shape modelds siseh as in the 3DMM,
manual annotations can only be made for a subset of the porrdences. Although most
current applications that utilise LDMs still use hand l&beldatasets, there have recently been
advances in (semi)automatic techniques that have thetmitensignificantly ease the model
building process.

The main aim of most automatic model building techniques fg1d a set of corresponding
landmarks in each image, which simultaneously accountthiormaximum amount of shape
variation within the set and has minimal representatioaraver the training set. Compared to
LDM fitting methods (see Section 2.3), automatic correspond learning for LDM building
is less explored. However, their approaches can be broatigaorised into two groups: feature
based and image based.

Feature based approaches, for example [27; 60; 137], findspmwndences between salient
image structures (features), such as corners and edgee im#ige, by examining the local
structure of the features. Once detected, the set of caedidatures is matched across the
whole image set, possibly utilising a geometric consistesrierion. The advantage of this
approach is that feature comparisons and calculationsedmévely cheap. The downside,
however, is twofold. Firstly, there may be insufficient eati features in the object to build a
good appearance model. Secondly, as the feature compagdemerally consider only local
image structure, the global image structure on which the LiBkhen modelled, is ignored.
As a result, models built using annotations found in this neammay be suboptimal.

Image based approaches alleviate these problems by gtaitinthe requirement of model
compactness and faithful reconstruction. Most image bapedoaches utilise an image mor-
phing and matching process in a group-wise fashion. Appegof this kind typically learn
the shape and appearance model of the LDM, along with thegmondences, by alternat-
ing solutions for the model whilst keeping the correspoderfixed, with solutions for the
correspondences, whilst keeping the model fixed. Althobghapproach has no proof of con-
vergenceé, the approach is fairly stable, affording numerous repaits encouraging results.

The pioneering method for the direct groupwise approachpresented in [133] for learn-
ing dense correspondences for use in a 3DMM. Utilising thieec estimate of the model, the
LDM is fitted to each image in the database. From locationsiddfby the fitted LDM’s shape,
optical flow is performed between the image and the LDM’s apgece that is projected onto

The direct groupwise method essentially solves a diffepeoblem at each cycle of the two step alternating
procedure. As such, no common objective is maximised througthe procedure.
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the image frame. Using the landmarks, perturbed througlopieal flow procedure, a new
model of shape and appearance is built. This procedureeasiteg a number of times, increas-
ing the number of shape and appearance modes, until coneerge declared by examining
the change in landmark perturbations between iteratiohs. main strength of this method is
the simplicity with which correspondences can be obtaifiée main drawback of the method
is that it is prone to overestimating shape variations,esiticelies only on the truncated SVD
procedure, used in shape model building, to regularise dneiiped landmarks. The results
reported by using this method were only evaluated qualébti based on the quality of the
reconstructed appearance alone. Nonetheless, as theatipplidomain of 3DMMs is often in
computer graphics, this approach is still meritorious.

More recently, a number of methods have been proposed tessltiie drawback of the
original method described above. In [9], Baltral. do away with the two step procedure of
model fitting and perturbation estimation by directly ogsimg the landmarks in all images,
with the common objective of model reconstrucioiThey also utilise a regularisation term
in their objective, in order to promote smooth deformationdirections not yet accounted for
by the current shape model. To achieve a reduced computhiiost, the efficient project-
out inverse compositional formulation [83] was used to misk the objective. Although this
method alleviates the overestimation of shape variapitigmpared to the method proposed
in [133], a greater number of free parameters are requirée welected manually. However,
it is suggested that since the method affords an efficieriuatian, a number of trials using
different settings of the free parameters may still be fdessi Finally, the applicability of
this method for visual objects that exhibit large amountsafability is yet to be verifietl
In [54], it has been shown that the project-out inverse caitjpmal method performs well
only on visual objects with small amounts of shape and ajppearvariability.

In [33] a more powerful method is proposed, where the MinimDascription Length
(MDL) of the whole training set is optimised. The method aff®non-Gaussian distributions
in shape and texture, although the results reported in thi& wtilise a linear model only. It
also evaluates the model fit criterion in the image framéjerathan the more conventional
model frame. This, they argue, alleviates the problem tiegufrom model frame evaluation,
where the landmarks may distort to minimise the effects ofitte-model regions in the im-
age, resulting in erroneous correspondences. In any ceal@aton in the image frame is
required here, due to the MDL criterion used. As such, théotetequires amversewarping
procedure to project the model's appearance onto the imrageef This is a much more com-
putationally demanding procedure than the forward warpiagedure, even for the piecewise
affine warp, utilised in this work. Furthermore, the gradienf the objective function must be
evaluated using numerical differentiation techniques.iniprove efficiency, a coarse-to-fine
procedure is implemented, where the landmarks are peduhreugh asmoothdeformation
field, controlled by a set of knots, placed at increasinglg fotations throughout the coarse-
to-fine procedure. Finally, the same authors have publisheaimber of other similar works,
see [128] for example, which utilise essentially the sanoeguure, with a more theoretical

3Note that although a common objective is minimised at eagh, étis done so in an alternating fashion, where
the shape model, shape parameters, appearance modekasgpgaarameters, and the correspondences are each
chosen to minimise the objective, keeping the others fixeitstvdioing so.

“The experiments presented in [9] include a synthetic boxaaperson specific database.
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treatment and customisable warping functions.

Although not designed specifically for LDMs, an interestidga is presented in [63] that
lends itself nicely to the problem of correspondence legynHere, the orderings of vectorised
images are optimised in order to maximise the likelihoodhefdata being generated by a Gaus-
sian distribution. As the objective is convex, it obtains giobally optimal ordering of pixels
for all images in the database. From these orderings, a densspondence set between im-
ages can be obtained. Choosing a set of these as landmarksrtespondences required of
LDM model building can be readily obtained. However, the &dan assumption may be a
poor one, especially when other objects, apart from theaVisbject of interest, are present
in the image. For example, clothing worn by subjects in a fist@base will not generally be
Gaussian distributed. To tackle this problem, the sameoawtktends the method to model
nonlinear distributions in [64], where the aim now is to nmaige the likelihood of a KPCA.
Unfortunately, the resulting problem is nonlinear, affagionly a locally optimal solution.
The main drawback of utilising this method for LDM corresgdence learning is that it effec-
tively solves a Maximum Likelihood (ML) problem. No priorseaplaced in the deformation
of the shapes between images, resulting in an overestimatithe shape variability.

The methods described above are representative of thendyregisting methods for auto-
matic LDM building. Although they exhibit reasonable perfance on constrained databases,
a solution for the general case is still an open problem. A& ,sin practice, the annotation
process is still performed manually or using a semi-autanagiproach [1].

2.3 Linear Deformable Model Fitting

LDM fitting is the process of finding the model parametprs= [ ps ; g5 ; Pa; & ] that
best describe the object in an image Due to the nonlinearity of the problem, LDM fitting is
usually achieved through an iterative process that seiglignipdates the model parametegrs
through an update function:

Ap =% (O;p) o F(I;p), (2.18)

where.% is a feature extraction function that represents the im#gfom the perspective
of the LDM at its current parameter settingsp are the updates to be applied to the current
parameters an@/ is the update model that may depend on the current model pseesn A
good coupling betweef and.# is generally required to ensure accurate predictions of the
updates.

There exists a large variety of LDM fitting procedures, sorhekich are specialised to
specific visual object categories, while others are tunespaxific applications. Despite the
various approaches, all LDM fitting methods share the saregfiwciple goals [101]:

e Accuracy: From an analytic perspective, the extraction of a fitted L®parameters is
nothing more than a front end to the analysis of informationtained in the image. As
such, the accuracy of fitting is often vital to the utility aférence made using the LDM'’s
parameters. Although uncertainty regarding fitting accyrean be incorporated into
the analysis, degradation of the results may be difficulvtich or underestimation may
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result due to overregulaisation. This can be seen, for ebgnmzhe case of audio-visual
speech recognition [88], where analysis of simple patchaetd outperforms analysis
using AAM features due to fitting inaccuracies. On the othemnd) highly accurate
fitting may not be essential to the usefulness of LDMs in ai@aer application. Many

graphical applications, avatar animation [49] for examp#an still be implemented with
aesthetically pleasing results despite achieving lesspleafect fitting.

e Efficiency Although better fitting efficiency is desirable in any applion, in some
cases it may be more important than others. When online gsotgis desired, such as
in the online analysis of medical data [149], highly effitiétiing procedures are vital.
On the other hand, in many problems for which LDM’s can beisgd, for example
photograph/video reanimation [17], efficiency, thoughirddse, is of less importance.

¢ Robustness and Generalisabilitin many problems, the visual object of interest may

exhibit large amounts of variability in its application daim compared to its available
training data. As such, robustness to these unmodelleaticars is highly desirable, and
in many cases, vital in moving an application from developtrte production. How-
ever, there are cases in which the domain of the applicatioerly constrained, where
variabilities from the training data is minimal. Since imgorating robustness gener-
ally involves complexifying the fitting algorithm, it is setimes desirable to deploy
non-robust fitting procedures in these constrained cases.

e Automatic behaviour Minimising or even eliminating user intervention in theifig
procedure is an important goal, especially in real timeiappbns. However, due to the
complexities involved in the fitting problem in general, somodels may require user
input in order to achieve good fitting accuracy [101].

e Applicability : A good fitting procedure should generalise well over a latgmain of
parameterisations. Although algorithms specific to a paldr parameterisation may
better fulfil some of the other goals described above, thgptieability may be limited,
and their contribution to the field in general, weak.

Fulfilling the five aforementioned goals is desirable in atiynfj procedure. However, most
methods favour the fulfilment of some of these goals overrsthiehe choice regarding which
goals to address is generally problem dependent, reflegtdtemumerous fitting algorithms
in the literature. In the following sections, a discussidriihe prevailing methods for LDM
fitting is presented, in which the main goals that are (pdyJiéulfilled are identified in each.

2.3.1 The Search and Constrain Approach

One of the earliest methods for LDM fitting was proposed injaoction with the first sta-
tistically based LDM, the ASM [31]. This method, which wiletreferred to as the “search
and constrain” approach, combines the efficiency of locpbapance matching with the reg-
ularising qualities of the LDM’s statistical shape modehelgeneral algorithm alternates the
following two steps until convergence is achieved:



§2.3 Linear Deformable Model Fitting 25

e For each landmark in the LDM’s shape, find the perturbatiemfits current location
that minimises the difference between the local appearahdeat landmark and the
image.

e Project the deformed landmarks onto the domain of plausibbgpes, defined by the
LDM’s model of intrinsic and extrinsic shape variationsdamegularise the shape pa-
rameters within this space.

This approach has similarities to the Demons algorithm J12&ere the second step is re-
placed by a diffusion-like regularisation, projecting th@rrent estimates onto the space of
smooth deformations. The main strength of this approadhk efficiency, since calculating the
deformations of each landmark is performed independehtyl others, resulting in a problem
with only a very small parameter set for each.

The ASM’s search and constrain procedure utilises the praétivative appearance model,
learnt by cropping a set of pixels from the training imagemglthe profile of each landmark,
which is often set to be perpendicular to a predefined coivitgcbetween them. As such,
the ASM utilises a separate appearance model for each lakdhat describes the local ap-
pearance of image derivatives along the predefined profffesthermore, in modelling the
linear appearance model, all modes of appearance vasgatiynare kept, resulting in a full
Gaussian model. During a search, optimal perturbation dehdandmark is constrained to
lie along the profiles of each landmark in the image frame.sgquently, the method utilises
a semi-exhaustive search along the profile, typically a&get locations, 5-7 pixels along the
profile in each direction, where the quality of a deformationeach landmark is evaluated
using theMahalanobis distancg’8].

The projection step generally involves finding the LDM paetens that best fit the per-
turbed landmarks in the image frame, constrained by thdaggation imposed on the param-
eter space:

¢ ({X}?:ﬁ Ds; gs) =9 ({X}?:ﬁ Ps, gs) + )‘%(ps)> (219)

where{x;} ¥, are the perturbed landmark locatiospenalises the distance between the per-
turbed and projected model’s landmarks (usually set toghstlsquares errot¥ regularises
the intrinsic shape parameters by penalising complex geftions, and is a weighting factor.
There are two common regularisers used here. The first isstov@sthe intrinsic parameters
are Gaussian distributed:

Zs(ps) = p22;1p87 (2.20)

whereX; is the covariance matrix of the shape. The advantage ofébidarisation is that the
problem to be solved becomes one of MAP (Maximasposterior) estimation. The use of a
Gaussian prior on the object’'s shape has been successfilidgdiin a number of works, for
example [101]. The second type of regularisation is gelyemaplemented by constraining
the intrinsic shape parameters to their feasible domainergdly defined as a box constraint
within +L standard deviations, or as a hyperellipsoid constrainhddfby:

p. %, 'ps = L7, (2.21)
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This is equivalent to assuming a uniform prior within thesibée domain, with zero probabil-
ity everywhere else. The advantage of this regularisemisdptimisation can be performed by
alternately solving the data term and constraining theteolueach of which affords an effi-
cient evaluation. The drawback of this approach is thaféiotifzely performs a ML (maximum
likelihood) estimation that may be less robust than a MARTesE.

Although the search and constrain approach for ASM fittingildis good efficiency, its
domain of application is limited. It requires that the visahject of interest exhibits a large
number of strong edges. Furthermore, fitting accuracy ahdstaess to initialisation condi-
tions for this implementation are limited. One of the mairpais of this drawback is the
limited search domain for the landmark perturbations, Wiite constrained to lie along the
profile of each landmark, relying on the projection proces®gularise the parameter updates
in such a way that the fitting error is reduced. Recently, traain of the ASM’s search step
has been extended to utilise a 2D region around each cuaedimark. In [35], a boosted
classifier, utilising the efficient Haar-like features wad to rapidly evaluate the fithess of
landmark perturbations. A logistic regressor was also @segd to predict landmark perturba-
tions, a process that avoids an exhaustive local search.

The utility of the search and constrain approach has alsebmwdstrated in more complex
3D models. In [102], a 3DMM was fitted to an image by sequegtiastimating an optical
flow field between the projected model's texture and the imagd using the destination of
the flow as the perturbed landmarks in Equation (2.19). Thiéaodealso achieves significant
computational savings over other 3DMM fitting approachgsyitiue of the bilinear relation-
ship between the perturbed landmarks and the shape angaigicheters in the constrain step.
One drawback of this approach, which is typical of most dearad constrain approaches, is
that each landmark is given equal weighting in the consstap. In [139], normalised cross-
correlation between patches in a template image were ndhtoliee image, requiring only one
training image (though a statistical shape model is stijuieed), where the projection process
is regularised by the correlation score. As such, the ptiojeprocess favours fitting landmark
perturbations that exhibit similar appearance to the tateplA more formal treatment of this
problem is presented in [13], albeit in a tracking scenakHire, fitting does not rely on an
appearance model. Instead, the perturbations are obtdireadyh optical flow estimates, the
anisotropic uncertainty of which is directly incorporaietb the objective of the constraining
step. By utilising a non-spherical error norm, the inforimaistate of the system is maximised,
resulting in a better inference of the desired shape pammet

2.3.2 Generative Fitting

Generative fitting methods pose fitting as the minimisati@ximisation of some measure of
fitness between the LDM'’s synthesised appearance with fhidieowarped image, with an
optional regularisation over the parameters:

%(ﬂ, Ps; 8s;Pas ga) = @(ﬂ, Ps; 8s;Pas ga) + Asegs(ps) + Aaf%a(pa)u (222)

where? is the fitness functionz, and#, are regularisation functions over the intrinsic shape
and appearance parameters, respectively{and\, } are design parameters that trade-off the
contribution of the image fithess and parameter regul@isatAn illustration of the fitting
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Figure 2.7: Anillustration of generative LDM Fitting.

process and its various components is presented in Figtre 2.

By far the most common fitness function used in LDM fitting ie thast squares error, or
a robust variant thereof:

PSP, 8o Pus8a) = O 9 (19 (XiPas8a) = 7 o ¥ (xi s, i0),  (2.29)
xeN

where(2 is the spatial domain in the canonical frame, over which tB&Is appearance is
defined. The function is usually taken either as the identity, in which case thélera is

in least squares form [12; 30; 82], or a robust function, inclkttases denotes a sensitivity
parameter and the cost function is an iteratively rewemgast squares problem [119]. As
such, the Gauss-Newton method is an attractive optimisatiethod to implement here, as it
requires only first order derivatives and its convergenap@rties are well understood [94].
The Lucas-Kanade approach [76], which was implementedanctintext of general image
alignment in [8], is essentially a Gauss-Newton optim@atispecialised to the case of ML
image alignment. The main drawback of the Lucas-Kanade adeith that it is extremely
inefficient. Despite requiring only first order derivativehie to the relatively large number
of parameters in an LDM, compared to rigid image alignmdmsé derivative computations,
along with the Gauss-Newton Hessian and its inversion, @rgatationally expensive. Refer-
ring to the update form in Equation (2.18), the update madeklies on the current parameters
p- As such, most generative approaches to AAM fitting eitheure some parts of the update
computation are fixed or reformulate the problem such theyt éne.

One of the earliest methods for generative fitting that agdeeasonable fitting efficiency
was proposed in the context of AAMs in [30]. In this work, Ceset al. assume that the Ja-
cobian of the least squares problem in Equation (2.23) islfiXdis results in a linear update
model that can be precomputed, allowing rapid fitting to bdea@d. In training, the Jacobian
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is obtained by averaging a number of Jacobian estimateseity @mage, each estimated us-
ing numerical differentiation. Since the fixed Jacobiaruagsion holds only approximately,
the method utilises a simple step size adaptation procedurereby the estimated updates
are sequentially halved until a reduction in appearancenstouction error is achieved. More
recently, in a method coined adaptive AAM [12], the fixed Jaap assumption is relaxed by
decomposing it and assuming only the component pertainirtiget derivative of the warping
function is fixed. The resulting method exhibits improvedwacy, however, as the linear
update model depends on the current appearance paranttetditing procedure is still com-
putationally expensive.

Adaptations of the inverse-compositional image alignniépto LDM fitting have also
gained momentum recently. By reversing the roles of the aragd the model in the error
function, the derivative of the warping function is fixedsuéting in significant computational
savings. The project-out method [82], for example, mingaithe cost in a subspace orthogo-
nal to the modes of appearance variation, resulting in aly@eally fixed linear update model.
Despite exhibiting one of the most computationally effitii#ting procedure to date, it works
well only for objects exhibiting small amounts of variatés [54]. This problem is partially
addressed by the simultaneous method [4], which solvesé&oshape and appearance param-
eters simultaneously. However, similar to the method if}, [t update model depends on the
current appearance parameters, again resulting in a catignally expensive fitting proce-
dure. Recently, the simultaneous inverse compositionghadehas been adapted for use in the
3DMM [104]. This requires a reformulation of the compogitioperation to be applicable to
3D shape models. Furthermore, by virtue of the separatirtezd of image and model frames,
they are able to utilise a fixed Jacobian, allowing the lingatate model to be precomputed.

In real world problems, the visual object in images that arbd fitted by an LDM often
exhibit unmodelled appearance variations. This may beethiusr example, by occlusions.
There have been various attempts to robustify LDM fittingiagfathese gross appearance
differences. One such approach was presented in [97], whereultimodal nature of the
reconstruction error histogram is analysed in order tdrdjsish outliers from inliers. Anal-
ysis, here, involves a selection procedure, where thetsffégfdncluding particular histogram
modes are assessed through their impact on the matchingdonac Although this procedure
has been shown to accurately distinguish inliers from erdJithe involved procedure can be
computationally demanding, leading to inefficient fittinylost other attempts to robustify
LDM fitting simply replace the least squares appearancadittiriterion with a robust one.
This approach was taken in [55], where the approach was megieed within the inverse-
compositional framework to promote efficiency. Howevencsithe parameter update model
relies on the current robust scalings, it cannot be precoadpdo reduce computational com-
plexity further, the authors assume the outlying pixelsilEkta degree of spatial coherence
by utilising the same robust weight for all pixels within aegefined regions. This results in
an extremely efficient fitting procedure for person specifises, achieving real time fitting in
their experiments. An alternative to utilising spatial emmnce was proposed in [104], where
pixels exhibiting errors larger than a predefined threslotdsimply taken out of the optimi-
sation procedure, at each iteration. This way, the Jacdbiéired, allowing efficient fitting
to be achieved. The problem with this approach is that larggseduring fitting do not only
correspond to outlying pixels, but also to inlying pixelatlre misaligned at the current state
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of optimisation. As such, excluding all pixels with largeas from the fitting procedure will
generally underestimate the parameter update step, ¢etmditow convergence. More recently
in [99], the efficiency penalty stemming from robustifyirtgetfitting criterion was addressed
by applying the effects of outliers directly on the appeaearesidual vector. As such, the pre-
computed non-robust update model can be used, allowingdegffievaluation. However, the
procedure is only an approximation of applying the weightmocedure to the Hessian and
gradient of the iteratively reweighted least squares grobleading to parameter updates that
are biased in favour of the identified inliers. This is pdigiaddressed in that work, through
a type of deterministic annealing procedure, where two aletsbust scaling parameters are
chosen to account for errors in the early and later stagesioffi

Finally, although most generative approaches utilise &antaof the least squares error,
there are a small number of methods that venture away frosnriim. In particular, the
method in [75] adapts the support vector tracking methodtf8the case of AAMs. Here,
the objective is defined as a support vector machine clasific score. To achieve efficient
evaluation, Haar-like features, the gradients of whichfixesl, are used to process the image.
The main drawback of this approach is that the support vectmhine classification score can
exhibit significant amounts of local minima. This difficultyith the support vector tracking
framework was investigated in [141], where it was found ttia¢ to the highly nonlinear
fitting criterion, a discriminative approach was capabledfieving better estimates, using the
relevance vector machine [123] to predict the updates.

2.3.3 Discriminative Fitting

The discriminative approach to LDM fitting directly learn$ixed linear relationship between
the features7 (.#; p) and the parameter updatdp, given a training set of perturbed model
parameters:

{Z(F:p; — Api) , Ap}YY (2.24)

wherep* is the optimal parameter setting for tH&sample andV, is the total number of per-
turbations in the training set. The main advantage of this@gch is its efficiency, sincg can
be prelearnt. Compared to methods for generative LDM fittthgre are significantly fewer
existing methods that utilise discriminative LDM fittingh& main methods for discriminative
fitting will be discussed below.

Inthe original AAM formulation [43], the linear update mdaeas shown to approximately
explain the relationship between the AAM’s normalised a@ppece residual feature:

F(Ip) =t + ®p; — N 0.F oW (p) (2.25)

and the parameter updatég, around the optimal parameter settingsfor a given image.
& normalises the warped image so as to exhibit similar gldghatihg gain and bias as the
model’'s texture. The updat® is easily found through linear regression on the data set in
Equation (2.24). Although this method was later superségdlbe fixed Jacobian method [30],
proposed by the same authors, it serves as an interestingtternpt to apply a discriminative
approach to LDM fitting.

Since the original AAM formulation, research on the disénative approach to LDM
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fitting has focused mainly on the choice .&f that better adheres to a linear relationship with
the parameter updates. The direct appearance model mé&dpddr example, uses the PCA
reduced appearance residuals and predicts the shapdydimract the appearance. This method
boasts significant memory savings in AAM training as wellragprioved fitting performance.
In [40], a linear relationship is learnt between the canalnicojections of the texture residuals
and parameter updates. The method utilises canonicalatoreanalysis to find the subspaces
that best adhere to a linear relationship. These methods leen shown to exhibit faster
convergence and better accuracy compared to the origimalfation in [43].

Another direction of research involving discriminativeifig is to investigate the utility
of more sophisticated regressors in predicting parameddates. In [141], the problem of
template alignment and tracking was tackled from a discrattive perspective, utilising the
relevance vector machine [123] to regress parameter updilbe nonlinear decision function
afforded by this approach results in highly accurate fittimgtperforming the generative sup-
port vector tracking approach as discussed in the previectsos. However, this method has
yet to be adapted to the problem of LDM fitting. One of the diffiies in doing so is to do with
the type of regressor used, where the kernel functions aleaed using the raw image fea-
ture, which can be computationally expensive to evaluaspite the sparsity of the relevance
vector machine. In the case of template matching, at mogiasixmeters need to be regressed,
such as in the case of affine deformations. In LDM fitting, thedel parameters typically
range between 50 and 100. Furthermore, the feature veadrind. DMs generally exhibit a
larger dimensionality, typically in the order of 10000, quamned to the&20 x 20)-window used
in template matching.

Recently in [150], the computational complexities invalva utilising a nonlinear regres-
sor in discriminative fitting, were addressed through thigyibf a boosted set of weak learn-
ers, which are based on the Haar-like features. Althoughye laumber of weak learners need
to be evaluated to regress the updates, typically in ther @200 for each parameter, since
the Haar-like features afford efficient evaluations thiotdige use of the integral image [72],
the estimation procedure was shown to achieve high effigielbis method was extended
in [144; 146] to account for prediction inaccuracies by perfing the same estimation from
a number of different locations around the initial parametgtings. A generative inference
was then made to select the most likely configuration, bagegredictions from the various
perturbed initial settings. Also, a more sophisticatedknearner set was used in these works,
in comparison to the original method in [150], which utitise multimodal decision function.

2.4 Conclusion

In this chapter, a detailed discussion of the LDM has beesgmted. The main mathematical
tools involved in LDM parameterisation were discussedatied) the various LDM flavours
through a common nomenclature. A short overview of some efléss popular parameter-
isations was also presented. The problem of automatic nmmdleling was then discussed,
highlighting the strengths and weaknesses of the varioigtirgx approaches. Finally, an
overview of the various existing LDM fitting procedures wasgented, where the methods
were partitioned into three groups based on the principigegy utilised in each.

Apart from the issues pertaining to LDMs discussed in thiptér, there exist a number
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of other important aspects that would benefit from resea€e of these is the issue of ap-
pearance representation. It has been shown in a number kfwor example [65; 68], that
the representation of the LDM’s appearance has signifidéetts on the performance of the
LDM. However, current research into this aspect entailsitaalhd-miss’ approach, whereby
different representations are evaluated without any reltation of optimality. A notable ex-
ception is that presented in [37], where the optimal filigraperation is selected to optimally
smooth the fitting error terrain. Another aspect of LDMs tisatften ignored in the literature
is the effect of LDM fitting performance on the various apations for which it is intended.
For example, the utility of LDMs for face recognition [42;]4#as been evaluated by directly
observing the accuracy of the results. Only a limited amaifinesearch has been done on
investigating the effects of LDM fitting accuracy on the perfiance of the recogniser. This is
a more difficult problem, however, since it requires a siamdous treatment of LDM fitting,
its representative power, and the recognition procedureutilises it.

As a final note, with increasing computational power and itbigmal advancement, the
utility of nonlinear methods for representing the shape appkarance of visual objects may
be affordable in the near future. This can be expected toawepthe representative power
even further over that afforded by the LDM. As such, it remsaimportant that procedures,
developed now for LDMs, exhibit sufficient flexibility, su¢hat their adaptation to more so-
phisticated models can be achieved.
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Chapter 3

The Pairwise Learning of
Correspondences

I miss you, but | haven’t met you yet.

Bjork

In order to build the shape and appearance models of an LDbt,af Romologous correspon-
dences across a training set of images must first be availaliteough many approaches for
rigid object correspondences are now available (see [2590 for example), solutions for
the non-rigid case are still limited. The main difficultydian accounting for deformations ex-
hibited by the visual object, where rigid geometric corigtsa such as the structure tensor [2;
109], are not applicable. This matter is made worse by therarit variations in appearance
exhibited by deformable visual objects, making featureetlaspproaches unreliable in all but
the simplest of cases. As such, direct (generative) baggdaghes must be utilised to account
for the spatial dependencies of the object’s appearance.

In this chapter, a direct method for automatic correspooeldearning between pairs of
images is presented. Given a template image, for which & seaually selected annotations
is available, the aim of correspondence learning is to perfoonrigid registration between
the template and all other images in the training set, suatcitrrespondences over the whole
set of images can be defined, allowing the statistical moalethape and appearance to be
built. It relies on the assumption that the shape and appeameformations in a visual object
between a pair of images are (piecewisejooth By virtue of its Bayesian framework, all the
free variables of the problem can be tuned automatically.

A formal description of the correspondence problem is preegkin Section 3.1. Sec-
tion 3.2 then outlines the generic Bayesian framework thatilised in the pairwise learning
procedure, with explications on the densities defining tlublem given in Section 3.3. An
approach for solving the Bayesian inference over the cporedences and parameterisations
of the densities is presented in Sections 3.4 and 3.5. Thecitgf the pairwise approach
to provide meaningful correspondences is evaluated onuheh face in Section 3.6, where
experiments utilising person specific, pose specific andmgeperson databases are presented.
Section 3.7 concludes this chapter with a general disaussid mention of directions of future
work.

33
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3.1 Problem Statement

Homologous correspondence denotes semantically eguivaleations in different instantia-
tions of a visual object (see Figure 2.1 for an illustratidm)manual annotations, this is often
interpreted aesthetically as corresponding locationsatephysically meaningful. As such,
subjectivity plays a large role when correspondences asgrmnl manually, leading to biased
annotations. Furthermore, the subjectivity induced spoadence errors do not, in general,
follow an isotropic Gaussian distribution. This is beatisirated by points on an edge, where
the well known aperture problem can lead different humaregspo choose annotations at
different locations along the edge. If the measurementenigitreated as being isotropically
Gaussian distributed, using truncated SVD for exampld,leald to biased correspondences.
To make matters worse, some visual objects exhibit visuslufes that are present in some
instances but not in others, for example a moustache on thaméace. Although in this case,
a human expert generally makes an annotation decision Iiylabaer all locations, relating
the geometries of the object’s instances, these consioiesadre still subjective and prone to
differences in interpretation.

In automatic correspondence learning, photometric andng&c similarities constitute
the measure of homology. Photometric similarity encageslthe intuition that corresponding
points exhibit less appearance differences than nonsoreling points. The intuition here
can be somewhat misleading, however, since there may estaritiations of the visual object
where corresponding points exhibit the same, if not morpeamnce differences than some
non-corresponding points. This is because photometridasity is inherently a local descrip-
tor that considers correspondences on a per-location. hasiisg photometric similarity alone,
therefore, will lead to spurious correspondences. Geadrrsinilarities, on the other hand, are
implemented in such a way as to encapsulate the intuitiontahe topological rigidity of a
visual object. As such, they are a global constraint on thieespondences, enforcing topo-
logical equivalence amongst the different instantiatiohshe visual object. Combined, the
photometric and geometric similarities can be formulatethe well established regularised
data fitting framework [61]:

%(ﬂ,fo,so;s):@(ﬂ,fo,so;s)—k)\%(so;s), (3.1)

where photometric similarities make up the data teynand the geometric similarities make
up the regularisation term, with the trade-off between them weightad Here, {.#°,s"}
denote the template image and its annotation respectivélgenotes an un-annotated image
that contains an instance of the visual object of interestsibly taken under different imaging
conditions, ang denotes the locations in.# that correspond te” in .#°:

S=[T15U15 -5 Tns Yn - (3.2)

In discussions that follow, the correspondence set of acpigat image will also be denoted as
the “shape” of an image.

This thesis deals with correspondences saudo-densgense. A pseudo-dense set of cor-
respondences is defined as a correspondence set for whictahaanotations are still possible,
but are generally impractical for large databases. Exasrgfle DMs that use a pseudo-dense
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correspondence setinclude the ASM and AAM. In these motles;orrespondences are often
called landmarks as they often correspond to physicallgrsigieatures, such as eye and mouth
corners in the class of human faces. For most models of thib kihe number of landmarks
range between 50 and 100. Compare this to a sparse annatétiwa to four features, often
required by generic structure recovery procedures, sutdcagecognition systems.

Suitable forms for the data and regularisation terms in Eoung3.1) are problem depen-
dent as they rely on the underlying deformation structuréhefvisual object as well as the
measurement noise of the images. A typical approach, whesthes domain knowledge is
available, is to assume the true correspondence set is thelt watisfies the photometric con-
straints with the minimum amount of distortion, both in tHgext's shape and appearance.
Here, distortion is generally chosen to measure irregylafithe deformations. This relates
to the idea that points that are topologically close on tlseadi object vary in similar ways.

