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Abstract 
The aim of my study is twofold: (1) to develop a methodology to investigate the temporal 

variation in susceptibility of a landscape to fire and (2) to identify possible critical thresholds at 

which landscapes becomes predisposed to large landscape fires.  Critical thresholds are based on 

two key indicators: landscape dryness and potential fire spread.  The study of these 

susceptibility factors uses both medium and long-term weather datasets: 65 years of three-

hourly and daily weather data from Canberra airport and 136 years of daily rainfall records from 

Queanbeyan.  Landscape dryness and fire weather are examined in a medium-term study, 

whereas only landscape dryness is used in the long-term study. 

Based on the soil dryness index (MSDI) derived by Mount (1972), a new version of a 

seasonal dryness index (RSDI) was derived from thermodynamic equations, using net radiation 

and rainfall as the two major pre-determinants of the soil water balance at any point in the 

landscape.  The RSDI model is based on the heat and water balance concepts (Budyko, 1974; 

Oke, 1987), as well as more recent remote sensing studies of gross primary productivity and 

transpiration (Berry, 2001; Berry and Roderick, 2002; 2004) and soil evaporation (Priestley and 

Taylor, 1972; Fisher et al., 2008).  The RSDI model requires a minimal number of input 

weather parameters: daily rainfall, maximum and minimum temperature and relative humidity, 

as well as projective foliage cover of functional leaf types for any given vegetation (Berry, 

2001; Berry and Roderick, 2004; Fisher et al., 2008). 

When assessed by independent tests using comparable studies and streamflow data, the 

RSDI model performed as well as the original MSDI model.  The RSDI model was selected to 

produce a medium-term landscape dryness using data from Canberra airport.  The Fowler daily 

soil water balance model (Fowler, 1992) was employed for the long-term time series of 

landscape dryness because it only requires rainfall data and an annual profile of average daily 

evaporation. 

A new fire season calendar is developed by averaging 65 years of modelled indices of 

landscape dryness (SWD), fuel moisture and potential fire spread.  Five instead of the four 

traditional seasons in the fire seasons calendar were identified:  winter, spring, high summer, 

late summer, and autumn with readily identifiable changes in the seasons. The calibrated RSDI 

and Fowler daily soil water balance model were then used to classify the fire seasons by the 

annual profiles of soil water deficit over both the medium and long-term.  The annual profiles of 

fire seasons were also classified using the Fire Weather Index (FWI) from the Canadian Forest 

Fire Danger Rating System.  The Fire Weather Index was selected as the preferred model for 

potential fire spread after comparing it with the FFDI using two methods: (1) an annual profile 

of a daily potential fire spread anomaly and (2) classification trees of daily potential fire spread.  

The classification of annual profiles of soil water deficit and FWI distilled down to six and 
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seven readily identifiable profiles respectively.  For both indices, there is considerable 

heterogeneity in the profiles of fire seasons because of the variability of the synoptic weather 

patterns, producing rainfall in any given year.  The long-term study provided an important set of 

fire susceptibility benchmarks for recently extreme fire seasons, 1982/83, 2002/03 and 2006/07.  

The analysis reaffirmed the need for calibrated and validated models of landscape dryness and 

potential fire spread because the results of the classification technique is dependent on the shape 

of the annual profiles produced by each index.  The analysis also showed that these calibrated 

models could be used to identify the high-risk fire seasons since the 1870s. 

A lightning ignition model, using a decision tree modelling approach, successfully 

modelled the temporal likelihood of lightning ignition using thunderstorm-days, precipitation, 

landscape dryness and fire weather.  The model indicated that there have been 104 days in the 

65 year record at Canberra Airport that have had the potential to start fires.  Out of these, only 

three large landscape fires have occurred in 1951/52, 1982/83, and 2002/03 in the ACT region, 

which had the right combination of landscape dryness and potential fire spread conditions. 

Finally, this study suggests possible relationships between the more severe patterns of 

landscape dryness and potential fire spread, and the broader continental and sub-global climatic 

factors important to the development of severe fire conditions. 

Further improvement to the models of landscape dryness and fire weather is recommended 

for future evaluation of fire susceptibility.  The all-wave net radiation model (RSDI) shows 

considerable potential for evaluation of landscape dryness in other regions in south eastern 

Australia as long as there are accurate and continuous records of the key weather variables that 

drive the models including: precipitation, minimum and maximum temperature and relative 

humidity.  The Canadian Fire Weather Index model could be further adapted as an index of fire 

weather and potential fire spread in south eastern Australia by calibrating and validating the 

algorithms for Drought Code (DC), Duff Moisture Content (DMC), and Fine Fuel Moisture 

Content (FFMC). 
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Chapter 1: Introduction 

1.1 Background 
The Black Saturday fires in Victoria in February 2009 were devastating in their impact 

upon life, property, vegetation and wildlife, occurring under extremes of landscape dryness and 

fire weather.  A key issue is how the Victorian landscapes became so flammable and susceptible 

to fires burning at such extreme intensities, catching local communities and fire authorities off 

guard.  These fires, together with those that preceded them in 1851, 1898, 1914, 1926, 1939, 

1982, 2003 and 2006, can be regarded as large landscape fires (Council of Australian 

Governments, 2003; Foley, 1947).  A LLF is defined here as a fire that burns a significant 

proportion of a regional landscape, somewhere between 20 and 100% of its area.  The area burnt 

in an LLF is generally over 20,000 hectares in size and likely to be more than 100,000 hectares 

in size. 

This study of landscape susceptibility to large fires is about the historical potential for 

large landscape fires (LLFs) to develop in the ACT study region, based on the seasonal 

coincidence of fire susceptibility factors: seasonal landscape dryness, potential fire spread, and 

sources of ignition (Figure 1.1).  Once the longer-term dry landscape conditions are established, 

the occurrence and potential size of a LLF depend on sources of fire ignition and the daily 

nature of fire weather.  Causes of fire ignition can be from either lightning or human-caused 

ignitions. Daily weather encompasses diurnal variation in factors such as temperature, 

atmospheric moisture, wind speed, and atmospheric instability.  The synoptic weather processes 

that drive the extremes of daily weather, such as dry thunderstorms and the hot, dry and windy 

weather conditions are related to large-scale processes that are an order of magnitude larger in 

scale than a landscape. 

In this study, the three fire susceptibility factors are viewed primarily in a temporal, rather 

than a spatio-temporal perspective.  The first two factors of landscape dryness and potential fire 

spread predispose a landscape to a LLF while ignition in some form realises the risk of 

occurrence of a LLF.  As Malcolm Gill (2005:67) states: ‘The greatest chance of large and 

destructive fires occurs when the fuels have reached maximum quantity, are continuous over a 

large region, are in an extremely dry state, and are subject to a strong dry wind in an unstable 

atmosphere.’ 

This study thus assumes that the biophysical variation in a landscape, such as variation in 

topography, vegetation, and disturbance history, is a constant while examining the temporal 

nature of landscape susceptibility to LLFs from one or two representative points in a landscape.  

A key factor relating to the spatial aspect of landscape dryness is that of fuel continuity across a 

landscape.  It is assumed that once landscape dryness has reached critical levels, high spatial 

continuity of dry and available fuels exists across a heterogeneous landscape with highly varied 
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terrain, vegetation, and climate.  That is, even the damper and moister areas in the landscape, 

such as sheltered wet forests, become dry and available to burn as part of a LLF. 

The first predisposing factor of landscape dryness is a seasonal process governed by the 

levels of dryness reached in vegetation and soil domains.  The level of dryness attained in a year 

is a cumulative function of seasonal daily levels of solar radiation and rainfall.  Whilst the 

drying out of soils and vegetation is a seasonal annual process, accumulated levels of dryness in 

the soils and underlying regolith can last for several years, generally termed extended drought.  

Landscape dryness encompasses two critical factors in fire susceptibility at the landscape scale: 

fuel combustibility and vegetation flammability.  The first term ‘fuel combustibility’ refers to 

the ease at which dead forest fuels can catch fire and sustain flaming combustion.  The second 

term ‘flammability’ refers to the ease with which live forest fuels, particularly leaves and small 

twigs, can ignite and burn, upon being heated from the flames produced by dead forest fuels 

(Anderson, 1970).  Therefore, it is imperative to know when these highly combustible and 

flammable conditions exist in a landscape in order to anticipate when a LLF might occur.  These 

fire-susceptible conditions take time to develop – usually over a season and occasionally across 

seasons and years. 

Seasonal climate
and weather

Vegetation and soil domain

Daily all-wave
net radiation

Evaporation

Daily weather

Potential
fire spread

Vegetation

Daily rainfall

Potential human or
lightning ignition

Fuel
combustibility

Vegetation
flammability

Soil

Large 
landscape fires

Fuel continuity 
across the landscape

Landscape dryness
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and weather
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Vegetation
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Potential human or
lightning ignition
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Large 
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Fuel continuity 
across the landscape

Landscape dryness

Figure 1.1 Key factors in landscape susceptibility to large fires 

Notes: (1) Soil dryness is used as an indirect measure of fuel combustibility and vegetation flammability, given that 

these factors are not estimated directly. 

(2) The predisposing fire susceptibility factors of vegetation flammability, fuel combustibility, and fuel 

continuity in the landscape are in the box termed landscape dryness in the centre of the diagram. 
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The approach in this study necessitates monitoring the state of historical conditions of the 

seasonal factor in landscape susceptibility to large fires — landscape dryness.  A daily soil 

water balance model (DSWBM) is one simple way to assess the state of historical soil dryness 

and hence vegetation and landscape dryness, based on weather data from one or more 

representative weather stations. 

The equation for a DSWBM takes the general form: 

 TOA QQ  E -P MS   (mm d-1). Equation 1.1 

where MS is the change in soil moisture store, P is the daily precipitation, EA is actual 

total evaporation; QO is the runoff via overland flow above the soil surface; and QT is 

the runoff via through-flow within the soil and the immediate sub-soil. 

Equation 1.1 represents the state of balance between the processes of rainfall, evaporation, 

and run-off at a landscape scale.  This soil moisture balance can be monitored using a variety of 

drought or soil moisture indexes, such as the Keetch-Byram Drought Index (KBDI) (Keetch and 

Byram, 1968), the Palmer Drought Index (PDI) (Palmer, 1965), the Mount Soil Dryness Index 

(Mount, 1972) and the Fowler soil water balance model (F-SWDBM) (Fowler, 1992; 1994).  

These soil water balance models (DSWBMs) can be set up at a representative point in a 

catchment or a region to model hydrological processes using one set of model parameters 

(Fowler and Adams, 2004).  The change of soil moisture conditions can be monitored through 

time using an index of soil moisture deficit, termed the Soil Dryness Index (SDI) in the MSDI 

model, or Soil Water Deficit (SWD) in the F-SWDBM model.  In this study, the term SWD is 

used and is defined similarly to the SDI as ‘the amount of effective rainfall required to bring the 

soil back up to field capacity’ (Mount, 1972:4). 

Daily interactions between atmospheric moisture, such as water vapour pressure and cloud 

cover, and extra-terrestrial radiation (RA), drive all-wave net radiation (RN) (Budyko, 1974; 

Oke, 1987; Ward and Robinson, 2000).  The fraction of the all-wave net radiation reaching the 

forest canopy and the soil surface governs potential evaporation (EP).  EP is the maximum 

evaporation that can take place from a surface fully saturated with water over a specified time 

(Lhomme, 1997).  It is affected by: (1) the stage in the seasonal cycle, (2) the latitudinal 

position (Budyko, 1974; Iqbal, 1983; Oke, 1987; Roderick, 1993), (3) the position in the 

landscape such as topographic position, slope, and aspect (Iqbal, 1983), and (4) the vegetation 

and soil cover (Budyko, 1974; Berry, 2001; Berry and Roderick, 2004; Berry et al., 2006).    

The proportion of EP converted into actual evaporation (EA) is in turn influenced by the seasonal 

patterns of rainfall that regulate soil moisture and vegetation conditions, such as vegetation 

canopy cover and plant vigour. 

The second factor is fire weather.  Brown and Davis (1973) defined fire weather as: 

‘weather conditions which influence fire ignition, fire behaviour or control’.  Daily fire weather 

incorporates a number of factors that vary from day to day including temperature, air moisture, 
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atmospheric instability, and wind speed.  Day-to-day fire weather is generally difficult to 

forecast over periods longer than a week, although the weather patterns during the year conform 

to a natural range of means and expected variability based on our knowledge of historical 

climate in a region.  The daily fire weather can be at times quite stable yet at other times quite 

chaotic and unpredictable.  The influence of fire weather is considerable given that it can cause 

dry vegetation and fuels to dry out in the lead-up to the peak period of fire susceptibility and 

drive severe fires if ignited. 

Monitoring the interactions between landscape dryness and daily fire weather is achieved 

using an index of potential fire spread, which functions at much shorter time scales than the 

seasonal landscape dryness factor.  A potential fire spread index (PFSI) estimates rate of spread 

and potential fire intensity at a given place through time.  A potential fire spread index 

combines three factors: fuel availability, fuel moisture levels in fine and coarse fuels, and 

average wind speed (McArthur, 1967; Van Wagner, 1987).  

A drought index, hereafter in this study referred to as a landscape dryness index, indirectly 

estimates the first factor in a PFSI: availability of both fine and coarse dead fuels for a 

representative vegetation type.  As there is no direct physical correlation between fuel 

availability and a drought or soil moisture index, the relationship has to be created empirically.  

This necessity led McArthur to devise a simple drought factor based on the Keetch-Byram 

Drought Index (KBDI) and the  number of days since rain (McArthur, 1967).  The Soil Dryness 

Index model (SDI) was developed in 1972 in response to research concerns about the 

applicability of the KBDI to Australian conditions (Mount, 1972).  Judging by the absence of 

papers in the literature, the KBDI has never been formally calibrated in south eastern Australia.  

The Mount Soil Dryness (MSDI) model was calibrated first at Lidsdale near Lithgow in New 

South Wales, based on a comparison of soil moisture and run-off data, and then on a limited 

number of catchments in Tasmania (Mount, 1972). 

The second factor in a PFSI, fuel moisture, is one measure of the ignitability and 

combustibility of the surface dead fuels on the forest floor.  Ambient temperature, relative 

humidity, recent rainfall effects, and, to some extent, solar radiation and wind speed govern fuel 

moisture levels of the different fuel components on the forest floor (Byram and Jemison, 1943; 

Van Wagner, 1987). 

The third factor in a PFSI is wind speed.  Under extreme wind conditions, a PFSI indicates 

levels of extreme fire behaviour once soil, vegetation, and coarse fuels moisture content 

(landscape dryness) as well as fine fuel moisture have fallen below critical levels.  Knowing 

when in which part of the fire season, the extremes of fire weather might occur are thus 

fundamental for understanding the fire susceptibility of a given forested catchment or region. 

The terms for PFSI used in fire science studies are: (1) Forest Fire Danger Index (FFDI) or, 

(2) Fire Weather Index (FWI).  Neither term represents the real function and meaning of a PFSI 
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and hence is potentially misleading.  When estimating potential fire spread, a PFSI assumes a 

basic constant set of fuel conditions, such as fuel loads, fuel arrangement, and fuel compaction.  

Other factors affecting fire spread, such as elevation, slope, aspect, and topographic position, are 

kept constant. 

The Forest Fire Danger Index (FFDI) has served as an index of fire danger in forest 

settings in Australia since the 1960s (McArthur, 1966; 1967).  The FFDI is a simple numeric 

index, scaled from 0-100, representing the range of potential fire spread for a constant set of fuel 

conditions.  Much of McArthur’s fire behaviour research was based on point observations of the 

relationships between fuel, fire weather and fire behaviour and then extrapolated to a range of 

forest environments in Australia (Dudley, 2003).  Field-testing and verification of the Australian 

models of potential fire spread have not been undertaken in different regional and local 

situations as would appear warranted. 

A possible alternative to the FFDI is the Fire Weather Index (FWI) — a component of the 

Canadian Forest Fire Danger Rating System (CFFDRS) used in the boreal and wet temperate 

forests of Canada.  The FWI was originally derived to assess fire behaviour potential in 

Canadian boreal pine forests (Van Wagner, 1987).  It has since been adapted to forecast fire 

danger in a wide variety of environments in the world including: boreal forests in Alaska and 

Sweden, tropical rainforests in Indonesia and Malaysia; grasslands, shrublands and exotic pine 

plantations in New Zealand and Fiji; Mediterranean pine forests and shrublands in Portugal, 

Spain, Italy and Greece (Taylor and Alexander, 2006; Wotton, 2008).  The FWI incorporates 

indices of landscape dryness, fuel moisture, fuel availability and fire weather as separate 

discrete modules (Van Wagner, 1987).  This type of approach enables parts of the FWI system 

to be tested and validated independently and then combined later.  While the CFFDRS system 

has been adapted to New Zealand conditions (Fogarty et al., 1998a), limited testing of the 

CFFDRS has been done for Australian pine plantations (Alexander, 1998), but not for 

Australian eucalypt forests.  The distinct advantage of the FWI in the CFFDRS over the FFDI 

model of fire weather is the simplicity, generality and transparency of the tightly integrated fuel 

moisture and fuel availability components of the FWI. 

The basic shortcomings of soil water deficit and potential fire spread models used in 

Australia are: 

(1) they have not been adequately tested in a range of spatial and temporal conditions; 

(2) these models have not been tested within a process-based framework and they should 

not be extrapolated beyond known equations and observed data; 

(3) the models have been applied in widely varying conditions without firstly being 

calibrated; 

(4) the data and field studies on which the models were based is sometimes unavailable or 

missing (for example, KBDI and FFDI); and, 
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(5) an uncalibrated untested model may lead to false assumptions and decisions being made 

in field applications. 

The errors associated with the use of models could lead to a failure to recognise severe fire 

conditions characteristic of LLFs, with potentially catastrophic consequences.  This is an 

example of a type II error (errors of omission or false negative result) causing a failure to 

forecast a LLF (Taylor and Alexander, 2006).  Thus, it is vital that the models of landscape 

dryness and potential fire spread are calibrated or checked before they are applied under 

operational conditions. 

To overcome the above model limitations and shortcomings, this study selects models that 

represent the biophysical processes of landscape dryness and potential fire spread as closely as 

possible.  For instance, landscape dryness models should be founded on tightly integrated eco-

hydrological processes within vegetation ecosystems in a region.  By relating the indices of fire 

susceptibility to biophysical processes in a landscape, critical values can be identified that mark 

significant changes in fuel combustibility and vegetation flammability.  The critical thresholds 

of fire susceptibility then have some basis in reality.  For instance, when a value of an index of 

landscape dryness has been surpassed, we can expect to find deeply dried soil profiles, cured 

grasses and herbs, recognisable plant stress in vegetation and negligible water flow in major 

streams.  By monitoring and recognising these features in the landscape through simple 

landscape dryness indices, we should be better able to anticipate the tipping point in landscape 

susceptibility to large fires that lead to a high risk of LLFs.  We can also anticipate when severe 

fire weather conditions, when combined with very dry landscape conditions, can lead to severe 

and destructive fires, as evidenced by the loss of life and property in the February 2009 fires in 

Victoria. 

1.2 Significance and relevance of the study 
The south eastern corner of Australia has been subject to large, if sometimes catastrophic, 

fires since European fires since European settlement.  Most of the largest and most damaging 

fires have occurred in the dry and wet sclerophyll forests in the coastal and hinterland mountain 

ranges along the Great Dividing Range between Melbourne and Sydney.  The two most severe 

fires have been the February 6th 1851 and January 13th 1939, mainly in Victoria but extending 

into southern New South Wales.  These fires are estimated to have burnt five and three million 

hectares respectively.  The three factors involved were prolonged drought, followed by a searing 

prolonged heat wave, and culminating with a day of extremes temperatures (45-47 oC) and gale 

force winds.  Just recently, the February 7th 2009 fires in Victoria had comparable fire weather 

to that of the 1851 and 1939 fires but only had few fires alight either prior to or on the day of 

extreme fire weather. 
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There have been other fire seasons in southern eastern Australia with LLFs but with not 

quite the severity and impact of the fire seasons of 1851/52, 1938/39, and 2008/09.  In these 

cases, extensive droughts and short spells of severe to extreme fire weather resulted in LLFs in 

1897/98, 1905/06, 1925/26, 1931/32, 1943/44, 1951/52, 1964/65, 1968/69, 1982/83 up until 

1993. 

Since 1994, there has been a run of relatively frequent fire seasons at intervals from two to 

four years in south eastern Australia.  In the northern part, in the Sydney sandstone basin, 

between 500,000 and 1,000,000 ha of forest were burnt during the 1993/94, 1997/98, 2001/02, 

and 2002/03 fire seasons.  Further south, in the Victorian and NSW Alps, between 1,200,000 

and 1,300,000 ha of montane and sub-alpine forest were burnt on two occasions, in 2002/03  

and 2006/07 , and most recently, 430,000 hectares were burnt on a single day on February 7th in 

2008/09 (Australian Bureau of Statistics, 2003; Department of Sustainability and the 

Environment, 2009).  Because of the recent LLFs in the last decade, large areas of burnt-over 

forest are now in a highly vulnerable condition requiring decades of protection and management 

to facilitate their reversion to more mature forests.  Their protection from future devastating 

LLFs will become increasingly important in the years to come.  Otherwise, large areas of forest 

will remain in a permanent regrowth state that will facilitate future LLFs. 

At a global scale, LLFs have become more widespread and more frequent in sub-tropical, 

temperate, and boreal forests in the last 20 years, compared with the last one hundred years.  

This trend is expected to continue with the most recent International Panel of Climate Change 

report concluding that forest fires are likely to become more frequent, larger and more intense in 

these regions (IPCC, 2007a; IPCC, 2007b).  In the forests of Northern America and Canada a 

significant increase in the occurrence of LLFs has been reported in the last 25 years (Flannigan 

and Wotton, 2001; Westerling et al., 2003).  The IPCC report also concluded that there could be 

an increase in frequency of droughts in many parts of the world, including SE Australia, with a 

likely increase in frequency and severity of LLFs. 

A medium or long-term retrospective view of the full range of landscape dryness, potential 

fire spread, and lightning ignition in a regional landscape can increase our knowledge and 

understanding of the conditions under which LLFs have developed in the past.  This long-term 

view could then assist in the anticipation and preparation of such events by: 

(1) interpreting the potential for LLFs in any given fire season by comparing the 

present conditions of landscape dryness and fire spread potential with the historical 

seasonal profiles of these factors in past fire seasons; 

(2) monitoring landscape conditions to see whether the thresholds of the first two 

susceptibility factors, landscape dryness and potential fire spread, have been 

reached or exceeded; and 
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(3) knowing when lightning ignition has coincided with very dry landscapes and runs 

of severe fire weather, and using this knowledge to predict when dry thunderstorms 

are likely to start fires on any given day during a fire season. 

This study seeks to develop a deeper knowledge of the temporal variations in conditions of 

landscape dryness, fire weather and lightning ignition, which together shape the potential for a 

LLF in any given fire season, using locally calibrated indices.  The study also uses the concepts 

of threshold values of landscape dryness and potential fire spread to find out in what part of a 

fire season the potential for a LLF exists.  To derive these threshold values requires appropriate 

and accurate models of landscape dryness and potential fire spread. 

The philosophy behind this study is that the concepts and methods can be applied to other 

regions in south eastern Australia to anticipate potential lethal combinations of highly 

flammable landscapes with extremes of fire weather, which devastated Victoria and elsewhere 

in south eastern Australia in recent fire seasons: 2002/2003, 2006/07, and 2008/2009.  The 

practical application to field management is via three key steps: first, the careful evaluation of 

the weather data and suitable models; second, the verification and validation of the outputs from 

the models; third, the analysis and interpretation of landscape susceptibility to fire, based on the 

models; and fourth, relating the results to the wider temporal and spatial context. 

1.3 Thesis topic 
This dissertation develops a method for analysing and interpreting reconstructed historic 

fire susceptibility of the ACT region’s forested landscape, using two daily indicators of fire 

susceptibility: landscape dryness and potential fire spread.  The other factor in a landscape’s 

susceptibility to large fires, fire ignition, is considered briefly in terms of daily lightning ignition 

potential. 

The thesis represents an exploration of the seasonal and longer-term temporal views of 

landscape susceptibility to large fires based on (1) landscape dryness and (2) potential fire 

spread, based on the most realistic models and data available within a region. 

The approach taken and the philosophy underlying are to examine and then combine the 

different temporal views to assess: 

(1) how landscape susceptibility to LLFs has varied through time; 

(2) to find out specifically in which fire seasons and in what part of these seasons the 

highest potential for LLFs has existed; and 

(3) to determine any discernible trends in year-to-year or decade-to-decade potential for 

LLFs in the fire season record. 

The approach taken in this study is presented in Figure 1.2.  Landscape susceptibility to 

large fires is examined from a medium and long-term perspective, necessitating models and 

weather data to support the integrated analyses conducted in this study. 
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The thesis sets out to model fire susceptibility using the most reliable and accurate weather 

records available locally.  The yearly fire seasonal profiles, based on year-day number, serve as 

a standard basis for short, medium, and long-term comparison of the trends, sequences, and 

types of fire seasons.  These annual profiles also support classification methods allowing 

classification of fire seasons into a small number of categories or types.  Two views of the 

yearly profiles are developed: one is based on an index of landscape dryness and the other is 

based on an index of potential fire spread.  These two factors are not independent – potential fire 

spread indices take into account landscape dryness, which is an indirect surrogate for fuel 

availability and continuity, and to a lesser extent vegetation flammability (McArthur, 1962a; 

McArthur, 1967; Deeming et al., 1978; Van Wagner, 1987). 

Where possible, calibrated and validated models, used to evaluate landscape susceptibility 

to large fires, are employed.  The approach is based on the selection and development of models 

of the indices that reflect biophysical processes as closely as possible.  For instance, the process 

of daily evaporation equates to known or estimated evaporation from soil and vegetation, and 

this leads to levels of soil moisture in a catchment that produce known levels of water run-off. 

This means testing the validity of hydrological processes within a daily soil water balance 

model such as soil evaporation, plant transpiration, and interception of rainfall.  In the case of an 

index of potential fire spread, this has meant selecting one that best represents the state of 

seasonal fuel and fire weather in any given part of a fire season. 
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Figure 1.2 The methodology employed in this study to analyse and interpret 
landscape susceptibility to large fires 
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1.4 Research questions and organisation of the 
remainder of the thesis 

The study is organised into 10 chapters that detail the steps and processes required to 

model and interpret the key indicators of landscape susceptibility to large fires.  The 

organisation of the study is based on the approach shown in Figure 1.2 and the key research 

questions that relate to the development of the model of landscape susceptibility to large fires.  

Each chapter is based upon one or more key research questions that together provide the 

research framework for the topic (Table 1.1).  Chapters 3-7 involve the selection of models and 

collation of the necessary data in order to prepare the time series of the fire susceptibility 

datasets for analysis.  Chapters 8-9 involve the detailed interpretation of landscape susceptibility 

to large landscape fires in the medium and long-term perspectives. 

In subsequent chapters, the topic of landscape susceptibility to large fires is dealt with as 

follows. 

Chapter 2 describes the study setting in terms of local climate, topography, vegetation, and 

soils.  Despite the heterogeneity of the ACT region’s landscapes, the study aims to model 

landscape dryness in at least two of its three climatic provinces (modified Koëppen provinces 

Cfa and Cfb) and potential fire spread in at least one (Cfa). 

Chapter 3 first outlines which daily soil water balance models are best suited to the study 

of medium and long-term landscape dryness.  Next, a net radiation-based daily soil water 

balance model is developed from the Mount Soil Dryness Index (MSDI), using equations for 

soil evaporation and plant transpiration sourced from the literature that best replicates real world 

processes and conditions.  The models for these two evaporation processes are shown to 

substitute successfully for the more general evaporation evapotranspiration model used in the 

MSDI model. 

Chapter 4 outlines the ideal modelling framework and assesses which weather stations 

have the necessary data at the standard specified for this study.  Based on those weather stations 

with suitable weather datasets, the modelling framework is modified to fit the best available 

weather data.  The last part of the chapter focuses on (1) the standards of weather data 

standards, (2) the availability of weather datasets that meet those standards, (3) the 

completeness of the weather datasets, and (4) methods used to collate continuous and complete 

medium and long-term datasets for the fire susceptibility models. 
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Table 1.1 Research questions dealt with in subsequent chapters 

Chapter Research Question 

Chapter 2 (1) How feasible is it to apply a simple temporal model of landscape susceptibility to large 

fires to a region with wide ranging climate, topography, vegetation, soils, and fire history? 

(2) Which daily soil water balance model (DSWBM) is best suited to the study of landscape 

dryness over the medium and long term? 

Chapter 3 
(3) Can simple and elegant sub-models of soil evaporation and plant transpiration replace 

evapotranspiration models? 

Chapter 4 (4) As part of the ideal modelling framework for this study, what datasets for medium and 

long-term indices of landscape dryness and potential fire spread can be constructed for 

each of the three climate zones? 

Chapter 5 (5) Can all-wave net radiation (RN) and its components be estimated to sufficient levels of 

accuracy as a precursor to estimating potential evaporation (EP)? 

Chapter 6 (6) Which daily soil water balance models best approximate the hydrological processes of 

evaporation, run-off, and soil water deficit and should be used for further analysis of 

landscape susceptibility to large fires? 

(7) Can a threshold of soil water deficit (SWD) indicate a realistic threshold for fuel 

availability, combustibility, and vegetation flammability in a forested landscape? 

Chapter 7 
(8) Which of the PFSI models is the most transparent and explicit, and best integrates the 

factors involved in estimating potential fire spread? 

(9) Does redefining the season and the periods within a fire season using fire susceptibility 

criteria, such as landscape dryness, fine fuel moisture, and potential fire spread, produces a 

more meaningful definition than previous definitions? 

(10) What can classification and time series analysis of landscape dryness and potential for high 

fire spread reveal about landscape susceptibility to LLFs in the medium-term? 
Chapter 8 

(11) Can a model based on particular combinations of landscape dryness and weather predicts 

the potential for lightning ignition in the ACT region? 

Chapter 9 (12) What does a broader temporal and spatial view of fire susceptibility tell us about its long-

term history, climatic factors and influences contributing to it? 

 

In Chapter 5, models of short wave and long-wave radiation are evaluated to ensure that 

all-wave net radiation could be estimated to a high degree of accuracy with least bias for two 

climate zones.  The resultant estimates of daily short-wave and all-wave net radiation are then 

verified against estimates from other comparable studies and site-based measurements of these 

fluxes.  Accurate estimates of all-wave net radiation are seen as crucial for accurate estimates of 

potential evaporation, which is a key input parameter into models of both soil evaporation and 

plant transpiration, developed in Chapter 4. 
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Chapter 6 first describes the methods used to calculate Soil Water Deficit (SWD) based on 

the three daily soil water balance models selected for this study.  The validity of the estimates of 

soil evaporation and plant transpiration produced by the new radiation-based soil water balance 

model (RSDI) is then assessed.  Finally, the daily soil water balance models are evaluated to 

determine which of these produce the most consistent and representative annual profiles of 

landscape dryness for a medium and long-term analyses in Chapters 8 and 9. 

Chapter 7 first examines how daily soil water balance models are used to estimate 

indirectly availability of fuels to burn in a forest, which is a critical component of a potential fire 

spread index.  Thresholds for very dry to extreme levels of landscape dryness drawn from the 

literature are formulated from known studies from Australia and overseas.  These studies 

demonstrate that availability of fuels to burn and vegetation flammability can suddenly change 

once critical moisture levels in vegetation and fuel are reached after extended dry periods.  The 

last part of the chapter outlines the structure and variables of the two potential fire spread 

indices, FFDI and FWI, for interpreting landscape susceptibility to large fires based on medium-

term time weather datasets. 

The first part of Chapter 8 proposes a new fire season calendar for the ACT region based 

on average daily values of fire susceptibility criteria: landscape dryness, fine fuel moisture, and 

potential fire spread.  The new definition of seasons within a fire season is then used to derive a 

seasonal marker for determining when extremes of landscape dryness and potential fire spread 

occur within a fire season.  Hierarchical classification of the annual profiles in each fire season 

since 1951 is then applied to both medium-term datasets of landscape dryness and potential fire 

spread to investigate the number, type, and severity of groups and sub-groups of fire seasons.  

The sequence of the groups of fire seasons based on the preferred fire potential index was then 

analysed to determine two aspects of landscape susceptibility to large fires: (1) what has been 

the sequences of groups of fire seasons and (2) which fire seasons in what fire season groups 

have had the highest likelihood for LLFs.  Threshold values for landscape dryness and potential 

fire spread are then identified for this region, and are used to determine which months in the fire 

calendar are most prone to LLFs and in which fire seasons there has been the highest likelihood 

for LLFs.  The last part of the chapter investigates a model of the landscape and weather 

conditions conducive to lightning ignition, as well as other concurrent indicative information 

about the state of the atmosphere, such as vertical profiles of temperature and air moisture 

content.  Detailed conclusions derived from the medium-term interpretation of landscape 

susceptibility to fire are provided at the end of the chapter. 

Chapter 9 places the results of the medium-term time series of landscape dryness and 

potential fire spread into a longer-term context.  The medium and long-term time series of 

landscape dryness are first broken down into their constituent parts using time series analysis.  

The analysis is used to uncover any underlying trends in landscape dryness at sub-decadal, 

decadal, and inter-decadal time scales.  The long-term landscape record is then classified using 
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the Fowler daily soil water balance model and rainfall records from Queanbeyan weather 

station, which is closely correlated to the Canberra Airport medium-term rainfall dataset.  This 

chapter presents the findings of the longer-term classification of fire seasons and compares the 

major fire seasons extracted from the analysis to those found in historical fire chronologies in 

and adjoining the ACT region.  Finally, this chapter discusses the results of the medium-term 

and long-term time series of landscape dryness and potential fire spread in relation to the 

climatic and weather processes that produce dry landscapes, potential for high fire spread, and 

lightning ignition. 

Chapter 10 first summarises the principal findings from each of the chapters (Chapters 2-

9).  Limitations of the research method, as wells as the models and data, are reviewed.  

Recommendations for future research are outlined.  Finally, conclusions are reached as to how 

to best apply the study’s methodology for determining landscape susceptibility to large fires to 

other regions in south eastern Australia. 
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Chapter 2: Study Region 
This chapter describes the study region at a continental and regional scale, and discusses 

other factors such as the recent climate, topography, dominant vegetation and soil types, and fire 

history.  Apart from providing a context, these contextual factors show why the ACT region is 

well suited to a study of fire susceptibility, even though its landscapes, vegetation, and fire 

history are highly heterogeneous. 

2.1 Description of study area and landscape 
The study area (1,518,000 hectares within a rectangle with sides 110 km wide and 138 km 

long) is centred on the city of Canberra (longitude: 149.130; latitude: 35.276 south) in the 

Australian Capital Territory (ACT) (Figure 2.1).  The ACT is located in south eastern Australia 

about 100 km from the coast and located on a peneplain with a belt of mountain ranges to the 

west and east ranging in elevation between 600 and 2000 m. 
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2.2 Climate 
The ACT region at an approximate latitude 35.5oS has a semi-continental climate (Sturman 

and Tapper, 2006).  Its latitudinal position is the key determinant of both incoming solar 

radiation and day length during the course of the annual cycle, and its climate.  This places it 

more or less under the sub-tropical ridge which dominates the weather patterns during the 

course of a year (Hobbs, 1998; Sturman and Tapper, 2006).  The sub-tropical high-pressure 

cells, most dominant in summer, predispose the region to a dry continental climate.  During the 

cooler months of the year, these high-pressure cells are less dominant, resulting in relatively 

cool and moist conditions.  The maritime influence is intermittent, despite the proximity of the 

eastern coastline of Australia, largely because the Great Dividing Range and coastal ranges to 

the east trap some of the moisture borne by easterly winds.  Occasional incursions of polar 

maritime air masses set in at eight to 10 day intervals from the south and south-west bringing 

about changes to temperature and to rainfall.  The region’s temperate climate is thus 

characterised by highly variable intra-annual temperature and intra- and inter-annual rainfall. 

The study area can be divided into three climate zones (Figure 2.2) using a regional scale 

classification of climate, such as that proposed by Gentilli (1972) adapted from Koëppen 

(1936): 

(1) Cfa in the sub-montane hills and plains in and around Canberra between 600 and 

800 m; 

(2) Cfb in the montane ridges and escarpment to the west of Canberra between 800 and 

1400 m; and 

(3) Csc in the high country above an elevation of 1400 m. 

The lower tableland plains at Canberra are characterised by a warm climate with uniform 

summer/winter rainfall and a long mild summer (Cfa).  The adjoining Brindabella Ranges are 

characterised by a uniform rainfall with a cool to mild summer (Cfb).  In strong contrast, the 

high country in the Snowy Mountains further to the west and south west of the Brindabella 

Ranges have winter-dominated rainfall and a short cool to mild summer (Csc).  Therefore, the 

climate varies markedly in terms of amount and seasonality of rainfall as well as temperature 

between the high sub-alpine mountainous region to the far west and south-west, the montane-

sub alpine ranges to the west, and the sub-montane hills and plains in the centre and east. 
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Figure 2.2 The ACT region, showing Gentilli climate zones, topography, 
dams, rivers, and important weather stations sites referred to in 
text 

Source: Map prepared on Arcview GIS using GIS data supplied by the NSW Department of Environment and 

Climate Change (2005) and Geoscience Australia (Geoscience Australia, 2003). 

Note: The modified Koëppen climate zones were drawn by the author based on field knowledge of vegetation and 

climate in the study area. 

 

The seasonal variation in climate for the last 60 to 140 years is first illustrated with a 

combined plot of monthly and daily mean monthly temperature and rainfall in Figure 2.3(a) and 

is based on climate data recorded at Canberra Airport.  The mean monthly rainfall ranges from 

42 to 65 mm, with a monthly average of 50 mm.  The high spring rainfall results from moister 

north westerly continental air interacting with colder air behind cold fronts and low pressure 

cells coming up from the Southern Ocean.  A decrease in rainfall is evident in December as 

these low pressure cells move further south, away from the Australian continent.  Rainfall 
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during the later summer months (January-March) is the result of convective thunderstorms 

developing over the heated land to the west of the ACT ranges with the passage of heat troughs 

emanating from the centre of the continent.  The decline in rainfall in winter reflects the more 

limited atmospheric moisture associated with the passage of cold fronts from the southwest. 

The station of Cabramurra lies in the heart of the Csc climate zone at 1485m, being 900 

metres higher than Canberra Airport.   As a result mean monthly daily temperatures are about 

six degrees lower on average than that at Canberra in any typical year (Figure 2.3(b)).  The rise 

and fall in mean daily temperature at both Canberra Airport and Cabramurra reflect the seasonal 

rise and fall in solar radiation in the southern hemisphere, with mean daily monthly temperature 

falling to a low of 5oC in winter and rising to 21oC in summer at Canberra Airport.  Mean daily 

temperatures at Cabramurra range between 1 and 15oC, reflecting the cooler and moister climate 

in the high country. 

The much higher rainfall at Cabramurra is the result of orographic uplift of air over the 

high mountain ranges during the passage of pre-frontal troughs and polar maritime cold fronts.  

The mean monthly rainfall ranges from 68 to 200 mm, with a monthly average of 137 mm.  

During the cooler months of the year, mean monthly rainfall at Cabramurra is two to three times 

that at Canberra Airport.  However, mean monthly rainfall falls dramatically from November to 

April, reflecting a shift towards more stable weather patterns then. 

Canberra Airport lies within the middle of the Cfa climate zone, overshadowed by the high 

mountains to the west with a vertical relief from 1000 to 1500 m.  It thus lies in a rain shadow in 

the lee of the ranges, resulting in less rainfall from the rain-producing weather systems that 

come in predominantly from the north-west or south-west. 
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Figure 2.3 Mean monthly rainfall and mean daily temperature at (a) Canberra 
Airport (585 m ASL) and (b) Cabramurra (1485 m ASL) 

Source: Medium-term weather data for Canberra (1940-2007) and Cabramurra (1955-2007) from Bureau of 
Meteorology (1940-2007) 
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Following a dry winter near Canberra, even with a typical follow-up spring and summer 

rainfall (Figure 2.3(a)), the amount of rainfall may be insufficient for annual recharge of soils on 

the sub-montane plains to occur (see Figure 6.15).  In contrast, the vegetation and soils in the 

moister climate at Cabramurra usually have ample soil water for plant growth in most fire 

seasons — because of the high winter rainfall from 150 to 200 mm on average (see Figure 

6.16).  In most years, the high monthly rainfall in winter and spring at the cooler time of the 

year in effect recharges the deeper loams and gradational soils beneath the forests. These soils 

have a much higher soil water holding capacity and take up most of the incoming rainfall.  The 

remainder is discharged into streams and rivers as run-off.  During periods of below-average 

rainfall in winter and spring, there may be insufficient precipitation to recharge these deeper 

soils found in the high country.  Once the vegetation and soils dry out in spring, this can lead to 

drier landscapes than usual and to an increased likelihood of LLFs. 

An examination of the long-term rainfall record shows years with significantly lower 

annual rainfall amongst the years with median or high annual rainfall (Figure 2.4).  The rainfall 

stations of Queanbeyan, Corin Dam on the upper Cotter River and Kiandra/Cabramurra 

composite are representative of an east to west altitudinal cline: 580 m at the lowest station at 

Queanbeyan, rising to 1395 m at the highest station at Kiandra.  Inter-annual rainfall at Kiandra 

has the greatest variability, and it is least variable at Queanbeyan.  Since 1938, the very low 

rainfall years are in sequence at all the stations.  There is a distinctive pattern of a three to four 

year cycle of high and low rainfall evident, particularly in the Cabramurra record.  From 1996 

onwards, this seesaw oscillation in rainfall changes to a much dampened variation, seen in the 

records from all three stations.  This may indicate a change in the climatic factors controlling 

rainfall though this inference should be treated with caution: Cabramurra winter rainfall has 

been consistently below the level that might have been reasonably anticipated and it is possible 

that snow and ice have not been intercepted by the pluviometer installed at the Automatic 

Weather Station (AWS) (see section 4.3.2). 
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Figure 2.4 Trends in rainfall at rainfall stations representative of the three 
climate provinces in the study region 

Source:    The annual rainfall values are derived from averaging daily weather records of three long-term and currently 
operational weather stations, Queanbeyan and Canberra airport, and one medium term weather station, 
Cabramurra (Bureau of Meteorology, 2007a). 

Notes:  (1) Elevations of the weather stations above sea level are: Queanbeyan (560 m), Canberra (585 m), Corin 

Dam (932 m) and Kiandra (1395 m). 

 (2) Kiandra rainfall dataset was extended from 1972 to the present using adjusted rainfall records from the 

closely located weather station at Cabramurra (correlation with Kiandra (R2=0.89). 

 (3) Monthly rainfall at weather station at Queanbeyan is highly correlated with that at Canberra airport 

(R2=0.918). 

 

2.3 Topography 
The topography of the study area is depicted in Figure 2.2.  Canberra and its immediate 

surrounds, in the centre of the study area, comprise undulating plains, interspersed with hills.  

Immediately to the west, and across the Murrumbidgee River, the precipitous Tidbinbilla, 

Brindabella and, further west, the northern Snowy Mountains (Bogong Peaks and Fiery Ranges) 

ranges rise.  To the east and southeast of Canberra lies the much lower relief of the Queanbeyan, 

Tinderry, and Tallaganda ranges.  The area is thus surrounded by hills and mountains on three 

sides to the west, south, and east and is only open to the north via undulating hills and plains. 

The difference in average height above sea level between the high country to the west and 

the lower plains on which Canberra is located is over 1200 m.  The mountainous ranges 

comprising, in the main, the Brindabella Ranges and Snowy Mountains pose a major barrier to 
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the movement of air masses originating from either the west or the east.  The regular formation 

of lenticular clouds over these ranges is indicative of their significant influence on the local 

climate. 

To the west, the mountainous terrain comprising Bimberi-Scabby Ranges, Tidbinbilla 

Ranges, and Clear Hills-Gudgenby Ranges, is highly dissected by the Naas, Cotter, and 

Goodradigbee rivers that drain into the Upper Murrumbidgee River that flows in a northerly 

direction.  The Cotter River flows north along a steep sided valley fault line between the 

Tidbinbilla and Brindabella ranges draining the territory’s highest mountains.  The catchment of 

the upper Cotter River comprises a rugged mountainous landscape with a vertical relief of more 

than 1000 m in places.  The highly dissected nature of the mountain ranges creates topographic 

variation in slope and aspect, which then affects insolation, soil type and soil moisture regimes, 

and consequently distribution of montane and sub-alpine vegetation (Moore et al., 1993). 

To the west, the Goodradigbee, Cotter, Paddys, and Naas Rivers drain the higher mountain 

catchments of the Brindabella Ranges.  Just to the north of the Cotter with the Murrumbidgee 

River confluence, the Molonglo River joins the Murrumbidgee River.  The Molonglo River 

system drains the Googong catchment to the east and southeast of Canberra and is joined by the 

Queanbeyan River 20 kilometres to the west.  To the north of Canberra, minor streams drain the 

depositional plains and low hills. 

Records of rainfall and streamflow exist for the upper Cotter River catchment dating back 

to the mid 1930s.  These valuable instrument records can be used to validate daily soil water 

balance models (see section 6.4.2, Chapter 6). 

2.4 Vegetation and soils 
The vegetation (Figure 2.5) and soils largely reflect the climate and geology in the three 

climatic zones described in section 2.2. 

The more elevated parts of the study area are dominated by sub-alpine vegetation 

comprising Eucalyptus pauciflora (Snow Gum) low forests and sub-alpine moorland complex 

(Costin, 1954; Gellie, 2005), overlying alpine humus soils (Talsma, 1983; McKenzie et al., 

2004).  These are predominantly located in the Csc climatic province.  Annual average rainfall 

is over 1500 mm per annum with snow settling at the higher elevations during winter and early 

summer.  The combination of a cool-to-cold climate and the humic shallow soils promote the 

development of sub-alpine herbfields, bogs, and heathlands at the expense of trees above 1650 

metres on the flatter more exposed sub-alpine terrain (Costin, 1954; Costin et al., 1964). 
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Figure 2.5 Vegetation sub-formations in relation to Gentili’s climate zones 

Source:   Vegetation map is extracted from regional vegetation map prepared by Gellie (2005). 

Note:  Classification of vegetation is based on vegetation sub-formations defined by Gellie (2005).  
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Below this, in the Cfb province, productive montane moist sclerophyll forests of 

Eucalyptus fastigata (Brown Barrel), E. delegatensis (Alpine Ash) – E. dalrympleana 

(Mountain Gum), and E. robertsonii ssp. robertsonii (Narrow-leaved Peppermint) – E. viminalis 

(Ribbon Gum) predominate on sheltered easterly and southerly facing slopes.  Beneath these 

moist sclerophyll forests, deeply weathered kraznozems and red earths occur on sheltered slopes 

while on the more exposed slopes weathered yellow podzolic soils are found (Talsma, 1983; 

McKenzie et al., 2004).  On the northerly and westerly drier higher slopes, higher montane 

sclerophyll forests of E. dalrympleana ssp. dalrympleana (Mountain Gum), E. pauciflora, E. 

robertsonii ssp. robertsonii, and E. dives (Broad-leaved Peppermint) predominate.  At lower 

elevations grassy/shrubby forests of E. dives E.mannifera ssp. mannifera (Brittle Gum) along 

with forests of E. rubida ssp. rubida (Candlebark) and E. dives (ANU Forestry Department, 

1973; Gellie, 2005).  Shallower red and yellow podzolics soils underlie these dry sclerophyll 

forest types (Talsma, 1983; McKenzie et al., 2004). 

At lower elevation and to the east of the Brindabella Ranges, within the Cfa province, dry 

lower montane sclerophyll forests, comprising E. rossii (Scribbly Gum), E.mannifera ssp. 

mannifera (Brittle Gum) and E.macroryncha are located on shallow infertile soils on 

outcropping hills.  On the lower hillslopes and tableland plains, E.melliodora (Yellow Box) – E. 

blakelyii (Blakely’s Red Gum) grassy woodlands occur on deeper yellow podzolic soils, while 

native temperate grasslands occur on shallow less well drained, red podzolic soils within the 

valley floors (Talsma, 1983).  In Figure 2.5, the Yellow Box-Gum woodlands are depicted in 

orange while patches of native grasslands are depicted in yellow.  Both vegetation types are now 

largely cleared for grazing or modified by urban settlement (Gellie, 2005).  Some small areas of 

swamps, bogs, and swamp forest are found in flatter open valleys in the Namadgi and 

Brindabella Ranges.  The remainder of the vegetation on the sub-montane plains and hills 

around the city of Canberra, depicted as white areas in Figure 2.5, comprises cleared and semi-

cleared grassland, degraded woodland and forest (shown as a white colour in Figure 2.5). 

The soil types and their soil water holding capacities under the more widespread vegetation 

types are presented in Table 2.1.  The shallow red podzolic soils under dry sclerophyll forests 

have low water holding capacity - between 100 and 165 mm (Talsma, 1983) - that makes these 

forests highly prone to drought stress (Pook et al., 1965) and potentially more susceptible to 

crown fire because of a lower tree canopy between 12 and 25 m in height.  Montane eucalypt 

forests with canopies ranging from 25 to 40 m in height are generally found on deeper yellow 

podzolic soils, which have better soil water holding capacities, between 200 and 300 mm.  

These forests are less prone to drought stress yet they may still be predisposed to drought stress 

in dry years because of coarse textured A horizons, particularly on soils derived from granite 

rocks.  Moist sclerophyll forests with canopies ranging from 35 m to 50 m in height overlie 

deep friable gradational soils up to four metres in depth.  These forests have the highest water 

retention capacity, between 250 and 400 mm and are also capable of drawing water from deep 
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within the profile and within the weathered sub-soil (Costin et al., 1964; Leuning et al., 2005).  

As a result, moist sclerophyll forests are potentially least flammable in moist fire seasons.  

However, in dry-very dry fire seasons, these forests become much more prone to burn as their 

deep litter beds become more available (Luke and McArthur, 1978). 

 

Table 2.1 Vegetation, soils and soil water holding capacities in the study area 

Vegetation Type 

Crown Canopy 
Height 

(m) 

Soil Type 

Soil water holding 
capacity (mm) 

Montane and sub-montane grasslands 0.3-1.0 Sub-humic podzol 100-150 

Subalpine low forests/woodlands 5-15 Red earth, sub-humic podzol 150-200 

Lower montane Yellow Box-Gum 
grassy woodlands 

18 -30 Yellow earth 200-250 

Lower montane dry sclerophyll 
forests 

12-25 Red podzol 100-150 

Higher montane sclerophyll forests 25-35 Yellow podzols & yellow 
earths 

200-300 

Sub-alpine and montane moist 
sclerophyll forests (includes Brown 
Barrel and Alpine Ash tall forests) 

30-45 Red & Yellow Earths 300-400 

Source: Vegetation type is adapted from Gellie (2005); soil type is based on Talsma (1983); and values of soil water 
holding capacity are based on fire and catchment studies in the ACT (O’Loughlin et al. (1986). 

Note: Estimates of canopy height are extracted from Appendix 5 Vegetation Profiles in Gellie (2005). 

 

2.5 Fire history 
Records of large landscape fires have been collated for the ACT region (ANU Forestry 

Department, 1973; Environment ACT, 2004) and southern New South Wales (Foley, 1947; 

Council of Australian Governments, 2003).  These records indicate that LLFs have occurred at 

varying intervals, and locations, of between 11 and 20 years since 1906, with some intervening 

periods longer than 20 years.  Large landscape fires in the study region, as defined in section 

1.1, can be categorized into three categories of fires, according to starting place and spread: 

(1) started on the sub-montane plains and hills, burning in grassland and forest there 

(1918/19, 1925/26, 1956/57, 1978/79, 1984/85 and 2001/02);  

(2) started in the Brindabella Ranges and did not spread beyond there 

(1905/06, 1938/39, and 1982/83); and 

(3) started in the Brindabella Ranges and spread onto the sub-montane plains and hills 

(1951/52 and 2002/03). 
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Large landscape fires (LLFs) that fall into the last category are the most difficult to control 

and manage, particularly if severe fire weather immediately follows lightning ignition in the 

more remote and rugged parts of the Brindabella ranges.  The January 2003 fires that ignited the 

Brindabella Ranges certainly followed this pattern.  Large fires resulted from five separate 

ignitions following the passage of dry thunderstorms on 8 January (McLeod, 2003).  Almost 

two weeks later under extreme weather conditions, these fires burnt rapidly eastwards onto the 

sub-montane plains.  The rapid spread was exacerbated by the total lack of any significant 

moisture barriers, the complex terrain, and areas being left long unburnt in the more productive 

moist and sub-alpine forests in the Brindabella Ranges. 

Historical reports in the first part of the 20th century reveal a higher frequency of fire 

seasons than listed above, with LLFs occurring from the early 1900s to the early 1940s in the 

high country to the west of Canberra.  Brackenreg (1926) recorded major fires in the ACT as 

occurring in 1905/06, 1914/15, 1917/18, 1918/19, 1920/21, and 1925/26.  Foley (1947) assessed 

the fire seasons in the study region as being severe in 1918/19, 1928/29, 1931/32, 1939/40, and 

1941/42.  In an earlier study done by Pryor (1939) from fire scars on Snow Gums, the fire 

seasons with severe fires were documented as occurring in 1875/76, 1881/82, 1882/83, 1892/93, 

1898/99, 1905/1906, 1910/11, 1918/19, 1925/26, 1931/32, and 1938/39.  The fire scars on Snow 

Gums may also reflect less severe fires lit by graziers in the autumn following removal of stock 

(Banks, 1982).  In his study, Banks found that severe fire seasons occurred in 1876/77, 

1899/900, 1919/20, 1925/26, and 1938/39.  The severe fire seasons identified by Banks in 

1899/1900 and 1919/20 were most likely to have occurred in 1898/99 and 1918/19, which 

makes them correspond more closely with the reports of Brackenreg (1926) and the research 

findings of Pryor (1939).  Both Banks (1982) and Pryor (1939) contend that the intense fires 

between the 1870s and the 1940s induced structural change in the sub-alpine forests, from a 

more open oldgrowth forest to dense, thicket-like regrowth stands. 

Since the 1938/39 fire, annual reports of the Bushfire Council collated by the ANU 

Forestry Department (1973) suggest that fire seasons with LLFs occurred in 1939/40, 1943/44, 

1956/57, 1957/58, 1964/65, 1967/68 and 1972/73.  Since then, large landscape fires have 

occurred in 1978/79, 1982/83, and 2002/03.  Prior to the 1970s, it is difficult to say whether 

some fire seasons did indeed have LLFs, with the possible exception of the fires in 1938/39, the 

impacts of which were well documented by Pryor (1939).  This study may help to elucidate 

which of the reportedly severe fire seasons had the potential to carry large landscape fires based 

solely on an index of landscape dryness (See Chapter 9). 

This retrospective study of natural susceptibility of mountainous landscapes to fire was 

made possible by the existence of fire history records and by the fact that mainly naturally 

ignited LLFs have occurred, at intervals of between 11 and 20 years, since the start of reliable 

records of fire in the 1950s.  LLFs between the 1880s and the late 1930s were more frequent 

due to the fact that many were lit by pastoralists and campers (Banks, 1982; Pulsford, 1991).  
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Prior to the 1880s, LLFs may have been less frequent but the record is incomplete and hence 

inconclusive.  A significant common feature of the most catastrophic LLFs is that they may all 

have started as small multiple fires (Stretton, 1939).  The pre 1939 record indicates that some 

landscape scale fires followed a pattern of systematic burning off where at least several fires 

were deliberately lit, but in most instances, these burning practices were conducted towards the 

end of summer. 

2.6 Findings 
Despite being in a relatively moist and cool mountain environment, the study area has been 

subject to periods of low rainfall at intervals between three and ten years.  These dry periods 

have created the necessary pre-conditions for landscape in the study region for LLFs to occur at 

intervals from 11 to 25 years. 

This study aims to delineate critical thresholds of landscape dryness and potential fire 

spread beyond which the mountain ranges and the plains became highly susceptible to 

occurrences of LLFs.  Predisposition to landscape scale fire is predicated on (1) most of the 

vegetation and soils drying to critical thresholds following long spells without rain, (2) a source 

(and most likely multiple sources) of ignition, and (3) existence of extreme fire weather 

conditions.  The complexity of terrain, vegetation, and soils in the region provides a real test as 

to whether a simple temporal model of landscape susceptibility to large fires can be formulated.  

The remainder of the study will address the first research question in Section 1.4 (Table 1.1): 

‘How feasible is it to apply a simple temporal model of landscape susceptibility to large fires to 

a region with wide ranging climate, topography, vegetation, soils, and fire history?’.  The 

applicability of point-based landscape dryness indices to this complex study region will be 

further examined in Chapters 5 and 6. 

The next chapter describes the structure and function of daily soil water balance models 

suitable for this study and proposes a DSWBM driven by potential evaporation based on all-

wave net radiation.  The all-wave net radiation based DSWBM (RSDI) employs separate soil 

evaporation and plant transpiration sub-models to replace the evapotranspiration term in the 

MSDI model. 
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Chapter 3: Daily Soil Water Balance Models 
The climatic variability of the study area described in Chapter 2 can lead to sustained low 

rainfall at intervals from three to six years in all three climate provinces in the study area: Cfa, 

Cfb, and Csc.  Depending on the time of the year, these extended dry spells could produce near 

extremes in landscape dryness.  Extremes in landscape dryness is defined as when the landscape 

is entirely dry with little if any soil moisture remaining in any of the major widespread 

vegetation types, even the higher montane and sub-alpine forests found in cooler and wetter 

environments.  Examining seasonal landscape dryness conditions, in the lead-up to critical 

levels of landscape dryness, can be done using a daily soil water balance model (DSWBM).  

These models are designed to operate at a representative point in the landscape to reflect 

changes in average soil water over time for a given water catchment (Fowler and Adams, 2004).  

A daily soil water balance model simulates the key hydrological processes using two key inputs: 

(1) daily rainfall and (2) potential evaporation, producing Soil Water Dryness (SWD) as the 

principal output (section 1.1; Equation 1.1). 

Landscape dryness is the cumulative seasonal factor in fire susceptibility that takes into 

account the annual cycle of evaporation that rises and falls, according to the seasonal rise and 

fall in all-wave net radiation, and seasonal rainfall conditions.  The seasonal variation in SWD is 

pivotal to this study and requires robust and accurate DSWBMs to simulate the partition of daily 

rainfall into evaporation and run-off.  Furthermore, the components of estimated evaporation 

and run-off can be verified against other models and data to ensure that it reflects the 

biophysical processes in the soil and vegetation domains as closely as possible (See Chapter 6). 

The first part of this chapter outlines the existing and proposed DSWBMS that could be 

used to derive medium (up to 60-70 years) and a long-term (100-150 years) time series of Soil 

Water Deficit. 

The second part of this chapter provides the theoretical basis for the derivation of RN from 

its short-wave and long-wave components.  These generic algorithms are crucial for estimating 

potential and actual soil evaporation and plant transpiration discussed in the last part of the 

chapter. 

3.1  Daily soil water balance models  
Two daily soil water balance models were identified from the literature for use in this 

study: (1) the Fowler Daily Soil Water Balance Model (F-DSWBM) (Fowler, 1992; 2002); and 

(2) the Mount Soil Dryness Index model (MSDI) (Mount, 1972; Mount, 1980). Both models 

require few weather data inputs and run on daily weather data.  Both models have been 

previously tested in their respective countries of origin: the F-DSWBM in New Zealand and the 

MSDI in Australia.  The Keetch-Byram Drought Index (KBDI) was excluded as a possible 

DSWBM on the following grounds.  First, its evapotranspiration function has not been 
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calibrated to Australian conditions and evapotranspiration is assumed to occur at a rate 

proportional to the level of soil moisture.  Second, the interception of daily rainfall is fixed as a 

constant rather than being varied according to overstorey and understorey cover, and whether 

the previous day was wet or dry.  Lastly, it has fewer inbuilt hydrological functions than either 

the F-DSWBM or the MSDI.  Burrows (1987) concluded that the MSDI estimated the state of 

landscape dryness better than the KBDI in Jarrah Forests in Western Australia and therefore 

recommended the MSDI for forest fire control applications. 

The Fowler daily soil water balance model (Fowler, 1992; Fowler, 1999) is straightforward 

yet all-encompassing.  In this model, Fowler (1992) incorporated the principal hydrological 

factors and processes; gross rainfall, interception, infiltration excess, surplus, and drainage with 

output water storages expressed as soil water, quickflow, and base flow (Figure 3.1). 
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Figure 3.1 Elements of a daily soil water balance model (DSWBM) 

Source: Adapted from Fowler, 2002:252. 

 

The Fowler daily soil water balance model (F-DSWBM) is based on daily inputs of two 

weather variables: corrected daily rainfall (RC); and a measure of daily mean EP for each Julian 

Day (JD) in the annual cycle.  RC is defined as the measured rainfall adjusted to take into 

account the local environmental conditions surrounding a rainfall gauge (Fowler, 1999).  For the 

purposes of this study, it is assumed that RC is equal to the daily rainfall measured in a standard 
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rain gauge at 0900 hours (P0900).  It is best suited to long-term study of landscape dryness 

because only historical rainfall data are needed, once daily average evaporation values over a 

year have been estimated from actual data (see section 6.1.3).  This assumes that the annual 

profile of daily average evaporation stays constant over the full length of a long-term time 

series. 

The Soil Dryness Index model (MSDI) (Mount, 1972) (Figure 3.2), includes most of the 

hydrological processes and factors used in the F-DSWBM.  Like the F-DSWBM, the key 

processes of evapotranspiration and rainfall drive the MSDI.  The hydrological sub-models in 

the MSDI include the following water balance processes: evaporated of intercepted water, flash 

run-off and soil capacity over-flow and evapotranspiration from the soil water store at different 

rates governed by the soil water content. 

 

Precipitation
(P)

Wet Day Dry Day

EI

25mm

Overland flow
(QO) 

50mm

140mm

165mm

Throughflow
(QT) 

Run-off (Q) 

ET+S

S
o

il 
D

e
pt

h

Precipitation
(P)

Wet Day Dry Day

EI

25mm

Overland flow
(QO) 

50mm

140mm

165mm

Throughflow
(QT) 

Run-off (Q) 

ET+S

Precipitation
(P)

Wet Day Dry Day

EI

25mm

Overland flow
(QO) 

50mm

140mm

165mm

Throughflow
(QT) 

Run-off (Q) 

ET+S

S
o

il 
D

e
pt

h

 

Figure 3.2 The MSDI model and its components 

Source: The above figure is adapted from Mount (1972). 

Notes: (1) Overland flow and throughflow are termed flash run-off and soil capacity overflow in the description of 

the MSDI model (Mount, 1972; Mount, 1980). 

(2) The four different levels in the soil moisture store reflect the thresholds of SWD that govern the 

evapotranspiration rate attained at different daily maximum temperatures. 

 

Unlike the Fowler daily soil water balance model (F-DSWBM), only the soil water storage 

is included in the MSDI model although a more elaborate version of it includes the quickflow 

and baseflow storage parameters (Kuczera, 1988).  Flash-run-off can be regarded as an 
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approximation of the process of infiltration excess leading to surface water flow over a forested 

soil.  It is defined as ‘that produced by rain falling on the soil, not already at field capacity, 

faster than it is absorbed by some layer in the profile’ (Mount, 1972:4).  Flash run-off is 

calculated using a linear equation, and is in proportion to the amount of daily precipitation and 

the density of both overstorey and understorey vegetation.  It is equivalent to overland flow 

(QO) in the F-DSWBM.  Soil capacity overflow in the MSDI model combines the slower 

elements of through-flow (QT) and ground-flow (QB) once the soil is saturated.  In the MSDI 

model, a lag period is not specified for these two elements of streamflow. 

The soil water deficit (SWD) in the MSDI model is estimated as: 

)()1(EFF)1()( P tSTttt ESWDSWD  
 (mm) Equation 3.1 

where SWD(t) is the soil water deficit at the end of the day, SWD(t-1) is the soil water 

deficit on the previous day, (t) is the actual evaporation estimated from a lookup 

table of daily maximum temperature (TMAX) for that day and . 

STE 

)(tSWD

Only one parameter, ET+S, needs to be changed to convert the MSDI into a radiation-based 

soil dryness index model (RSDI model).  Evapotranspiration (ET+S) is split into two separate 

components: 

)()()1(EFF)1()( P tTtSttt EESWDSWD    (mm) Equation 3.2 

where is soil evaporation and is evaporation from plant transpiration on that 

day. 

)(tSE )(tTE

Soil evaporation (ES) and plant transpiration (ET), are modelled using potential evaporation 

derived from all-wave net radiation.  See section 3.2 later in this chapter. 

Effective rainfall (PEFF) is estimated as: 

(t)(t)I1)-(t(t)  E-P  OEFF QP 
 (mm) Equation 3.3 

where P(t-1) is the rainfall on the previous day, measured at 9 am (Eastern Standard 

Time), is the evaporation of intercepted water from vegetation and soil surfaces, 

and Q  is the overland flow, which was originally termed flash runoff in the MSDI 

model. 

(t)IE

)(tO

The method for estimating EI remains unchanged in the new RSDI model for three reasons.  

First, modelling EI using thermodynamic energy principles was considered far too complex for 

this study.  Second, the existing model was considered accurate enough for this study.  For 

example, Langford et al. (1978) showed that the MSDI provided satisfactory estimates of EI for 

wet sclerophyll forests in Victoria.  Third, no comparative or recent studies of EI in and adjacent 

to the study area could be found to validate the EI model so no further attempt was made to 

improve it. 
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Total run-off (Q(t)) is estimated from the following set of equations: 

If PEFF(t)  SWD(t) then )()()( tOtTt QQQ   (mm) Equation 3.4 

else )()( tOt QQ 
   

where QT(t) is flow of water through the soil. 

3.2 Estimation of potential soil evaporation and plant 
transpiration 

The methodology for calculating potential soil evaporation (ES) and plant transpiration 

(ET) from all-wave net radiation (RN), and its derivative, potential evaporation (EP), is now 

outlined.  Estimating RN from its short- and long-wave radiation components is outlined in 

section 3.2.  Subsequently, the equations to estimate EP from RN is described in section 3.3.1.  

Finally EP is used to estimate ES and ET in section 3.3.2. 

3.2.1 Estimation of extra-terrestrial and surface irradiance (RA) 
Incoming solar radiation at the top of the atmosphere is termed extra-terrestrial irradiance 

(RA), defined as the intensity of the sun’s energy received at the top of the earth’s atmosphere 

(Iqbal, 1983).  RA fluctuates according to the orbit of the Earth on its annual journey around the 

sun, being determined by geometrical relationships between the earth and the sun (Figure 3.3).  

The orbit of the earth around the sun follows an annual cycle, equivalent to 365.25 days on the 

‘plane of the ecliptic’, which is the plane on which all the planets, including the earth, rotate 

around the sun. 

The present tilt of the earth on its axis is 23.5o (Linacre and Geartz, 1997).  The earth’s tilt 

on its axis is also termed the angle of declination; this refers to the highest angle observed at 

noon of a celestial body at a given latitude and time of the year (Iqbal, 1983; Linacre and 

Geartz, 1997).  The angle of declination as shown in Figure 3.3 gives rise to the seasons 

experienced by the earth. 
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Figure 3.3 Orbit of the Earth around the sun on the plane of the ecliptic 
during the course of the annual cycle 

 

The following series of equations (Equations 3.5-3.8) were employed to estimate the daily 

values of the radiation at the top of the atmosphere (RA) through the annual cycle (Roderick, 

1999). 

Day angle , is the apparent angle of declination for a given day of the year, relative to the 

sun, and is estimated as follows (Roderick, 1999): 

)1(
360

 Nd
YD

 Equation 3.5 

where  is the day angle in degrees and dN is the day number of the year commencing 

1st January and DY is the total number of days in the year. 

The declination angle of the earth, relative to the sun,  is estimated from , and is 

expressed as (Roderick, 1999): 
















3sin00148.03cos0026973.02sin000907.0

2cos006758.0sin070257.0cos399912.0006918.0180




 
Equation 3.6 

where  is the declination angle in degrees. 

A correction for the eccentricity of the earth’s orbit is estimated thus (Roderick, 1999): 














2sin00077.0cos000719.0

sin001280.0cos034221.0000110.11
2d

 Equation 3.7 

where 
2

1

d
 is a correction for the eccentricity of the earth’s orbit. 
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Finally, RA is estimated from  ,  and 
2

1

d
as: 
















 ssssA

d
R  sincoscos

180
(sinsin

595.37
2 (MJ m-2 d-1) Equation 3.8 

where  is the latitude of the point on the earth’s surface in decimal degrees and ss is 

the hour angle at sunset. 

As solar radiation passes through the earth’s atmosphere, a proportion of it is reflected 

back into space by clouds, some is absorbed by clouds and small dust particles called aerosols.  

The balance of incoming solar radiation flux reaching the earth’s surface is called the surface 

irradiance (RS): this comprises both direct and diffuse radiation (Oke, 1987; Linacre and Geartz, 

1997).  The direct component of RS comprises that irradiance that has not been subject to 

scattering while passing through the earth’s atmosphere.  The scattered component is termed 

‘diffuse’ radiation. 

The principal factors affecting RS are the concentration of aerosols and water vapour, and 

the amount of cloud cover (Iqbal, 1983).  Because few weather stations record surface 

irradiance, RS is instead estimated from RA using empirical attenuation equations.  Therefore it 

is simple a matter of choosing the best empirical equations for deriving RS from RA (Bristow 

and Campbell, 1984; Kimball et al., 1997; Supit and van Kappel, 1998; Liu and Scott, 2001; 

Trnka et al., 2005).  Estimating RS using empirical equations will be examined further in 

Chapter 5. 

3.2.2 Estimation of all-wave net radiation (RN) 
The net radiation at the earth’ surface (RN) is defined as: 

  LLRR SN )1(   (W m-2) Equation 3.9 

where RS is the surface irradiance ,  is the albedo or surface reflectivity to short-wave 

radiation and  and , are the downward and upward long wave radiation components. L L

The albedo () is the ratio of incoming to outgoing shortwave radiation and is dependent 

on surface properties.  Typical values of  in a forest are between 0.15 and 0.17, whereas in a 

grassland values lie between 0.22 and 0.25, depending on levels of vegetation growth and 

seasonal light conditions (Oke, 1987; Linacre, 1992). 

The other terms in Equation 3.9, the long wave radiation components L


 and , can be 

estimated from the Stefan-Boltzman law, assuming that the earth and atmosphere approximate 

black bodies (Linacre, 1968; Linacre, 1992; Sturman and Tapper, 2006). 

L
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The estimation of  in a clear sky atmosphere is:  L

4
ssσTεL   (W m-2) Equation 3.10 

where s corresponds to the emissivity of the surface (0.97-0.98 for forests ; 0.90-0.95 

in grasslands (Oke, 1987)) which is the ratio of the radiant energy emitted by the earth’s 

surface or atmosphere over the incoming radiant energy,  is the Stefan-Boltzman 

Proportionality Constant (5.67x10-8 Wm-2K-4), and Ts is the absolute temperature 

(degrees Kelvin) of the earth’s surface. 

The estimation of  in a clear sky atmosphere is:  L

4
Aa TL   (W m-2) Equation 3.11 

where s corresponds to the emissivity of the atmosphere (0.95) whose value is close to 

that of a black body (0.95), and TA is the mean daily temperature (degrees Kelvin) of 

the earth’s atmosphere. 

The net long-wave radiation flux (L*) is therefore estimated as: 

  LLL*
 (W m-2) Equation 3.12 

 

Cloud cover generally decreases L*.  If the cloud cover is low down, dense and persistent 

enough during a 24 hour period, s is increased because of the downward emission of .  

Higher altitude cloud emits lower  and hence L* is not reduced as much as for low cloud, for 

the same given amount of cloud cover.  However, the difference in cloud type cannot be taken 

into account in the development of the RSDI model as continuous records of detailed cloud data 

are have not been collected at Canberra Airport. 

L

L

All the equations and coefficients needed to model RN have been described in this section.  

The empirical equations for RS and L


 are evaluated later for use in this study in sections 5.1 

and 5.3. 

3.3 Derivation of soil evaporation (ES) and plant 
transpiration (ET) sub-models 

This section outlines the models and sub-models to estimate soil evaporation (ES) and plant 

transpiration (ET) for an all-wave net radiation-based RSDI model.  These models are based on 

potential evaporation estimated from RN, that are then, along with soil and vegetation factors, 

used to produce estimates of ES and ET.  The classical approach has been to treat soil 

evaporation and plant transpiration as a single evapotranspiration entity, though as different 

processes they warrant independent estimation.  Fortunately EP, which forms the basis of the 

separate models of ES and ET can be estimated directly from RN (Penman, 1948; Monteith, 
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1965; Priestley and Taylor, 1972; Budyko, 1974; Linacre, 1992; Linacre and Geartz, 1997; 

Berry, 2001; Berry and Roderick, 2002; Linacre, 2004). 

3.3.1  Potential evaporation (EP) 
To model ES and ET using RN requires suitable and appropriate simple and elegant models 

of EP from either a soil or a plant surface.  This section explores some of the possible models 

sourced from the literature for this purpose. 

The estimation of EP involves either: 

(1) a thermodynamic approach, or 

(2) a combination of thermodynamic and aerodynamic approaches (Ward and Robinson, 

2000). 

The classic study of Penman (1948) derived the following equation based on a 

combination of thermodynamic and aerodynamic approaches: 







































 1


s

DEnR
s

PE  (mm d-1) Equation 3.13 

where s  is the slope of the saturated vapour pressure curve for a given temperature TA, 

ED is the drying power of the air, and  is the psychometric constant. 

The dimensionless factor s/ partitions the relative contribution of RN and ED in 

determining EP (Ward and Robinson, 2000). 

ED is estimated from: 
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(mm d-1) Equation 3.14 

where eS is the saturation vapour pressure at the mean air temperature, eA is the actual 

vapour pressure, and  is the wind speed in m sec-1 measured two metres above the 

ground (Ward and Robinson, 2000:127). 

Monteith (1965) further adapted this to take account of plant and soil moisture resistances 

to limit potential evaporation: 
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(mm d-1) Equation 3.15 

where  is the air density, c is the specific heat of the air, rA is the aerodynamic 

resistance, rS is the surface resistance. 

Equation 3.15, also known as the Penman-Monteith equation, requires a detailed set of 

meteorological variables such as: RN and QG, eS and eA, average wind speed and the resistances 

rA and rS, derived from hourly weather measurements.  Therefore, Equation 3.15 is not well 

suited to this study for three reasons.  First, taking hourly measurements is too short a time-scale 

for estimation of a medium or a long-term time series of soil water deficit (SWD) based on daily 
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weather measurements.  Second, the resistances of air, soil, and plant surfaces are not well 

known for eucalypt forests.  They would have to be determined from field studies for all 

vegetation types in the study region.  Third, long-term datasets of hourly or even three-hourly 

weather are not available from most Australian weather stations.  For these reasons, this 

approach is not feasible because of the type and amount of data involved and the complexity of 

estimating some of the input parameters. 

A preferred alternative is to use a simple thermodynamic approach is to estimate the 

available energy at an evaporating surface, either a plant leaf or a soil surface and then to 

estimate the amount of latent heat evaporating off both surfaces in response to the available 

energy (Ward and Robinson, 2000).  EP can be estimated in this way from Budyko (1974). 

WNP RE   (mm d-1) Equation 3.16 

where is all-wave net-radiation (MJ m-2 d-1),  is the latent heat of evaporation (J Kg-1), 

and W is the density of water (Kg m-3). 

NR

In the case of ET, it is assumed that that plants need to maintain leaf water content to 

survive.  If the leaf water content of plants can be used to classify the plants in Australian 

vegetation into a few functional types, RN can be partitioned into EP for each functional leaf 

type.  This approach is further outlined in section 3.3.3. 

In the case of ES, the available RN at the soil surface ( ) can be estimated from a 

combination of three factors: the shading effects of the various plant layers in a forest, the 

drying power of the air close to the soil surface, and the soil surface wetness.  This approach is 

described further in section 

NSR

3.3.2. 

3.3.2 Soil evaporation (ES) 
The remote sensing-based model of ES, developed by Fisher et al. (2008), was assessed as 

the most feasible method for estimating ES.  Although Fisher’s model requires monthly input 

data, it is amenable to use of daily time steps required here.  The Fisher equation for estimating 

ES is: 

 SNSSMS GRFFFE  ))1(( WETWET  (mm) Equation 3.17 

where FWET is the relative surface wetness and FSM is the soil water constraint, both 

terms have been defined by Fisher et al. (2008). 

FWET in Equation 3.19 is defined by Fisher et al. as ‘the fraction of time that surface is wet’  

The authors state that the estimation of FWET is ‘...scaled to relative humidity (RH) using a 

power function to reflect the time scale at which it changes (FWET = RH4). This function 

effectively predicts 0% wet surfaces at RH<70%, 50% wet surfaces at RH=93% and 100% wet 

surfaces at RH=100%.’ 
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The term FWET in Equation 3.17 is estimated as  

4
MINRHWETF    Equation 3.18 

where RHMIN is the daily minimum relative humidity. 

Fisher’s FSM sub-model reflects the close association between atmospheric and soil water 

conditions.  After RNS, the vapour pressure deficit (VPD) is the next most important factor 

affecting evaporation conditions.  The reason for choosing the warmest part of the day (TMAX, 

RHMIN) to estimate FSM is because it is assumed that this is when soil water is most likely to be 

in dynamic equilibrium with near surface air moisture levels. 

The second term FSM in Equation 3.17 is estimated as: 

/VPD
SM RHF    Equation 3.19 

where VPD is the vapour pressure deficit taken at mid-day conditions (eS-eA),  is a 

coefficient that determines the relative sensitivity of FSM to VPD.  In this study the 

warmest conditions of the day will be based on TMAX, determining VPD and RHMIN. 

Having determined RN, the net radiation at the forest floor (RNS) can now be estimated 

from RN, with adjustments being made for the attenuation of light through forest canopy layers 

using Beer-Lambert’s Law (Jarvis et al., 1976): 

kL)-(1
NS e)R-(1R  N  (Wm-2) Equation 3.20 

where k is the canopy light extinction coefficient and L is the combined leaf area index 

(LAI) of the all the vegetation layers above the soil surface.  RN above the forest canopy has 

been estimated previously using Equation 3.9. 

The final term GS is estimated based on an adaptation of the equations developed in the 

Jarrah Forest study by Silberstein et al. (2001): 

Between December and March NSRSG *09.0  (Wm-2)

For the intervening spring (Sep-Nov) 
and autumn months (Apr-May) NS

R
S

G *05.0   

Between June and August  NS
R

S
G *03.0   

Equation 3.21 

where GS is the seasonally adjusted soil heat flux. 

An unvalidated assumption is that GS varies between -0.03 and 10 percent of RNS during 

the course of the solar cycle even though  GS should more or less balance out to zero over an 

annual time scale.  In a first approximation Lhomme (1997) found that GS for grasslands is 

about 5% of RN throughout the year.  From a detailed short-term energy and water balance study 
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in a Eucalyptus marginata (Jarrah) forest in Western Australia, Silberstein et al. (2001) 

estimated GS to be during daylight hours between 8 and 9% of RN. 

Now that all the terms have been estimated, ES can be calculated from Equation 3.17. 

3.3.3 Plant transpiration (ET) 
A wealth of models to describe and estimate the rate of ecosystem processes has become 

available with the advent of remote sensing.  For example, it is now possible to monitor gross 

primary productivity and evapotranspiration at a landscape scale (Berry, 2001; Berry and 

Roderick, 2004; Berry, 2007).  The key issue in modelling ET is how to estimate the ratio of EP 

over ET using transpiration models that take account of projective foliage cover of the 

overstorey and understorey in a given vegetation type at the same time factoring in the effect of 

soil water availability on each of the overstorey and understorey components. 

Calculating ET is a two-step process.  Estimates of potential ET for three dominant leaf 

types (TMS) are outlined in section 3.3.3.1.  To calculate ET for each leaf type, potential ET is 

multiplied by a soil moisture resistance function.  This takes account of the effect of SWD on 

relating ET to the variation in soil water from field capacity to wilting point (3.3.3.2). 

3.3.3.1 Potential plant transpiration model for each TMS leaf surface 

The Turgor-Mesic-Sclerophyll leaf type (TMS) scheme developed in a recent remote 

sensing study, partitions ET into its separate components, based on leaf functional types (Berry, 

2001; Berry and Roderick, 2004).  The scheme developed by Berry (2001; 2004) uses three 

broad leaf types: 

(1) derive structural support from the turgor pressure of water, such as grasses and herbs 

— the Turgor (T) leaf type; 

2) are mainly found in found in trees and shrubs where water and nutrients are readily 

available — the Mesophyllous (M) leaf type; and 

(3) are found in sclerophyll shrubs adapted to low nutrient and often low water 

availability — the Sclerophyll (S) leaf type. 

A T leaf type has a relatively high mass fraction of water (0.9) compared to the other two 

leaf types, M (0.6) and S (0.45).  The higher the leaf water content, the higher is the water 

demand to maintain plant function.  According to Berry (2001; 2004) the three leaf types 

present entirely distinctive ecological strategies that plants can adopt to water and nutrient 

availability.  Thus, a T leaf type has evolved in response to highly variable soil water regime, 

under conditions of relatively high nutrient availability, whereas an M leaf type has evolved in 

response to optimal moisture and nutrient conditions.  An S leaf type reflects an adaptation to 

low nutrient status and periodic water stress due to highly variable soil water conditions in more 

shallow impoverished soils. 
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The TMS scheme uses estimates of the fraction of photosynthetically active radiation 

(FPAR) and the relative contributions of the TMS components to partition RN into ET for each 

TMS component (Berry, 2001; Berry and Roderick, 2004).  Instead of using relative 

contributions of each TMS leaf type, Projective Foliage Cover (PFC) for each TMS leaf types is 

used here to estimate the fraction of ET for each of the TMS components.  This relationship has 

not been independently validated in this study. 

Based on their respective mass fractions of water, projective foliage cover (PFC) the 

potential transpiration flux of the mesophyllous M leaf type (EPM) can be estimated from: 

MPPM PFCEE  60.0  (mm d-1) Equation 3.22 

where PFCM is the projective foliage cover of an M leaf type. 

Because the turgor (T) leaf type is mainly found on the forest floor in these landscapes, and 

because sclerophyll (S) leaf type can be found in any forest sub-stratum, Equation 3.20 must 

first be applied to estimate the reduction in RN caused by the interception of a tree or shrub 

canopy.  Forest canopy Leaf Area Index (LAI) is only applied to estimate RN and EP for the 

understorey component in a forest: 

TPPT PFCEE  90.0  (mm d-1) Equation 3.23 

SPPS PFCEE  45.0  (mm d-1) Equation 3.24 

where PFCT and PFCS are the projective foliage cover of T and S leaf surfaces for a 

given vegetation type. 

Projective foliage covers, PFCT, PFCM, and PFCS are kept constant estimating EPT, EPM, 

and EPS over the full length of the time series.  This is unlike the method used by Berry (2001; 

2004), in which FPAR and the relative contribution of each TMS leaf type changes constantly 

over time, according to seasonal conditions or recent disturbances, such as grazing, clearing, or 

fire.  The models for soil moisture resistance outlined in section 3.3.3.2 provide a useful 

mechanism for estimating ET for each of the TMS leaf types, instead of FPAR. 

3.3.3.2 Actual plant transpiration models for each TMS leaf surface 

Potential ET is the amount of transpiration that might occur from a constantly green canopy 

that is well supplied with water.  Potential ET is also dependent on the PFC of the T, M, and S 

leaf surfaces, as demonstrated in the previous section.  As the soil dries out, the contribution to 

ET from each of the leaf types is assumed to reduce according to some form of soil moisture 

resistance equation.  Essentially, an equation for soil water resistance simulates the effect of 

available water for plant transpiration between field capacity and wilting point.  The amount of 

available water between these two limits in one metre of forest soil has been defined as 165mm 

(Mount, 1972) although this may vary between 200 and 400 mm (Talsma, 1983; Raupach et al., 

2001; Fowler and Adams, 2004) in wet forest types in Australian and New Zealand.  The 
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amount of available water in the soil can be fixed for a given vegetation type.  In the MSDI 

model the amount of available water was set as a constant 165 mm in both forests and 

grasslands (Mount, 1972), somewhat lower than that used in other studies.  However, it appears 

to work satisfactorily in a range of forest types (Mount, 1972).  The level of available soil water 

was however increased to 250 mm in wet sclerophyll forests in Victoria’s water catchments 

(Langford et al., 1978) to take account of the deeper soils.  Increasing the soil depth generally 

increases the evapotranspiration flux for a given daily maximum temperature. 

Three equations have been used to model the effect of soil moisture resistance on ET 

(Table 3.1).  Equation 3.25 assumes a straight-line relationship between EA and EP as soil 

moisture decreases over time.  Equation 3.26 assumes that this relationship takes a quadratic 

form.  The last equation, Equation 3.27 employs several simple linear equations to arrive at ET at 

different levels of SWD. 

 

Table 3.1 List of soil moisture resistance models 

General description Equation formula Equation number 

Linear soil water resistance 
model 

PA E
F

AWC

SWD

E 













1

)
1

 

Equation 3.25 

Quadratic soil water resistance 
model PA E

AWC

SWD
E 






 

2

1
 

Equation 3.26 

If SWD <25mm, PA EE  0.1  

else if 25<SWD <50mm, PA EE  8.0  

else if 50<SWD 
<140mm, PA EE  65.0  

else if 140.5<SWD <165 
mm, PA EE  27.0  

Mount linear ET model with 
different soil moisture 
resistances applying at different 
SWD levels through the soil 
profile 

else SWD >165 mm PA EE  10.0  

Equation 3.27 

Note: SWD is the Soil Water Deficit, AWC is the available water capacity and F is a certain fraction of the available 

water supply when ET matches EP under non-limiting soil moisture conditions. 

 

The effect of these three soil moisture resistance models over the full range of SWD from 

zero to 165 mm is presented in Figure 3.4.  As can be seen, Equation 3.27 and Equation 3.28 

model the ratio of 
P

T

E

E
 in a similar fashion to each other over the full range of SWD. 
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In contrast, Equation 3.29 appears to differ markedly from the other two equations.  

However, Equation 3.29 will be used in the RSDI on the following grounds.  First, it has already 

been tested and used to estimate ET+S in a variety of forest environments in Australia (Mount, 



 

1972; Langford et al., 1978).  Second, the thresholds at which each of the linear equations 

applies, as well as the ratio of 
P

T

E

E
 can be adjusted to suit different depths and types of soils.  

Equation 3.29 originally applied to the estimation of ET+S  in the MSDI model.  Thus it is 

assumed that the same ratio can be applied to the estimation of plant transpiration (ET) in the 

RSDI model. 
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Figure 3.4 
P

T

E

E
 ratios estimated using different soil water resistance models 

across the range of soil water deficit (0-165 mm) 

 

The ratio of 
P

T

E

E
 estimated from Equation 3.27 at any SWD can be applied to estimate ET 

of M and S leaf surfaces: 

 SPMPPTSMT EEEEE  /
 (mm d-1) Equation 3.28 

 

Because T leaf types are associated with shallow rooted ephemeral grasses and forbs in the 

forests in this study area, ET was curtailed at SWD=100 mm.  It is assumed that high curing 

levels occur above this threshold in the RSDI model.  As a result, transpiration from T type leaf 

surfaces is estimated as: 

PTPTTT EEEE  /  (mm d-1) Equation 3.29 

 

The estimation of ET for all the TMS leaf components has now been derived.  This then 

completes the estimation of ES and ET components within the RSDI model. 
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3.4 Findings 
Three preferred DSWBMs were selected from the literature based on their parsimonious 

requirements for medium and long-term weather data and their closeness to biophysical reality 

(Section 3.1).  The MSDI and the RSDI model appear suited for medium-term studies of SWD 

over time because the sub-models of EI and ET+S closely approximate evaporation processes in 

south eastern Australian forests.  The Fowler (F-DSWBM) model is more suited potentially to 

estimate a long-term time series of SWD, because of its minimal data requirements of 

precipitation and EP based on Julian days (JD).  Once either of the two medium-term DSWBMs 

is calibrated, then the F-DSWBM can be calibrated to the medium-term SWD index before 

further analysis is undertaken. 

The modelling of RN based on its separate components RA, RS, albedo and net long-wave 

radiation, L and L was presented in Section 3.2, based on previous studies (Budyko, 1974; 

Oke, 1987; Roderick, 1999).  It can be estimated from a minimum dataset of TMIN, TMAX, P0900 

although supply of additional variables such as cloud cover or sunshine hours can improve the 

accuracy of the estimate.  However, the latter two variables are not always measured or 

estimated continuously at manned or automatic weather stations.  The Budyko equation 

(Equation 3.16) can be used to estimate potential evaporation (EP) from all-wave net radiation 

(RN) to form the basis for modelling ES and ET. 

The estimation of ET+S from models of ES and ET was advanced in Section 3.3, based on 

remote sensing studies (Section 3.3), using a minimal set of weather variables including TMAX, 

TMIN, and RHMIN.  Models of ES and ET can therefore be used instead of the more general 

evapotranspiration term in the RSDI daily soil water balance model. 

This chapter therefore answers the second and third questions posed in section 1.4 (Table 

1.1): ‘What daily soil water balance models (DSWBMs) are most suited to the study of 

landscape dryness over the medium and long-term?  Can simple and elegant sub-models of soil 

evaporation and plant transpiration replace evapotranspiration models?’ 

Having determined which soil water balance models are suited to the purposes of this 

study, the next chapter investigates what datasets and weather stations are available in the study 

region to drive these models, as well as those of potential fire spread. 
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Chapter 4: Datasets for the Landscape 
Susceptibility Models 

This chapter sets out to create medium and long-term weather datasets that are necessary to 

drive the models of landscape dryness and potential fire spread for three climate zones in the 

study region (Cfa, Cfb, Csc) (Figure 1.2).  The weather datasets needed for deriving, calibrating, 

and then analysing these two fire susceptibility factors are: 

(1)  calculated daily RN and hence daily EP, to enable estimation of ES and ET in the 

RSDI model (Chapter 5) for each of the three weather stations,  representing the 

climate zones identified in Chapter 2; 

(2)  medium (50-70 yrs) and long-term (> 100 yrs) daily SWD time series datasets for 

two distinct climate zones.  These will be needed for calibration and validation 

studies (Chapter 6), and for time series analysis and classification (Chapters 8 and 

9); and 

(3)  medium-term time series data for daily FWI and FFDI for at least one location 

(Chapter 8). 

The first part of the of chapter examines the weather datasets from weather stations in the 

study area that meet the modelling requirements of the selected landscape dryness and potential 

fire spread models for the three climate zones (see Section 2.2).  The second part of the chapter 

reviews the data standards and available weather data for the study. The third part of the chapter 

demonstrates how continuous and relatively error-free datasets are compiled for each of the 

models from the available weather data. 

4.1 Modelling requirements based on study purposes 

4.1.1 Modelling plan 
An idealised modelling plan is presented in Figure 4.1.  While only one medium-term 

SWD dataset will be used in time series analysis and classification, the additional SWD datasets 

produced by the other two daily soil water balance models are needed to support calibration, 

validation, and cross-comparison of the models.  They need to perform well and have practical 

applicability.  Medium-term indices of landscape dryness are required for each of the three 

climatic zones: Sub-montane plains, Montane and Sub-alpine (see section 2.2). 

Medium-term landscape dryness indices can be produced for each of the three climate 

regions, but modelling is limited by the range and quality of data, and by the length of the 

record.  Stations representative of these distinctive climatic regions are Canberra Airport (Cfa), 

Corin Dam (Cfb) in the upper Cotter River catchment, and Cabramurra (Csc).  Queanbeyan 

weather station, close to Canberra Airport, has long-term rainfall records.  Judicious melding of 
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the Queanbeyan and Canberra Airport records enabled construction of a long-term sub-montane 

plains weather dataset. 

 

Available stationsModel

F-DSWBM

MSDI

RSDI

F-DSWBM

Canadian FWI

FFDI

Susceptibility indices

1. Produce a calibrated SWD time 
series using the selected medium 
time series of SWD

1. Produce a FWI time series

2. Select fire weather model for time 
series analysis and classification

Require continuous and accurate  
weather data (99% or more of records)

(1) Sub-montane plains (Cfa): 
Canberra Airport

(2) Montane (Cfb): Corin Dam

(3) Sub-alpine (Csc) : Cabramurra

1. Derive time series for RN and 
SWD

2. Model verification of RN and SWD

3. Select the preferred SWD from 
either the MSDI & RSDI

Medium term (50-100 years) 

For potential fire spread index (FWI)

Medium term (50-100 years)

(1) Sub-montane plains (Cfa): 
Queanbeyan

(2) Montane (Cfb): Corin Dam in the 
upper Cotter River catchment

(1) Sub-montane plains (Cfa) : 
Canberra Airport

Long term (>100 years) 

For landscape dryness index

Available stationsModel

F-DSWBM

MSDI

RSDI

F-DSWBM

Canadian FWI

FFDI

Susceptibility indices

1. Produce a calibrated SWD time 
series using the selected medium 
time series of SWD

1. Produce a FWI time series

2. Select fire weather model for time 
series analysis and classification

Require continuous and accurate  
weather data (99% or more of records)

(1) Sub-montane plains (Cfa): 
Canberra Airport

(2) Montane (Cfb): Corin Dam

(3) Sub-alpine (Csc) : Cabramurra

1. Derive time series for RN and 
SWD

2. Model verification of RN and SWD

3. Select the preferred SWD from 
either the MSDI & RSDI

Medium term (50-100 years) 

For potential fire spread index (FWI)

Medium term (50-100 years)

(1) Sub-montane plains (Cfa): 
Queanbeyan

(2) Montane (Cfb): Corin Dam in the 
upper Cotter River catchment

(1) Sub-montane plains (Cfa) : 
Canberra Airport

Long term (>100 years) 

For landscape dryness index

Figure 4.1 Modelling plan for thesis 

Note: Plan assumes availability of comprehensive, consistent, and accurate long-term climate records for time series 

analysis in all three climate zones.  For example, it was not practicable to estimate directly all-wave net 

radiation (RN) at the sub-alpine weather station at Cabramurra. 

 

The compiled weather data and models of landscape dryness are used for two purposes in 

preparing a medium-term time series.  First, calibration and validation of sub-models for ES and 

ET in the RSDI model are performed to align the RSDI model with other sources of published 

scientific data, including ground or remotely sensed data.  Second, the calibrated RSDI, along 

with the Fowler and MSDI models, is tested using evaporation and run-off data to check the 

calibrations and make any further adjustments to the models.  Once the models are sufficiently 

calibrated, the preferred models can be compiled as a succession of annual SWD profiles, 

commencing on 1st July to correspond with the annual solar cycle and the start and finish of fire 

seasons. 

For medium-term time series of potential fire spread, the requisite daily weather data are 

only available at Canberra Airport.  The technology to record continuous weather data in more 

remote regions has only become available in the last 10 years, and anyway remote telemetric 

data recording systems will always have problems recording weather data on a continuous and 

accurate basis. Because no independent method for testing the validity or accuracy of the FWI 
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or the FFDI is available, their capacity to model potential fire spread during the course of a fire 

season is discussed in Chapter 8.  The same process is also used to select the preferred model of 

PFSI in time series analysis and classification of annual profiles of potential fire spread. 

The modelling plan requires at least two landscape dryness models initially to estimate 

landscape dryness for two climate zones: sub-montane (Cfa) and montane (Cfb).  The key 

weather station for the long-term time series of landscape dryness is that of Queanbeyan whose 

length of record exceeds 100 years.  The Corin Dam weather station record, which is a 

representative weather station in the montane climate zone, only goes back to 1936, which is 

only five years longer than that of Canberra.  The net result is that only one long-term time 

series of landscape dryness can be implemented. 

4.1.2 Weather variables for the indices of landscape dryness 
and potential fire spread 

A minimal weather variable data set was used for modelling landscape dryness and 

potential fire spread.  Those variables required for modelling landscape dryness (P0900, TMAX, 

TMIN, CAV, T1500, and RH1500) are depicted in Figure 4.2 and are used to calculate potential and 

actual evaporation rates in daily time steps.  In particular, the RSDI model requires the derived 

modelling variable RN, the equations of which were formulated in the previous chapter.  The 

estimation of RN and its input variables requires the following weather variables, CAV, P0900, 

TMAX and TMIN. 
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Figure 4.2 Weather variables and sub-models for estimating landscape 
dryness index 

where TMAX is the maximum daily surface temperature, TMIN is the minimum daily temperature, ET+S is the daily 

evapotranspiration rate, P0900, is the amount of precipitation to 9am; CAV is the mean daily cloud cover, T1500 
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and RH1500 are the temperature and relative humidity.  T1500 and RH1500 approximate the conditions at the 

warmest and driest part of the day (sometime between 1400 and 1800 hrs). 

Notes: (1) Extra-terrestrial irradiance (RA) is also needed for estimation of all-wave net radiation (RN) 

(2) To estimate soil water deficit (SWD) in the upper Cotter River catchment using the RSDI model, all-wave 

net radiation from Canberra Airport as a first approximation was used to model RN. 

 

The two potential fire spread models, FWI and FFDI, require a range of weather variable 

inputs (Figure 4.3).  Four daily weather variables (P0900, T1500, RH1500 and WS1500) are required 

inputs for the fuel moisture, fuel availability, and potential fire spread models.  The fuel 

availability indices require estimates of intermediate medium and long-term fuel moisture levels 

using the DMC and DC codes embedded in the FWI model whereas the FFDI model requires 

days since rain (DSR) and drought index (DI) estimated from one of the DSWBMs. 
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Figure 4.3 Weather variables and sub-models for estimating potential fire 
spread 

where DSR is the number of days since rain; P0900 is daily precipitation measured at 0900 hr; T1500, RH1500, and 

WS1500 are the temperature, relative humidity and wind speed measured (or estimated) at 1500 hr close to the 

warmest part of any given day (by mid summer, the hottest part of the day is late afternoon, after 1500 hours). 

Notes: (1) The two PFSI models can only be estimated from Canberra Airport weather data (see Table 5.1) 

(2) The FFDI is based on a standard fuel load of 12.5 t ha-1, which is assumed to be constant in this study. 
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In summary, nine weather variables are required as inputs into the three landscape dryness 

and two potential fire spread models (Table 4.1).  The variables, dewpoint and wind direction at 

1500 hrs (DP1500 and WD1500), were included for contextual purposes as they provide 

information about the type of atmospheric air mass moving over the region at the time. 

Table 4.1 Weather variables needed for modelling of all-wave net radiation, 
landscape dryness, and potential fire spread 

All-wave net 
radiation  

Landscape dryness 
Potential fire spread 

indices (PFSI) Weather 
variables 

RN MSDI RSDI F- DSWBM FFDI 
Canadian 

FWI 

P0900       

CAV       

TMAX       

TMIN       

DP0900       

DP1500       

T1500        

RH1500       

WS1500       

WD1500       

Notes: (1)  indicates variable needed to run model. 

(2) As well as P0900 data, the F-DSWBM requires mean daily evaporation from estimates taken over a 20 to 30 

year period (see section 6.1.3). 

 

The weather variables needed for the daily soil water balance models are summarised 

below (Table 4.2). 

Table 4.2 Canberra Airport and Corin Dam input weather variables for F-
DSWBM, MSDI and RSDI models 

Model Time scale 
(yrs) 

Data requirements 

RSDI 56+ CAV, P0900, TMAX, TMIN, RHMIN and 
VPDMIN and mean daily eA 

MSDI 65+ P0900 and TMAX 

F-DSWBM 130 -150 P0900 and average EP for each JD in a year 
estimated from the last 30 years. 

Note: The RSDI model needs additional variables to estimate RN and its components that are recorded at standard 

weather stations, although cloud cover should be estimated at intervals across the day to obtain accurate 

estimates of RS used in the estimation of RN. 
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Input weather variables for the two potential fire spread models are summarised in Table 

4.3. 

Table 4.3 Weather variables needed to estimate potential fire spread (from 
Canberra Airport) 

Model Time scale of study 
(yrs) 

Data requirements 

FFDI 65+ SWD, P0900, T1500, RH1500, WS1500 

FWI 65+ SWD, P0900, T1500, RH1500, WS1500 

Note: SWD is estimated from any one of the DSWBMs.  The scale of SWD is set to, or scaled up to, 200 mm for 

use in both potential fire spread indices.  The standard scale of SWD in the MSDI and RSDI models is 165 

mm. 

4.2 The weather data 

4.2.1 Weather stations and data standards 
The Australian Bureau of Meteorology (BOM) collects and collates high quality weather 

data across a network of Reference Climate Stations (RCS) meeting quality standards set down 

by the World Meteorological Organisation (WMO) (Bureau of Meteorology, 1997; World 

Meteorological Organization, 1983; World Meteorological Organization, 1988).  Nevertheless, 

actual weather records contain data errors, due to the changes in reporting requirements and the 

quality of instrumentation.  More specifically, changes have included: 

 the number, location, and regularity of maintenance of weather stations; 

 changes in instrumentation and technology; 

 frequency of instrumentation calibration and measurement; and 

 observer or instrument bias (Linacre, 1992). 

The data collection standards are designed to keep instrument and human error within 

acceptable and stated quality standards over the long-term (Bureau of Meteorology, 1997). 

Weather data requirements for this study conform to the following criteria: 

 they have been collected in accordance with standards set down by the WMO; 

 they have few missing records in the record from the start of  reliable record-keeping, 

defined as having less than 1-3% of total number of records missing; and 

 they have been collected using comparable and consistent methods and instrumentation. 
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Other factors important in the selection of a weather station for long-term study include 

external and internal site factors.  Based on the BOM’s observation specification (Bureau of 

Meteorology, 1997), the external site factors include: 

  site permanency; 

 avoidance of site relocation; 

 the site environment remaining largely unchanged over the period of record; and 

 the site is located well away from the influence of urban settlement and lakes, and the 

surrounds have a stable land use. 

It is desirable that: 

 the weather recording instruments be sited according to WMO layout requirements; 

 the instruments are of the highest quality; and 

 the instruments are maintained and calibrated on a regular basis. 

BOM standards for data quality and weather station standards (Table 4.4) are drawn from 

the WMO standards for weather recording and weather stations (World Meteorological 

Organization, 1983; World Meteorological Organization, 1988; Bureau of Meteorology, 1997). 

 

4.2.2 Effects of weather data and modelling errors on fire 
susceptibility indices 

The proclivities of weather stations to malfunction aside, the principal errors in long-term 

datasets arise from: 

 magnitude and variation of the absolute and relative errors in the measurement of 

weather data; 

 possible measurement biases due to the recording instruments or attributable to the 

weather observer; and 

 errors in the formulation of any model of a particular index of fire susceptibility. 

Absolute error is defined as error associated with the physical measurement of a weather 

variable (Linacre, 1992).  For instance, the absolute error in the physical measurement of 

temperature is  0.1 C.  This absolute error represents the best possible accuracy to which a 

weather variable can be measured using a particular instrument or method of observation. 

Relative error is defined as the absolute error expressed as a percentage of the weather 

variable that will vary according to the magnitude of the recorded values.  Relative error is used 

for estimating the comparative accuracy of weather variables at the opposite ends of the scale of 

the reported range of expected values.  In the case of temperature, the relative error of 1C at 

30oC(284K) is 0.067%, and at 0oC (303K) it is 0.073%. 



 

Table 4.4 Contemporary standards for weather data collected at accredited reference climate stations in Australia 

Factor Variable Measurement Recording range 
Reported 
resolution 

Required accuracy Remarks 

Precipitation Daily rainfall T 0 – 400 mm 0.1 mm 
±0.1 mm up to 5mm 

±2% > 5mm 
 

Surface irradiance T 0 – 50 0.5 Wm-2 1 Wm-2  

Solar Radiation 

Net radiation T 0 – 30 1 MJm-2d-1 
±1 MJm-2d-1 up to 8 MJm-2d-1 

±5% > 8 MJm-2d-1 
Daily average net radiation values 

Temperature Air temperature I -60 – +60 °C 0.1 °C ±0.1 °C  

Dewpoint I -60 – +60 °C 0.1 °C ±0.5 °C 
Error in estimating relative humidity 
tends to ±1% when  nearing saturation 

Relative humidity 

Relative humidity I 5 – 100% 1% ±3%  

Clouds Cloud cover I 0  –  8/8 1/8 ±1/8  

Wind speed A 0 – 75 ms-1 0.5 ms-1 
±0.5ms-1 up to 5 ms-1 

±2% > 5 ms-1 

Average over 2 or 10 min 

Wind 

Wind direction A 0 – 360° 5° ±10° Average over 2 or 10 min 

Evaporation Pan evaporation T 0 – 10 mm 0.1 mm 
±0.1 mm up to 5 mm 

±2% > 5 mm 
 

Where I = Instantaneous reading; A = Averaging – averaged values over a fixed time period as specified for the weather station; T = Totals over a fixed time 

period(s) as specified for the weather station 

Source: Documentation contained in Observation Specification 2013.1 (Bureau of Meteorology, 1997) based on WMO standard. 
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Seasonal variations and the particular characteristics of a weather station can also affect the 

size of relative error in the estimation of a weather variable (Table 4.5).  This table  is adapted 

from Linacre (1992:33) where absolute and relative tolerable errors of commonly measured 

weather variables at a manned operating weather station or an automatic weather station are 

presented using some typical seasonal values. 