Regardless of how regularisation is formulated, the cogttfan in Equation (3.1) is almost
always nonlinear due to the nonlinear relationship betvieeimage intensities and the shape.
As the visual object of interest can be located anywhereinvith image, a sufficiently good
initial estimate of the shapes in each image must be availimbbrder for the optimisation
procedure to have a reasonable chance of finding the glolénein or at least a good local
one. In this chapter, it is assumed that a coarse estimale db¢ation and scale of the visual
object in each image is available. This is typical for marguai databases for computer vision
problems, where images are taken under known conditiorik, the object roughly placed at
the centre of the image at a particular distance. In the menergl setting, a detector for the
object class of interest may be available to provide thissmkevel of information. Otherwise,
manual annotation of the location and scale may be requifeghould be noted that this
type of annotation is relatively simple, since only a bomgddox is required to obtain a coarse
estimate of location and scale. In Figure 3.1, some images & typical training set are shown
along with their bounding box, which were found automatijcaking a publicly available face
detectot.

Finally, the regularisation weight in Equation (3.1) is generally unknowarpriori. A
suitable choice foi is often considered a ‘black art’ as it involves intuitioroabthe problem
as well as a trial and error procedure to refine the initiaheste. When only one regularisation
weight is present in the cost function, a semi-exhaustiaecsefor the optimal weight may
be possible, evaluating the results for a number of diffesettings. However, the problem
remains on how to evaluate the quality of a chosen settingraéind truth data is available
for more than one image, a cross validation procedure catilised to find the best weight.
This approach is still problematic however, since the ogtimeight for a given image will
depend on the amount of deformation exhibited by the visbpab in the image. As such, if
the deformations in a test image exhibit magnitudes thatrenkedly different from those in
the ground truth images, the best regularisation weigtdinbtl from cross validation will be
sub-optimal. This problem is complicated further when ntbes one regularisation weight is
involved in order to account separately for different segrof deformations.

'http:// sourceforge. net/ proj ects/opencvlibrary
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Figure 3.1: Some example images from the IMM Face database [89] with sutomatically detected
bounding box.

3.2 A Bayesian Framework

From a Bayesian perspective, the aim of pairwise corresgoellearning is to maximise the
likelihood of the shape in an image, given the pre-annotegetblate. Formally, the problem’s
objective is to maximise:

p(s\f,fo,so) :/p(s,0|f,f0,so)d0
:/p(s|j,f0,so,9)p(9\j,fo,so) de. (3.3)

Here,0 denotes both the type and parameterisation of the protyatddnsity functions (PDFs)
describing the distribution of the correspondences. A#stie (joint) Bayesian inference
estimation process essentially integrates over all plesshmpe posterior densities, with each
weighted by the model's likelihood given the ddtaf, .#°,s°}. However, integrating over all
possible types of PDFs is not possible in general. As suchpdasnily of densities is usu-
ally chosen, with the integration performed over the patansation of that density alone. It
should be noted here that the likelihood of each image in dt@se is assumed to be param-
eterised separately, independent of the density paraisaien of all other images. Further-
more, these likelihoods are also assumed to be dependgraiotite shape for their respective
image. By virtue of the separate parameterisations, thiadtation has the ability to account
for the variations in deformation magnitudes and imageenwaitshin the training set. In other
words, the model is specialised to each image in the dataegseately.

The second term in the right most part of Equation (3.3) igti@ over the PDF’s param-
eterisation, which can be decomposed as follows:

p(G\f,JO,SO)ocp(f,JO,SO\O) p(0). (3.4)
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In practice, the data likelihood can be found through a nmatggation over the shape:

p(ﬂ,fo,so | 0) = /p(f,fo,so,s | 0) ds o /p(f | S,SO,JO,O) p(s | SO,B) ds.
(3.5)

Furthermore, when no other information regarding the petarisation is available, as is of-
ten the case for automatic correspondence learnif@), is commonly assumed to be a non-
informative (uniform) prior, leading to the marginalisedxmum likelihood (MML) estimate.
Substituting this form into Equation (3.3), we note thatref@ the case wher@ denotes pa-
rameterisations exclusively, the resulting form is gelierguite complex, the analytic inte-
gration of which is rarely tractable. Therefore, Equati8i8] is often approximated by [41;
84]:

p(s | f,fo,so) Rﬁp(ﬂ | S,SO,fO,O*)p(S | SO,H*) wheref* = max p (9 | J,JO,SO) .
(3.6)
In other words, rather than integrating over all possiblesitees, it is simpler to maximise
inference over the density that maximises the likelihooerakie data. Although this approxi-
mation is not connected formally with the formulation in Etjon (3.3), this open gap between
a very general theoretical formulation and a more humbletjma approach is a pitfall widely
observed in the literature. The effects of this approxioratiely on the nature of the densi-
ties themselves and as such are problem dependent. In thevbasep (6 | .7, .7°,s°) is a
delta function, Equation (3.6) is no longer an approxintgtioowever this will not generally
be the case. It should be noted here that the aim of this seistinot to bridge the gap be-
tween the true and approximate formulations, but rathepge phe automatic correspondence
learning problem in a formal Bayesian framework and to poiritthat most currently existing
approaches to solving this problem can be derived from taiméwork, each with their own
approximations.

Using the approximate formulation in Equation (3.6), p@sevcorrespondence learning
can be achieved by first calculatiythat maximises Equation (3.4), fixing the densities in
Equation (3.6) using that was found previously, and finally maximising it with pest to the
shape. Contrast this with the typical approach for autamadirespondence learning, where
the maximum of Equation (3.6) is sought for a number of déffgrsettings of), choosing
the correspondence set that optimises some heuristic neeafsguality, which in many cases
simply involves a subjective decision on that which qualiedy looksthe best.

In practice, however, there exist some difficulties withstiiamework. In most cases,
the likelihood of the images is defined by some measure of fitden an appearance model
and thewarpedimage, defined through the correspondences with which thagiaeship is
generally nonlinear. As such, regardless of how the pri@r dlve correspondences are de-
fined, the marginalisation in Equation (3.5) will not regalan analytically integratable form
for many interesting families of densities. Therefore, apraximation must be made here,
whereby the likelihood density, in particular its compotsepertaining to the warped image,
is approximated by a simpler form that affords an analytittsan to the integration. With
this approximation, automatic correspondence learnimgp,tinvolves an iterative procedure
that interleaves estimates @f ands, improving the approximation of the true density in the
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Algorithm 1 Generic Pairwise Learning of Correspondences: A MML/MARAach
Require: {.#°, 5%} (template),.# (image),s (initial correspondence estimaté) (initial pa-
rameter estimate)

1: while !convergeds} do

2. Approximatep (.7, .79, s, s | 8) with a form that affords analytic integration.
3.  Optimise:0* = maxgp (0 | .7, 70, so).

4:  Optimise:p (s | 7, 9% 8%) ~p (S |s,8°,.7%,6%)p (s |s°,6%).

5. end while

6: return s

marginalisation each time. A summary of this procedure trad in Algorithm 1.

The formulation presented above is also known in the stalstommunity as the method
of “hierarchical priors” [50]. Similar formulations havegqviously been utilised in [66] for
optical flow estimation and in [151] for the problem of imagsrpletion, though in that work
the integration is performed through a Monte Carlo simatatiln these works, the method is
coined the combinediarginalised maximum likelihood/maximum a poster{diML/MAP)
estimator in reference to how the density parameldedso called “hyperparameters”) and the
shapes are respectively estimated. An instantiation of this apphofor solving the pairwise
correspondence learning problem requires a number ofréé¢ed components to be expli-
cated, namely:

e The specific parameterisation of the visual object’s de&dioms that define the corre-
spondences.

e The densities describing the deformations as well as thgraximations that allow
tractable solutions to be attained.

e Optimisation procedures for steps 3 and 4 or Algorithm 1.

These three components will be dealt with in detail in théofeing sections.

3.3 Defining the Densities

There is a large body of research on pairwise nonrigid negish, especially in the domain of
medical image analysis (see [71; 152] for surveys). Howetliere is a lack of consensus on a
number of important aspects of the problem. Amongst otivargtions in the different meth-
ods include the parameterisation of deformations, the ureasf photometric similarity and
the type of regularisation used. Although the choices fonesof these components are prob-
lem dependent, in this section, prototypes for the condiaistribution models governing
an image’s shape and appearance, given that of the tematatpresented, encoding domain
knowledge regarding deformation smoothness. It shoulddiednthat other prototypes may
also be posed within the Bayesian framework presented itidBe®.2.

Examining Equations (3.5) and (3.6), the two densities tie®td to be defined for a par-
ticular specialisation of the MML/MAP method are the imaielihood p (ﬂ |'s, 70,8, 0)
and the prior over the shape(s | s, 8). Here, specialisation involves defining the family of
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densities used to describe them as well as the parameitamisdithe chosen family of densi-
ties. Once the forms of these densities have been defineérfmbar tha®) is assumed to only
define the parameterisation of a chosen family of densjt@sjmisation strategies for both
the model and correspondences can be developed using the NIMR’s alternating two step
procedure.

3.3.1 Defining the Likelihood

In Equation (3.6)p (# | s,s°, .79, 6*) denotes the likelihood of an image for a chosen shape
and parameterisation. This quantity, which is maximised maximum likelihood problem,
corresponds to the data term in the Equation (3.1). In th@lesh case, this data term takes
the form of a least squares problem:

07/ xz, ) — foW(xi;s)]Q, (3.7)

M*o

=1

where{x; }7 | denotes the template’s pixel set over which the likelihobthe image is evalu-
ated. Here is a warping function, which acts as an interpolator for piaeations between
those defined by the shapeln other words, the shape defines a parameterisation thabto
the spatial deformation field. This least squares data temqivalent to assuming the distri-
bution of appearance differences between the templatenaaglei follows that of an isotropic
Gaussiah. This assumption is often invalid, especially for complésual objects such as
the human face, which generally exhibit large amounts @fristibject appearance variability
due to intrinsic variations or different imaging condittonAs such, a number of approaches
to pairwise registration use more sophisticated measuresage-to-template similarity. For
example, recent methods in variational optical flow use asbbrror function to account for
discontinuities in the appearance between images [22].génmaiocessing, such as evaluat-
ing error over the image gradients [23], is also utilisedhese works, to minimise extrinsic
lighting effects. Other approaches use statistical measoir similarity such as Mutual Infor-
mation [93] and the correlation ratio [100] to handle diéfleces in imaging modalities between
the template and image.

Rather than choosing a more suitable similarity measuredouant for the appearance vari-
ations between the template and image, another approachliew the template’s appearance
to deform, along with its shape. If the model for appearareferchation matches that of the
visual object, then, at the optimal shape and appearancendations, the template-to-image
appearance residuals can be fully described by the measntdimage) noise. Assuming a
Gaussian distribution on image noise, the likelihood fiomctan be written as

oV 2w 2

P
p(,ﬂ|s,so,ﬂ0,0): L exp{—iz (xi; W) — fo”//(xl,uv)]Q}, (3.8)

2An isotropic or spherical Gaussian distribution exhibitsi@ variances in all directions.
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whereo? is the variance of image noise and:

oy [u®
S6n) _ {O(n)} N V((n)) (3.9)
.W n

is a redefinition of the shape into a set of deformations, ddfinith respect to the template,
both in the spatial and appearance domains, defindaiby) andw, respectively. Here,

A (xw): REX R - R = 70x) + .4 (x;w) (3.10)
is an appearance generating function, with:
M w): REX R = R (3.11)
denoting the appearance deformation function, and:
W (x;u,v): B2 x RV - N2 (3.12)

is a warping function with# (x;;0,0) = x;. Note that the appearance deformation function
A is parameterised by variables, the number of landmarks. Although the choice heay
seem somewhat arbitrary, the reason for this choice wilblmex clear in the discussion on
deformation priors in the next section. With the params#ion of the likelihood in Equa-
tion (3.8), maximising the MAP objective now involves a nraigation over thepatial defor-
mationandappearance deformatiosimultaneously.

In general, however, the appropriate choice for the appeargenerating function” may
be difficult to deduce from domain knowledge. As such, in #iigdy, the appearance gen-
erating function is used in conjunction with a robust simifijameasure to define the image
likelihood:

p(f | s,sO,JO,B) =

7.0 exp{—7%pw (F;u,v,w)}, (3.13)

wherer is the component &, which parameterises the image likelihood density. Thétjwar
(normalising) functionZ7, ensures the form in Equation (3.13) is a PDF:

Z.(r) = / / / exp{—7Zpw (F;u,v,w)}dudv dw. (3.14)
The term in the exponential in Equation (3.13) is given by:
Dpw (S50, v, W) Zw( (xi;W) — I o W (x5, v)]2> (3.15)

with 1) denoting the robust similarity measure. The idea here, ishtmse the appearance
generating function that can account for appearance diftazs which exhibit slow spatial
changes, leaving the robust penaliser to account for lasatg
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3.3.2 Defining the Prior

With the reparameterisation of the correspondences asd spatial and appearance defor-
mations, as stated in Equation (3.9), the prior in EquatB@)(can now be written as:

p (s 1s°,6) = p(ula) p(v]B) p(wly) (3.16)

whereq, 5 and~, also components & (i.e. 0 = {7, «, 3,v}), define the parameterisations
of the spatial and appearance prior densities. Followiagtmvention set out in [66; 151], the
components ol will be referred to in this dissertation Agperparametersin Equation (3.16),

it is assumed that the, y and appearance deformations are independent of each élker.

it should be noted that the dependency of the prior on thelsgip shape is subsumed by the
reparameterisation that now defines the problems in terrdeformations rather than shapes
directly.

The choice of the prior PDFs should reflect domain knowledgmutithe types of defor-
mations expected of the visual object. In the absence of #mgr anformation, a common
choice is to assume that they are either smooth or piecewiseth. This assumption, which
has been used widely in the variational optical flow and stenatching problems (see [61;
110; 145], for example), is based on the intuition that pothat are close to each other move
in similar ways. For visual objects, it also relates to togatal rigidity since, if close points
exhibit similar motion, then local topology will Heoselypreserved.

Although the smoothness constraint has become the reggiasf choice for spatial de-
formations, the applicability of this assumption for ape®e deformations of visual objects
is yet to be verified. Numerical experiments motivating gisumption are presented in Sec-
tion 3.6, hence it suffices to present here the intuitiveaesdgor choosing such a constraint
for appearance deformations. There are two sources of eggEEavariation in visual objects:
extrinsic and intrinsic. Extrinsic variations are the désfiimaging conditions, such as light-
ing intensity and direction. Consider the case where theaVisbject is a projection of a 3D
object onto the image plane. If the surface of the object iscgwise) smooth, the appear-
ance difference between the object’s projection under emfaind directional light varies in a
(piecewise) smooth fashion over the image (see Figure B®refore, assuming (piecewise)
smooth appearance deformations is equivalent to assumméngbject’s surface is (piecewise)
smooth, which is a reasonable assumption in many casestioytar for the human face,
with which this thesis is mainly concerned. Intrinsic app@ae variations, on the other hand,
are more difficult to quantify. In general, they present gbrhanges in appearance, for ex-
ample wrinkles on a human face. These variations can alsefresented by a piecewise
smooth function. However, the number of pieces will gergrad¢ quite large. For example,
the variation of appearanedonga wrinkle can be approximated by a smooth function.

To realise the smoothness constraint in a Bayesian frankewe priorsp(u|«), p(v|5)
andp(w|v) are characterised by Gibbs priors of the form:

p(plv) = exp{—vZpw (P)}, (3.17)

1
Zp(v)

replacingp with u,v or w andv with «, 3 or « for the x, y and appearance deformations,
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Figure 3.2: Examples of piecewise smooth variations in appearanceodtleinges in extrinsic lighting
conditions. Images are taken from the Yale Face Databas&]B [5
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© © ©
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Figure 3.3 Examples of prior penalisegs

respectively. HereZp is the prior's partition function, which depends on the paeterv.
The Gibbs energy?pyy is designed to impose (piecewise) smoothness on the defonmsa
taking the form:

Rpw(P) = Y i o ([P(i) - P(j)]2) ; (3.18)

(4,5)e€

where& denotes the edges of a 2D graph whose nodes are defined byrplatess spatial
shapes”. For example, in an irregular grid, the edges denote thes sifiéhe triangles in the
shape’s triangulation. The constantg determine the contribution of an edge to the total
energy through a monotonically decreasing kemgk= 7 (x?, xg-’). A common kernel to use
here is the inverse of the squared distance between nodes [61

1
I = 311>

H(x),x9) : RE xR > R = (3.19)

7
wherex! denotes the™" landmark in the template’s shap®. The same form is used for all
three axes of deformations. It should be noted here, thaparate template shagé can be
used in the computation éfand subsequently;;;, for the appearance deformation prior. This
may involve a different number of template landmarks as a&their locations, which can be
chosen to better represent appearance deformations dbtred abject of interest. This option
is not pursued in this study, however, where the same templape for both the spatial and
appearance deformation priors is maintained.

In Equation (3.18),0 denotes a distance function that penalises the squarestattitfe
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between the deformations of adjacent nodes. A choice ofifrgity function forp allows only
smooth deformations since the energy term, then, penalisesntinuities quadratically. For
piecewise smooth deformations a number of different degtdanctions have been proposed.
Two of these are illustrated in Figure 3.3, together with identity function. Semi convex
functions, such as the regularised variant of thenorm:

0 (’1)2; €) = Vo2 +e, (3.20)

which corresponds to the total variation regularisatiod6]1 have been used widely in vari-
ational optical flow [22; 23; 110]. They allow a limited amausf abrupt changes in the
deformation field, by virtue of their fixed rate of penalty, ishbeing somewhat insensitive
to the small regularisation parametgroften included for numerical reasons only. Distance
functions that decrease the rate of penalty beyond a tHeshach as the saturated quadratic:

2

o(v;€) (3.21)

2402
positively favour the presence of edges in the deformatielddi As such, non-convex dis-
tance functions enforce the smoothness constraints lasstlieir semi-convex counterpart.
The resulting energy is also much more dependent on thehthiceased, requiring its tuning
in many applications. Although these two classes of robigsadce functions are both capable
of preserving discontinuities, semi-convex functionscplanore restraint on them. In the case
of LDM correspondence learning, the number of discontiesits relatively small compared
to that in general optical flow or stereo matching for exampleere there may be many in-
dependently moving objects in the scene as well as occlalkséifects. As such, semi-convex
functions may better approximate the deformations exbiiy the visual object in the case
of LDM correspondence learning. Furthermore, due to theedsing penalty rate of non-
convex distance functions, optimisation here may be sloswece the magnitude of the errors
is not directly reflected by the gradients. Finally, the usa non-convex penaliser adds extra
nonlinearities to an already nonlinear problem, incrapgire likelihood of an optimisation
terminating in a local minimum.

3.3.3 Parameterising Deformations

Despite utilising a pseudo-dense correspondence setppeaence of an image that is used
to evaluate the likelihood of an image in the MAP frameworksiin general, be dense. A
pseudo-dense representation of appearance will requirteod gixels within the template to be
chosena-priori, in order to assess the quality of the learnt corresponderigae to intrinsic
variations of appearance within a visual object, choosiglgest pixels from the reference
frame will often result in a sub-optimal formulation, sinteir homologous locations in other
images may not be salient. Therefore, pseudo-dense LDMsreeg warping function to
interpolate the projections of the landmarks for all pixsithin the template’s valid domain.
In effect, the warping function extends the deformation BMLlandmarks to a deformation
over the whole appearance domain.

The optimal type of warping function to use here will genlgrdkepend on the visual object
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of interest. Two of the most common examples are the thire @galine [10] and the piecewise
affine warp [83]. In this thesis, the piecewise affine warp él considered exclusively, as it
affords an efficient evaluation of the warp as well as of idignt. For clarification, consider
the linear warping function:

W (x;8) : N2 x R — R = Ays (3.22)

whereA (2*2)

in the set:

is an interpolation matrix, which can be precomputed forgwalid location

(i}, € @ =hull {s°}. (3.23)

Both the piecewise affine warp and the thin plate spline stiasefunctional formi. How-
ever, in the case of the thin plate spline, the mafix is dense, whereas, for the piecewise
affine warp it is extremely sparse (see Appendix A). In fateach row of the piecewise affine
warp’s Ay, only three entries are non-zero, each pertaining to ornteeofértices of the triangle
containing the location of interest in the template. Réfigrto Appendix A, and parameter-
ising the warp using landmark deformatiofis, v), the explicit form of the piecewise affine
warp is given by:

Ui
u()
) _ l—ap—=06p o Bp 0 0 0 |ug
W (xp;0,V) =X, + [ 0 0 0 1-ap—f ap By |vey |’ (3.24)
V()
LV (k)
where:
Xp € 1ri {S?2i—1:2i)75?2j—1:2j)7S?Qk;—l:Qk)} . (3.25)

The values fory, and 3, are as given in Equation (A.2), specialised to tHevalid location
in the template. From this, it is clear that the computati@aaings of the piecewise affine
warp compared to the thin plate spline grows linearly wita ttumber of landmarks in the
model. Finally, if the correspondences are later used td ani AAM, the use of the piecewise
affine warp in learning will better couple the corresponasnwith their utility, later, for AAM
fitting.

To account for differences between the template and theeinthg pairwise method pro-
posed in this chapter allows the template’s appearanceftondealong with its shape. The
choice of how the appearance generating function is paeaisetl should reflect the type of
appearance differences expected within the training setveer, it should also be noted that
the deformable template is used in conjunction with a ropasgliser over the differences be-
tween the synthesised appearance and that of the objed im#ge. As such, the system has
the capacity to tolerate localised extreme errors. Thezetoparameterisation that accounts for
appearance differences which vatpwly through the spatial domain, should be chosen here.

3Strictly speaking, the thin plate spline also has an affimmebut it does not effect the exposition in this
section.



§3.4 Marginalised Maximum Likelihood Estimation 45

For this, a piecewise affine appearance deformation modetsa natural choice. Following
the reformulation of the piecewise affine warp as a scalarecafunction in Appendix A, the
piecewise affine appearance generating function takesthe f

Wi(i)
M(xpwW)=[1—ap— By ap By W(j) (3.26)
W(k)

for x, as in Equation (3.25), where ;) denotes the appearance deformation at location
3‘821.71:%) in the template (similarly fow ;y andw ).

3.4 Marginalised Maximum Likelihood Estimation

The MML estimation of the densities’ hyperparameters imgsl maximising the data likeli-
hood, with marginalisation over the shape, given in Equat®5). Using the reparameterisa-
tion in Equation (3.9), this can be written:

p(f,ﬂo,so | 9) o< /n /n /np(ﬂ|u,v,w,7') p(ula) p(v|B) p(w|y) dudv dw. (3.27)

Examining the forms of the image likelihood and deformatmiors in Equations (3.13)
and (3.17), it is clear that an analytic form of this integdales not exist in general. This
is the case, even i) in Equation (3.15) ang in Equation (3.18) are both set to the iden-
tity functior?*, due to the generally nonlinear relationship between tregamintensities and
the deformations in Equation (3.15). Therefore, in ordeoldtain an estimate of the opti-
mal parameterisations of the densities without resoriinguimerical integration methods, the
densities in Equation (3.27) must be approximated in suclathat the integral affords an
analytic solution. For this, the likelihood and prior ddies are approximated with Gaussians.
Since the improper integral of a Gaussian can be evaluatdgtiaally, the integral of the joint
density, which becomes the product of Gaussians, can thiaubd.

3.4.1 Gaussian Approximated Prior

Consider first the prior terms given by the form in Equatiorl{3. When assuming strictly
smooth deformations, the prior densities are already irs&an form:

p(plv) = ﬁ(y) exp {—%pT(%H)p} : (3.28)

again replacing with u,v or w, andv with «, 8 or ~ for thex, y and appearance deformations,
respectively. The Gaussian’s covarianc€2B) !, with:

H= Y oy (17 —107) (1 - 1§"))T, (3.29)
(4,5)€E

“This scenario corresponds to assuming strictly smoothratefiions with Gaussian image noise.
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wherelgn) is an-length vector withl in the:" entry and zero everywhere else. The partition
function is given by:

(2m)}

— 2 xvTe. (3.30)
det2vH)>

1
Z(v) = / exp {—§pT(2yH)p} dp =
However, when describing piecewise smooth deformatidmeugh the utilisation of a robust

penalty function in the energy term, the prior does not taka Gaussian form. In this case,
the following change of variable is used:

p=p°+Ap and dp = dAp, (3.31)

wherep® denotes the current estimate of the deformation Apddenotes some perturbation
from the current estimates. In nonrigid registration inutad) a nonlinear distance function, a
typical approach is to linearise the distance function gishe current deformation estimates
p¢, then solve the linearised form with respect to the pertisha Ap [4]. The same idea can

be applied here, whereby taking a first order Taylor expansip about the current squared
deformation residuals, results in:

2
e Gp@) +Apg) — Py — Apg) | ) ~ o (ry) + Ve (r];) [Ap" HiAp + 2hj;Ap]
(3.32)
whereVyp (rfj) is the derivative of the robust penaliser, evaluatetfjatand:

J
(3.33

Substituting this into Equation (3.18) and completing thease, the regularisation energy can
be written:

rij =P — Py > hi =i (12(") - 1§»n)> and H;; = (12(") - 1§»n)> (12(»”) — 1(-"))T.

Zpw(p) ~ (Ap —p)  H(Ap - p) + Cp, (3.34)

where:
p=-H'h and Cp=r—h'H 'h (3.35)

Here, the following collected terms have been used:
r = Z Kij 0 (7’3]) s h = Z ning (T‘Z-Zj) hij and H = Z ning (T‘Z-Zj) HZ]
(4,5)€E (4,7)€E (1,5)€E
(3.36)

With this linearisation, the Gaussian approximation offihier density takes the form:

i)~ s esplvCphesp {5 (b ) ) (Ap-p)} . (33D
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where the partition function is now given by:

o) = exp{-vCr) [ exp {—% (Ap - p)” (20H) (Ap p>} iAp  (3.39)

(27)% —n
=exp{—vCp}———— x v~ 2 exp{—vCp}, (3.39)
O e {=vCr}
which finally leads to:
n 1 _ _
p(p|v) o vz exp {—5 (Ap —p)" (2vH) (Ap — p)} : (3.40)

This is a multivariate Gaussian distribution over the defationsAp.

3.4.2 Gaussian Approximated Likelihood

Let us now consider the likelihood term in Equation (3.27% pgkeviously discussed, unlike
the prior, the image likelihood is not in a Gaussian form witspect to the deformations,
regardless of how is defined. For this, the same change of variable is used he indatment
of the prior. Taking a first order Taylor expansion of the vepmage and the appearance
generator about the current parameters results in:

I oW (x;;u + Au,ve + Av) &~ F o W (x4;u”,vE) + J; [Au; Av| (3.41)
o (x;; W+ Aw) = o (x;; W€) + A; Aw, (3.42)
where:
O (xi; W) o o [0 (xsueve) O (xsue,v)
&_—7;——mdL_mﬂm[ it it ] (3.43)

Here,X; = # (x;;u® v°) is the location in the image frame that corresponds to lonati
x; in the template and/«.#(X;) is the image’s spatial derivative at that location. Letting
q = [Au; Av; Aw], the likelihood’s energy term in Equation (3.15) can be terit

P
PIrw (S5 q) = Z ¢ (q"d} diq + 2e;d;q + €7) (3.44)
i=1
where
e = (x;; W) — I oW (x;;u,ve) and d; =[-J; Al (3.45)

Taking another first order Taylor expansion, now of the rolwsction ), around the current
appearance residuals, and completing the square, Eqati®) can be approximated by:

Zrw(F;q) ~ (@— @) D(q—q) +Cr, (3.46)
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where:
P
D =) Vy(ef)dld; (3.47)
=1 B
q=-D! (Z Vi (€7) e dz-) (3.48)
i=1
P P T P
CrL= Z¢ (e?)] - Z Vi (e?) € di] D! [Z V) (e?) e di] . (3.49)
=1 =1 =1

The Gaussian approximation of the image likelihood, thekes the form:

P 0~ G enlrCen (< - @D a-a . ©50)

where the partition function is now given by:

2 =ew (-0} [ eo{-j@-a D)a-alda @5y
R3n

3n

exp {~rCp} =22 o 1= ¥ exp () (3:52)
=exp{—7CY, T xp{—7CL}, .
det27D)z
which finally leads to:
3n 1 _ _
o lar) x ¥ o {3 @-a D) a-a)}. (359

As with the prior density, the linearisation of the appeaeagenerator, and subsequently the
robust penaliser, results in a Gaussian density over tlerdetionsq.

3.4.3 Estimation through Expectation Maximisation

With the Gaussian approximations for the image likelihoad deformation priors in Equa-
tions (3.53) and (3.40), respectively, Equation (3.27) lmamvritten:

p(7,5°,5°]8) o (afy7®)? exp {~C} /W exp {— CRIMEICE u)} da, (3.54)

where:

aH, O 0
0O p[BH, O
0 0 ~H,

Y=7D+
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Here,u andH,, take the forms in Equation (3.35) and Equation (3.36), retsgaly, specialised
to the case of x-spatial deformation, and similarly for tlese of y-spatial and appearance
deformations. Evaluating the integral in Equation (3.%8ults in:

p(7,.7%5"]6) (aﬂ’yT:g)% exp{—C}det(E)fé. (3.57)

Finally, taking its negative logarithm, the cost functianlde minimised, with respect to the
parameterisatiof, is given by:

Sunin(r,0,8,7) = €~ 2 nfo} =S {8} 2 In{3} 2 Infr} + £ In{de(=)). (3.58)

Although the form of this cost function is quite complex, it is an optimisation over only
four parameters, a non-gradient based optimiser, sucheasirtiplex [94], can be utilised to
obtain a solution.

An alternative to utilising a general purpose optimiserrfonimising Equation (3.58) is
to utilise the Expectation Maximisation (EM) algorithm [14reating the deformationg as
hidden variables and the hyperparameters: [r; «; 3;v] as parameters, the EM algorithm
first finds the expected data log-likelihood:

2(0:0)=Eyq 7 o009 | {p (7.5l 0)} 0]

given the current estimate of the hyperparameffieiBhrough the utility of Jensen’s inequality,
this objective function can be shown to upper bound the Idbefikelihood in Equation (3.57),
and touches it at the current estimate of the hyperparas@téks such, alternating an E-step
(expectation), which defings(.#, .7, s, q | ) using the current hyperparameter estimates,
with an M-step (maximisation) over Equation (3.59), theoallilpm is guaranteed to converge
to a local optimum.

Using the identities:
p(#,7%s"al0)=p(7|q,7°5",0)p(a]s"0) (3.60)

and ( 0 g0 (]|0)
I, I s
j j 0 p ) ? ) 361
P(Q| ) T ) f%gnp(j,jpsaq|6)dq’ ( )

the objective of the M-step takes the form:

. _ p(f7j07sovq|0) 0 .0
2(0;0) = - fmgnp(%ﬁ’some)dqln{p(f,y ,s%,q8)}da. (3.62)

Using the Gaussian approximation for the image likelihond deformation priors derived in
Sections (3.4.2) and (3.4.1), respectively, and substifuinto Equation (3.62), the posterior
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over the deformation updates takes the form:

00 6 O((Oéﬁ’w?’)ﬂeXp{ (a-p)'S(q—p) -C} _ .
p((ll«ﬂ,ﬂ, ,9) i) T exp—C] dets) -} =N (a5 p,(22) 7).,

(3.63)
whereJ\/’(q; u, (22)—1) denotes the Gaussian PDF over the deformation updgtegth
meanu and covariancé2X) !, both given in Equation (3.55). Using the same approximatio
for the data log-likelihood, the M-step involves maximgsin

3n

Q(é; 0) — 7 ln{T} — T E (q|j7j07so’

T
. a-q)'D(q-q) ]+

n _
) ln{a} - p ql.7,.79,50.6 (Au (Au — u) ] +

(
ln{ﬂ} ﬂ E (qIﬂ 0 50,
p(

[(

[

[(Av—v) H,(Av —v) ] +
ln{’Y} vE ql.7,70,50,0 [ (Aw

)
)
)
) ) TH,(Aw —w) ] . (3.64)

Taking the derivative of2 with respect tor and equating to zero, the image likelihood rate
that maximises the expected data log-likelihood is given by

3n
2 Ep(q|f,ﬂ0,so,é) [ (q - (_l)TD(q - (_l) ]

(3.65)

T =

Since\ is a Gaussian, the relation [73Ey [|le — ®q?] = |le — ®p|> + tr {@T@X} can
be utilised, to get:
3n _\T _ 1 1 -1
T=5 (p—q) D(u—q)—l—?r{DE oo (3.66)
Similarly, the prior hyperparameters that maximise theeeigd data log-likelihood are given
by:

- 1 -1
0= [Pun— 0 B (P ) ¢ o {FP, 3R] (367
- 1 -1
=3 |Pon—9)"H, (Pop—v)+5tr {HvPvE_le}} (3.68)
- 1 -1
Y= g (Pw.u’ - W)T Hw (Pw/*l’ - W) + §tr {Hwaz_lpz}} (369)
where:
P = [I(nxn) o(nxn) O(nxn)] (3.70)
P, = [0(mm)  glwxn) 1)) (3.72)

With this, a summary of the complete pairwise learning agphais outlined in Algorithm 2.