In practice, the relative error will depend on the size and range of the seasonal values for 

each of the key input variables.  If, for example, the total absolute acceptable measurement error 

for RN is  0.9 MJ m2 d-1, then the maximum tolerable relative error will range between 4 and 

9%, depending on season.  Similarly, if the absolute total acceptable error for maximum daily 

temperature is 0.8oC, then the seasonal total relative error will vary between 0.8 and 1.8% while 

the relative error in minimum daily temperature varies much more widely (between 1.5 and 

100%).  Rainfall records are particularly prone to high relative errors for low rainfall (< 5 mm) 

and can be compounded by both systematic and observer errors.  Since light rainfall events 

occur frequently in the records, there is a potential cumulative error in estimates of water 

available for evaporation, a key estimating variable for modelling SWD in a DSWBM. 

High landscape susceptibility to fire only occurs towards the top end of the scales of 

landscape dryness and adverse fire weather conditions.  Hence, any interpretation of the 

potential for a large landscape fire during a fire season, predicated on thresholds of soil water 

deficit (SWD) and the potential fire spread index (FWI) is critically dependent on the quality of 

historical weather records.  As SWD is a cumulative index that is intended to seasonally reduce 

to zero during the cooler periods of the year, the index self-corrects in most years, except those 

leading into any periods of high fire susceptibility.  A critical factor, too, is the estimate of 

evaporation rate.  Estimates of moisture loss must be within 0.1 mm per day to ensure that 

potential cumulative evaporation is not grossly in error. 

Temperature measurements fall within a 5% error threshold for most of the year, except 

during the coldest periods in winter.  An automatic weather station may provide somewhat less 

accurate estimates of daily minimum and maximum temperature in winter compared to the more 

accurate values measured at a manned observation weather station.  The reason for this is that 

the thermometers used at an automatic weather station are less precise (Table 4.5) and are also 

not maintained as often given their remote locations. For that reason, manned operating weather 

stations, like Canberra Airport, should be used instead of automatic weather stations because of 

the lower absolute and relative errors for most of weather variables (Table 4.5).  Another factor 

is that there are usually gaps in automatic weather station records of minimum and maximum 

temperature that make it difficult to produce continuous records for daily soil water balance 

models. 
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Table 4.5 Range in absolute and relative errors for weather variables at 
manned observing and automatic weather stations 

Weather factors Relative errors 

Weather variable Mean or 
typical values 

Manned observing 
weather station 

Automatic weather station 

  Absolute value (%) Absolute value (%) 

25.7 (Jan) 0.9 3.5 NA NA Surface irradiance  
(RS) (MJ m2 d-1) 10.0 (Jul) 0.9 9 NA NA 

below 5 0.2 4-20 0.5 10-20 

5-10 0.2 2-4 0.5 10 
Rainfall 

(mm) 
above 10 0.2 <2 0.5 <10 

25.5 (Jan) 0.2 0.07% 0.5 0.17% Maximum temperature 
(TMAX) (C) 11.2 (Jul) 0.2 0.07% 0.5 0.18% 

13.0 (Jan) 0.2 0.07% 0.5 0.17% Minimum temperature 
(TMIN) (C) 0.2 (Jul) 0.2 0.07% 0.5 0.18% 

10 1 10 2 20 
Relative humidity (%) 

70 1 1.7 2 3.4 

5 0.5 10 0.5 10 
Wind speed (km hr-1) 

30 0.5 2 0.5 2 

Source: Adapted from Linacre (1992:33). 

Notes: (1) The values of irradiance and maximum and minimum temperature (column 2) are based on mean 
Canberra Airport values for the period 1981 to 1991.  
(2) The estimates for relative error in maximum and minimum temperature are based on temperatures in 
Kelvin (K). 

 

Extremes of temperature and wind speed at the upper end of a potential fire spread index 

critically influence the potential for spread of fire.  Relative humidity is low under extreme fire 

weather conditions, typically 5 to 10%, so relative error is likely to be high (10 and 20%).  This 

has ramifications for estimation of fuel moisture content when this is low and for estimating fire 

spread and fire intensity (Rothermel, 1972; Cheney, 1981; Van Wagner, 1987; Trevitt, 1989).  

Fortunately, relative errors for both temperature and wind speed are likely to be lower at the 

high end of FWI.  The adoption of cup anemometer technology, replacing the old Beaufort 

estimation of wind speed, in particular has improved records (Bessell, 2006).  Bessell (2006) 

found that The Beaufort scale underestimated wind speed compared to those taken with 

electronic cup anemometers.  This signals a need for adjustments to the older wind speed 

records taken with the Beaufort scale to make them consistent with the more recent wind speed 

records. 

While relative and absolute errors in weather data are important, errors that are embedded 

in a model can produce biases in index values as well.  These modelling errors result from the 
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formulation of empirical models to cover the range of landscape dryness or potential fire spread, 

rather than from errors associated with the weather data.  For instance, the RSDI model is 

dependent on estimates of evaporation from soil and plants that are themselves dependent on the 

value of RN, temperature and relative humidity (Penman, 1948; Mount, 1972; Fisher et al., 

2008).  Not all the data are available for calculation of each of the above weather variables, 

particularly in the more remote parts of the study area.  Proxy estimation of missing records of 

weather variables lowers the confidence in the final estimate of daily evaporation because of an 

unknown level of inaccuracy and/or bias.  As an example, the daily soil water balance models 

are based on a cumulative soil water deficit being calculated from each day’s evaporation 

values.  A consistent bias in evaporation would result in a significant deviation from the true 

value of soil water deficit.  The biased value would thus affect the period during which the 

threshold of fire susceptibility was exceeded during a fire season, and hence the degree to which 

the landscape was potentially exposed to large landscape fires (LLFs). 

Errors in a potential fire spread index are influenced by the relationships between soil 

water deficit, fuel moisture and wind speed.  A key issue is how well mathematical formulae 

model this relationship (see section 1.1 for discussion of type 1 or type 2 errors).  The combined 

effect of the errors in measurement of fuel moisture and wind speed on FFDI has been studied 

by Trevitt (1989).  The potential size of errors in estimating rate of spread was assessed using 

fuel moisture and wind speed in the FFDI (Noble et al., 1980), assuming that the variables of 

fuel moisture and wind speed are largely independent of each other.  The uncertainty of the 

estimate of rate of spread was found to increase with increase in wind speed and decrease in fuel 

moisture content.  Thus errors associated with combinations of low fuel moisture and high wind 

speeds could lead to higher levels of uncertainty at the extreme end of the scale of a potential 

fire spread index.  This uncertainty poses an issue for the accuracy of values of potential fire 

spread indices in the earlier part of the time series, prior to the installation of improved wind 

speed instrumentation in the mid 1990s.  Prior to that, estimates of wind speed made using the 

Beaufort scale were more prone to possible human error. 

4.2.3 Weather station data suitable for estimating medium and 
long-term indices of fire susceptibility 

Weather stations with suitable weather records determining the indices of fire 

susceptibility must have continuous, consistent and complete records over the medium-term 

(50-70 yrs) and long-term (> 100 yrs) time scales.  Continuity of records means having few, if 

any, gaps in the records.  Consistency refers to consistent measurement of weather records 

without a major change to weather station conditions or method of recording, to limit possible 

bias in the estimate of a weather variable.  Finally, accuracy of records refers to the records of 

each weather variable conforming to the accuracy standards of the World Meteorological 

Organisation (WMO) throughout the period of record (see Table 4.4). 
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The basic requirement for this study was to find suitable weather stations where analysis 

could be performed on two medium-term datasets of landscape dryness and potential fire spread 

and one long-term landscape dryness dataset.  There was also a need to select the most 

representative weather station in each of the climatic zones to produce the respective fire 

susceptibility indices.  An additional requirement was to locate additional weather stations 

either for filling gaps in the weather record or for validation of the indices. 

The first step in locating suitable weather stations was to inspect in detail a set of weather 

variables collected at weather stations within and surrounding the study area.  The two key 

variables in estimating landscape dryness are daily evaporation and precipitation (see Equation 

1.1; Chapter 1).  Given that the F-DSWBM requires only precipitation as an input variable to 

estimate an index of landscape dryness (Fowler, 1992; Fowler, 2002), the approach taken was to 

evaluate the length and completeness of precipitation records of weather stations that fell into 

the three climatic zones: sub-montane, montane and sub-alpine. 

The evaluation of precipitation records was based on three criteria: 

(1) length of records (greater than 50 years); 

(2) completeness, based on the gaps in the precipitation records, from the start of 

records up to June 2007; and 

(3) the overall percentage of complete records within the period of record defined in 

criterion (2) (had to exceed 97%). 

The results of this evaluation are presented in Table 4.6. 

In the sub-montane part of the study area (Cfa climate zone), four weather stations were 

found to be suitable for a medium-term record (47, 64, 69, and 72 years duration), and only two 

for a long-term one (117 and 136 years duration).  For a medium-term study, Canberra Airport 

weather station was found to have the best overall data quality.  For a long-term study, 

Queanbeyan weather station was found to have the longest continuous and consistently recorded 

set of precipitation records.  Its overall data quality (97% of high quality records) was second to 

that at Gidleigh station near Bungendore.  The advantage of both Canberra and Queanbeyan 

weather stations is that they fall in the centre of the sub-montane plains in close proximity to 

each other whereas the Gidleigh weather station lies on the eastern edge of the study area.  The 

latter is however useful for filling short gaps in weather data in the Queanbeyan weather station 

record.  As Canberra Airport is part of the Bureau of Meteorology’s RCS network, it has the 

capability to support the two medium-term models of landscape dryness: RSDI and MSDI in the 

sub-montane climate zone (Cfa). 

In the montane parts of the study area further to the west (Cfb climate zone), only four 

weather stations were found to have sufficient length and quality of record: Blundells Hill, 

Corin Dam, Fairlight Station, and Pierces Creek.  Based on the set criteria, only the weather 

stations at Corin Dam and Fairlight Station possess the necessary length and quality of 

71 



 

72 

precipitation records within the montane climate zone.  The two other stations, at Blundells Hill 

and Pierces Creek, play an important role in filling in missing precipitation at: Corin Dam and 

Fairlight Station respectively.  Of these latter two, the weather station at Corin Dam is the more 

suitable for estimating landscape dryness in the montane climate zone.  It lies in the heart of the 

Cotter catchment and the Brindabella Ranges and is therefore a useful representative station for 

calculating a medium-term soil water deficit (SWD) in the montane climate zone. 

In the sub-alpine climate zone (Csc), the data from the weather station at Kiandra, 

combined with that from Cabramurra manned operated and automatic weather stations, can be 

used to create a composite precipitation record for a long-term climate record.  Like the 

Canberra Airport weather station, the weather records from the two Cabramurra stations contain 

data for key variables (TMAX, TMIN, DP1500 and RH1500) needed to run the more data intensive 

MSDI and RSDI models.  However, using a composite weather record is problematic because 

of some significant gaps in the weather record for DP1500 and RH1500.  In conclusion, a long-term 

SWD dataset estimated using the precipitation records from these weather stations might not be 

accurate or reliable enough for this study without further data evaluation. 

Stations with data that can support a medium-term Potential Fire Spread Index (PFSI) for 

the three climatic regions also had to be identified.  In addition to the precipitation data, the 

completeness, consistency, and accuracy of the weather variables recorded at 1500 hrs are 

critical for estimating the PFSI factor.  A comparison of records from the three reference climate 

stations in the study area (Burrinjuck, Cabramurra, and Canberra Airport) showed that only the 

weather record at Canberra Airport had the completeness, consistency, and accuracy required to 

produce indices of landscape dryness and potential fire spread for the medium-term time scale 

(Table 4.7) from 1 July 1951 onwards.  Between 1 March 1939 to 1 July 1951, the critical 

records of dewpoint and relative humidity are largely missing, the latter being a critical factor in 

the estimation of fine fuel moisture content used to derive either FFDI or FWI. 

As for an index of potential fire spread, only one can be estimated for the sub-montane 

climate zone from the start of reliable and complete set of Canberra Airport weather records in 

1951.  Medium-term datasets are too short and incomplete for a medium-term PFSI in either the 

montane or sub-alpine climate zones (Cfb, Csc) using respectively either Corin Dam or 

Cabramurra weather station records. 

 



 

Table 4.6 Precipitation weather station attributes in the study region 

Gentilli Climatic 
region 

 

Weather station Station number Elevation 
(m) 

Start of 
continuous 

record 

End of 
continuous 

record 

Length of 
continuous 
record (yr) 

High 
quality 
record 

(%) 

Application in study 

Queanbeyan 70072 580 1 Jul 1871 30 Jun 2007 136 97.0 Long-term SWD time series 

Bungendore (Gidleigh) 70035 725 1 Jul 1886 30 Jun 2007 117 99.9 
Filling small gaps in records in Queanbeyan 
time series 

Hall (Lochleigh) 70045 634 1 Jul 1903 30 Jun 2007 100 99.8  

Canberra Airport 70014 578 1 Jul 1939 30 Jun 2007 64 99.9 Medium-term SWD time series 

Tharwa General Store 70083 595 1 July 1938 30 Jun 2007 69 75.9  

Ainslie - Tyson Street 70000 585 1 Jul 1935 30 Jun 2007 72 98.1  

Cfa 

Huntley 70093 580 1 Jul 1956 30 Jun 2007 47 98.9  

Fairlight Station 70032 610 1 Jul 1884 31 Dec 2004 119 97.8 
Precipitation record not that different from 
Canberra Airport as it lies on the boundary 
between the Cfa and Cfb climate zones 

Corin Dam 570947 962 1 Jul 1930 30 Jun 2007 77 93.0 Medium-term SWD series 

Pierces Creek  70070 585 1 Jul 1930 30 Jun 1991 61 100 Filling gaps in Corin Dam time series 

Cfb 

Blundells Hill 570955 1054 1 Jul 1963 30 Jun 2007 55 99.6 Filling gaps in Corin Dam time series 
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Table 4.6 continued 

Gentilli Climatic 
region 

 

Weather station Station number Elevation 
(m) 

Start of 
continuous 

record 

End of 
continuous 

record 

Length of 
continuous 
record (yr) 

High 
quality 
record 

(%) 

Application in study 

Cabramurra 72091 1475 1 Jul 1955 30 Apr 1999 44 99.7 
Medium-term SWD, if combined with station 
72161 

Cabramurra (AWS) 72161 1482 1 May 1999 30 Jun 2007 8 95.0  

Kiandra 71010 1395 1 Jul 1909 30 Jun 1969 60 100 
Long-term SWD, if combined with 
Cabramurra MOWS and AWS 

Csc 

Yarrangobilly 72141 980 1 Jul 1977 30 Jun 2007 30 95.7 
Filling gaps in weather records at Cabramurra 
manned operating weather station since 1999 

Source: Internet database of weather stations (Bureau of Meteorology, 2006).  The start of a continuous precipitation record was set to July 1st to coincide with a July-June year. 

Notes: (1) Weather stations are manned operating weather stations unless otherwise specified as an Automatic Weather Station (AWS) in the first column. 

(2) The grey shaded rows indicate weather stations central to the estimation of landscape dryness in each climate zone. 

 



 

Table 4.7 Completeness of fire weather variables at Canberra Airport to produce a potential fire spread index 

Time 
period 

Weather variables Start of 
continuous 

record 

End of 
records 

Length of 
record 
(days) 

Number of 
missing records 

Completeness 
of record 

Comments 

Daily Precipitation to 9 am 1 Mar 1939 30 Jun 2007 24290 2 99.9 Complete set of records 

Daily Maximum temperature 1 Mar 1939 30 Jun 2007 24290 0 100 Complete set of records 

Daily Minimum temperature 1 Mar 1939 30 Jun 2007 24290 0 100 Complete set of records 

0900,1500 Cloud cover 1 Mar 1939 30 Jun 2007 24290 487 97.5 
Monthly blocks of data missing: Jan-Mar 1942; Sep-Dec 1942; 
Nov 1971-Feb 1972.  Otherwise a small number of scattered 
records are missing since 1951 

3 hourly  Cloud Cover 1 Mar 1939 30 Jun 1997 24290 307  98.4 
Some 307 records are missing prior to April 1997.  Thereafter, 
cloud cover is recorded less frequently but frequently enough 
to produce an average daily cloud cover 

1500 hours Temperature  1 Jul 1951 30 Jun 2007 19785 319 98.3 
Monthly blocks of data are missing: Jan – Mar 1942; Oct –Dec 
1942.  Otherwise, 128 records are missing since July 1951 

0900, 1500 
hours 

Dewpoint temperature  
1 Mar 1939, 
1 Jul 1951 

30 Jun 2007 24290, 19785 4149, 129 79.0, 99.3 
Complete block of data missing prior to July 1951.  The 129 
records missing since July 1951 include a monthly block of 
data: Nov 1971-Feb 1972 

1500 hours Relative humidity 
1 Mar 1939, 
1 Jul 1951 

30 Jun 2007 24290, 19785 4047, 128 79.5, 99.3 
Similar blocks of data missing as the DP1500 prior to July 
1951 

1500 hours Wind speed 1 Jul 1951 30 Jun 2007 19785 339 98.2 
Monthly blocks of data missing: Jan-Mar 1941; Nov-Dec 1942; 
Nov 1971-Feb 1972 

1500 hours Wind direction 1 Jul 1951 30 Jun 2007 19785 343 98.2 Same gaps in the weather records as WS1500 

Source:  Canberra Airport weather records (Station number: 70014) 1 Mar 1939 to 30 August 2007 (Bureau of Meteorology, 2007b). 

Notes: (1) The start of continuous complete records for most of the weather variables was July 1951, which aligns with the start of the fire season used in this study 

(2) Grey shaded rows indicate significant blocks of missing records for that variable, particularly prior to 1951. 
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4.3 Compilation of consistent and complete weather 
datasets 

Time series analysis and classification require consistent and complete weather datasets to 

model landscape dryness and fire spread potential. 

The modelling framework (Figure 4.1) proposes that indices of fire susceptibility be 

modelled at three sites, one in each climate zone.  However, based on the findings in section 

4.2.3, only Canberra Airport has the requisite data to estimate all-wave net radiation, landscape 

dryness and potential fire spread indices for the sub-montane climate zone (Cfa).  Similarly, 

only Queanbeyan weather station has the precipitation records to estimate long-term landscape 

dryness.  For the montane climate zone (Cfb), Corin Dam contains reliable records of 

precipitation extending back to the mid 1930s.  Using one or more of the methods described in 

the following sections, TMAX, RH1500, and RN can be interpolated for Corin Dam from the data at 

Canberra Airport.  Landscape dryness based on SWD can be estimated using any of the three 

proposed DSWBMs.  Compilation of the weather datasets was therefore centred on: (1) 

Canberra Airport records, and (2) medium to long-term precipitation records at Corin Dam and 

Queanbeyan. 

4.3.1 Filling gaps and creating proxy weather datasets 
Linacre (1992) considers that there are four methods for filling gaps in records or creating 

proxy datasets for a given weather variable: 

(1) climatological estimation — where the missing value is estimated from the average 

of values recorded at the same time in previous years; 

(2) interpolation of missing records from mean monthly values in a year or monthly 

values for a number of years; 

(3) parallel estimation — where a constant ratio or constant difference is derived from 

comparison of overlapping records from a nearby station; and  

(4) proxy estimation — where the missing value is related to simultaneous values of 

related weather variables, using an empirical relationship. 

Table 4.8 illustrates how parallel and proxy estimation will be used to fill missing records.  

The weather variables with the largest gaps are daily precipitation (P0900) for Corin Dam and 

Cabramurra weather stations and relative humidity (RH1500) records for weather stations at 

Cabramurra, Corin Dam, and Canberra Airport. 

Large gaps in relative humidity (RH1500) records at Cabramurra and Corin Dam preclude 

the use of the RSDI model at those stations especially since Canberra Airport is in a quite 

different climatic region.  Canberra Airport records for precipitation (P0900), temperature (T1500), 
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and relative humidity (RH1500) are nearly complete, requiring relatively small gaps in the records 

to be filled. 

Table 4.8 Completeness of records of key weather variables with proposed 
method for estimating missing records 

Fire 
susceptibility 
indicator 

Weather 
station 

Weather 
variable 

Number (and 
percentage) 
of missing 

records 

Method for estimating values of 
missing records 

P0900 2181 (9.9) Parallel estimation of P0900 using 
Yarrangobilly weather station records 
from May 1999 to the present.  Prior 
to that, parallel estimation is based on 
Kiandra weather station records 

TMIN, TMAX 436 (2.7) Parallel estimation from either 
Kiandra or Tumbarumba weather 
station records 

Cabramurra 

RH1500 1229 (95.1) Proxy estimation based on TMAX and 
DP0900 (~99.99% of records intact at 
Cabramurra weather station since 
1962) 

P0900 2004 (7.0) Parallel estimation using Pierces 
Creek weather station records prior to 
1936 and infilling small gaps in data 

TMIN, TMAX 15885 (100) Parallel estimation from either 
Cabramurra or Canberra Airport 
weather station records 

Corin Dam 

RH1500 15885 (100) Proxy estimation from records at 
either Cabramurra or Canberra 
Airport weather stations 

Landscape 
dryness (SWD) 

Canberra 
Airport 

RH1500 4175 (16.7) Proxy estimation using TMAX and 
TMIN from Canberra Airport weather 
station records prior to 1 Jul 1951 

T1500 60 (1.3) Proxy estimation using TMAX from 
Canberra Airport weather station 
records prior to 1 Jul 1951 

RH1500 4175 (16.7) Proxy estimation using TMAX and 
TMIN from Canberra Airport weather 
station records prior to 1 July 1951 

Potential fire 
spread 

(FFDI, FWI) 

Canberra 
Airport 

WS1500 339 (1.8) Proxy estimation using Burrinjuck 
WS1500 records 

Notes: (1) There was a gap in the weather record at Canberra Airport from November 1971 to February 1972, 

coinciding with the introduction of daylight saving in Australia.  The missing records were filled using 1000 

and 1600 hourly weather data, extracted from the Bureau of Meteorology’s three-hourly weather record at 

Canberra Airport (Bureau of Meteorology, 2007c). 

(2) Method of filling gaps in weather records is based on Linacre (1992). 
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4.3.2 Filling missing precipitation records 
The parallel estimation method was used to fill major gaps in the Corin Dam and 

Cabramurra precipitation datasets shown in Table 4.8.  Linear regression was based on matched 

monthly precipitation records of the target and the adjoining proxy station.  Correlations are 

presented in Table 4.9. 

Table 4.9 Correlation of monthly precipitation at different weather stations 

Target weather 
station 

Proxy weather 
station 

Overlapping period Slope Correlation 
(R2) 

Cabramurra (MOWS) Yarrangobilly 1 Feb 1978- 1 May 1999 1.37 0.71 

Cabramurra (AWS) Yarrangobilly 1 May 1999 – 30 Apr 2006 1.03 0.65 

Corin Dam Fairlight Station 1 Jul 1936 – 31 Dec 2004 1.06 0.69 

Corin Dam Pierces Creek 1 Jul 1936 – 31 May 1968 1.13 0.62 

Note: The slope of the regression line is equivalent to the ratio of precipitation between the proxy and target station 

 

There appears to have been a significant change in precipitation correlation between 

Yarrangobilly and Cabramurra since the installation of the AWS at Cabramurra.  The new AWS 

site is within a kilometre of the previous manned operating weather station (Bureau of 

Meteorology, 2006).  When comparing the records from the nearby Yarrangobilly rainfall 

station to those from the manned and automatic weather stations at Cabramurra, rainfall has 

decreased by 30% at Cabramurra relative to the Yarrangobilly weather station since the 

installation of the automatic weather station in 1999.  This corresponds to the changeover from 

manual recording to an automatic tipping bucket rain gauge.  The apparent discrepancy in 

precipitation at the Cabramurra automatic weather station might be explained by a loss of 

recorded precipitation due to ice and snow not being adequately recorded at the new 

Cabramurra pluviometer.  As it stands, this finding reduces confidence in contemporary 

estimates of SWD at Cabramurra (Csc climate province). 

An estimation of missing P0900 values at Corin Dam from Fairlight Station values can be 

made with reasonable confidence (R2=0.69), and to a lesser degree from Pierces (R2=0.62).  

Considerable gaps in the Corin Dam precipitation (P0900) records were found to be in the early 

record, mainly between 1930 and 1936.  However, since then there have been only small gaps in 

precipitation records.  Therefore, the occasional small gap filled by a parallel estimation of 

precipitation from a nearby rainfall station should not significantly affect the values of SWD in 

a landscape dryness model for the montane ranges to the west of Canberra (Cfb climate 

province). 
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4.3.3 Construction of complete datasets for daily soil water 
balance models 

It is important to have continuous and accurate datasets for the two indices of fire 

susceptibility: landscape dryness and potential fire spread.  This section describes the process 

that was followed to create those datasets. 

The modelling framework requires landscape dryness (SWD) to be modelled at two 

weather stations: Canberra Airport (Cfa climate zone) and Corin Dam in the upper Cotter River 

catchment (Cfb climate zone) (see Figure 4.1).  The weather variables needed to model SWD 

using the MSDI are TMAX and P0900.  A complete record for these two variables exists for 

Canberra Airport.  However, daily maximum temperature (TMAX) has only been recorded at 

Corin Dam since the 1990s.  The absence of TMAX records prior to then necessitates proxy 

estimation of TMAX, using parallel estimation of TMAX from Canberra Airport using a 

temperature correction factor. 

The RSDI model requires the additional variables of TMIN and RH1500 to model SWD at 

Corin Dam.  The interpolation of both these variables is highly problematic for the following 

reasons.  First, daily minimum temperature (TMIN) varies considerably from one weather station 

to another, depending on local topography and climate regimes (Geerts, 2003).  Minimum daily 

temperature (TMIN) can be used to estimate RH1500, together with TMAX.  However, this method is 

not entirely without error.  The estimation of RH1500 can also be based on dewpoint temperatures 

recorded at Canberra Airport using either DP0900 or DP1500.  Yet again, the air moisture 

characteristics at Canberra Airport and in the upper Cotter River catchment can differ on a daily 

basis, leading to incorrect RH1500 values for the upper Cotter River catchment.  However, this 

may be the only method of approximating the estimation of RH1500 in the absence of direct 

measurements at Corin Dam for the medium-term series from 1951 onwards. 

Soil Water Deficit (SWD) can be estimated from the F-DSWBM model for both Canberra 

Airport and Corin Dam weather stations using daily mean potential evaporation based on the 

weather record at Canberra Airport.  With all three DSWBMs, the complete precipitation record 

prepared for the Corin Dam weather station will be used (section 4.3.2).  The Corin Dam record 

includes earlier precipitation records from Upper Cotter Hut, which is located 10 kilometres 

upstream at a similar elevation. 

An attempt was made to interpolate the complete set of missing records of TMAX and TMIN 

at Corin Dam extending back as far as 1951, by adjusting the values of TMAX and TMIN, using the 

temperature correction value of -6.7oC per 1000 m rise in elevation (Linacre, 1992).  The results 

of the proxy estimation of TMAX at Corin Dam from Canberra Airport and Cabramurra are 

presented in Figure 4.4 (a) and (b). 
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Figure 4.4 Estimation of TMAX at Corin Dam, from (a) Canberra Airport and (b) 
Cabramurra records (18 August 1996 to 30 July 2008) 

Source:  TMAX data between 18 August 1996 to 30 July 2008 is extracted from (Bureau of Meteorology, 2007b) and 
EcoWISE (2008). 

Note:  The solid line represents the results of the linear regression, while the dashed line represents a ‘‘perfect-fit’’ 

line. 

 

The estimation of TMAX at Corin Dam from Canberra Airport (Figure 4.4 (a) is more highly 

correlated with the observed TMAX at Corin Dam than that at Cabramurra (Figure 4.4 (b).  Given 

the high correlation (slope =1.042, R2 = ~0.895) for estimating maximum temperatures at Corin 

Dam from Canberra Airport, it is possible to estimate TMAX for a median elevation in the upper 

Cotter River catchment by adjusting the TMAX records downwards by 4%. 

The estimation of TMIN at Corin Dam using TMIN measured at Canberra Airport also is 

slightly less well correlated (slope=1.114, R2 =0.846).  The parallel estimation of TMIN at Corin 

Dam is achieved by adjusting the records of TMIN at Canberra Airport down by 11%.  Therefore 

it is also possible to estimate TMIN for a median elevation in the upper Cotter River catchment.  

Thus net long-wave radiation (L*), a key component of net radiation (Equation 3.9), can be 

estimated for the upper Cotter River catchment as both TMAX and TMIN can be estimated to a 

high degree of confidence given the very high R2 (R2>0.85). 

Daily soil evaporation (ES), based on the Fisher et al. (2008) model, uses minimum daily 

relative humidity, as well as TMAX and TMIN.  In this study, minimum daily relative humidity is 

assumed the same as that recorded at 1500 hours (RH1500).  The relative humidity at 1500 hours 

(RH1500) is estimated using the adjusted TMAX for Corin Dam weather station and the DP0900 

measured at Canberra Airport.  The assumption made here is that the dewpoint temperature at 

Corin Dam is the same as that measured at Canberra Airport.  The results of this parallel 

estimation of Corin Dam from Canberra Airport are presented in Figure 4.5 (b).  While the 

results of the estimation of RH1500 are not quite as good as TMAX and TMIN (Slope=0.945, 
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R2=0.652), they are satisfactory given that the Corin Dam weather station is located in a 

different climate province (Cfb) to that of Canberra Airport.  The impact of the potential error in 

the estimate of RH1500 at Corin Dam is not quantifiable at this stage.  This issue will be 

addressed later in Chapter 6 when the various DSWBMS are validated against other sources of 

data. 
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Figure 4.5 Estimation of (a) TMIN and (b) RH1500 at Corin Dam, based on 
Canberra Airport records (18 August 1996 to 18 August 2002) 

Source:  TMIN and RH1500 data  recorded between 18 August 1996 and 18 August 2002 is extracted from Canberra 
Airport (Bureau of Meteorology, 2007b)and Corin Dam (EcoWISE (2008)). 

Note:  The solid line represents the results of the linear regression, while the dashed line represents a ‘‘perfect-fit’’ 

line. 

 

The missing records for both weather stations were then estimated using the methods 

described above.  This prepared the way for completing the weather datasets necessary for 

estimation of the three DSWBMs.  A complete weather dataset was now ready for the 

estimation of the RSDI at two weather stations at Canberra Airport and Corin Dam, based on: 

(1) RN and its input variables (Chapter 5), and (2) EP and its derivatives (EA, ET+S, ET, and ES) 

(Chapter 6) as a precursor for the estimation of SWD. 

4.3.4 Construction of complete datasets for potential fire 
spread indices 

The estimation of fire spread potential using either the FFDI or FWI requires a complete 

weather dataset (P0900, T1500, RH1500, WS1500 and WD1500) to be based on Canberra Airport 

weather station records from 1951 to the present (Figure 4.3).  As the weather records at 

Canberra Airport are 97-99% complete for these weather variables, filling the missing records is 

a small task based on the methods outlined below. 
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Since there is a very tight relationship between T1500 and TMAX, given that maximum 

temperature is often reached by mid-afternoon on most days of the year, missing T1500 records 

can be easily estimated using linear regression  (T1500 =0.951 TMAX , R2 = 0.969 see Figure 4.6). 
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Figure 4.6 Relationship between T1500 and TMAX 

Source: Temperature data recorded at Canberra Airport weather station (1951- 2005). 

 

Missing RH1500 records at Canberra Airport were filled using the following method.  

Where morning dewpoint (DP0900) records were available, RH1500 was estimated from TMAX and 

DP0900, yielding the ratio of actual over saturated vapour pressure deficit (eA/eS).  The value of 

eA was estimated from Equation 4.1. 

))0900DP+)/(237.30900DP*(17.269425+exp(1.8096  Ae 
 Equation 4.1 

where eA is the actual vapour pressure in Hpa and DP0900 is the temperature at 0900 

hours in Kelvin. 

In the absence of DP0900 records, eA was estimated from TMIN. 

The value of eS was similarly estimated from Equation 4.1, substituting either T1500 or T1500 

estimated from TMAX, for DP0900. 

To estimate WS1500 or WD1500 for Canberra Airport, gaps in weather records were filled 

directly with wind speed records from another RCS station close to Canberra Airport, 

Burrunjuck station to the north-west of Canberra Airport.  This station is about the same 

elevation and only 50 km in line with the dominant wind sector from the north-west.  Given the 

small number of records missing at Canberra Airport, the possible error associated with a direct 

proxy without adjustment was considered minimal in the estimation of a PFSI model. 

The above procedure resulted in a complete weather dataset being constructed for 

Canberra Airport and paves the way for deriving RN and its input variables in the next chapter, 

as well as deriving EP and its derivatives (EA, ET+S, ET, and ES) for landscape dryness models in 
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Chapter 6.  Complete records of weather data needed to run the PFSI models of FFDI and FWI 

were similarly compiled. 

4.4 Findings 
This chapter has presented a modelling framework for the input weather data needed to 

estimate the key indices of fire susceptibility: landscape dryness and potential fire spread.  The 

original plan to model RN at three weather stations, each representative of a climate zone, had to 

be modified because continuous records of critical variables, such as RH1500 and CAV, were not 

available in the Montane (Cfb) and Sub-alpine (Csc) climate zones.  The only option therefore 

was to extrapolate the model of RN at Canberra Airport to the upper Cotter River catchment.  

The validity of this approach is examined in the next chapter. 

From section 4.1, it can be concluded that high quality weather data are only available 

from Canberra Airport to model RN and EP for the RSDI model.  It is also presumed that this 

same RN data can be used to model RN and EP for the Corin Dam site (upper Cotter River 

catchment) although L* can be estimated because TMAX and TMIN at that site can be satisfactorily 

estimated from Canberra Airport records.  The complete Corin dam precipitation dataset, 

together the modelled RN from Canberra Airport, can then be used to estimate water runoff from 

the three daily soil water balance models for the upper Cotter River catchment (MSDI, RSDI, F-

DSWBM).  Daily complete stream flow records for the upper Cotter River catchment are 

available for the period 1964 - 2007.  Modelled runoff can then be compared with measured 

runoff as part of the evaluation of these DSWBMs in Chapter 6. 

A peculiar anomaly emerged in the P0900 data at Cabramurra after 1999, when the manned 

operating station was replaced with an automatic weather station.  This casts doubt on the 

accuracy of the estimate of soil water deficit (SWD) made since that date.  Given that there is no 

accurate or suitable method to correct this problem, the P0900 data there may contain some 

unquantifiable errors even if the records are adjusted using precipitation records from the nearby 

station of Yarrangobilly.  The nearby station of Corin Dam has most of its precipitation records 

since 1936 intact so the proxy estimation of precipitation to fill missing precipitation records 

should not affect the analyses of landscape dryness that start from about 1964. 

The weather dataset recorded at Canberra Airport has been almost complete since July 

1951.  Less than 2% of its records are missing in any one of the weather variables required to 

estimate either the FFDI or the FWI.  It should therefore be more than adequate to derive 

accurate estimates of potential fire spread indices if the models themselves do not generate any 

major bias or inaccuracies in later analyses of the PFSI time series.  The only variable likely to 

cause potential bias in estimates of either PFSI is that of wind speed because of the change from 

estimated to measured wind speed in the 1990s. 
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Even though the ideal modelling framework could not be fulfilled in all respects, the 

results and findings in this chapter have substantially addressed the fourth key research question 

posed in Section 1.3 (Table 1.1): ‘As part of the ideal modelling framework for this study, what 

datasets for medium and long-term indices of landscape dryness and potential fire spread can be 

constructed for each of the three climate zones?’ 

The next chapter tests various empirical equations sourced from the literature than can be 

used to estimate the components of all-wave net radiation.  After that, the validity of the 

estimates of daily all-wave net radiation for the sub-montane and montane climate zones are 

verified against other published studies (Cfa and Cfb). 
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Chapter 5: Derivation and Verification of 
All-wave Net Radiation 

A number of studies (Monteith, 1965; Budyko, 1974; Roderick, 1999; Berry and Roderick, 

2004; Berry et al., 2006) have pointed to the importance of net radiation (RN) in governing key 

ecological landscape processes, notably transpiration, soil and plant respiration,  photosynthesis 

and soil evaporation.  This is nowhere better encapsulated than the observation of Priestly and 

Taylor (1972:90):‘to encourage every meteorologist to accept net radiation into his or her daily 

thinking as one of the basic synoptic variables would be entirely appropriate in a modernized 

scientific approach to the subject.’ 

Chapter 3 outlined suitable models of soil evaporation and plant transpiration to replace the 

evapotranspiration term in the Mount Soil Dryness Index (MSDI), resulting in a new version — 

the all-wave net radiation version (RSDI).  The pursuit of such evaporation models was driven 

by the fifth research question posed in Section 1.4 (Table 1.1): can all-wave net radiation (RN) 

and its components be estimated to sufficient levels of accuracy as a precursor to estimating 

potential evaporation (EP)? 

The purpose of this chapter is to identify empirical models in the literature for estimating 

RN with reasonable confidence.  This is because there are no complete datasets for either surface 

irradiance or long-wave radiation components in the study region to fulfil the medium-term 

study requirements for an all-wave net radiation model of potential evaporation.  Daily Surface 

irradiance has only been measured from 1991 to 1994 (Bureau of Meteorology, 2005) at 

Canberra Airport.  Similarly, daily long-wave radiation has only been measured for a short 

period since January 2007 at Canberra Airport (RSBS, 2008). 

The first part of the chapter outlines the methods and results employed to validate the input 

variables from which RN is calculated, including surface irradiance (RS), albedo () and net long 

wave radiation (L*).  The second part of the chapter relates the outputs of RN and its 

components, based on the weather data recorded at Canberra Airport, with other comparable 

studies done in the ACT region, to evaluate whether the results of this study are in accord with 

those of previous studies. 

5.1 Estimation of surface irradiance 
This section is about testing the performance of empirical models that estimate RS using 

equations that estimate RS from RA using formulae that mainly take into the effect of water 

vapour in the atmosphere. 

The attenuation of RA through the earth’s atmosphere relates to the absorption properties of 

atmospheric gases across the solar radiation spectrum, in accordance with Beer’s Law (Iqbal, 

1983): 
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)exp(  kRR AS 
 Equation 5.1 

where RS is the spectral irradiance for a given wavelength, RA is the incoming spectral 

top-of-atmosphere irradiance, is the radiation attenuation coefficient at a given 

wavelength, and 

k

  is the optical path length. 

Solar radiation is not absorbed evenly across the range of wavelengths between 0.3 and 

3.0  m (Figure 5.1) due to the intermittent absorption of the principal atmospheric gas, water 

vapour, and, to a lesser extent, by other less strong absorption gases, such as ozone (O3), oxygen 

(O2) and carbon dioxide (CO2) (Iqbal, 1983; Oke, 1987). 

 

 

Figure 5.1 Attenuation of extra-terrestrial short wave radiation (0.1 and 3.1 
m) by ozone, carbon dioxide and water 

Source: Iqbal (1983). 

Note: The black areas under the curve represent attenuated short-wave radiation. 

 

As well as the effect of the principal absorptive atmospheric gases, there are other transient 

influences such as dusts and aerosols in the atmosphere.  The transmissivity of the atmosphere 

under cloud-free conditions can therefore be expressed as: 

DWGOCF  
 Linacre (1992) Equation 5.2 

where CF is the cloud-free transmittance combined attenuation coefficient from 

transmittance effects O, G, W and D due to ozone, atmospheric gases, water vapour. 

and dusts and aerosols, respectively. 
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RS is then calculated: 

FCAS RR 
 (MJ m-2 d-1 or W m-2) Equation 5.3 

 

Typical transmittance values for the contributing factors are: O (0.98), G (0.87-0.93), W 

(0.85-0.91) and D (0.93) (Linacre, 1992).  Using Equation 5.2 gives a cloud-free transmittance 

value of 0.72.  Essentially, the atmospheric ozone transmittance (o) value is assumed to be 

constant since 1951, which constitutes the medium-term time series in this study.  The 

atmospheric gas transmittance (G) is a function of elevation and can be set as a constant at any 

given elevation (0.90 for Canberra) (Linacre, 1992). 

The remaining factors in Equation 5.2, atmospheric water vapour transmittance (W) and 

dust and aerosol atmospheric transmittance (D) are time-dependent.  Values of w are 

determined by levels of water vapour in the lower atmosphere (Linacre, 1992; Winslow et al., 

2001).  Atmospheric water vapour transmittance can be modelled using proxy variables for 

absorption and scattering of water vapour pressure: daily precipitation, relative humidity, 

minimum and maximum temperature (Liu and Scott, 2001; Winslow et al., 2001). 

Transmittance through dusts and aerosols (D) varies with volcanic activity, dust storms, 

burning of vegetation and emission of industrial pollutants (Sturman and Tapper, 2006).  

Suspended material from these sources contains a complex mix of inorganic and organic 

compounds; volcanic, industrial, and mining sulphate particulates; carbonaceous particles from 

fires; mineral dust and organic compounds contributing to haze and smog.  All of these can lead 

to temporary attenuation spiking of RA.  For example, volcanism can produce varying amounts 

of sulphur dioxide and ash that scatter and reflect back into space incoming shortwave radiation, 

leading to significant radiative cooling in the atmosphere and at the earth’s surface for up to two 

years after an eruption (Sear et al., 1987).  Significant volcanic events in the last 50 years 

include Agung (1963), El Chichon (1982), and Pinatubo (1991).  Over a 76 year period (1916-

1992), volcanic eruptions at or near the equator have occurred at 5-15 year intervals.  Thus, 

dusts and aerosols have a short-lived but an important effect on atmospheric transmissivity.  

Despite these variable influences and the remoteness of Australia from the main volcanic 

eruptions in the northern hemisphere, the value of D for Canberra was left as a background 

constant (D=0.93) because of the difficulty of modelling the effect of dust on D through time. 

A number of relationships for estimating surface irradiance (RS) are discussed in the 

literature (Equations 5.10-5.18, Table 5.1).  Most of these were sourced from Trnka et al (2005), 

which examined the efficacy of these equations in Central Europe.  Only one equation, Equation 

5.18, uses local Canberra Airport weather data to produce local coefficients.  Equation 5.10 was 

omitted from further study due to the lack of high calibre sunshine hour records at Canberra 

Airport. 
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5.1.1 Evaluation method 
In order to compare the performance of the empirical models, daily RS data were extracted 

from the Bureau of Meteorology (BOM) records at Canberra Airport (Bureau of Meteorology, 

2005).  The most complete records available were for the period between January 1991 and 

December 1993.  This data, together with other Bureau of Meteorology (2007b) records 

(, rain-days R, where R=1, if P0900>1 mm, else R=0), CAV, TMAX, TMIN DP0900 and eA) were 

compiled into a spreadsheet.  Literature-based values for the coefficients for each of the 

empirical equations were employed. 

For each of the attenuation equations, dates of the observed daily RS data were carefully 

matched to the dates of the weather data.  For missing daily RS records, all estimated values 

from the empirical equations were set to null to exclude them from the performance tests.  

Surface irradiance (RS) values were variously estimated employing Equation 5.13: 

AS RformulaEqnR  .
 Equation 5.4 

where corresponds to each of the nine empirical attenuation formulae u

evaluation (Equations 5.10-5.18, 

formulaEqn.

Table 5.1). 

5.1.2 Comparative performance of surface irradiance 
attenuation models 

The models in Table 5.1 were evaluated using five performance criteria: (1) bias (BIAS), 

(2) root mean square error (RMSE), (3) mean absolute error (MAE), (4) percent mean relative 

error (PMRE) and (5) goodness of fit (R2) between the estimated and the observed daily RS.  

Equations for the first five performance criteria are given by: 
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Equation 5.9 

where n is the number of observations, xi is an individual observed value, and yi is an 

individual estimated value. 



 

Table 5.1 Empirical models used to estimate surface irradiance on a daily basis 

Equation 
Number 

Surface irradiance relationships Parameter notes Source 

Equation 5.10 










n

baR PPS  
where n is sunshine hours (hr),  is the day length (hr).  aP and bP are site-
specific estimated coefficients 

Prescott (1940) 

Equation 5.11 

















4.3

875.01(72.0 AV
AS

CRR  
where CAV is the fraction of the sky occupied by clouds, expressed in Oktas 
(eighths) 

Reiff et al.(1984) 

Equation 5.12  AVAS CRR 047.085.0   where CAV is the fraction of the sky occupied by clouds, expressed in Oktas Linacre (1992) 

Equation 5.13 
     81 AVSMINMAXSAS CbTTaRR   where aS, bS and cS are estimated coefficients.  CAV is the average daily cloud 

cover, expressed in Oktas 
Supit and Van 
Kappel (1998)  

Equation 5.14      MAXSTMINSWCFAS TeeDRR   1  

where CF is the atmospheric transmittance defined by: O  the transmittance 

of clean dry air, A  the transmittance related to aerosols and ozone and V  

the transmittance related to atmospheric water vapour.  DW is a day length 
correction factor and  is a site-specific correction factor (generally set to a 
value of 1.041, but equals 1.088 for Canberra) 

Winslow et al.(2001) 

Equation 5.15   Bc
MINMAXBBAS TTbaRR  exp(1  where aB, bB and cB are estimated coefficients from calibration and validation 

of the transmittance at a particular site 
Bristow and Campbell 
(1984) 

Equation 5.16   HMINMAXAS bTTRR   where TMAX-TMIN is equivalent to the daily temperature range (DTR) and bH is 
an estimated coefficient 

Hargreaves et al. (1985) 

Equation 5.17   )()(exp1 2
MINAVGDAS TfTTfbRR   where bD is an estimated coefficient of Equation 2, f(TAVG) and f(TMIN) are 

functions of daily average and minimum temperatures 
Donatelli and Campbell 
(1998) 

Equation 5.18    LJJJL
c

LLAS GfReRRdDTRbaRR L   111exp1  where aL, bL, cL, dL, eL, fL and GL are estimated site-specific coefficients 
calibrated to a particular weather station and where DTR=TMAX-TMIN 

Liu and Scott (2001) 
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Finally, linear regression was used to test the co-linearity of estimated against observed RS 

(Equation 5.19).  Correlation coefficient (R2) was produced as part of the linear regression. 

baxy 
 Equation 5.19 

where x is observed RS, y is estimated RS and a and b are calculated regression 

coefficients. 

To assess the performance of the attenuation models, a table of summary statistics (Table 

5.2) was compiled to determine which of the equations were best suited for the estimation of RS. 

The best correlations were obtained employing Equation 5.11 and 5.13 each having 

comparably low BIAS, RMSE, MAE, and PMRE.  Equation 5.14 also performed well, 

especially when average daily DP0900, instead of TMIN values, were used to estimate actual 

vapour pressure.  The remaining relationships had R2 values less than 0.8.  Equation 5.18 was 

comparable in performance to Equation 5.14 and has the advantage of not using DP0900 or TMIN. 

Table 5.2 Performance of surface irradiance (RS) models 

Relationship 
Equation 

BIAS RMSE MAE PMRE Linear regression coefficients 

     a b R2 

Equation 5.11 -1.81 3.39 0.37 2.87 0.813 3.538 0.882 

Equation 5.12 -1.37 3.80 1.44 3.75 0.735 5.946 0.828 

Equation 5.13 -0.82 2.74 0.87 2.71 0.832 3.738 0.907 

Equation 5.14 -0.44 3.95 0.55 3.61 0.976 1.008 0.834 

Equation 5.15 0.44 3.86 2.92 25.52 0.71 5.460 0.783 

Equation 5.16 0.96 3.93 2.93 26.67 0.731 5.639 0.783 

Equation 5.17 -1.07 3.97 1.06 3.89 0.789 4.735 0.788 

Equation 5.18 -0.36 3.49 0.61 3.45 0.747 4.988 0.834 

Note: Units for BIAS, RMSE, MAE and PMRE are in MJ m-2 d-1.  The highest performing equations are shaded 

grey in the table. 

 

To illustrate the scatter of points and the goodness of fit, the estimated and observed RS 

were plotted onto a series of x-y graphs (Figure 5.2).  The highest performing equations are 

shown (Equations 5.11, 5.12, 5.13, 5.14, 5.17, and 5.18).
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 (a) Equation 5.11 (Reiff et al., 1984) 
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(b) Equation 5.12 (Linacre, 1992) 
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(c) Equation 5.13 (Supit and van Kappel, 1998) 
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(d) Equation 5.14 (Winslow et al., 2001) 
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(e) Equation 5.17 (Donatelli and Campbell, 1998) 

0

10

20

30

40

50

0 10 20 30 40 50

 

(f) Equation 5.18 (Liu and Scott, 2001) 

0

10

20

30

40

50

0 10 20 30 40 50

 

Figure 5.2 Performance of the six best relationships used to estimate surface irradiance 

Note:  The dotted line indicates a 1:1 relationship between the independent variable on the x-axis and the dependent variable on the y-axis. 
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Equations 5.11 and 5.13 exhibited the tightest scatter of points relative to the 1:1 line 

whereas Equations 5.12, 5.14, 5.17, 5.18 had a wider scatter with a greater number of outliers 

and achieved a lower R2 less than 0.85.  Increased scatter in these last four equations is because 

they employ a single variable to estimate W, such as the daily temperature range, based on 

TMAX and TMIN, or daily cloud cover (Equations 5.13, 5.17); or the algorithms are not especially 

applicable to daily local atmospheric conditions (Equation 5.14).  Less scatter was observed 

where a range of values and parameters (for example, daily temperature range, cloud cover, or 

rainfall events before, during and after a given day) was used to estimate W. 

Out of the three highest performing equations, Equation 5.13 was selected as the preferred 

equation for estimating RS at Canberra Airport despite exhibiting a slightly positive and 

negative bias at low and high RS values.  Equation 5.13 showed the least bias of the three 

preferred RS estimation equations but had a slightly wider scatter of points than Equation 5.11 

but a narrower scatter than 5.18. 

The ideal modelling framework requires the estimation of RS and RN at two weather 

stations, Canberra Airport and Cabramurra.  However, continuous records of CAV, TMAX and 

TMIN are not available at Cabramurra and thus preclude estimating of daily RS values there or 

extrapolating them from there to the Corin Dam site in the upper Cotter River catchment. 

Instead, daily RS values can be inferred from Canberra Airport to the Corin Dam site.  Data 

were obtained from EcoWISE Environmental Services (EcoWISE, 2008) for two nearby RS 

recording stations, Googong and Corin Dam.  A simple correlation between Canberra Airport 

records and those available for these stations yielded R2 values of 0.834 and 0.732, and RMSEs 

of 39.7 and 52.9, respectively (Figure 5.3 (a) and (b)).  R2 values for RS from 0.7 to 0.8 are 

considered adequate for this study given the high number of RS observations at Googong and 

Corin Dam (4900, 3990) although the RMSEs between 30-50 W m-2 suggest that there can be a 

high error at times.  Estimated RS values at Googong and Corin Dam were correspondingly 12% 

lower and 6% higher on average than the observed values at these stations.  A wide scatter of 

points with significant outliers was evident in both regressions, particularly at Corin Dam.  This 

suggests that RS values can be higher at Canberra Airport than at higher elevations in the 

Brindabella mountains to the west of Canberra where there can be more and denser cloud cover 

obscuring the land surface.  Despite these potential limitations, the estimates of RS from 

Canberra Airport will be used to model RS, and hence RN at Corin Dam.  The validity of this 

assumption will be tested further in section 6.4 by verifying the annual water balance in the 

upper Cotter River catchment using annual catchment runoff data. 
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R2 = 0.732

0

50

100

150

200

250

300

350

400

450

0 50 100 150 200 250 300 350 400 450

Observed RS  (W m-2)

E
st

im
at

ed
 R

S
 (

W
 m

-2
)

Figure 5.3 Comparison of estimated and observed surface irradiance (RS) at 
(a) Googong and (b) Corin Dam in the upper Cotter River 
catchment 

Note:  The dotted line indicates a 1:1 relationship between the independent variable on the x-axis and the dependent 

variable on the y-axis. 