83.5 Maximising the Pairwise Posterior 51

Algorithm 2 Pairwise Correspondence Learning

Require: {.#° 5%} (template),{.#;} Y, (images),{u;,v;, w;}¥, (initial deformation esti-
mates),{7;, a;, B;,7: Y, (initial hyperparameter estimates), ang:,; (number of EM-
algorithm steps)

1: for i = 1to N do

2:  while !converged u;, v;, w; } do

3 Minimise Equation (3.75) ovefu;, v;, w;} {see Algorithm 3 in Section 3}5

4 Build Gaussian approximated likelihood and pri¢see Sections 3.4.2 and 3.4.1

5: for j = 1to Ngjs do

6

7

8

9

E-step: Computép, ¥} {Equation (3.55)
M-step: Computg T, a, 3,7} {Equations (3.66), (3.67), (3.68) and (3.59)
end for
end while
10: SetSZ’:SO'i‘R[uZ‘; Vi]
11: end for
12: return {s;}Y,

Note that in step 10 of the algorithnR. is chosen to alternate theandy deformations in
accordance with the format of the shape vector given in Eoué8.2).

As a final note on the MML method proposed here, the differdseteveen its derivation
of the objective for the hyperparmeters compared with alamaipproach proposed in [66]
will be highlighted. In that work, an integrable form for tkemponent within the integral
in Equation (3.27) is obtained by taking arcompletesecond order Taylor expansion about
the current parameter estimatesThe result is a much simplified objective at the expense
of a poorer quality of approximation. Furthermore, intéiats between connected points
within the affinity matrix are ignored, simplifying furthéine objective to minimise. Finally,
the optimisation of the marginalised likelihood in this was performed directly, rather than
through an EM procedure, since the assumptions made ragéditt expansion as well as the
affinity matrix result in the updates taking particularlyngile forms.

3.5 Maximising the Pairwise Posterior

With the parameterisations of the image likelihood and de&dion priors described in Sec-
tions 3.3.1 and 3.3.2, respectively, and the current edimnfithe hyperparameters obtained
from the EM procedure outlined in Section 3.4.3, the MAP otiye for pairwise correspon-
dence learning involves maximising:

p(s|7,.7°,s°,0) < p(Flu,v,w,T) p(ula) p(v|B) p(w|v) (3.74)

®In [66], the approximation to the energy term within the exgatial of the joint likelihood is taken as:
Z(p) =Z(°)+ (p-p)Q(P —pP°), (3.73)

where.Z (p) = c2(p) + 7% (p) andQ is the Hessian of the combined energy terms (note that noaagpee
deformation is used here). By not considering the first otden in the expansion, the energy term is already in
the canonical quadratic from, hence a procedure to comftletequare is not required.
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with respect to the deformations. Taking its negative litgar and substituting the forms in
Equations (3.13) and (3.17), the pairwise MAP cost functahe minimised can be written:

gMAp(u,V,W) = .@Pw(f; u,v,w) + )\$<@pw(u) + )\y@pw(v) + )\w@pw(w), (3.75)
whereZpy andZpyy are defined as in Equations (3.15) and (3.18), respectiant),

LAy = Boand A, =2, (3.76)

T T

A = 2

-
This cost function takes the same form as the typical retp@ldrdata fitting problem in Equa-
tion (3.1), where three regularisation parameters are neahied. Minimising this error func-
tion constitutes a nonlinear optimisation over the defdgromaparameters. Although second
order methods, such as the Newton method, may be applicabde ihrequires the computa-
tion of the Hessian matrix, which is computationally expeasInstead, an approach similar
to that proposed in [6] is utilised, which alternates betwigearising the robust functions and
solving a weighted nonlinear least squares problem, reglatintil convergence.

Using the change of variable:
u=u‘+Au , v=v°+Av and w =w°+ Aw, (3.77)

where {u®, v¢,w} denotes the current estimates of the deformations {akd, Av, Aw}
denotes the desired updates, by linearising the croppedeiraad subsequently, all robust
functions as in Sections 3.4.1 and 3.4.2, Equation (3.75pesapproximated by:

Evap(u,v,w) = Aq"H,Aq+2h]Aq+ Y (Az"H,Az+2h]Az) +C, (3.78)

z={u,v,w}

whereq = [u; v; w|. Here,C'is a constant, which does not depend on the deformation esdat
and:

P P
h, =) e,V (e)d H, =) Vi (ef)dd” (3.79)
i=1 i=1
hz = )\z Kij zingz (ZZQJ) lij Hz = )\z Z ningz (ZZQJ) lz’jlz;' s (380)
(4,9)€€ (i,5)e€

%ij = 2(5) ~ 2(j) (3.81)

Ly = (11" - 1§")) (3.82)

e; = A (x;; W) — S o W (x;;u°,v°) (3.83)
—Vu¥# (xi;u°,ve) Vi I (X))

d= |-V #(x;;u,v")Vx I (X) | - (3.84)
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Algorithm 3 Optimisation Regime for Solving the Pairwise MAP Problem
Require: {.7°,s"} (template),.# (image to fit to),q = [u;v; w] (initial deformations),N;
(number of iterations) and(convergence tolerance)
1: ComputeVy.?, Vy#, V¥ andVy.# {Equation (A.5}
2: fori =1to N; do
Compute residualge; } 2 | and{u;j, vij, wij } i 5)ee {Equations (3.83) and (3.81L)
Compute robust weightsVy (e7) }2.; and{Vou(u;), Voy (v3), Vow(wi) } i jyee
Compute{h,, H. }._ (4 4,0} {Equations (3.79) and (3.8p)
Compute parameter updatasy { Equation (3.85)
Update current parametatis— q + Aq
if ||Aq||? < ethen
break.{Convergence achievéd
10:  endif
11: end for
12: return u,v,w

With these linearisations, the error function is now in gqa#id form. As such, differenti-
ating with respect to the deformation updat®g and equating to zero, the solution for the
deformation updates takes the form:

1

H, O 0 - h,
Agq=—-|H,+| 0 H, 0 h, + | hy (3.85)
0 0 H, hy

Here, all0 matrices are of sizén x n). A summary of the deformation optimisation procedure
is outlined in Algorithm 3.

As a final note on the MML/MAP procedure, one notices that intsitively similar to
typical methods for groupwise correspondence learning [8g 133], for example), where
updates of the model and correspondences are interleasedmising the correspondences
for a fixed model andice-versa Although no proof of convergence is currently available fo
such approaches, there have been no reports of algorithiveiggdnce in any publications on
the groupwise method. In all experiments, presented in &xé section, it was found that in
no case did the procedure diverge.

3.6 Empirical Validation

In this chapter so far, a pairwise correspondence learrppgoach has been outlined, which
leverages on the assumption of (piecewise) smooth spatiahjppearance deformations. Util-
ising the approach of hierarchical Bayesian priors, thhotlee MML/MAP method, an al-
ternating procedure was proposed whereby all free vasgahl¢he problem, including those
relating to regularising weights, can be tuned automdyi¢ai each image. In this section, the
efficacy of the pairwise method is evaluated on a databaseréh faces.

The database used for all experiments in this section isridescin Section 3.6.1. The
performance of the pairwise method is then evaluated oitipag of this database, namely:
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e A person specific database (see Section 3.6.2), where teclass variability stems
from variations in the subject’s pose, expression and eatdighting effects.

e A pose specific database (see Section 3.6.3), where posessexm and external light-
ing variations are kept to a minimum, with the main sourcesasfability stemming
from inter-subject variations, such as facial hair.

e A generic face database (see Section 3.6.4), where vasatiow include inter-subject
variabilities as well as those stemming from identity.

3.6.1 The IMM Face Database

For all experiments in this Section and indeed this thesis,IMM Face database [89] is
used exclusively. It consists of 240 images of 40 individuaach exhibiting variations in
pose, expression and lighting. The types of variations &@heandividual in the database are
exemplified in Plot (a) of Figure 3.4. Note that the sourcesaofation are isolated in all but
the last image, where the subjects exhibit random expmessid pose. The firstimage of every
subject exhibits a frontal pose with a neutral expressiorihé second image, the subjects are
again in a frontal pose, this time with a smiling expressi@ose variations are encoded in
the third and fourth images, where the subject varies hidibad yaw angle betweeh30°,
keeping a neutral expression. The effects of lighting vimeare captured in the fourth image,
applying directional light on the subjects’ faces. In thetsiimage, the subjects exhibit free
variations in both pose and expression.

A 58-point markup is supplied with the database, allowing plerformance of automatic
correspondence learning methods to be evaluated quavaiyatSome examples of this an-
notation are shown in Plot (b) of Figure 3.4. Few other exgsiilatabases provide such an-
notations. Notable amongst these are the XM2VTS [85] datbaith a 68-point markip
and the AR Face database [80], with a 22-point mafktjowever, the XM2VTS database ex-
hibits inter-subject variabilities only, with no variatis in pose, lighting or expression between
subjects in the database. The AR Face database exhibitselteex range of variabilities, in-
cluding occlusions due to clothing and glasses. However2&point markup may be too
sparse to capture the spatial variabilities of the humag. fac

3.6.2 Person Specific Databases

In this section, the ability of the pairwise approach toteemrrespondences across a database
of the same subject is evaluated. For this, the IMM Face datals partitioned into 40 groups
of images, each containing only one subject. The pairwiamieg algorithm is then applied
to each group separately, setting the template im#feo be the first image in the group (i.e.
the image where the subject is in a frontal pose with a neakjadession).

There are two aspects of the pairwise procedure that mustdbeaged here. The first is
how well the (piecewise) smooth assumptions regarding ghéiad and appearance deforma-
tions model the true intra-class variabilities. For thige torrespondences in each image are

®htt p: // www. i she. man. ac. uk/ ~bi nf dat a/ xn2vt s/ xnRvt s_mar kup. ht m
"htt p: // www. i she. man. ac. uk/ ~bi mf dat a/t ar f d_mar kup/ t ar f d_mar kup. ht ni
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(b)

Figure 3.4: The IMM Face databaséa): example variabilities within the databagb): examples of
the 58-point markup of the database.
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Figure 3.5: An example of correspondence initialisation using an affiaesformation between de-
tected bounding boxes.

set to their optimal locations (i.e. the manual annotajioffhe EM-algorithm (steps 4 to 6
in Algorithm 2) is then iterated until convergence, follavey an optimisation of the defor-
mations as outlined in Algorithm 3. This way, the hyperpaeters{, o, 3,v} are computed
using the correct correspondences, and the amount by whiecshape then deforms from its
optimal initial values reflects how well the (piecewise) sittoassumption models intra-class
variabilities, such as pose, expression and lighting. dutthbe noted here, that although the
correspondences are initialised at their true locatioa,agppearance deformations cannot be,
since no manual labels for these are available. Furtherminree the EM-algorithm guarantees
convergence only to a local optimum, the values of the hygrarpeters used in optimising the
deformations may still be sub-optimal. As such, the resaflexperiments on this aspect of the
pairwise procedure may underestimate the true capacitgietgwise) smooth deformations
in modelling intra-subject variabilities.

The second aspect to be evaluated is the sensitivity of ineipa procedure to initialisa-
tion. For this, the initial correspondence estimate isiolethby applying an affine transforma-
tion between the template image and all others in the dagalfdse affine transformations are
computed from pairs of bounding boxes, one in the templadeoae in another image, which
are found by applying a face detector over the whole databaghbis thesis, OpenC\fsface
detector is utilised for this purpose, which implements\i@a and Jones method [135]. An
example of the initial correspondence estimate obtaineah fthis affine transformation is il-
lustrated in Figure 3.5. Since the initial estimates of theespondences can be far from their
optimal locations, experiments on this aspect of the pagwirocedure are performed on a
Gaussian pyramid of three levels.

In Figure 3.6, the convergence of the hyperparameters éoptimally initialised corre-
spondences is shown for a number of hyperparameter indtdns. In these experiments,
the robust variant of the image likelihood was used, as werepatial and appearance defor-
mations (i.e. piecewise smooth deformations are assumadjescribed in Section 3.3.2, the
priors are penalised using the regulariggchorm in Equation (3.20), withset t00.0001. The
same robust penaliser is used in the image likelihood sirmids choosing a robust param-

8htt p: // sour cef or ge. net/ proj ect s/ opencvl i brary
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Table 3.1 Person specific experiments with manual initialisation

Experiment|| Appearance Deformation Image Likelihood| Deformation Prior
@) v robust robust
(b) v robust non-robust
(c) v non-robust non-robust
(d) X robust robust
(e) X robust non-robust
® X non-robust non-robust
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Figure 3.6: lllustration of the convergence of the hyperparametensgusptimally initialised corre-
spondence at four initial settings of of the hyperparansdtrown in the legendja): the reduction of
the MML error in Equation (3.58)(b), (c) and (d): the evolution ofr, & and is shown respectively,
throughout the EM-algorithm’s iterations.
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eter, which is required by most other robust penalfsefdthough the choice of thé; norm
for penalising appearance differences may be suboptitsasuccessful application has been
previously demonstrated in numerous variational optical finethods (see [22; 23; 110], for
example). The local convergence property of the EM-alborits illustrated in Plot (a), where
the error in Equation (3.58) is shown to monotonically daseethroughout the iterations. The
evolution of the hyperparameter values throughout theguoe is shown in Plots (b), (c)
and (d). In this particular instance the optimisation firtissame solution for each of the four
trials. The same experiment performed on different imadgs exhibited similar behaviour.
As such, although the EM-algorithm affords only a local optm of the error function, exper-
iments indicate that the procedure is fairly insensitivéh®initial choice of hyperparameters
when the shape correspondences are optimally initialised.

Results of applying Algorithm 3 to the deformations, stagtwith optimal correspondence
and hyperparameter estimates are shown in Figure 3.7, wesués from all subjects have
been combined. Here, six experiments were performed fdr sagject, outlined in Table 3.1.
Notice that experiments (d) to (f) do not use the appearaetarmation model described in
Section 3.3.1. Instead, the likelihood is evaluated byatliyecomparing the cropped image
with the template. In experiments (b), (c), (e) and (f), mobust priors are used to compare
the performance of the assumption of strictly smooth deftions against the assumption of
piecewise smooth deformations. Finally, in experimen}tsafd (f), the non-robust likelihood
is utilised to evaluate the applicability of robust peraigsin the case of person specific cor-
respondence learning. Note that all the derivations pteddn this chapter can be applied to
the non-robust case by replacing the derivative of the rtopesaliser with a value of unity,
wherever it occurs.

Comparing the results of experiment (a) with (b), and (dhw&), it appears that the use
of a robust penaliser in the priors, which implies piecewssgooth deformation, has little
effect on the convergence accuracy of the method on thivdsea Comparing these with
the results for experiments (c) and (f), where a non-rolikstithood is used, one notices a
deterioration in accuracy when the non-robust formulaiiamsed. These results are somewhat
counterintuitive, since the variation in appearance betwiastances of the same subject is
expected to be small, but the variation in shape, large, dubke varying pose exhibited in
the database. However, the database exhibits varyingrigghhd expressions, both of which
induce significant appearance differences. It also appkatsalthough the variation in shape
between instances of the same subject is large, the typesibited deformations are smooth.
Comparing the results of experiments (a), (b) and (c) witis¢hof experiments (d), (e) and (f),
it is clear that in all cases, the utility of the appearanctomieation is well justified as the
performance is improved when it is deployed, albeit only lsyrall amount. It is expected that
the appearance model is particularly useful on the imageseutirectional lighting is applied
to the subjects. From these results, it can be concludedhtatodel which best approximates
the generative properties of a person specific model is thathautilises a robust likelihood
penaliser and an appearance deformation model, whilsttilitg of a robust penaliser in the
deformation priors has little effect on the global optimufihe formulation.

A final outcome of these results is that the correspondenoeseare not spread equally

The regularised., norm is fairly insensitive to the choice ethat is applied for numerical reasons only.
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Figure 3.7: Performance of the pairwise method on person specific de¢gbstarting from optimal
correspondences(a) to (f): one standard deviation ellipses of converged per-poirmr éar every
landmark in experiments (a) to (f\g): Accuracy histograms of experiments (a), (b) and (@j):
Accuracy histograms of experiments (d), (e) and (f). Not #rror is defined as the point-to-point
RMS error, measured from manual annotations.
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amongst the landmarks. Those exhibiting the largest emacall six experiments were those
around the nose and jaw line. Due to the significant poseti@&@within the database, the
nose actually occludes part of the cheek in some images. et 1of this is that the shape
deforms to accommaodate the difference in appearance inethiign from that of the template.
Also, since the template is defined in the canonical frameretiexists a depth ambiguity re-
garding where the landmarks on the upper jaw line are agtsgillated. As such, when fitting
to images with extreme pose difference from the templatspine cases, the pairwise method
fails to extract the correct locations.

The results of applying the optimal parameterisation (8rpent (a)) to the bounding box
initialised correspondences is shown in Figure 3.8. Itéacthat despite performing optimi-
sation on a Gaussian Pyramid, the problem of convergingdoal bptimum is still prevalent,
observed through the significant deterioration in the m#ghperformance compared to its
optimally initialised counterpart. Nonetheless, the nisdwmilt using this approach may still
exhibit some utility for face fitting.

Convergence Accuracy Histogram @@ o @ @
O
0.14 \ w ]
] box initialised —— (% % o)
8 0.12 ¢ optimally initialised i O
5 0.1} / )
c oosf | gf’&é
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& 004} T O
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Convergence point-to-point RMS Error
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Figure 3.8: Performance of the pairwise method on person specific de¢ahesing bounding box ini-
tialisation. (a): Accuracy histograms at convergence. Note that the sampditggof the optimally
initialised histogram is higher than that of the box inisal histogram, explaining the apparent differ-
ences in area under the histograifiy: one standard deviation error ellipses for each landmark.

A qualitative evaluation of the found correspondences énekperiments described above
can be obtained by building a linear model of shape and appearover the database and
inspecting the resulting reconstructions. Some examitgsoare shown in Figure 3.9. Here,
the model built using manual annotations, those from erpant (a) and (f) with optimal ini-
tialisation, and those from experiment (a) with a boundiogibitialisation, are varied between
+3 standard deviations of their first mode of combined appearaariation. Inspecting the
results from automatic correspondence learning, oneewmtltat although some differences in
shape from the manual model can be observed, the appeaswestructions arerisp with
no significant ghosting or blurring effects. This is the cagen for the bounding box initialised
method, which was shown quantitatively to attain much pooogrespondences with respect
to manual annotations.
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Figure 3.9: Reconstruction results of intra-person pairwise learnifie model was built using all
subjects in the database, with the variations shown casretipg the the first mode of combined ap-
pearance variation.
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3.6.3 Pose Specific Database

In this section, the ability of the pairwise approach to teesrrespondences across a database
of varying subjects with fixed pose, expression and lightsigvaluated. For this, only the
first image (frontal pose with neutral expression) of eadhjest in the IMM Face database

is utilised. To evaluate the effects of different templatesthe performance of the method,
experiments were conducted using four separate templat@sale subject with a beard, a
female subject, a male subject with no facial hair, and a realgect with a moustache. The
four chosen templates are shown in Plot (a) of Figure 3.10e&ch chosen template, the same
experiments were conducted as in the person specific catiagdun Table 3.1.

The results of experiments (a) to (f) using the first templeite optimally initialised cor-
respondences and hyperparameters are presented in Figdre Gomparing the results for
experiments (a) with (b), and (d) with (e), it can be seen thatuse of a robust deformation
prior has the capacity to improve fitting performance. Hogvethe improvements here are
marginal, especially in experiments that do not utilise ppearance model (i.e. experiments
(d) and (e)). As such, compared to the person specific case, ggecific databases appear
to exhibit more discontinuities in deformation, althoudteit amount is fairly constrained.
However, comparing the results from experiments (b) wih &ad (e) with (f), a significant
deterioration can be observed when a non-robust likelihsadilised. This is to be expected,
since the difference between the template and image centalised regions with large er-
rors, stemming from such sources as facial hair and geniffieeshce in appearance between
individuals. Finally, comparing the results of experiméjtand (d), it is clear that the use of
an appearance model in this case affords an improvemeng iacituracy of found correspon-
dences. However, this result is not repeated in the otheargrpnts. A possible cause for this
might be due to the initialisation procedure used for theeappnce model parameters. In all
experiments, the appearance model is initialised to zessukh, in the early stages of optimi-
sation, the effects of appearance difference dominatehitgesupdates, leading to significant
perturbation of the correspondences. In some cases, thedan@ may settle in local minima.
This characteristic may not have been exhibited in the pespecific case, since intra-person
appearance differences are fairly constrained. From #agseriments, it can be concluded that
the optimal parameterisation for a pose specific datababéitng variations in identity, is
one that utilises robust penalisers in the likelihood andrpas well as allowing the template’s
appearance to deform along with its shape.

The results of using the other three templates are similaerathe per-point accuracies of
each in experiment (a) are shown in Plot (b) of Figure 3.ldhalvith the accuracy histograms
of all four templates. Notice that the landmarks that extitie largest errors are those around
the extremities of the model, namely the eyebrows and the chhis pattern is significantly
different from the person specific case, where the largestseoccur around the upper jaw line
and the region around the noise. Since the main source @ibifty in this database is due to
identity, the pattern of errors here can be explained asftbetg of template-image mismatch.
The variations around the chin and mouth are the result okessubjects exhibiting beards
and/or moustaches. This causes the model to deform aroisnaréa. Differences in eyebrow
thickness and shape are also prevalent within the dataleaskng to variations that can not be
well accounted for by the appearance deformation function.
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Figure 3.10: (a): The four chosen templates for the pose specific experim@ntsthe one standard
deviation ellipse of converged per-point error for evenydaark, starting from optimal annotations.
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Figure 3.11: Performance of the pairwise method on a pose specific daspstarting from optimal
correspondences(a) to (f): one standard deviation ellipses of converged per-poirr dar every
landmark in experiments (a) to (fg): Accuracy histograms of experiments (a), (b) and (@)):
Accuracy histograms of experiments (d), (e) and (f). Notg #rror is defined as the point-to-point
RMS error, measured from manual annotations.
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Figure 3.12: Reconstruction results of inter-person pairwise learnifige model was built using all
subjects in the database, with the variations shown casretipg the the first mode of combined ap-
pearance variation.
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The results of applying the optimal parameterisation (erpent (a)) to the detector ini-
tialised correspondences are shown in Figure 3.10 for eiadble templates. As with the person
specific case, it is clear that despite performing optinosabn a Gaussian Pyramid, the ap-
proach is highly sensitive to initialisation, terminatimglocal minima in a large proportion
of the images. Reconstructions from models built using thauml and automatic correspon-
dences for some of the experiments are also shown in FigliPe As with the subject specific
case in the previous section, reconstructions using gestilthe optimally initialised experi-
ments exhibit good properties. Although some differenneshiape from the manual model can
be observed, there are no significant ghosting or blurrifecef. However, the reconstruction
results of the box initialised model are far from satisfagtoHere, significant ghosting and
blurring effects can be observed as well as highly unréalistape contortions.

3.6.4 Generic Person Database

As a final set of experiments, the ability of the pairwise ajpph to learn correspondences
across a generic person database with varying identitg, gogression and lighting, is evalu-
ated. For this, the whole IMM Face database is used, chotlsenfirst image in the database
as a template (i.e. the results from the previous sectiogesidhat the choice of template has
only a marginal effect on accuracy compared to the paramatiem of the model). Again, the
same experiments were performed as in the person specificaatined in Table 3.1.

The results of experiments (a) to (f), using the optimalligiatised correspondences and
hyperparameters are presented in Figure 3.13. In contrabetresults in the previous sec-
tions, here a clear trend of accuracy improvement can bedgsas the likelihood and priors
are robustified as well as when the appearance deformatioeln®used. In fact, the im-
provement in accuracy attained by utilising an appearaeé@rmhation model is quite marked
compared to those in the previous section. Examining the@iet accuracy images for ex-
periments (a), (b) and (c), one notices that the patternrof®rs a combination of the patterns
for the person specific and constrained generic person.c@bésis to be expected however,
since the main difference between the experiments hereharse in the previous section, is
the inclusion of pose, expression and lighting variabilitio the database. As such, the defi-
ciency of the pairwise method due both to intrinsic and estd variabilities are compounded
when both sources of variations are present. However, foeraxents (d), (e) and (f), the
errors are much larger than a simple combination of the ®irothe two preceding sections.
This can be attributed to the poor modelling capacity of émplate when both intrinsic and
extrinsic sources of variability are present. It appedrstdfore, that when variations in pose,
expression, lighting and identity are present within theabase, the utility of an appearance
deformation model is crucial to attaining good results.

Experiments on the bounding box initialised correspondsmeere not conducted on this
database. However, the performance of the pairwise methtlis case can be expected to
exhibit the same difficulties regarding local minima as thdscussed in the person specific
and pose specific cases.
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Figure 3.13: Performance of the pairwise method on a generic person asdabtarting from optimal
correspondences, using the first image in the database expkate.(a) to (f): the 1 standard deviation
ellipse of converged point-to-point error for every landkiga) to (c): results of using an appearance
deformable template(d) to (f): results of using a purely spatially deformable templdtg.and (d):
results of using robust penalisers for both the likelihoad ariors. (b) and (e): results of using a
robust penaliser for the likelihood onl{c) and (f): results of using non-robust likelihood and priors.
(9): accuracy histogram plots of the six cases, defining errdr@paint-to-point RMS error, measured
from the manual annotations.
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3.7 Conclusion

In this chapter, a novel automatic correspondence learmpgoach has been proposed that
learns the optimal deformations from a pre-annotated tatepinage to an un-annotated im-
age under the constraint of (piecewise) smooth deformstiooth in the spatial and appearance
domains. The approach is formulated within a Bayesian freonie utilising inference with
hierarchical priors to allow all free variables within theoplem to be tuned automatically.
Using an EM procedure to maximise the data log-likelihodw procedure guarantees a lo-
cal solution for each linearisation of the cropped image amlist penalisers. Compared to
existing methods, the pairwise approach described heiibitsxa number of advantages:

e A formal description of optimality by virtue of its formulah within a Bayesian frame-
work.

e It affords automatic tuning of the regularisation weighttle regularised data fitting
analogy.

e The approach allows extensions to take into account exioa ipformation about the
visual object of interest.

Through experiments on a database of human faces, the thisesgd weaknesses of the
approach have been evaluated. From these, it was seenehadelof the appearance defor-
mation model, piecewise smooth deformations and a robuastjgnmatching function, gave
significant performance improvements, especially in cagesre the database exhibits large
amounts of variabilities. However, it was also demonstrakat the procedure is sensitive to
initialisation.

Improvements to the proposed pairwise approach can be nmatieodronts. The first is
to integrate domain knowledge about the database at harid.c@h take the form of priors
on the correspondences, which can be integrated elegatulyhe proposed formulation. For
example, for a dataset of an image sequence, the conditiepaindence between correspon-
dences in consecutive images should be accounted forppoassuming (piecewise) smooth
transitions between images. Another example is the caseewhere exists multiview-stereo
images in the database, in which case dependencies bethesruttiview-images can be in-
corporated into the formulation. The Bayesian formulatdrihe pairwise approach allows
these types of domain knowledge to be integrated in a fornaalner. When a small num-
ber of correspondences across the images is availabléntbimation can also be integrated
as a prior. It has been shown in [101], that increasing thelmurof features in deformable
model fitting has the effect of smoothing the optimisaticersor terrain, thereby reducing the
likelihood of the procedure terminating in local minima. Aensitivity to local minima is a
weakness of the proposed pairwise method, investigatitnghe effects of utilising multiple
priors and likelihood terms constitute a good possibilayfiiture work.

The second area in which improvements may be made is in tbenpsiesns made regarding
the distributions of the visual object. In cases where @mtil knowledge about the visual
object of interest is available, a more representativeibigton function modelling the object
will result in a more constrained problem, and hence a monepeat solution. For example,
the number and placement of anchor points for the appead&fioemation may be suboptimal.
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Another is the type of robust penaliser used in the imagdilited. These modifications are
less attractive, however, since the optimal choices foh eaguires a hit-and-miss approach.

Finally, the general method for automatic correspondesaming proposed in this chapter
can be adapted to the problem of groupwise correspondeaagrig. An example of how this
may be achieved is presented in Appendix B. In the methodepted there, appearance and
shape deformations are modelled as a linear model, whichoeidgr suit the types of objects
often learnt in correspondence learning than the modeépted in this chapter. Furthermore,
the MML criterion is better approximated, since lineaiiatis required only for the cropped
image, rather than the robust penalisers as well. Due todonstraints, this method has not
been implemented at the time of this writing, however it ¢ibuies a strong possibility for
directions of future work.
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Chapter 4

lterative-Discriminative Fitting

He turned the power to the have-nots.
And then came the shot!

Rage Against the Machine

As discussed in Section 2, there has been a large amount kfdeae recently in an attempt
to improve the performance of LDM fitting. However, most nugth address some of the
fitting goals at the expense of others. The project-out s&&ompositional method [83], for
example, boasts extremely rapid fitting at the expense afgemeralisability. As such, despite
the significant advances so far, accurate, efficient, deliatutomatic and applicable fitting is
still an open problem.

In this chapter, a novel discriminative fitting paradigm ulimed, which presents a signif-
icant step forward in addressing all of the aforementionealyy The main idea is to reduce
the error bounds over the data, rather than the typical &psires criterion. Combined with
an iterative scheme, all samples in the training set areeguidwards their solution, placing
a higher priority on samples with large errors. As the oljjeci the discriminative learning
needs only be partially satisfied at each iteration, thecagatr allows simple regressors, which
generally exhibit better generalisability than more caempines, to be utilised. Generalisabil-
ity is further promoted through a resampling process batviteeations, artificially increasing
the training set size. The approach is highly applicabléh wo specific requirements placed
on the model's parameterisation or the type of feature usédve the fitting procedure.

The general problem of discriminative fitting is describedection 4.1. Section 4.2 then
describes the novel approach of iterative-discrimindfitteng. Two implementations are then
discussed in detail in Section 4.3, a linear approach anchinear one. Extensions of the
iterative-discriminative approach to robust fitting andhground invariance are described in
Sections 4.4 and 4.5 respectively. Section 4.6 concludiésami overview and a discussion on
directions of future work. The experimental evaluationhaf tnethods proposed in this chapter
can be found in Chapter 5.

4.1 The Discriminative Fitting Problem

Discriminative learning, sometimes considered the opposi an alternative to generative
modelling, is an approach that attempts to directly leam itiput-to-output mapping of a
problem. No effort is wasted on the intermediate goal of iekfpy modelling the underly-
ing distributions of the variables and features in the mobl Instead, treating the problem
as a black-box, the mapping function is adjusted purely tisfgathe function approximation
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quantity, over which the performance of the method is latafuated.

By virtue of the tight coupling between the training objeetiand evaluation criterion,
discriminative methods have been shown to outperform géimermethods in a number of
problems. While the performance of generative methodsgdieavily on how well the con-
structed distributions approximate that of the real pnobléiscriminative methods require
only that the distributions of the training data sufficignthiimic that of the problem. As such,
for constrained problems with sufficient training data,cdiminative methods are a natural
choice.

In the context of LDM fitting, the mapping function to be leairs that which relates the
observation obtained from a perturbed parameter settirbetmptimal updates required to
bring the model into alignment with the visual object in theage. Formally, for the given
training set:

(S, pi, AP} 1YY (4.2)

wherep; andAp; are the perturbed LDM parameters and their optimal updegepgectively,
for the image.¢;, discriminative learning aims to find the update functiceg(essoryZ that
maps the feature extracted from the image at its currentpetea settings, to the desired
parameter update:

Ap* =U o F(5;p). 4.2)

The feature extraction function:
F(S:p): Ve — RN7 | (4.3)

whereN,, and N, represent the dimensionality of the LDM’s parameters aedehture vector
(observation), respectively, evaluated at the perturlz@dmeter settingp, should be chosen
such that the observation contains all the required inftiongo allow % to perform an ac-
curate estimation of the updates. Some examples of thigifduminiclude the normalised raw
appearance feature [29]:

F(I;p)=N oI oW (p), (4.4)

with .4~ denoting the normalisation function, or the texture reaideature [4]:
F(I;p)=d(p)— I oW (p), (4.5)

where./ is an appearance generating function. In both Equatior) éhd (4.5),#  denotes
the warping function (see Section (3.3.3)).