Modelling RS at nearby stations using the Canberra RS model, indicates that Canberra 

Airport surface irradiance values can be extrapolated with reasonable levels of confidence to 

other nearby places including the surrounding sub-montane plains and hills, as well as to the 

montane and sub-alpine ranges in the western part of the study area.  Cloud cover is estimated 

in Oktas at Canberra Airport, which includes estimation of cloud cover over the Brindabella 

Ranges and surrounding areas up to a radius of 50 km.  Both weather stations at Googong Dam 

and Corin Dam lie well within that radius of Canberra Airport. 

5.2 Estimation of surface albedo 
The next factor to be determined in the estimation of RN is the surface reflectivity of short-

wave radiation at the earth’s surface under clear skies, termed albedo ().  Measured clear-sky 

values for different vegetation and soils surfaces are presented in Table 5.3. 

Table 5.3 Measured clear-sky albedo values 

Coniferous 
forest 

Broad-
leaved 
forests, 

including 
rainforests 

Grassland Agricultural 
crop 

Soils 

dry 
Soils 

wet 
Author (s) 

0.10-0.18 0.13-0.18 0.16-0.28 0.15-0.24 0.08-0.19   Linacre (1992) 

0.08-0.14           Stewart (1971) 

0.11  0.24-0.27       Moore (1976) 

0.08-0.10 0.15-0.20 0.16-0.26 0.18-0.24 0.05 0.40 Oke (1987) 

Note:  (1) The value obtained by Moore (1976) for pine forest was obtained in winter and spring in a one-year study. 
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Typical albedo values for forest vegetation range between 0.10 and 0.16; agricultural crops 

between 0.18 and 0.23 and dry soils and deserts between 0.37 and 0.45 (Gash and Shuttleworth, 

1991). 

The estimation of albedo is based on visible light (=0.2-0.7) (Equation 5.20) and for 

infra-red bands (=0.2-0.7) (Equation 5.21) based on published spectral reflectance data for 

vegetation and other surface covers (Berry and Roderick, 2004): 

31.0*27.0  vvis F
 Equation 5.20 

where FV is the fraction of photosynthetic radiation absorbed by the vegetation (FPAR).  

For a complete canopy of vegetation, FV=0.95: 

VTir FF 21.005.040.0   Equation 5.21 

where FT is the fraction of turgor type plants as a proportion of the total TMS cover. 

The proportional cover of T, M and S leaf functional types (See Chapter 3, section 3.3.3.1) 

was estimated for each of the principal vegetation types from personal field knowledge and 

experience in the study area (Table 5.4).  The classification of vegetation types was based on 

Gellie (2005).  They were also compared with the albedo values for grasslands, woodlands, and 

forests, obtained in Berry’s (2002) study.  The current study’s values were found to be 

consistent with that study. 

Values of VIS and IR are combined into a single SW using the estimates of the proportional 

cover of T, M, and S for each vegetation type: 

irvissw  49.051.0 
 Equation 5.22 

where SW is the estimated short-wave radiation albedo. 

The ratios of 0.51 and 0.49 equate to the relative proportions of visible and infra-red 

radiation that are in the visible and infra-red bands of sunlight (Berry and Roderick, 2004). 

Estimates for short-wave radiation albedo for forests and grassland (Table 5.4; values 

based on Equation 5.22) are internally consistent and reflect the values expected for these 

vegetation types. 
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Table 5.4 Proportions of leaf functional types and estimated albedo for the 
principal vegetation types in the study region 

Vegetation Type T M S VIS IR SW 

Temperate native grasslands 0.6 0 0.4 0.05 0.40 0.22 

Southern Tablelands Yellow 
Box-Gum grassy woodland 

0.3 0.5 0.2 0.05 0.27 0.16 

Southern Tablelands sub-
montane dry grassy forest 

0.2 0.5 0.2 0.05 0.26 0.15 

Southern Tablelands montane 
Mountain Gum grassy forest 

0.3 0.6 0.1 0.05 0.27 0.16 

Sub-alpine Ash shrubby forest 0.2 0.7 0.1 0.05 0.24 0.15 

Note: The names for vegetation types in column are based on the descriptions for vegetation formations in Gellie 

(2005).  Scientific names for plants are not included in those descriptions. 

The TMS values were obtained using a best guess for each of the vegetation types. 

 

As well as vegetation canopy albedos, the albedo of the forest floor is needed to estimate 

net soil surface radiation and hence evaporation at the soil surface (ES).  Silberstein et al. (2001) 

working in Eucalyptus marginata (Jarrah) forests in Western Australia, found a soil surface  

albedo of 0.29, and in the absence of other published estimates, this ‘under canopy’ value was 

adopted in the present research for estimating soil evaporation (ES). 
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5.3 Estimation of downwelling long-wave radiation 
Estimating and validating net long-wave radiation (L*) (Equation 3.9) complete the 

estimation of RN. The first term in the estimation of L*, the upwelling component (L


) is the 

product of the Stefan Boltzmann constant, air temperature (K) and the emissivity constant for a 

given vegetation surface given by Equation 3.10).  Emissivity ( ) from forests is estimated to 

be between 0.97 and 0.98, whereas   from grassland is estimated to be 0.90 and 0.95 (Stull, 

2000). 

The more significant term in Equation 3.9 is the downwelling component ( ) affected by 

water vapour pressure, cloud cover of the atmosphere, and atmospheric gases such as carbon 

dioxide that contribute to an enhanced .  The estimation of  uses one or more weather 

variables: the effective temperature of the overlying ambient air and the bulk emissivity of the 

column of air above the earth’s surface (Iziomon et al., 2003).  A generalised equation for 

estimating downwelling radiation under clear-sky conditions (CAV=0) takes the form: 

L

L L

4
0)0(

),(L AA TeT   
(W m-2) Equation 5.23 

where O is the effective emissivity of the atmosphere, TA is the mean daily 

temperature, eA is the mean daily vapour pressure respectively, and where either TA or 

eA can be used to estimate . L

Because depth and type of cloud cover affect L


, the clear-sky formulas needs to 

accommodate a cloud cover factor.  Iziomon et al. (2003) developed a simple formula (Equation 

5.24) using just cloud cover (Equation 5.24) that can be applied to montane and sub-alpine 

environments. 

)005.01(),( 24
0 AVAA CTeTL  

 
(W m-2) Equation 5.24 

where CAV is the average cloud cover in Oktas 

This is similar to the generalised equation formulated by Linacre (1992) except that he 

adopted a lower leading coefficient 0.0034 (in lieu of 0.005).  With a formula that 

accommodates both clear sky and cloudy conditions, empirical formulas can now be tested 

using observed weather  measurements. L

5.3.1 Evaluation method 

A number of ways to estimate atmospheric emissivity ( o ) and hence  under clear sky 

conditions can be found in the literature (

L

Table 5.5).  The simple formula (Equation 5.25) 

developed by Brunt (1932) takes account of mean near-surface daily vapour pressure.  

Swinbank (1963) developed an equation for downwelling long-wave radiation based on 

absolute ambient temperature (Equation 5.26).  Idso and Jackson (1969) further refined 
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Swinbank’s equation (Equation 5.27).  Based on radiative transfer theory, Brutsaert (1975) 

devised a generalised model of clear sky transmissivity that took into account ambient 

temperature and average daily water vapour pressures (Equation 5.28).  Idso (1981) developed a 

similar model using the same two variables (Equation 5.29).  Prata (1996) questioned the 

theoretical basis of Equation 5.28 arguing that at low water vapour contents, L


 did not tend to 

a constant because of the additional effects of greenhouse gases CO2 and O3 on . Prata’s 

(1996) formula developed a new formulation (

L

Equation 5.30).  Iziomon et al. (2003) went 

further and proposed a relationship Equation 5.31 that took account of the variability of air 

water vapour content at different elevations and is a further elaboration of Equation 5.28. 

Measurements of downwelling radiation (L


) were made at Canberra Airport for the 

period 24 January 2007 to 24 July 2008 using the Research School of Biological Sciences 

pyranometer, and were complemented by daily weather data records for the corresponding 

period.  Mean daily vapour pressure (eA) was estimated from DP0900 and ambient daily 

temperature based on the average of TMAX and TMIN for that day.  Cloud cover (CAV) was 

estimated by averaging three-hourly cloud cover data dating back to 1951. 

Observed L


 measurements, and calculated values of  using each of the clear sky 

transmissivity formulas were entered into a long-wave calculation worksheet devised in this 

study, taking care to match weather data, derived weather variables and observed and estimated 

values of downwelling radiation ( ) with the spreadsheet date field. 

L

L

Summary statistics were prepared using the approach developed in section 5.1.1.  The 

same performance criteria were adopted in the assessment of the best performing downwelling 

long wave radiation formula.  The performance criteria in order again were: (1) bias (BIAS), (2) 

root mean square error (RMSE), (3) mean absolute error (MAE), (4) percent mean relative error 

(PMRE), and (5) goodness of fit (R2) between the estimated and the observed daily values of 

RS. 

An initial evaluation of the empirical formulas outlined in Table 5.5 was completed first to 

exclude those formulas that did not meet the required performance standards for this study.  The 

 observations and estimates were filtered using a CAV of less than 1.0 to make a 

straightforward comparison between observed clear sky measurements and those estimated 

using empirical equations. 

L

The empirical models (Table 5.5) were then evaluated for cloudy sky conditions by 

multiplying the clear sky values of  by the cloud effect factor implicit in L Equation 5.24 and 

then comparing these findings back to the corresponding observed set of  measurements.  

The same set of performance criteria was then reapplied to this data subset to determine the 

most applicable  formula for cloudy sky conditions. 

L

L



 

Table 5.5 Empirical models used to estimate daily downwelling long wave radiation 

Equation 
Number 

Equation formula Comments Authors 

Equation 5.25 2
1

 baa   
where a and b are site-specific coefficients. 
Based on Sellers (1965) a=0.605 and b=0.048 

Brunt (1932) 

Equation 5.26 6
aa Tk   where TA is the mean daily temperature (K) Swinbank (1963) 

Equation 5.27 For Ta >280K 

 




  aTa 16.73.241077.7exp261.01  

where TA is the mean daily temperature (K) Idso and Jackson (1969) 

Equation 5.28 
7/1

24.1 









a

a
a T

e
  

where ea is the mean daily water vapour pressure (HPa) and TA is the mean daily 
temperature (K) 

Brutsaert (1975) 

Equation 5.29  aaa Te /1500exp1095.57.0 5  
 

where ea is the mean daily water vapour pressure (HPa) and TA is the mean daily 
temperature (K) 

(Idso, 1981) 

Equation 5.30 













 2

1
)0.32.1(exp)1(1 a  

where  is an empirical constant which equals 46.5eA/ TA for a typical scale water 
vapour height and lapse rate in the overlying atmosphere 

(Prata, 1996) 

Equation 5.31 








 


a

as
Sa T

eY
X exp1  

where XS is a site-specific calibration parameter, ea is the mean daily water vapour 
pressure (HPa), TA is the mean daily temperature (K) 

Iziomon et al.(2003) 
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5.3.2 Comparative performance of downwelling long wave 
radiation models 

The performance of the  attenuation models was evaluated using the same five criteria 

as for the RS models.  Summary statistics were compiled to determine which of the empirical 

equations were best suited for the estimation of  (

L

L Table 5.6). 

Table 5.6 Summary statistics of clear sky transmissivity models 

Equation BIAS RMSE MAE PMRE Linear regression coefficients 

     a b R2 

Equation 5.25 

(Brunt, 1932) 
15.3 49.8 35.1 13.1 0.957 2.207 0.909 

Equation 5.26 

(Swinbank, 1963) 
26.0 56.9 42.3 15.9 0.758 52.29 0.848 

Equation 5.27 

(Idso and Jackson, 
1969) 

34.0 61.1 46.8 17.7 0.759 46.16 0.854 

Equation 5.28 

(Brutsaert, 1975) 
12.6 48.4 35.6 13.1 0.87 30.19 0.916 

Equation 5.29 

(Idso, 1981) 
30.9 54.2 42.5 16.1 0.971 -17.0 0.909 

Equation 5.30 

(Prata, 1996) 
20.6 49.6 37.2 14.0 0.952 -1.32 0.908 

Equation 5.31 

(Iziomon et al., 2003) 
6.8 52.0 37.2 13.6 0.693 85.51 0.819 

Note: Analysis is based on 48 clear sky observations made between 24 January 2007 and 24 July 2007 at the 

Canberra Airport when the daily CAV was less than one Okta. 

 

The best performing equations were Equation 5.25, Equation 5.28, and Equation 5.30 each 

having an R2 value exceeding than 0.9 (grey shaded rows, Table 5.6).  All had comparable 

RMSEs, MAEs and PMREs although Equation 5.25 and Equation 5.28 expressed less BIAS 

than Equation 5.30.  Equation 5.25 was selected as the best performing equation under clear sky 

conditions. 
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When downwelling radiation was adjusted for cloud cover using Equation 5.24, all seven 

equations predicted levels close to observed  (Table 5.7).  As in the clear sky evaluation, 

Equations 5.25, 5.28, and 5.30 outperformed the other equations on most of the criteria. 

L

The high root mean square errors (RMSEs) found in all the seven equations could be 

related to the high variability of eA and to the quality of the cloud cover data, which does not 

take into account the amount, type and height of cloud cover.  Other more detailed daily studies 

of L


, using hourly eA and cloud cover, achieve RMSEs closer to 15-30 W m-2 (Jimenez et al., 

1987; Duarte et al., 2006).  It is unlikely that an RMSE below 15 W m-2 could be achieved with 

any of these simple  formulas, given that effective emissivity of the atmosphere is only 

sampled near the surface and not in the various levels in the atmosphere. 

L

 

Table 5.7 Summary statistics of cloudy sky transmissivity models 

Equation BIAS RMSE MAE PMRE Linear Regression 

     a b R2 

Equation 5.25 

(Brunt, 1932) 
-1.2 48.0 38.5 12.8 0.921 24.826 0.842 

Equation 5.26 

(Swinbank, 1963) 
-7.2 54.6 44.5 14.6 0.811 50.109 0.737 

Equation 5.27 

(Idso and Jackson, 
1969) 

23.9 57.0 45.9 15.7 0.815 42.020 0.741 

Equation 5.28 

(Brutsaert, 1975) 
7.6 50.8 40.9 13.7 0.8454 40.44 0.855 

Equation 5.29 

(Idso, 1981) 
26.0 55.0 44.7 15.4 0.877 14.260 0.856 

Equation 5.30 

(Prata, 1996) 
19.5 52.8 42.5 14.4 0.907 16.355 0.845 

Equation 5.31 

(Iziomon et al., 2003) 
-5.8 55.0 44.2 14.6 0.747 81.00 0.761 

Note: Coefficients of 0.005 and 1.6, rather than 0.005 and 2 gave a better estimate of cloudy sky transmissivity in 

Equation 5.24. 

 

To illustrate their performance graphically, the three best equations, Equation 5.25, 

Equation 5.28, and Equation 5.30 are shown side by side in clear sky and cloudy conditions 

(Figure 5.4). 



 

(a) Equation 5.25 (Brunt, 1932) 
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(b) Equation 5.28 (Brutsaert, 1975) 
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(c) Equation 5.30 (Prata, 1996)  
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(d) Equation 5.25 (Brunt, 1932) 
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(e) Equation 5.28 (Brutsaert, 1975) 
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(f) Equation 5.30 (Prata, 1996) 
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Figure 5.4 Performance of the three best downwelling radiation equations in clear skies (a), (b), and (c) and cloudy skies (d), (e), and (f)  

Source:  Observed daily L


data taken from the RSBS pyranometerr set up at Canberra Airport weather station between January 2007 and July 2008. 

Note:  The dotted line indicates a 1:1 relationship between the independent variable on the x-axis and the dependent variable on the y-axis. 
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The Brunt Equation (Equation 5.25) shows least bias under either clear or cloudy sky 

conditions.  Equation 5.29 and Equation 5.30 show a slight positive bias throughout the range of 

L


. 

The Brunt formulation (Equation 5.25) was found to be the best performing equation for 

estimating L


 as it worked well in both clear and cloudy sky conditions although it still has 

relatively high RMSE errors.  This equation will be used to estimate L


 at Canberra Airport and 

at Corin Dam in the upper River catchments since average daily cloud cover (CAV) and daily 

average vapour pressure (eA) data measured at Canberra Airport can be used in the estimation 

of L


. 

5.4 Compilation and comparison of all-wave net 
radiation models 

5.4.1 Method 
The Supit-Van Kappel (Equation 5.8) and the Brunt (Equation 5.25) equations were found 

to be the best performing ones for estimating RS and L


.  Along with the albedos estimated for 

forest types in the study area (Table 5.3), these equations were used to estimate all-wave net 

radiation for representative forest types at Canberra Airport and in the upper Cotter River 

catchment using Equation 3.9 (see section 3.2.2). 

Because of the lack of suitable data to drive the RS sub-model at Cabramurra or in the 

Upper Cotter River catchment, estimates of RS at Canberra Airport are extrapolated to estimate 

RN for the Upper Cotter River catchment. 

A series of connected worksheets within an Excel workbook was set up to estimate RN and 

its components, based on 65 years of Canberra Airport weather records.  The values of RN and 

its components were then tabulated and compared on a monthly basis within years with data 

obtained from other similarly based studies in the ACT region. 

5.4.2 Comparative results: time series estimations of all-wave 
net radiation 

Monthly values of the complete time series of RN and its principal components, RS and L*, 

for Canberra airport are presented in Figure 5.5 to determine whether or not there were any 

major errors or disparities  evident in the data from 1951 to 2007. 

Values of RN and RS show a highly regular annual cycle with only minor variations evident 

in intra-annual variability driven by the sinusoidal changes in the values of extra terrestrial 

irradiance (RA) over the annual cycle.  In contrast, the values of L* show much higher variability 

reflecting the continual daily variation in air vapour pressure and cloud cover. 
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Figure 5.5 Summary of (a) RN and its components (b) RS and (c) L* from weather data at Canberra Airport (1939-2007) 

103 



 

The results presented in Figure 5.4 (c) indicate the importance of estimating L* accurately 

using the best available models and data available.  From July 1951, L* is estimated from three-

hourly records of vapour pressure and cloud cover.  Prior to 1 July 1951,  L* was estimated from 

mean daily vapour pressure using daily TMIN and TMAX, together with the same three-hourly of 

cloud cover data.  Earlier estimations of L* will therefore have greater errors and bias because of 

the coarser method used to estimate daily mean eA.  Indeed L* values are highly variable prior to 

1962 and appear to mask the sinusoidal pattern observed in the more contemporary record. 

Comparisons were then made with results recorded from other studies on a monthly basis 

(Tables 5.9 and 5.10) for the two sites at Canberra Airport and Corin Dam in the upper Cotter 

River catchment.  Predicted RS at Canberra Airport summarised from  65 years of estimated 

daily RS are in close agreement with that predicted by a study in the vicinity of Canberra 

undertaken by Paltridge and Proctor (1976), bearing in mind that the length of the studies are 

different.  The values of monthly L* were also relatively close in agreement.  The values of 

L*/RS obtained from this study, however, do differ markedly from those calculated by Berry and 

Roderick (2004).  Their approximation of L* does not take into account the effects of daily 

variation in atmospheric water vapour pressure and cloud cover: 

44*L MINMAX TT  
 

(W m-2) Equation 5.32 

 

The present study findings are predicated on selecting the best empirical formula for 

estimating L* under clear and cloudy skies (Brunt, 1932; Linacre, 1992; Iziomon, 2003).  The 

greatest disparities between estimated L* of this study and those from other studies were 

observed during the cooler months of the year. 

The monthly mean values of RN obtained for Canberra Airport in this study are comparable 

with those obtained by Paltridge (1975) for autumn, winter, and spring, but lower in summer.  

Paltridge’ 1975 study was a comparably much shorter study than the current one, suggesting 

that the values in his study did not cover the full inter- and intra-annual variation in RN values, 

as does this study. 

In another radiation study, conducted in Bushrangers Creek in the middle Cotter River 

catchment by Moore et al. (1993), estimates of RS for sloping surfaces were 5% lower than 

those found in the present study.  Monthly estimates of L* were also found to be very similar 

than those produced in Moore et al.’s study.  Finally, he monthly estimates of RN from this 

study are surprisingly comparable to those derived in the study by Moore et al. (Table 5.8). 
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Table 5.8 Estimated values of RS, L* and RN (W m-2) from this study and comparable studies at Canberra Airport 

Month RA R R L RS S RS/RA (%) RS/RA (%) L* * L*/RS  (%) L*/RS  (%) RN N 

 This study Paltridge and 
Proctor (1976) 

This study Paltridge and 
Proctor (1976) 

This study This study Paltridge 
(1975) 

see note 3 

This study (Berry and 
Roderick, 

2004) 

This study Paltridge 
(1975) 

Jan 501 305 306 61 61 61 36 20 15 196 224 

Feb 450 268 266 59 59 59  22 16 168  

Mar 372 219 222 59 60 62  28 18 127  

Apr 284 164 175 58 61 65 79 40 21 79 70 

May 214 116 128 54 60 65  56 26 39  

Jun 181 92 111 51 61 65  71 30 19  

Jul 194 100 118 52 61 67 75 67 27 26 25 

Aug 250 133 145 53 58 69  52 22 54  

Sep 330 186 193 56 59 68  37 18 98  

Oct 415 238 231 57 56 65 62 27 16 139 135 

Nov 481 283 272 59 57 63  22 14 176  

Dec 512 312 289 61 56 64  20 15 199  

Annual 349 201 205 57 59 65 63 39 20 110 114 

Notes: (1) The estimations of RN and its components are based on monthly averages of daily estimates (1939-2007). 

(2) In the Paltridge (1975) study, the estimation of RN and its components was presumably based on monthly averages taken over an unspecified number of years. 

(3) Using Paltridge’s data, L* was based on an inversion of Equation 3.9, substituting L* using the equation L* = -  in L L Equation 3.9, and setting L* as the dependent variable. 
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Table 5.9 Estimated values of RS, L* and RN (W m-2) from this study and published findings for the Cotter River catchment 

Month RA S S S RS (%) L* * L*/RS  (%) L*/RS  (%) RN N 

 
This 
study 

Flat surface 
This study 

Flat surface 
(Moore et 
al., 1993) 

Sloping surfaces
(Moore et al., 1993) 

Difference 
between this 

study and that of 
Moore (1993) 

This study

Sloping 
surfaces 

(Moore et al., 
1993) 

Flat surface 
This study 

Sloping surface
(Moore et al., 

1993) 
This study

Sloping surfaces 
(Moore et al., 1993) 

Jan 501 297 311 292 5 61 53 21 17 187 195 

Feb 450 263 252 238 25 66 44 25 17 154 158 

Mar 372 215 215 205 10 70 51 33 23 112 123 

Apr 284 159 143 138 21 70 45 44 28 67 72 

May 214 109 106 103 6 68 49 62 42 30 39 

Jun 181 85 101 98 -13 65 62 76 68 14 21 

Jul 194 94 96 93 1 64 43 68 43 23 36 

Aug 250 123 136 130 -7 62 48 50 36 53 63 

Sep 330 172 185 176 -4 62 51 36 27 94 99 

Oct 415 224 211 200 24 59 40 26 17 135 130 

Nov 481 273 272 256 17 57 48 21 17 173 170 

Dec 512 302 288 271 31 57 47 19 15 194 183 

Annual 349 193 193 183 10 63 48 33 29 103 107 

Notes: (1) The estimation of RN and its components are based on monthly averages between 1962 and 2004. 

(2) The period of records for estimation of RN and its components from the Moore et al. (1993) study was not specified.  The figures presented in their paper are presumed to correspond to the 

period of streamflow records (1968-1978) recorded in the Bushrangers Creek sub-catchment in the central western part of the Cotter River catchment.  Their estimations of RN and its 

components were based on monthly averaged climate data were obtained over a very short time span. 



 

This is a good result given that RN and its components are point-based rather than spatio-

temporal.  However, the monthly RN values estimated from this study are 5-15% higher in late 

spring, early summer, and autumn than the values obtained for sloping surfaces in the study by 

Moore et al.  However, the annual mean value of RN estimated from this study is only slightly 

lower (3.7%) than that estimated by Moore et al.  Because there are no on-site measurements of 

RN in the upper Cotter River catchment, it is difficult to assess which of the two studies have 

produced the closest estimates to true monthly RN values. 

The comparison of RN and its components from this study with the Canberra and middle 

Cotter studies, together other more recent RS observations, confirms that the estimates of RN and 

its principal components, RS and L


 can be used beyond the immediate weather station of 

Canberra Airport.  Given that this study is a temporal study, the estimates of RN are as accurate 

and reliable as the models of RS and L


 permit, employing the best available weather datasets.  

Figure 5.5 depicts how net radiation levels are relatively consistent in terms of the values of RN, 

RS and L* over the full period of record since 1951, despite some anomalous L* records between 

1939 and 1964.  In conclusion, the model of RN can be used with some level of confidence to 

estimate EP and its components, ES and ET, to derive Soil Water Deficit (SWD) from the Soil 

Dryness Index (RSDI) model.  This is also contingent upon other sub-models within the RSDI 

model not producing any substantial errors or biases, an issue that will be dealt with in the next 

chapter. 

5.5 Findings in relation to estimation of all-wave net 
radiation 

The results in section 5.1 clearly demonstrated that daily RS, estimated from Canberra 

Airport weather station data and employing the best empirical equations, has a high R2 (>90%), 

has minimal bias and has a low root mean square error.  The best daily empirical estimates of RS 

for Canberra Airport were obtained employing Equation 5.13 (Supit and van Kappel, 1998) 

especially where detailed cloud cover records exist.  Since daily cloud cover data for the upper 

Cotter River catchment is not available, Equation 5.18 (Liu and Scott (2001) is the most 

appropriate model to estimate daily RS for that area.  However, the reliability of the estimate of 

daily RS for the upper Cotter River catchment turned out to be fractionally lower than using the 

Supit van Kappel model to estimate daily RS for Canberra Airport. 

The results in section 5.2 demonstrated that values of surface albedo for the dominant 

vegetation types within the study area derived using equations described in Berry (2004) were 

closely comparable with those published in the literature.  For the purposes of this study, the 

surface albedos estimated on an annual basis were considered adequate for estimating RN even 

though surface albedos vary seasonally throughout the year.  The values obtained for eucalypt 

forests and grasslands were consistent with published values for broad-leaved forests and 

grasslands.  
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In section 5.3, the Brunt equation was found to be the most accurate and reliable empirical 

equation for estimating daily L


 for both clear and cloudy sky conditions, marginally 

outperforming the Brutseart and Prata L


 formulas.  However, the root mean square error 

associated with estimating daily , employing the Brunt or any of the other equations, was 

still much higher than that associated with RS, typically > 48 W m-2.  This is due to the highly 

variable nature of the vertical column of atmospheric water vapour during the day in the lower 

part of the atmosphere.  The error may also be attributable to variable atmospheric amounts of 

dusts and aerosols in the atmosphere over time.  The less than accurate estimation of daily  

can lead to variability in the estimate of RN and hence EP at any given location.  The errors 

associated with estimating average cloud cover and eA also contribute to errors in estimating 

.  Given the importance of  in the estimation of RN and EP, the absence of data for reliably 

computing daily values restricts the potential application of the RSDI to weather stations near 

towns and cities, rather than to the more remote forested regions. 

L



L

L L

Finally, the comparisons of estimates of RN and its components in section 5.4 indicate that 

they are broadly similar to estimates from published studies.  Average monthly values of RN are 

equivalent to, or slightly less than, those published, that is, for Canberra Airport (1.2% less) and 

in the upper Cotter River catchment (2.8% more).  This is surprising given that the point-based 

values from this study do not take into account the variable shading effects of topography on RN 

as the earlier spatio- temporal study of Moore et al.(1993) did.  Estimation of all-wave net 

radiation (RN) based on a montane or sub-alpine weather station in the upper Cotter River 

catchment would have been preferable, but a new automatic weather station has only been 

established at Mt Ginini in the last five years.  However, it was recognised early in planning the 

modelling framework that the lack of medium-term weather data precluded that option.  Values 

of RN derived from Canberra Airport are used to estimate potential evaporation (EP), soil 

evaporation (ES) and plant transpiration (ET) both for around Canberra and for the upper Cotter 

River catchment.  The values of ES, and ET,, as well as EA, obtained from the RSDI model, will 

be verified in Chapter 6 to ascertain whether or not the evaporation estimates are realistic and 

accurate, based on comparisons with other comparable field studies.  Run-off data will also be 

used to see if the run-off obtained by the RSDI, MSDI, and Fowler daily soil water balance 

models model is in keeping with measured run-off. 

The results and findings presented here therefore satisfactorily answer the fifth research 

question posed in the Introduction (Table 1.1): ‘Can RN and its components be estimated to 

sufficient levels of accuracy as a precursor to estimating potential evaporation (EP)?’ 
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Chapter 6: Calculation, Verification and 
Testing of Landscape Dryness Models 

So far it has been shown that all-wave net radiation levels (RN) can be estimated 

adequately for Canberra Airport (Cfa climate zone) and that these estimates can be extrapolated 

to the Canberra sub-montane plains and middle elevations of the upper Cotter River catchment 

in the Brindabella Ranges (Cfb climate zone).  However, all-wave net radiation levels could not 

be estimated satisfactorily for the wetter and cooler Csc climate zone encompassing the high 

country of the north eastern extent of the Snowy Mountains and the higher peaks of the 

Brindabella Ranges because of the lack of suitable models and continuous weather data (see 

Chapter 4). 

Estimation of RN of Corin Dam in the upper Cotter River catchment (Cfb climate zone) can 

be extrapolated directly from Canberra Airport RN records.  Based on this extrapolation, soil 

water deficit (SWD) can now be estimated for all of the DSWBMs in the two climate zones 

outlined previously (Chapter 4).  The soil water balance models (DSWBMs) are now tested 

against evaporation estimates from other studies and run-off measurements, the objective being 

to select those models that best simulate medium and long-term SWD. 

The key objectives in this chapter are: 

(1) to outline the methodology for estimating medium and long-term SWD from the 

Mount Soil Dryness (MSDI), the all-wave net radiation version of it (RSDI), and 

the Fowler daily soil water balance model (F-DSWBM); 

(2) to compare the estimated values of the various evaporative components (ES, ET, 

ET+S, EI, and EA) and modelled run-off with the findings of other studies in the 

region and elsewhere in Australia; 

(3) to evaluate the trends in the SWD time series from the three DSWBMS; and lastly, 

(4) to select the DSWBMS best suited to the analysis of the medium and long-term time 

SWD series. 

6.1 Derivation of the landscape dryness time series 
Methods used to produce landscape dryness (SWD) time series from each of the DSWBMs 

(MSDI, RSDI, and F-DSWBM) are outlined and the background parameters used to set up these 

DSWBMS are described.  A spreadsheet was set up to calculate the SWD medium-term time 

series from the MSDI and RSDI models (see detailed EXCEL spreadsheets written to CD ROM 

in Appendix 2).  The method of calculating the long-term SWD time series, based on the F-

DSWBM, is documented by Fowler (1994; 2002). 
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6.1.1 Medium-term soil water deficit based on the MSDI model 
A spreadsheet for the MSDI model was used to estimate daily SWD from TMAX and P0900 

for Canberra Airport (1939-2007) and for Cabramurra and the upper Cotter River catchment 

(1955-2007).  Date, year, month, day, year-month and fire season temporal fields were 

incorporated into the spreadsheet to facilitate tracking of data and to summarise and manipulate 

fire season records. 

The date and time fields, as well as the model input fields, were placed first in the 

spreadsheet.  The algorithms for the MSDI were then placed in order after the date and time 

fields (Figure 6.1(a)).  Algorithms are sequentially arrayed: starting with SWD at the start of the 

day (SDI_PM1) transferred from the previous day, interception (EI), flash run-off (QO), effective 

rainfall (PEFF), soil capacity overflow(QT), evapotranspiration on a given day (ET+S), and the 

SWD at the end of the day (SDI_PM2).  The algorithms correspond to those developed by 

Mount (1972) and outlined previously in section 3.1. 

The key parameters for setting the level of interception and flash-run-off are based on a set 

of constant coefficients related to values of forest overstorey and understorey cover.  A look-up 

table relates the values of forest overstorey and understorey cover to the Mount interception 

flash-run-off classes (Table 6.1).  These cover values are based on those estimated for a 

dominant vegetation type close to the weather station or are estimated from an area-weighted set 

of canopy values representative of that catchment.  The interception and flash run-off class is 

based on a dry sclerophyll forest type close to the weather station of Canberra and an area 

weighted overstorey and understorey cover in the case of the upper Cotter River catchment 

(Table 6.1).  The values of intercepted water by evaporation and flash run-off are estimated 

from an interception and flash run-off class for that vegetation type and the amount of rainfall 

falling on a dry or a wet day.  The details of these calculations are documented in Mount (1972). 

Table 6.1 Representative vegetation cover at the locations surrounding the 
weather stations 

Climate zone Dominant vegetation types Overstorey 
cover 
(%) 

Understorey 
cover 
(%) 

Mount 
interception 

and flash 
run-off class 

Cfa - Sub-montane plains  
(Canberra Airport) 

Lower montane  dry sclerophyll 
forest 

50 25-40 C 

Cfb - Montane and sub-
alpine upper Cotter River 
catchment 
(Corin Dam) 

Sub-alpine grassy low forest, 
Alpine Ash tall forest, Higher 
montane sclerophyll forest, 
Montane Grassland 

65 35-50 D 

Note: The interception and run-off classes are based on Table 12 in Mount (1972:19).  Vegetation cover is estimated 

in terms of percent canopy cover.  Figures for the upper Cotter River catchment are based on a weighted area 

mean of the respective overstorey and understorey vegetation cover. 
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Evapotranspiration (ET+S) is calculated from a lookup table based on the SWD at the start 

of the day and the TMAX reached later on the same day.  The daily TMAX is adjusted for two 

periods of the year: between February and May TMAX is adjusted downwards by 2oC but 

between July and January it is left unchanged.  This is done because of the lag of the earth’s 

temperature following warming in the second half of the calendar year (July – January) and 

cooling in the first part of the year (February-May) (Mount, 1980) which results in thermal 

hysteresis. 

The soil water deficit (SWD) is calculated for each day using the variables depicted in 

Figure 6.1 (a); the value of SWD at the end of each day is transferred to the next row in the 

corresponding column for SWD at the start of the next day. 

 

Date TMAX P0900
SWD_PM1 EI QOPEFF QT SWD_AM2 ET+S

SWD_PM1

SWD_PM1 SWD_AM
ET
(M+S, T)

SWD_PM1

SWD_PM2

SWD_PM2Interception and
run-off functions

ES
EPT
(M+S, T)

SWD_PM2

SWD_PM2

Date TMAX P0900

(a) MSDI model

(b) RSDI model

Date TMAX P0900

Date TMAX P0900

Date TMAX P0900
SWD_PM1 EI QOPEFF QT SWD_AM2 ET+S

SWD_PM1

SWD_PM1 SWD_AM
ET
(M+S, T)

SWD_PM1

SWD_PM2

SWD_PM2Interception and
run-off functions

ES
EPT
(M+S, T)

SWD_PM2

SWD_PM2

Date TMAX P0900

(a) MSDI model

(b) RSDI model

Date TMAX P0900

Date TMAX P0900

Figure 6.1 Daily calculation method in MSDI and RSDI spreadsheet 

 

Note: The grey-shaded box in the above diagram refers to the combined processes of canopy interception (EI), 

overland flow (QO) and the estimation of effective rainfall (PEFF) and through-flow (QT).  The algorithm used 

in the MSDI model is exactly the same as that used in the RSDI model. 

 

6.1.2 Medium-term soil water deficit based on the RSDI model 
Calculations of SWD from the RSDI is performed in the same spreadsheet as the MSDI 

model, with one exception: two separate algorithms for ES and ET replace the Mount ET + S 

algorithm (see Figure 6.1 (b)).  This enables SWD to be calculated for both the MSDI and the 

RSDI in one spreadsheet, reducing the possibility for errors.  The spreadsheet used in these 

calculations is in Appendix 1 on the attached CD-ROM. 

The additional parameters used in algorithms for ES and ET are shown in Table 6.2.  In 

addition to the background interception and flash run-off parameters set in the MSDI model, the 
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Leaf Area Indices (LAIs) of the forest overstorey and understorey, as well as the proportion of 

projective foliage cover (PFC) of the TMS leaf types are needed as background vegetation 

parameters.  Leaf Area Index (LAI) is defined as the one sided green leaf area per unit ground 

area (Anderson, 1981).  The higher LAI and PFC values in the upper Cotter River catchment 

reflect the denser overstorey of the vegetation types in the catchment.  Leuning et al. (2005) 

obtained an LAI value of 1.4 in Sub-alpine Ash Forest at Bago State Forest to the west of the 

study area.  Higher leaf area index values, between 2.0 and 3.5, were obtained in moister 

Spotted Gum forest on the South Coast of New South Wales (Coops et al., 1997).  The value of 

LAI in the upper Cotter River Catchment was set to 1.6 and to 1.0 for dry sclerophyll forest near 

Canberra.  The latter value corresponds to the mid-range of LAI values found by Anderson 

(1981) in drier Spotted Gum forest on the South Coast.  At the soil surface, the LAI was 

adjusted upwards to take into account understorey shrub and grass cover.  Values of LAI were 

difficult to estimate for representative vegetation in the two climate zones because of the paucity 

of studies measuring leaf area index for comparable Australian forests similar to those found in 

the study area and also because of the heterogeneity of vegetation, particularly in the montane 

and sub-alpine zones. 

Table 6.2 Additional background parameters to be set in the RSDI model 

Climate zone 
(Weather Station) 

Dominant vegetation 
types 

LAI 
of forest 
canopy 

 

LAI 
of all forest 

layers 

T 

PFC 
(%) 

M 

PFC 
(%) 

S 

PFC 
(%) 

Sub-montane plains: 
Cfa 
(Canberra Airport) 

Southern Tablelands dry 
sclerophyll forest 

1.0 1.4 0.25 0.40 0.25 

Montane and sub-
alpine: Cfb 

(upper Cotter River 
catchment - Corin 
Dam) 

Weighted average of 
vegetation types 
(see Table 6.1) 

1.6 2.2 0.35 0.55 0.25 

Note: The estimates of LAI at the canopy surface at either location represent iterative simulation values.  These are 

close to those estimated in other studies in similar forest types within and adjacent to the study area 

(Anderson, 1981; Coops et al., 1997; Leuning et al., 2005). 

 

6.1.3 Long-term soil water deficit based on the Fowler daily soil 
water balance model 

The methods used to calibrate and derive a long-term soil water deficit from the inception 

of rainfall records at the Queanbeyan weather station are now described.  A calibrated Fowler 

daily soil water balance model (F-DSWBM) is required to produce a long-term SWD time 

series for this study (See Table 4.1; section 4.1.1).  The calibration relies on the soil water 

deficit estimated from the RSDI based on Canberra Airport precipitation records. 
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The Fowler daily soil water balance model (F-DSWBM) requires two simple inputs: mean 

daily evaporation (EP) and rainfall (P0900).  Mean daily EP was estimated from the Priestley-

Taylor equation using the full length of record, that is, 1951-2007 (Figure 6.2).  The Budyko 

estimate of mean daily evaporation is shown for comparison.  Daily EP calculated using the 

Priestley-Taylor equation is 0.3-0.5 mm lower than that estimated by the Budyko equation in 

the cooler months but becomes 0.5-0.7 mm higher for the January-February period.  Estimates 

are comparable for November-December.  The annual trend estimated from the Priestley-Taylor 

equation indicates a lower estimate of mean daily EP in winter and spring than that using the 

Budyko equation, amounting to a 0.2-0.5 mm per day difference.  This would equate to slower 

evaporation rates being estimated in the F-DSWBM during these periods.  This could result in 

slightly higher values of soil dryness in the lead up to the summer peak period in a fire season. 
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Figure 6.2 Mean daily EP estimated using Budyko and Priestley-Taylor 
equations 

Source:  Daily EP is estimated from the Priestley-Taylor equation (=1.26) based on 56 years of BOM weather records 

at Canberra Airport (1951-2007).  Daily EP from The Budyko equation 

N

P
R

E   is based on exactly the 

same records. 

 

Given that the rainfall records at Canberra Airport only extend back to 1939, the nearby 

Queanbeyan rainfall station was used to extend the rainfall record in the sub-montane climate 

zone (Cfa) back to 1871.  On a monthly basis, Queanbeyan weather station precipitation is well 

correlated with that of Canberra Airport (Slope=0.978, R2=0.918) (Figure 6.3).  Missing 

Queanbeyan rainfall records were estimated from neighbouring long-term rainfall stations of 
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Fairlight Station and Gidleigh using a parallel estimation method applied previously to other 

rainfall stations (see section 4.3.2). 
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Figure 6.3 Correlation between monthly rainfall at Canberra Airport and 
Queanbeyan (1939-2007) 

Source:   Monthly rainfall data is derived from daily rainfall data recorded at the two weather stations (Bureau of 
Meteorology, 2007a) 

 

Modelled soil water deficit (SWD) was first calculated from the Fowler daily soil water 

balance model for the sub-climate zone (Cfa) using Queanbeyan precipitation records and for 

the montane climate zone using Corin Dam precipitation records.  Calibration of the two SWD 

datasets was conducted using the modelled estimates from the RSDI model using the same two 

weather stations (See Appendix 3). 

In the case of Canberra Airport, the final version of the Fowler and the RSDI daily soil 

water balance models yielded comparable annual values for EI and ET+S between 1940 and 2007 

(Figure 6.4 and Figure 6.5).  For annual interception (EI) losses, the relationship was relatively 

close lying close to the 1:1 line (R2 = 0.762).  Annual evapotranspiration (ET+S) losses were 

similarly well correlated (R2 = 0.841) with the greatest disparity in the annual values of ET+S 

occurring in the wetter years. 
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Figure 6.4 Correlation between annual canopy interception values from the 
SDI and F-DSWBM models (Canberra Airport - 1940 to 2007) 
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Figure 6.5 Correlation between evapotranspiration values from the RSDI and 
F-DSWBM models (Canberra Airport - 1940 to 2007) 

Note: The values of evapotranspiration (ET+S) estimated from the RSDI Model are based on the sum of the separate 

components, soil evaporation (Es) and plant transpiration (ET). 

 

In the upper Cotter River catchment, the final version of the Fowler model produced 

comparable annual values for EI and ET+S between 1952 and 2007 (Figure 6.6 and Figure 6.7).  

For annual interception losses, the values of modelled EI estimated from the F-DSWBM were 

11% higher than those estimated from the RSDI model (R2=0.846).  The best fit achieved for 

annual evapotranspiration losses saw the ET+S values from the F-DSWBM being overall 93% of 

those from the MSDI model (R2=0.885). 
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Figure 6.6 Correlation between annual canopy interception values from the 
SDI and F-DSWBM models (Corin Dam - 1952 to 2007) 
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Figure 6.7 Correlation between evapotranspiration values from the RSDI and 
F-DSWBM models (Corin Dam - 1952 to 2007) 

 

Having now completed the calibration of EI and ETS components of the F-DSWBM, based 

on two weather stations located in two separate climate zones, the long-term soil water deficit 

series for the sub-montane climate zone (Cfa) can be used with some confidence, recognising 

also the assumptions in the methodology up to this point.  Some further verification of the EI, 

ETS and Q components of the F-DSWBM will still be conducted in section 6.4, before a final 

selection of daily soil water balance models is done in section 6.5 for later temporal analyses of 

landscape susceptibility to large fires in Chapters 8 and 9. 
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The next step is to check the validity of the estimates of actual evaporation (EA) 

components of the RSDI (ES and ET) against comparable studies done in Australian forests. 

6.2 Validity of the estimated values of evaporation 
components from the RSDI model 

The question now arises as to whether the estimates of EA and its components (ES, ET, 

ET+S) are reasonably consistent and comparable with results from other studies.  This is 

necessary to show that the RSDI model and input data yield valid estimates of SWD.  A valid 

SWD will increase confidence in the results obtained by analysing and classifying the fire 

seasonal profiles of SWD (Chapters 8 and 9). 

6.2.1 Validity of soil evaporation estimates 
The validity of estimates of soil evaporative losses (ES) produced by the RSDI model was 

verified by comparing the monthly and yearly values with those published in the literature for 

comparable climate and vegetation.  Comparable estimates of ES were obtained: by (1) 

Silberstein et al. (2001), in a short-term study of water and energy fluxes in dry sclerophyll 

Jarrah forests in Western Australia in October 1993 and March 1994; and (2) Vertessy et al. 

(2001), from a longer term water balance study of Mountain Ash forests in Victoria. 

Annual and monthly estimates of soil evaporation (ES) were summarised from daily ES 

model estimates.  The annual values of ES for dry sclerophyll forest near Canberra Airport and 

for montane damp forest in the upper Cotter River catchment are shown in Figure 6.8. 

Overall, annual soil evaporation (ES) from dry sclerophyll forest near Canberra Airport 

was found to range from 74 to 197 mm per annum and average 125 mm per annum.  For the 

upper Cotter River catchment, modelled loss was found to range between 79 and 165 mm per 

annum and average 118 mm.  In both instances, annual ES is estimated to be between 11 and 

19% of the annual average rainfall, very slightly higher than that reported recently in other 

studies (Silberstein et al., 2001; Vertessy et al., 2001).  Unlike these short-term studies, daily ES 

in this study was estimated for 67 years (1940 to 2007). 

Annual soil evaporation figures at the two weather station sites parallel each other over the 

times series.  Higher annual values of ES are found in the upper Cotter River catchment 

(annual average=130 mm a-1) compared to those estimated for Canberra Airport 

(annual average = 105 mm a-1), reflecting the higher rainfall under identical all-wave net 

radiation regimes (See section 5.4.2).  The low annual values of ES at both stations reflect the 

dry years (1944, 1957, 1967, 1982, 1985, 1997, 2002, and 2006) while the high values reflect 

moist individual or sequences of years (1956, early 1960s, early 1990s).  Since 2000, there has 

been a noticeable decline in ES and its year-to-year variability in annual ES, which is comparable 

to that found in the early to mid 1940s. 
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Figure 6.8 Annual soil evaporation estimated at the two weather stations 
(Canberra Airport, Corin Dam) representative of the two climate 
zones: Cfa and Cfb 

Source:  Modelled by RSDI daily soil water balance model using data from Canberra Airport and Corin dam in the 
upper Cotter River catchment. 

 

Estimates of mean daily values of soil evaporation (ES), for each month for forests adjacent 

to the weather stations for 67 years (1940-2007) are shown in Table 6.3.  The table includes 

comparisons with soil evaporation observed in two other comparable studies.  The lowest values 

of ES were obtained in dry sclerophyll forest near Canberra airport with an annual mean of 0.29 

mm d-1 with daily means ranging between 0.10 and 0.53 during the course of the year.  These 

results are consistent with those found by Silberstein et al. (2001) who obtained values of 0.27 

and 0.48 for the months of October 1993 and March 1994. 

Average modelled annual evaporative losses from soil (ES) of 0.35 mm d-1 in montane and 

sub-alpine forests in the upper Cotter River catchment over a period of 67 years (1951-2007) 

were similar to those from soils near Canberra Airport for the same period.  The monthly range 

is wider in the upper Cotter River catchment, between 0.03 and 0.88, and with higher soil 

evaporation occurring in the moister spring months. 

Both Figure 6.8 and Table 6.3 illustrate that there is not much difference between the 

values of ES for the two sites in the Canberra region.  This can be attributed to the fact that 

montane sub-alpine forests have a high leaf area index leading to less all-wave net radiation 

reaching the forest floor.  This reduced all-wave net radiation compensates for the higher 

relative humidity regimes in the cooler environment found in the upper Cotter River catchment, 

and so lowers ES.  The more open conditions found in the dry sclerophyll forests around 

Canberra Airport enhance the potential for higher ES but lower levels of surface soil moisture 

mean that soil losses are actually lower there. 
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On the Canberra plains and in the montane region to the west of Canberra, daily soil 

evaporation is highest in both dry and wet sclerophyll forests in spring.  At this time, soil water 

availability is at its highest and net radiation levels (RN) are in the moderate to high range.  In 

contrast, the lowest mean daily ES occurs in the winter months, when RN is at its lowest.  Soil 

moisture loss (ES) rapidly falls off at both sites during summer despite the high daily RN, 

reflecting drier soil conditions. 

Table 6.3 Mean daily values of soil evaporation produced by the RSDI model 
compared with data from other studies 

Forest 
Type 

Dry sclerophyll 
forest near 

Canberra, ACT 
(585 m) 

This study 

Jarrah forest in 
Western Australia 

Silberstein et al., 
2001 

Upper Cotter River 
catchment forest 

(1250 m) 

This study 

Old Mountain Ash 
forest in Victoria 

Vertessy et al., 
2001 

Month 
Soil evaporation 

(mm d-1) 

Jan 0.27  0.18  

Feb 0.26  0.16 0.47 

Mar 0.21 0.27 0.11 0.35 

Apr 0.21  0.45  

May 0.11  0.33 0.15 

Jun 0.10  0.03  

Jul 0.17  0.08 0.21 

Aug 0.35  0.23  

Sep 0.43  0.77  

Oct 0.53 0.48 0.88 0.24 

Nov 0.50  0.82  

Dec 0.31  0.21  

Annual 
average 

0.29 - 0.35 0.28 

Notes: (1) Mean daily ES for Canberra Airport and the upper Cotter River catchment is estimated from Equation 

3.17.  Estimates of relative humidity for the Cotter River catchment are based on RN and DP1500 values from 

Canberra Airport weather station records.  The eA values are derived by simply adjusting DP1500 using the dry 

adiabatic lapse rate of -6.7 0C per 1000 m: the estimation of relative humidity at the Corin Dam weather 

station from the relative humidity data recorded at Canberra Airport is reasonable (see section Figure 4.5, 

section 4.3.3). 

(2) The daily ES values are summarised for the period from 1951 to 2007 for both the Canberra and the upper 

Cotter River catchment localities. 

(3) No other published comparable values for ES could be found. 

 

Annual average estimated values of ES are comparable with those from at least two other 

short-term recent studies (Silberstein et al., 2001; Vertessy et al., 2001).  These are not 
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contemporaneous studies with the present study so the comparisons are not strictly comparable.  

There are only two short-term measurements for the Jarrah forest study taken in the summer of 

1993/94.  The estimated values for dry sclerophyll forest near Canberra are similar to those 

measured in Silberstein et al.’s 2001 study for these two months.  However, there are significant 

differences in monthly values estimated in this study for upper Cotter River catchment forest 

compared with those for the old Mountain Ash forest in Victoria.  The differences are 

particularly evident in the October and February months.  Annual soil moisture loss (ES) is 

approximately 17% of modelled actual evaporation (EA) in montane damp sclerophyll forests 

and 19% in dry sclerophyll forests in the study area.  This initial comparison suggests that more 

on-ground studies of soil evaporation are required before one can be confident in the estimates 

obtained in this or other previous studies.  In the absence of such studies, the derived values of 

ES have sufficient integrity and accuracy for estimating ES as part of total evaporative losses 

(EA). 

6.3 Validity of plant transpiration estimates 
The other component in total evaporation is plant transpiration (ET) estimated according to 

the methods outlined earlier (section 3.3.3).  Estimates of transpiration losses (ET sub-model) 

using the RSDI model are reviewed against the findings of a limited number of comparable 

studies in order to demonstrate that temporally-based estimates of ET from the RSDI model are 

a good representation of transpiration losses for Canberra Airport and the upper Cotter River 

catchment.  ET could not be modelled for the sub-alpine climate zone (Csc) (See 4.1.1) because 

of the lack of weather data and suitable models to estimate all-wave net radiation. 

6.3.1 Comparison of annual and monthly values of plant 
transpiration 

The ET time series was computed using a pivot table within the RSDI spreadsheet for 

Canberra Airport and the upper Cotter River catchment and then plotted as a line graph (Figure 

6.9).  The inter-annual variation in ET generally follows those of ES (Figure 6.7) with maximum 

transpiration losses in wet years and less in the dry years.  Annual ET is minimal in the very dry 

years, 1944, 1957, 1982, 1994, and 2004. 

Annual transpiration losses (ET) for dry sclerophyll forests near Canberra Airport range 

between 153 to 441 mm and average 333 mm per annum.  Transpiration in the upper Cotter 

River catchment is much higher at an average of 409 mm per annum with marginally less 

variability (299 and 488 mm per annum).  High transpiration losses in the upper Cotter River 

catchment are explained by (1) a deeper regolith, with a significantly higher soil water holding 

capacity (AWC) supporting more productive montane forests, and (2) higher rainfall. 
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Figure 6.9 Estimates of annual plant transpiration in two climate zones, Cfa 
and Cfb 

Notes: (1) Upper Cotter River catchment records from July 1951 to Jun 2008. 

(2) The dash dotted line represents the mean annual ET for Canberra Airport. 

 

Table 6.4 illustrates the monthly ET record.  The Canberra Airport values of ET range from 

6 to 47 mm per month.  The range is higher, between 12 to 63 mm per month in the cooler 

montane upper Cotter River catchment. 

Table 6.4 Mean monthly values of plant transpiration calculated using the 
RSDI model at Canberra Airport and in the upper Cotter River 
catchment 

 Monthly plant transpiration flux (mm) 

Site Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Average 

Canberra 45 34 28 18 10 6 10 21 33 45 50 51 29 

Upper Cotter River 
catchment 

55 44 37 25 17 12 15 23 37 52 59 63 37 

Note: The values of mean monthly ET were estimated from Canberra Airport data (1951-2007) and upper Cotter 

River catchment data (1962-2007). 

 

To verify the modelled estimates of ET produced by the RSDI model, a comparison was 

made of monthly transpiration flux data for the upper Cotter river catchment.  The comparative 

dataset was derived from monthly gross primary productivity (GPP) data derived from remotely 

sensed bi-monthly MODIS data (Berry, 2007).  The data for the upper Cotter River catchment 

was first extracted from a continental-wide time series (May 2001-July 2007).  The extraction 

process used limited the GPP data to dry sclerophyll forests around Canberra Airport and to the 

watershed of the upper Cotter River catchment.  The monthly GPP data were converted into 

monthly ET data from an equation developed by Berry (2004), based on a simple water 

efficiency equation (Hari et al., quoted in Berry, 2004). 
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The relationship is based on the annual CO2 concentration in the atmosphere and its 

relationship to average water use efficiency at a CO2 concentration of 360 mol mol-1: 

GPP
CO

ET 







 316.0

][

360

2

  (mm) Equation 6.1 

where GPP is the gross primary productivity (mol CO2 m
-2 a-1, the constants 360 and 

0.316 define the average plant water use efficiency at 360 mol mol-1, [CO2] is the 

average annual atmospheric carbon dioxide concentration (mol mol-1) measured at 

Cape Grim in Tasmania. 

Comparison of estimates of monthly transpiration fluxes from dry sclerophyll forests near 

Canberra Airport between the two models is presented in Figure 6.10.  Figure 6.10 (a) shows 

that the total monthly ET calculated by the RSDI model shows greater variability than the 

MODIS estimates, with higher estimates of ET in the warmer months and lower estimates of ET 

in the cooler months.  See also Figure 6.10 (b) which shows that, despite an apparent seasonal 

bias, the results nevertheless are reasonably correlated with those estimated by the MODIS 

study (R2=0.624).  The monthly average ET calculated from both studies was close to 25 mm 

when averaged between May 2000 and November 2005. 
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(b) 

ET[RSDI] = 1.45*ET[MODIS] - 9.6

R2 = 0.624
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Figure 6.10 Comparison between estimated plant transpiration (ET) from 
MODIS and RSDI models close to Canberra Airport: (a) serial trend 
and (b) correlation plot 

Source: The MODIS ET data from Berry (2007) derived from MODIS data for the period May 2001 to November 
2005.  [CO2] data are from Earth System Research Laboratory (2007). 

 

The results for transpiration for the upper Cotter River catchment derived using MODIS 

and the RSDI model are presented in Figure 6.11 (a) and (b).  In the period prior to the January 

2003 bushfires, the peak transpiration fluxes from the current study were 20 mm per month 

higher during the summer months than the MODIS data.  In contrast, they were 10 mm per 

month lower during winter than the MODIS data.  The high severity of the bushfires resulted in 

lower canopy cover values after the bushfires.  The MODIS model takes into account reduced 
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canopy cover whereas the RSDI model does not.  The MODIS model thus produced lower 

estimated monthly transpiration fluxes, by up to 20-25 mm per month. 
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(b) 

ET [RSDI]= 1.11*ET[MODIS] - 6.5
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Figure 6.11 Comparison between plant transpiration from MODIS study and 
RSDI model, within the upper Cotter River catchment: (a) serial 
view and (b) correlation plot 

Source: MODIS transpiration flux data from Berry (2007) derived from MODIS data (May 2001 to July 2007). 

Note: The period of comparison is May 2000 to December 2002 in (b).  Post January 2003 data were excluded to 

avoid the confounding effect of fire on vegetation transpiration after that date. 

 

Figure 6.11 (b) shows that prior to the 2003 fire there is a moderately good correlation 

(R2=0.527) between this study’s estimates and those produced from the MODIS study of Berry 

(2007).  However, the differences after the fires in part can be explained in part by the 

difference between time-scales used to derive the estimates in the two studies.  The MODIS 
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study of Berry (2007) was based on monthly estimates of FPAR and GPP, which are derived 

from bi-monthly MODIS images across the Australian continent.  The MODIS model estimates 

variable fractions of TMS for vegetation to estimate the values for these variables whereas the 

RSDI uses an average fixed value for projective foliage cover.  The estimation of EP, EA and its 

components (ES, ET) in this study are thus estimated using a fixed area-weighted value of 

projective foliage cover (PFC).  The other significant factor is that the values of GPP using 

MODIS satellite and FPAR algorithms may be underestimated in moderate to highly productive 

forests.  Turner et al. (2006) in their study of FPAR and GPP across nine different biomes 

discovered that FPAR underestimates GPP and hence transpiration flux in high productive sites, 

such as forests.  Both the dry sclerophyll site near Canberra and the moist sclerophyll site in the 

upper Cotter River catchment would be classified as high productive sites, relative to low 

productive sites, such as desert steppe or grasslands.  These reasons therefore explain how the 

two methods yield different monthly estimates of potential and actual transpiration. 

These findings provide confidence that the transpiration loss (ET) model works 

satisfactorily even given the constraints of using a fixed projective foliage cover (PFC) for each 

of the TMS leaf types over time and the fact that estimates are point-based rather than being 

estimated from a detailed spatio-temporal daily soil water balance models.  With the knowledge 

that transpiration losses do not vary significantly across a catchment, modelling or evaporation 

can be conducted using a single point representative of catchment conditions.  Thus, it is 

essential to determine beforehand the initial vegetation parameters that are representative of 

average conditions in a catchment and to determine if these parameters change through time. 

What now remains is to demonstrate the general applicability of these DSWBMs to model 

evaporation and run-off and to model water balance at both point and catchment scales. 

6.4 Validity of the estimates of the components of the 
water balance 

It is now important to demonstrate that the selected daily soil water balance models can 

predict accurately principal water balance components, evaporation and run-off in a field 

setting.  The best field location identified in the modelling framework (section 4.1) is the upper 

Cotter River catchment because of the availability of stream flow records, whereas there are no 

records available closer to the site of Canberra Airport.  If the components of the water balance 

are predicted well by the daily soil water balance models, then estimates of daily SWD can be 

applied with confidence. 

In section 6.4.1 the validity of the EI and ET+S components of total evaporation (EA) 

modelled by the three daily soil water balance models is compared.  Seasonal levels of ET+S 

were produced by combining combined ES and ET modelled outputs from the RSDI model; ET+S 

is produced as a standard output from the MSDI and F-DSWBM models.  Monthly rather than 
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daily results from each of the models for the upper Cotter River catchment were used for 

evaluating the three models. 

In section 6.4.2, comparison of modelled with observed run-off from the upper Cotter 

River catchment demonstrates the ability of the three DSWBMs to predict annual runoff. 

6.4.1 Validity of evaporation components 
Annualised trends in EI, ET+S and EA are presented for the upper Cotter River catchment 

from 1952to 2007 in Figure 6.12 (a), (b) and (c). 

Figure 6.12 (a) shows that the Fowler daily soil water balance produces a higher modelled 

estimate of water intercepted and evaporated by the vegetation canopy.  The greater disparity 

evident between the EI values prior to 1976 calculated by the F-DSWBM and the algorithm 

used by the MSDI and RSDI Models is difficult to explain. 

Figure 6.12 (b) shows that the modelled values of annual ET+S produced by the RSDI 

model lie somewhere between those of the MSDI and F-DSWBM.  The MSDI model produces 

higher ET+S values compared with the two other DSWBMs throughout the time series, based on 

the representative average elevation of 1330 m within the catchment. 

The total evaporation (EA) produced by all the DSWBMs shows similar levels of 

agreement throughout the time series, fluctuating according to the amount of precipitation and 

net radiation received annually.  The RSDI produces estimates of EA closer to the F-DSWBM 

until 1985 (Figure 6.12 (c)). Thereafter, the RSDI produces higher values of EA than the F-

DSWBM.  The change in estimates of EA after 1985 cannot be explained. 

The mean annual estimate of EA (ET+S+ EI) lies between 700 and 7790 mm per annum 

depending on which DSWBM is used.  This estimate is close to that estimated from carbon flux 

studies at Bago State Forest 30 km to the west of the catchment at a similar elevation.  There, 

Leuning et al. (2005) obtained an average value of 725 mm per annum over two years between 

2001 and 2002.  The average annual estimate from the RSDI model is 723 mm per annum, 

which is very close to the annual estimate produced by Leuning et al.  Therefore the separate 

values of EI, ET+S and EA are within realistic estimates based on very limited short-term data 

obtainable elsewhere in south eastern Australia. 

Based on the evaluation of the three daily soil water balance models up to this point, none 

of the three daily soil water balance models is seen as the preferred models to be used in this 

study.  Further evaluation of the three models will be conducted in section 6.4 to determine 

which of these should be used for interpreting landscape susceptibility to LLFs. 
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Figure 6.12 Annual trends in (a) evaporation of intercepted water (b) 
evapotranspiration and (c) total evaporation for 1952-2007 in the 
upper Cotter River catchment 

Note: The EI and ET+S data are summarised from daily calculations in all models applied after 1952.  The horizontal 

dashed lines indicate mean annual estimates of ET+S, EI and EA obtained from the RSDI model. 

The seasonal trends in monthly ET+S are presented in Figure 6.13 (a) and (b) from modelled 

outputs from each of the three daily soil water balance models at Canberra Airport and the upper 

Cotter River catchment. 
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Figure 6.13 Average monthly evapotranspiration (ET+S) compared for the three 
daily soil water balance models at two locations (a) Canberra 
Airport and (b) upper Cotter River catchment 

Note:  Period of comparison for (a) Canberra Airport and (b) upper Cotter River catchment is 1951-2007. 

 

Inspection of Figure 6.13 (a) reveals that the monthly ET+S for the RSDI model has 

comparable ET+S values in the spring months and lower ET+S in the autumn months to those 

estimated by the F-DSWBM.  The congruence of the RSDI and the Fowler model could be 

improved with better estimation of values of RN using locally derived cloud cover and relative 

humidity data and with further adjustments made to the Fowler coefficients (see Table 6.3).  

While the MSDI produces similar ET+S values in the spring months, it along with the F-

DSWBM produces higher estimates of ET+S in the drier part of the year on average, during late 

summer and autumn. 

Figure 6.13 (b) shows that both the RSDI and the calibrated F-DSWBM predict higher 

monthly moisture losses (ET+S), up to 8-10 mm more in late summer and autumn than those 

produced by the MSDI model.  Evapotranspiration predicted by the MSDI model is 10-15 mm 

higher in winter than those predicted by either the RSDI or the F-DSWBM models.  By late 
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spring the RSDI and the F-DSWBM is predicting the values of ET+S to be 10-20 mm than the 

MSDI model.  The seasonal differences in values of ET+S produced by the different models 

would result in different annual profiles of soil water deficit.  The higher ET+S fluxes estimated 

by the RSDI or F-DSWBM models in the upper Cotter River catchment  in spring would result 

in higher values of soil water deficit earlier than those produced by the MSDI model.  In 

addition, the higher ET+S values in winter would result in an overestimation of soil water deficit 

during winter.  Hence the importance of selecting the right daily soil water balance model for 

later analysis of landscape susceptibility to large fires. 

6.4.2 Validity of annual runoff estimates 
Is modelled run-off predicted by the three DSWBMS highly correlated with observed 

stream flow?  Mount (1972) compared modelled and observed run-off first for Lidsdale State 

Forest, which along with soil moisture blocks, he calibrated his MSDI model.  Following the 

success of his study there, he applied the model to catchments in northern and eastern Tasmania 

containing both wet and dry sclerophyll forest.  He found that the MSDI modelled run-off 

satisfactorily in the wetter forests in Central Tasmania but performed worse in the drier forests 

in eastern Tasmania. 

Run-off data in comparable dry sclerophyll forests in the lower Cotter River catchment 

were limited in the extent or were for modified landscapes containing mixed pine and eucalypt 

forests.  Data from the Bushrangers Creek experiment (O'Loughlin et al., 1986) could not be 

located nor could run-off data be found for catchments of mixed pine and eucalypt forests in the 

Lower Cotter catchment collected in the 1970s.  Long-term records of run-off were, however, 

available for the upper Cotter River catchment in the western montane part of the study area 

from measurements taken since 1937 (Ecowise, 2007).  The modelled daily run-off data were 

summarized into annualised data as used by Mount.  An annual time scale was adopted because 

the MSDI and RSDI models do not contain parameters for attenuating run-off after a rain event 

nor take account of the delayed melt of snow in the higher parts of the catchment.  Therefore, 

annual correlations between observed and modelled run-off provide a better basis for evaluating 

the DSWBMs.
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Figure 6.14 Comparison of modelled with observed runoff based on (a) RSDI, (b) MSDI, and (c) F-DSWBM models 

Source: Observed runoff data from ActewAGL (1964-2007).  The observed annual run-off data were from daily flow records taken at the Gingera gauging station in the upper Cotter River catchment. 

Note:  The dotted line indicates a 1:1 relationship between the independent variable on the x-axis and the dependent variable on the y-axis. 
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Predicted and observed run-off for the upper Cotter River catchment is presented for all 

three models in Figure 6.14 (a), (b) and (c).  Closely comparable R-squared values were 

obtained for all three models (R2=0.857 for RSDI R2=0.872 for MSDI, R2=0.867 for F-

DSWBM).  The slope of the regression line is also not that dissimilar for all three models.  The 

only difference apparent between the models is that there is wider scatter of points apparent in 

the observed versus expected values in the MSDI plot (Figure 6.14 (b)), compared with the 

other two models.  This comparison therefore does not identify which of the daily soil water 

balance models should be used for assessing the landscape dryness component of landscape 

susceptibility to large landscape fires in the medium or the longer-term.  The selection of the 

preferred daily soil water balance models is deferred until the next section of this chapter. 

6.5 Selection of preferred daily soil water balance 
models 

The daily soil water balance models most suited to later adoption are selected based on the 

characteristics of the annual profiles through the time series.  The modelled estimates of soil 

water deficit from the three models were compared using records gathered since 1951, at the 

two weather station sites: Canberra Airport and Corin Dam in the upper Cotter River catchment 

(Figure 6.15 and Figure 6.16).  The comparison was made by scrutinizing the SWD produced 

by each of the three daily soil water balance models for the two weather station sites. 

In relation to the simulations of SWD at Canberra Airport (Figure 6.15), the MSDI model 

does not differentiate the dry from the wet years as well as the RSDI and F-DSWBM models.  

These two models produce more similar annual profiles than the one calculated by the MSDI.  

However, in the upper Cotter River catchment, the annual profiles derived from the MSDI lies 

produces closer profiles to the RSDI model.  The Fowler (F-DSWBM) model in turn is more 

similar to the RSDI model but not by much (Figure 6.16).  When comparing the time series of 

the MSDI derived from weather data gathered within two different climate zones, the MSDI 

produces higher estimates of SWD at Canberra Airport (Cfa climate zone) but similar estimates 

to the RSDI model at Corin Dam in the upper Cotter River catchment (Cfb climate zone).  

Given that the all-wave net regime is similar at the two weather stations (see section 5.4.2), the 

results produced by the MSDI model indicate some further slight improvement to its 

evapotranspiration table may be all that is needed. 

The principal reason for selecting the RSDI model over the MSDI model is because the 

former model is based on modelling evaporation as a biophysical process.  A forest is a much 

more buffered and sheltered environment than a grassland, resulting in lower evaporation rates 

on the forest floor.  It is difficult to conceptualise forest systems, especially dry vegetation and 

soil surfaces in a forest, as being in any way comparable to a standard evaporation pan placed in 

an open grassland environment, except when intercepted water is freely evaporated off the 

overstorey and understorey, and soil surfaces in forests. 
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Figure 6.15 Comparison of SWD produced by RSDI (a), MSDI (b), and F-DSWBM (c) models using Canberra Airport data 
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Figure 6.16 Comparison of SWD produced by the RSDI (a), MSDI (b), and F-DSWBM (c) models for the upper Cotter River catchment 
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The process of transpiration, on the other hand, is controlled by the factors of radiation, 

available soil moisture, humidity deficit, soil temperature, and the plant’s physiological 

response to these factors.  The process of soil evaporation is similarly controlled by the amount 

and proportion of net radiation (RN) reaching the soil surface, the extent of ground cover, the 

available soil moisture and diffusivity below the soil surface.  These forest processes are more 

complex than the process of free water evaporation from an open surface.  Hence the MSDI 

evaporation sub-model lacks the subtleties and nuances needed to take account of these 

biophysical processes yet does a fine job modelling evapotranspiration using the Mount (1980). 

The RSDI and F-DSWBM daily soil water balance models will therefore be used to model 

landscape dryness as anticipated earlier (Chapter 4). 

6.6 Findings in relation to daily soil water balance 
models 

This chapter set out to:  

(1) verify the estimates of the principal components of the water balance: evaporation 

(EA) and total run-off (Q); and 

(2) determine which of the daily soil water balance models were the most applicable for 

developing realistic annual historical profiles of SWD (Chapters 8 and 9). 

While total evaporation (EA) is difficult to estimate with absolute certainty, the estimates 

from the RSDI model were comparable to those obtained from a comparable study undertaken 

by Berry (2007).  The paucity of medium to long-term time series studies of evaporative losses 

(both ES and ET) in Australian forests signals the need for further studies, especially if models of 

landscape dryness and susceptibility to fire reflect field conditions.  This results in models 

having to be tested against other models, not against field-based measurements of EA and its 

components.  Field-based heat and water measurements are both expensive and laborious to 

carry out, so tend to be of very limited duration as the Western Australian Silberstein et al. 

(2001) two month-study clearly demonstrated.  Absence of medium or long-term measurements 

is a major shortcoming in producing accurate and reliable models of the components of 

evaporation. 

The three daily soil water balance models evaluated in this chapter can adequately model 

total evaporation (EA) and its components (ES and ET).  As a result the daily soil water balance 

has been shown to be reasonably representative of field conditions in either a representative 

forest type (dry sclerophyll forests, Cfa climate zone) or for an averaged set of forest conditions 

in a complex catchment (upper Cotter River catchment, Cfb climate zone).  For example, the 

estimated runoff in section 6.4.1 is in close agreement with gauged flow in the upper Cotter 

River catchment when conducted on an annualised basis.  This is a remarkably good result 
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given that all DSWBMs are point-based models without complex spatial interpolation of rainfall 

and evaporation in the Cotter River catchment. 

There are two main limitations of the MSDI model.  The first limitation is that it relies on 

maximum daily temperature to estimate daily actual evaporation.  Daily maximum temperature 

lags behind daily all-wave net radiation in the annual cycle by 27 days in the summer part of the 

fire season cycle at the study area’s latitude of 35.5o.  The trends in average monthly 

evapotranspiration of the radiation-driven (RSDI, F-DSWBM) and daily maximum 

temperature-driven (MSDI) models reflect this (see Figure 6.13 (a) and (b)).  This means that 

the peak in potential soil water deficit is likely to have a similar time-lag.  The second limitation 

is its use of a single lookup table for ET+S that is constant across vegetation canopy classes and 

are used to estimate vegetation canopy interception and flash runoff.  Thus, it is surprising how 

well the MSDI model performs when applied to dry sclerophyll forest, especially given its 

overly simple approach to the estimation of EP and the limited amount of model validation 

(Mount, 1972).  For wetter forests, modelling of total soil and transpiration losses (ET+S) by the 

RSDI model may need some further refinement to take account of reduced evaporation during 

winter. 

The RSDI model can be better tailored to on-ground vegetation cover where LAI can be 

specified and calibrated to known vegetation conditions.  Transpiration losses (ET) in this study 

were based on average vegetation conditions, point-based precipitation and net radiation (RN) to 

estimate evaporation in two localities, which have different climatic regimes (section 6.3.1).  

Additionally, the RSDI and F-DSWBM models are formulated on firmer thermodynamic and 

hydrological principles.   

The RSDI and F-DSWBM models will thus be employed to produce annual profiles of the 

proxy of landscape dryness, SWD (see Chapters 8 and 9).  As proposed in Chapter 4, the RSDI 

model will be used to produce a medium-term series of SWD at Canberra Airport.  Its close 

counterpart, the F-DSWBM, will be used to produce a long-term time series of SWD, based on 

the calibration of this model with the RSDI model, at Canberra Airport. 

Based on the calibration procedure (see Appendix 3) , the two daily soil water balance 

models have been shown to produce comparable estimates of evaporation, soil water deficit, and 

run-off and so seem suited for medium and long-term analysis of landscape dryness.  This 

therefore has answered the two research questions posed in section 1.4: ‘Which daily soil water 

balance models best approximate the hydrological processes of evaporation, run-off, and soil 

water deficit?  Which of these models should be used for further analysis of landscape 

susceptibility to large fires?’ (Table 1.1). 
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Chapter 7: Potential Fire Spread Indices 
and Thresholds of Landscape Dryness 

The all-wave net radiation version of the Mount Soil Dryness Index and Fowler daily soil 

water balance models were found to best model medium- and long-term landscape dryness.  

Understanding the seasonal temporal nature of landscape dryness is the key to understanding the 

potential for fire spread in a landscape.  Landscape dryness, a key factor in a potential fire 

spread index (PFSI), is further explored here to see how it is currently employed as a proxy of 

fuel availability and vegetation flammability.  A well-correlated index of landscape dryness is 

required so that a critical threshold value of landscape dryness can be selected for warning of 

the imminent danger of a small fire rapidly escalating into a large landscape scale fire (LLF).  In 

addition, a PFSI is required to anticipate the potential spread of a fire once the conditions have 

been reached. 

This chapter undertakes to: 

(1) highlight the role that landscape dryness plays in estimating fuel availability and 

vegetation flammability; 

(2) identify literature-based SWD thresholds for heightened vegetation flammability; 

and 

(3) identify which PFSI model is best suited to determine landscape susceptibility to 

LLFs. 

The analysis commences with a review of the role that a daily soil water balance model 

plays in determining fuel availability and vegetation flammability in a landscape,  followed by 

an exploration of the relationships between Live Leaf Moisture Content (LLMC), drought 

indices, vegetation flammability, and the potential for LLFs.  A review of two widely used 

potential fire spread indices, the Canadian FWI and the Australian FFDI, is then undertaken.  

Finally, a preferred potential fire spread index is selected based on its suitability for predicting 

potential fire spread.  The main findings are summarised in section 7.4. 

7.1 The relationship between soil water deficit and fuel 
availability in potential fire spread models 

Because it is impossible to measure or reconstruct the availability of the dead fuel 

components in a forest over a long period, soil water deficit (SWD) is used as an indirect 

measure of the amount of available dead fuels in forest vegetation, including the larger fuel 

components.  Here soil water deficit is considered as having the same meaning as the term 

‘drought index’.  In studying the relationship between fuel availability and the KBDI drought 

index, McArthur (1962a) showed that fire intensity increased linearly with drought index from 

300 to 1200 BTU ft-1 s-1 (1000 to 4100 kW m-1) when the KBDI increased from 25 to 100 mm in 
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a scale from 0 to 200 mm.  Because his study was limited to the wetter end of the scale, he did 

not have the data to establish the possible relationship between SWD and fire intensity under 

drier conditions (100-200 mm).   Therefore, there is no evidence for the type of relationship at 

extreme end of the scale of SWD and its relationship to potential spread and fire intensity in an 

index of potential fire spread. 

Van Wagner (1987) determined from his studies in boreal forests that the amount of 

available fuel followed more of a sigmoid curve (Figure 7.1).  This relationship is more likely to 

mimic the observed pattern of soil moisture loss as soils dry out as the seasons move from the 

cooler and wetter months in winter and early spring and approach a depleted soil moisture 

condition in summer to early autumn.  The fuel availability model used in the Canadian Fire 

Weather Index shows a slower build-up in fuel availability until a value of SWD equal to 70 

mm.  Availability of fuels then accelerates rapidly up to a value of SWD equal to 100 mm.  

Thereafter it increases linearly until 80-90 % of the fuels become available, approaching the 

peak fuel availability at a value of SWD between 120 and 140 mm.  This threshold value would 

of course vary between vegetation types. 
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Figure 7.1 Relationship between fuel availability and a theoretical drought 
index expressed by FFDI and FWI 

 

In contrast, the fuel availability curve in the FFDI model follows a straight line up to a 

value of a drought index of around 100 mm and thereafter the drought factor stays constant even 
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though landscape dryness conditions are becoming more severe in their effects on soil, 

vegetation, and fuel moistures.  The MacArthur FFDI model therefore predicts that fuel 

availability increases more rapidly, and at a much earlier time, than that predicted by the FWI 

model. 

The fuel availability relationship used in the Fire Weather Index model better explains the 

apparent sudden change in fire behaviour after soil and vegetation moisture fall to a critical 

threshold around the inflexion point.  This sudden change in fuel availability, that is, availability 

of more combustible fuel, may partly explain the rapid escalation of small fire into a large 

landscape fire if fire weather conditions deteriorate.  The contribution of vegetation 

flammability as another factor in increasing the potential for large landscape fires is explored 

next. 

7.2 Live vegetation flammability and potential fire 
spread 

As outlined in the previous section, availability of fuel in a forest is modelled indirectly 

using a drought or soil dryness index.  This does not take into account the relative ease at which 

live vegetation can catch fire.  This is termed live vegetation flammability and refers to its: 

(1) ignitability, that is how easy it is for fuel to catch fire, 

(2) sustainability or how well it continues to burn, and 

(3) combustibility, how fast dead and live forest fuels burn (Anderson, 1970; 

Dimitrakopoulos and Papaioannou, 2001). 

Flammability of live vegetation relates primarily to the moisture, ash, and flammable oil 

content in live leaves.  Moisture content of dead or live fuels is expressed as the percentage of 

oven-dry weight,  The moisture content of live leaf fuels can be anywhere between about 50 and 

250%, depending on their phenology and their degree of water stress.  Once the moisture 

content of live leaves falls below 100%, vegetation flammability increases significantly.  Once 

live leaf moisture content falls below 70% (close to the wilting point in most plants), vegetation 

can become highly flammable. 
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By comparison, the moisture content of litter fuels is generally much lower (varying 

between vary between 2% and 30% moisture content) once the effects of recent rain have 

evaporated.  Because of the much lower moisture content of dead fuel, dead rather than live 

fuels have been widely presumed to be the principal driver of fire spread over the full range of 

fire behaviour (Rothermel, 1972; Brown and Davis, 1973; Chandler et al., 1983).  Nevertheless, 

dead and live fine fuel moisture contents are incorporated into the denominator heat energy of 

pre-ignition (QIG) term of the Rothermel fire spread equation (Rothermel, 1972): 
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 (m s-1) Equation 7.1 

where  is the rate of spread of a fire (m sec-1),  is the reaction intensity (kW m-

2), 

ROS RI

  is a dimensionless propagating flux ratio constant, B  is the bulk density of the 

fuel complex (kg m-3),  is the heat energy of pre-ignition (kj kg-1), IGQ W  is the wind 

coefficient and S  is the slope coefficient. 

This equation expresses the rate of spread of a fire in terms of the ratio of the propagating 

heat flux of the dead fuels to the heat required for pre-ignition of unburnt live and dead forest 

fuels (denominator).  The higher the propagating flux, the greater is the energy available to 

ignite and rapidly combust all fine fuels ahead of a fire front.  The lower the heat energy of pre-

ignition (QIG), the faster forests fuels combust, the faster the rate of spread of fire, and the 

higher the fire intensity, all other factors being held constant.  The term QIG has been defined as 

‘the energy required to bring a fuel from its current temperature to ignition temperature’ 

(Dasgupta et al., 2006:141) and is applicable to both dead and live forest fuels. 

Implicit in the estimation of potential rate of spread and fire intensity is the moisture 

content of live fuels as well as dry ground and aerial fuels.  Therefore, any potential fire spread 

index (PFSI) will be greatly influenced by how dry both the dead and live fuels are.  In essence, 

fuel moisture levels will determine whether a particular forest fire will progress rapidly to a LLF 

under very dry landscape and severe fire weather conditions.  Associated with this rapid 

escalation is the potential for crown fires in forests.  Rate of fire spread is much faster in crown 

rather than surface fires (Van Wagner, 1977).  The added energy release from crown fires also 

promotes the development of convection columns over a fire, which can exacerbate its severity, 

and thus its controllability, particularly under very dry landscape and extreme fire weather 

conditions. 

A PFSI should therefore incorporate the factors of dead fuel availability and live 

vegetation flammability that are embodied in Equation 7.2.  At the present time, there is no 

relationship established between SWD and live vegetation flammability in the McArthur FFDI 

although vegetation flammability is taken into account in the Canadian Fire Behaviour System, 

using live leaf moisture content (LLMC) of the tree canopy when estimating crown fire 

behaviour (Van Wagner, 1977).  The live vegetation flammability component is impractical and 
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difficult to model through time using a biophysical model.  The only practical alternative is to 

establish an indirect relationship between the level of landscape dryness based on a soil dryness 

index and live vegetation flammability.  Possible relationships between soil dryness, live leaf 

moisture content, vegetation flammability, and the potential for LLFs are explored next. 

7.3 Relationship between live leaf moisture content, 
vegetation flammability, and the potential for LLFs 

Moisture content of live leaves responds much more slowly to changes in ambient 

conditions than dead fuels, but is dependent on plant physiology, soil water regime and seasonal 

weather conditions (Castro et al., 2003; Chuvieco et al., 2004).  In contrast, fine dead fuels 

respond to changes in ambient weather conditions (Viney, 1991b) with a time lag between one 

and ten hours depending on fuel thickness (Rothermel, 1972). 

Based on a limited set of studies of the seasonal changes in live fine fuel, live leaf moisture 

content of understorey shrubs and herbaceous species can vary significantly while that of 

deeper-rooted plant species, such as Pinus brutia, do not (Dimitrakopoulos and Bemmerzouk, 

2003; Pellizzaro et al., 2007).  The LLMC of herbaceous and grass species studied fell to below 

30% in the middle of summer when the soil water deficit estimated by the Keetch-Byram 

Drought Index (KBDI) had reached 140 on a scale of 0 to 200 mm.  Pellizzaro et al. (2007) 

found a lower value of soil water deficit (SWD =107 mm) based on the KBDI that was related 

to LLMC values below 50% in Cistus monspeliensis in pine forests and Rosmarinus officinalis 

in heathland in Spain.  Again the values of LLMC for both shrub species was well below the 

wilting point for most herbs, shrubs, and grasses (LLMC<= 70%).  On a theoretical basis, more 

extreme levels of soil water deficit, more highly combustible near-surface dead fuels and highly 

flammable live fuels in the shrub and tree canopy layers lead to a lower level of heat for pre-

ignition being required and hence faster potential rates of spread (see Equation 7.1). 

In another study in Greece, Dimitrakopoulos and Papaioannou (2001) found that low 

LLMCs were linked to higher flammability of Mediterranean shrubs and herbaceous species.  

The findings from this study supports earlier studies that increased vegetation flammability can 

be linked to a greater potential for the outbreak and spread of fires (Chandler et al., 1983; Castro 

et al., 2003).  On a theoretical basis, more extreme levels of soil water deficit, more highly 

combustible near-surface dead fuels and highly flammable live fuels in the shrub and tree 

canopy layers lead to lower level of heat for pre-ignition  and hence faster potential rates of 

spread (see Equation 7.1). 
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Critical levels for the initiation and spread of Chaparral fires in southern California were 

found to be below a Live Leaf Moisture Content (LLMC) of 77% (Dennison et al., 2008) 

although there was no reported relationship with a drought index.  The significant result for this 

study was that the largest landscape fires occurred when the estimated LLMC was between 61 

and 77%.  In the study of the effects of the late summer drought of 1965 in the ACT, Pook et al. 



 

(1966) reported LLMCs of between 40 and 75% in overstorey eucalypts on rocky soils and 

LLMCs between 80 and 90% in open Eucalyptus melliodora (Yellow Box) woodlands with a 

deep regolith.  The measurements were taken during March and April – the estimated soil water 

deficit during those months was estimated using the RSDI model as being between 140 mm and 

165 mm.  At the same time, there were large fires burning in east Gippsland, the Tumut area in 

the Snowy Mountains and on the coastal escarpment between Nowra and Ulladulla on the South 

Coast of New South Wales.  The limited number of these studies allude to high levels of soil 

water deficit contributing to low values of LLMC playing a role in the spread of LLFs.  These 

results agree with the findings of Chandler (1983), that a LLMC of 75% was a critical level for 

the propagation of LLFs in Mediterranean ecosystems. 

Rothermel (1972) supports the notion that large fires are more likely to occur in late 

summer in the Rocky Mountains in United States and Canada because of the combination of 

low dead and live fuel moisture contents.  Pompe and Vines (1966) also contend that fire 

intensities are exacerbated during drought conditions because of low dead and live fuel moisture 

content in vegetation. 

Based on the relationships between KBDI and LLMC, vegetation flammability and the risk 

of LLFs, a critical threshold of flammability and fuel availability must be placed somewhere in 

the range of 100 to 140 mm.  The threshold set may be dependent on the daily soil water 

balance model employed, the type of vegetation and soils, and climate.  This threshold is critical 

for anticipating the potential of LLFs, independent of potential fire spread conditions.  This 

threshold in a landscape dryness index will be investigated further in Chapters 8 and 9 to 

identify (1) fire seasons with high to very high landscape susceptibility to fire and (2) the 

likelihood of lightning ignition. 

7.4 Evaluation of potential fire spread models 
The factors of fuel availability and live vegetation flammability and their relationship to 

landscape dryness indices and potential fire spread indices (PFSIs) were explored in the 

previous section.  The findings in the previous two sections suggest that landscape dryness has 

the potential to indicate both fuel availability and vegetation flammability changes in forest 

fuels.  It is thus important to use a PFSI model that contains explicit and transparent components 

of landscape dryness and potential for fire spread in the landscape if it is to be applied to 

anticipating severe fire conditions in a landscape. 

Two potential fire spread indices are evaluated for this study: (1) the Forest Fire Danger 

Index (FFDI) and (2) the Canadian Fire Weather Index (FWI).  Both models embody: (1) a 

landscape dryness component; (2) an index of fine fuel moisture, and (3) wind speed estimated 

or measured at 10 m above the ground in the open. 
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7.4.1 Forest Fire Danger Index 
The Forest Fire Danger Index (FFDI) was first developed to predict fire behaviour in 

eucalypt forest fires in south eastern Australia (McArthur, 1967).  Noble et al. (1980) converted 

the FFDI into a series of equations that related the indices to: (1) drought-determining variables, 

and  (2) hourly or daily fire weather variables: temperature, relative humidity and wind speed 

(Equation 7.2). 
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where DF is the Drought Factor estimated from either the KBDI or MSDI and days 

since rain and amount of rainfall, RH is the relative humidity, T is the temperature (oC) 

and V is the wind speed (km hr-1). 

The Drought Factor is estimated from Equation 7.3: 
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where KBDI is the Keetch-Byram Drought Index, DSR is the number of days since last 

rainfall event, and P0900 is the amount of rainfall to 9am in the previous 24 hours (mm). 

7.4.2 Canadian Fire Weather Index 
The Canadian Forest Fire Weather Index (FWI), a key component of the Canadian Forest 

Fire danger Rating System (CFFDRS), was developed from a set of empirical relationships 

between fire spread and intensity and three key variables: available surface fuel, fuel moisture 

content and wind speed (Van Wagner, 1987).  According to Van Wagner, the index was 

developed from the fire intensity equation for a headfire (Byram, 1959) whose equation 

combined the heat of combustion per unit of fuel, the rate of spread of a fire and the amount of 

fuel consumed (Equation 7.4). 

HWRI   Equation 7.4 

where I is the fire intensity (W m-2), H is the calorific heat content of fuel (J g-1), W is 

the available fuels (kg m-2) and R is the rate spread of the fire (m s-1). 

In the FWI system, fuel moisture content is derived for three classes of fuel: the fine fuel 

moisture (fine fuel moisture content (FFMC)), duff (duff moisture code (DMC)) and a drought 

code (moisture content of large logs and branches (DC)) (Van Wagner, 1972).  The FFMC 

responds quickly to hourly changes in temperature, relative humidity and wind speed, whereas 

the DMC and DC have much slower response times of between 12 and 52 days, being 

responsive to factors such as day length, temperature, relative humidity, and rainfall.  Notice 

that the DMC represents the drying and wetting of the duff layer in boreal pine forests in 
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Canada (Van Wagner, 1972) while DC represents a recoded soil water index of between 0 and 

800 points similar to that used in the Keetch-Byram Drought Index. 

The initial spread index (ISI) in the FWI system is estimated from the FFMC and the wind 

speed and represents fire spread on an even surface, without taking into account the deeper 

surface or larger fuels (Equation 7.5) (Van Wagner, 1987): 
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 Equation 7.5 

where m is moisture content in %, estimated from FFMC; and WS is the wind speed 

measured at 10 m  in the open  

The second index, termed the build-up index (BUI), represents potential fuel availability 

and is estimated using a harmonic mean of the two longer-term variables, duff moisture code 

(DMC) and drought code (DC). 
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Equation 7.6 

Finally, the Canadian FWI uses a combined index of the ISI and the BUI, on an 

algorithmic scale to estimate severity of potential fire spread and intensity. 

647.0)1.0(434.0(72.2 BUIISIFWI 
 Equation 7.7 

Additionally, a daily severity rating (DSR) can be estimated from the FWI, using a 

weighting factor to express the degree of difficulty of fire control as FWI increases.  The 

relationship between the FWI and the DSR is based on: 

77.10272.0 FWIDSR   Equation 7.8 

A monthly (MSR) or a seasonal severity rating (SSR) can also be estimated from DSR 

averaged or accumulated over the length of a month or a fire season (Van Wagner, 1987). 

7.4.3 Comparison of PFSI models 
The Canadian FWI is significantly more utilitarian than McArthur’s FFDI.  The Canadian 

FWI model makes no presumption about the worst set of fire weather conditions.  In 

McArthur’s FFDI, the upper boundary is set to 100, equivalent to the fire weather conditions 

experienced in the 1939 Black Friday fires in Victoria, when there was a maximum temperature 

of 40oC, relative humidity of 15%, and a mean wind speed of 55 km hr-1 (15 m s-1) (McArthur 

and Cheney, 1972).  These conditions have been occasionally exceeded, for example during the 

worst fire weather experienced in the 1983 Ash Wednesday fires in Victoria and South Australia 

(FFDI=110) (Rawson et al., 1986).  Additionally, the FWI is an explicit and well documented 

system (Van Wagner, 1987) that explains in simple and logical terms the structure of the fuel 

moisture and wind effects on potential fire behaviour.  In contrast, the McArthur FFDI supplies 
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little supporting documentation or evidence to support the type of models used in the index 

(McArthur, 1967; McArthur and Cheney, 1972). 

The FFDI does not contain an explicit fuel moisture model nor does it have an explicit fuel 

availability factor.  Instead, the variables, temperature and relative humidity, are implicitly 

imbedded in the FFDI model to estimate dead fine fuel moisture.  To obtain an explicit value of 

dead fine fuel moisture, an algorithm from the Grassland Fire Danger Index (GFDI) or the fuel 

moisture algorithms in Leaflet 80 (McArthur, 1962b) can be used instead to approximate values 

of dead fuel moisture.  The Drought Factor is a rudimentary algorithm for estimating fuel 

availability in forests.  It should be regarded only as a first approximation of seasonal fuel 

availability in eucalypt forests. 

One significant limitation in applying the Canadian FWI model to the study is calibrating 

the duff moisture code (DMC) and the drought code (DC).  The fuel moisture algorithms, which 

calculate DMC and DC, were developed in the boreal coniferous forests of Canada.  These 

forests are situated at much higher latitudes, between 50 and 55o, in the northern hemisphere, 

than the latitudes of the study area (34o 50’ and 36o 40’).  Day length and monthly maximum 

and minimum temperatures are therefore likely to be markedly different between the more 

temperate latitude of the study area and the sub-polar regions in Canada, which may limit the 

potential applicability of these slower drying litter models used in this study. 

The DMC is based on a logarithmic drying rate that also takes into account effective 

rainfall and a monthly day-length factor.  These two latter factors are used, together with daily 

maximum temperature and day length, to estimate potential evaporation.  The range in fuel 

moisture content in the DMC model is between 0 and 300% of oven-dried weight of fuel.  The 

minimum equilibrium moisture content in the DMC is assumed to be 20%, which may be higher 

than that under very dry seasonal conditions in the ACT region. 

The duff moisture content (DMC) is the moisture content of the semi-decomposed fraction 

of a deep litter bed with an average fuel loading of 4.9 kg m-2 and a fuel depth of 0.07-0.12 m 

(Van Wagner, 1987).  By comparison, the fuel loading in a dry sclerophyll forest near Canberra 

is between 1.25 – 1.75 kg m-2 with an average fuel depth between 0.02 and 0.03 m (Author’s 

own measurements in 2004).  It is unusual for a duff layer to develop in dry sclerophyll forests 

although it does develop in wet sclerophyll forests in Victoria and Tasmania and in pine 

plantations in south eastern Australia.  Litter beds in Australian forests tend to be more porous 

and decompose more slowly in the lower parts of the litter bed because of increased lignin and 

oils in the leaves.  The differences in bulk density and fuel depth would affect the log dry rate 

and the DMC would need to be adjusted to take account of the above differences between a 

Boreal pine forest in Canada and a eucalypt forest in south eastern Australia.  As a result, the 

DMC code used in the FWI system may not reflect a fast enough drying in the semi-

decomposed and decomposed parts of the litter layer in Eucalypt forests.  The only calibration 
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of the DMC attempted in this study is to adjust the average day length hours of each month of 

the year; however, further detailed field studies to calibrate this model for south eastern 

Australia was not possible in the time-frame set by this study. 

The algorithm for estimation of drought code (DC) in the FWI employs a negative 

exponential algorithm to relate the value of DC to the moisture content of the duff layer.  Daily 

drying is related to the potential evaporation rate and to effective rainfall, which is adjusted by a 

day length factor.  It assumes a 200 mm soil water storage, equivalent to that used in the KBDI 

(Keetch and Byram, 1968).  If these factors can be calibrated for Australian conditions, by 

adjusting the key input factors, then the FWI can be applied in this study.  A similar adaptation 

was done when the Canadian FWI system was converted for use in New Zealand climatic 

conditions (Fogarty et al., 1998b).  An alternative approach is to substitute the MSDI model for 

the DC model, as long as there is a satisfactory correlation between the two drought indices.  

This approach therefore removed the problem of adapting the DC to Australian conditions, 

which is beyond the scope of this study. 

Of the two potential fire spread indices explored, the FFDI and FWI, the FWI has the 

necessary features, such as integration with a DSWBM, explicit sub-indices and more realistic 

approximation of the range of potential fire spread, even though it was developed in the Boreal 

forests in Canada.  Viegas et al. (1999) concluded that the Canadian FWI was one of the best 

suited potential fire spread indices to assess fire risk and potential in Europe. 

7.5 Derivation: potential fire spread time and landscape 
dryness datasets 

Based on a spreadsheet provided by the Canadian Forest Service, the fire weather dataset 

for Canberra Airport was expanded to calculate the FFDI and FWI concurrently (Appendix 4).  

SWD estimated from the now calibrated all-wave net radiation SDI model (RSDI) was 

transferred across to this spreadsheet from the spreadsheet in Appendix 2.  In order for the SDI 

to have parity with the DC variable, it was scaled up from 165 to 200 mm and then converted 

from mm to points to be consistent within the imperial scale used in the calculation of DC in the 

FWI model.  The assumption being made is that there is a general linear relationship between 

the two variables. 

Values of SWD and FWI were then extracted from the principal spreadsheet and placed 

into a separate worksheet that estimated dummy values for the additional day required in non-

leap years to create a consistent 366-day length year throughout the duration of the time series.  

A uniform day length year eliminates a shift in time of the days after the month of February.  

This is especially important in a 100-year time series of any variable. 
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7.6 Findings 
The potential fire spread indices explored in this chapter rely on drought indices to 

estimate the availability of dead fine and coarse fuels, which is a critical factor in the estimation 

of potential fire spread across a landscape.  The FFDI and FWI use slightly different modelling 

approaches to allow for the contribution that availability of fuels make toward potential fire 

behaviour.  For the FFDI, the Drought Factor sub-model uses a constant linear relationship 

between SWD and available fuel up to a maximum value of SWD equal to about 100 mm for a 

constant DSR and P0900.  Above this SWD value, the FFDI is insensitive to any further increase 

in fuel availability.  Vegetation flammability becomes critical once live leaf moisture contents 

approach the wilting point, approximately when the KBDI exceeds 100-120 mm.  Heightened 

vegetation flammability at live leaf moisture contents below wilting point (LLMC<70%) were 

shown to contribute to LLFs in Californian chaparral vegetation.  As no critical LLMC 

threshold value has been established for Australian conditions, a tentative SWD threshold of 

100-120 mm is proposed to indicate the critical point for live vegetation flammability.  Beyond 

this point, available fuel can be considered to include live vegetation and adds to the potential 

for LLFs. 

The Canadian FWI model is a more suitable PFSI than the FFDI because it integrates the 

sub-indices of fuel moisture (FFMC, DMC, and DC), fuel availability (BUI), and potential 

spread of fire (ISI) and FWI in a simple and transparent manner.  To apply the FWI in an 

Australian forest setting, the DMC and DC codes first need further calibration to reflect the 

different drying and wetting conditions.  This is achieved by substituting the DC model by the 

Mount SDI model matching the DMC to the monthly day length conditions for the local 

latitude.  A problem remains in that the FFMC sub-model has not been tested and calibrated for 

eucalypt forests.  Viney (1991a) found that the rates of eucalypt leaf litter and pine needle 

moisture absorption and desorption differ.  This limits the applicability of the FFMC model to 

Australian eucalypt forests and its use could produce type I or II errors. 

In answer to the seventh research question, ‘Can a threshold of soil water deficit (SWD) 

indicate a realistic threshold in fuel availability and vegetation flammability in a forested 

landscape that, once exceeded, can lead to large landscape fires (LLFs)?’ there is a suggested 

SWD threshold in the literature (100<SWD<120), indicating increased fuel availability and 

vegetation flammability that leads to LLFs.  This threshold value requires further field studies to 

confirm it in different climate zones and vegetation types.  In answer to the eighth research 

question: ‘Which of the PFSI models is the most transparent and explicit, and best integrates the 

factors involved in estimating potential fire spread?’ the Canadian FWI model appears more 

suitable than McArthur’s FFFDI model.  However, the ultimate choice of a PFSI will be held 

over until the next chapter using detailed seasonal analysis of daily potential fire spread. 
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Chapter 8: Interpreting Medium-term 
Landscape Susceptibility to Large Fires 

The fundamental concept of this chapter is that of the time in the annual profile of fire 

susceptibility indexes when fire is likely in a fire season.  The annual profile is defined from the 

daily pattern of variation of either of the susceptibility indexes, landscape dryness or potential 

fire spread.  Being primarily driven by the rise and fall in solar radiation in the annual solar 

cycle, the annual profile is from July to June. The analysis starts from the profile of a normal 

fire season and its variation, leading to the identification of the profiles of all the fire seasons for 

which data is available. Examining the sequence of these fire seasons from year to year provides 

an understanding of the potential for LLFs and how this potential develops within and across 

fire seasons. 

Earlier chapters focussed on the data and models requirements to deliver quantifiable 

indicators of fire susceptibility: landscape dryness and potential fire spread.  Hierarchical 

classification is applied to these indices to identify annual profiles and form descriptive 

typologies of the sets of landscape dryness and potential fire spread.  Cluster analysis identifies 

groups of fire seasons with similar annual profiles (Romesberg, 1984).  The basis of hierarchical 

classification is to apply a clustering strategy that compares each pair of fire seasons using some 

form of similarity or dissimilarity, in this case Euclidian distance based on the root sums of 

squares differences (Mathsoft, 2005).  First, the closest pair of fire seasons are clustered 

together.  Then these are compared to the next closest matching fire season until there are 

recognisable clusters distinguished by recognisable differences in Euclidian distance values.  A 

classification tree is then produced which links all the clusters together in the form of a 

hierarchically nested set of clusters (Gordon, 1987). 

Hierarchical classification by cluster analysis is seen as the best technique to distinguish 

the different types of fire seasons and is based on the daily variation of each fire susceptibility 

indicator through a fire season.  Romesberg (1984:90) summarises the use of cluster analysis: 

‘Cluster analysis is a method for describing the similarities among objects in 
a sample.  It is a mathematical microscope for looking at the relations of 
similarity among a given set of objects.  It cannot be used for making 
statistical inferences about these relations to a larger population.  Any 
inferences a researcher makes by studying a hierarchical tree are made by 
using reasoned analogy rather than by formal statistical methods.’ 

Cluster analysis is a tool that classifies the seasonal profiles by comparing the similarity of 

each fire season with the rest of the fire seasons until a hierarchical classification tree or 

dendrogram is produced (Romesberg, 1984).  The resultant classification can then be used to 

discern differing fire susceptibility patterns found in past fire seasons. 
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To that end, the approach adopted in this chapter is as follows: 

(1) to examine and then define the natural seasonal periods for an average fire season; 

(2) to identify broad groups and sub-groups of fire seasons using a hierarchical 

classification of annual profiles of SWD and FWI based on Canberra Airport daily 

weather data; 

(3) to examine the year-to-year variation in fire seasons based on an index of FWI 

(SFWI) standardised to a scale from 0 to 100; 

(4) to determine the thresholds of SWD and FWI at which landscapes have been highly 

susceptible to LLFs in the past and then apply those thresholds to identify the 

critical months in fire seasons based on the potential fire spread index (FWI); and 

(5) to investigate the landscape and potential fire spread conditions under which dry 

thunderstorms and lightning ignition have occurred in the past 65 years. 

8.1 The fire season calendar 
It is important to define what a typical fire season calendar is like in the study region as 

this forms an important reference point in the analysis of landscape susceptibility to large fires 

within and between fire seasons.  The intent is to create a more detailed view based on analysis 

undertaken at the daily time scale and to understand why the season is like it is based on the 

daily data from landscape dryness and potential fire spread models selected in earlier chapters. 

Thus, it is important first to see how well contemporary definitions line up with the 

historical patterns of all-wave net radiation, temperature, and then with combinations of fire 

susceptibility indices already outlined (sections 8.1.1 and 8.1.2).  According to Luke and 

McArthur (1978:15), the south eastern Australian fire season is classified as summer-dominant, 

commencing in September and ending in March.  No start or finish dates are defined in their 

broad definition but in the absence of more detailed analysis, it has served a useful purpose.  

More pragmatically, durations of fire seasons have been varied to meet perceived variations in 

landscape and weather conditions, but the underlying basis for the fire season calendar has not 

been seriously challenged.  A clear opportunity exists to redefine their broad definition and to 

establish recognisable intra-fire seasons within which to identify risk periods. 

A season of the year can be defined in several ways.  The first definition is based on an 

astronomer’s definition.  A season refers to: 

‘Any of the four periods into which the year is divided: spring, summer, 
autumn and winter.  The seasons arise from the Earth's axis being tilted, so 
that different latitudes receive varying amounts of sunlight over the course of 
the year as the Earth orbits the Sun. Astronomically, the seasons are taken to 
begin at the equinoxes (spring and autumn) and the solstices (summer and 
winter)(Oxford, 2007).’ 
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A pure calendar definition simply divides seasons into four three-monthly periods.  The 

meteorological definition conforms exactly to the calendar definition (Dec-Feb, Mar-May, Jun-

Aug, and Sep-Nov), starting or ending on the first and last day of each three monthly period.  

This is a matter of convenience; it enables climate and weather information to be summarised 

by calendar months.  It is worth noting that the modern European (and North American) 

tradition is to recognise the equinoxes and solstices in defining their seasons. 