The training set of perturbed LDM parameters should be ahtssimulate the initialisa-
tion capacity of the detector, used to find the rough locatibtihe visual object in the image.
As such, the update functions are essentially trained onlations of real fitting problems,
in which case the performance of the updates on unseen inshgetd approach that on the
training set, if the simulated training cases are closeaprations of the real problem.

There are a number of advantages of discriminative basaoagipes compared to gener-
ative based methods. Some of these are listed below.

e The regressors used to approximate the mapping functiobeapecialised to the prob-
lem. This can be achieved, for example, by utilising the saitialisation procedure
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on the training set as in the test set. In this way, the digioh of the LDM parameters
with respect to their optimal settings in the training imswgall closely approximate that
of the test images well.

e The regressors are generally fixed, eliminating the remere to recalculate the update
model as with many generative methods (see [4; 12], for el@mps such, when the
type of regressor chosen is computationally cheap to elgltizen an efficient fitting
procedure results. Furthermore, the online computatiocost is predictable due to the
fixed update models used. This in turn allows simpler resoafiocations for applica-
tions that utilise discriminative LDM fitting.

e Estimates of statistics regarding fitting performancehsasaccuracy and frequency of
convergence, can be directly attained from the trainingguare without further evalu-
ations on a test set. This allows the construction of lilkeiis regarding the predicted
perturbations, for use in further generative inferencerliitso desired.

e Generalisation can be directly integrated into the trajrprocedure to reflect the confi-
dence over the training set through the use of regularisatitearning.

e Flexibility regarding the trade-off between computaticefficiency and accuracy can be
directly designed into the learning procedure through thace of the regressor func-
tion’s complexity.

e The approach is applicable to many types of deformable tbgeud is not limited to
specific warping functions, feature vectors or model patarsation.

Although the advantages of using discriminative LDM fittiugg numerous, some drawbacks
of this approach have also been identified. Some of thesedecl

e The training procedure is generally much more computaliywdamanding and difficult
to implement compared to that of generative methods.

e The best type of regressor and its coupling feature extrdatation for a particular
problem are difficult to deduce from domain knowledge. Ashsw hit-and-miss ap-
proach must be utilised in general.

¢ Discriminative training generally requires a number ofgpaeters that need to be either
selected heuristically, or tuned to optimise some perfoceariterion over the training
set.

As discussed in Section 2.3.3, in comparison to the gemeragiproach, there exists only a
few methods that tackle the problem of LDM fitting from a disunative perspective. Perhaps
this is because, despite exhibiting favourable properties drawbacks of the discriminative
approach can be difficult to address. In the following sedtj@ novel discriminative procedure
is proposed for the problem of LDM fitting, which addressemsmf the aforementioned
difficulties through a reformulation of the objective in disninative learning, leveraging on
the peculiarity of general fitting problems.
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4.2 lterative-Discriminative Fitting

With the discriminative formulation of LDM fitting descrideabove, two questions naturally
arise:

¢ Does there exist a mapping function that can accuratelyigiréet updates over all legal
states of the model for a given image?

e If one does exist, can it be evaluated efficiently?

The peculiarity of LDM fitting, as opposed to other problenesnenonly tackled by discrimi-
native approaches, is that for many parameter settingéedere vector will generally contain
only a subset of the information required to perform acapagdictions directly. For example,
the feature vector of a model perturbed in translation vatigenerally contain information re-
garding the boundary of the object in the direction oppadsiténat of the translation. As such,
the predictions of the correct update must rely on the caticels between available informa-
tion with that which is not. This relationship may be quitegex, requiring sophisticated
regressors to predict it accurately. These complex regrgss turn, may require significant
computational resources to evaluate, negating one of the atvantages of discriminative
methods. Furthermore, complex regressors usually exduiter generalisability, leading to
the requirement of a very large training set to cover, whithurn leads to slower training
times.

To address these difficulties, an alternative discrimyweatramework will be considered,
whereby aset of weak regressoese composed together to form a singlengpredictor. For-
mally, rather than applying the parameter updates as inttequ@.2), consider the parameter
adaptation of the following form:

N; i—1
p—p+Y Ap; where Ap;=%oZ | Zip+» Ap;|. (4.6)
i=1 j=1

Here, {%}Yi, is the set of fixed weak regressors. The intuition for utiisthis particular
form of regressor is as follows. Firstly, weak or simple espors usually exhibit better gen-
eralisability than more complex ones. Secondly, by virtbieéheir sequential composition,
observations of the image from a number of different paramsgttings result in a richer in-
formation set used to make a prediction. This formulatiohjclw will be referred to as the
iterative-discriminativemethod in the remainder of this thesis, takes inspiratiomfboosting
methods [47; 81; 134], where a set of weak learners are cadhimform a strong one. If
each weak learner can be efficiently evaluated, then aneeffifitting procedure may result.
However, unlike boosting procedures where only the tar§gtemapping function is modi-
fied with each weak learner added, here the input (obsenjasalso modified to reflect the
new distribution of samples around their optimum.
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Algorithm 4 lterative-Discriminative LDM Fitting
Require: .7, {%,...,%n,} andp
1: for i = 1to N; do

2. f=.7(7;p) {Get feature vectgr

3:  Ap = 7%(f) {Calculate updatés

4.  p < p+ Ap {Update current parameteérs
5. Constrainp.

6: end for

7: return p

With this framework, discriminative learning then procedyy simultaneously optimising
the V; update models, given the training set in Equation (4.1), itdmise a cost of the form:

Ny
C(%, ..., Ux) = Cp(I5.pis5: %, ..., Un,), (4.7)

j=1
wheres; are the manual annotations for tfi@ training sample:
p* = min 5" — ()] (4.8)

The distance functior¥’p in Equation (4.7) penalises the difference between the aignu
annotated shapes and the predicted model's shapeléftéerations. A common choice for
this is the least squares fit:

2

N;
%D(jvpvs*;%lw" 7%]\71) = '|y <p+ZApZ> —s" (49)
i=1

Compared to texture based error measures, commonly usesherajive LDM fitting, this
distance function better encompasses all available irdtiam about the optimal parameter
settings, i.e. the manual annotations. With this formatatithe training process essentially
simulates real fitting problems on the set of training imaged perturbations. If, at deploy-
ment the unseen images and their perturbations resemtse thahe training set, then the
fitting performance of the minimiser of Equation (4.7) canex@ected to approach that at
training.

Having trained the update models that minimise Equatior)(4.DM fitting then pro-
ceeds as outlined in Algorithm 4. Notice the similaritiedveen this method and typical
fixed-update generative fitting approaches, where the niffigrehce is that no checks need
to be made regarding the reduction of texture error or thenitade of the parameter updates
to deduce convergence. Fitting is simply performed for rainied iterations with no early
termination.
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4.2.1 Training Complexities

Compared to the training procedure of the methods discuasgelction 2.3.2, finding the op-
timal update models by minimising Equation (4.7) presentsimber of difficulties. Firstly,
the cost function is inherently nonlinear with many locahima, due to the composition of
the updates with the feature vectors and the nonlineaiigekitip between the pixel intensi-
ties and the warping parameters. Secondly, standard ncetheyptimisation techniques are
not computationally practical for this problem. Since tlaggmeter updates at each iteration
depend on the update models for all previous iterationsamiadytic gradient of Equation (4.7)
is generally extremely complex, resulting in an impradtezamputational burden. This matter
is made worse by the potentially large number of training glamrequired to ensure good
generalisability of the update models.

To see this, consider a simple gradient descent on the costida in Equation (4.7), in
which the parameters of the update models at'theptimisation step takes the following form:

Ny

06D,
At+1 =t — T g 851 ; (4.10)
i=1

whereq is a concatenation of all parameters describingvalupdate models ang is the step
size. Although gradient descent exhibits only linear cogeace rates, when the derivatives
can be efficiently evaluated, this approach is an attractiveedue to its simplicity. However,
the deterministic gradient of Equation (4.7) cannot beatiy evaluated due to the dependence
of the updates on those of previous iterations. To see tbts, that the deterministic gradient
of ép is given by:

C()(gD 8‘513 0z
— - 4.11
oq 0z 0q ( )
wherez = [Apy;...; Apy,] is the concatenation of the parameter updates of all itersdti

The derivativeaéiZD can be easily computed from Equations (4.9) and the form eftiape

generating function””. Now, let us consider the simplest case, where the featuractar
obtains only the raw warped image:

F(I;p) =S o ¥ (p). (4.12)
and the update models take the simple linear form:
U (£f) = G;f + b, (4.13)
where the variables of the optimisation procedure are dyen
q=[vedGy);...;ved(Gy;,); bi;...; b, ] . (4.14)

With this, the derivative of thg" parameter update with respect to the bias vector okthe
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iteration is given by the following recursive form:

A 0 if j <k,
6@pr' {1 if j =k, (4.15)
G, (Vo) (S %) it >k,

where the derivative of the warped ma‘@@ |s evaluated qb+z Api. The derivative
with respect to thé&™" gain matrix is given by.

k—1
@Apj aApJ
9Ap; _ S ap; ). 4.1
aG, ~ by 277 PT2.ap (4-16)

The evaluation of these partial derivatives is computatigrintensive and memory demand-
ing, especially those with respect to the gain matrix. Femtiore, the complexity of evaluating
these partials grows exponentially with the number of tteres V;. This problem is amplified
with the use of more sophisticated feature vectors, edpetimse that involve a normalisa-
tion, for example that used in [30].

Therefore, optimising the discriminative learning objeeisimultaneously with respect to
all update models is, if not intractable, very slow for mageresting problems, even for the
extremely simple gradient descent minimiser.

4.2.2 Error Bound Minimisation

Although optimisation of the objective in Equation (4.7)naltaneously with respect to all
update models, is not practical in general, this is not ttse ¢ar a greedy learning approach,
where each update model is learnt sequentially, startinlg thie first one to be applied to
the model. As no functional compositions are involved indpémisation, no gradients with
respect to the image or warping function are required. Tiusgxlure is more akin to traditional
discriminative learning where a direct mapping betweenféadure vector and the desired
targets is learnt. However, a straightforward adaptatibmatching pursuit type methods
(see [79; 134], for example) for this purpose may not prodineedesired outcome. The
problem stems from the typical least squares criterion .udadorder to accommodate the
reduction of quadratic error over the whole sample set, sohthe more difficult samples
(i.e. those far from their optimal parameter settings) wélpoorly predicted, where in some
cases, they may even be perturbed further away from thenedesettings. The distribution of
samples in the next iteration, then, will induce a regredisar favours minimising the errors
on samples that are far from their optimum at the expenseedbditer predicted samples. As
such, the effect of using a quadratic penaliser is a cyclitepain the distribution of samples.
No continuity between the iterations is enforced here, am/@&gence may be difficult to
attain.

Due to the aforementioned difficulties with a matching pirsgpe approach, a different
objective to be greedily optimised at each iteration needsetutilised. For this, consider first
that one of the main justifications for the iterative-disunative method is to allow simple re-
gressors to be utilised at every iteration. As such, theopaidince of this method is limited by
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the estimation capacity of the regressor in the final iteratiAs such, when learnt simultane-
ously, as described in Section 4.2.1, all regressors exicepast one to be applied, essentially
act assample redistributorsn such a way that the distribution of the samples around thei
optimum in the last iteration can be well regressed. Theeethe objective in greedy learning
should be designed to mimic the results of a simultaneoumggattion regime.

With this in mind, consider the results by Coogtsl. in [30], that the relationship between
the appearance residuals and the parameter updates in Al f& close to linear only within
a small region around the optimum of each parameter. Intfaistrelationship has been shown
to persist, though to a lesser extent, even for the simplgedatexture feature [29]. This
region is characterised by error bounds around the optig@mpeter settings, within which
the assumption of linearity holds relatively well. As suitihe regressors are trained in such
a way that the distribution of the LDM parameters at the lesation lie within a small error
bound of the optimum for every training sample, then the disesample regressor (the limiting
case being the linear model) in the last iteration can aehgyhly accurate predictions.

The question then, is how to design an objective for the grémihing procedure, in order
to achieve small error bounds on all parameters in the lasition. It is here proposed that
this can be achieved by learning a function that reduce®tite boundin each parameter
over the training set at every iteration, rather than theredtself. The idea is that although
the reduction in error bound that can be afforded by simpgleaesors at each iteration may be
small, the objective of each regressor does not need to iséieshto a high degree, since, by
virtue of the compositional regressor framework, the negressor down the compositional
line improves the global objective further, utilising nelservations of the image in order to
do so. Furthermore, since the error bound is reduced thomidhe iterations, the distribution
of the observations becomes more constrained, leadingriplesi input-to-output mappings
that must be estimated by the regressors. Finally, the aierrof bound reduction enforces
continuity between successive iterations by virtue ofrteects on the distribution of samples
that they perturb. An illustration of this process is showiigure 4.1.

Let us denote by/’ the regressor for th&" LDM parameter at a particular iteration. Then,
the objective of iterative error bound minimisation to benimised takes the following form:

Crpp =max |%"' o F (I;p}) — Aph| + A% (%"), (4.17)

with p§. andAp§ denoting the LDM parameters and their desired updates éaftparameter
of the j" sample, andZ applies regularisation over the regressor to penalise cv@plex
decision function, which is weighted by a design parametefThis problem can be more
easily solved when posed as a constrained optimisatiorigeroés follows:

Api— Ui o F (F5ip)) <
min € +\% (%") subjto { io.Z (fj;p;'.) ~Apl <e (4.18)
e>0
wheree is the error bound that is to be minimised. This cost functicectly trades off the

penalty of large error bounds over each parameter’s digioi against the complexity of the
update model.
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Figure 4.1: lllustration of the error bound minimisation process. Shave perturbed samples from
a singleimage, plotted on an artificial generative objective. $tgriat Plot (a), a simple regressor
predicts updates for all samples, as illustrated in Plqtyie}ding a new sample set with a reduced error
bound, as illustrated in Plot (c). This process is continutil the desired error bound is achieved or a
reduction of error bound is no longer possible (i.e. the capaf the weak learner has been exhausted).
Note that at each step it is expected that some samples witldvedawayfrom the optimum (denoted
by the red samples). Shown also, in Plot (h), is an illusiratif the one-step discriminative fitting.
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Algorithm 5 Iterative Error Bound Minimisation
Require: .%#, N; and N,
1: for: =1to N; do

2. {9, p;, Ap;}Y, {Sample training dafa

3. forj=1toN,do

4 fork=1toi—1do

5: f; = 7 (.7;,p;) {Get feature vectgr

6: p; — p; + % (f;) {Update paramete}fs

7: end for

8: f; = 7 (4, p;) {Get feature vectgr

9: end for

10: for j = 1to N, do

11: %’ — 0 {Initialise i update model fok™ parametey
12: U’ — ming Exp ({fk, Api ) 42/) {Equation (4.17)
13:  end for

14: end for

15: return 24, ..., %N,

7

Although penalising the complexity of the update model emages better generalisabil-
ity, the best way to encourage generalisability is to @&iks much training data as possible
in order to cover more of the input space of the system andeptehe need for functional
extrapolation for inputs that are far from the those in tlaéning set. Unlike many discrimi-
native learning problems, LDM fitting has the peculiaritathsince the training data consists
of pairs of parameter perturbations and their updates, wtamn be generated synthetically,
for a given distribution of initial perturbation errors gtlraining set is potentially unbounded
in size". Increasing the training set size also increases the catipuoél complexity of the
training procedure. However, by virtue of the compositldoam of the estimation framework
in Equation (4.6), the training set size can be artificiatigreased without increasing the com-
putational load in learning the regressors. At each itenatonce the optimal update model,
which maximally reduces the error bounds, has been learat §ven training set, a new set
of artificial perturbations can be resampled from the ihig#&ion distribution and propagated
through all previously learnt update models in a sequentahner. The data then serves as
the training set for the regressor of the next iteration.sTresampling process further regu-
larises the solution, as unseen samples that were poorlt lgeeviously, due to overlearning
on the limited training set, are corrected. With this restmgpprocedure, the whole training
procedure for iterative error bound minimisation is presdnn Algorithm 5.

4.2.3 Variations on a Theme

Although the cost function in Equation (4.18) fulfils the etiive of error bound reduction, it
is not the only formulation that can achieve this. In somesais may be beneficial to consider

INote that increases in training set size can only be accorataddn the space of deformations, not object’s
appearance, since the number of training images contaih@gbject is finite.
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variations on this theme, where other peculiarities ab&@¥iLfitting are incorporated into the
designed cost function.

One such variation is a soft error bound minimiser. In sonstaimces, it may be beneficial
to minimise the error bound only over a subset of the traidiatz. This may be the case when
there are a few training instances that are uncharactatigtdifficult, where the affordability
of the simple regressor may be too small to be useful if it sdecaccommodate these cases.
These samples, for example, may be outliers in the data.ldw &r this, slack variables can
be utilised to capture the outliers as follows:

| N Ap; — U o F(Ij;p;) < e+ &
min \Z(% )+v €+N Z(SH—&) subjto § % o F(F;;pj) — Api < e+ &, (4.19)
=1 67£ivéi Z 0

where the parameter index has been dropped for clanﬁydg are the slack variables ands
a positive hyper-parameter that regulates the trade offdezt error bound minimisation and
the influence of the outliers.

The reduction of error bounds over the data can also beadilierough the use of an
asymptotic penaliser of the form:

Ny
Cop = \R(U)+ Y (e— [ 0 F(Iipi) — ApiP) (4.20)
=1
where
e = max(Ap?) +d ; i€ {l,...,Ng}, 6 eR". (4.21)

The data term in Equation (4.20) asymptotically penaliesdistance of each sample from
its optimum, placing more emphasis on samples with largéugstions compared to, for
example, the quadratic loss (see Figure 4.2). As such, itHesame effect of reducing the
error bound, albeit indirectly. However, unlike the formtitbn in Equation (4.19), this cost
function also penalises samples close to the optimum. Aghdheir contribution to the total
cost function is small, the asymptotic cost function ensuhat the samples that are already
well predicted are nadlislodgedtoo far in order to accommodate a reduction in error for the
more perturbed samples. In Equation (4.19), no penalty iexp on perturbing samples
anywhere within the error bounds; as such, there may be gdsm® samples cluster around
the margin of the error bound, making further reduction terdaerations more difficult.

4.3 Linear and Nonlinear Prototypes

As described in Section (4.2), one of the difficulties inemlvn utilising discriminative learning
methods is how to choose a suitable class of regressors tonuaearticular problem. This
problem is complicated by the requirement to select thaufeagxtraction function that best
couples with the chosen regressor. When utilising thetiteraliscriminative approach, this
problem becomes even more difficult since the most appraprégressor to use, and hence
its coupling feature extractor, may differ between theditiens. Nonetheless, there are a few
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Figure 4.2: Objective functions used in iterative-discriminativeifiif, along with the quadratic pe-

naliser.

guidelines by which the choice of regressors can be steered:

e The regressor should allow for efficient evaluation to prtereorapid fitting procedure.

e The regressor should exhibit enough capacity to signifigaatiuce the error bound at
each iteration.

e The form of the regressors should allow the optimisationhef training objective to
attain a good, if not global, solution.

For most regressors, the first two guidelines can be costaglisince simple regressors gen-

erally allow efficient evaluation but exhibit poor capaciydvice versa
In this section, the suitability of two classes of regresssidiscussed: the linear and non-

linear regressors. Details regarding their constructiwhteaining process for both variants of
the iterative error bound minimisation procedure are diesdrin detail.

4.3.1 Linear Updates
Linear regressors are by far the simplest and most efficiergigoessors. They take the form:

U (f) = Gf + b, (4.22)

whereG®™»*Ny) js the gain matrix b(») is the bias and") is a feature vector. This update
model has been used successfully in a number of LDM fittinghoss, most notably in the
AAM literature [43; 83]. However, the utility of this modehimost generative fitting methods

is limited by two factors:
¢ A fixed linear update model cannot accurately account forvim@ous error terrains

about the optimum in different images. The linear regres§@] and project-out [83]
methods, for example, exhibit this drawback.

e Ultilising adaptive linear update models usually requiressily process of re-calculating
it for every iteration. The adaptive [12] and the simultame@verse compositional [4]

methods, for example, exhibit this drawback.

However, it is argued here that when utilising a fixed updatelehwithin the compositional
framework of Equation (4.6), coupled with a training regithat reduces the error bounds over



84.3 Linear and Nonlinear Prototypes 83

the data, the full capacity of this simplest of regressorstmtaken advantage of. Due to the
simplicity of linear models, they are expected to only redtlee error bounds marginally at
every iteration. However, when combined, the total reduncin error bound may be sufficient
for many applications.

Details regarding the training procedures for both the taited optimisation and asymp-
totically penalised objective are presented below. Simggessors for each parameter are
trained separately, in the following discussions let:

G = [g{; . ;g%p] and b= [bl; e ;pr] , (4.23)

where the subscript denoting parameter indices has beg@peticfor clarity of exposition.
With this, the regressor for any parameter takes the form:

U (£) = (g, ) +b. (4.24)

The regularisation used for this linear model is performegisately for each parameter, and
takes the form of arl,-norm of the gain vector:

RU)=g'g. (4.25)

Asymptotically Penalised Training

Utilising a linear regressor in the error bound reductiojective in Equation (4.20), the prob-
lem now takes the form:

Ny
Cep =g g+ Z (e—[(g,£;) +b— Api]Z)il . (4.26)
=1
Note that this asymptotic penaliser is convex within thevesrset:
{(g7b) | _\/E< <g7fj>+b_Ap]< \/E >j:17"'7Nd}7 (427)

i.e. the intersection ofV; convex sets, each composed of the region between two paralle
hyperplanes. Due to the choice ©in Equation (4.21), the null mode¥?{ < 0) lies within
this convex region. As such, starting with the null model pedorming steepest descent with
a line search allows the globally optimum update model toobed.

Unlike the optimisation problem discussed in Section 4.&& gradient of this cost func-
tion is easily computed:

Ny Ny
0Ces 0Ces .
% ;:1 0; and 98 2)\g + ;:1 0,1;, (4.28)
where: -
0; = 2r; (6 — Ti) ;T = (g,fi> + b — Ap;. (429)

Although second order optimisation methods, such as thetdiemethod, are not generally
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viable for this problem, due to the high dimensionalityegpefficient first order methods can be
utilised here. One example is the limited memory BFGS allgori(L-BFGS) [74], a variant of
the quasi-Newton optimiser BFGS, which avoids the costarirs and updating the estimate
of the cost function’s Hessian inverse. Given the L-BFGS slieectiond, the line search is
performed by solving:

Ny _
o =min aX|d|?+ > (e — Ja(d, [£:1]) + (g, £;) + b — Apjf) (4.30)
=1

subject to:

i\/g_ <g7fj> —b+ Apj
([f;:1],d)

where the sign of /e is chosen to represent the asymptote in the direction of poate. In
fact, due to the convexity of the cost function within the bds ona, convex line search
methods [38] can be utilised to achieve rapid optimisation.

0§a§min< > i Je{1,..., Ny}, (4.31)

Constrained Optimisation Training

Utilising a linear regressor in the error bound reductiofective in Equation (4.18), the prob-
lem becomes that of a quadratic program:

\ Ap; — (g, fi) —b < e
min 5ng + ¢ subjto } (g, fi)+b—Ap; <e . (4.32)
e>0

This formulation can generate a globally optimal solutionthe parameterg andb. However,
more interesting perhaps is the formulation obtained frajudtion (4.19), which yields:

N Ap; — (g, fi) —b < e+ &

A7 1 . . .

min Sg g—l—l/e—l—NE (& +&) subjto < (g, fi)+b—Ap;<e+& . (4.33)
=1 6:51’;51’20

The resulting problem then becomes that of the line&upport Vector Regression-SVR)
method [108]. As the training of support vector regressme®a global optimisation process,
a global solution for the gain and bias is also obtained. d&foee, one of the advantages
of utilising a linear model within this framework is that dfie-shelfv-SVR learners can be
directly utilised for training here, where rapid trainingppedures, such as sequential-minimal
optimisation [92], have been implemented.

Based on work on-SVR, further insight into the role of the hyper-parametetan be
gained. Of interest to the problem of LDM fitting, it denotés upper bound on the fraction
of samples that lie outside the error boundrhis can be very useful when an estimate of the
number of outliers or difficult cases is knowrpriori. In turn, this implies that choosing > 1
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will result in e = 0 that is equivalent to minimising the L-1 norm over the whaokaring set
with respect to the model parameters. In general, howevenould be chosen to be a small
fraction, such a8.001, in order to enforce the objective of error bound minimisati

4.3.2 Nonlinear Updates

Due to the limited predictive capacity of linear models, iyrbe necessary for some prob-
lems to utilise a nonlinear regressor to obtain accuratdtsesThe main difficulty in utilising
nonlinear regressors is choosing an appropriate one falatike Since there is a plethora of
nonlinear regression forms to choose from, this problenoistnivial in general.

Nonetheless, following the guidelines defined in SectioB)(4n this section, two suitable
regressors for the problem of LDM fitting are proposed. Inheease, regressors for each
parameter in each iteration are trained separately frorh etlwer. The final update model,
then, is a concatenation of the updates for every parameter:

Ap=% o F(I;p) = % (£);...; %" (f)], (4.34)

As with the linear case, simultaneous training of the respesfor each parameter requires
prior information regarding the relationships between pleeturbations of each parameter,
which is not generally available. Furthermore, this prigiormation may be difficult to in-
tegrate within the error bound minimisation framework. Hosld be noted however, that the
relationship between the perturbations is implicitly eshe into the procedure through the
compositional framework, where the training set for a gattr iteration is a result of predic-
tions in previous iterations over all parameters.

In this thesis, a linear expansion of weak learners is pregas the prototype of nonlinear
regressor to use. Formally, the update function forifieparameter at any iteration takes the
following form:

Ny
wrHE) =D o L) L el (4.35)
t=1

where ZF is a weak nonlinear learner, a number of which can combineotim fa strong
ensembleZ*. Here, L is adictionary of weak learners. The choice of regressor within this
prototype then depends on the scope&of

Asymptotically Penalised Training

There are two requirements of the weak function&ébr discriminative fitting. Firstly, their
evaluation must be computationally cheap, such that effifiiting can be achieved with a rea-
sonably sized ensemble. Secondly, they must be sufficigoblysuch that complex regression
functions can be accurately estimated by a linear comiinatf them. The Haar-like feature
setH, popularised by Viola and Jones in [135], acts as a good basibe weak function set
as they fulfil both of the required criteria: efficient eveloa using the integral image and a
capacity for complex representations through their siitjldo Haar wavelets. In particular,
extensions to the original Haar-like features [72] may ddedbeneficial to consider, as they
include diagonal features, useful for approximating fotes.
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For the asymptotically penalised error-bound objectivisirtg this type of weak learner,
a boosting-like procedure appears to be a viable solutidarti®g with an empty ensembile,
one weak learner at a time is appended to the ensemble:

U = wf + of L, (4.36)

choosing(a¥, £F) to maximally decrease the objective function for each éatditUtilising
this boosted regressor in the error bound reduction okgeati Equation (4.20), the problem
now takes the form:

=1 t=1

Ny T 2\ !
Cpplar, Lr) =) <e Api—Zat.iﬂt(fi)] ) : (4.37)

for the 7" learner to be added to an ensemble at a given iteration,ubjer € [a,b] and
£r € L, where the parameter indéxhas been dropped for clarity. Here,

a = max 7(Aﬁi)2 _ 6) = min <7(Aﬁl)2 + 6>
= ma ( 70 () , b= () (4.38)
with:
T-1
Apy = Dp = 3 ari(8) (4.39)

t=1
being the current residual target updates after 1 learners have been added to the ensembile.
As each entry in the sum is convex, the objective of each rafrmbosting is also convex.
Therefore, for a givertZr(f), the optimala can be found through a 1D line search between
a andb. Again, note that since the cost is convex, convex line $gamacedures can be utilised
here, to rapidly find the best solution.

To regularise the solution, shrinkage is performed on tleemmble [48]. This common
regularising method involves shrinking the optimafor the newly selected? by a factor
n € [0, 1] before adding it to the ensemble. This approach is preferatmpared to a direct
regularisation term in the cost function as in Equation@tsince the weak learners are added
one at a time.

A common choice of that utilises these features is the one-dimensional @ec&gump:

. (4.40)
—1 otherwise

206 {+1 if s.2(f) > 6
where J# is a Haar-like filtering functionf is a decision threshold and € {1,—1} is a
parity direction indicator. Although this weak functionshbeen utilised in many works, for
example [72; 135; 147], it has some major drawbacks. Fjreilyst functions in this set are
non-discriminative in the sense that, for a givéf, the best choice of andé will still result in
a poor.Z. Secondly, for those which are discriminative, the optiotadice ofs andd must be
found through trial and error, an expensive process. Thispecially potent in a discriminative
fitting problem, where the size @i is extremely large due to the size of the image region to
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Algorithm 6 Weak Learner Sampling Algorithm
Require: {f, Ap}}, H andn,,

. Calculate weight of each samplg: — |Ap;|)~*
Sample a Haar-like featut&” € 'H {see [72}

Build H, and H_ histograms{Eqn. (4.42) & (4.43)
Compute weak learne? {Eqgn. (4.41}

Find optimala through 1D line searchEqn. (4.37}
return (o, %)

o ua kR wdnR

be analysed, which is around 5 to 10 times that of the imaged ing135; 147].

Rather than using the weak function set described abovegtpmnse binning approach
in [96], which maximises the utility of weak learners dedvieom the Haar-like features, will
be followed here. In their method, the weak learners of aiflaation problem, take the form
of the relative inequality between histograms of the pesiéind negative examples:

+1 it Hy(J2(F) > H_((F))

_ (4.41)
—1 otherwise

2(f) = {

whereH andH_ are 1D histograms of the distribution of the feature evabumaton the pos-
itive and negative examples, respectively. This methoord$f a multimodal decision surface
whilst maintaining efficiency, as it requires only a tablekap for its evaluation.

To adapt this approach for regression, a few modificatioesl ne be made. The objective
function to be minimised in Equation (4.37) aims to reduce $pread of the training data
about the optimum. Therefore, in formulatitg, preference should be made on reducing the
error over samples with large, compared to small, error.hi®end,H_,_ is defined as the
histogram of weighted samples with positive/negativedavglues:

1 R
H0(F;)=v Pi

1 R
H(£;)=v

where Ap; is given in Equation (4.39). The idea here to bufll, such that the functional
direction is in that which reduces the error over the mosicdilt samples in each bin, with the
aim of reducing sample spread.

The only parameter that needs adjusting for this weak fanaet is the number of bins in
the histograms:,. Too many bins may cause overlearning in sparsely samptes] but too
few bins may not capture enough of the nonlinearity of thgefunction, limiting the capacity
of these learners. In this thesis, is fixed at an empirically good value and overlearning is
avoided by setting? at sparsely sampled bins to zero (i.e. avoid making decidiuat are not
well supported by the training data). A summary of the getimreof a weak learner is given
in Algorithm 6.
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Constrained Optimisation Training

Noting the reduction of the constrained problem in Equa(#i8) to a linear-SVR prob-
lem in Section 4.3.1, a straightforward extension to a meali regressor can be obtained by
projecting the feature vector into a reproducing kernebelit space leading to the nonlinear
v-SVR formulation [108]. This procedure is viable for thimptem since the algorithm can be
cast solely in terms of dot products in Hilbert space, whigh lbe expressed through a positive
definite kernel:

H(x1,%2): RV x RV = R = (h(x1), 1(x2)) (4.44)

where is the nonlinear map that relates the input space to Hillpertes The choice oft”
will generally be problem dependent, but typical choiceduide the radial basis function:

_ _ 2
H (X1 — X3) = exp —lix1 = xo” ;7 0>0 (4.45)
202
and the polynomial kernel:
<}5/(}(1,}(2) = <X1,X2>d i deEN (446)

Although these nonlinear regressors certainly have muehtgr capacity than the sim-
ple linear kernel, they are much more expensive to evaluatehe linear case, the support
vectors lie within the input space, allowing the gain vedtobe obtained directly as a linear
combination of the support vectors:

N
g= Z Bivi, (4.47)

wherev; is thei! support vector out alV;, and3; is related to the dual variables of theSVR
formulation (see [108]). For nonlinear kernel types, thpmut vectors live in the Hilbert
space, preventing them from being evaluated explicitlstegad taking the form:

U (f) = Z a; H (£,v;), (4.48)

whereq; is the expansion coefficient for th# support vector.