In practice, the start and finish date of each fire season will vary from year to year, and is 

mainly dependent on the prevailing regional weather patterns.  Weather patterns are known to 

be influenced by climate processes operating at both sub-global and sub-continental scales 

(Horel and Wallace, 1981; McBride and Nicholls, 1983; Hessl et al., 2004; Coulibaly, 2006; 

Schoennagel et al., 2005).  The temporal and spatial variation of the factors operating at these 

scales drives the subtle seasonal variation in their values that occurs from year to year. 

A more flexible definition of fire season would encompass a consideration of temperature, 

radiation and dominant synoptic weather patterns (Alpert et al., 2004),  The Alpert and co-

workers study showed that seasons in the eastern Mediterranean can be defined by dominant 

synoptic features derived from long-term NCEP pressure data.  Their idea presents a new 

approach to defining the natural breaks in seasons.  The intention in this chapter is to define 

rigorous fire susceptibility criteria and present new definitions of the seasons to better define 

fire, and intra-fire, seasons. 

8.1.1 The seasons in relation to temperature and all-wave net 
radiation 

Records of mean daily net radiation and daily temperature are examined to identify 

possible periods for a typical fire season in the Canberra region.  The critical factors are the 

timing, magnitude and seasonal variation of these climatic factors throughout the year. 

Mean daily all-wave net radiation (RN) and temperature (TA) each follow a sinusoidal 

curve rising rapidly from a minimum in winter to a maximum at the peak of summer (Figure 

8.1).  At the latitude of 35.5o S, the mean daily temperature lags behind mean daily RN by about 

27 days.  This is because the land is heated by the absorption of radiation and the land in turn 

heats the atmosphere, which is why the maximum and air temperature lags behind the radiation 

maximum both on a daily and seasonal basis.  Mean daily RN shows more week-to-week 

variability in the spring and early summer period than at other times of the year, with peak 

variability occurring between the end of September (day 93) and early February (day 230) due 

to the passage of alternating weather systems and associated clouds.  There are marked irregular 

rises and falls of mean daily RN either side of the summer solstice (day 175 to day 205), 

attributable at least in part to highly variable spring weather.  Thereafter the daily average 

variability in RN reduces in late summer and stabilises in autumn. 
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Figure 8.1 shows the pattern of seasonal rise and fall in mean daily RN.  There is much less 

week-to-week variation in TA values compared with daily RN values over the annual cycle.  

Thus temperature is not a useful criterion for establishing natural breaks in the seasons within a 

fire season. 
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Figure 8.1 Astronomical breaks in the annual cycle in relation to daily all-
wave net radiation (RN) and mean daily temperature (TA) for 
Canberra Airport 

Source: Data extracted from meteorological records in the case of mean daily temperature; mean daily RN estimated 
from net radiation equations shown in Chapter 5.  Period of analysis is July 1951 - June 2007 based on daily 
weather data recorded at Canberra Airport. 

 

The patterns for both mean daily RN and TA throughout a year are shown in Figure 8.2, 

suggesting an earlier start to all seasons in the annual cycle, about 22 days earlier than 

astronomical seasons.  Mean daily RN levels indicate a start of spring on 10 September (day 72) 

with the onset of higher variability in radiation levels, far earlier than the astronomical 

definition of 22 September (day 91).  The onset of summer on 1 December (day 163) coincides 

with a marked observed levelling off in mean daily RN.  Based on mean daily RN, the onset of 

autumn would occur on or about 1 March (day 253) but the onset occurs much later in fact a 

whole 27 days lag when the factor of landscape heat storage is taken into account.  The average 

daily temperature pattern is ill-defined but suggests that autumn could start close to 1 April (day 

283). 
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Figure 8.2 Meteorological breaks in the annual cycle in relation to daily all-
wave net radiation (RN) and mean daily temperature (TA) for 
Canberra Airport 

 

For all practical purposes, the astronomical definition of the spring equinox best defines 

the start of spring on 22 September, while a combination of meteorological and the astronomical 

considerations would define the onset of summer between 13 and 15 December and the end of 

the summer somewhere between 1 March and 1 April.  Thus, the definitions of the start and 

finish of each fire season are not clearly defined using mean daily RN or daily TN. 

8.1.2 The fire season calendar defined by fire susceptibility 
indices 
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A natural question to ask is how much do fire seasons differ from those predicated on 

astronomical or meteorological definitions.  The criteria used in fire season definition were the 

longer-term seasonal index of landscape dryness (SWD) and two short-term daily potential fire 

spread indices, FFMC and FWI using records from 1951 to 2007 to be consistent with the 

length of the time series used in the medium-term analyses in this chapter.  The FWI was scaled 

to that of the FFDI to facilitate comparison and was designated SFWI to distinguish it from 

FWI.  Mean daily SWD and mean daily SFWI were plotted separately in Figure 8.3 (a) to 

delineate their influences on seasonality.  Comparisons can be made between seasonal breaks 

delineated by soil dryness and by potential fire spread indices as shown in Figure 8.3 (a), with 

seasonal changes indicated by overlaying mean daily FFMC and mean daily SWD, as shown in 

Figure 8.3 (b).  Figure 8.3 allows a simple comparison to be made between the seasonal 

positioning of these three key indices.  Vertical grey dotted lines indicate the astronomical 



 

seasonal boundaries, while vertical dashed lines demarcate seasons defined by fire susceptibility 

criteria.  The breaks in the fire seasons are principally related to significant changes in the 

average SFWI, indicated by the horizontal dashed lines in Figure 8.3 (a).  For instance, the start 

of the peak period in the fire season is marked by a sudden increase in FWI on 8 December and 

a sudden decrease on 10 February.  From a fire perspective, there are clearly five distinctive 

seasons, not the four familiar seasons defined by consideration of astronomical and 

meteorological conditions alone (Table 8.1). 

The main inference drawn from this analysis is that the ‘typical’ or ‘average’ fire season 

falls between 22 September and 28 April.  The peak period of landscape susceptibility to large 

fires occurs between 8 December and 6 February, followed by a period when landscape scale 

fires may still occur, termed here ‘late summer’ that ends on, or about, 28 April.  The definition 

of the fire season provided by Luke and McArthur (1978:15) did not specify which months 

comprised the highest fire season risk and did not delineate the different seasons and their 

duration in the fire season year.  Based on this study, the fire season can be much more clearly 

defined and is presented here as a ‘fire season calendar’ (Table 8.1) applicable to the ACT 

region. 

Table 8.1 Fire season calendar based on long-term seasonal dryness and 
potential fire spread criteria 

Season Start date Finish date Levels of landscape 
susceptibility to large fires 

Winter 27 June 21 September Low 

Spring 22 September 7 December Moderate, but sometimes high 
and rising towards the end of this 

period 

High summer 8 December 6 February High to very high and 
occasionally extreme 

Late summer 7 February 28 April High to very high and 
moderating gradually towards 

the end of this period 

Autumn 29 April 26 June Low to moderate and 
occasionally high 
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Figure 8.3 Seasonal markers in the fire season, based on fire susceptibility 
criteria (mean daily SWD, FFMC, and SFWI) with seasonal breaks 
previously derived in section 8.1.1 

Source: Mean values of indices derived from spreadsheets of landscape dryness and potential fire spread in Appendix 
1.  Period of analysis is July 1951 - June 2007. 

Notes: (1) Vertical dashed lines indicate seasonal breaks based SWD, SFWI and FFMC; while vertical dotted line 

show breaks based on mean daily RN and temperature.  The horizontal dashed lines indicate key values of 

mean daily FWI or FFMC. 
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 (2) The Roman numerals refer to the seasons as follows: I-winter, II-spring, III-high summer, IV-late summer, 

and V-winter. 

8.2 Classification: medium-term landscape dryness 
The purpose of this section is to examine first the natural range of variation in daily 

landscape dryness in a fire season and second to classify the annual profiles of landscape 

dryness based on the medium-term SWD index into discernible types and sub-types.  The 

medium-term SWD index is derived from the RSDI (section 6.1.2) from weather data at 

Canberra (Chapter 4) and models of all-wave net radiation and potential evaporation (Chapter 

5). 

8.2.1 Average seasonal variation in medium-term landscape 
dryness 

A general seasonal pattern of soil water deficit is discernible from the individual profiles of 

all the years from 1951 to 2007.  The first aim of this analysis is to illustrate both the average 

and the full range of variation in the annual profiles of SWD from the start of the time series.  

The second aim is to ensure that the intra-fire seasons defined earlier (section 8.1.2) are 

consistent with the breaks evident in the box plot-daily cycle routine based on the full range of 

potential variation rather than just on the mean daily SWD used in the analysis in section 8.1.2.  

The intra-annual variation of SWD is examined using a box plot diagram that produces (i) the 

daily median value of SWD throughout the year, (ii) the daily statistical variation from the 

median, in terms of quartiles and outliers for each day of the year in the annual cycle, and (iii) 

the daily extreme outliers.  The box plot routine summarises the complete variation in the fire 

seasonal profiles of SWD in the medium-term time series.  The next view of the seasonality of 

SWD is presented using an image plot of the seasonal variation in SWD for every fire season 

since 1951. 

The daily SWD anomaly through the fire season (Figure 8.4) shows a wave-like pattern of 

the median daily SWD anomaly rising from a low in July-August to a high between the start of 

January and the middle of April.  The sawtooth pattern represents the maximum and minimum 

values of daily SWD over the full course of the time series.  The black areas represent the inter-

quartile range that shows least variation in spring and early summer and most variation in the 

late summer period.  There are recognisable variations in the daily median values of SWD that 

are mirrored in the extreme values.  Outliers are most apparent in early to-mid-January, and in 

early February and mid-March.  In early October, December and late January there are few 

outliers. 

The ‘typical’ season starts in winter with a flat response until the winter/spring breakpoint, 

occurring around 13th September (day 84), nine days before the breakpoint established earlier 

(Table 8.1).  Thereafter there is a rapid rise in SWD through spring until the 6th December.  
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Again, this is about nine days earlier than previously estimated.  The high summer season 

corresponds to the period of driest soils; high median levels of SWD peak on the 31st January 

(days 215-216), six days earlier than the previously established break between high summer and 

late summer.  From this point, there is a stepped flat decline in the SWD.  This stepped decline 

relates directly to the onset of change in sub-tropical air masses that bring with it more stable 

synoptic patterns. This pattern persists until 17th April (day 309), which is nine days before that 

established earlier.  The SWD thereafter declines rapidly until 30th June.  The median SWD 

declines more gradually until the 31st July when the cycle finishes and starts again. 

The first conclusion drawn from this analysis is that the mean annual profile of landscape 

dryness exhibits a distinctive pattern (Figure 8.4), despite the considerable variation evident in 

the 56 annual profiles (Figure 6.15: section 6.5).  Figure 8.4 encompasses all of this variation in 

one graph and identifies the times of the year when weather and radiation patterns combine to 

produce drying out of soils in spring and earlier, followed by a relatively flat period in late 

summer, leading into a gradual decline of dryness during autumn.  The peak in soil water deficit 

lies between mid December and mid April, indicating mainly dry autumns.  Soil water recharge 

occurs mainly in winter (see Figure 6.15 and Figure 6.16, section 6.5), while spring is a period 

of soil evaporation, and plant transpiration and plant growth, when the soils generally have 

more soil moisture. 

The second conclusion reached is that the breakpoints in the winter-spring, spring-high 

summer, high summer-late summer occur about six to nine days earlier than those previously 

derived in section 8.1.2, but overall are consistent with dates in the fire season calendar (Table 

8.1).  In addition, two notable breaks in the season are identifiable.  The first is the spring-

summer change that occurs on 6th December.  The second is the late summer-autumn change 

that occurs towards the end of April.  These start and finish dates form the principal part of the 

study region’s susceptibility to LLFs.  The high median values occur from mid to late January, 

which may mark the start of the period of the highest likelihood of LLFs.  Large landscape fires 

may then occur anytime after that up until the end of April, depending on seasonal patterns of 

rainfall. 
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Figure 8.4 Daily SWD anomaly through the fire season (1951-2007) 

Notes: (1) The strong vertical dashed lines represent seasonal markers indicated by SWD.  The lines with dots and 

dashes indicate the seasonal markers defined by SWD, FWI, and FFMC (section 8.1.1).  For context, the fine 

dotted lines represent the monthly periods in the annual cycle, starting in July and ending in June. 

 (2) The number of days in non-leap years is extended by one day to make a consistent 366 day annual fire 

season cycle for in the SWD time series. 

8.2.2 Results: classification of landscape dryness by cluster 
analysis 

The purpose in this section is to classify the fire seasons in the medium-term record of 

landscape dryness into recognisable types and sub-types using hierarchical classification.  The 

intention is to classify fire seasonal profiles into sets that reflect different seasonal patterns of 

rainfall and levels of landscape dryness in the fire season calendar (Table 8.1; section 8.1.2).  In 

addition, the extreme landscape dryness profiles should cluster into readily identifiable branches 

in the classification tree. 

The results shown in this section were based on a classification of fire seasons 1951-2007.  

The period studied corresponds with the period of complete and homogenous weather data at 

Canberra Airport commencing on 1 July 1951 (see section 4.2.3). 

A classification tree was produced using a hierarchical clustering method (Figure 8.5).  

Based on a detailed inspection of the classification tree, five major groups were discerned.  

Groups I and II are mainly moist fire seasons, although there are a few unusual years within 

Group II that have occasional very dry short peaks in either early or mid-summer.  Groups III, 
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IV and V are the somewhat dry, periodically dry, and prolonged dry years in the SWD time 

series.  The classification tree is ordered to show a gradual shift from moist to dry, from the left 

hand to the right hand side of the tree.  The range in colours in Figure 8.5 is designed to 

represent the degree of and seasonality of landscape dryness in each of the types of fire seasons.  

However, in the middle of the classification tree two fire seasons do not follow this trend: the 

fire seasons in 1956/57 and 1964/65 were very dry. 

The prolonged and severe dry years cluster into a set in Group V on the right hand side of 

the tree.  These seasons experienced a dry period at the start of the season, becoming rapidly 

drier in spring, with the peak period occurring anywhere between the middle of December 

through to late January.  The SWD peaks in early summer in two fire seasons (1957/58 and 

1982/83) whereas the SWD peaks in the middle and late summer period between late January 

and early March (1967/68, 1997/98, 2002/03, 2006/07).  All these fire seasons are characterised 

by a stepped decline in landscape dryness in late summer with an abrupt fall in late autumn.  

These severe fire seasons represent 2% of fire seasons since 1951. 
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Figure 8.5 Hierarchical classification of fire seasons by annual profiles of soil water deficit (1951-2007) 

Notes: (1) Soil water deficit is estimated by the RSDI model based on medium-term weather records recorded at Canberra Airport. 

(2) The symbol P denotes fire seasons preceding a season with extreme values of soil water deficit, on most occasions indicated by a period of autumn dryness.  This is a possible indicator of an 

approaching fire season with very high levels of landscape dryness. 
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Table 8.2 Fire season groups, based on daily SWD through solar year 

Major 
group 

Major group description Sub-group Sub-group description 

I-1 Moist most of the year — values of SWD 
mainly below 75mm 

I 
Moist years with low multiple 

SWD peaks I-2 Moderate SWD values in early spring and 
then moderate to high values of SWD 
values in autumn 

II-1 Moderately dry SWD values across years 
in this class 

II 
Single major seasons, 

culminating in peak dryness in 
early or mid-summer II-2 Dry spring and summer, major drop in 

SWD values in February 

III-1 Moist early start to season, finishing with a 
dry to very dry autumn 

III-2 Dry start in winter, build-up to peak in 
mid-summer and plateaus in autumn 

III 
Preceding years in a dry 

sequence, with dry or very dry 
autumns (P) III-3 Moist at end of winter, grading into 

moderately dry in autumn – some high 
SWD values in mid summer within this 
sub-group 

IV-1 SWD values gradually decline from a high 
base at the start of the year to a moist end 
in autumn IV 

High start, SWD usually 
maintained at moderate to high 

levels throughout year  IV-2 SWD values usually stay at high levels 
throughout year, all the way into winter 

V-1 As above, but SWD values peak in middle 
of summer, abruptly ends in late autumn 

V 
Prolonged periods of high to 

very SWD V-2 Very dry SWD values in spring and early 
summer, which then gradually tail off in 
autumn 

Note:  The majority of fire seasons that precede a major dry fire season classify into Group III. 

 

The classification of the annual profiles of daily SWD values in the medium-term is listed 

in typology from moist years through to very dry years.  The classes of groups and sub-groups 

relate closely to the sequences and levels of seasonal dryness or moistness during a fire season.  

The timing, relative number, and levels of the peaks of SWD characterise these groups, which 

have a meaningful typology that can be used to describe the current, and possibly anticipate the 

next, type of fire season.  An example of this is the dry period in autumn and winter preceding a 

very dry fire season that causes a low level of recharge of soil water and hence a dry sub-soil in 

the lead-up to the dry summer period.  In terms of the SWD groups, a group IV fire season 

presages a group V fire season.  There are some very dry fire seasons though, such as 1951/52 

and1984/85 that cannot be identified using the above method. 
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8.2.3 Classification: medium-term potential fire spread  
This section deals with the hierarchical classification trees of potential fire spread based on 

the Standardised Fire Weather Index (SFWI), computed in a spreadsheet in Appendix 1 on the 

CD-ROM (section 7.4.2)  and daily weather data at Canberra Airport (section 4.2.3).  As in the 

previous section, the aim is to generalise the complex patterns in daily potential fire spread from 

year to year into recognisable and meaningful groups and sub-groups.  Before undertaking this, 

a final choice had to be made as to which PFSI should be used (section 8.4.1) based on two 

criteria: a summarised seasonal comparison and an overview of the classification trees. 

8.2.4 Selection of the preferred potential fire spread model 
A Forest Fire Danger Rating System is recognised as the most useful and principal tool for 

assessing likely forest fire risk because it provides information about the temporal and spatial 

susceptibility of forests to fire in the short term (Taylor and Alexander, 2006).  However, the 

short-term use of this tool is limited in its capability in anticipating landscape susceptibility to 

large fires.  First, it combines the variable conditions of landscape dryness and fire weather into 

a single index for a constant set of landscape, vegetation, and fuel conditions.  Second, its 

application relies on a forecasted daily or hourly component of fire weather that can only be 

predicted from a few days to one week in advance, so focussing on the immediate rather than 

the longer-term perspective.  Third, in Australia, the understanding of the longer-term 

perspective of landscape dryness and potential fire spread in past fire seasons is not as highly 

developed as it is in other countries, such as North America, Canada, New Zealand, Portugal, 

Spain, France, Italy and Greece.  Thus, this study takes the longer-term view of the potential 

risk and size of fires occurring in potentially flammable landscapes under worst-case fire 

weather conditions. 

The preferred potential fire spread index was selected based on two comparisons: 

(1) seasonal variation in the annual profiles, 

(2) the structure of the classification trees of the two indices. 

A LOESS filter of 51 days in length was first applied to both the SFWI and FFDI time 

series before undertaking a seasonal comparison of the two potential fire spread indices.  

LOESS is defined as locally weighted smoothing of values in a time series.  The length of filter 

was based on a comparison of the effects of the 11, 21, 31, and 51-day smoothing filters on the 

standardised SFWI data.  The 51-day filter was found to smooth the daily SFWI to best effect.  

Essentially, this filter retained the broad character of the annual profiles while removing finer 

shorter-term variation of less than one week. 

Placing the annual profiles of daily potential fire spread anomaly of the two indices one 

above the other proved to be the best method of comparison (Figure 8.6 (a) and (b)).  The two 

figures show the median (50th), 25th and 75th percentiles as well as outliers for each day of the 
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year in the annual profile.  The median FFDI, as well as 25th and 75th percentiles peaks up to one 

month earlier than those of the SFWI, which lies outside the peak fire season period defined 

earlier in section 8.1.1 and Table 8.1.  Figure 8.6 (b) shows the highest values of potential fire 

spread of the FFDI generally occurring in spring and early summer.  During the late summer 

period, the median FFDI also declines more quickly than the SFWI.  The SFWI has a 

cumulative function in the availability of fuel, termed the BUI, which is a negative exponential 

function (Van Wagner, 1987) whereas the FFDI has a drought factor linearly scaled from 0-10, 

based on SWD and a days-since-rain function (Noble et al., 1980).  The different box plot 

profile produced by each PFSI suggests that the fuel availability functions in these potential fire 

spread indices exert a significant influence on the seasonal variation in the annual profiles.  

Hence, the different PFSI indicate significantly different timing of peak severity and a possible 

type I error in spring and a type II error in the late summer period, as shown in Figure 8.6. 
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(b) FFDI 
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Figure 8.6 Annual profile of (a) SFWI and (b) FFDI daily anomalies 

Note:  Comparison of the intra-annual variation in fire spread potential is based on daily data from 1951 to 2007. 
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The next comparison of the two potential fire spread indices is based on the branching 

pattern of the clusters in the classification trees of the two indices (Figure 8.7).  The 

standardised Fire Weather Index is chosen over the FFDI for three reasons.  First, some of the 

fire seasons with extremes of potential fire spread, such as 1957/58, 1982/83 and 1997/98, 

appear in a separate sub-tree at a very high level in the FFDI classification tree.  This cluster is 

distinctly separate from the other similar fire seasons with high and sustained values of FFDI, in 

the first cluster on the left hand side of the classification tree (Figure 8.7 (b)).  In the case of the 

SFWI, these fire seasons cluster in with the rest of the fire seasons at a lower level in the 

classification tree.  Second, some of the fire seasons do not appear to group in a logical way.  

For instance, two very different seasons in terms of SWD grouping classify together in the 

FFDI: 1974/75 belongs to SWD group V whereas 1993/94 belongs to group III. 

In contrast, the classification of SFWI produces a more balanced and hierarchical 

classification tree.  The more severe fire seasons are found in one branch of the classification 

tree, which includes the three severe seasons that grouped together separately in the FFDI 

classification tree. 

Based on these findings, the classification of annual profiles of potential fire spread will be 

based on the SFWI, which appears to better model the seasonality of potential fire spread and 

hence potential fire spread in the peak and late summer periods in the fire season calendar.  This 

is in contrast to the FFDI’s modelled potential fire spread that occurs earlier in late spring and 

early summer.  This conclusion is in agreement with an earlier finding, reported in section 7.1, 

that the linear model embedded in the Drought Factor within the FFDI may produce an earlier 

occurrence in the peak of seasonal potential fire spread severity.  In this case, once the SWD 

exceeds 100 mm, there is no further increase in the landscape dryness factor.  Interestingly, this 

value corresponds to the threshold at which fuel availability and flammability were also found 

to change (see section 7.3).  Hence, the modelling of landscape dryness over that threshold may 

not indicate any further changes to fuel connectivity, availability and flammability, which may 

be key factors in the predisposition of a landscape to larger and more severe LLFs.  This is an 

issue for future research into the possible effect of the embedded Drought Factor (DF) on fuel 

availability and potential combustibility. 
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Figure 8.7 Comparison of classification trees of (a) SFWI and (b) FFDI 

 

8.2.5 Classification: annual profiles of medium-term potential 
fire spread index 

This section deals with the classification of the annual profiles of potential fire spread, 

using the standardised fire weather index (SFWI) to identify fire seasons that could have had a 

high landscape susceptibility to large fires. 

The classification of the annual profiles of SFWI was based on a smoothed standardised 

SFWI, minimising variability in the daily SFWI and responding quickly to changes in fine fuel 

moisture, wind speed, and slope for any given level of fuel availability (BUI). 

In the  classification tree of potential fire spread (Figure 8.8), SFWI is broadly divided into 

two classes: an ‘S’, seasons with severe potential fire spread, and an ‘M’, seasons with low to 
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high potential fire spread.  Employing a value of ~290, on a scale of 100 – 400, the cutting of 

the SFWI classification tree at that level, produces seven distinct SFWI fire season categories (I 

to VII).  SFWI groups VI and VII are more similar to each other than the other SFWI groups. 

Class S -- severe fire season class -- represents years when the SFWI was extremely high 

and where soils (high SWD) were extremely dry (groups I to III).  This class contains five out of 

the seven years classified into SWD group V, suggesting close correspondence between the two 

classifications.  The fire seasons in this class with the greatest potential for large landscape fires 

were: 1957/58, 1977/78, 1982/83, 2002/03 and 2006/07. 

The ‘M’ class contains low to moderate fire seasons with high values of SFWI occurring in 

short periods in either late spring, early summer, or autumn, or a combination of all three 

(groups IV to VII) without the sustained levels of potential fire spread found in the ‘S’ class of 

fire seasons. 

Interestingly, group IV contains some very dry years belonging also to SWD groups III 

and IV.  This group contains seasons with moderate to high potential for large landscape fires.  

Group V fire seasons are characterised by low values of SFWI for most of the year, with some 

occasional short periods of moderate to high SFWI.  Most of the fire seasons in this group are 

located in SWD group 1 (20 out of 22).  The dampening effect of low to moderate SWD likely 

decreased the potential for large landscape fires in most of these fire seasons.  Group VI 

contains three significant fire seasons (1951/52, 1978/79, 1984/85), which had very high to 

extreme SFWI values in the later half of the peak fire summer period following a rapid build-up 

of landscape dryness from spring into summer.  Group VII is a highly heterogeneous group of 

eleven fire seasons that do not readily classify into recognisable patterns of SFWI during the 

year. 

The different groups can be distinguished on the following criteria: 

  frequency and amplitude of the pulses of SFWI values through the season; 

 the timing and duration of the more extreme periods of SFWI, and 

 the timing and relative power of the peak potential fire spread days. 

A description of the fire season SFWI groups is presented in Table 8.3. 
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Figure 8.8 Fire season classification based on SFWI index of potential fire spread (1951-2007) 

Notes: (1) The time series of SFWI was smoothed using a LOESS smoother of 51 days to enhance the differences in the PFSI annual profiles. 

(2) The colours are designed to reflect fire seasons with differing potential for large landscape fires in early to late summer.  For instance, shades of red indicate groups and sub-groups of fire 

seasons with the highest potential for LLFs.  At the other end of the scale, shades of blue indicate groups and sub-groups of fire seasons with the lowest potential for LLFs. 
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Table 8.3 Groups of Fire Seasons, based on annual SFWI profiles 

Class Major 
group 

Major group 
description 

Sub-
group 

Sub-group description Fire seasons 

I-1 Very high SFWI values between late spring and early summer.  Periodic 
high values of SFWI values from high summer through to early autumn 

1979/80 

I 

Dry years with sustained 
high SFWI values  – 
sometimes severe to 
extreme 

I-2 Fortnightly episodes of high to very high SFWI from spring to mid 
summer with high to very high SFWI values between late March and 
early May 

1994/1995 

II 

Very dry years with 
frequent peaks in SFWI up 
to very extreme, likely to 
occur in either early or late 
summer 

II-1 Gradual build-up of SFWI values from early spring to mid-December in 
a series of fortnightly to three weekly high spikes in SFWI values.  Lull 
in early January followed by another late summer period of very high to 
extreme SFWI until April 

1967/68, 1997/98 

III-1 Sustained values of SFWI occur across most of the fire season with 
monthly spikes of very high SFWI values from September onwards.  
Near-extreme and extreme SFWI values are found in spring and high 
summer.  Major decline in SFWI values in autumn 

2002/03, 2006/07 

IIII-2 Later start to very high SFWI values than in subgroup III-1, starting in 
early November and peaking in late December.  Frequent spikes in  

SFWI values until late March 

1982/83 

Mainly severe 
fire seasons (S) 

III 

Very dry years with much 
broader periods of very 
high to extreme SFWI, 
based on the early or 
middle summer period 

III-3 A set of heterogeneous years — mainly characterised by extreme SFWI 
values from mid October until the end of December.  Some occasional 
spikes of very high SFWI values from late January onwards, gradually 
receding by early April 

1957/58, 1977/78 
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Table 8.3 continued 

Class Major 
group 

Major group description Sub-
group 

Sub-group description Fire seasons 

IV-1 Low SFWI values in winter and spring.  SFWI values are high to very 
high from high summer onwards, with occasional short periods of 
very high to severe SFWI values in late summer, either breaking early 
in late February or April.  Moderate to high SFWI values occur until 
the end of autumn 

1956/57, 1964/65 

IV-2 High to very high SFWI values usually from early to mid December 
until mid-late May, with some occasional severe SFWI days in the 
frequent moderate to high SFWI peaks in values characteristic of this 
group 

1953/54, 1963/64, 1985/86, 1990/91, 2005/06 IV 

Late summer and early 
autumn periods of very high 
SFWI, occurring in short 
frequent blocks 

IV-3 High to very high SFWI days from late November occur until the end 
of May.  SFWI values increase slightly into autumn in some cases 

1966/67, 1996/97, 2003/04, 2004/05 

Low SFWI usually throughout 
season with some occasional 
bursts in either early or mid-
summer 

V-1 Low to moderate SFWI values in both autumn and spring with some 
very high SFWI levels in high summer 

1968/69, 1976/77 

V 

Low power in season over 
most of the year, with a few 
exceptions 

V-2 Low to moderate SFWI values throughout the year but with some 
occasional short spikes up to very high SFWI levels in high or late 
summer 

1952/53, 1955/56, 1958/59, 1959/60, 1960/61, 
1961/62, 1962/63, 1969/70, 1970/71, 1971/72, 
1973/74, 1975/76, 1983/84, 1987/88, 1988/89, 
1989/90: 1989/90; 1991/92, 1992/93, 1995/96, 
1999/2000 

VI 
Years with very high power in 
mid summer, usually between 
late January and mid February

VI-1 Low SFWI values are found in winter, early spring and autumn 
periods.  Some very high SFWI values on occasional days in the high 
and late summer periods of the fire calendar 

1951/52, 1978/79, 1984/85 

VII-1 Usually a broad spike of SFWI values in early to mid summer, with 
occasional sporadic high SFWI days in late summer 

1974/75, 1981/82, 1993/94, 1998/99, 2000/2001 

Low to moderate 
potential fire 
spread (M) 
with some 

occasionally 
severe fire 

seasons 

VII 

Highly heterogeneous group 
of years, with a low to 
moderate SFWI until mid 
November 

VII-2 A heterogeneous group that has some significant SFWI days in mid-
summer in some seasons, otherwise difficult to characterise 

1954/55, 1965/66, 1972/73, 1980/81, 1986/87, 
2001/02 



 

8.3 Temporal variability of potential fire spread 
Sections 8.2 and 8.2.3 of this chapter have shown how SWD and SFWI can be used to 

identify which fire seasons have had the highest potential for Large Landscape Fires (LLFs) on 

an annual basis.  In this section, the inter-annual variability of fire seasons is explored in more 

detail (section 8.4.1) using the classification based on potential fire spread (section 8.2.5).  The 

index of potential fire spread is further analysed in section 8.4.2. 

8.3.1 Year-to-year variation in the potential for LLFs based on 
potential fire spread index 

The purpose of this section is to examine and illustrate the year-to-year variation in 

potential for LLFs based on an annualised index of the FWI that is termed the annual severity 

rating (TDSR).  TDSR is based on the sum of daily severity rating (DSR) summed for each year 

in the time series to indicate the past severity of fire seasons.  The year-to-year variation is best 

illustrated using the recommended TDSR index to assess the potential for LLFs on either a 

monthly or a yearly basis.  

To put the classification into a time sequence, two adjacent diagrams are required (Figure 

8.9): 

(1) the classification of the SFWI fire season groups developed in section 8.2.5 and 

rated according to their TDSR (Figure 8.9 (b)); and 

(2) the chronological sequence of the SFWI fire season groups showing the variation in 

TDSR through time (Figure 8.9 (a)). 

TDSR is rated from very high-to-extreme (shades of red), to very high (shades of purple), 

through to moderate-to-high (orange, yellow, and green).  The measure of annual TDSR is used 

to distinguish the different SFWI groups in terms of the landscape potential for large fires. 

SFWI groups I, II and III represent fire seasons far more severe than groups IV, V, VI, and 

VII (Figure 8.9 (b)). 

The reordering of the classification, as is presented in Figure 8.9 (a), shows that the annual 

severity rating (TDSR) for each SFWI group closely reflects landscape dryness and potential 

fire spread conditions that give rise to varying potential for LLFs.  Severe fire seasons where 

TDSR exceeded >15000 also line up with the strong El Niño years of 1951/52, 1957/58, 

1964/65, 1979/80, 1982/83, 1997/98, 2002/03 and 2006/07.  These fire seasons were presaged 

by mainly SFWI group IV fire seasons in the preceding year, indicated by open circles in Figure 

8.9 (a). 

Fire seasons giving rise to the highest potential for LLFs have occurred eight times in the 

past  56 years at intervals between three and ten years apart.  The sequence shown in Figure 8.9 

(a) also suggests that these severe fire seasons can follow one another at relatively short 
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intervals, and be followed by a significant gap thereafter.  Generally, the more severe fire 

seasons in the ACT region are generally associated with El Niño events (see Figure 9.4 (a)).  

However, on occasions (for example 1951/52, 1984/85) a narrow subset of fire seasons can 

have short bouts of severe conditions of landscape dryness and potential fire spread that are not 

linked to El Niño.  This would imply that continental scale interactions of climate and weather 

might play a role.  For further discussion on the synoptic scale climatic factors on landscape 

susceptibility to large fires, see Chapter 9 (section 9.4.2). 

8.4 Defining the thresholds and timing of extremes of 
fire susceptibility 

The previous sections have revealed that there has been a strong temporal structure of 

timing and severity of fire seasons since 1951, based on two susceptibility indices, SWD and 

SFWI.  This section examines two aspects of fire susceptibility by combining these two 

susceptibility factors.  The first aspect is the thresholds at which a changed state in landscape 

conditions might be associated with a high to extreme risk of severe fire weather, leading to 

very high to extreme conditions of potential fire spread.  This threshold (SWD>100mm) has 

also been identified in the literature (section 7.3).  The second aspect is confirming that highest 

potential for LLFs did indeed occur in the most severe fire season groups in the high summer 

months. 

The first step involved deriving the thresholds for monthly mean SWD and monthly total 

DSR (MDSR) (section 8.5.1).  In section 8.6.2, the thresholds defined in section 8.5.1 are then 

used to determine the monthly occurrence of combinations of above the threshold values for 

landscape dryness and potential fire spread for each of the SFWI groups.  Lastly, the timing of 

the extremes of potential fire spread is examined on a daily rather than a monthly basis (section 

8.5.3). 
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Figure 8.9 Temporal sequence (a) and classification (b) view of fire seasons (1951-2007). 

Notes:  (1) Open circles represent fire seasons antecedent to more severe fire seasons.  The horizontal lines in (a) relate average values of TDSR in each of the SFWI groups to the individual values for 

each fire season. 

(2) For further information on El Nino years, refer to section 9.1.2, and in particular the seasonal patterns of Southern Oscillation Index (SOI) revealed in Figure 9.4 (a). 
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8.4.1 Seasonal monthly extremes of fire susceptibility 
The purpose of this section is to determine the likelihood of the combination of extremes 

of landscape dryness and potential fire spread in any given month of an ACT fire season, based 

on the setting of threshold values for each of these factors. 

The first stage in examining seasonal monthly extremes of fire susceptibility involved 

determining the thresholds of monthly mean SWD (MSWD) and monthly total DSR (MDSR).  

This involved two steps.  The first step was to set a threshold for MDSR based on difficulty of 

control.  The second step involved setting a threshold of MSWD based on a visual inspection of 

these two indices by months in the fire season. Once these thresholds were determined, the 

second stage involved examining the frequency of the combination of extremes in each month 

of the fire season.  The final step in this stage involved assessing the frequency of the extreme 

combinations of landscape dryness and potential fire spread in each of the months within each 

of the SFWI groups. 

To identify the threshold of MDSR which best represented the division between the more 

and less extreme values of FWI, MDSR values equal to 600 and 1200 were marked onto a graph 

of mean monthly values of MDSR for 1951-2007 (Figure 8.10).  A MDSR equal to 600 -- 

equivalent to a value of mean monthly FWI value equal to 42 – is therefore used as a threshold 

between potentially unmanageable fires and those that might be controlled.  An FWI equal to 40 

is considered in other studies to be the threshold at which fires  can become highly  

uncontrollable, usually associated with sustained crown fires (Van Wagner, 1977; Good et al., 

2008). 
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Figure 8.10 Thresholds of Monthly Daily Severity Rating juxtaposed against 
monthly severity rating values (1951/52-2006/07) 
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Note: The two horizontal lines indicate possible threshold values for the potential risk of large landscape fires in a 

given fire season. 

Earlier in section 7.3, a SWD of 100 mm was found from the literature to be a possible 

critical threshold at which there is a sudden change to higher fuel availability and more 

flammable fuel and vegetation conditions.  To confirm this threshold, matched monthly values 

of MSWD and MDSR were plotted against each other (Figure 8.10).  The thresholds of 

SWD=100 and MDSR=600 were used to define those months when landscapes were most 

susceptible to severe fires. 

Three distinct groups of months can be identified from the twelve panel plots.  The first 

group of months, the traditional winter months of June, July, August, show an almost flat 

response of MDSR to changes in MSWD.  The next group of months, April, May, September, 

and October, exhibit a slightly stronger response of MDSR to MSWD, particularly above the 

MSWD threshold value of 100 mm.  A higher fire spread potential exists in April than in the 

other three months in this group.  November, December, January, February, and March 

comprise the months that have had the highest landscape susceptibility to large fires.  With the 

exception of November, these months comprise the high summer and late summer periods in the 

ACT’s fire season.  Note also that the late summer period also comprises April, which can have 

occasional months with a high potential for large fires if the landscape dryness is well above 

100 mm (SWD >120mm). 
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Figure 8.11 Thresholds of fire susceptibility based on mean monthly values of 
landscape dryness and potential fire spread 
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Note: (1) Thresholds of MSWD>=100 mm and MDSR>-600 was set respectively for critical landscape dryness and 

potential fire spread, respectively, to capture the more extreme monthly potential for large fires. 

Based on this visual interpretation of the spread of the extreme months (November-

March), a threshold of MSWD greater than 100 and MDSR greater than 600 encompasses most 

of the monthly records of landscape susceptibility to large fires.  The month of January stands 

out as having the highest number of months (24 occasions) when the combined thresholds of 

landscape dryness and potential fire spread have been exceeded (Figure 8.12).  The month of 

December is the next most frequent (15 occasions) followed by February and March (10 and 11 

occasions respectively).  This finding supports the earlier finding that LLFs are more likely to 

occur in the high summer and late summer between early December and early April (Table 8.1 ; 

section 8.1.2) with a peak in January.  Outside of these high-risk periods, there have been on six 

occasions when very high to extreme potential for LLFs existed in either April or November. 
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Figure 8.12 Frequency of occasions when thresholds of landscape dryness 
and potential fire spread have been exceeded (1951-2007) 

 

To find out more specifically in which fire season group there is the highest potential for 

LLFs, extreme combinations of MSWD and MDSR were extracted from the monthly time 

series, using threshold values of MSWD≥100 mm and MDSR≥1200 (Table 8.4).  An MDSR of 

1200 corresponds to an average value of FWI equal to 60.  This threshold value corresponds 

approximately to an FFDI value of 50, which defines the start of the extreme part of the FFDI 

scale between 0 and 100. 

SFWI groups II and III have the highest monthly means of MSWD and MDSR (SWD = 

170,166; MDSR = 2251, 2253 respectively) of the SFWI groups.  SFWI Groups II and IV has 

equivalent values of MSWD but slightly lower MDSR (SWD=170,160, MDSR=1902, 1991) 

but spans a longer period of the year.  The month of January stands out as most frequently 

 173



 

 

exce

Fs in the ACT 

region has occurred during the high summer period between December and February on a total 

of 38 months in the same period (~6.0% of all months between 1951 and 2007). 

 

Ta D and MDSR values din  ex
threshold values by SFWI groups 

SFWI Group 
Numb

Mo s 

MSWD value 

(
MD  

eding the selected values of landscape susceptibility thresholds in all these groups (24 

months) followed by December (15 months). 

Occurrences of above threshold values of MSWD and MDSR can occur in any SFWI 

group but the indices are highest for groups II and III when landscapes are highly predisposed to 

high susceptibility to LLFs, with some potential for LLFs in groups VI and VII.  In all of these 

groups, a very high landscape susceptibility to LLFs has occurred relatively infrequently (~12% 

of months between 1951 and 2007).  Additionally, landscape susceptibility to LL

ble 8.4 MSW  correspon g to ths mon ceeding 

Months 
er of 

nth mm) 
SR value

September 1 154 1527 

D r ecembe 1 136 2496 

M ch ar 1 129 1498 

April 1 148 1995 

I 

 4 142 1879 

December 2 141 2656 

January 2 167 1621 

F  2 ebruary 178 2471 

M ch ar 2 191 2777 

April 1 179 1211 

II 

  9 170 2251 

October 2 137 1739 

November 5 145 2490 

December 5 174 2777 

January 4 184 2122 

February 2 192 1580 

March 1 174 1345 

III 

  19 166 2253 
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Table 8.4 continued 

SFWI Group Months 
Number of 

Months 
MSWD value MDSR value 

November 1 106 1294 
V 

  1 106 1294 

December 2 126 1540 

January 3 151 2167 

February 3 184 2217 

March 1 186 1684 

VI 

  9 160 1991 

December 2 135 2168 

January 10 138 1649 

February 1 165 1539 
VII 

  13 140 1721 

All SFWI 
Groups  77 154 2000 

Note: The  bold-faced numbers in column 3 correspond to the total number of months, which have potential 

exposure to LLFs in each of the SFWI groups I-VII.  The boldfaced numbers in columns 4 and 5 correspond 

to the mean values of MSWD and MDSR respectively for each of the SFWI groups. 

 

8.4.2 Seasonal variability of daily potential fire spread 
The annual index of potential fire spread (TDSR) has been shown to fluctuate significantly 

between years (section 8.3.1).  In section 8.5.1, it was demonstrated that December to January 

period in the SFWI time series have the highest occurrence of combinations of extreme 

landscape dryness and potential for high fire spread corresponding to the high summer period of 

a fire season.  To investigate this further, daily SFWI since 1951 was plotted to show the 

seasonal patterns of SFWI within and across years (Figure 8.13).  The horizontal dotted lines 

show the breaks in the fire season calendar identified in section 8.1.1.  The vertical dotted lines 

indicate the major seasonal shifts in of high SFWI, usually following a fire season with very 

high to extreme landscape dryness and very high potential fire spread (for example, 1957/58, 

1967/68, 1982/83, and 1997/98). 

In the 1950s, the peak period of high SFWI, indicated by the dark blue, occurred in the late 

spring and in the early part of high summer.  By the 1960s, the peak period of high potential fire 

spread had moved to the high summer and late summer period.  Highest SFWI reverted in the 

mid 1970s to the spring-early peak with a gap in high summer, followed by a short period at the 

start of late summer.  The peak in SFWI then drifted further into high summer-late summer 

during the mid 1980s.  It again shifted in the mid 1980s to the late summer period.  Between the 

late 1980s and the mid 1990s, the fire season extended from spring to the summer-autumn 
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shoulder.  Then the late 1990s saw a return to a late summer peak in SFWI that was short-lived.  

In the early and mid 2000s the peak SFWI had returned to the high summer period. 

Based on this analysis, an increased likelihood of LLFs sets in for periods up to 5 or 6 

years in the late 1950s, the early to mid 1980s and the early 2000s.  This is denoted by the 

darker blue shades of colour, appearing as horizontal streaks in the peak summer period (Figure 

8.13).  The highest potential for LLFs is likely at this time (see Figure 8.12).  This is not to say 

that high levels of landscape susceptibility to fire have not occurred outside of this period, for 

instance in late spring, or the summer-autumn shoulder. These are shown as dark blue streaks in 

the spring and late summer period (Figure 8.13). 

During periods of low potential for fire spread, severe fire seasons in early summer can 

emerge very quickly on occasions without warning.  Two instances of this appear in the SFWI 

time series; 1972/73 between 1968/69 and 1976/77; and 1990/91 between 1986/87 and 1992/93.  

The peak potential for high fire spread emerged suddenly following a previous wet winter 

(Figure 8.9). 

In summary, the sequences of varying susceptibility to LLFs, illustrated on an annual time 

scale in Figure 8.9 and on a daily time scale Figure 8.13 clearly illustrate the changes in the 

season and magnitude of potential high fire spread.  This usually follows a fire season with a 

very high potential for landscape fires (S class of fire seasons, and particularly SFWI group III).  

Up until 1982/83, SFWI group V fire seasons with a low potential for LLFs came after a severe 

fire season (Table 8.3).  Thereafter, the years immediately after a fire season with very high 

potential for LLFs (1997/98, 2002/03, and 2006/07) reverted to either SFWI group IV, showing 

a strong autumn trend or to a SFWI group VII, and not SFWI group V. 
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Figure 8.13 Smoothed seasonality of daily potential fire spread (SFWI) (1951-2007) 

Notes: (1) Vertical red dash-dotted lines indicate significant shifts in seasonality of potential fire spread through time.  The labels at the top of the diagram refer to fire seasons (a) to (e) that are related 

to significant La Niña events.  Horizontal red dash-dotted lines refer to the breaks in the fire season defined in section 8.1.2. 

(2) The values of SWD in each fire season are repeated twice in the figure in order to see the seasonal changes in patterns of landscape dryness within and between fire seasons in the diagram. 

(3) The darker the blue shade in the diagram, the greater is the value of potential fire spread.  The colours shown in the colour scale are approximate to those in the diagram. 
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The final comment about the seasons of potential high fire spread is that they do not stay 

fixed; there is an apparent drift in and out of the high summer period, depending on the seasonal 

landscape dryness conditions and the climatic influences directing hot, dry and windy weather 

at any time during spring to autumn. 

8.5 Potential lightning ignition 
The potential for lightning ignition is a consequent factor of conditions of very dry 

landscapes and particular sets of daily weather.  The coincidence of a dry atmosphere, combined 

with surface atmospheric instability and turbulence over mountainous regions can initiate dry 

thunderstorms associated with lightning ignition and limited potential for rain.  Multiple 

lightning ignitions from dry thunderstorms are a significant factor in the initiation of LLFs in 

the mountainous forested regions in south eastern Australia.  These lightning ignitions are often 

coincident with very dry fire seasons that recur on a 20 to 30 year cycle.  These factors, together 

with periods of dry and hot weather, resulted in LLFs occurring in the following regions:  

 East Gippsland in 1964/65; 

 the Victorian Alps in 1984/85, 2002/03, and 2006/07; 

 the Snowy Mountains in 1964/65, 1982/83, and 2002/03;and 

 the Sydney Basin in 1984/85, 1993/94, 1997/98, 2002/03, and 2006/07. 

In all these cases, multiple lightning ignitions occurred when the landscape was very dry 

just prior to the onset of dry, hot, and windy weather conditions. 

In the ACT Region, 6% of the months across all fire seasons from 1951 to 2007 have 

experienced extreme combinations of landscape dryness and potential fire spread.  The extreme 

combinations are more likely to occur in the months of December and January, particularly in 

SFWI groups III and VI.  There is a question of how likely is it that lightning ignition could 

precede or coincide with these highly fire-susceptible conditions of extreme landscape dryness 

and potential for high fire spread? 

On occasions during the summer period, dry thunderstorms can produce dry lightning that 

start fires, while producing little if any rain to douse the resulting flames.  On other occasions 

‘wet’ thunderstorms produce much more rain, sometimes as much as 25 to 100 mm, depending 

on land temperature, atmospheric instability, and the vertical air temperature and moisture 

profile of the lower atmosphere.  Thus, the purpose of this section is to investigate the 

conditions of landscape dryness and weather that are most likely to lead to the ignition and 

spread of fire. 
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8.5.1 Temporal model of potential lightning ignition 
A plethora of spatio-temporal models of potential lightning exists in the literature.  Out of 

all these, only one has a strong temporal aspect to it, which is based on the probability of 

lightning ignition in given months of a fire season (Cary, 1998).  So far in this study the other 

two factors, landscape dryness and potential fire spread, affecting the potential for LLFs, have 

been examined on a daily time scale, it was apt to develop a daily temporal model of lightning 

ignition that spanned the full range of accurate and reliable records of lightning ignition in the 

ACT. 

A decision tree modelling procedure in S-PLUS was selected as the preferred method for 

predicting potential lightning ignition on a daily basis.  A range of variables characterising the 

development of dry afternoon thunderstorms and lightning ignition is tabulated in Table 8.5.  

These variables were selected to see if landscape dryness and fire weather conditions could 

explain the likelihood of lightning ignition with a decision-tree model.  The only available 

dataset that could be used for this purpose are weather variables recorded daily at 1500 hours at 

Canberra Airport (see Table 4.7, Chapter 4). 

Incidence of lightning-started fires was extracted from the records of Environment ACT: 

80 lightning-started fires have been recorded since July 1951.  The timing of lightning fires was 

matched with the detailed fire weather records from Canberra airport between 1951 and 2003.  

Included in the fire weather record is a variable called ‘thunderstorm days’ which is defined as: 

‘days on which thunder is heard within earshot from a weather station’ (Bureau of Meteorology, 

2007b).  Thunderstorms can be heard at some distance from the weather station, up to 20 km 

away in some cases.  There is no differentiation between ‘wet’ and ‘dry’ thunderstorms in the 

record. 

Table 8.5 Modelling variables used in potential lightning ignition model 

Type of variable Surrogate variable Comment 

Landscape dryness SWD Indicates degree of landscape 
dryness 

Thunderstorm type Thunder-storm day, P0900, and RH1500 Differentiates between wet and dry 
thunderstorms 

Convective instability T1500 Atmospheric instability has only 
been recently recorded at Canberra 
Airport  

Fuel moisture and wind conditions SFWI Combined Index of landscape 
dryness (SWD), fuel moisture 
(FFMC) and wind speed (W1500) 

Source: Weather data is taken from records of afternoon weather records at Canberra Airport from July 1951 to June 
2003. 
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At the start of the modelling, the minimum deviance allowed for each possible branch in 

the tree model was set at 0.1.  The final model, after several iterations, is shown in Figure 8.14.  

The sub-tree on the left hand side of this diagram provides the weather conditions associated 

with lightning from a dry thunderstorm, which is likely to start a fire on the ground.  This sub-

model combines the presence of a thunderstorm (Thunder-day=1), a very dry air stream 

(RH1500<28.7%), the absence of rain (Precip.9am<0.1) and a high PFSI rating (SFWI>=27.8) to 

predict ignition.  Based on the level of deviance explained in this part of the lightning ignition 

model, 72% of the occurrences of historical dry lightning-started fires can be explained.  The 

sub-tree on the right hand side of the model predicts the remaining historical ignitions by 

combining the presence of a thunderstorm (Thunder-day=1), a moderately dry airstream (RH1500 

between 30.5 and 43.5%) at a time when the landscape exceeds moderate dryness ( SWD ≥ 

64.6 mm).  This sub-model has less predictive power than the first sub-model. 

 

RH1500<30.5

SFWI>27.8

Thunder-day=0

RH1500<28.7

P0900<0.1 mm

0 1

0 0

0

0

0 0

0

SWD<64.6

RH1500<43.5

SWD<66.8

RH1500<30.5

SFWI>27.8

Thunder-day=0

RH1500<28.7

P0900<0.1 mm

0 1

0 0

0

0

0 0

0

SWD<64.6

RH1500<43.5

SWD<66.8

 

Figure 8.14 Best performing potential lightning ignition model 

Note: Each branch represents how much deviance is explained by the explanatory variable at that point.  The right 

hand fork in the first branch in the tree uses the variable thunder-day to distinguish thunderstorm-days from 

non-thunderstorm days.  At the second branch, RH1500 <28.7 the left hand fork separates the very dry 

thunderstorms from the rest.  At the third branch, if very little precipitation (Precip.9am<0.1) results from a 

dry thunderstorm, then if the SFWI is very high (SFWI ≥ 27.8, there is a high likelihood of a lightning 

ignition (right-hand branch with a 1 below it). 

 

When the first sub-model is applied to the afternoon weather records at 1500 hours, it 

captures most of the lightning-started fires associated with hot and dry days in peak fire season 

conditions between early December and early February.  Almost 50% of the lightning starts are 

associated with a SWD greater than 100 mm.  In one of the model iterations, a SWD threshold 
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of 160 mm and above was found to be associated with 30% of lightning-started fires.  This 

model therefore complements the original lightning-started fires model developed by Cary 

(1998), in which he used thunderstorm days, as well as precipitation and months of the year as 

predictive variables.  The model characterises better the conditions under which lightning might 

start a fire and therefore provides a significant new aid in forecasting days on which dry 

thunderstorms might cause lightning ignitions in the ACT region. 