The main reason for the efficiency penalty, when using nealitkernels, is due to the eval-
uation of the kernel function, which generally involves aner product between two vectors
of the size of the observation. Despite the various clainmspafsity, support vector algorithms
are notorious for keeping a large number of support vectoc®mparison to other methods,
such as the relevance vector machine [124] or kernel majgbumsuit [134]. As such, these
kernel evaluations generally need to be performed ovege lammber of support vectors.

In order to build an efficient fitting procedure utilising tkernel expansion as a regressor,
the dimensionality of the feature vector to be evaluatedbykernel function must be reduced.
A number of methods exist for dimensionality reduction, keer, in this thesis, PCA will be
used exclusively since it allows the dimensionality of théadto be reduced by a factor of 10 in
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many problems whilst sacrificing little accuracy. In fact,apposed to modelling appearance
of registered data (such as in LDM model building), the majodes of variation obtained by
applying PCA to the feature vectors will stem, in a large jp@mam the misalignments rather
than variations of appearance within the objects class. uk,sPCA is a natural choice for
dimensionality reduction here, since it preserves thaufeatthat are important to fitting (i.e.
those that pertain to misalignment).

The typical PCA expansion is given by:

f=f+ &b, (4.49)

wheref is the mean feature vecto® is the matrix of modes of variation artslis the PCA
expansion coefficients. To accommodate for the distributibappearance of the feature vec-
tors, a separate basis matdxis learnt for each iteration. This way, representationalgro
is concentrated on the problem at hand. To account for glafiaing variations, the feature
vectors can be normalised to a mean of zero and a variancesdiedore applying PCA. With
this, each weak learner in the linear expansion form in Equg#.35), takes the form:

L) = (®T [N/ () —f] |, vi), (4.50)

where._4" is the lighting normalising function. By applyingSVR learning on the expansion
coefficients, a rapid fitting procedure can be obtained.

4.4 Robustification

One of the major difficulties in utilising discriminative pyaches for LDM fitting is how to
robustify the algorithm against outliers due to occlusiaféects or appearance variation not
present in the training set. Since discriminative meth@dsn an input-to-output mapping
function, if the types of occlusion are predictable, therinpyuding examples of the occluded
object in the training set, a mapping function that is rolostards these occlusions can be
learnt. However, in general, the types of occlusions ar&notvna-priori. Furthermore, even
if the types of occlusions are known, for most cases, an mehe large training set will be
required to accommodate the various instantiations of eactusion. This in turn will in-
crease the computational complexity of the training pracegdfor example, when occlusions
occur due to objects lying in the line of sight between theecband the camera. A training
set accounting for this very general type of occlusion muduide examples of varying sizes,
appearance, shape and location of the occluding objechteatiable task for most discrimi-
native learning algorithms.

In generative LDM fitting, however, significant advancesenbeen made to robustify the
fitting procedures. The main reason for successful robcatidin here is by virtue of the gener-
ative framework, where model fit, and hence convergencegsored through the difference
between the LDM’s synthesised appearance and that of thgeinvearped to the canonical
frame using the LDM's synthesised shape. Outlying imagelpigenerally exhibit much
larger differences with the synthesised appearance cadparnliers when the LDM is well
aligned to the object in the image. By utilising a robust efeaction, which penalises large er-
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rors less severely than the typical quadratic penalisesbgttive function can be constructed
that shares the same global optimum as the true problem.mi@ption of this objective is
typically performed through an iteratively reweightedsesquares formulation.

There are two main difficulties with robust generative fatimowever. Firstly, the itera-
tively reweighted least squares formulation does not alidixed update model to be precom-
puted since it depends on the weights allocated to the \@domponents of the cost function.
A straight forward implementation, using for example theu€&aNewton procedure, will re-
sult in inefficient fitting. This difficulty is addressed ingpby assuming spatial coherence of
outliers, assigning the average weight of a region in thew@al frame to all error compo-
nents pertaining to that region. As a result, a significaopprtion of the computation can be
precomputet}, allowing a real time fitting algorithm to be implementedbgit for a simple
person-specific model). More recently in [99], the autharssider contributions of specific
errors to a single LDM parameter, allowing the fixed lineagression matrix to be utilised.
Only the feature vectors is modified to reflect the confiderganding the outlier likelihood of
a feature. Although potentially more efficient than that5a][for models with a large number
of parameters, the predicted parameter updates are onlgxapations to the true iteratively
reweighted least squares, biased in favour of inliers otts function.

The second difficulty with robust generative fitting is arfact of the generative construc-
tion itself. When the model is misaligned, such as in theyestdges of fitting, the distinction
between inliers and outliers is difficult to deduce. As sultwnweighting the contribution of
pixels with large errors, or completely excluding them agliv], may ignore useful informa-
tion from inlier pixels that exhibit large errors due to migament. In fact, most information
regarding misalignment is contained within pixels withglarerror. For this reason, ignoring
these pixels in the fitting procedure may lead to slow coremtg or even convergence failure.
This problem is directly addressed in [97], where the mudtila nature of the error histogram
is analysed in order to distinguish between inliers andenstl The method discards the con-
cept of domain thresholds for inlier and outlier errors. téasl, error modes are selected for
inclusion in the optimisation procedure according to theipact on the matching process.
However, the mode analysis procedure is computationalhgresive, leading to inefficient fit-
ting. In [99], the authors partially address this problenpleyforming a form of deterministic
annealing, where two sets of robust scaling parametershasen to account for errors in the
early and later stages of fitting. However, since at earlgesahe scaling factor is chosen
to include large errors, the estimations at these earlgtitars may be severely influenced by
outliers, leading to significant perturbations.

4.4.1 Robust Feature Extraction

To robustify the discriminative fitting methods describecdthis chapter, the sources of dif-
ficulty regarding outliers must first be considered. In gahdncluding occluded instances
into the training set is not viable. However, the space ofcehaled instances is generally
restricted to a smaller, albeit nonlinear, subspace. Ab,sat unoccluded feature vector can
be represented using a parameterisation in this reducee.spar example, consider the non-

2Note that the spatial coherence assumption results in preatable parts since it is implemented within an
inverse-compositional framework.



84.4 Robustification 91

linear kernel regression prototype described in SectioB.Zf where the feature vector is
represented as a linear combination of modes of variatigtragtion of the reduced subspace
coordinates, used for regression through a nonlinear kasrgerformed via a least squares fit
between the true and synthesised feature vector:

&Ls(b) = [|If — (f — @b) || (4.51)

When encountering a feature vector with outliers, thistlegsares fit will be biased towards
the outliers. However, a robust error norm is utilised harein the case of generative fitting,
the effects of outliers on the estimation of the reducedesjpgaordinates can be lessened.

Consider the robust least squares fit:
ErLs(a Zlﬁ ( )+ ®;.0b) — 5]2;0i) : (4.52)

whereo; is the robust scaling parameter for tfefeature,a denotes the global lighting scal-
ing andg the bias. Note that the inclusion of global lighting paraengis required here since
normalising the feature vector, as described in SectidhZ{. will include the outlier effects
in the normalisation, which in turn will result in a biasedieste ofb. The aim of robust
feature extraction, then, is to obtain the paramétetfsat minimise the cost function in Equa-
tion (4.52). This nonlinear problem can be solved by iteedyi approximating the problem as
one of weighted least squares. Using the change of varjabte[«; 3; b], the cost function
can be written:

Ny
éDRLs(p) = Zl[) <[f(l) - (i>(i7:)p}2;0i> where é’ = [f 1 (13] . (4.53)
1=1

Letting p = p°¢ + Ap, then expanding the squared term within the robust pemaksel
taking a first order Taylor expansion of each penaliser atdiwe current estimation error,
Equation (4.53) can be approximated by:

N
gRLS(p) ~ Zf:'gb <[f(z) — (i)(i,:)pcj|2 ) + Vv <[ (i>( )P :|2;Ui> X
=1
[ApT@( &) Ap —2pT BT (f(,») . i’(iﬁ)pc)} . (4.54)

Taking the derivative of this approximated form with redpecAp, and equating it with zero,
the incremental updates, which are to be applied additicepy, are then given by:

Ny 1 Ny
Sl duy|  Dwi(fn - ®eop°) BT, (4.55)

=1 1=1

2
wherew; = Vi <[ - ®,.HpP } ;ai> is the derivative of the!" robust function, evaluated
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at the current squared estimation error. The features wsesjtess an update are then given
by:

b=—7p(;,, (4.56)
Pl (3:)

wherep* is the solution to Equation (4.53).

Examining the forms of the parameter update in Equatiorbj4dne notices that no deriva-
tives with respect to the image pixels or warping functioeedto be computed. As such,
compared to its relating form in generative fitting, the updéhere are significantly more ef-
ficient to evaluate. However, unlike the fitting problem inemgrative formulation, the robust
fitting must be performed until convergence for each LDM paeter update, since the sub-
space representation changes throughout the fitting punoeéeol account for the distribution of
feature vectors at the various error bounded regions. As, she fitting procedure can still be
quite computationally demanding when evaluated as is.

The main bottleneck of the computations here is the comipataif the Gauss-Newton
Hessian that involvesV, additions of Hessian sized matrices. One way to reduce tire co
putation here is to assume a degree of spatial coherences afutifiers as in [55]. Rather
than assuming each component of the feature vector is vesiggeparately, a single weight
is applied to components of the feature vector that exhpatial coherence. Subdividing the
feature vector intaV. non-overlapping, spatially coherent regions:

R={RiU...URN.}, (4.57)

the Hessian can be approximated as:

Nf R R N,
Zwi@g:)q’(i,:) ~ Z orHg, (4.58)
i=1 k=1
where:
Hy= ) &(,%,), (4.59)

andy, is set, for example, to the mean weights witlip [55]:

or = m > wi (4.60)

1ER

Other possibilities forpy, include the median or mode of the distribution [4]. With thgprox-
imation, all regional Hessianﬁ—Ii}f\f;1 can be precomputed, resulting in orly, compared
to Ny, Hessian sized matrix additions to compute the Hessian.

Although the spatial coherence approximation can sigmifigareduce online computa-
tional costs, since the whole appearance fitting procedwst ive performed once for each
iteration of LDM fitting, the resulting algorithm is still coparably slow. The optimisation at
each step can be accelerated significantly, however, if d gotialisation is available. Since
the expansion coefficients describe the appearance of the image at the current setfitigs
LDM’s shape, and the update mod#l predicts perturbations to the LDM's shape parame-



84.4 Robustification 93

ters, which in turn give rise to the appearance of the imag®mite new shape setting, there
may exist a mapping between the paramete@nd those in the next iteration of the fitting
procedure:

M RN — RNV (4.61)

whereNy, denotes the number of appearance expansion coefficierttsefd? iteration. Since
the dimensionality of the expansion coefficients is re@yivow, compared to that of the origi-
nal feature vectof, sophisticated regressors can be learnt for this mappictyding Support
Vector Regression, Neural Networks or boosting type apgires. However, in this thesis, only
the utility of a linear regressor for this purpose is invgated since it allows a rapid evaluation,
it does not involve any free parameters to be tuned and opsiclations can be obtained in
closed form. Specifically, given a trained nonlinear itweatiscriminative fitting model, as
described in Section 4.3.2, a set of optimal expansion ci&fis for each iteration can be
obtained by fitting the model to outlier-free images. The piag function can then be learnt
by solving the linear system:

MU ] = b L b (4.62)
with respect taMl, where N denotes the number of fitting trials performed by the norusbb
fitting model. Although the linear model has a restricteddpniive capacity, a highly accurate
mapping function is not necessary here, since it is usedtordiptain a reasonable initialisation
for the optimisation of Equation (4.53).

Along with the two efficiency promoting modifications deded above, a summary of the
robust feature extraction algorithm is outlined in Algbnit 7. Notice that in the first iteration,
the appearance is initialised to its average (be= 0), which is the best initialisation when
no other information is available. Also note that the lightiparametergca, 3) of a previous
iteration are used as an initial estimate in the currenaiin.

4.4.2 Independent Robust Scalings

In the formulation for robust feature extraction in Equati@.52), one immediately notices
the use of different robust scaling parameters for eachesem the summation. These robust
scalings should generally be set such that inliers are qtiadlly penalised, assuming Gaus-
sian noise, with a decreasing rate of penalty for outliess.eikample, in the Gemman-McClure

robust penaliser [15; 16]:

7,2

Y(r;o) = ma (4.63)

the inlier region, where errors are penalised quadrayi,dal{—%, %] , with a decreasing rate
of penalty outside of it. In the case where the linear exmemisi Equation (4.49) is chosen such
that all modes relating to variations other than those dumise are retained, separate robust
scalings for each term are not required. This is becauseethaining directions pertaining to
image noise can generally be assumed to exhibit similaane&i (i.e. the eigenspectrum for
these modes is relatively flat).

However, as discussed in Section 4.3.2, since most infasmpertaining to misalignment
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Algorithm 7 Robust Feature Extraction with Spatial Coherence
Require: b“l,o/'*l,ﬁi*l,f",Ri,{H;}Né M, i

j=1
1: if 4 = 1 then
2: Initialise to average appearands:«— 0, o’ = 1 and3’ = 0
3 else
4: Initialise expansion coefficients using mapping functibh= M‘b?~!
5. end if
6: Initialise total parameter vectop = [o; 3*; b’
7: while Iconverged{r;s) do
8. Compute residual vector; = fi — &ip
9:  Compute weights{wi}ﬁ\f{

10:  Compute spatially coherent weightsp, } e, {Equation (4.60)
11:  Compute the Hessian matr{£quation (4.58)

12:  Calculate parameter incremeftyp {Equation (4.55)

13: Update parametergi — p + Ap

14: end while

15: Compute lighting invariant featurds {Equation (4.56)

16: return b?, o andj’

is captured within the first few modes of variation, utilgithe whole gamut of directions of
variability will lead to unnecessary computational comxglein evaluating the kernel func-

tions as well as the robust fitting of the appearance exparwsefficients. As such, if rapid

fitting is desired, a smaller cutoff fraction of total var@at to retain must be employed, in
comparison to that of modelling where typically 95-98% ofiahon is retained. The effect
of this severely truncated representation is that the tiaguérrors for the different elements
of the feature vector will exhibit different variance. Fetmore, these errors will generally
exhibit some degree of correlation with each other.

Although the use of independent robust scalings in Equéfid®?) ignores the correlations
between the feature elements, this approximation is muitbrliban using a fixed scaling fac-
tor for all elements. How well this approximation holds anidaweffect it has on the resulting
fitting algorithm will generally be problem dependent. Foraabitrarily truncated representa-
tion, the procedure for obtaining the robust weightingsidows. Initially, when performing
PCA on the feature vectors of a particular iteration of threrebound minimisation procedure,
all the modes of variation are be retaife@he projection of every feature vector onto the PCA
space can then be performed. Given the number of modes to, reither through manual se-
lection or through a variation retention scheme, the vasdior each feature element can be
computed by first subtracting the components of the gereratodel pertaining to theoise
modes using the previously computed expansion coefficientsach image. Then the vari-
ance of the residuals between the generated feature vesitay the truncated representation
and the true feature vector can be computed independemtatd element.

Finally, the choice of which robust penaliser to use in Eiqumaf{4.52) should be made

3Note that since the dimensionality of the feature vedigris generally much larger than the number of avail-
able feature vectord/,, at most(Ny — 1) modes of variation can be found.
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such that the exponential of the cost function represemrtdikblinood of the cropped image
as closely as possible. However, since the nature of theemuik generally unknown, the
optimal choice is difficult to deduce. In [119], the performsa of the robust normalisation
inverse compositional algorithm is evaluated using a nunabalifferent robust penalisers.
The authors found that the best performing penaliser wasathech assumed the derivative
takes the form of a Gaussian probability density function:

1 G

with separate variances for each pixel, wheis the vector of appearance residuals between
the current feature and that predicted by the appearancelmod

4.5 Background Invariance

All instances of the iterative error bound minimiser desed in Section (4.3) essentially learn
the background of the training images, and utilise it to mteldDM parameter updates. This
is due to the training set at each iteration that includetufeavectors extracted from perturbed
locations, which in many cases includes some backgrourglspixn applications where the
background is predictable, such as in medical image asdiysexample, this trait of discrim-
inative fitting is a desirable one, since the boundary betvibe object and background is a
good feature to use in predicting parameter updates. Hayievhe more general case, learn-
ing all possible backgrounds is not viable. As such, fittitgpathms trained on a particular
background will perform poorly on images with different kgmounds.

The robust formulation discussed in Section 4.4, can pegitevel of invariance towards
backgrounds, however, due to the nonlinear estimationeofgtures to regress, this approach
can be expected to be less efficient than its non-robustniariescribed in Section 4.3. When
fitting speed is of the greatest importance, and when no sicelal effects are expected in the
image, utilising the robust formulation to account for bgr@und variability is less desirable.

In the original AAM formulation [30], background robustses induced by excluding
background pixels from the Jacobian estimation processtrif® generative methods, such as
those in [83; 104], where the update model is generatedtljirsom background free com-
ponents (i.e. the mean appearance and their modes of gajiatiiere is no specialisation to
any particular background. However, when initialisatisriar from the optimum, with a large
proportion of the image under the current warp estimateisting of background pixels, these
approaches are prone to terminating in local minima. Récenfl18], background sensitivity
was tackled by combining the accurate fitting of AAM’s withntour extraction properties of
an active contour. Here, the active contour essentiallyiges the AAM with an initialisation,
which includes a minimal amount of background pixels inéatéire vector. Although this ap-
proach can be utilised to initialise the iterative-disdriative methods described in Section 4.3,
it relies on the visual object of interest exhibiting a sggdooundary with its background. Fur-
thermore, the approach is somewhat inelegant, requirirgparate procedure to account for
the drawbacks of LDM fitting, rather than addressing the thaaks of the fitting procedure
itself.
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4.5.1 Invariance through Exclusion

Rather than augmenting the fitting procedure with some pera detector, or relying on ro-
bust procedures to account for background variabilityhia section, a method that leverages
on the iterative-discriminative framework is proposed.otder to do so, some of the charac-
teristics of the extracted feature vector, pertaining tckgeound pixel influence, must first be
considered:

e Elements of the feature vector that are influenced by backgtgixels generally cor-
respond to locations in the canonical frame that lie in amdiad the peripheral of the
canonical shape.

e As fitting proceeds and the boundary of the object becomésriedtimated, the region
in the canonical frame influenced by the background reducassia.

Considering these characteristics in the context of iter&rror bound minimisation, it appears
that a strategy of excluding the background influenced piftem the extracted features, which
are then used to predict the parameter updates, is a pragonati

However, in an online setting, there is no easy way of disiistgng background from fore-
ground pixels. Instead, we rely on one more observationgchvithat the basin of convergence
of most LDM fitting problems is well within half the object'sze in parameter deformation.
As such, if all elements of the feature vector, which are erilted by background pixels in
any of the training instances, are excluded from the regnegwocess, for many problems,
the resulting feature vector may still contain sufficienilgh information to make good pre-
dictions, in order to reduce the error bound. As fitting peat®e the number of feature vector
elements excluded from update predictions decreasedtimgsin a richer information set by
which predictions to refine the solution can be made.

If this approach for background invariance is utilised, siee of the feature vector varies
between iterations. Furthermore, for implementation whthkernel based non-linear method
described in Section 4.3.2, PCA must now be performed saledy the components of the
feature vectors that are not affected by the background. sahee can be said for the robust
method described in Section 4.4. At each iteration, thaufeatectors for each training sam-
ple are first collected, along with labels for each elemertheffeature vector, which denote
whether the element corresponds to the background. A fowegrmask is then built, which
retains only features that are labelled as foreground irrge lproportion of the sample set,
for example 99%. Only features that are covered by the maskhan used to train the up-
date model for that iteration. Using the trained backgroumeriant model for fitting, then,
involves the extra step of selecting the feature vector etéaithat are covered by the mask at
each iteration. This procedure can be performed extrentfityemtly, since it involves only a
binary operation between the feature vector and the mask.

4.6 Conclusion

In this chapter, a new framework for LDM fitting has been pisgzh Through the utilisation of
an iterative-discriminative paradigm along with the olijexof error bound minimisation, the
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approach is designed to accommodate fitting for models Kalbie large amounts of intrinsic
variability, a problem that is difficult to solve using geative methods. Example prototypes
utilising linear and nonlinear regressors are presenteagalvith details of their training and
fitting procedures. An extension to handle occluded imagedso presented, for an instance
of the nonlinear case. Invariance towards unknown andngiyackgrounds is also presented,
which leverages on the iterative-discriminative framdwibrrough a feature selection proce-
dure.

The basic framework, along with its various extensions isigleed to address the five
goals of LDM fitting. Efficiency is afforded through the utyliof simple fixed update models
and some approximations for the robust case. Accuracy diaditiey are leveraged on the
predictive capacity of discriminative methods. Applidapiis also afforded through the dis-
criminative framework, which makes no assumptions reggrthe LDM’s parameterisation,
its warping function or the feature vector used. The autaityatof the method relies on the
availability of an external crude detector. However vasiapproaches for efficient and accu-
rate object detectors are now numerous, complementingrévebdck of locality of the fitting
procedures described in this chapter.

Future work on the iterative-discriminative approach wiitail improvements to the train-
ing procedure of the iterative-discriminative approaahpaérticular, aspects pertaining to op-
timal parameter selection, such as the number of itergtiomsber of weak learners of the
asymptotically trained nonlinear method, the regulaidsaparameter, and the inclusion rate
of the background invariant method, all of which must be satunally in the forms presented
in this chapter. Efforts to reduce training complexitiesynadso prove to be a worth while
endeavour.
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Chapter 5

Iterative-Discriminative Fitting -
Experimental Evaluation

It's not your fault that you're always wrong.
The weak ones are there to justify the strong.

Marilyn Manson

In Chapter 4, a novel approach to LDM fitting, the iterativeedminative method (ID), was
proposed. It leverages on the concept of error bound miatinis, where the error bound over
the training data is reduced at each iteration, rather thamtore conventional least squares
error. This approach was designed to allow simple regresadgth limited predictive capacity,
to be utilised. Through a shift in the fitting objective, frafinectly solving for the optimal step
to only reducing the error over worst cases, with the expiectaf further reductions down the
line, the use of highly sophisticated regressors can baladoiFurthermore, the error bound
minimisation paradigm provides a continuity of objectiveween the iterations, which favours
overall performance over specific instances of the problem.

In this chapter, the efficacy of ID is evaluated in the contExgeneric face model fitting.
This is a difficult problem, which has yet to be addressed aaledy in the literature. Most
methods tackling this problem have been shown to sacrifieeasrmore of the five goals
of deformable model fitting, outlined in Section 2.3, in arde address some of the others.
Through the extensive experiments presented in this chdptds shown to be a powerful
general technique, which makes significant inroads inteisglthe problem of generic face
fitting. Not only does it exhibit excellent generalisalyiliits overall fitting accuracy is superior
to a number of existing methods for LDM fitting. Furthermotiee significant performance
improvement is attained without sacrificing computaticeféitiency.

In Section 5.1, the general experimental framework is dised, where a number of base-
line methods, used in a comparative setting with the vanwatotypes of ID, are outlined. The
applicability of linear regressors in ID is evaluated in 8&t 5.2, where both variants of the
training procedure, described in Sections 4.3.1 and 4aBelassessed for merit. The extension
of the approach to nonlinear regressors, utilising the hblear-like feature based regressor
described in Section 4.3.2, is then evaluated in Section Bti@ ability of ID to handle oc-
clusions, addressed through a robustification of the kdvaséd nonlinear approach, outlined
in Section 4.4, is evaluated in Section 5.4. Finally, thekigaound invariant extension, de-
scribed in Section 4.5, is assessed in Section 5.5. Thigehepncludes in Section 5.6 with a
summary of the experiments conducted and a discussion ectidins of future work.
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5.1 Experimental Setup and Baseline Methods

The methods described in Chapter 4 are unique in that theyotldepend on the type of
warping function, the feature vector used or even the pasation of the deformations.
This makes them applicable for many instantiations of mbdskd fitting. Since LDMs form
the focus of this thesis, in order to evaluate ID’s perforogmne of the more popular flavours
of LDMs, the Active Appearance Model (AAM), is used as a ptgpe. First proposed in [43],
the AAM utilises a piecewise affine warp to crop the image atdtrrent parameter settings
(see Section 3.3.3). It models the object of interest as aialvobject, composing the linear
intrinsic shape and appearance variations with globakfaamation functions (a similarity
transform for shape and a linear lighting model for appeaggro project the model onto the
image frame.

There are numerous approaches to AAM fitting, most of whielmstrom a generative
perspective. To evaluate the ID’s performance, it is comghaigainst five existing methods for
AAM fitting, namely:

The Fixed Jacobian Method (FJ), first proposed in [30], uses the combined appearamee re

resentation, which accounts for correlations betweenntimsic shape and appearance
parameters (see Section 2.1.3). It uses the normalisechgmue residual feature to
drive the fitting, where it is assumed that the Jacobian chfipearance residuals is fixed
for all settings of the model parameters. Since this assompiolds only loosely, the
method requires the use of an adjustable step size, wheaeliteration the predicted
parameter updates are continually halved until a reduatidhe appearance difference
between the model and the cropped image is attained. Theothaffords reasonable
fitting speeds by virtue of its fixed Jacobian assumption) wie main bottleneck being
the appearance generation procedure.

The Project-out Inverse Compositional Method (POIC), first proposed in [83], adapts the

inverse compositional framework in [58] for use in AAMs. Thenerative cost func-
tion, which assesses fitness through the difference betthheemodel’s appearance and
the cropped image, is grouped into two components: oneigsanithin the subspace of
appearance deformations, and another one that is orthidgahaAs such, the procedure
requires optimisation over the shape parameters alonemass the optimal choice (in
a maximum likelihood sense) of the appearance parametelosen at each iteration.
Since the derivatives are computed in the canonical framegirtue of its inverse com-
positional framework, most of the problem’s computatioradseto be performed only
once at training. As such, the fitting procedure affords aneexely rapid evaluation,
requiring only a matrix-vector multiplication, withoutdhrequirement to compute the
model’s appearance explicitly. The approach affords sinbmputational efficiency to
the shape based AAM proposed in [29]. However, the use of d finear update model
is better justified in POIC, since it is derived analyticdiigm a generative perspective.

The Simultaneous Inverse Compositional Method(SIC), which was proposed in [4] for gen-

eral image alignment, and evaluated as an AAM fitting procedu [54; 91], directly
solves the appearance residual cost function in the casldréene. Although the deriva-
tive of the warping function can be precomputed, unlike PQh€ linear update model
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cannot, since it relies on the current appearance parasneisrsuch, SIC can be very
computationally demanding, especially when the visuadctxgxhibits large amounts of
variability, reflected through the number of shape and apppea modes. An example
of this is in the generic face fitting problem with which thisapter is concerned. As
such, for the purpose of comparison with ID, the implemémtatsed in this chapter
is the efficient approximation of SIC, where the linear updaiodel is built using the
assumption that the appearance parameters are fixed. Howaver than evaluating
the update model using the current estimate of the appeafmrameters, as proposed
in [4], it is evaluated at the mean appearance (i.e. allrisitiappearance parameters are
set to zero), allowing the update model to be precomputed.idda of using the current
estimate of the appearance parameters to build the updatel im@nly applicable when
the current estimates are close to their true values. Shisehapter deals with model
fitting rather than tracking, in which case the appearancanpeters from the previous
frame may be close to their values in the current frame, Imgjlthe linear update model
using the current parameter estimates will generally beos gpproximation. Further-
more, extracting the initial appearance estimates fronmitial cropped image will also
be inaccurate, since the appearance model will essentiatly appearance variations
caused by misalignment rather than intrinsic variatiortéwisual object’s appearance.
As such, when assuming the variations in the visual objgateaance is Gaussian, the
optimal choice for computing the update model is the meamgénehich on average is
closest to all instances of the visual object. With this agpnation, SIC also affords
rapid fitting. However, compared to FJ, it is less efficiencsi it uses an independent
representation of variability (i.e. modelling shape andegyance separately).

The Normalisation Inverse Compositional Method (NIC), also proposed in [4], uses the in-
verse compositional parameter update model for templatehing (the template here
being the mean appearance), which is applied to the mearastduat cropped image,
normalised with respect to the directions of appearandabitity. Compared to POIC,
this approach requires the extra steps of. (1) Projecticime®error image (mean sub-
tracted cropped image) onto the subspace of appearanetiomsi (2) Generating the
model’s appearance from the projected coordinates in theespf appearance variations,
and (3) Subtracting the generated appearance from theierage. As such, not only is
the approach slower than POIC, it is also slower than the@fti@pproximation of SIC
described above. However, as will be seen through the erpats in this section, NIC
has the ability to outperform the other variants of the isgerompositional approach on
a generic face database.

The Robust Inverse Compositional Method (RIC), first proposed in [53], robustifies the in-
verse compositional method through the use of a robust igenallhe method, which
is based on NIC, replaces the least squares fitting critavidlman M-estimator (robust
penaliser), leading to an iteratively reweighted leasasegifitting procedure. A reduced
computational complexity is attained by assuming a degfepatial coherence of the
outliers, where errors in each triangle of the piecewisaaffvarp are weighted equally.

All five of these baseline methods are implemented in the Ceferchable model library
DeMoLi b, which was developed as part of this dissertation (see Agipe®). Apart from the
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Table 5.1 Appearance Model Details for 4-fold Cross-validation

Experiment| P M4(95%) | M (95%) | M.(98%)
1 34092 19 100 78
2 28267 20 99 77
3 28244 20 101 79
4 28086 20 97 75

P, M,, M; and M, as described in Section 2.1

five methods described above, there exists a large numbehef methods for AAM fitting.
However, most of these focus on feature vectors and imageegsong techniques, to make
the assumption of linearity better justified, rather tharfamulations of the fitting procedure
itself. An overview of other existing methods is presente&eéction 2.3.

All experiments in this chapter are performed on the IMM Fdatabase [89], which is
described in Section 3.6.1. To evaluate the non-robustadsttthe database was divided into
4 equally sized parts, where each subject is contained ynamd part, separating subjects used
for training and testing. A 4-fold cross validation was tipemformed on each method, training
on data from three parts and testing on the remaining pait grocedure was repeated four
times, utilising different training and test sets in eactor the baseline methods described
above, the models were trained on three levels of a Gausgimm to help avoid local
minima in their generative cost functions. The same shageappearance models were used
in all methods, the details of which are given in Table 5.1¢ach of the four subdivisions at
the lowest pyramid level. In each case, 95% of the total tiaridan shape and appearance and
98% of the combined appearance variation was retained.

To evaluate the fitting performance of the baseline methtiis AAM parameters were
randomly perturbed from their optimal settings, 100 timegach test image, withif-10°,
+0.1, £20 pixels, andt1.5 standard deviations of rotation, scale, translatiash raon-rigid
shape parameters, respectively. These ranges were cloogemit the initialisation capacity
of a generic face detector. Each method was then iteratezhi@mence, or a maximum of 20
iterations per pyramid level. The combined results of tHeld-cross validation experiments
are presented in Figure 5.1, where the convergence ratsgavaccuracy of converged trials
and fitting times are shown in the legend. Here, convergend®dlared if the final point-
to-point RMS error is smaller than at initialisation (i.éhetalgorithm does not diverge). A
similar measure of convergence has been used in the exdemgieriments, presented in [8;
6; 4; 5]. The reported fitting times were obtained from rugnihe code, implemented in the
C++ libraryDeMoLi b (see Appendix C), on a 3GHz machine with 1GB of RAM, and do not
include the time taken to build the Gaussian pyramids.

From these results it is clear that FJ is the most stablerdifig a79.73% convergence
rate. It also affords the best average convergence accat@&cyl point-to-point RMS error.
Although it exhibits a slower fitting time than POIC, it is Bificantly more efficient than either
SIC or NIC. Out of the three variants of the inverse composél method, POIC achieves the
best average convergence accuracy. However, its conggrgete is much poorer than the
other methods, affording onl§1.93% converged samples. This is in line with the results
presented in [54], where it is argued that POIC is suitably or person specific models.
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Figure 5.1: Performance comparisons between the non-robust baselivefiting methods.(a): FJ
vs. POIC.(b): FJvs. SIC(c): FJ vs. NIC. Inthe legend, “F” denotes the convergence ralaénotes
the average accuracy of converged trials in point-to-®MS error, and “T” denotes the average fitting
time of converged trials. The histograms were built, onbnfrsamples that converged.
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Figure 5.2 Effects of initialisation on convergence accuracy on FJ|@, SIC and NIC.