8.5.2 Atmospheric conditions relating to dry thunderstorms 
To understand better the atmospheric conditions that characterise dry thunderstorms that 

cause lightning ignition, daily morning samples of the atmospheric moisture and temperature 

conditions were extracted from aerosonde data taken at Wagga Wagga airport.  Four examples 

were selected from the record that had definitely known single or multiple ignitions from 

lightning arising from dry thunderstorms in the ACT region and nearby in the Byadbo area of 

Kosciuzko National Park.  The four significant dates were 13thh January 1983, 12th January 

1988, 3rd December, 2002 and 8th January 2003.  The vertical atmospheric profiles are based on 

skew-T curves extracted from the archives of the (University of Wyoming, Department of 

Atmospheric Science, 2008).  Wagga Wagga airport lies 100 km to the west of the ACT region 

and therefore is representative of easterly moving dry and unstable air masses that are likely to 

pass over the ACT region later in the same day during the peak fire-risk period from December 

to February. 

A common vertical profile of atmospheric temperature and moisture was observed (Figure 

8.15).  The curves illustrate conditional instability in the lower atmosphere.  Dry air in the lower 

3000-4000 m is overlain by a shallow layer of moist layer, with dry air above it.  This is the 

trigger that is needed for thunderstorms to develop under such conditions of atmospheric 

instability.  In all these cases, the lifting condensation level lies between 2000 and 3000 m.  A 

significant uplift mechanism is required for clouds to form on each of these days, and the 

orographic uplift of air over the Snowy Mountain Ranges provides this.  The Cumulus clouds 

rise up to over 2000 m in elevation to the west and south west of Canberra.  Conditional 

instability exists in the next layer above the moist layer so that cumulonimbus clouds can form, 

with less likelihood of rain falling and a higher likelihood of lightning ignition. 

Based on the decision-tree model, lightning ignition risk is therefore based on a narrow 

range of atmospheric conditions, usually associated with relatively dry air (RH1500 < 30%), a hot 

day during the peak of the summer period (T1500 > 32 oC), and convective uplift over the 

mountain ranges to the west of Canberra under conditions of conditional atmospheric instability.  

Lightning ignition can occur across all the SFWI groups, with a higher likelihood of ignition 

within the drier SFWI fire season groups.  The characteristic dry thunderstorms that could have 

produced lightning-started fires is relatively rare in the 56 years of weather records, amounting 

to 104 days in all, of which 80 had lightning-started fires recorded.  There have been three fire 
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seasons in the last 56 years in which potential for high fire spread coincided with an actual 

lightning ignition: 1951/52 (SFWI group V), 1982/83 and 2002/03 (SFWI group III).  These 

lightning ignitions occurred in the months of January and February at a time when the potential 

for high spread coincided with extreme landscape dryness conditions.  Thus, the coincidence of 

the likelihood of the extremes of landscape dryness, potential fire spread, and ignition from dry 

thunderstorms has been relatively rare from 1951 to 2007. 

 

 

 

Figure 8.15 Aerosonde profiles taken at Wagga Wagga airport for days on 
which significant LLFs were started by lightning 

Source: Daily aerosonde records are from the archives of the University of Wyoming (Department of Atmospheric 
Science, 2008). 

Note:  Source of ignition data for 1985, 1988, 2002, and 2003 fires selected from ACT fire history data between 

1940 and 2003.  Source of ignition data for the 1988 lightning fire at Byadbo is extracted from a research 

report undertaken on wildfires in the southern part of Kozciusko National Park (Bartlett (1993). 
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8.6 Findings in relation to medium-term susceptibility 
to large landscape fires 

Three research questions dealing with the analysis of medium-term susceptibility to LLFs 

were posed in section 1.4 of the Introduction (Table 1.1).  A summary of the findings for each 

research question follow. 

8.6.1 Derivation of a new fire season calendar 
The first part of this chapter investigated the traditional divisions of the year into seasons 

in relation to climatic and fire weather variables.  Instead of the traditional four seasons, five 

seasons were derived using fire susceptibility indices of SWD, FWI, and FFMC.  The five 

seasons have been classified as winter, spring, high summer, late summer, and autumn.  The 

days on which the breaks in the seasons occur differ from the more conventional definitions that 

use astronomical and meteorological parameters.  The breaks in the season were later found to 

be useful for interpreting the drift in the potential high fire season risk over time.  Figure 8.13 

illustrates that the peak potential fire spread drifts in a recognisable structured pattern across the 

breaks in the seasons in the annual cycle (see section 8.1.1). 

This therefore addresses the ninth research question in section 1.4 of the Introduction 

(Table 1.1): ‘Does redefining the season and the periods within a fire season using fire 

susceptibility criteria, such as landscape dryness, fine fuel moisture, and potential fire spread, 

produces a more meaningful definition than previous definitions?’ 

8.6.2 Classification of fire seasons using indices of landscape 
dryness and potential fire spread 

Classification of the fire seasonal profiles of landscape dryness and potential fire spread 

has produced distinct groups and sub-groups of fire seasons, ranked from the highest to lowest 

in terms of landscape susceptibility to large fires.  The groups and sub-groups identified using 

hierarchical classification have recognisable and interpretable seasonal patterns in landscape 

dryness and potential fire spread. 

Most of the severe fire seasons, with regard to potential fire spread, were found in the S 

fire potential class.  The S class contains two of the most significant SFWI groups: groups II 

and III.  The major differences between these groups were found to be due to three factors: 

(1) the build-up and timing of SWD in the spring months.  In this case the more severe fire 

seasons were found in SFWI groups I, II, III, and V – all of which had a rapid build-up 

of dryness in the spring months; 

(2) the level and duration of SWD reached in the peak and/or the late summer period.  In 

this case, SFWI group fire seasons did not high levels of landscape dryness during the 

year and only reached sub-critical levels of potential for a LLF; and 
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(3) the timing and pattern of the decline of SWD from the late summer period to the cooler 

months of the year.  In the case of SFWI group III, landscape dryness declined abruptly 

whereas in the case of SFWI group II it lasted well into late summer. 

The one SFWI group that is very hard to anticipate is SFWI group V.  This group shows 

very few anticipatory signs that are recognisable in the sequence of annual profiles.  These fire 

seasons emerge suddenly during the wetter times in the SWD time series. 

Two possible indicators of a severe fire season were identified in this chapter.  The first 

indicator is a dry autumn and winter in the preceding fire season, leading to a high-risk fire 

season.  In that respect a SFWI group IV fire season was found to be a very good indicator of a 

more severe fire season to come (SFWI groups II, III, and V).  Eight out of nine fire seasons in 

SWD group IV indicated a possible extreme fire season with a high landscape susceptibility to 

fire. 

The second more obvious indication is the onset of a dry spring prior to extreme conditions 

of landscape dryness in the following summer.  However, ‘green’ droughts sometimes mask the 

level of soil water deficit present in forest soils.  After a hot dry spell the remaining water in the 

soil profile is used up and extreme conditions in landscape dryness can result. 

In the earlier part of the SFWI time series there were more distinct contrasts between the 

severe fire seasons and the less active ones (1951-1984).  Usually after a major fire season, there 

followed a sequence of fire seasons with reduced potential for LLFs for a period of up to five to 

nine years, with an occasional fire season of somewhat less power and duration than a severe 

one.  Since 1985, there has been a trend for fire seasons that follow severe ones to have dry 

autumns rather than the traditional break into fire seasons with wet autumns and winters.  Since 

2000, the alternating wet and dry fire season pattern found prior to 1984 has been replaced with 

a pattern of more prolonged dry fire seasons following a severe fire season without a substantial 

period of wet fire seasons. 

The earlier landscape dryness threshold (SWD ≥ 100) determined from the literature in 

Chapter 7 was confirmed in this chapter as being a significant threshold above which landscapes 

become more highly susceptible to LLFs.  The analysis presented showed that a mean monthly 

SWD greater than 100 mm on a scale of 0 to 200 mm did indeed encompass the periods with 

potentially very high to extreme potential fire spread (MDSR ≥ 2000), mostly during the high 

summer period between December and March.  This analysis therefore confirmed the high-risk 

period as defined earlier in the fire season calendar (see section 8.1.2). 

In summary, the methods of classifying the fire seasons in the historical time series at 

Canberra Airport are robust and tractable, using the methods devised in this study.  This is 

indicated by the cross comparison of fire seasons in the more extreme groups of SWD that are 

mostly found in the very high to extreme SFWI groups.  There are some exceptions to this 

general rule, with some of the fire seasons in a very high SWD group appearing in other 
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SWFWI groups (for instance the 1956/57 and 1964/65 fire seasons).  The interesting difference 

with these fire seasons is that the timing of potential fire spread occurs outside of the normal 

high summer period.  In these instances, the higher potential for LLFs occurred later in the fire 

season, in late summer. 

This therefore substantially addresses the tenth research question in section 1.4 of the 

Introduction (Table 1.1): ‘What can classification and time series analysis of landscape dryness 

and potential for high fire spread reveal about landscape susceptibility to LLFs in the medium-

term?’ 

8.6.3 Potential for lightning ignition 
The model presented in this study builds on Cary’s model (Cary, 1998) but in this case 

provides more about the type of weather which is associated with dry lightning ignitions on any 

given day in a fire seasons.  The accuracy in forecasting dry lightning fires was relatively high 

for dry thunderstorms (more than 70% of actual occurrences were predicted by the model).  

Further testing of the model could be done in other lightning-prone forest regions in south 

eastern Australia if fire weather datasets are available. 

The model based on a decision-tree modelling approach showed that lightning ignition is 

more likely to occur under severe conditions of potential fire spread during the passage of a dry 

thunderstorm.  The characteristic conditions were: (1) conditional atmospheric instability, (2) 

high temperatures at the land surface and associated low atmospheric vapour pressure (eA), and 

(3) moderately severe potential fire spread conditions.  Historically, these conditions have 

occurred on 104 days in the last 56 years.  On three separate occasions in three separate fire 

seasons severe potential fire spread followed lightning ignition: in 1951/52 (SFWI group VI), in 

1982/83 and in 2002/03 (SFWI group III).  Generally, the highest risk of a LLF started by 

lightning ignition has occurred in the critical fire-susceptible period between early December 

and early February in the fire season calendar (defined in section 8.1.2).  In terms of seasonal 

landscape dryness, the critical conditions for LLFs have generally occurred when SWD has 

exceeded 140 mm, which is higher than the values of SWD equal to 100, revealed in section 

7.3. 

The results and findings have therefore addressed the eleventh research question posed in 

section 1.4 (Table 1.1): ‘Can a model based on particular combinations of landscape dryness 

and weather predicts the potential for lightning ignition in the ACT region’. 
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Chapter 9: Interpreting Longer-term 
Landscape Susceptibility to Large Fires 

and Contributing Climatic Factors 
The issue of fire susceptibility is placed into a broader temporal and spatial context in this 

chapter. 

In terms of the broader temporal context, time series analysis is used to break down the 

trend and seasonal components of the medium and long-term landscape dryness to illustrate the 

underlying trends at time scales longer than one or two fire seasons (section 9.1).  A 

classification of the long-term SWD dataset is then undertaken to identify groups and sub-

groups of fire seasons with varying seasonal landscape dryness (section 9.2). Fire seasons since 

1871 are identified based on the thresholds of landscape dryness identified in Chapters 7 and 8 

section 9.3 and the seasons within a fire calendar in section 8.1.2. 

In section 9.4, the role of possible sub-global and synoptic climatic factors in setting up 

conditions of landscape dryness are canvassed, along with the potential for high fire spread and 

lightning ignition. 

9.1 Time series analysis of medium and long term 
landscape dryness 

This section examines the inter-decadal, decadal, and sub-decadal trends in fire 

susceptibility of a landscape to large fires using time series analysis of medium and long-term 

SWD data (sections 9.1.1-9.14).  This section looks at the full variation in seasonal build-up and 

decline of SWD over the time series. 

Time series analysis is the analysis of a ‘series of values of a particular quantity or rate of 

change in a variable at successive times, often at equal intervals’ (AOED, 2004:1351).  Methods 

range from Fourier and harmonic analysis, to moving averages, filtering, stochastic and Markov 

modelling of temporal data (Klein, 1997).  These methods make assumptions about the data, 

such as having a normal distribution or data independence.  Traditional techniques render the 

data ‘stationary’ by taking means or differences of the original dataset. 

More modern and less conventional statistical tools employed in time series analysis make 

fewer assumptions about the nature and distribution of the data in the time series.  Strongly 

seasonal and non-linear data can be better handled with time series analysis tools that 

decompose the long, medium and short-term patterns using a flexible set of trend filters 

(Mathsoft, 2005). 

The time series decomposition function (STL) within S-PLUS decomposes a time series 

into three components: the trend component, the seasonal component and the remainder 

(Cleveland et al., 1990).  The remainder contains random or real components of variation not 
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picked up by the trend or the seasonal component.  A set of LOESS smoothers acts on the 

original time series to uncover the underlying temporal patterns in the data.  At the end of this 

process, trend, seasonal and residual values are extracted.  LOESS blends least squares 

regression with non-linear estimation (Cleveland and Devlin, 1988) and uses a small subset of 

points, either side of a point in time, to define the position of the curve at that point.  LOESS 

then progressively moves through the sequence of points to estimate a line of best fit (Johnson, 

2003).   The advantages of LOESS are threefold.  First, it is suited to analysing complex 

patterns in data.  Second, LOESS does not produce a displaced set of values such as in moving 

averages.  Third, the number and length of the various smoothers can be varied to match known 

cycles in nature.  Fourth, LOESS is a robust smoothing algorithm that is not affected by outliers 

in the data.  However, while the LOESS algorithm does require a high number of data points to 

run effectively, this does not present a problem because even the more constrained medium-

term time series of SWD or FWI have over 24,000 values in the time series. 

9.1.1 Longer-term trends in medium-term landscape dryness 
The analysis in this section now turns to deciphering the variability of the time series of 

landscape dryness (SWD) from a longer-term serial rather than a seasonal perspective (Chapter 

8).  This is done to understand the sequencing of the landscape dryness factor at different time 

scales: inter-decadal, decadal, and sub-decadal.  In order to break down of the complexity of the 

medium-term SWD time series into its component parts, trend filters approximating inter-

decadal, decadal, and sub-decadal time scales were applied.  The choice of these trend filters 

was based on likely factors or processes influencing rainfall and hence SWD in the ACT region: 

the Pacific Decadal Oscillation (PDO) between 20 and 40 years in length (inter-decadal); 

sunspot cycles (decadal), and ENSO (El Nino-Southern Oscillation) operating between 3 and 5 

years (sub-decadal). 

Based on the average cycles of the PDO since 1900, the inter-decadal trend filter was set to 

27 years.  At this time scale, the smoothing of the time series is not that sensitive to the length 

of the filter which can be varied up or down by five years without affecting the general trend 

greatly.  A slightly shorter length trend filter of 20 years picks up more of the detail where as a 

35 year length filter will show a much smoother long-term trend in the data.  This equates to an 

approximate average length in the PDO cycle, which amounts to about half the length of the 

apparent long-term rainfall cycle in the ACT region of 40-55 years (Figure 9.1).  A long-term 

cycle of 50 years is also apparent in the long-term rainfall record at Queanbeyan.  A general 

decline in rainfall from the late 1890s until the mid 1940s is one evident trend.  Since then, the 

cumulative deviation from the mean monthly rainfall rose until the mid 1990s while a decline in 

the past 10 years signals a significant downward trend, which, on the past limited record, may 

persist for another 40 years even in the absence of a global trend towards a much warmer and 

potentially drier climate.  The instrumented rainfall record in the region only goes back to the 
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mid 1870s so some caution is required in predicting future rainfall patterns based on limited 

data less than one hundred and fifty years in length. 
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Figure 9.1 Trends in deviations of PDO and rainfall at Queanbeyan from their 
respective means 

Note: The vertical bars indicate when there has been a major reversal in the PDO index.  Note that the cumulative 

deviation from mean rainfall at Queanbeyan appears to run at roughly double the length of the PDO cycle 

(between 40 and 50 years). 

 

A trend filter of thirteen years was chosen to accommodate the sunspot cycle of eleven 

years and conjectured bushfire cycles of thirteen years in south eastern Australia (Vines, 1974; 

Burroughs, 2003).  This trend filter was designed to detect approximately decadal cycles in the 

SWD time series.  Sensitivity testing showed that varying the trend filter from 10 to 15 years 

had little effect on the resultant decadal trends. 

A sub-decadal trend filter of approximately five years was then chosen as it equates to 

double the average length between definitive switches in the Southern Oscillation Index (SOI), 

~2.7 years, since 1876. This length of trend filter is consistent with the 2-4 inter-decadal interval 

determined by Jiang et al. (1995).  Changes in polarity in the cumulative deviation from the 

mean SOI during this period are depicted in Figure 9.2, the SOI being the relative difference in 

surface atmospheric pressure between Darwin and Tahiti.  The negative cumulative trend since 

1974 represents an increased frequency of El Niños and perhaps fewer and shorter La Niña 

events in the Pacific Ocean. 
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Figure 9.2 Cumulative deviation from mean Southern Oscillation Index 1876-
2008 

Note: The sub-decadal LOESS filter is based on major changes in direction in the cumulative deviation from the 

mean. 

 

Based on the inter-decadal (27 years), decadal (11 years), and sub-decadal (~5 years) 

LOESS filters, the trends in the SWD since 1 July 1939 were examined with STL time series 

decomposition (Figure 9.3).  There is marked complexity in the structure of the annual profiles 

of the SWD, with considerable variation inter-annually and from decade to decade (Figure 9.3). 

A particularly significant feature of the SWD record, which is shown in panel 1, is the 

number of pairs of dry years, indicated by grey bars: 1956/57-1957/58, 1966/67-1967/68, 

1981/82-1982-83, 1993/94-1994/95, and 2005/06- 2006/07.  This indicates pairs of years in 

which soil water recharge did not occur in late autumn or winter before the next fire season.  

This feature was also picked up in the classification of medium-term SFWI (see Figure 8.8).  

This means that the lower part of the soil profile is dry in the lead-up to the fire season.  This in 

turn affects the vegetation flammability and fuel availability when the soils become very dry 

during the peak of the fire season.  This lack of soil water recharge in the over-wintering period 

is therefore a major indicator for the potential of LLFs in the subsequent summer.  In terms of 

planning for a LLF, this then becomes the first sign of an impending fire season. 

Another characteristic of the trend is the sudden reversal of SWD from low to high soil 

moisture values following these extended dry spells.  The sixth panel in Figure 9.3 shows a 

strong positive residual value in the drought year and a strong negative residual value in the 

year after the drought years.  The 2001/02-2002/03 sequence was a notable exception to this 

general rule – soil conditions were dryer than anticipated and there was a  smaller negative 

residual value for two years after 2002/03.  This suggests that the usual pattern of recovery of 

soil moisture in a wet year following a sequence of dry years was unusually delayed until the 

spring of 2005/06.  A similar delay in recovery of soil moisture was observed in a wet year that 

followed the drought years between 1939/40 and 1942/43. 

 189



 

190 

A single severe fire season following a sequence of wet-to-moderately dry years (hatched 

grey bars), was observed in 1942/43, 1951/52, 1984/85, and1985/86).  These years were 

characterised by a summer seasonal pattern of extremely dry (near zero soil moisture) soils.  

Presaging the LLF events, the SWD rose very rapidly during late spring and early summer and 

dropped in late summer, after fires and following good rains.  The residuals (sixth panel of 

Figure 9.3) found in these fire seasons suggest that the seasonal drivers of rainfall were 

operating differently to the ones evident in the first panel of Figure 9.3. 

Broad long-term trend in SWD at the sub-centennial timescale is indicated by a gradual 

decline in SWD until the 1990s (second panel of Figure 9.3) when there has been a general 

trend upwards in SWD, resulting from a sequence of relatively dry years.  The decadal trend 

(panel 3) suggests an almost regular cycle of 10-15 years.  The shorter sub-decadal trend (panel 

4) indicates a somewhat irregular cycle between four and six years until the 1980s.  

Subsequently, a pattern of greater regularity has arisen. 

The analysis now moves onto the long-term time series of SWD to see if there are 

consistent trends between it and the medium-term time series of SWD revealed in this section. 
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Figure 9.3 Simplification of medium-term trends in soil water deficit (Canberra Airport 1939-2007) 

Notes: (1) Original SWD data (panel 1), Inter-decadal trend (panel 2), decadal trend (panel 3), sub-decadal trend (panel 4), seasonality (panel 5) and residual values (panel 6). 

(2) The grey horizontal bars in panel 1 indicate pairs of dry years while the hatched bar indicates sudden dry years emerging from a previous wet autumn and winter. 

191 



 

9.1.2 Underlying trends revealed: medium-term time series of 
landscape dryness 

The method discussed in section 9.1.1 revealed some definite quasi-periodic cycles at the 

decadal and sub-decadal time scales, but less definite at the inter-decadal time scale.  The 

question is: if the trend filters were combined, would any predictable underlying trends in the 

fluctuations of landscape dryness over time be revealed?  To achieve a simplified view of the 

complex variability in SWD (first panel of Figure 9.3), the trends in panels 2, 3 and 4 in Figure 

9.3 were added together in different combinations to reveal composite trends.  The individual 

and composite trends are presented in Figure 9.4 (b) and (c), shown against the trends in the 

Southern Oscillation Index (SOI) in Figure 9.4 (a) for the period between 1939 and 2007. 
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Figure 9.4 Trends in Southern Oscillation Index (a) compared with composite 
(b) and individual (c) sub-decadal, decadal, and inter-decadal 
individual trends in SWD from 1939 to 2007 

Source:    Monthly SOI values come from Bureau of Meteorology records and daily SWD values are for dry 
sclerophyll forest near Canberra Airport, produced by the RSDI model. 

Notes:   (1) The separate trends revealed by the LOESS trend filters (sub-decadal — 5 years, decadal — 13 years, and 

inter-decadal — 27 years) are shown in Figure 9.4 (c).  Composite trends by combining the values from 

decadal and inter-decadal (dashed line) and all three LOESS filters (solid line) are shown in Figure 9.4 (b). 

(2) The blue dotted and dashed vertical lines indicate fire seasons with sustained positive SOI values 

associated with La Nina fire seasons whereas the vertical dotted red lines indicate negative SOI values. 
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Individual trends in SWD at the inter-decadal, decadal, and sub-decadal time scales are 

presented in Figure 9.4 (c).  Underlying the complexity in landscape dryness is first, a four to 

five year cycle (dotted line) and second, a quasi-periodic cycle between twelve and fourteen 

years between 1940 and 1990, which then disappears after 1990 (dashed line).  There is no 

detectable trend in SWD apparent at the inter-decadal time scale (dashed dotted line above the 

two other lines). 

The solid line in Figure 9.4 (b) is based on the combined ~27, ~13, and ~5 year LOESS 

trend filters.  High levels of landscape dryness are evident in the fire seasons of 1939/40, 

1944/45, 1946/47, 1951/52, 1954/55, 1957/58, 1964/65, 1967/68, 1972/73, 1979/80, 1982/83, 

1985/86, 1991/95, 1994/95, 1997/98, and 2002/03.  The troughs in the composite trend using 

the combined ~27, and ~13 year LOESS trend filters (dashed line) indicate only short periods of 

moist seasonal profile, that is to say, 1949/50, 1955/56, 1970/71, 1973/74, 1974/75, 1983/84, 

1988/89, 1998/99 and 1999/2000 (solid line in Figure 9.4 (b)).  These shorter periods mainly 

correspond to ‘La Niña events’, whose effects appear short-lived, except for the period 1959-63.  

The breakdown in trends using the different length of LOESS trend filters suggests some form 

relationship between SOI and SWD, when SOI values are either strongly positive or negative 

for at least four months.  Outside of these conditions, other continental scale climatic factors 

affecting rainfall at the synoptic scale may be involved, thus affecting the seasonal patterns of 

landscape dryness. 

The seasonal trends within and between fire seasons is now examined using a combination 

of a serial and a seasonal view of SWD since 1939 (Figure 9.5).  Despite there being noticeable 

late summer blocks of landscape dryness, only occasionally do the peak levels of dryness move 

into the high summer period (for example, in the mid 1950s, the late 1970s, and early 1980s, 

and in early 2000s).  The vertical lines with the corresponding fire seasons indicate marked 

shifts in season of landscape dryness, associated with major La Niña events from 1939 to 2007.  

These are short periods of three to four years of moderately wet years before the landscape is 

again dry in spring (for example, early 1950s, mid-late 1970s, or early 2000s), or to late 

summer/autumn dryness) (for example, mid 1960s, mid to late 1980s, or late 1990s).  The 

conclusion from this is that there have been only short periods when extremes of landscape 

dryness has occurred in the high summer period in the past 65 years, despite having regular dry 

periods at intervals between three and five years for most of the time series. 
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Figure 9.5 Shifting season of landscape dryness 1939-2007 

Note: Vertical lines show fire seasons after which major shifts in the season of peak landscape dryness have 

occurred. 

 

The general conclusion is that soil dryness in combination reveals marked variation in 

amplitude and periodicity throughout the time series, reflecting the highly variable nature of the 

sequence of wet and dry fire seasons in this region.  Broad periods of much drier landscapes 

were evident in the early to mid 1940s, mid 1960s, late 1970s and early 1980s, and then in the 

late 1990s and early 2000s.  In between these broad periods, there were short wet periods: in the 

late 1940s, the late 1950s, the early 1970s, and the mid 1980s.  The composite trend analysis 

previously revealed a lack of regular periodicity of fire seasons with severe landscape dryness, 

using the index of SWD.  The extended seasonal view as shown in Figure 9.5 does not reveal 

any predictable rhythms in the cycles of wet and dry fire seasons.  The next section presents the 

patterns evident in the long-term time series of SWD to determine whether there is any 

periodicities evident using similar time scales applied in this section. 

9.1.3 Long-term time series analysis of landscape dryness 
As proposed in the modelling framework (Table 4.1), the Queanbeyan rainfall, which is 

closely correlated with Canberra Airport (section 4.3.2), was used to generate a long-term time 

series using the F-DSWBM model (section 6.1.3). 

One feature of the long-term pattern of soil water deficit was found to be its relative 

unevenness and irregularity through time, despite the essentially invariate inter-annual net 

radiation (RN) cycle being firmly embedded in the index.  For the most part SWD oscillates 

annually between 30 and 170 mm although deep groundwater recharge occurs intermittently.  
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Irregularity in the soil moisture regime is governed almost entirely by the changing quantity, 

frequency, and seasonality of rainfall.  Viewing the original long-term time series of SWD in 

this manner does not reveal any regular cyclical or quasi-periodic patterns. 
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Figure 9.6 Long-term time series of soil water deficit for a hypothetical dry 
sclerophyll forest near Canberra Airport weather station (July 1871 
to June 2007) 

 

A significant feature of the intrinsically noisy SWD cycles is the intermittent pattern of 

complete recharge of the soil profile, when the modelled SWD falls to zero. 

The longest interval between full recharge was between 1905 and 1917 at the end of the 

Federation drought.  In the driest periods on record, 1880-1886, 1925-32, 1943-47, 1977-1983 

and 2000-2005, there was little variation in soil moisture levels signalling minimal soil water 

recharge in winter and spring. 

Sub-decadal, decadal, and inter-decadal rhythms in SWD are now examined. 
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9.1.4 Sub-decadal, decadal, and inter-decadal variability in the 
long-term landscape dryness time series 

The first step taken to account for the variability of SWD over the past 136 years was to 

select trend filters that picked up trends at sub-decadal, decadal, and inter-decadal time scales.  

Based on the analysis of results of using the trend filters applied in the time series analysis of 

the medium-term SWD time series, fractionally shorter trend filters of 25, 13 and 4 years were 

applied in the current time series analysis.  This was done to see if any discernible differences in 

trends between the medium- and long-term SWD time series could be identified. 

The result of applying the inter-decadal trend filter of 25 years shows a small but 

significant rise in SWD in the late 1870s and early 1880s, and an obvious perturbation between 

the late 1880s until almost 1920 reflecting lower than average rainfall during those periods 

(Figure 9.7, panel 2).  The next 60 years show a steady net decline (30-40 mm) in soil water 

deficit reflecting a slight increase in annual rainfall.  On a rather shorter time scale, small rises 

in SWD are evident in the mid 1920s, the early 1940s, the mid 1960s, the late 1970s, and the 

early 1980s, all of which correspond to droughts.  The sharp rise from the mid 1990s reflects the 

dry years but more recent excursions, at the end of the time series, is simply be an aberration 

caused by the LOESS smoothing algorithm (Cleveland and Devlin, 1988).  The LOESS 

algorithm is otherwise very stable in the central part of the time series. 

A thirteen-year trend filter revealed a twelve-to-fifteen year cyclical pattern in landscape 

dryness from the mid 1920s until the early 2000s (Figure 9.7, panel 3).  While the cyclical 

pattern was also evident from the 1870s until the mid 1890s, an irregular cycle became 

established between 1890 and 1920. 
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Figure 9.7 Simplification of inter-decadal, decadal, and sub-decadal trends in long-term soil water deficit at Canberra Airport (1871-2008) 

Note:  Original SWD data (panel 1), Inter-decadal trend (panel 2), decadal trend (panel 3), sub-decadal trend (panel 4), seasonality (panel 5) and residual values (panel 6). 
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The seasonal signals in the fourth and fifth panel in Figure 9.7 are too complex to interpret 

fully at the scale of the diagram.  The obvious patterns evident are twofold.  The first is that the 

seasonal amplitude (between the peak and trough of SWD) became contracted when there was 

either: 

(1) no significant recharge during winter and spring (from the 1900s to the 1920s) or 

(2) above average rainfall throughout the year to keep the SWD low (for example, the 

late 1880s, the mid 1930s, the early 1960s, and the early 1970s). 

The second is that is that the seasonal amplitude of SWD increased during periods of very 

dry summers preceded by wet winters and early springs.  For instance, this happened in the 

early 1930s, the mid 1960s, the mid 1980s, and the late 1990s. 

The residual values in the sixth panel show an alternating pattern of positive and negative 

values, reflecting the difference between the original SWD series and the values removed by the 

three smoothers and the seasonal factors in the four panels above (Figure 9.7).  Like the residual 

values of Figure 9.3 (sixth panel), there is a an irregular see-saw oscillation between wet and dry 

fire seasons corresponding to a 2-4 year cycle from the 1900s onwards. The patterns revealed 

are complex to interpret and would require significantly more time to determine any underlying 

pattern, which is beyond the scope of this study. 

The seasonal patterns are best interpreted by plotting the seasonal signal as an image plot 

(Figure 9.8).  The darker blue patches represent drier periods (high SWD) while the whiter 

shades represent wetter periods (low SWD).  The arrows indicate general trends in seasonal 

extremes of soil water deficit.  Before the 1920s, the smoothed seasonal signal displays an 

alternation of wet and dry sequences with: (1) an average interval of 10 years in the wetter 

periods, and (2) an interval of about 5-6 years in more normal and drier years.  Thereafter, and 

for about 25 years, there appears to be a seasonal drift of dry conditions, followed by an 

extended period, between the mid 1940s and the mid 1970s, of unseasonably good rains.  For 

the whole of the record pre-1970, and about once every 10 to 12 years, there are intervening wet 

years breaking the summer dryness pattern.  More recently, that is post 1970, there has been a 

seasonal shift of dryness towards autumn and an overall pattern of fewer extended wet periods.  

The emerging pattern is therefore one of exceptionally dry landscape conditions during a high 

summer fire season. 
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Figure 9.8 Variation in annual seasonal profiles of Soil Water Deficit (1871-
2007) 

Notes: (1) Red arrows indicate generalised trends in the season of extreme soil water deficit. 

(2) The roman numerals within the horizontal dashed-dotted lines refer to the seasons in an average fire 

season, previously defined in Table 8.1. 

 

9.2 Classification: long-term landscape dryness 
To complement the earlier classifications of medium-term landscape dryness and potential 

fire spread, a hierarchical classification of the long-term SWD time series was performed.  This 

classification employed a smoothing 21-day filter as presented in Figure 9.9.  Since the daily 

evaporation values in the F-DSWBM are based on averaged daily figures over the past 30 years 

(see section 6.1.3), there is already some inherent smoothing of the SWD time series.  A LOESS 

smoother of 21 days filters the SWD signal less than the longer-term 31 or 51-day smoothers.  

This is because the fire seasonal profiles produced by the Fowler daily soil water balance model 

are much smoother than those produced by either the MSDI or RSDI models. 

The classification tree first branches at a value close to 1900 (Figure 9.9).  The upper left 

hand fork (M) comprises the wettest 86 fire seasons on record.  Despite being in the wetter 

classification, some fire seasons were very dry for short periods until late summer; other fire 

seasons may have had dry autumns; and a few fire seasons experienced incidences of dry spring 

leading into very dry summers and autumns for short periods in the middle of summer. 
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The classification of fire seasons based on long-term SWD was primarily delineated by a 

value of 1400 in the classification tree, and otherwise sorted by similarity of seasonal patterns of 

SWD (Table 9.1).  Of these, the majority of the fire seasons, 47, are classified as a moist group 

(SWD group 2) and 38 in a very dry group (SWD group 6).  What distinguishes the groups are 

two factors: (1) the seasonal amount and frequency of rainfall; and (2) the commencement and 

persistence of extended spells of dry weather. 

Table 9.1 General description of the six SWD groups in the long-term 
landscape dryness record 

General Class Group 
number 

Seasonal dryness 
characteristics 

Significant breaks in 
either wet or dry spells 

Number of 
fire 

seasons 

Percentage 
of fire 

seasons 

 1 
Dry to very dry spring 
leading into high summer
period-moist autumns 

Dry spell usually ends 
between day 160 and 
day 230 

19 14 

Moist earlier in the 
annual cycle, 
occasionally leading 
to some very dry 
years in the middle 
of the annual cycle 

(M) 

2 

Generally moist or 
somewhat dry springs, 
leading into a dry 
summer and a dry 
autumn 

Start and finish of dry 
spells highly variable 
between years.  Breaks in 
seasonal dryness more 
evident in sub-groups 

47 35 

 3 

Moist winter and spring 
lead into a damp summer 
and then either in two of 
three years a damp or a 
dry autumn.  Dry spells  
usually last less than 70 
days 

Tendency for breaks in 
dry spells to occur 
between day 270 and 
day 300 

20 15 

 4 
Very dry throughout the 
major part of the year 

Dry spell breaks between 
day 225 and day 260 and 
ends for the most part by 
day 310 

4 3 

Dry to very dry late 
in the annual cycle, 
leading to very dry  
extended periods 
later in the annual 
cycle 

(D) 

5 
Moist in spring and early 
summer, tending to very 
dry in autumn 

Dry spell starts on 
between days 170 and 
day 225 and becomes 
drier into the following 
winter 

8 6 

 6 

First pattern is dry winter 
and spring, followed by a 
moist summer and then 
finally by a dry autumn. 

Second pattern is a dry 
spring, followed by a dry 
summer and autumn, 
breaking very late  

Highly heterogeneous 
patterns in starts and 
finishes of dry spells but 
very dry spell starts 
between day 90 and day 
140  

38 28 

Note: Moist conditions refers to a SWD value from 0 to80 mm.  Dry conditions refers to a SWD value from 80 to 

140 mm.  Very dry conditions exist above a SWD value of 140 mm. 
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Figure 9.9 Hierarchical classification tree of soil water deficit (1971-2007) 

Note: The horizontal dashed lines indicate where the classification tree was cut to produce the SWD groups and sub-groups. 
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Some further division of the six seasonal soil dryness groups into sub-groups was 

undertaken (Figure 9.9) giving sixteen labelled sub-groups in all. 

Detailed descriptions of each of the sub-groups are presented in Table 9.2.  For each of the 

sub-groups the general descriptions of the season of wet or dry spells, and the timing of the 

significant breaks within each fire season have been determined from the individual fire 

seasonal profiles. 

While the less dry years appear more prominent in the hierarchical classification, the focus 

remains on years with seasons dominated particularly by dry mid or late summers (sub-groups 

1.4, 2.2, 4.1, 6.2, and 6.3).  These sub-groups represent some 31% of all fire seasons, in which 

the study region has been most exposed historically to LLFs. 

Table 9.2 Description of the sixteen SWD subgroups in the long-term 
landscape dryness record 

Sub-
group 

General description Significant breaks Number 
of fire 

seasons 

Percentage 
of fire 

seasons in 
the time 

series 

1.1 Dry spring , moist summer and 
autumn 

Dry spring break between day 150 
and day 160 

2 1 

1.2 Dry winter start, damper in spring and 
high summer, grading to dry in late 
summer and moist in autumn 

Dry spell breaks about day 80 to 
130.  Late summer dry spell ends 
between days 300 and 310 

4 3 

1.3 Very dry winter and spring, moist 
early summer, mildly dry in late 
summer and autumn 

Break in dry spring between days 
150 and 175 

5 4 

1.4 Somewhat dry in winter, moist in 
spring and summer, fairly dry in late 
summer, but moist in autumn 

Break in dry winter between days 
80 and 130.  Break in late summer 
dry spell at about day 300 

8 6 

2.1 Moist winter-dry spring and summer, 
moist late summer and autumn 

Dry spring builds from a moist 
winter.  Break in dry spring at 
about day 170 

6 4 

2.2 Moist winter, dry spring, very dry late 
summer, moist autumn 

Dry spring starts from day 90 to 
day 110.  Dry spell ends abruptly in 
middle of late summer between 
days 260 and 280 

7 5 

2.3 Somewhat dry throughout the year.  
Starts with a mildly dry winter and 
spring,-then a dry summer back-to-
back with a mild dry autumn 

Breaks in wet or dry spells were 
difficult to predict in this sub-group 

13 10 

2.4 Moist start to year usually up to the 
start of high summer period, 
becoming dry for the rest of the year.  
Some occasional years with dry years 
in late spring 

Dry spell starts on or about day 180 
– the start of summer.  End of fire 
season variable, moving from day 
225 to day 310 

21 15 
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Table 9.2 continued 

Sub-group General description Significant breaks Number 
in sub-
group 

Percentage 
of total 

number in 
time series 

3.1 Moist to occasionally dry from 
winter all the way through to the 
middle of late summer.  Very moist 
after that 

End of fire season between days 
250 and days 275.  Start of dry 
period indeterminate because of 
irregular timing and amount of 
rainfall 

5 4 

3.2 Damp or fairly dry winter grading 
into a damp summer and a fairly 
dry late summer and autumn 

Moist summer starts between days 
110 and 150.  Short dry spells 
between day 250 and day 300 or 
occasionally to day 350. 

7 5 

3.3 Moist winter and spring grading 
into dry high summer and late 
summer conditions, and ending 
with a moist autumn 

Dry spells generally occurs from 
day 170 to day 250 or 300. 

8 6 

4.1 Extremely dry throughout the year Driest period ends between days 
225 to 255.  Abrupt end to dry spell 
about day 317 

4 3 

5.1 Moist winter and early spring 
grading into a dry summer and then 
a very dry late summer and autumn

Start of summer dry period 
between on or days 160 to 180.  
End of dry period usually as late as 
mid winter and possibly extending 
into the next fire season 

8 6 

6.1 Very dry winter grades into a very 
dry early spring.  Some breaks in 
late spring reverting back to a dry 
late summer and autumn 

End of very dry winter on or about 
day 50.  Start of dry conditions in 
very late summer, on about day 
225, then staying dry until mid 
winter 

11 8 

6.2 Dry winters lead into a 
progressively drier spring, 
occasionally becoming very 
severely dry in the high summer or 
late summer period.  Autumns still 
dry after some rainfall 

Highly variable start to summer dry 
period.  Either starts early, between 
days 130 or 140, or starts much 
later around day 170.  Intensely dry 
period ends between days 220 and 
310 

14 10 

6.3 Somewhat dry to dry in the first 
part of winter and sometimes moist 
in early spring, becoming 
progressively drier in late spring.  
Extreme dryness in mid or late 
summer, extending into autumn 

Summer dry period can start as 
early day 140-150 and ends by day 
210.  A later summer period is 
evident in some years starting as 
late as day 170 and finishing 
between day 310 and 330 

13 10 

Note: Grey shading indicates SWD fire season groups that have had the highest potential exposure to large 

landscape fires. 

Moist conditions refer to a SWD value from zero to80 mm.  Dry conditions refer to a SWD value from 80 to 

140 mm.  Very dry conditions exist above a SWD value of 140 mm. 
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To distinguish the dry season SWD groups better, an image plot of the fire seasons ordered 

by the classification sequence was created (Figure 9.10).  Fire seasons are represented on the 

abscissa and the ordinate represents the days in the annual cycle starting on 1 July and ending 

on June 30.  The values of SWD are plotted from lowest to highest SWD values with heavy 

orange dashed lines indicating the breaks between the SWD groups, and dotted orange lines the 

breaks between sub-groups.  Outside of SWD groups 1 and 4 there is considerable variability 

within the other groups (2, 3, 5, and 6) in the timing of onset and level of landscape dryness. 

Displaying the fire seasonal profiles of SWD in this form confirms the breaks made in the 

classification tree to produce the groups and sub-groups of SWD (see Figure 9.9). 

Figure 9.11 shows three diagrams on the one diagram: (a) the classification tree at the top 

of the diagram (Figure 9.9), (b) the long-term seasonal daily SWD anomaly (left hand side of 

diagram), and (c) the classified fire seasonal profiles reproduced from Figure 9.10 but reordered 

by the sequence of fire seasons in the classification tree (Figure 9.9).  The long-term daily 

seasonal SWD anomaly diagram view reveals that the driest time of the year is normally 

between late summer and early autumn despite the fact that, in wetter years, the driest period 

occurs earlier, that is from spring to mid-summer.  The sub-groups in which landscape dryness 

reaches its peak at this time are: SWD groups 1.4, 2.2, 4.1, and 6.3.  These sub-groups are the 

only ones in the fire seasonal profiles of SWD having fire seasons with the values of peak 

landscape dryness sometimes occurring earlier than the pattern evident in the long-term daily 

SWD anomaly.  This suggests a different combination of broader climatic influences in the 

development of landscape dryness in these SWD sub-groups. 

Now that the fire seasons have been classified into readily identifiable groups and sub-

groups, the next step is to examine the temporal sequence of the SWD groups and sub-groups 

over the long-term time series. 
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Figure 9.10 Hierarchical classification of Soil Water Deficit viewed from a seasonal (x-axis) classification sequence (Y-axis) (1971-2007) 

Notes: (1) The orange vertical dashed and dotted lines indicate the boundaries between the groups and sub-groups, respectively.  The numbers refer to those found in the classification tree in Figure 9.9. 

(2) The darker the blue shade in the diagram, the greater is the value of Soil Water Deficit (SWD).  The colours shown in the colour scale are approximate to those in the diagram. 

(3) The reddish pink colour area in the middle of the figure represents the high summer fire risk period previously defined in the ACT’s fire season calendar (see Table 8.1). 
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Figure 9.11 Combined view of (a) classification tree, (b) long-term daily SWD anomaly, and (c) profiles of SWD in fire seaso
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9.2.1 Temporal sequence of fire seasons based on 
classification group and sub-groups 

The previous section classified the years in the SWD time series into recognisable and 

interpretable groups and sub-groups of fire seasons.  This section explores the temporal 

sequences of the original SWD time series juxtaposed against the SWD year groups and sub-

groups (Figure 9.12).  The colour codes represent different levels of landscape susceptibility to 

large fires based on the SWD groups developed earlier (Figure 9.9).  Blue and green colours 

represent fire seasons with low susceptibility to large fires (SWD fire season groups 2 and 3).  

The yellow colour represents fire seasons with intermediate susceptibility to large fires, (SWD 

group 1); and the purple, deep orange and red colours represent fire seasons with high to very 

high susceptibility to large fires (SWD groups 4, 5, and 6). The top box represents the classified 

SWD group and the bottom box represents the SWD sub-group classified for that fire season. 

The colour coding of fire seasons by the SWD groups and sub-groups helps to identify the 

sequences of wet and dry seasons, as well as the timing of acute dryness of that fire season.  The 

blue coded SWD group 3 fire season, representing the very moist to moist fire seasons, occurs 

relatively infrequently and irregularly at a relatively low recurrence (~15%).  Sometimes such 

seasons have occurred two years in a row, yet at other times, these fire seasons have occurred at 

much longer intervals, at 10, 15, or 20 years.  The yellow coded sub-group 1.1 fire seasons 

represents the wetter end of the moist-dry fire seasons within the SWD group 1 fire season.  At 

the drier end of this group, SWD sub-groups 1.3 and 1.4 contain some fire seasons with a very 

high potential for LLFs, such as those occurring in 1938/39.  They are relatively sporadic in 

occurrence, becoming more frequent from the 1920s onwards, but occurring at relatively long 

and irregular intervals between seven and twelve years apart. 

More often, the slightly drier SWD group 2 fire seasons (which constitutes 35% of the fire 

seasons) alternate with the very dry SWD group 6 fire seasons (28% of fire seasons) over the 

time series or have occurred in consecutive years during a drier cycle, such as in the 1910s or 

early 2000s.  Unlike the SWD group 1 fire seasons, the green coded SWD group 2 fire seasons 

have generally had less complete soil water recharge at the end of the year, resulting in higher 

soil water deficits at the start of the next fire season.  In a few fire seasons, near extreme levels 

of landscape dryness can occur towards the end of the high summer period. 

The temporal sequencing of the fire seasons within their respective groups and sub-groups 

does not show a clear regular pattern but rather an irregular one.  However, one feature of the 

time series does stand out: SWD group 6 fire seasons have recurred for up to three or four years 

in a row.  SWD group 2 fire seasons can sometimes interweave amongst the SWD group 6 fire 

seasons for up to two years.  On occasions, SWD group 6 fire seasons alternate with SWD 

groups 1 and 5 fire seasons.  On rare occasions, a SWD group 5 fire season has signalled a very 

dry one to follow.
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Figure 9.12 Temporal sequence of groups and sub-groups of annual profiles of landscape dryness juxtaposed with original time series 

Note:  The colour coding reflects the landscape susceptibility to large fires in a colour continuum from low (dark blue) to extreme levels (dark red). 

208 



 

The sequence of groups and sub-groups in Figure 9.12 reveals a more chaotic and irregular 

pattern than those revealed by the sub-decadal and decadal LOESS filters in the time series 

decomposition (section 9.1.4).  The complex interactions among all the climatic and synoptic 

scale factors responsible for producing rainfall are responsible for this variability.  This is 

discussed further in section 9.3. 

9.2.2 Fire seasons leading to landscapes being highly 
susceptible to large landscape fires 

The purpose of this section is to identify the fire seasons in landscapes most susceptible to 

LLFs since 1871.  The idea behind this is that the period of highest susceptibility to LLFs 

occurs when extremes in landscape dryness conditions are aligned with high summer (Table 

8.1; section 8.1.1).  However, the periods either side of the high summer period still have some 

potential for LLFs.  In addition, in the earlier or later parts of the fire season, the spells of 

potential fire spread are not as long or as severe as those occurring in the high summer period. 

The first step in identifying the high risk fire seasons was to plot the long-term SWD data 

as two dimensional plot with years on the abscissa and days of a fire season on the ordinate 

(Figure 9.13 (a), first panel).  The yearly profiles of SWD are plotted as a matrix of years by 

days of the year, the lighter areas indicating the moister times and the darker areas in the figure 

indicating the drier times in the year.  Although some of the very dry fire seasons stand out, 

having extended darker blue colours, it is difficult to know which of these fell into the fire 

season periods of II, III, and IV, representing spring, high summer, and late summer 

respectively. 

To discriminate the high-risk fire seasons to LLFs from the rest, an SWD of 120 mm was 

applied.  At this threshold, near-surface and heavier ground fuels are fully dried out, there are 

high levels of curing of grasses, and live leaf moisture content (LLMC) is minimal with 

consequent high vegetation flammability and high to very potential for LLFs (section 7.3). 

The results of applying this critical threshold show the fire seasons with critical periods of 

dryness in either peak or late summer (Figure 9.13 (b), second panel).  Each SWD sub-group 

was given a unique line pattern and colour to help differentiate them from each other.  The first 

SWD group 1.3 is shown as a blue vertical line.  The purple vertical line represent SWD sub-

group 4.1 while the red vertical lines represent SWD sub-groups 6.2 and 6.3.  The green and 

orange lines represent the fire seasons with some potential for LLFs (for example, 1.4); or sub-

groups of fire seasons (5.1, 6.1) whose peak SWD occurred very late in the annual cycle.  This 

second panel illustrates the relative frequency of fires seasons with the highest potential for 

LLFs through the time series. 

Prior to the 1940s, a higher frequency of fire seasons with the potential for LLFs is 

indicated.  Since the 1940s, the frequency of peak SWD years, signifying potential risk to LLFs 
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has decreased, with some notable gaps being found in the late 1940s and early 1950s, 1970s and 

the 1990s. 

The threshold of 120 mm was then applied to just those fire seasons whose peak period 

dryness overlapped with high summer (Figure 9.13 (c), third panel).  This was designed to 

locate fire seasons that have had the landscape susceptibility to LLFs. 

This analysis showed that there was a much higher likelihood of LLFs from the 1900s, 

until the mid 1940s, with intervals between high risk fire seasons, occurring at shorter intervals 

between five and ten years.  This mirrors the higher frequency of LLFs found by earlier studies 

(Brackenreg, 1926; Pryor, 1939; Banks, 1982).  Since the 1940s, the interval between fire 

seasons with very high potential for LLFs has widened to 12 to 20 years.  A reverse trend has 

become evident since the early 2000s, with the intervals between high risk fire seasons 

shortening to four or five years.  This final panel shows that the intervals between fire seasons 

with highest susceptibility to LLF have shortened or lengthened in the last 135 years in three 

recognisable periods: (1) from the 1900s to the 1940s; (2) from the 1940s to the 1990s; and (3) 

from the early 2000s to the present.  If one presumes landscape dryness at the right time of the 

year predisposes landscapes to LLFs, then the likelihood of LLFs occurring has varied 

considerably in this long-term study (1871-2007).  Since the incidence of lightning-started fires 

was found to be most likely in the high summer period (section 8.5), this leaves only the fire 

seasons of 1951/52, 1982/83, and 2002/03 as being likely to have the potential for  LLFs.  The 

rest of the potentially high risk fire seasons identified in Figure 9.13 (c) either did not have the 

potential for dry thunderstorms and multiple lightning ignitions or the peak landscape dryness 

did not fall within high summer.  This longer-term study has therefore confirmed the original 

proposition that only in particular types of fire seasons have landscapes been susceptible to 

LLFs. 
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Figure 9.13 (a) Original SWD data (b) SWD >120 mm in peak and later summer periods, and (c) SWD >120 mm only in the high summer period 

Note The vertical lines in the second and third panels represent the fire seasons that belong to the SWD groups 1.4, 2.2, 4.1, 5.1, 6.1, 6.2, and 6.3 identified as being the most likely to being 

predisposed to LLFs. 

 The blue hatched vertical lines correspond to fire seasons in SWD sub-group 1.3.  The green dash and dotted lines represent fire seasons in SWD sub-group 2.2. The purple long dashed lines 

represent fire seasons in SWD sub-group 4.1.  The orange heavy dotted lines represent fire seasons in SWD sub-group 6.1.  Lastly, the red dotted and dashed lines, and dashed lines, represent fire 

seasons in SWD subgroups 6.2 and 6.3 respectively. 
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The fire seasons in which landscape dryness exceeded an SWD value of 120 mm in the 

high summer period are shown in Figure 9.14.  By applying this filter, 43 high-risk fire seasons 

were extracted from the original 136 fire seasons in the long-term time series. 
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Figure 9.14 Fire seasons with peak landscape dryness (SWD>120) falling in 
the high summer period  

 

The high-risk fire seasons identified in Figure 9.14 were cross-tabulated with those in the 

fire seasons’ chronology in the study region (see section 2.5) to produce Table 9.3.  Those that 

feature the most often in Table 9.3 are SWD sub-groups 2.2, 6.2 and 6.3.  Sub-group 2.2 had the 

highest occurrence rate, with six out of seven of the fire seasons starting early in the peak period 

of SWD and ending in the middle of the late summer period.  Although most of the fire seasons 

in sub-groups 6.2 and 6.3 ended at about the same time in the late summer period, there were six 

fire seasons in these two sub-groups that ended abruptly, either just in or just outside high 

summer (Table 9.3: boldfaced fire seasons in column 2).  These included 1874/75, 1905/06, 

1928/29, 2002/03 and 2006/07.  Two other sub-groups that have very dry periods ending 

abruptly include 1895/96 (sub-group 4.1) and 1938/39 (sub-group 1.3).  The fire season of 

1938/39 features very much in the history of disastrous fire seasons in Australia.  However, in 

the ACT region the 1938/39 the fire season was not as severe in terms of landscape dryness as 

some other fire seasons, such as 1902/03, 1918/19, 1964/65, 1982/83, and 2002/03. 
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Table 9.3 Fire seasons with landscapes highly susceptible to LLFs 

Sub-group Fire Seasons Total 
number in 
sub-group 

Filtered 
number 

Proportion 
of number 

in sub-
group 

Proportion 
of LLFs in 
sub-group 

1.3  1877/78, 1938/39, 1972/73, 2001/02 5 4 80% 50% 

2.2 
1925/26, 1930/31, 1931/32, 1939/40, 
1951/52, 1984/85 

7 6 86% 67% 

4.1 1895/96, 1967/68, 1982/83 4 3 75% 33% 

6.2 
1875/76, 1881/82,1898/99, 1928/29, 
1943/44, 1957/58, 2006/07 

14 7 50% 71% 

6.3 
1874/75, 1905/06, 1913/14, 1918/19, 
1997/98, 2002/03 

13 6 46% 67% 

Total  43 26 60% 58% 

Note:  The fire seasons highlighted in bold are the ones that had known LLFs (Chapter 2: section 2.5). 