Although SIC affords a convergence rate improvement ovelCR@ still performs poorly,
affording only61.67% convergence. It is suspected that this is related to the langnber of
parameters involved in the optimisation, resulting in ahkiglikelihood of getting trapped in
local minima than FJ (note that SIC uses an independent eppeamodel). Although the
true SIC implementation may improve results here, the gttimes required by this method
are impractical for the size of the models used in generie fating (see Table 5.1). Even
the efficient approximation used in these experiments isratdghree times slower than FJ,
requiring on averagé22.87ms to fit an image. From a small number of separate experiments
it was found that the full SIC implementation can further@ase fitting time by a factor of ten
or more. Finally, a small improvement in convergence ratkaocturacy over SIC is afforded
by NIC. However, this is achieved at the cost of higher coraion times.

In Figure 5.2, the effects of initialisation on the accurafyxonverged samples is shown.
The plot shows a clear trend of performance deterioratioth@snodel is initialised further
from its optimal settings. This trend is exhibited by all fawon-robust baseline methods and
is a characteristic typical of generative fitting regimehkjcki tend to terminate in local minima,
despite their application, here on a Gaussian pyramid. Adwiseen in the sections to come,
this is one area where ID comes into its own, affording goatbpmance over the whole range
of initialisations.

In conclusion, out of the four non-robust baseline methedfuated in this section, FJ per-
forms the best, both over convergence accuracy and fregudfibhough it exhibits a slower
fitting time compared to POIC, it is still significantly fastdan either SIC of NIC. As such,
in the following sections, the various flavours of the ID aggoh are compared with FJ exclu-
sively.

5.2 Linear Fitting

The first variant of ID is that which utilises a linear reg@s® update the AAM parameters
(see Section 4.3.1). There are two options for the cost ifumd be used to train the method.
For the asymptotically penalised cost function (see Seeti.1), which will be subsequently
referred to as the asymptotically trained linear iteratligcriminative method (ATLID), the
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Figure 5.3: Examples of the normalised raw cropped image feature usdbeirlinear iterative-
discriminative approach.

limited memory BFGS algorithm (L-BFGS) [74] was used to opsie the regressor for each
AAM parameter, independently of all others, in each itemtiFor the error bound constrained
cost function (see Section 4.3.1), which will be subsedueaterred to as the constrained op-
timisation trained linear iterative-discriminative meth(COTLID), thel i bsvmlibrary [24]
was used to solve the- SVR problem for each AAM parameter.

As with the baseline methods described above, a 4-fold crakdation procedure was
used to evaluate the two linear methods. In each case, timngaet consisted of feature
vectors obtained by perturbing the AAM parameters fromrtlgitimal settings within the
ranges described in Section 5.1. For all experiments ingision, a sample size of; =
2000 was used at each iteration. As for the feature vectors thgassethe normalised raw
cropped image was used (see Equation (4.4)), examples ohwhe shown in Figure 5.3. The
advantage of using these features is that they can be oth@ktiemely rapidly, requiring only
a warping process followed by a normalisation procedunetecing the average feature values
at zero, and scaling to a standard deviation of one. Finilghould be noted here that in
order to reduce training times, the canonical shape usdtkesetmethods, which defines the
size of the feature vectors, is scaled down by one half ofukatl in the baseline methods in
Section 5.1. However, the model’s fitting is still performal the original image. Although
better performance may be obtained by using the full scaledei since more information
would be available to make the parameter update predigtibmstraining time was deemed
impractical for the experiments in this section. Even thedest down version required around
eight hours of training for each of the models.

In both variants of the linear ID method, a suitable choic¢hefregularisation parameter
A must be set manually. In Figure 5.4, the combined resulth@f4tfold cross validation
experiments on both methods using four different settiigsare presented, where the model
was trained and fitted with 10 fitting iterations. Here, thie raf convergence of each trial
is shown in the legend. Notice that the generalisability athbmethods improves ak is
increased, as can be seen through the convergence ratess fthibe expected as larger values
of A promotesimpler solutions through the selection of a regressor with smdllenorm.
Examining the histograms of the converged samples, aaliimtiprovement from\ = 0.001
to A = 10, followed by a deterioration with a further increaseXo= 1000 is noticable.
When )\ is chosen at too small a value, the training procedure uredgrarises the regressors,
leading to reduced generalisability. However, when chdsenarge, the regressors become
over-regularised, restricting their predictive capaciys such, the results here highlight the
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Figure 5.4: Convergence performance of the linear method trained ondettings of the regularisa-
tion parametei on the IMM Face databaséa): results of a model trained using the asymptotically
penalised objectivgb): results of a model trained using the lineaSVR method. Convergence rates
of each trial are shown in the legend.

importance of selecting the most appropriata order to maximise the capacity of the linear
update model. Further improvement may be obtained by peifgr similar experiments on
closer spaced values of however, due to the lengthy training time involved, thisswent
pursued here.

In Figure 5.5, the performances of the two variants of thedmD method, trained with
A = 10, are compared against each other, along with the FJ methodx#@mination of Plot (a)
shows that, although ATLID exhibits a slightly better corgence rate, at 99.88% compared
to the 99.62% of COTLID, the accuracy of its converged trialmferior to that of COTLID.
This is expected, however, since the ATLID requires thatetrer bound oveall samples is
reduced, rather than merely a large fraction of samples) @OTLID. In these experiments,
COTLID was trained withv = 0.001, which places the error bound at 99.9% of the samples.
Compared to FJ, both ATLID and COTLID perform significantigtter, both in convergence
rate as well as in convergence accuracy. In fact, the averaigeerged accuracy of the two
methods is about twice as good as that of FJ. The effectstalisation on the convergence
accuracy of ATLID, COTLID and FJ can be seen in Plot (b). Frbis,tthe reason for the sig-
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Figure 5.5: Performance comparison between ATLID, COTLID and(&J. convergence accuracy his-
tograms.(b): effects of initialisation on convergence. In the legend,dEnotes the convergence rate,
“A” denotes the average accuracy of converged trials intpmirpoint RMS error, and “T” denotes the
average fitting time of converged samples. The histograms lawglt only from samples that converged.

nificant performance improvement achieved by ATLID and C@Ihecomes apparent. The
average convergence accuracy of FJ deteriorates therfimitiglisation is from the optimum,
due to its generative framework, which tends to encounteal Iminima before it reaches the
global one. In contrast, the deterioration of ATLID and C@D|.which is based on a discrim-
inative framework, is not as dramatic, maintaining a gocgfage convergence accuracy up to
a capture range of around 20 pixels point-to-point RMS, Witiarresponds to the limit of the
pertubations used in training. It should be noted, howehat,FJ does exhibit a higher propor-
tion of converged samples with very small fitting errors (Béat (a)). This can be attributed
to FJ's generative fitting regime, where given good initiahditions, and the approximation
regarding the fixed Jacobian is reasonable (i.e. the sutgecsimilar shape and appearance to
the mean of the model), then highly accurate fitting can beebga. ATLID and COTLID, on
the other hand, are specifically trained to attain goeerall performance.

Despite the significant improvement in the performance dfl®rand COTLID compared
to FJ, it is afforded without sacrificing computational @fficcy. Both methods, which af-
ford similar computational costs, fit an image in around tereh the time it takes FJ. The
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significant computational savings can be attributed to faetors: (1) The normalised raw
appearance feature is much cheaper to evaluate than itarappe residual counterpart, (2)
No step size adaptation is required in fitting, and (3) The ehaxltrained and fitted with 10
iterations only. In fact, even compared to POIC, perhapsrtbst efficient fitting procedures
to date, the fitting times of ATLID and COTLID are still sigrufintly better (see Figure 5.1).

In conclusion, the linear update model serves as an extekgnessor for ID. Full ad-
vantage is taken of its limited capacity by the iterativeoetsound minimisation framework,
allowing high convergence rates and overall accuracy,sivhiffording what is perhaps one
of the most efficient AAM fitting regimes to date. The good perfance reported here was
achieved on the highly challenging taskgaeric person fittingwhere previous methods have
sacrificed fitting efficiency in order to tackle such a taskisThethod does exhibit the draw-
back of extended training times. However, when trainingetisiof no concern, this method
provides an excellent substitute for current AAM fitting iregs.

5.3 Haar-like Feature Based Fitting

In Section 4.3.2, two variants of ID were proposed, whiclisgtinonlinear regression func-
tions. The first method utilises a novel regressor based ettar-like features [72]. In the
second method, a kernel-based regressor is used, which &kés features, the coordinates
in a reduced subspace of the cropped image. In this sectienyilvbe concerned with the
first method exclusively, which will be referred to as the Hiflee feature based iterative-
discriminative Method (HFBID). The second method involeekarge number of design pa-
rameters, which include the regularisation parameter dsaseghose that define the kernel
function. These parameters must be selected heuristioaliigrough a cross validation pro-
cedure. As such, due to the extended training times involgealuation of the kernel-based
nonlinear ID method will not be pursued here, deferring iatfuture study. However, the
framework of the kernel-based method serves as a basisddotimulation of the robust ID
method, which was developed in Section 4.4, and is evaluat8dction 5.4

To evaluate the performance of HFBID, again, the 4-fold €nasidation procedure, out-
lined in Section 5.1 was utilised. The training data was iokth in a similar manner to that
described for the experiments in Section 5.2, utilising mpa size of Ny = 2000 at each
iteration. The Haar-like based features described in &eeti3.2 were evaluated on the raw
cropped image feature. In order to build the summed areaddBIAT), the raw cropped image
is placed inside a rectangle that fits the canonical shapglgxRixels within the rectangle that
are not within the convex hull of the canonical shape aressegeto. As with the linear fitting
experiments in the previous chapter, here the scaled dovaioweof the canonical shape is
used to reduce training time. To encourage invariance toadjlighting effects, the normalised
Haar-like features are employed, requiring two SATs to bi# faee [72] for details). In fact,
since the extended Haar-like features are used here, tnoqie®AT images are built: one for
upright features and another for rotated features.

Figure 5.6 shows the distribution of the training samplediféérent stages of the training
process. Plots (a), (c) and (e) illustrates the capacithefweak function set, described in
Section 4.3.2, to significantly reduce the spread of thesgpkes despite the relative small
value of N4, which amounts to a very sparse sampling-of From Plot (b), (d) and (f) it is
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Figure 5.6: Distribution of the training samples of the IMM databaseotighout HFBID's training
process on the pose parameterthe x-translation parameter and the first nonrigid shaparpeter.
(a), (c) & (e): Redistribution of samples about the optimum as weak leamreradded to the ensemble
of the first iteration. Legend denotes the number of wealnkzarin the ensemble(b), (e) & (f):
The effect of resampling between iterations. Legend den@teration)/(number of weak learners in
ensemble of that iteration).
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Effects of number of features in HBFID
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Figure 5.7: Convergence performance of HFBID, trained at four difféneambers of featuredv.
The symbols “F” and “T” in the legend denote the convergerate and the average fitting times,
respectively.

clear that with the modest training set size used, the bapgirocess by itself significantly
overlearns the data, as shown by fipgeading-oubf the resampled data in the next iteration.
However, this artifact of the boosting process is more tlenpensated for in the next iteration,
where the final distribution is even less spread than itsgmeskor. This trend is continued
throughout the iterations and for all parameters.

HFBID requires three free parameters to be set: the shrenkacjorn, the number of
features for the regressors in each iterattopand the number of features to evaluate before
choosing one to be added to the ensenmieln the experiments presented here, a shrinkage
factor ofn = 0.5 is used in all cases. To increase the likelihood of seledtigptimal feature
to be added to the ensemble at any stage of the boosting pirecede value ofV; should be
as large as possible. However, increasivigalso increases the training time of HFBID. For
all experiments in this sectiody; = 200 was chosen as a good compromise between training
time and model quality.

The effects of varyingV were investigated by performing cross validation expenita®n
the method, trained at four different settingsdf Due to time constraints, only one sub-group
of the IMM Face database was evaluated here. The resultesé #xperiments are presented
in Figure 5.7, where the convergence rate and fitting timesshown in the legend. From
these results, it is clear that increasidgdeteriorates the generalisability of the method, as
can be seen through the reduction of the convergence rattheFmore, increasingv also
increases the computational complexity of the method, @sdgressors contain more weak
learners to evaluate. On average, an increase of aroumas in fitting time results from
adding an additional feature to the regressor. In termsairacy, utilisingN = 50 provides
a significant improvement ove¥ = 25. However, increasingV further only deteriorates the
accuracy as the method, as it overlearns the training data.

To compare HFBID against the other methods discussed sa fafpld cross validation
experiment was conducted, setting= 50 in each case. The results of all four experiments
combined are presented in Figure 5.8, where the COTLID anddtfiods are also shown for
comparison. The convergence rate, average accuracy oérgma samples, and fitting times
are shown in in the legend. From these results it is appanabhHFBID exhibits significantly
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Figure 5.8: Performance comparisons between HFBID, COTLID and(&)J. convergence accuracy
histograms.(b): effects of initialisation on convergence. In the legend, dEnotes the convergence
rate, “A’ denotes the average accuracy of converged trigi®int-to-point RMS error, and “T” denotes
the average fitting time. The histograms were built only fsamples that converged.

better performance than FJ. However, it is outperformed ®Y D in all respects. Although
the difference in average fitting time and convergence ratkeotwo methods was marginal,
HFBID failed to achieve the same fitting quality as COTLID. Asgible cause for this may
be the small sample siz¥;, from which a feature is selected to be appended to the efsemb
This results in a very sparse sampling of the space of pesthtures, which leads to trained
ensembles that are sub-optimal. Finally, examining Plptir{d~igure 5.8, HFBID exhibits
similar behaviour to COTLID, maintaining a good averagevengence accuracy up to around
20 pixels initial point-to-point RMS error, albeit with ghtly larger errors.

In conclusion, although nonlinear regressors can potgnfieovide more accurate predic-
tions than their linear counterpart, their training pragedis generally more complicated. In
the case of HFBID, only a local solution for the predictor ¢snattained due to the greedy
learning properties of the boosting procedure used to trermethod. Furthermore, a true
implementation of the boosting procedure, which requinesedvaluation of all possible fea-
tures before appending one to the ensemble, is not comgnedlyi feasible for most problems,
due to the large number of possible Haar-like features. Dukdse training complexities, in
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Figure 5.9: Examples of synthetically occluded images, used for etimgdr|D. Left: black occlu-
sions of 5% of landmarkdviddle: white occlusions of 10% of landmarkRight: random occlusions
of 20% of landmarks.

practice, the simpler linear models may be a more effecegeessor to use within the 1D
framework.

5.4 Robust Fitting

In Section 4.4, ID is made robust, utilising kernel-basegtessors on observations with re-
duced dimensionality, as presented in Section 4.3.2. Tl iohea is to perform robustification
at the feature extraction stage, making the effects of samuor unseen appearance variations
transparent for the remainder of the fitting procedure. ®hachieved by performing genera-
tive appearance fitting on the observations, utilising aiced linear subspace representation.
In order to reduce the computational complexity of the rolfeature extraction procedure,
two measures are taken. First, the outliers are assumechibitex degree of spatial coher-
ence, similar to that proposed in [55]. Secondly, a lineagopivag function is utilised to obtain
good initialisation of the appearance parameters, rejdlinir values between consecutive it-
erations, to encourage rapid convergence of the robustréeaktraction procedure.

To evaluate the efficacy of the robust iterative-discrirtiigamethod (RID), the linear ker-
nel was used, since it requires only the regularisationmater to be set manually. Most
nonlinear kernels require the manual setting of one or meradt parameters, for example
the kernel width of the radial basis functions, which may bécdlt to select without a cross-
validation procedure. It should be noted here that the padiace of RID using a linear kernel
can be expected to be poorer than the non-robust linear et@luated in Section 5.2. This
is because the linear regressors take, as input, a featcter wé reduced appearance subspace
coordinates, rather than the observations themselvesudks the prediction space of linear
RID is more restricted than that of its non-robust countgrpahich performs predictions di-
rectly on the whole observation vector. However, since tiised features represent the main
directions of variations of the perturbed appearance spaasonable performance can still be
expected. As discussed in Section 4.4, this is because tjwg digections of the perturbed
appearance subspace mainly correspond to variationsccaysaisalignment, rather than the
visual object’s intrinsic appearance variations. For gfieximents in this section, the feature
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Figure 5.10: Convergence performance of RID, trained on four differettisgs of the regularisation
parametep. Here, the images used for training and testing are the salbwit with different perturba-
tions.

vectors are obtained by applying PCA to the raw cropped imagke truncation placed at 90%
of the total variation of the samples.

Since the IMM Face database contains no images with ocdsisiovo sets of experiments
were conducted to investigate RID. In the first, the databesedivided into two groups, where
the first group consisted of images of subjects with facial (gich as a moustache and/or
beard), and the other of subjects without any facial haiD ®Rbs then trained on the second
group, leaving the first group for testing. A similar apprioéar evaluating robust AAM fitting
was presented in [99], where facial hair, which is not maatkih the trained fitting procedure,
is used to represent real outliers. In the second set of iemeets, occlusions are generated
synthetically on images in the second group (i.e. the grauwoich the fitting procedure is
trained). The synthetic occlusions consist of filled cisolgth a radius of 10 pixels, placed at
random landmark locations and filled with either black, wtot uniformly sampled random
values, in order to evaluate the effects of different odolugypes on fitting performance.
Experiments were then conducted on images with 5%, 10% a%@ @&Xluded landmarks.
Examples of the synthetically occluded images are showimguré 5.9.

Since the variant of RID evaluated here utilises a lineanddgrthe training procedure
requires only the regularisation parametdo be chosen. In Figure 5.10, the effects of varying
A on the performance of RID is shown. In each case, the traipingedure involvedVy =
2000 samples. Note that the results here are obtained by evajuhe fitting procedure on the
samémages as it was trained on, hence the uncharacteristtuiglyconvergence rateAs can
be seen, the effects of varyirgn RID is similar to that on ATLID and COTLID in Section 5.2,
and HFBID in Section 5.3. Choosing a value fothat is too large leads to over-regularisation,
resulting in poor accuracy, and choosing too small a valagdeo poor generalisability, due to
under-regularisation. It should be noted here that due ®ri&ampling procedure, choosing
an unsuitably smalk does not necessarily lead to highly accurate predictioes the training
set, since, although the same images are used in trainingeatidg, the samples of AAM
observations obtained at perturbed settings are diffefssuch, under-regularisation exhibits

In the-SVR method used to train the liner regressors, a value6f0.001 was used which guarantees that
at least99.99% of the samples lie within the error bound.
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reduced generalisability on the training set also. Thisatftan be seen by examining the
effects of decreasing from 1.0 to 0.5 in Figure 5.10.

In order to obtain a comparative measure of RID’s perforreaitevas compared with RIC
(see Section 5.1). The implementation used here closdlyafslthat described in [55]. An
important aspect of RIC, not mentioned in of any publicagidealing with it (see [5; 55; 119]),
is the effect of using the spatial coherence assumptiorraeggpoutliers on the convergence
rate of the algorithm. Since the robust weights applied ®Hessian and the gradient are
not commensurate, through experimentation it was founitigsparameter updates predicted
by RIC consistently underestimate the step size. The restitis is a slow convergence rate
when the true weights are used to build the gradient, but ph&adly coherent weights are
used to build the Hessian. An example of this is illustrateBigure 5.11, where two cases are
considered:

e The spatially coherent robust weights are used to build thethHessian and gradient in
each iteration (C-RIC).

e The spatially coherent robust weights are used only to dh#dHessian, with the true
robust weights used for the gradient as described in [55}RNIC).

As can be seen, C-RIC affords a significantly faster rate nfemence than NC-RIC, finding
a minimum afters7 iterations, with a large proportion of the error reduceeréinly 20 iter-
ations. NC-RIC, on the other hand, did not reach convergemnan afte200 iterations. The
slow convergence of the NC-RIC can be attributed to the wayhith the spatially coherent
weights are chosen as the average over a region. From tlotsetfiés has on the convergence
rate, it is clear that the sum of the true robust weights inrtiqudar region is smaller than the
sum of N copies of the average robust weight, whafg is the number of pixels within that
region. As such, by using non-commensurate weights, NCdel€cts updates closer to the
gradient direction rather than the desired Gauss-Newtdatepleading to slow convergence.
Finally, it should be noted that RID also exhibits a similaaacteristic to RIC in this respect,
since it uses the same assumption regarding spatially echeutliers.

In Figure 5.12, the performance of RID is compared againRIC-and NC-RIC on the
first group of the IMM Face database (i.e. the group wherauallests exhibit facial hair). The
two RIC variants were trained on three levels of a Gaussiaapigl, on the same set of images
as RID was, in order to reduce the effects of local minima smé&nerative fitting regime. To
limit fitting time, C-RIC and NC-RIC were limited to 20 and S@iations per pyramid level,
respectively. RID was limited to 20 appearance fitting staghe first fitting iteration, where
the appearance parameters are initialised to zero, anddather iterations, appearance fitting
was limited to 3 iterations. Note that due to the use of an agree parameter mapping
function, RID only requires a large number of appearancmditsteps in its first iteration,
where initialisation is poor. For the other iterations, thapping function provides a good
initial estimate of the parameters, allowing convergemcktal minima to be reached in far
fewer steps.

Examining Plot (a) in Figure 5.12, it is clear that RID is n@ipaeble of achieving the
same level of performance as its hon-robust counterpadsysked in Sections 5.2 and 5.3.
It achieves only0.77% convergence with an average accuracy of converged saofles’
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Figure 5.11: The effects of assuming spatially coherent occlusions @.R4): initial setting from
which the AAM is fitted using RIC(b): the evolution of robust fitting error of for RIC using commen-
surate (C-RIC) and non-commensurate (NC-RIC) robust vigidb) and (d): the AAM’s shape and
appearance at convergence using C-Ré&land (f): the AAM’s shape and appearance at convergence
using NC-RIC.
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Figure 5.12: Performance comparisons between the RID, C-RIC and NC-f)Cconvergence accu-
racy histograms(b): effects of initialisation on convergence accuracy.

point-to-point pixel RMS. Furthermore, processing timeignificantly slower, requiring on
average,1155.58ms to fit an image. Nonetheless, compared to RIC it exhibjpesor per-
formance in all respects. The poor performance of both mtwiaf RIC can be attributed to
their evaluation on a generic person database. Previouksesgarding its performance, re-
ported in [55; 119], utilise only models with very limitednigbilities. Since RIC is essentially
a robustification of NIC (see Section 5.1), it can be expettegerform in a similar way to
NIC. In fact, comparing the results for RIC in this sectiorthwihat of NIC in Section 5.1,
one notices the similarities in convergence rates, averageergence accuracy and even the
convergence accuracy histograms. It should be noted thimag)iR1C does not perform as well
as NIC, possibly due to the approximations made regardiagagoherence of the outliers.
Out of the two RIC variants, C-RIC exhibits better averagaveoged accuracy but poorer
generalisability than NC-RIC. The better accuracy of C-RRi&y be attributed to the fact that
difficult samples do not converge with C-RIC, excluding ttedfects on the computed average
converged accuracy. Examining Plot (b) in Figure 5.12, tilieyuof the 1D approach is again
evident in the consistently good average convergence acgof RID as initialisation becomes
poorer, up to around 20 pixels point-to-point RMS error. &gexted, RIC performs poorly in
this respect, where, as with FJ, POIC, SIC and NIC, its aeecagvergence accuracy deterio-
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Table 5.2 Summary of the Synthetically Occluded Results

5% Occlusion 10% Occlusion 20% Occlusion

ARMS) | F(%) || A(RMS) | F (%) || A(RMS) | F (%)

Black 4.43 92.40 4.02 96.39 5.11 85.25
White 4.29 91.67 4.77 87.03 6.65 65.54
Random 4.41 92.72 4.34 93.03 4,72 90.73

A = Average converged accuracy F = Convergence rate

rates the further initialisation is from the true setting#\@&M parameters. Finally, unlike the
results reported in [55], where RIC affords real time fitingre, the average fitting time is in
excess of one second for C-RIC and seven seconds for NC-Rj&inAthis can be attributed
to the large variabilities exhibited by the model, both imsh and appearance, which lead
to an expensive parameter update procedure, which invol@snversions of Hessian sized
matrices at each iteration.

In Table 5.2, results of the experiments on the syntheficaticluded images are sum-
marised. Although experiments where the occlusions amekldad values are randomly se-
lected give mixed results, the white occluded images shotkoag trend of deterioration as
the amount of occlusion is increased. Also, the performamcthe white occluded images is
inferior to both the black and randomly occluded imagesh ltconvergence rate and accu-
racy, over all settings of occlusion percentage. It seemesefore, that the robust feature fitting
procedure is more sensitive to occlusions with high inteessi One explanation for this is that
the robust feature extraction procedure is more prone toibating in local minima with this
type of occlusion.

In conclusion, although the robust variant of the inverseygositional method that utilises
a linear kernel fails to achieve the same level of perforreaas its nhon-robust variants, it
still provides a significant step forward over the robusteinse compositional method on a
generic face database. Through the utility of appearancader mapping, and assuming
spatially coherent outliers, the method is capable of §itam image with outliers in around
one second. Although better performance may be achievedilsmng nonlinear kernels in
the regressors, processing times will also increase dire twomplexity in evaluating nonlinear
kernels. Furthermore, the problem of regularisation isgorated in this case, since not only
must the regularisation parameter be set, but also the paearpertaining to the nonlinear
kernel.

5.5 Background Invariant Fitting

The final variant of ID, which is proposed in Chapter 4.5, igttivhich accounts for back-
ground variabilities through a feature selection procedureach iteration. Here, a pixel of the
observed image is selected for inclusion in the featureoveitiit is identified as a foreground
pixel (i.e. that pertaining to the visual object of intergsin image) in a large proportion of
the training samples. Apart from this, all other elementsheffitting procedure follow that
of the basic ID approach. Although any of the variants descripreviously can be used as a
prototype, only the COTLID prototype is evaluated here beedt performed the best in the
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€Y (b)

Figure 5.13: Chrominance based background segmentafantraining data for background classifier.
(b): examples of background segmentation.

previous experiments, deferring evaluation of the othetqiypes as future work.

In order to segment background from foreground in the IMMéerdatabase images, a non-
parametric chrominance based background classifier isflih examples of foreground and
background pixels. The training data used for this classgishown in Plot (a) of Figure 5.13,
which consists of image patches from the database, seleetedally. The classifier consists of
two 2D-histograms of the background and foreground pixeBIE-Lab’s chrominance space,
smoothed appropriately. The label of a pixel is then assigmebackground or foreground
depending on which of the histograms has a larger value atlt@tes describing the pixel
of interest, in chrominance space. Some examples of thétgexfuusing this background
classifier are presented in Plot (b) of Figure 5.13. Sinceallstamber of images in the IMM
Face database are in greyscale, the background classifieotdae used on these images. For
this reason, for all experiments in this section, those esage removed from the experiment’s
image set. In the 4-fold cross validation experiments, #@maining image set is partitioned
into four equally sized groups in such a way that each sulgectirs in only one of these
groups.

In training the background invariant iterative-discrimifre method (BIID), at each iter-
ation samples are obtained, both from the original imageelkas the background masking
image. Before learning the regressors for each paraméeutility of each cropped pixel
for inclusion in the feature vector to be used for regresgoevaluated based on how many
times it is identified as foreground over the whole samplgisethese experiments, as with
those in previous sections, a sample sizéVot= 2000 is used at each iteration). A thresh-
old for pixel inclusion was set at 99%, where pixels labebsdackground in more than 1%
over the sample set are removed from the feature vector. fbieecfor this threshold may
appear somewhat arbitrary. However, if it is set too larget,amough pixels will be retained,
resulting in insufficient data to perform accurate line@ression. On the other hand, if chosen
too small, then an unacceptable number of components iretdtare vector may correspond
to background pixels during fitting, leading to unpreditatitting behaviour. Training BIID
with A = 10, which has been shown in Section 5.2 to give good results ofLd®and
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Figure 5.14: Left to right, row-wise: the evolution of features chosen for inclusion throughbet t
fitting procedure of BIID. Aqua coloured pixels denote thegeluded from regression.

ATLID, the evolution of the features chosen for inclusiomotighout the fitting procedure is
illustrated in Figure 5.14. Notice that the region influeshty the background initially resides
over large areas around the periphery of the canonical shapeeduces in size as iterations
progress and samples become more constrained around imeipparameter settings.

To investigate the effects of varying background on BliDethsets of experiments were
performed using the 4-fold cross validation technique. dohe the background of the test
images was set either to black (a pixel value of zero), whitgxXel value of 255), or a randomly
sampled value within the rang@, 255]. The combined results of each of the three experiments
is shown in Figure 5.15. Examining Plot (a), one immediatgliices that the convergence rate
over experiments with white background images is signifiggooorer than experiments on
the black or random background images, affording &l 7% convergence. This significant
difference can be attributed to the fact that during thenfitpprocedure, some samples will be
perturbed into configurations where some background pixédlde included in the feature
vector used for regression. The fact that this occurs, tieetpe procedure of feature exclusion,
can be explained by three factors:

¢ Not all pixels were excluded from the feature vector thatenabelled as background in
some of the samples (i.e. only 99% of them).

e Even if an exclusion rate of 100% is used, this may still ocdue to the finite sample
set used for excluding background pixels from the feature.

e Since performance on unseen images is expected to be pbarethiat on the training
set, some test instances will be updated into these unbiesiranfigurations.

The effects of this on the black and random background issdtamatic since the magnitude
by which they perturb an update is smaller. Notice that théopmance on the random back-
ground images is slightly poorer than on the black backgiaumages. Examining Plot (b),
it seems that the effects of background variability is mamnpunced with poor initialisation,
as can be seen from the deterioration of the performance ewliite background images,
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Figure 5.15: Performance evaluation of BIID on three different backgrds! black, white and random.
(a): convergence accuracy histogrartt®). effects of initialisation on convergence.

compared to the black and random ones, as initialisatioor &rincreased above2 pixels
point-to-point RMS. Finally, it should be noted here thag #ttcuracy of converged samples in
the white background image seems to be better than the bhadlaadom background images.
This performance difference is superficial, however, stheedifficult samples, which diverge
on images with a white background, are excluded from the coatipn of the average accu-
racy. In the cases with black and random background, théseuttisamples still converge.
However, their accuracy suffers due to the perturbatioseaiy the inclusion of background
pixels in the estimation of their updates.

In conclusion, BIID has been shown to effectively handlekigagund variabilities, espe-
cially in the case where the variations exhibit low inteiesit Although performance deterio-
rates when the background pixels have very high intensitiesperformance of BIID is still
superior to the baseline methods discussed in Sectionrball,riespects.

5.6 Conclusion

In this chapter, the efficacy of ID has been evaluated in tidest of generic face model fitting.
Three aspects of the problem were assessed here: perfarimaan outlier free setting, ro-
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bustness towards outliers, and invariance to backgroundbitity. For each of these, separate
ID prototypes were evaluated, each specialised to the tgptie problem being assessed. As
a result, the conclusion may be drawn that ID is a powerfutn@gie that excels in dealing
with the problem of generic face model fitting.

In the outlier free case, three prototypes were evaluatdd:Il2, COTLID and HFBID.
All three were shown to outperform four existing baselinghods in convergence accuracy.
Most notably, however, was their significant improvementonvergence rate, attaining con-
vergence in almost every trial. Furthermore, the comporiaticomplexity of these prototypes
is much smaller than the baseline methods, even comparedi@, hich is perhaps the most
efficient AAM fitting procedure to date. Compared to HFBID,IAD and COTLID exhibited
marginally better performance. However, this may be atted to the small sample size of
features used in the HFBID's boosting procedure.

In the case of images with outliers, such as those caused pdeiled appearance or
occluding objects, the efficacy of the RID prototype was sss@. Through extensive exper-
iments, both over synthetically occluded images as welbakunmodelled appearance vari-
ations, it was shown that RID significantly outperforms RiCall aspects. However, due to
its robust feature extraction procedure, which involvegaegative appearance fitting process,
the fitting times afforded by RID are much slower than its mobust counterparts. Nonethe-
less, on the generic face fitting problem, where the modét&ly exhibits a large number of
modes of variation, RID is still more efficient than RIC.

Finally, the ID prototype BIID was used to assess the alitityandle background variabil-
ities. It was found that when the background variations &k behaved (i.e. they exhibit small
intensities), then BIID has the potential to approach théopmance of ATLID and COTLID.
However, when the background exhibits high intensities,géneralisability of BIID suffers.
Nonetheless, compared to the non-robust baseline metBdids still exhibits better perfor-
mance, even with a white background. Furthermore, BlIDrd8extremely rapid fitting, even
more so than ATLID and COTLID, since the number of featureitsimegressors is compara-
tively reduced.

There are a number of avenues for future work on the ID prpesythat can be pursued.
One of the most straightforward is to investigate the effeaft choosing better parameters
to use in the various discriminative learning problems. sThight include a more elaborate
selection scheme for the regularisation paramgtére tuning of various sample set sizes, such
asN, Ny andN,, or the choice regarding non-linear kernels for use in alimear regressor.
Another task for further development is to evaluate thectsf@f combining the features of
the various prototypes. Although separate prototypes wtlised in this chapter, in order
to assess the various aspects of generic face model fittisgpuld be possible to combine
the various prototypes into one. For example, COTLID candmehined with RID and BIID
to obtain a robust background invariant prototype thahgrdts linear regressors using the
SVR method. Finally, the utility of ID would benefit from addising its main drawback: its
extended training time.
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Chapter 6

Conclusion

Black then white are all | see in my infancy.
Red and yellow then came to be, reaching out to me,
lets me see.

Tool

The aim of this study has been to investigate the utility efltmear Deformable Model (LDM)
for the task of modelling deformable visual objects, as wasglthe automatic extraction of their
structure from images. The main drawbacks of the LDM, narttedydifficulty of automatic
data collection and the opposing criteria of efficient, aataiand reliable structure recovery
(fitting), are addressed, at least in part, through a priedifreatment of these problems. The
novel solutions proposed in this thesis are empiricallyuatad through extensive experimen-
tation on the challenging task of human face modelling ariddit

The problem of data collection arises due to the LDM'’s pattansation that uses statisti-
cal models of shape and appearance to represent a deformsude object. These statistical
models are simultaneously LDM'’s greatest strength and me&sk They constitute a strong
global prior on the space of allowable variations, allowordy valid instantiations of the vi-
sual object to be generated. However, a large number ofsmmnelences across a training set
of images is required in order to facilitate the learningtwfde statistical models of shape and
appearance. Manual selection of correspondences is ktiduseand error prone, biased by
the subjectivity of the human expert. Furthermore, for s@lam@urs of the LDMs, such as the
3DMM, manual annotation is not tractable since a dense sporalence set is required. The
automatic extraction of correspondences, on the other, tesal presents significant difficul-
ties. Inherent differences in appearance between vanmstaritiations of the same deformable
visual object means that correspondences found througtomiedric criteria alone are of-
ten misleading. As such, geometric constraints must beogleglto complement inference
from photometric constraints. However, unlike the problehrigid object correspondence,
the shape variations inherent in deformable visual objeasent a significant challenge since
well established geometrical relations between imagega@rapplicable. The resulting prob-
lem is therefore underconstrained, requiring the incapon of domain knowledge into the
formulation in order to attain meaningful corresponden¢ésw the problem should be posed
in order to make the best use of domain knowledge, howevegrigivial.

The recovery of a visual object’s structure from an imagefisrotackled by an LDM
through an analysis-by-synthesis procedure. Stemmimgifisogenerative construction through
the utility of statistical models of shape and appearanttmdiis posed as a nonlinear optimisa-
tion problem, whereby the LDM'’s parameters are iteratiymyturbed such that its appearance
best matches the image region defined by the LDM’s shape. iffireullly lies in computing
the parameter updates, a process that generally requéresthputation of the cost function’s
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gradient. For many visual objects, this is a computatignetbensive procedure, leading to an
inefficient fitting procedure. Although there exist numeraypproximations that are capable of
reducing the computational burden involved, they tend teriteate the fitting accuracy due
to a mismatch between the true objective and its approximatSome reformulations have
also been proposed such that portions of the computatiobheamoved to the training phase.
However, some of these reformulations fail to reduce thepraational cost sufficiently, while
others can accommodate only simple visual objects thab@xdmall amounts of variations.
Another difficulty is a product of the generative formulatithat is deployed. Since the rela-
tionship between the LDM parameters and the image’s piXelkgas generally nonlinear, the
cost function often exhibits many local minima, in which fiteng procedure can potentially
terminate. Although the effects of local minima can be reduitirough the utility of multiple
features as well as optimising on a Gaussian pyramid, tfiisuty has not yet been addressed
in its entirety. Finally, there also exist problems with rabdeneralisability, where the training
and test images are mismatched, leading to unreliablegfittin

6.1 Summary of Contributions

This dissertation makes contributions towards solvincheafcthe drawbacks of LDMs de-
scribed above. A summary of these contributions is outlfiee@ach of these below.

6.1.1 The Pairwise Learning of Correspondences

In Chapter 3, the problem of deformable visual object cwesence was tackled from a di-
rect pairwise perspective. There, pseudo-dense corrdspoes between a template and all
other images was pursued by deforming the template, bothaipesand appearance, such that
it best matched the other images. A formal treatment wasdgtbby formulating the problem
within a Bayesian Framework. It was shown that the populgulegised data fitting problem,
often deployed in existing nonrigid correspondence legymiethods, can be derived directly
from the proposed formulation. Using the method of hieraadtpriors, complemented by the
marginalised maximum likelihood/maximum a poster{®@iML/MAP) iterative optimisation
scheme, the proposed approach affords the automatic tohalbfree parameters in the prob-
lem. In particular, weightings between the data and regualtion terms in the regularised data
fitting problem, which correspond to the hyperparameterth@Bayesian formulation, were
optimised in conjunction with the correspondences. In reaistting works, these weights are
often chosen manually, requiring a trial and error procedarfind their best setting. Finally,
the EM procedure was deployed for the task of optimising theetparameters, affording
simple forms for their updates that guarantee that at leémtad optimum is reached, with-
out resorting to general purpose numerical optimisatichri@ues that generally require the
manual selection of various optimisation parameters, agdhe step size.

To instantiate this general approach for corresponderaraifey, specific instances of the
image likelihood and priors over deformations were prodos&eometric constraints were
placed on the deformable template through the assumptatndésformations exhibit piece-
wise smoothness. This was achieved by penalising diffesebetween deformations of adja-
cent landmarks in the object’s shape using an M-estimateighted by their proximity in the
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template. This is a realisation of the smoothness assumptioich implies a level of topolog-
ical rigidity. Priors over deformations were then modelsedGibbs priors, with the weighted
sum of neighbouring deformation differences constituting Gibbs energy. To account for
differences in appearance between various instantiatbtise deformable visual object, the
template’s appearance was allowed to deform along withhiépe. To restrict the space of
possible variations, the appearance model was constrtomregresent appearance differences
that vary slowly over the template. In this case, an extensfdhe piecewise affine warp was
proposed that is capable of modelling piecewise affine appea differences between the tem-
plate and the image. To account for large appearance diffesethat are spatially localised
and unaccounted for by the appearance model, the matclsinyat was embedded within an
M-estimator. The image likelihood, then consisted of thieust error measure between the
template and the image in its energy term. To address theudiffiof evaluating the integral in
the MML problem, the image likelihood and deformation psigrere approximated by Gaus-
sian PDFs, which resulted in the joint likelihood of the cdet@ data (i.e. shape and image)
also taking the form of a Gaussian PDF. This form affords aatyaic solution to its improper
integral. The approximation was attained by applying a @rder Taylor expansion over the
image and all robust estimators in the formulation. A fullidgtion of this approximation was
presented, allowing adaptations to similar problems to bdareasily.

Empirical Evaluation

The efficacy of the proposed pairwise method was empiricalgluated on three types of
datasets: a person specific, pose specific and a generimpdataset. The person specific
dataset included variations in pose, expression andtighfihe pose specific dataset included
variations in identity with fixed pose, lighting and expiiess Finally, the generic person
dataset consisted of a combination of the sources of vamidti the other two datasets. Two
sets of six experiments were conducted on these datasegsfir§hset of experiments were
designed to evaluate the modelling capacity of the proppséuvise method by starting the
optimisation from manually annotated correspondencethdrsecond set of experiments, the
sensitivity of the proposed method to local minima was itigased by using a bounding box
detected initialisation. In each set, the six experimeptsstitute different combinations of
robustifications of the likelihood and priors. From the sonducted experiments in the first
set, it was found that, in a person specific case, the effé@ssuming piecewise smoothness
as compared to strictly smooth deformations had littlectffén the pose specific dataset, the
effect of this choice was more pronounced, with a slight imipment in accuracy observed by
utilising robust deformation priors. In contrast, the efgeof utilising the piecewise smooth
assumption in the generic person dataset was quite markegyréficant deterioration in per-
formance was observed when only strictly smooth deformatigere allowed. From the same
set of experiments, the utility of the appearance defoonatias also demonstrated. As with
the piecewise smooth assumptions on spatial deformatiengffects of allowing the tem-
plate’s appearance to deform along with its shape became pnonounced as the complexity
of the dataset increased from the person specific to the pesdis to generic person datasets.
The conclusion can therefore be drawn that in the pairwiggngemodelling deformations as
piecewise smooth and allowing the appearance to deformjrals piecewise smooth fashion,
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exhibits the best overall modelling capacity. However,rémults from the second set of exper-
iments suggest that the good modelling capacity of the megpanethod comes at a the cost
of sensitivity to local minima. For this reason, in order ttagn meaningful correspondences,
the proposed pairwise method should be used in conjunctittneither a more sophisticated
initialisation mechanism than a bounding box or extra festuo smooth the objective func-
tion. The proposed pairwise approach presents itself Isefati adaptations to other similar
problems. An example of this was presented in Appendix B,revlzefull derivation of the
adaptation of the proposed approach to the problem of grisgpeorrespondence learning
was presented.

6.1.2 lIterative-Discriminative Fitting

In Chapter 4, a novel approach to LDM fitting was proposed:itdrative-discriminative ap-
proach. It leverages on the predictive capacity of diserative methods coupled with the
iterative framework of generative fitting. Utilising therer-bound minimisation paradigm, a
continuity in objective is enforced between the iteratjansiding samples at all locations to-
wards their respective optimum, placing a higher prioritytbose that are poorly predicted.
The approach promotes the realisation of a fitting procethaeachieves the besverall per-
formance rather thaspecificinstances of the visual object. The utility of error-bounahimi-
sation also has the effect that the objective at each iberatnly needs to be partially satisfied.
This allows simple regression functions to be utilised aljgtors at each iteration. This in
turn leads to a rapid fitting procedure and better genetaigasince simple predictors exhibit
better generalisation properties than more complex ondg pfoposed training procedure
also promotes further generalisability through a resamyptirocess that artificially increases
the training set size without significantly increasingriag time. Finally, it has been shown
that the proposed method is highly applicable, with no decéquirements placed on the
model’'s parameterisation or the types of features usedve thre predictions.

To realise the iterative-discriminative approach, a nuntdfeprototypes were proposed,
each of which were designed to tackle different componeitiseoLDM fitting problem. The
first prototype was one that utilised a linear predictive elodwo training procedures were
proposed for this prototype. In the firstsaft error bound minimisation was achieved though
the utility of the linearv-SVR’s framework. This method enforces error bound minatios
over a large proportion of the samples, with the remainingsaraptured through the use of
slack variables. The second proposed training method@satrict error bound minimisation
over all training samples. For this, a new cost function wapgpsed for its training, namely
the asymptotic penalty. This cost function asymptoticglgnalises errors on samples as a
function of the parametric distance from their optimalisgd. An optimisation strategy for
this convex cost function was also presented, deriving dineag$ for its direction update and
line search components.

The second proposed prototype of the iterative-discritiie@pproach was one that utilised
a nonlinear regression function that consisted of a coneembination of a set of nonlin-
ear weak learners, learnt through a boosting-like proeediihis prototype was proposed to
account for cases where the capacity of a linear model ifficigmt to afford accurate predic-
tions. To attain high efficiency, a novel multimodal weakriesa was proposed that uses the
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Haar-like features to drive their predictions. A completaring procedure was outlined for
this prototype that involved an adaptation of the asymptpénaliser to the one dimensional
case. To handle more general predictive models, a secorit@mnprototype of the iterative-
discriminative method was proposed that utilises the nealiv-SVR method for its training.
In order to reduce computational complexities in fittings thrototype utilised a dimensionally
reduced feature, attained by applying PCA to a training 5etva features.

To account for fitting problems where the visual object eibibcclusional effects or un-
modelled appearance variations, the second nonlineastppet was robustified at the feature
extraction stage. This involved minimising the appearadifference between an occlusion
ridden raw feature with that generated by a linear model,pms®ad within a robust error mea-
sure, once for each iteration of the fitting procedure. Altjio the forms of the appearance
parameter updates are much simpler than their counterpgenierative fitting problems, since
a full optimisation must be performed at each iteration,réseilting method can still be com-
putationally expensive. Two measures were takes to rediecedmputational cost involved
here. In the first, the previously proposed assumption digguthe spatial coherence of out-
liers was used to minimise the computational complexityhef Hessian in its Gauss-Newton
optimisation scheme. The second measure used to reduceutaiiopal cost was the util-
ity of a parameter mapping function that related appearpacameters between consecutive
iterations of the whole fitting procedure. This mapping fioc allows reasonable initial esti-
mates of the appearance parameters to be computed, alltveirigauss-Newton optimisation
to attain convergence in fewer iterations than if a randaitialisation was utilised.

The last iterative-discriminative prototype proposed ma@ter 4 was one that accounted
for background variability. This was achieved by excludihgse features that were labelled
as part of the background in a preselected small fractioraofihg samples from the features
passed to the regressors. This method relied on the assumntipéit a reasonable initialisation
of the model is available, in which case background effeteatlures reside on the periphery
of the visual object only. As fitting iterations proceed armstireates of all samples improve
through the satisfaction of error bound minimisation, tiaeKkground affected region around
the periphery of the object reduces in size, allowing moatuies to be used to attain better
predictions.

Experimental Evaluation

In Chapter 5, the various prototypes proposed in Chapterré empirically evaluated on the
difficult problem of generic face fitting. The AAM paramesation was utilised in all experi-
ments, where in order to provide a relative scale of perfoiceafive existing baseline methods
for AAM fitting were also implemented. Through comparisofsheir respective 4-fold cross
validation experiments, the two linear prototypes of teedtive-discriminative approach were
shown to significantly outperform all other non-robust liasemethods in overall conver-
gence accuracy and reliability. Furthermore, this sigaiftdmprovement was attained whilst
affording an extremely rapid fitting time, even more so tHam project-out inverse composi-
tional method, which is commonly considered the fastest Liitihg method. Although the
Haar-based nonlinear prototype also exhibited signifipenformance improvements over the
baseline methods, its performance was not as impressit® lagiar counterparts. This can be
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explained by the fairly coarse selection of weak learnetsgarameters used in the boosting
procedure, which was required due to time constraints glacethis study. However, a bet-
ter selection and a larger number of weak learners can betxpe improve on the results
reported here.

The robust extension of the nonlinear prototype was contipagainst a prominent robust
generative fitting procedure. As a complementing contidioiitan investigation was made into
the choice regarding commensurate and non-commensutaist weights used in computa-
tion of the updates of the robust generative method. It wasddhat the use of commensurate
scalings gives an improvement in performance of this methddwever, compared to the
robust iterative-discriminative prototype, it was sigrafintly outperformed in convergence ac-
curacy, reliability and fitting time. An investigation intbe effects of outlying pixel values
was also performed on the robust iterative-discriminapik@otype. It was found that outliers
with larger values affected the fitting procedure more sdyehan smaller valued outliers.

Finally, the efficacy of the background invariant method wealuated on a partition of
the database for which background segmentation could bevachautomatically, where the
affects of different background values on this prototypgeesformance was investigated. As
with the other prototypes, this method was shown to sigmiflgaoutperform the baseline
methods in all respect. Compared to the linear iteratigertninative prototypes, it failed to
achieve the same level of accuracy and reliability, alttoimglid exhibit smaller fitting times.
The efficacy of the method deteriorated however, when backgt pixels exhibited very large
values.

6.2 Future Work

The contributions presented in this dissertation constifieneral frameworks within which a
number of extensions and further experimental evaluattanse performed. Some directions
for future work for both major areas of contribution are metl below.

Automatic Model Building

By virtue of its Bayesian framework, the formulation of thejposed approach for pairwise
correspondence learning allows a number of extensions poitseied:

¢ Additional Features The high sensitivity of the pairwise method to local miniieaa

product of the highly nonlinear cost function that it attémfm optimise. It has been
shown previously in [101] that the addition of a number ofetiént features into an ob-
jective function has the effect efmoothing oufluctuations in the cost function, reducing
the likelihood of an optimisation terminating in local mimh. The same approach can
be applied here, where features take the form of multiplerpand likelihood terms.
This may include an image gradient based likelihood, agsedlin variational optical
flow [22; 110]. Another example is to use a small set of mayuaiinotated correspon-
dences to constrain fitting [101]. Since there are a largelbeurof such features that
can be included into the framework, a trial and error proceduaust be utilised here, in
order to find the best set of features for a given problem.
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e ReparameterisatianThe approach proposed here is not dependent on the paraaete
tions of the likelihood and priors. Although reasons for theices made here are given
at the time of their introduction, they may be suboptimalaiples of this include the
type of M-estimator used, both in the likelihood and pribe kernel used as a weight-
ing function in the prior, and the parameterisation of thepraand appearance generating
function. Modifications of any of these components does fietiathe general deriva-
tion of the approach proposed here, only the particulaaimss of the equations.

e Groupwise ExtensionAs mentioned earlier, an adaptation of the pairwise amtroa
proposed here has been fully derived in Appendix B for thélgm of groupwise cor-
respondence learning. This method can potentially probetéer modelling capacity
than the pairwise method, since it uses a linear model tesept shape and appear-
ance, composed with extrinsic normalising functions, Whias been shown to perform
well in the related problem of LDM fitting. Furthermore, ifspaoximation of the joint
likelihood required by the MML procedure may be better sifiaequires only a first
order Taylor expansion of the cropped image, rather thaheofdbust functions as well.
An obvious next step in future work, therefore, would be tplement and evaluate its
efficacy.

Accurate, Reliable and Efficient Fitting

The proposed iterative discriminative approach forms mé&waork within which various mod-
ifications can be made to improve the performance of LDM fjttiAmongst others, directions
of future work may include:

e Optimal ParametersAlthough extensive experiments comparing the perforrearithe
various prototypes of the iterative-discriminative agmio with some prominent fitting
methods have been performed in this study, less rigour has applied on the task
of choosing the optimal parameters with which to train thehods. These parame-
ters include the various regularisation parameters, tmebieun of features and various
other thresholds, such as the inclusion rate of the backgrinvariant method. Since
discriminative methods can be quite sensitive to the choidhese parameters, further
improvements can be expected of these methods when theabptamameters are cho-
sen. However, this requires a lengthy cross validationguioce.

e Optimal RegressorsAlthough an example of an implementation using a nonlimear
gressor has been presented, there are a large number ofesntiredictors that can be
utilised here. It is a straight forward process to applyadéht types of nonlinear kernels
to the nonlinear prototype proposed here. In fact, ugaypli b that has been pro-
vided with this dissertation in the enclosed CD-ROM, experits on this aspect can be
readily performed, requiring only a significant procesdinge for their training.

e Feature Combination The various prototypes of the iterative-discriminatiygoaach
address a particular aspect of the problem of LDM fitting. ré€lhis no reason why these

1The training procedure of each of the prototypes of thetiteraiscriminative approach presented in Chapter 5
took around eight to ten hours each, on a 3GHz Pentium 4 machin
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prototypes cannot be combined into one. For example, cangpthe robust and back-
ground invariant method may result in a prototype that isbégof handling occlusions
without being affected by background variabilities. Algbe iterative-discriminative

method proposed here can be combined with a slow but acaygatrative fitting pro-

cedure to further improve fitting performance, where thettee-discriminative method
provides an excellent initialisation to the generativehodtsuch that it can avoid local
minima and afford faster convergence.



Appendix A

The Extended Piecewise Affine Warp

The piecewise affine warp, commonly used in AAM represemtat{30; 83], is a spatial trans-
formation function for which theeference framés divided into a set of non-overlapping re-
gions such that all locations within each region are warpadguthe same affine transforma-
tion. These regions are generally defined by some type ofguiation of a point set, such as
the Delaunay triangulation [36], defined in the refereneani. The result is that locations in
the reference frame are warped to locations indéstination framevith the samdarycentric
coordinates, with respect to its encompassing trianglshduld be noted that the piecewise
affine warp is defined only within the convex hull of the poiat defining the triangulation.

Consider a set of 2D points in the reference frame}’ . For a given set of 2D points in
the destination framéx; }7- ,, the piecewise affine warp is defined as follows:

W (x {1 AR ) R — R =%+ ax(X) — %) + Bu(Xk — %), (A.1)

wherex € tri{x;, x;,x;}. Here,

(x —x;)T [_01 (IJ (xk — %) (x —x;)T [_01 (IJ (x5 — %)
Qx = and 0Oy = (A.2)
(x5 —x;)T [_01 é} (xk — x4) (xj —x;)T [_01 (1)] (x1 — ;)

are the barycentric coordinates »fwith respect to the triangle with verticgs;, x;, x }.
Substituting Equation (A.2) into Equation (A.1), the ty@li@affine form of the warp can be
recovered:
W (x) = Ay m . (A.3)

However, for the purpose of image registration, the form qu&tion (A.1) is more useful
since the reference frame and the points defining the trlatign are fixed, but the destination
points are allowed to vary. As such, the barycentric coatdis of all the desired locations
within the reference frame’s valid domaix,c €2, can be precomputed.

From the form in Equation (A.1), the observation can be mhdefor a fixedx in the ref-
erence frame, the coordinate of the warped point is parameterised only byrtbeordinates
of the destination triangl¢z;, Z;, 2 }, and similarly for they coordinates. In fact, for a fixed
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(5,95, v5)

(J"iv Yi, Ui)

(xkn Yk, Uk‘)

- (xkvykvo)

(wiayiao) - (%7%70)

Figure A.1: lllustration of the 1D piecewise affine warp.

reference frame, the warp defines a simple linear interipolan the values of the destination
vertices, separately for each dimension. As such, the piseeaffine warp can be generalised
to constitute a piecewise linear interpolation of any disien. In Figure A.1, this interpolation
is illustrated for the 1-dimensional case, mathematicapresented as:

W(X; {Xi}?:la {771 ?:1) R - R = [1 — O0x — ﬁx Qx ﬁx] 2_}’j . (A4)

With this representation, the piecewise affine warp is edadrfrom a purely spatial transfor-
mation function to a transformation of any quantity, whdre linear interpolation is defined
by the fixed 2D points and valid locations in the referencenfra For example, in Chapter 3,
this formulation is used to represent piecewise linear afgree transformations.

Finally, we note that for a fixed reference frame, the deikieadf the extended piecewise
affine warp is constant, given by the following expression:

l—ax—0x fl=1

Qx ifl=3j
VaW (x € Qi) = R A.5
1 ( Jk) ﬂx T ( )
0 otherwise

where(2;;;, denotes the reference frame locations withifwtyi x;, x;, } for which the barycen-
tric coordinates can been precomputed.



Appendix B

The Groupwise Learning of
Correspondences

The pairwise method for automatic correspondence leam@sgribed in Chapter 3 exhibits
good flexibility for modelling a large class of deformableswal objects, relying only on the
assumption that spatial and appearance deformations iaee\pse) smooth. However, for
some visual objects, this assumption may be too flexible asea seen from the results in
Section 3.6, where the method is highly sensitive to locadimi@. Furthermore, it is shown
that the pairwise approach is not suitable for visual okjeshibiting large amounts of shape
and appearance variations. When prior knowledge abouiphafic type of distributions de-
scribing the shape and appearance of a visual object igbl@ibetter results may be achieved
by optimising the parameters of these distributions diyesince the optimisation procedure
becomes more constrained.

In the following, an adaptation of the procedure outline€hapter 3 to the case of group-
wise learning of correspondences is presented, wherespamedences across all images are
learnt simultaneously. A formulation of the Bayesian framek for groupwise correspon-
dence learning is presented in Section B.1. The objectiMME estimation is then discussed
in Section B.2. The Expectation Maximisation (EM) algonitlused to solve the MML prob-
lem is then presented in Section B.3.

B.1 Dependence, Densities and Parameterisation

In a groupwise setting, the MAP formulation for automaticrespondence learning can be

written as follows:
N

p({sihils, 07 }) = [ [ p (s1,01.7). (B.1)
=1

assuming independence between shapes in every image. Hégaptes the parameters that
describe the visual object’s distribution. Compared tgahiewise formulation, which assumes
a separate and independent parameterisation definingdtnibgtions in each image, here the
visual objects in all images are described using one modsiricting the model complexity
over the whole dataset. However, this formulation requingimisation over all images to be
performed simultaneously, rather than separately, azipairwise case.
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Assuming independence between the shape and appearaheerisual object of interest,
the posterior of each image in the training set takes the:form

p(ﬂ, S|057 Ot) p(gsa Ot)
p(J)
x p(A,s|6s,0,)
o p(f1s, ;) p(s|6s), (B.2)

p(s,6].7) =

where the image index has been dropped for clarity of expas#&ndé in Equation (B.1) is
decomposed into its componerfts and 8, pertaining to the shape and appearance, respec-
tively. A non-informative prior is assumed for bofy and@,. Here,p(.# s, 8;) denotes the
image likelihood, which relates to the data term in the ragséd data fitting framework. The
prior over the corresponding shap€s|0;) relates to the regularisation term. Together, Equa-
tions (B.1) and (B.2) constitute a general Bayesian framkevi@r groupwise correspondence
learning, the realisation of which depends on the type of &3#sumed for the likelihood and
prior. The objective of the Bayesian inference in a groupveistting, then, takes the form:

N
p ({si L {7h) =11 / p(Filsi, 0:) p(sil65) dBs db;. (B.3)
=1

In this dissertation, focus is primarily on visual objedtattcan be adequately described
by an LDM. There is ample evidence in the literature, for egkajl1; 101], which suggests
that for many visual objects that can be adequately be repted by an LDM, the distribu-
tion of both the object’s shape and appearance approxintsaeof a multivariate Gaussian
distributiont. However, directly modelling the full Gaussian distrilmutimay be difficult to
implement in practice, due to the large dimensionality efv¥isual object's appearance. Fur-
thermore, since visual objects that can be adequatelysepted by LDMs have their data lie
in a much smaller subspace than the dimensionality of the, dailising a full multivariate
Gaussian distribution here may lead to overfitting. As suspired by the work in [126] on
non-rigid structure from motion, the shapand appearandeof the visual object is modelled
using probabilistic PCA (PPCA) [125]:

t=a (’E(P) + <I>§PXMt)p(Mt)) + 51P) 4 el(fp) (B.4)
s—R (§(2n) i q,gzans)q(Ms)) LT Ean)’ (B.5)
where:
R = I g [“ _b} and T=1"g [ﬂ : (B.6)
b a ty

Following the convention set out in Chapter 3, hekedenotes the total number of training

In fact, the Gaussian assumption on the distribution of sleaql appearance of LDMs is implicit in their use
of PCA that fits a Gaussian hyperellipsoid to the data. Algoather dimensionality reduction methods can be
used in LDMs (for example, the work in [131] uses Independammponent Analysis), by far the most common
method used here is PCA. Since the use of this representat®heen shown in many works to give good results,
the use of Gaussian densities to model shape and appearzeds A reasonable approximation.
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images,P denotes the number of pixels representing object appearanice canonical frame,

n denotes the number of landmarks in the shaggdenotes the number of appearance modes
of variation, and\/; denotes the number of shape modes. In Equations (B.4) abyl éBand

€; are zero mean Gaussian noise vectors:

e ~ N (0<P>,a§I<PXP>) and e, ~ N (o@”),azl@"“”)) . (B.7)

From the formulation above, it should be noted that the linettinsic models for both
shape and appearance are composed with global transfomfatictions, which account for
extrinsic sources of variation. The use of these transfooms, here, is required since, al-
though the multivariate Gaussian distribution can adegipabodel intrinsic variations of lin-
ear visual objects, this assumption is not well justified wieaternal factors are involved.
For example, modelling an in-plane rotation as a linear dgoatlon of bases does not lead to a
Gaussian distribution over the shape, where certain caatibims of the linear bases can gener-
ate implausible shapes. Even if the extrinsic sources @ditian can be modelled accurately by
a set of linear bases, generating little or no implausildéainces, the distribution of the driving
parameters cannot be assumed to be Gaussian. Examplesariihe shape’s translation and
scale, which are more accurately represented by non-iafiivendistributions, giving equal
likelihood to all locations and scales of the visual objecthie image. This important aspect
has been largely ignored in most existing work on groupwiselehbuilding (see [9; 33] for
example), but has the potential to seriously impact theityuzfithe resulting correspondences,
since the basic assumptions made in their generative fatioolmay be invalid.

With this formulation, the complete data likelihood in Etaa (B.2) is now given by:

p(F,8,p,d|0) =p(Fls,p,6;) p(sla,0s)  plp)pla) , (B.8)
—_— — ——

image likelihood shape likelihood deformation priors

with the deformation priors modelled as isotropic Gausslatributions:

o) = 2n) F e {-LIplP| and pla) = Cn)F e - L}, @9

The shape and image likelihoods are modelled by assumingso Gaussian distributions
on their respective residuals:

p(sla,0,) = (2m02) " exp {— !

ﬁHs—R(é—i—'@Sq)—THQ} (B.10)

p(519.0) = (2r0) % exp{ oL |16 (4 bl fuss) - a(E+ @) — ).
t
(B.11)

wheref, = {02,5,®,} and@, = {o?,t,®;}. The image likelihood is evaluated in the
canonical frame, which involves cropping the image at locatdefined by a warping function,
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parameterised by the shape in the image frame:

S oW (x1;8)
G (I Ax i 58) R - RE = ; =P, (B.12)
S oW (xp;s)

where{x;}£ | denotes the set a? locations in the canonical frame, over which the likelihood
of the image7 is evaluated.

The effect of the selected coordinate frame for model evialnas also an issue worthy
of discussion here. In the formulation given above, thdilik®d of an image is evaluated in
the canonical frame, where the appearance model is defineothér possibility is to define
the model in the image frame. This method is proposed in MimmDescription Length
(MDL) type methods such as [33; 127]. In those works, it isiadythat evaluating the model
in the image frame can lead to more compact models (in the M@se) than those learnt
by evaluating in the canonical frame. This is because, bluatiag in the canonical frame,
the optimisation of the likelihood leads to deformationattavoiddifficult parts of the image.
In the extreme case, all shapes can shrink to occupy smadingegn each image withrery
similar appearance over the whole set. The image likelinsaattually maximised in this
configuration despite providing useless corresponderaesnddel building. This problem is
avoided in the MDL formulation since it minimises the errbiroage synthesis. However, this
requires the method to encode the whole image, for which igtelaition of the likelihood
and priors do not, in general, follow that of a Gaussian ithistion. As such, representing the
appearance and shape as a linear object class is not wifieplisEurthermore, optimisation in
the non-Gaussian case is much more complicated. In thesdistis that follow, it is assumed
that the first image in the training set is a template for win@nual annotations are available.
Keeping the template’s shape fixed during the estimationge® biases the solution towards
the template. It is expected that this will help avoid thenpldgical case described above.

B.2 Marginalised Maximum Likelihood Estimation

For the purpose of estimating the parameters of the demgitiEquation (B.8), it is assumed
that the linear expansion coefficients of both shape andaaippee are also hidden variables.
To summarise, the components of the MML estimation proaeduoe grouped are as follows:

data D = {%}Y, (B.13)
hidden variablesV = {s;,pi,q;}\; (B.14)
parameters = {{Ri,Ti,ai,ﬁi}f\Ll 02,02 ®,, @t,é,f}, (B.15)

The aim of MML parameter estimation is to maximise the corgptiata likelihood:

N
povie) =] [ p(Fils1, P 00) p(silai, 62) p(pi) pla) ds: dps dai. (B.16)
e R(2nt+Ms+My)
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As with the pairwise case presented in Chapter 3, the intefjthis equation cannot be eval-
uated analytically, since the relation between the imagktla@ cropping function parameters
(i.e. the shaps) is nonlinear, requiring an approximation to be made.

For images other than the template, taking a first order Tagtpansion of the cropped
image in Equation (B.12), at the current shape, results in:

C (I Axi}8) € (I, {xi}q38%) +T (s —s9), (B.17)

where:
J=VC (S, {xi} ;59 (B.18)

With this approximation, the energy term of the image likebd can be reformulated with
respect to the hidden variables as follows:

1% (7, {x:}E158) — a(t+ ®p) — B1|° ~ 2ATAz+22"ATb+b"b,  (B.19)
where:
z=[s;p;q] , b=c"-Js“—at—pF1 and A= [J —a®d, O(PXMi)]. (B.20)
The image likelihood is then approximated as:
2\~ % 1 Lo (1, L7
p(Fs,p,0:) = (2n0]) Zexp—= |z 5A"A)z+2z' ( 5A'b)+ =b'b| ;.
2 o; o; o}
(B.21)

Since the shape in the template image is assumed fixed dtthblod is also given by the form
in Equation (B.21), however, in this case:

z=[p;q] , b=c"—at—p41 and A= [-a®, 0*M)], (B.22)

Similarly, the shape likelihood of non-template images lsanvritten:

p(slq,0s) = (27?0?)7” exp {—% [z <%CTC> z+ 227 <%CTd> + %de} } ,
US 08 US
(B.23)
where:
d=-Rs-T and C= [ICnx20) oCnxM) _R@]. (B.24)

For the template image, the shape is known and fixed. As shetfptm in Equation (B.23)
still applies. However, for the template’s shape, we have:

d=s-Rs—T and C=[0@M) _R®,. (B.25)

Combining the forms in Equations (B.21) and (B.23) for thag®a and shape likelihood,
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respectively, the complete data likelihood can be written a
p ({‘Z}ZJ\LIHGZ z]\il)

N
=11 [ stsml6) da
i=1" =1

_PN _nN 1 N N 1

OC(UtQ) ’ (Ug) exp{—§;@}g Eiexp{—§(zi—,UJZ‘)THz‘(Zi_PJi)}dZi
- BN —nN 1 N _1

o) (o) e {33 Tt .26

where=; denotes the domain of integration, which is given®tifs ¢ for the template, and
R2n+Ms+Me for all others. In the equation above, for all images apannfthe template, we
have:

1 - 1 T O(2n><2n) O(2n><(]WS+Mt))
H; = a_tgAz’ A+ U_gcz’ Ci+ |:O((MS+Mt)><2n) ((Mo+Me) x (My+My)) (B.27)
1 1
po= 11 (Lalb+ Sola) (B.29
Oy Og
1 1
C; = —blb; + —dld; — p"Hp. (B.29)

Similar forms can be obtained for the components pertaitdrthe template image.

B.3 Estimation through Expectation Maximisation

Unlike the pairwise case described in Chapter (3), findimgdptimal density parameter-
isations for the shape and appearance by minimising EquéBi®6) is in general extremely
difficult. In the pairwise case, although the correspondingr function is a complex non-
linear equation, due to the low dimensionality of the prablalirect optimisation may still
be tractable. In the groupwise setting, optimisation mespérformed over the appearance
model. Since the dimensionality of the model's appearasgeinerally quite large, typically
in the order of tens of thousands, direct optimisation isapqtlicable here. Instead, following
the discussion in Section 3.4.3, the EM algorithm can bésatll here also.

An outline of the EM algorithm, utilising the formulation steribed in the preceding sec-
tions, is presented in Algorithm 8. Similarities can beensketween the groupwise method
described here and that of existing approaches (see [9333; fbr example), where the main
component is the alternation between finding the correspures and re-estimating the shape
and appearance models. The difference here is that at eag;iwdtich involves a linearisation
of the images, an EM procedure is utilised to find the mosabigtmodel parameters, includ-
ing the shape and appearance models. In most existing gieeimethods, steps 3 to 14 in
Algorithm 8 are replaced by a PCA procedure over the currstimates of the shapes and the
appearance. Since the shape and appearance models arénégpendently of each other,
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Algorithm 8 Groupwise Correspondence Learning
Require: {.#1,s1} (template),{.7;,s;} Y, (images and initial shape estimatea), (number
of linearisations) Ngys (number of EM-steps)Vy, (number of M-steps)) (number of
shape modes) antd; (humber of appearance modes)
1: Initialise parameter{{R,»,Ti,ai,ﬁi}f\il 02,02, B, <I>t,§,f}
2: fori =1to N; do
3: Linearise all cropped images apart from the template at therent shape estimates
{s¢ = s;}¥, {Equation (B.17)

4. for j =1to Ngys do

5: E-step: Computéu;, H;} ¥, {Equations (B.27) and (B.2B)

6: for k = 1to Ny, do

7 M-step: Update global lighting parametels;, 3;} Y., {Equation (B.52)
8: M-step: Update appearance mode)®;} {Equation (B.62)

9: M-step: Update image noise variangg { Equation (B.58)

10: M-step: Update similarity transform parametéR;, T;}, {Equation (B.67)
11: M-step: Update shape modg, ®,} {Equation (B.83)

12: M-step: Update shape noise variarce{ Equation (B.78)

13: end for

14:  end for

15:  Compute new estimates of shagdes = [J;i(l:gn)}g\i2 {Equation (B.28)
16: end for
17: return {s;}Y,

a fixed scaling factor is used to regularise the correspondencengjrmtocedure. Finally, it
should be noted that, as with other existing groupwise ntithihe procedure described in this
section does not afford any proof of convergence. This isibge, although the EM algorithm
guarantees an increase in the data log likelihood at eaph dte to the linearisation of the
cropped image, at each iteration of the procedure, the Ebtithgn solves a different, albeit
similar, problem.

The remainder of this section is dedicated to derivatiorth@fvarious components of the
groupwise procedure pertaining to the EM algorithm. Inipatar, the expectation step is
described in Section B.3.1 and the maximisation step ini@e&t3.2.
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B.3.1 Expectation Step

The expectation step in the EM algorithm involves buildihg posterior density of hidden
variables. Using the formulation given in the precedingisas, the hidden variables posterior
is given by:
p ({Zz}zj\iﬂ{fu Bi}z‘]\;)
1Y, p(S,2:06)
[T, p(-4i16;)
—EN —nN
(02) % (02) Ve (-1 2N, O I exp {~3(m — ) THhi(mi — o))
_EN n _1
(03)" % (o3 "N exp {—§ T, G TTY, det{H,} 2

N
1
xX ljlldet{HZ}_% exp {—§(Zi — [,LZ)THZ(ZZ — [,LZ)}
N
o [V (zi; i, H;Y) (B.30)
=1
Notice that the resulting posterior over the hidden vadalibkes the form of a multivariate

Gaussian density by virtue of the linearisation of the imeggping operation described in
the preceding section.

B.3.2 Maximisation Step

With the posterior density over the hidden variables defitieel maximisation step of the EM
algorithm involves minimising the expected negative datalikelihood:

N
Q(G) = Z Ep(zﬂfi,@i) [_ ln{p(ﬂ)i, lel)}]

=1

1
— | F
“2@2(1[

a; + Jisi — a;®p; — Bl

WE

B 2
c1 — o P — 511H ] +

g

)+

~
||
N

1 . 2 N . 2
27 Ey |:HSI_R1(I)SQI_T1H } +ZZ:;EZ‘ [ si — R;®,q;, — T; ] +
PN 1
— I {07} +nNIn {07} + 3 > Eillpill? + llail?] (B.31)
=1

constant

wherea; = c¢; — J;s{ and a compact linear model representation is used:

f):[l;p] ) q:[l;q] ) ét:[f q)t] and(i)s:[g q)s] (832)
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In the maximisation step’s objective; [x] = E,,,|.4 g, [X] denotes the expectationegiven
the posterior density function(z;|.#;, 9;).

The objective function in Equation (B.31) does not afford@sed form solution for the
parameters. As such, an iterative optimisation regime testtilised, leading to the Gener-
alised EM algorithm, when the optimisation is terminatetbbea global solution is reached.
As an optimisation strategy, the parameters are partitiam® groups for which their optimal
settings can be obtained in closed form, given all otherrpatars are fixed. In the following
sections, the parameter groupings and their respectivatepare derived. In order to afford
more compact derivations, the following terms are defined:

By (2;].7:.,0,) [ Zi] = 1 (B.33)

Epsi)5.00) (2] = [1; Mi] = i (B.34)

By o0, [2i2] ] = B+ pip] = ¢ (B.35)
_ 1 Ji% :| -

Ep(z:|.7:.0:) |2i%i | =i, B.36

p( z|j270 [ ] |:l’l’2 d)l ¢ ( )

wherez; = [ 1; z |. Apart from these forms, the following restructuring megs will also be
used extensively:

R, — [12n><2n 02n><(Ms+Mt)] (B.37)

R, = [O (Myx(2n))  p(Mex M) O(]V[tXMs)] (B.38)

Rq = [00fxCreM)  (MaxM,)] (B.39)
[ 1 o(x(2n+Ms+My))

R (B.40)
- 1 0(x(@n+M.+My))

R = [y r, ] (B.41)
T (1% (2n+Ms+My))

Ro= [y . } (B.42)

Finally, the definitiors; = [ 1 ; s; | will also be used.

The Global Lighting Parameters Update

The global lighting parameters for each imdge, 3;} Y, are independent of their counterparts
in all other images. As such, the updates can be performedaidn image separately. The
component of the maximisation step’s objective in Equa{BrBl), pertaining to the global
lighting parameters of th&" image, is given by:

a; +Jisi — ;®:pi — [

1 ]2] (B.43)

‘Q{aiﬂi}(e) o B “

Letting:
w=lo; B , m=a-Js and M, =[®p; 1], (B.44)
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the objective can be rewritten as:
Q{aiﬂi}(e) X Ei [HmZHQ} — 2 Ei [mZTMZ] u; + U.ZTEZ‘ [MZTMZ] u;. (B45)

Taking the derivative of this objective with respectitpand equating to zero, the solution for
the global lighting parameters takes the form:

w, = (B [MM,]) ' B [mI M) = [2 Zj h [Zﬂ (B.46)

Here, the components &; [M? M;] andE; [m] M;] can be derived as follows:

=L :ﬁ?i’?i’tf’i} =1r {(i);tr'i)tEi [f)tf)ﬂ} = tf{‘i’f@tRﬁéiRg} (B.47)
c=L; _]-T(i.tf)i] =1"®,E; [pi] =17 ®Rpfu; (B.48)
3= Ei[|[1*] = P (B.49)
o= E; |aT®,p; + piTq%tTJis,} = al® Rpfi; +tr {ti'tTjiRggf)iRg} (B.50)
¢s = B [17 (a; — is0)] =17 (- I Raps) (8.51)

Using the forms derived above for the global lighting updatan be written as:

HE
(B.52)

Note that the global lighting parameters for the templategencan be assumed fixethat= 1
andg; = 0.

tr {éfétRﬁJ)iRg} 178, Rpjii|
17®,Rp fi; P

aZT(i)tRf,ﬂi 4 tr {‘i’tTjZRgdszjzRg}
17 (a; + JiRsp;) .

The Image Noise Variance Update

The component of the maximisation step’s objective in EquatB.31), pertaining to image
noise, is given by:
C
20),2 = PN m {o2) + 2—"; (B.53)
ag

Tt
2 t

where the constartt,,» takes the form:

Cpe = Er U a; + Jis; — a;®,p; — Bil

~ 2 N 2
ci — ar®in — i1 } +Y B U | } (B.54)
=2

Letting:

g = — . ’
' a; — oyt — 5;1  otherwise J, —a®, 0F*Ms)| otherwise

(B.55)

o E PR _ (PxM,) PR
{cz af-pil i i=1 ‘I’Z{ a®, 0 } if i—1
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the constant’,2 can be evaluated as follows:

Cop = D i |lgi + ¥zl

2 =
t

'MZ

.
Il
—

E; [lleill?] + 28] W, E;lz] + tr { U] W, E; [2;2] | }

I
.MZ

-
I
—

Mz

lgil|® + 2g7 Wip; + tr { BT W, } . (B.56)

I
—

7

Taking the derivative of Equation (B.53) with respectforesults in:

8"@(0)03 PN 1 Caf
do? 2 U_E_E.

(B.57)

Setting this derivative to zero, the update for the imagsawariance, then, takes the form:

N
1
= o 2 laill® + 28 Wipns + tr { T Wi} (B.58)
=1

The Appearance Model Update

The component of the maximisation step’s objective in EiqunaB.31), pertaining to the ap-
pearance model, is given by:

a; +Jis; — ; ®p; — Bil

~ 2 N 2
24.(0) x B { i — 1@ —511H } +3 “ ‘ ] (B.59)
1=2

Taking the derivative of this objective with respectdg:

%j(a) x Fq [al (Cl - Oz1‘i>t(~11 - 511) f)?} +

0P,
N ~
> E [ai (ai —Jisi —a;®p; — ﬂz‘l) f)ﬂ
i=2
=a (c1 — f11) E; [p]]| — o1 ®.E; [piD} | +
N
Zazaz pZ + ;3 E; [s,pZ ] — a2<I>tE [p,pZ ] — oy 0;1E; [pZ ]
= 1 (Cl — ﬂll) [,Ll Rrg — aﬁti)tf{f,gg)lf{g

> aiaii] R + il ReiR] — o} @ RpdR] — ciBi1a] RE,  (B.60)
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where:
R 1 0(1><Mt) 0(1><Ms)
o |

Rp = | gMix1)  p(MexMy)  g(MixM.) (B.61)

Equating the derivative with zero, the appearance modetegdthen, take the form:
~ A~ N ~ ~
{)t = (al(cl - ﬂll)ﬂle + Z (07} |:(az - ﬂll)ﬁ?Rg + JZRé('i)ZRg]) X
i=2

N -1
<a%Rﬁ¢1R§ +) a?RfﬁbiRg) : (B.62)
=2

The Similarity Transform Update

The similarity transform parameters for each imdag b;, ¢, t,, } ¥, are independent of their
counterparts in all other images. As such, the updates caetiemed for each image sepa-
rately. The component of the maximisation step’s objeativEquation (B.31), pertaining to
the similarity transform parameters of tH&image, is given by:

2Dai bt ty,}(0) < E; [ si— R®7q; — T, 2} | ©69
Letting:
a; ) ~ ~
tyi

(B.64)
the objective can be written:

"@{ai7bi7ta:i,tyi}(0) XX ZEZ [HXZJHQ] -2 EZ‘ [XZT;GU] Vi + VZTEZ‘ [GZ;G”] V; (865)
j=1
Differentiating this form with respect te; and equating to zero, we get:

8Q{ai,bi,t1~,t }(0) n
8v; Yi = ; (Ez [GZ;'GU] v, — 2 E; [Gg;'xij]) _0

-1
j=1 i=1
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Evaluating the forms foF; [GZ;-GU»] and E; [GTXU] the updated similarity transform pa-
rameters take the form:

a; cc O 2 3! E tr{q) (2j-1:2j.) Rfcf)iRT}
b; 0 ¢l —-c3 2 0
ta, 2 -3 1 0 > - 1tr{¢> (2—-1:2j.: ){ . O]R oRE } , (B.67)
ty; c3 2 0 1 ijl R;pi
where
Ztr{( s(2j—1,: (i) 5(25—1;: )""I’s(zg ) s(2j,:)) RqJ)iRg} (B.68)
c X ~
[03] - Z P(2j-1:25,) Rk (B.69)
j=1
Here:

Rj _ [0(2><2(j71)) 12><2 0(2><(2n72j)+M5+Mt)] and Rj — [02><1 R]] (B70)

Note that the similarity transform for the template shape lsa assumed to be fixed R =
1(2%2) andT; = 0@,

The Shape Noise Variance Update

The component of the maximisation step’s objective in EquatB.31), pertaining to shape
noise, is given by:

Cs
2,2(0) = nin {02} + =2 (B.71)
s g

Z E; {RZT (Si - R;®,q; — Ti) QZT} . (B.72)
Letting:

“R;5-T) if i=1
fi:{sl oA e (B.73)

-R;s-1T; otherwise

0(2nxMs) ~R,®, ] if 1=1
Y, = o (B.74)
1(2nx2n)  (2nxM;) —-R;®, } otherwise
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the constanC,2 can be evaluated as follows:

N

Cor = " Ei[|If + i

=1

N
=1
N
= I + 267 ips + tr { X Xip; } (B.76)
=1

Taking the derivative of Equation (B.71) with respecttoresults in:

02,:0) nN  Cp

2 T~ 2 o _4°
0o? oz 20}

(B.77)

Setting this derivative to zero, the updated shape noisanag, then, takes the form:

N
1
95 T onN Z 611> + 267 Copps +tr { X7 Xigp; } . (B.78)

The Shape Model Update

The component of the maximisation step’s objective in EguaB.31), pertaining to the shape
model, is given by:

g (0) < Er [ si — R;®.q; — T,

2] (B.79)

N
. 2
s1 —R1P.q1 — T1H } + ZEZ [
=2

Taking the derivative of this objective with respectdg:

025.0) p, [RT (s ~R$,q, - T ) ~T] +XN:E- [RT <s- ~R;®,q; —T-) *T}
&is 3 1 1 19Psq1 197 rar ) 7 ) i Psqq i) d;

= RT(s1 —T1)E; [&1] — RIR1®:F; [anal | +
Z R/BE; [3:q] | - R/R,®,E; [q,a] | - R{T,E; [4] ] (B.80)

= RIT (s1 — TORIp — RTR1 &, Rqp1RI+
N
> RIBR:p:R] - RTR,®.Rqd:R] - RTTiRL ], (B.81)
=2

where:

B = [0(2n><1) I2n><2n] (B.82)
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Vectorising the derivative and equating with zero, the tgdahape model, then, takes the
form:

N -1
vec{@s} = <qu~)1Rg & Rcerl + Z RqCEzRqT & R?Rz> X
=2
A N ~ ~
vec{RlT (s1 - T) ATRL + Y R (BquSZ-RqT - TiﬁiTRg) } . (B.83)
=2
In deriving this solution, the following Kronecker produdentity was used:

vec{ABC} = (C” ® A) vec{B}. (B.84)
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Appendix C

DeMoLib: Deformable Model Library

All experiments in this dissertation were implemented gdime platform independent C++
library DeMbLi b, developed as part of this doctoral work. Apart form the matc corre-
spondence learning method presented in Chapter 3 and théviéediscriminative methods
for AAM fitting presented in Chapter 4, the library also faaticlasses for typical shape and
appearance model building as well as implementations ofnabeu of popular AAM fitting
procedures. All results in this dissertation can be repreduentirely using this library. The
source code of the library as well documentation, genenaget) the Doxygen documentation
systen%, can be found in the enclosed CD-ROM.

TheDeMbLi b library itself is composed of two parts: the library itsetfdaa GUI compo-
nent for manual annotation, model visualisation and fittialy experiments in this study can
be reproduced using the first component only. The third corapbis provided to accommo-
date ease of analysis of extensions. Installation instnuetfor all components are presented in
Section C.1. A tour of the various components are present&egctions C.2, C.3 and C.4 for
the library, executables and GUI components respectivehally, a short tutorial is presented
in Section C.5 for some common tasks on whHidMoLi b may be used.

C.1 Installation

System Requirements

DeMoLi b is developed to be platform independent and has been ettaliccessfully on
Microsoft Windows and Unix based platforms (including Lirend OS X). The library makes
extensive use of the third party libra’XL for allimage handling and linear algebra operations.
The easiest way to compilXL is through the common build systeGMake, available also
for Microsoft Windows and Unix based platforms. The verswrVXL used in this thesis is
version 1.9, which can be downloaded form:

http://vxl.sourceforge. net/
This requiresCMak e version 2.2 or higher, which can be downloaded from:

http://ww. cmake. or g/

*http://www.stack.nl/ dimitri/doxygen
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VXL contains a large amount of contributed components for uarfroblems in computer
vision. However,DeMoLi b requires only theor e component olVXL. As such, non-core
components can be disabled in tBigak e configuration process, to reduce compilation time.
The GUI component obeMoLi b requires the OpenCV library. AlthoughXL also has a

GUI component calleWGUI , its functionality is still rudimentaryOpenCV provides an easy
to use library for the various frame displays, as well asipomating a frame grabbing func-
tionality for extensions in real time tracking applicatsorrhe GUI component ddeMoLi b
has been compiled successfully usidgenCV version 1.0, which can be downloaded form:

htt p://sourceforge. net/projects/opencvlibrary/

Compilation

To compileDeMoLi b, we make use of thEMake build system. After extracting the library
into a directory of choice, the directory will contain fivelsdirectories:src, | i b, bi n,
confi ganddoc. In thesr c directory there is a file calle@VakeLi st s. t xt . In this file
change the variablégXL _DI Rto the directory wher&XL is installed. To build the library’s
makefile, change into theonf i g directory and execute the following command:

> cmake -i ../src/
where it is assumed th&MVake is globally installed. To build the whole library, inclugjn
all executables, executeake from within the same directory. The directory b will then,
contain all dynamic libraries arloli n will contain all executables. Notice that there are two
dynamic libraries il i b: | i bDeMoLi b andl i bl i bsvm Thel i bl i bsvmis a modified
version of thel i bsvmlibrary [24], which is used in the constrained iterativeatiminative
methods in Chapter 4.

If the GUI component oDeMbLi b is desired, uncomment the line:

#SUBDI RS( gui )
in CMakelLi st s. t xt by deleting the# character before thEMake configuration step de-
scribed above. Change into the subdirec®re/ gui / and change, in the
CMakelLi st s. t xt file, the variableSOPENCV_| NCLUDE DI R, OPENCV_LI B_.DI Rand
opencV_l i bs to reflect the configuration of the system. Compilation thekes the same
steps as described above. Tien directory will now contains GUI executables as well.

C.2 The Library

All source files for the library component BEMoLi b can be found in therc/ | i b/ direc-
tory. In this section, a brief overview of the main classegrasented. It should be noted, that
to avoid namespace confusion, all functions are implengewithin classes, where standalone
functions are defined as static functions of its class. REarififormation regarding their use
can be found in the documentation in tthec directory or the source files themselves.

Modelling

To model LDMs, DeMoLi b utilises three classes. These classes and their respeetive
scriptions are presented in Table C.3. They make extensigeotitheDeMbLi b_paw and
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DeMoLi b_pca classes that implement the piecewise affine warp and PCAatperespec-
tively. Files implementing the all these classes are in filamed after the class, with the
extensions h and. cxx.

Automatic Correspondence Learning

The method for pairwise correspondence learning preseant€thapter 3 is implemented in
the clasDeMoLi b_pw ear n within the filesDeMoLi b_pw ear n. h and
DeMoLi b_pw ear n. cxx.

Fitting

The various AAM fitting methods evaluated in Chapter 5 arel@amgnted in the classes listed
in Table C.2. It should be noted that all versions of the tteeadiscriminative method are
implemented with the option of making them background imargras described in Section 4.5.

Miscellaneous

The classes described above make use of a number of othee<lHst offer a number of
utilities for common operations involving LDM’s. Some oftbe are outlined in Table C.3.

C.3 The Executables

There are a number of command line executables built usiaditthary. Each of them are
outlined in Table C.4. Information regarding their inputiahles can be attained by using
the option- ?. For example, to get the various options of the appearanaehmaformation
executable:

> caminfo -7
Although most information regarding their use can be oletgiim this way, the pairwise learn-
ing executablgowl ear n requires a configuration file to be passed to the program. dn Fi
ure C.1, the format of this configuration is given along withexample of its entries.

C.4 The GUI

To ease the process of training, development and testing,G0JI applications are provided
with DeMoLi b. The first is the manual markup applicatiomr kup, which allows a user
to manually select a number of corresponding landmarks iatafsimages. It also has a
feature for automatically selecting salient landmarksfuisannotating the template image
in a method for pairwise learning of correspondences. A gandition file is required for
this application, where the images to be annotated areidedcas well as the shape files to
which the correspondences will be saved. An example of ihiidiguration file is shown in
Figure C.2.

The second GUI application samvi sual i se, the combined appearance model visu-
aliser. Anillustration of its interface is shown in FigureAClIt allows variations in the model's
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shape, appearance (denoted here witht thet r label), and combined appearance parame-
ter (denoted with thapper label) to be synthesised by moving the sliders. How the model
is presented can also be modified by toggling the display oftpdby pressing tha key),
triangulation (by pressing the key) and appearance (by pressing éhieey). Finally, the syn-
thesised appearance can be saved to an image file by pressimdey, which then requires
the user to enter the image’s filename in the terminal.

The third GUI application isleno_fi t, a deformable model fitting GUI. It allows the
placement of a model (similarity transform) in an image amalss the evolution of the model
throughout the fitting procedure’s iterations. An illusiva of the interface is shown in Fig-
ure C.5. As withcamvi sual i se, deno fit allows a variety of ways to visualise the
model (by selecting th@ to 7 keys for the various visualisation modes), and saving tregyin
with the model displayed, to a file.

The final GUI application provided witBeMbLi b is get bb, an application for defining
bounding boxes of visual objects in images. This applicati@s used to generate initiali-
sations of the pairwise method, discussed in Chapter 3.kédistas its input a configuration
file defining the various parameters including the imagesvidch a bounding box is desired.
In Figure C.3, an example of this configuration file is presdntlt should be noted that the
OpenCV's object detector can be used here by settingieect or variable in this config-
uration file as the path containing @penCV trained detector model. Otherwise, the user can
manually select the bounding box in each presented image.

C.5 A Quick Tutorial

In this section, a brief tutorial is presented to illustrite utility of DeMoLi b. The task that
is tackled by this tutorial is that of training and use of timaidtaneous inverse compositional
method for use in fitting. This is illustrated using some eglmimages and their annotations,
which can be found in thdat a directory.

First, the linear models of shape and appearance must heThiélse can be attained using
thet r ai n_.camexecutable as follows:
> ./traincam"../data/*.pts" "../data/*.pnnt ../datal/ Tutori al
--thim3 -f O
Once completed, the execution of this program producesfilest

e Tutorial -1evel 0. nesh: data for the piecewise affine warping function.
e Tutorial -1evel 0. pdm alinear shape model.

e Tutorial-1evel 0.tdm alinear appearance model.

e Tutorial -1evel 0. cam acombined appearance model.

To visualise the built model, execute thamvi sual i se program as follows:
> ./camvisualise ../data/ Tutorial -level O.cam-a -t -p
where variations in shape and appearance can be synthegiseoving the sliders pertaining
to theshape, t ext r andapper labels.
To train an AAM using this model, execute the following cormda
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> . /trainaamic 1 ../data/ Tutorial ../data/ Tutorial-Ievel #.cam
-f 0 -v

which trains a simultaneous inverse compositional AAM.ifair the trained AAM is writ-
ten to the fileTut ori al - |1 evel 0. aami c_si m To visualise the trained model’s fitting,
execute the command:

> ./denofit ../data/ Tutorial-Ievel #. aamic_sim

../data/inmD1l. pnm-f 0 -i 1

Select the simultaneous visualisation of shape, triatignland appearance by pressing éhe
key. To simulate fitting, press ttiekey repeatedly until the model converges.

Table C.1: LDM Modelling Classes
| Class Name \ Description |
DeMoLi b_pdm Models the shape of an LDM through a point distribution mogdel
(see Section 2.1.1). It uses alinear intrinsic parametiois com-
posed with a 2D similarity transform to account for globaints-
lation, scale and rotation variations.

DeMoLi bt dm Models the appearance of an LDM with a linear intrinsic pagam
terisation with a linear lighting model (see Section 2.1.2)
DeMoLi b_cam Simultaneously models the shape and appearance of an | DM

through a combined appearance representation (see S2dtigh
It contains, as public members, thBeMoLi b_pdm and
DeMbLi b_t dmobijects.




Table C.2 AAM Fitting Methods

Class Name

| Files

| Description

DeMoLi b_deno,
DeMoLi b_deno_pyrd

DeMoLi b_deno. h

Virtual interface class for all LDM fitting procedure
DeM.i b_deno_pyr d implements a Gaussian pyram
for fitting.

U7

id

DeMoLi b_aami c_po

DeMoLi b_aami c_po. h,
DeMoLi b_aami c_po. cxx

Implementation of the project-out inverse compositio
AAM [83].

nal

DeMoLi b_.aami c_si m

DeMbLi b_aami c_si m h,
DeMboLi b_aami c_si m cxx

Implementation of the simultaneous inverse comp
tional AAM [4].

DSI-

DeMoLi b_.aami c_nor m

DeMoLi b_aami c_nor m h,
DeMbLi b_aami c_nor m cxx

Implementation of the normalisation inverse compa
tional AAM [4].

Si-

DeMoLi b_aamori g

DeMoLi b_aamori g. h,
DeMoLi b_aamori g. cxx

Implementation of the original fixed Jacobian and ling
regression AAM [30; 43].

zar

DeMoLi b_.aamdi _| i near

DeMoLi b_.aamdi _| i near. h,
DeMoLi b_.aamdi | i near . cxx

Implementation of the linear iterative-discriminati
method for the asymptotically trained (Section 4.3.1) &
constrained optimisation (Section 4.3.1) methods.

e
and

DeMoLi b_aamdi _haar

DeMoLi b_aamdi _haar . h,
DeMoLi b_aamdi _haar . cxx

Implementation of the Haar-like feature based iterati
discriminative method (Section 4.3.2).

ve-

DeMoLi b_.aamdi _svm

DeMoLi b_aamdi _svm h,
DeMoLi b_.aamdi _svm cxXx

Implementation of the nonlinear-SVR based iterative;

discriminative method (Section 4.3.2).

DeMoLi b_aamdi _svmr ob

DeMoLi b_aamdi _svmr ob. h,
DeMoLi b_aamdi _svmr ob. cxx

Implementation of the robust nonlinearSVR based
iterative-discriminative method (Section 4.4).

&1

Aleiqr [9po ejqewojaqg qITonea
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Table C.3. Miscellaneous Classes
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| Class Name Description |

DeMoLi b.i o Various input-output tools including reading/writing gleg|
and triangulation files, finding corresponding shape and|im-
age filenames, and loading various objects from disk.

DeMoLi b_geo Implements a number of geometrical procedures such as De-
launay triangulation, 2D Procrustes alignment and 3D rota-
tion matrices.

DeMoLi b_haar Implements the extended Haar-like features [72] and regres
sor described in Section 4.3.2.

DeMoLi b_ m oad An easy to use image set loader with options of filtering,

Gaussian Pyramid reductions and background segmentation.

DeMoLi b_ccl ass

The colour classifier described in Section 5.5.

DeMoLi b_sanpl er

A class for sampling random AAM parameter perturbatic
used to generate training and test sets for experimen
Chapter 5.

Table C.4. Executables

DNS
IS in

h

| Executable Description |
asf 2pts Converts the IMM asf points file format to that used i
DeMoLi b, which is based on FGNet'9t s file format.

cami nfo Prints information about a trained combined appears

model to a terminal.

nce

pertrube_cam

Creates a datafile containing a set of perturbed comb

ned

appearance model parameters along with their optimal
settings for a set of images. Used for testing the perfor-
mance of LDM fitting methods.

pw earn Perform pairwise correspondence learning over a s¢t of
images.

res2hi st Builds histograms of convergence accuracies from g re-
sults data file (the output of a call teest _denp).

t est .deno Test a trained LDM fitting procedure.

trai n.aamorig Train the original AAM [].

trai n.aamic Train the various inverse compositional AAM fitting
methods.

trai n.aamdi i near Train the various linear iterative-discriminative AAM fit-
ting method.

trai n.aamdi _haar

Train the Haar-like feature based AAM.

trai n.aamsvm

Trains the nonlinear-SVR based AAM. Also includes

D

the robust method.
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i: 0 #index in list pertaining to tenplate
Shape: i magel. pts #shape of tenplate
Il mageDir: ./ #directory contai ni ng i mages
InputDir: ./ #directory to wite point-files to
QutputDir: ./ #directory to wite point-files to
| mges: { #f il enanmes of image files

i magel. pnm

i magel0. pnm

#boundi ng box for each imge (x1,yl, x2,y2)

#if this is specified, box is ignored!

#out put shape files

Figure C.1: The pairwise learning executable configuration for thecakablepwl ear n.

}
Box: {
10 10 20 20
12314
}
I nput: {
i magel. pts
i magelO. pts
}
Qutput: {
i mgel. pts
i mgel0. pts
}
n: 10
lmageDir: ./
QutputDir: ./
| mges {
i magel. pnm
i magel0. pnm
}
Poi nts {
i magel. pts
i mageN. pts
}

#Nunber of inages to annotate

#Di rectory contai ni ng i mages
#Directory to save annotations in
#|l rage nanes

#Files to store annotations in

Figure C.2: An example configuration file for thear kup application.
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Qut put: box. t xt #output file
Detector: det.xm #OpenCV trained detector object (optional)

| mageDir: ./ #di rectory containi ng i mages
| mges: { #filenanes of inmage files
i mgel. pnm

i magel0. pnm

Figure C.3: An example configuration file for thget bb application.

Halala) AppearanceModel 80686 farameters

Shape 0 e

Shape 1 &

Shape 2 &

Textr 0 &

Textr 1 &

Textr 2 &

Apper 0 é

Apper 1 o

Apper 2 _A

4
Figure C.4: Thecamvi sual i se application.
‘000 Deformable Model Fitting 800 Pose

% o
b o
x-trans -
y-trans -

Figure C.5: Thedenon_fi t application.
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