 

Of all the SWD sub-groups, fire seasons classified as sub-groups 2.2, 6.2 and 6.3 have the 

highest proportion of fire seasons with known LLFs in the historical record (67, 71 and 67% 

respectively), followed by sub-group 1.3 (50%). 

As well as the very high risk fire seasons (SWD sub-groups 1.3, 4.1, 6.1, and 6.2), 

landscape susceptibility to large fires in sub-group 2.2 almost reaches the same risk levels as 

these.  For this reason, they are highlighted in bold italics, marking them as seasons with a very 

high potential for LLFs.  The highlighted fire seasons identified in this fire susceptibility 

analysis are indeed those recognised in records as mostly having LLFs (see section 2.5).  

Therefore, this simple approach using only one indicator of fire susceptibility has the capability 

to identify past high-risk fire seasons with high to very high potential for LLFs. 

The method used to identify seasons with a high potential for LLFs historically could also 

be used to identify the risk of LLFs in the lead-up to and during the high summer period, by 

matching the current fire seasonal profile to one of more of the SWD group or sub-groups.  

Other climatic factors and influences should be used in conjunction with this simple method and 

are discussed in the next section. 

9.3 Climatic influences setting up LLF conditions 
The tools currently used to forecast the type and severity of fire seasons have tended to 

focus on climatic indicators at sub-global and continental scales (Lindesay, 2003).  These 

climatic indicators are rudimentary and sometimes limited in their ability to anticipate the 

evolution of a fire season at a regional scale.  The most widely used indicator, the Southern 
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Oscillation Index (SOI), uses differences in surface pressure between Darwin and Tahiti.  

Examples of indicators of sea surface temperatures (SSTs) include the Indian Ocean Dipole 

(IOD), Niño3 in the central Pacific, and Niño4 in the western Pacific.  Various combinations of 

these indicators have been used to explain or forecast the potential for wet and dry fire seasons 

across Australia and indeed for other countries or regions bordering the Pacific.  The 

relationships between drought and these indicators are tenuous and have low levels of 

correlations in most parts of south eastern Australia (McBride and Nicholls, 1983) and in 

northern New Zealand (Fowler and Adams, 2004).  For example, low levels of correlations 

(R2=0.1-0.4, and up to a maximum of 0.6) between monthly rainfall and the SOI were found 

based on the spring quarter (McBride and Nicholls, 1983; Drosdowsky and Williams, 1991).  

The relationship between the SOI and rainfall is even more tenuous for the ACT region, given 

that it is not located in the central core of the regions where rainfall is more highly correlated 

with SOI. 

The purpose of this study is to derive a temporal history of fire susceptibility factors SWD 

and FWI (section 1.3), using a classification approach that differentiated the general groups and 

sub-groups of fire seasons.  The synoptic-scale weather patterns and rainfall processes are 

regarded as being more influential in the development of the most severe fire seasons than the 

broad scale indicators, such as the SOI, which is currently used to predict severe droughts and 

fire seasons with a high potential for LLFs.  At this synoptic scale, these patterns and processes 

could serve as complementary indicators to the sub-global and continental climate indicators 

already mentioned.  At one level, the groups of historical fire seasons examined in Chapter 8, 

and in this chapter, provide an insight into the ways in which synoptic and sub-global climatic 

factors have produced different types of fire seasons. 

9.3.1 Australian climatic factors and influences 
To this end, it is more appropriate to examine the climatic factors that produce daily and 

monthly weather patterns at the regional synoptic scale.  A summary of the major synoptic and 

background influences on the weather patterns across the Australian continent is illustrated in 

Figure 9.15, from the Bureau of Meteorology’s web site.  This diagram summarises the key 

synoptic features that interact on a daily basis to produce the patterns of weather at any point on 

the continent. 
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Figure 9.15 Significant climatic influences across the Australian continent 

Source:  Bureau of Meteorology, 2008. 

 

At this scale, the study area lies within a belt of mid-latitudinal high pressure systems 

(anticyclones) that dominate the atmospheric circulation of Australia and New Zealand 

(Sturman and Tapper, 2006).  These high-pressure systems are located in what is termed the 

sub-tropical ridge.  The highs generally track further north in winter at about latitude 30-35o 

whereas in summer they track further south at about latitude 40-45o (Hobbs, 1998).  The 

anticyclones travel more slowly than the faster-moving depressions and associated cold fronts 

(bottom left of diagram).  The anticyclones therefore dominate the weather patterns with stable 

warm and dry weather for periods up to five or seven days, with a one or two day passage of the 

cyclonic systems.  This sets up on average a seven to ten day cycle of the two alternating 

weather systems in the southern half of the Australian continent. 

Because the study region and the southern part of the Australian continent are located 

within the belt of sub-tropical highs, the weather patterns tend to be dry under the influence of 

these stable high-pressure cells.  Extended dry periods can result if these stable high-pressure 

cells dominate the weather patterns for weeks at a time.  Therefore, the long dry patterns seen in 

the majority of fire seasons (see Figure 9.10) should be considered the normal pattern and the 

occasional days of rain as much less common and stochastic.  A majority of the major rainfall 

events are made possible by the interaction of sub-tropical-temperate troughs with low-pressure 

cells to the south of the continent to produce rainfall in the study region and elsewhere in 

southern Australia (Murphy and Timbal, 2008).  However, not all the sub-tropical-temperate 
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troughs come laden with atmospheric moisture.  Those troughs bringing dry hot and unstable air 

from the continent can result in severe fire weather, and if combined with a dry landscape, can 

produce severe fire-risk conditions.  This is discussed further in the following section. 

9.3.2 The influence of the sub-tropical-temperate trough on 
landscape susceptibility to LLFs 

Another feature which plays a major role in drawing moisture from the sub-tropical 

regions of Northern Australia is the westerly upper level troughs that develop in the central 

regions of the continent, particularly during the warmer times of the year (Hanstrum et al., 

1990; Sturman and Tapper, 2006).  These should be more correctly termed tropical-temperate 

troughs (Harrison, 1986, cited in Lindesay 1998).  These systems are involved with the flow of 

energy from the tropics across the continent into the cooler maritime area, the Southern Ocean, 

south of the Australian continent.  These westerly tropical-temperate troughs are almost always 

associated  with southern frontal systems passing through the Great Australian Bight (Hanstrum 

et al., 1990).  In some instances, these troughs assist in the formation of cut-off lows which are 

responsible for the major rainfall events in south eastern Australia, or the east coast lows which 

form in the Tasman Sea (Sturman and Tapper, 2006). 

During the height of summer, tropical-temperate troughs carry little if any moisture and so 

can direct hot dry and windy weather into south eastern Australia, instead of rain.  The upper 

levels of these troughs can carry very little air moisture.  From inspection of many synoptic 

weather charts, the orientation of the line of the troughs affects how much air moisture, if any, is 

carried into this region.  A tropical-temperate trough of air aligned longitudinally will generally 

draw more moisture into the region as it is more connected with the sub-tropical air masses 

further to the north.  Hence, it is likely to result in higher rainfall more often than not. 

A trough that is aligned meridionally transports very dry hot air into the region, prior to the 

arrival of a polar maritime cold front (Hanstrum et al., 1990).  The latter type is often associated 

with extreme fire spread potential days that have occurred historically on the 13th January 1939 

(Foley, 1947), the 5th February 1952 (Luke and McArthur, 1978), 16th February 1982 (Hanstrum 

et al., 1990), 18th, 26th and 30th January 2003 (Taylor and Webb, 2005), and most recently the 7th 

February 2009.  On these days with extreme potential fire spread, tropical-temperate troughs 

draw hot, dry, and unstable air from the centre of the continent.  As a result, hot and dry north-

westerly winds are generated ahead of the trough and associated cold front, producing the 

extremes of fire weather witnessed in most of the severe fire seasons that resulted in the LLFs in 

south eastern Australia in 1938/39, 1982/83, 1997/98, 2002/03, 2006/07, and 2008/09.  If the 

trough is aligned half way between the vertical and horizontal position during a dry fire season 

in the high summer period (III), it is most likely to be associated with dry thunderstorms and 

lightning-ignited fires (for example, 5th February 1952, 8th January 2003, and 1st December 

2006). 
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The north-west cloud bands over the study region are often associated with deeper and 

moister westerly sub-tropical-temperate troughs, particularly when the monsoon is active in 

northern Australia or sea surface temperatures off the northwest coast of Western Australia are 

warmer than usual.  These north-west cloud bands diminish in frequency and moisture during 

dry fire seasons when there is less moist sub-tropical air rising from the Eastern Indian Ocean 

and less upper air convergence associated with the jet stream moving south at these times.  At 

the same time, less tropical moisture is also linked to Hadley cells that have moved further 

eastward over the central Pacific Ocean, during moderate to strong El Niño events (Lindesay, 

2005).  Thus, the tropical-temperate troughs are of critical importance in cooling or heating up 

the local climate of the region.  A repeated sequence of dry and hot tropical-temperate troughs 

can therefore produce the dry lead-up conditions to a severe fire season, including lightning 

ignitions and severe fire weather that initiate and create LLFs.  Follow-up studies of this critical 

synoptic-scale phenomenon may lead to better understanding of the factors that produce the 

switch from cool and moist to hot, dry, and windy conditions associated with the development 

of severe fire seasons. 

As well as the tropical-temperate troughs, the easterly trough system separates the moist 

air mass arising from the Tasman Sea from the inland drier air, mainly along the Great Dividing 

Range that runs north-south 50-150 km inland from the eastern Australian coastline.  This 

trough is largely responsible for the development of east coast lows that produce large rainfall 

events and the development of summer thunderstorms that move towards the eastern Australian 

coastline.  Based on an analysis of thunder-day data from Canberra airport, the easterly trough 

has produced on average 22 thunderstorms a year in the area since 1939 (Figure 9.16 (a)). 
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Figure 9.16 (a) Number of thunderstorms in each fire seasons since 1939/40 
and (b) average number in each SWD group 

Source:  Extracted from weather data for Canberra (1940-2007). 

Note:  Number of thunderstorms is based on records of thunder-days in Canberra Airport’s weather record. 
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During La Niña years (SWD group 3, long-term time series), thunderstorm activity is more 

pronounced, rising to an average of 29 thunderstorm days per year.  Otherwise, thunderstorm 

days are close to the average in all other SWD fire season groups, with the exception of SWD 

group IV in the medium term series, when thunderstorm activity is well below the average, at 

twelve thunderstorm days (Figure 9.16 (b)).  Thus, moist thunderstorms are crucial for the 

summer rains to abate the usual dry hot summer conditions associated with high levels of all-

wave net radiation on clear sunny days.  In the severe fire seasons clustered into group IV, 

fewer and drier thunderstorms occur and are more likely to ignite fires before severe fire 

weather days. 

9.3.3 The effect of the sub-tropical ridge and other synoptic 
weather features on the potential for large landscape fires 

The previous discussion focussed on synoptic processes operating in the sub-tropical ridge 

zone in which the study area lies.  The interactions, or the lack thereof, between the sub-tropical 

highs and the tropical-temperate troughs with low pressure systems further to the south of the 

Australian continent are critical for understanding the sequences and type of fire weather found 

in the study area.  The Southern Annular Mode (SAM) is one indicator of the influence of 

Southern Ocean lows on rainfall in south eastern Australia.  SAM has been found recently to 

influence rainfall in the winter, spring and summer periods of the year in the southwest and 

southeast of Australia in a way that is mainly related to the latitudinal position and strength of 

the westerly winds over these southern areas of Australia (Kidson, 1988).  When SAM is in a 

negative phase, the lows move northward and have a significant influence on rainfall and 

temperature in the southern parts of the continent.  Conversely, when in a positive phase, SAM 

contributes to a lower and drier trend in the southern parts of the continent. 

There is a current trend in SAM towards a higher, positive polarity in summer and a lesser, 

positive trend in autumn.  Hence, the increased tendency towards a positive polarity could lead 

to fewer strong cold fronts and perhaps fewer high rainfall events during the critical lead-up 

period in spring and early summer.  Reduction in rainfall would also occur because of reduced 

sub-tropical moisture in northern Australia when SAM is in a positive mode.  At the sub-annual 

time scale, SAM is at its strongest in winter-spring and weakest in late summer-autumn.  A 

positive SAM at the onset of a fire season would signify a lower potential for rainfall.  This 

state, combined with other factors such as lower moisture over the north of the Australian 

continent (under El Nino conditions) would produce extended dry spells during spring and early 

summer.  These combinations of conditions inevitably lead to very dry landscape conditions 

(high to very high SWDs) by the middle of summer as evidenced in the SWD groups and sub-

groups in the medium-term (section 8.2.2) and long-term (section 9.2) series of landscape 

dryness. 
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Another way of looking at the influence of SAM is to use indices of mean sea level 

pressure (MSLP) within and adjoining the southern Australian continent to define the latitudinal 

position and strength of the Sub-Tropical Ridge (STR).  Essentially the north and south 

latitudinal movement of the STR is highly correlated with the mid-latitude jet stream (MLJ) 

which is located on the poleward side of the STR (Williams and Stone, 2008).  When the SAM 

is in a negative mode, the STR and the MLJ move northward, enhancing the potential for higher 

rainfall events over south eastern Australia.  Conversely, when the SAM is positive, the STR 

moves south along with the MLJ, thus lowering the potential for rainfall, through the combined 

effects of higher than average pressure in both the lower and upper troposphere. 

The sub-decadal and decadal movements of the STR are strongly correlated at 3-4 years 

and at 12 years respectively (Williams and Stone, 2008), which corresponds to the cycles found 

in the fluctuations of landscape dryness (SWD) in the time series analysis conducted at sub-

decadal (Chapter 9; section 9.1.1) and decadal time scales (section 9.1.2).  Although not 

statistically significant, Thresher (2002) found a relationship between sunspot cycles and the 

position of the STR at intervals between 10 and 12 years.  These recent studies suggest that the 

earlier proposition put by Vines (1974) of a possible relationship between bushfire and sunspot 

cycles may have some basis to it, especially in relation to the strength of the STR during spring 

and summer during a severe fire season. 

The establishment of very dry landscape conditions can therefore be related to the 

interactions of the key climatic factors and processes relative to the geographical location of the 

study area and to the continent at large (see Figure 9.15).  The key factors and processes 

identified but not explored in this study, can be summarised as follows: 

 the relative latitudinal and longitudinal position and strength of lows and highs in 

relation to the sub-tropical ridge (STR) traversing Australia and New Zealand, 

particularly the establishment of a blocking high pattern in the Tasman Sea, leading to 

low pressure systems migrating further south during extended spells of landscape 

dryness; 

 the spatial configuration of, and anomalies in and between, land and sea surface 

temperatures during a fire season, particularly cooler temperatures in the eastern Indian 

Ocean and the Tasman Sea; 

 the origin and amount of moisture in the lower, middle, and upper regions of the lower 

atmosphere from source regions, such as the northern Australian tropical zone, the 

Tasman Sea and the Southern Oceans immediately south of the Australian Bight.  It 

appears that cooler sea surface temperatures result in less atmospheric moisture and 

cloud in the form of north west cloud bands reaching the region; and  

 the origin and transfer of moisture into the region via low pressure troughs, cut-off lows 

and the passage of cold fronts weakens during periods of landscape dryness. 
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The particular conditions of dry thunderstorms and hence lightning-started fires can be 

related to a particular set of atmospheric conditions and with a westerly sub-tropical-temperate 

trough, associated with a weak frontal system to the south of the continent, more likely 

occurring in December and January during a dry spell when the landscape dryness is above 

64 mm SWD.  Multiple lightning ignitions resulting from dry thunderstorms may be more likely 

when index of the landscape dryness exceeds a critical threshold value of SWD somewhere 

between 100 and 140 mm.  Note that the latter threshold of SWD corresponds to the suggested 

tipping point for increased fuel availability and flammability found in the literature (section 7.3) 

and empirically in this study (section 8.4.1). 

9.3.4 Key synoptic factors influencing the potential for large 
landscape fires 

Finally, the onset of severe fire weather appears to occur close to the peak of landscape 

dryness just before a reversal to moister and cooler conditions in the late part of the high 

summer or late summer period (see section 9.1.1).  Drawing on experience in Canada and north 

western America, the timing and severity of fire weather appears to be related to the breaking 

down of the sub-tropical ridge over the North American continent (Simard, 1991; Johnson and 

Larsen, 1991).  In particular, Johnson (1992) identified three main factors predisposing boreal 

forests in Canada to large fires: 

(1) the position and strength of blocking highs centred over central Canada for long 

periods; 

(2) a breakdown of this strong seasonal pattern with a possible shift in the position of 

the jet stream; and 

(3) the advance of the Arctic airstream southwards. 

Johnson contends that the severe fire weather associated with strong westerly airstreams 

usually coincides with deeper low-pressure systems finally displacing the stationary blocking 

highs at some critical point in the fire season.  As can be seen from Chapter 8, the timing and 

severity of fire weather has been related to the high summer period between early December 

and early February, although the peak of fire weather can sometimes lag by one or two months, 

as in the case of the late summer category of fire seasons (SWD groups 5.1 and 6.1).  The high 

summer fire risk period in south eastern Australia therefore corresponds to the possible change 

from the dominance of the sub-tropical high-pressure ridge in the lead-up and during the high 

summer period to more intense synoptic patterns conducive to severe fire weather that can drive 

LLFs.  During the high summer period, the coincidence of a very dry sub-tropical temperate 

trough angled across central Australia combined with a very strong low pressure cell in the 

Southern Ocean below Australia can produce the hot dry and windy weather to propel LLFs 

over very dry landscapes in the ACT region and elsewhere in south eastern Australia. 
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The synoptic weather pattern associated with severe fires in Australia has affinities with 

that found in the Canadian studies, except that Australia is located in the heart of the Southern 

Ocean at sub-tropical and mid-latitudes.  Blocking highs and westerly troughs, previously 

discussed in this section, are key features in the Australian context and have been associated 

with past severe LLFs in south eastern Australia (Luke and McArthur, 1978; Hanstrum et al., 

1990; Taylor and Webb, 2005).  Significantly, it is the sub-set of years in the four principal 

SWD sub-groups 1.3, 2.2, 6.2, and 6.3 (Table 9.2; section 9.2) that has experienced the highest 

occurrence of LLFs, as a result of a warm dry spring followed by a hot and dry summer.  The 

position and strength of the sub-tropical highs interrupt the usual synchronicity of the weather 

systems that produce rainfall.  This pattern is consistent with findings in the Rocky Mountains 

in the USA (Morgan et al., 2008).  Morgan et al.’s study showed a significant relationship 

between spring and summer climate and fire incidence.  As well, the PDO in their study was 

also shown to be the main driver of fire activity in its positive phase and a major dampener in its 

negative phase. 

9.4 Findings 
The main findings of this chapter relate to the twelfth question posed in the Introduction 

(Table 1.1): ‘What does a broader temporal and spatial view of fire susceptibility tell us about 

its longer term history, climatic factors and influences contributing to it?’ 

Analysis of longer-term temporal variability of landscape dryness (SWD) revealed regular 

quasi-periodic cycles in medium and long-term landscape dryness at intervals of 10-15 years.  

Such regular trends were less apparent at the sub-decadal time scale (3-5 years), when the 

intervals between the major dry fire seasons have varied between 3 and 15 years.  The 

composite LOESS filter was reasonably successful in identifying the major dry and wet fire 

seasons in the past but has no statistical power to infer the potential for LLFs in a future fire 

season.  To do that, one has to use particular SWD groups in the preceding fire season to 

identify a fire season with potentially high indicators of landscape susceptibility to fire. 

Despite some heterogeneity evident in both the groups and sub-groups of fire seasons, the 

fire seasons fit within six or seven groups.  Based on the detailed analysis of the long-term time 

series of SWD in the ACT region (section 9.1), knowledge of the type, sequence, and 

chronology of the groups and sub-groups of fire seasons was confirmed in the documented fire 

chronology for the study region (see 0). 

Finally, in section 9.3 the sub-tropical-temperate troughs, and their interaction with other 

synoptic scale weather systems, were shown to be significant in the development of high-risk 

fire seasons that lead to LLFs in south eastern Australia. 
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9.4.1 Putting the medium-term results into a longer-term 
temporal context 

The Fowler daily soil water balance model (Fowler, 1992; Fowler, 2002; Fowler and 

Adams, 2004) was a valuable adjunct to the RSDI model developed previously in Chapters 3, 5 

and 6.  The former soil water balance was successfully calibrated with the other calibrated RSDI 

model in Chapter 6.  While there were some apparent differences in values of the two models, 

particularly in the moister years, the results of the classification of SWD in this chapter proved 

to be relatively consistent with the medium-term SWD classification results (section 8.2).  The 

classification techniques tested on three separate occasions in this and the previous chapter have 

proved to be robust, consistent, and reliable. 

9.4.2 Influence of background climatic factors and processes 
A summary of the key synoptic scale climatic factors and processes is presented in Table 

9.4, which influence the onset and severity of LLF conditions of landscape dryness, potential 

lightning ignition, fire weather and moist break in the fire season.  For instance, higher levels of 

landscape dryness are more likely to occur following a spring and early summer sequence of 

continual high pressure cells ridging west back over Australia from the Tasman Sea west of 

New Zealand.  Late summer or autumn spells of landscape dryness similarly can result from 

blocking highs establishing in the southern Australian Bight.  At the same time the Southern 

Ocean lows and associated fronts migrate southward, often associated with ‘Rossby’ wave 

patterns 1-3 (Sturman and Tapper, 2006), while SAM is in a positive mode.  Drier than usual 

sub-tropical air masses over northern Australia and the eastern Indian Ocean can develop during 

these times, particularly when a moderate-strong ENSO event is in progress. This can lead to 

less moisture feeding into south eastern Australia from the sub-tropics to the weather processes 

that produce rainfall. 

The study of the climatology of tropical-temperate troughs in relation to the types of fire 

seasons presented in this and the previous chapter could prove insightful into the type and 

frequency of westerly troughs that produce dry lightning storms and severe fire weather.  The 

last two factors define the risk of a LLF occurring in a very dry landscape during the high 

summer period in this region and elsewhere in south eastern Australia. 

 



 

Table 9.4 Factors influencing key factors in landscape susceptibility to large fires 

LLF condition Nature of high pressure 
systems 

Nature of low pressure 
systems 

Air mass stability Source of moisture Moisture transfer Other factors 

Dry spring and 
summer 

Blocking highs establish over 
the Tasman Sea, centred over 
the NW of New Zealand, 
which strengthen 
progressively over Spring and 
summer 

Low pressure systems 
weaken and move further 
south to lower latitudes 
south of the latitude of 
Tasmania 

Upper atmospheric stability is 
higher for longer than in an 
average fire season.  Jet 
stream weakens over region 

Air masses from 
northern Australia 
become drier as a 
result of positive SOI 
and negative IDO 

Continental heat troughs 
orientate more in a horizontal 
position, lessening transfer of 
sub-tropical air into the region

North-west cloud bands 
weaken are associated with 
thinner and less well 
developed cloud formations 

Lightning ignition High centred in the Tasman 
and another one ridging in 
from the west centred to the 
south of Adelaide in South 
Australia 

Weak cold front to the 
south of the study area, 
associated with a 
moderately weak low 
pressure system 

Unstable air associated with 
hot continental air, convective 
uplift over the mountains 

Air mass drier than in a 
typical wet summer but 
sufficient to generate 
dry thunderstorms 

Some sub-tropical moisture, 
but enough to trigger a dry 
thunderstorm 

Alignment of westerly 
trough at about 325to 340 
degrees compass direction 

Severe fire 
weather 

Blocking highs reach full 
strength and then break down 
with the onset of stronger low 
pressure systems , replaced by 
more settled summer weather  
patterns 

Low pressure systems 
strengthen, often associated 
with multiple cold fronts 

High instability associated 
with passage of severe fire 
weather, relatively stable as 
highs take over following 
passage of trough or front 

Lack of any moisture 
in central and western 
Australia 

Continental heat trough lie in 
a flatter horizontal position 

Alignment of westerly 
trough 280 to 290o 

Moist break in 
fire Season 

Highs move west from the 
blocking high position and 
weaken 

Lows strengthen and move 
further northwards 

Lower and upper atmosphere 
cooler, moister, and more 
unstable than average.  Centre 
of jet stream positions itself 
over region 

Sub-tropical air 
becomes moister and 
widespread in the sub-
tropics 

Continental heat troughs 
orientate in a more northerly 
direction and connect with 
sub-tropical moist air in 
northern Australia 

North-west cloud band 
strengthen and connect with 
low pressure systems to the 
south ahead of cold fronts 
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Chapter 10: Summary and Conclusions 
This chapter provides a general set of findings and conclusions based on the findings and 

conclusions presented in earlier chapters.  The major findings are first outlined to show whether 

the study as outlined in the introduction achieved its general aims and objectives. This is then 

followed by a critical appraisal of the factors that limited the scope and accuracy of the models 

and data to model landscape dryness and potential fire spread in the three climate zones 

identified earlier.  Areas for future research are then highlighted to strengthen the models 

formulated in this study.  Finally, conclusions a re drawn as to the potential application of the 

methodology to other regions in south eastern Australia and how this study can help to 

anticipate extreme conditions of landscape dryness and potential fire spread, based on the 

classification and time series analysis techniques developed in this study. 

10.1 Overview and major findings 
The thesis set out to develop a methodology for identifying past seasons with the highest 

potential for LLFs, using the key indices based on already calibrated indices of landscape 

dryness and potential fire spread.  Detailed calibrated landscape and potential fire spread 

models, using the best available historical weather data, were developed.  Care was taken to 

ensure that the primary and intermediate input weather data were of the highest quality to avoid 

problems in later analysis.  The effort expended in the preliminary chapters (Chapters 3-6) 

selecting models and data, and then verifying their outputs against other studies was crucial for 

classifying and analysing the fire seasonal profiles in the medium term (Chapters 8) and in the 

long-term (Chapter 9). 

Chapter 2 outlined the climate, topography, vegetation, and soils of the ACT regional 

landscape.  The long-term rainfall pattern showed that, for drier than average years, the 

landscape was consistently dry across all three climate zones (Cfa, Cfb, Csc) leading to a 

consistently dry regional landscape at these times.  Despite the complexity of the regional 

landscape in terms of climate, topography, and vegetation, the data and models of landscape 

dryness developed in the later chapters could be applied in two out of the three climate zones 

(Cfa, Cfb).  Summarising previous fire chronology studies indicated that three different 

categories of LLFs have occurred in very dry fire seasons in the past.  The most critical ones 

have been in seasons where there is an absence of moisture barriers to retard the progress of fire 

across all three climate zones, enabling a LLF to traverse the full range of vegetation and 

topography in the ACT region.  The results achieved in subsequent chapters did indeed show 

that indices of landscape dryness could be developed and calibrated for the dominant vegetation 

types in two out of the three climate zones.  However, an index of potential fire spread could 

only be produced for the sub-montane plains (Cfa) based on weather data collected at Canberra 

Airport.  This therefore partially answered the first research question posed in Section 1.3 

 224



 

(Table1.1):  ‘How feasible is it to apply a simple temporal model of landscape susceptibility to 

large fires to a region with wide ranging climate, topography, vegetation, soils, and fire 

history?’ 

The conceptual framework for a net radiation-based daily soil water balance model was 

successfully advanced in Chapter 3.  An all-wave net radiation-based sub-model of soil 

evaporation (ES) and plant transpiration (ET) was developed from published relationships.  

These equations derived mainly from generalised sub-models sourced from the remote sensing 

literature and were not based on detailed site-specific ground studies.  While both the soil 

evaporation and plant transpiration sub-models could be considered approximations of soil 

evaporation and plant transpiration processes, they were subsequently tested and evaluated in 

Chapters 5 and 6 and demonstrated to produce equivalent values to evaporation models 

published elsewhere.  The development of such models facilitated a means for evaluating all-

wave net radiation and net evaporation (RN and EA).  This answered the third research question 

(Table 1.1) in the affirmative: ‘Can simple and elegant sub-models of soil evaporation and plant 

transpiration replace evapotranspiration models?’ 

The modelling plan formulated in Chapter 4 was constrained by the lack of medium and 

long-term weather records for the high and remote country to the west of Canberra, particularly 

in the Csc climate zone at high elevations.  Only Canberra Airport records could be used to 

model landscape dryness and potential fire spread in the sub-montane climate zone (Cfa).  Thus, 

despite there being long-term records of precipitation at the key weather stations of Fairlight 

Station, Corin Dam, Queanbeyan, Kiandra-Cabramurra, and Canberra Airport, many of the key 

input variables for the estimation of potential fire spread were just not available.  Since 

continuous daily, rather than monthly, records are required to model landscape dryness, only 

reference climate stations in the Bureau of Meteorology’s weather station network are suitable 

for this analysis.  Canberra Airport provided reliable, accurate, and consistent medium-term 

weather datasets to model soil water dryness over the long-term.  As a result of careful 

calibration with the all-wave net radiation SDI model (RSDI), the Fowler daily soil water 

balance model was extended as far back as 1871 using rainfall data from the nearby 

Queanbeyan weather station.  However, other two soil dryness indices, the Mount Soil Dryness 

Index and the all-wave net radiation version of it (RSDI), could only be extended back to 1939 

using the Canberra Airport dataset.  These latter two daily soil water balance models require 

additional weather variable inputs such as TMAX, TMIN, RH1500, and eA that were not recorded at 

Canberra Airport prior to 1939 or were missing from the Queanbeyan records.  A landscape 

dryness dataset driving all three landscape dryness models was created for the upper Cotter 

River catchment, using in part proxy estimation of key variables for the MSDI and RSDI in the 

absence of on-site measurements at Corin Dam.  Only one out of the three climate zones (Cfa) 

had representative weather stations for modelling the required indices of landscape dryness and 

potential fire spread.  The fourth research question (Table 1.1)  was therefore only partially 
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answered: ‘As part of the ideal modelling framework for this study, what datasets for medium 

and long-term indices of landscape dryness and potential fire spread can be constructed in the 

three climate zones?’ 

The estimates of all-wave net radiation (RN) were found to be highly dependent on the 

accuracy and bias of its principal components: surface irradiance (RS) and net long-wave 

radiation (L*).  RS can be estimated using the Supit and Von Kappel empirical RS model (Supit 

and van Kappel, 1998).  This model is entirely dependent on having three-hourly or half-daily 

records of cloud cover.  It was shown in Chapter 5 that RS from Canberra Airport could be used 

to model RN for the upper Cotter River catchment successfully.  Reasonably high correlations 

were obtained between RS values for Canberra Airport with those observed at Googong Dam 

and Corin Dam in the upper Cotter River catchment (R2 >0.834, 0.732).  However, modelling of 

downwelling long-wave radiation (L), the key variable input into L*, was more problematic.  

The best empirical estimate for L was obtained using the Brunt model when it was combined 

with a slightly modified Iziomon cloud effect model.  The values of monthly RN and its 

components were found to be comparable with some earlier studies (Paltridge and Proctor, 

1976; Moore et al., 1993).  The values obtained for L* in this study were at slight variance from 

those previously published mainly due to the different lengths of study.  Anomalies in values 

obtained for L* found in the time series may be attributed to the methods used for estimating 

ambient vapour pressure (eA).  Because the modelling of RN and its components was only 

achieved in the Cfa and Cfb climate zones, and not the Csc climate zone, this has in partially 

answered the fifth research question (Table 1.1) in the affirmative: ‘Can all-wave net radiation 

(RN) and its components be estimated to sufficient levels of accuracy as a precursor to 

estimating potential evaporation (EP)?’ 

In Chapter 6, the analyses of the components of evaporation, ES and ET, demonstrated that 

the modelled values produced by the RSDI model were consistent and comparable with short-

term data produced by other Australian studies.  The evapotranspiration estimates (ET+ES) from 

the RSDI and F-DSWBM were also found to simulate expected higher EA values in late spring 

and early summer when there is generally higher soil water availability and moderate to high 

all-wave net radiation (RN).  In contrast, the MSDI model simulated higher EA values in summer 

reflecting the later peak in seasonal maximum temperatures.  Total evaporation (ES+ET+EI) or 

EA calculated from all the models was not that different at an annual time scale.  The differences 

were much more apparent when evapotranspiration (ET+S) was examined at a monthly time scale 

especially during spring when seasonal values of ET+S from the RSDI and F-DSWBM were 

found to be higher than those in the MSDI model.  This reflects a sensitive response to higher 

seasonal water availability and moderate to high all-wave net radiation levels (RN) during spring 

and early summer. 

 

Verification of the daily soil water balance models using run-off data failed to discriminate 

between them, which meant that the final selection had to be made on inter- and intra- annual 
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patterns of soil water deficit (SWD) over the full time series.  The SWD profiles produced by 

RSDI and F-DSWBM were found to be more consistent than those produced by the MSDI 

model when the SWD time series from the two principal sites, Canberra Airport and the upper 

Cotter River catchment, were compared side by side.  While DSWBMs based on pan 

evaporation data can simulate evaporation up to a point, the seasonal timing of evaporation from 

such models can affect the amplitude and frequency of SWD in moister fire seasons.  As a 

result, it is difficult to distinguish the very dry years from the not so dry years with the MSDI 

model.  The SWD time series produced by the RSDI and F-DSWBM models were chosen for 

further analysis because they appeared to simulate better the seasonal evaporation patterns better 

than the MSDI model.  This has therefore satisfactorily answered the sixth research question  

(Table 1.1): ‘Which daily soil water balance models best approximate the hydrological 

processes of evaporation, run-off, and soil water deficit and should be used for further analysis 

of landscape susceptibility to large fires?’ 

The first part of Chapter 7 presents evidence found in the literature that suggests that a 

threshold of landscape dryness above SWD=100 mm using the Keetch-Byram Drought Index 

directly affects increased fuel combustibility and vegetation flammability.  The few relevant 

studies of flammability and live leaf moisture content conducted in Europe and California 

provide strong evidence that vegetation flammability increases markedly once live leaf moisture 

contents falls below 70%.  The empirical evidence from the relationship of SWD to live leaf 

moisture content (LLMC) suggests that this occurs when the KBDI exceeds a SWD value of 

100 mm.  In California, large landscape fires were found to be associated with LLMCs below 

70% in Chaparral shrublands.  There is little empirical field evidence to substantiate this value 

of LLMC in south eastern Australia, with the possible exception of a study undertaken by Pook 

(1965) on the effects of drought on LLMC in the ACT region.  However, the evidence from 

elsewhere suggests that very high levels of SWD are crucial in predisposing landscapes to 

LLFs.  The altered flammability threshold lies somewhere between 100 and 140 mm, depending 

on the DSWBM and regional characteristics of topography, vegetation, and soil.  This has 

therefore positively answered the seventh research question (Table 1.1): ‘Can a threshold of soil 

water deficit (SWD) indicate a realistic threshold for fuel availability, combustibility, and 

vegetation flammability in a forested landscape?’ 

In the second part of Chapter 7, an argument for using the Canadian Fire Weather Index 

instead of McArthur’s Forest Fire Danger Index was put.  The principal reason given was that 

the Canadian FWI is much more explicit and transparent, permitting other components of 

potential fire spread to be estimated, such as the individual moisture components (Fine Fuel 

Moisture Content, Duff Moisture Code, and Drought Code), and the fuel availability and fire 

behaviour components (Build-up Index, Initial Spread Index, and Fire Weather Index).  This 

enabled checking and validation of the intermediate as well as final outputs of fire weather and 

fire spread variables.  The only issue with the FWI is that the longer-term fuel moisture 
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components such as DMC and DC have not been calibrated to Australian conditions.  To 

counter this in part the all-wave net radiation SDI model replaced the Canadian DC model in the 

estimation of BUI within the FWI model.  This has therefore satisfactorily answered the eighth 

research question (Table 1.1): ‘Which of the PFSI models is the most transparent and explicit, 

and best integrates the factors involved in estimating potential fire spread?’ 

Conceptually, re-defining the start and end of fire seasons proved invaluable for 

benchmarking the different periods of landscape susceptibility to large landscape fires in the fire 

seasonal profiles of SWD and SFWI (Chapter 8).  It also aided in identifying in which fire 

seasons the ACT region’s landscapes had been most susceptible to large landscape fires 

(Chapter 9).  Classifying annual profiles of SWD or FWI identified the types of fire seasons that 

have been the most susceptible to LLFs in the past.  Using either index, a hierarchical 

classification approach revealed a heterogeneous but orderly set of groups and sub-groups of 

fire seasons that have occurred in the study region.  Up to seven groups, or types, of fire seasons 

were apparent.  Splitting groups further into sub-groups provided further meaning in terms of 

the timing and potential for fires using either index of fire susceptibility, landscape dryness or 

fire spread potential.  Using the RSDI model as an index of landscape dryness, the fire seasons 

with early summer high landscape susceptibility to fire were 1957/58 and 1982/83.  Similarly, 

the fire seasons with high landscape susceptibility to fire in high summer were 1967/68, 

1997/98, 2002/03, 2006/07. 

Using the SFWI as an index of potential fire spread, the seasons when landscapes were 

most susceptible to LLFs fell into three categories: (1) early high summer period —1957/58 and 

1997/98; (2) middle of high summer period — 2002/03 and 2006/07; and (3) middle-late high 

summer period — 1967/68, 1982/83, and 1997/98.  The latter fire seasons classified into SFWI 

groups II and III, having the highest fire spread potential of any of the 56 fire seasons since 

1951.  Only one other set of fire seasons (SFWI group V; sub group V-1) had similar fire spread 

potential: 1951/52, 1978/79, and 1984/85.  These fire seasons had a peak fire spread potential 

from about mid January to early February, which is two to three weeks later than the category 

(2) fire seasons of 2002/03 and 2006/07 (SFWI Group III; subgroup III-1).  The analyses and 

findings in Chapter 8 has therefore substantially answered the ninth and tenth research questions 

positively (Table 1.1): ‘Does redefining the season and the periods within a fire season using 

fire susceptibility criteria, such as landscape dryness, fine fuel moisture, and potential fire 

spread produces a more meaningful definition than previous definitions? What can classification 

and time series analysis of landscape dryness and potential for high fire spread reveal about 

landscape susceptibility to LLFs in the medium-term?’ 

The analysis of potential fire ignition in Chapter 8 also showed that lightning-started fires 

could be anticipated using three sources of information: 

(1) the lightning-fire decision tree model developed in this thesis; 
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(2) the 1000 hours aerosonde sampling of dewpoint and temperature profiles at Wagga 

Wagga; and 

(3) the interpretation of the angle and position of the sub-tropical temperate troughs on a 

synoptic scale weather map. 

The combination of dry landscape and fire weather conditions under which dry 

thunderstorms has occurred rarely: 42 days with these characteristic conditions were identified 

within 56 years of detailed weather data.  Out of the 42 critical days, only three critical LLFs 

have resulted in the ACT region from the right sequencing of conditions as follows: 

(1) extreme levels of landscape dryness during the months of January or February; 

(2) lightning ignition just prior to the run of severe fire weather; and 

(3) extreme periods of fire weather running for more than a day. 

The combination of these conditions occurred historically in the following fire seasons of 

1951/52, 1982/83, and 2002/03.  This implies that the sequencing conditions have been 

relatively rare in the weather record but the resulting large fires have had devastating 

consequences on the landscape and/or adjoining people and their assets.  Using the methods 

developed in this study, warning of the likelihood of future occurrences similar to these would 

allow authorities to take proactive fire management measures.  This has therefore answered the 

eleventh research question in the affirmative: ‘Can a model based on particular combinations of 

landscape dryness and weather predicts the potential for lightning ignition in the ACT region?’ 

In Chapter 9, the time series analysis revealed a complex sequence of fire seasons when 

using either medium or long-term soil water deficit (SWD) as an index.  The inter-decadal trend 

in SWD showed a small but significant increase in landscape dryness in the last 10-20 years.  

The decadal trend showed regular fluctuations in SWD throughout the time series with a regular 

cycle running between 10 and 15 years.  The sub-decadal trend revealed a near-regular pattern 

in SWD with irregular amplitude.  Overall, the composite LOESS smoother, based on the 

intervals chosen for the sub-decadal, decadal, and inter-decadal time scales, enabled the major 

dry and wet years in the time series to be identified in the time series.  This confirmed that the 

complex variability in SWD in the medium-term could be decomposed with de-trending 

smoothers.  These reflected broader climatic processes occurring at 27, 13, and 5-year intervals, 

representing the inter-decadal, decadal, and sub-decadal time-scales, respectively. 

The models for landscape dryness and potential fire spread selected in this study proved in 

the analysis chapters (Chapters 8 and 9) to be the most appropriate models (Chapters 6, 8 and 

9).  First, the RSDI and F-DSWBM models were found to better simulate the timing and 

severity of dryness of fire seasons than the MSDI.  Second, the FWI, adapted as much as 

possible to local conditions, appeared to represent the seasonal timing of potential fire spread 

better than the FFDI (see section 8.2.4).  In particular, the FWI model better incorporated the 
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build-up and development of dryness over a fire season, extending the period of potential fire 

spread potential well into late summer. 

The longer-term study of SWD in Chapter 9, using the F-DSWBM, confirmed the patterns 

in the type and sequencing of the types of fire seasons discovered in Chapter 8.  In the longer-

term study of SWD, six types of fire seasons were recognised at a broad level in the hierarchical 

classification.  A further sixteen sub-groups were identified that corresponded closely to the 

amount and timing of rainfall during the course of the fire season.  Major fire seasons were 

recognised from the major dry years in the SWD time series that corresponded to the peak of 

landscape dryness overlapping with the peak fire potential period between early December and 

early February.  These fire seasons corresponded well with the known chronology of major fire 

seasons in and surrounding the ACT since the 1900s (section 2.5).  Some 31 percent of fire 

seasons were found to be have periods of high to extreme landscape susceptibility to LLFs, in 

high and late summer. 

In the final part of Chapter 9 some broad inferences were drawn about synoptic-scale 

weather processes and conditions of sea surface temperature that are conducive to landscapes 

being highly susceptibility to LLFs in particular categories of fire seasons.  There appears to be 

a relationship between blocking highs in the Tasman Sea in the spring and summer period of the 

fire season, conditions that lead to lower rainfall, hence higher levels of SWD and potential fire 

spread.  The position and timing of the blocking highs, as well as the latitudinal position of the 

polar maritime cold fronts and low pressure cells, could relate directly to the general groups of 

fire seasons (Chapters 8 and 9).  A further study of the relationship between the categories of 

fire seasons arising from this study and synoptic scale climatic and weather patterns could 

further deepen the knowledge of type of fire seasons based on fire susceptibility factors: 

landscape dryness and potential fire spread. 

The two broad areas of research undertaken in Chapter 9 have therefore answered 

satisfactorily the twelfth and final answer research question (Table 1.1): ‘What does a broader 

temporal and spatial view of fire susceptibility tell us about its long-term history, climatic 

factors and influences contributing to it?’ 

10.2 Limitations of the study 
This study set out to model fire susceptibility in three climate zones (Chapter 4; Table 4.1).  

While medium-term high quality weather data are collected near towns and cities, more remote 

and rugged areas are not well covered in the Bureau of Meteorology’s network of weather 

stations.  The lack of suitable medium and long-term weather records in the more remote parts 

of the study area, including the upper Cotter River catchment, placed a severe limitation on 

applying the models of fire susceptibility within the higher, cooler and moister climate zones 

(Cfb and Csc).  Within these zones, there are insufficient weather data to model directly all-
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wave net radiation and fire weather, which are key inputs into the fire susceptibility indices of 

landscape dryness and potential fire spread.  Instead, only the net radiation model for Canberra 

Airport was successfully transferred to the upper Cotter River catchment, using parallel 

estimation methods of the critical weather variables of TMAX, TMIN, and RH1500 (Chapter 4, 

sections 4.3.1 and 4.3.3).  This data, together with P0900 data, were used to model Soil Water 

Deficit (SWD) in the upper Cotter River catchment with a modicum of success (Chapter 6, 

Section 0). 

Rainfall records were also found to be inconsistent at one of the critical stations 

(Cabramurra) identified in the sub-alpine climate zone (Csc) as part of the modelling 

framework.  The reduction in quality of rainfall records could be related to the changeover from 

manned to automatic weather stations in 1999.  A correlation with rainfall records at the nearby 

station of Yarrangobilly suggests that the Cabramurra pluviometer/weather station may not be 

recording precipitation received as snow or ice accurately. 

This study found that very few other independent, continuous studies of RN, ES and ET, and 

catchment run-off that could be used for direct comparison with the modelled results.  

Fortunately, over 30 years of run-off data were available from the upper Cotter River catchment 

against which to compare modelled run-off predicted by the daily soil water balance models 

(DSWBMs).  To develop a medium-term time series of SWD based on the RSDI model requires 

estimates of cloud cover, surface irradiance, and long-wave radiation to be collected at remote 

locations.  These data are needed to estimate empirical equations for the components of RN, 

based on daily and three-hourly weather collections of variables such as rainfall, maximum and 

minimum temperature, relative humidity, and cloud cover.  The lack of such data may limit the 

application of the RSDI model to other regions in south eastern Australia. 

One further limitation in this study relates to the index used to develop fire seasonal 

profiles of either landscape dryness or potential fire spread for classification of fire seasons into 

groups and sub-groups.  For instance, the RSDI was selected rather than the MSDI in Chapter 6 

on two grounds: (1) a priori the former model had closer relationships to biophysical processes, 

and (2) the model computed higher evaporation in spring and early summer followed by slower 

evaporation in late summer and autumn.  The hypothesis that the two models would have 

produced similar results in the classification was not tested.  Further research into the effect of 

the different models on fire season classification is recommended to validate the results 

presented here. 

The results of this study relate to the general seasonal patterns of landscape dryness and 

potential fire spread in either the medium or long-term time series.  The methods used here 

cannot identify exactly to the day when particular combinations of worst-case conditions may 

occur within a given fire season.  However, these methods have revealed in what type of fire 

season and in what month and year the predisposing conditions for large landscape fires might 

recur at some future date. 
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10.3 Directions for future research 
There is a great need to profile the development of future fire seasons as each unfolds, 

based on the philosophy and approach developed in this study but doubtless expanding it.  This 

study is regarded as a significant first step in understanding the type and past incidence of fire 

seasons with peak fire susceptibility and the possible factors that cause them.  The development 

and application of the models of landscape dryness and fire spread potential could be readily 

applied elsewhere by developing an integrated system of weather data, models, and analytical 

tools found within R or SPLUS.  The tools developed here could be used in training fire 

management planners to understand the type and variability of past fire seasons.  The training 

method could be based on the process diagram (Figure 1.2) and further developed into an 

interactive package.  It is recommended that the initial research undertaken here into landscape 

susceptibility to LLFs be applied and improved to refine further the concepts, models, and 

analytical tools to understand and interpret fire seasons’ susceptibility to LLFs. 

Further testing of the soil evaporation and plant transpiration components of the RSDI 

model is needed to validate the results presented in this study.  Testing could establish whether 

the modelling of the components of evaporation does apply in different regions and different 

vegetation types.  In particular, the ES modelling approach should be validated using detailed 

field studies.  Similarly, further validation of the ET (transpiration flux) estimated by the 

process-based RSDI model should be undertaken using an approach similar to that adopted in 

section 6.3.1. 

A critical part of this study has been the investigation of heightened vegetation 

flammability above particular thresholds of landscape dryness based on the SWD index.  

Further research is required to validate the apparent threshold value (100>SWD <140) to 

determine whether this threshold applies to a wide range of vegetation or requires specific 

modification to suit particular vegetation types or climatic regions. 

As for the applicability of potential fire spread models, both the FWI and the FFDI 

potential fire spread models require further testing and refinement.  The FWI system needs 

further calibration studies before it can be applied more widely in Australia.  The three fuel 

moisture codes (FFMC, DMC, and DC) embedded in the Canadian FFWI model also need 

further verification in field conditions in south eastern Australian forests.  This could lead to a 

much improved potential fire spread model and fire danger rating system than the current FFDI 

model which has had very little rigorous scientific testing and calibration since its adoption in 

the mid 1960s. 

There are two serious problems with the FFDI model:  First, the inherent simplicity in the 

algorithms hides the estimation of fine fuel moisture.  Second, the drought factor does not 

properly account for the changes in available fuel or vegetation flammability at the very dry end 

of the soil dryness scale.  An improved fuel moisture function should take account of the 
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different time lags associated with different types of forest fuel, as does the FWI model.  A 

revised drought factor function should incorporate the increasing levels in fuel availability and 

vegetation flammability across the full range of soil water deficit, rather than the function 

ceasing at a value of SWD equal to 100 mm.  By having a better measure of these two factors’ 

impacts on potential fire spread, the FFDI model could better model seasonality and severity of 

potential fire spread. 

As well as improved calibrated models of landscape dryness and potential fire spread, the 

study of the day-to-day or week-to-week sequencing and coincidence of landscape dryness, 

lightning ignition, and extremes of potential fire spread will further add to the broader findings 

summarised here on a landscape’s susceptibility to LLFs.  This would represent another level of 

study that would aim to link the interactions of synoptic scale climate and weather processes to 

the development of landscape dryness, the potential for lightning ignition, and the onset of 

severe potential fire spread.  From indications in this study, extremes of fire behaviour occur 

towards the end of extended dry spells at anytime during the fire season, and particularly in the 

high summer period identified in the fire calendar (sections 8.1.2 and 8.4).  Lightning ignition 

potential also coincides on occasions with the more severe conditions of landscape dryness and 

potential fire spread during the high summer (section 8.5). 

10.4 Conclusions 
Models of seasonal dryness and fire spread potential were found to be sensitive to the 

model inputs and required careful calibration using independent data before applying these 

indices to the study of fire susceptibility at either medium or long-term time scales.  Calibrated 

models of these two fire susceptibility indices were also needed to analyse and interpret patterns 

of historic fire susceptibility or for day-to-day use in forest fire management.  The models of 

landscape dryness and fire spread potential (KBDI, FFDI) currently in use in south eastern 

Australia remain largely uncalibrated.  Therefore, calibration and validation studies of such 

indices should be made mandatory before these or other replacement models are used in fire 

management applications. 

The general approach relating fire seasonal profiles of landscape dryness (SWD) and fire 

spread potential (FWI) to the fire season calendar using hierarchical clustering methods, 

provided stable and robust groups of fire seasons with differing potential for LLFs.  The 

classification of fire seasons proposed here could be used to anticipate landscape susceptibility 

to LLFs in future fire seasons, by looking at them in combination with: 

 subdividing a fire season into its respective seasons using the indicators of landscape 

susceptibility to large fires (section 8.1.2); 

 the general trends in the quasi-periodic cycles at the inter-decadal, decadal, and sub-

decadal trend filters (section 9.1.4); 
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 the classification and hence typology of historical fire seasons (section 9.2); 

 the long-term sequences of the groups developed from the classification (section 9.1.3), 

and the possible relationship of sub-decadal, decadal, and inter-decadal trends with SOI 

(section 9.1.4) 

 their relationship of the SWD groups to a region’s fire history (section 9.2.2); and 

 the predisposing climate and weather factors at sub-global and synoptic scales 

(section 9.3). 

The approach adopted could also be readily applied to other regions in south eastern 

Australia to determine whether the types of fire seasons are consistent with those found in this 

study.  In particular, the study has produced a robust model of landscape dryness (RSDI), based 

on thermodynamic principles, and has been shown to produce more consistent seasonal 

comparable values of evaporation than the original MSDI model.  The parsimonious F-

DSWBM model calibrated to the RSDI model is most invaluable in unravelling the longer-term 

types of fire seasons and their associated potential for LLFs. 

Analyses of longer-term, along with the medium-term study of landscape dryness, 

confirmed that the highest level of susceptibility of a landscape to LLFs is found in those fire 

seasons with landscape dryness (SWD) peaking in high summer.  The usual tendency is for 

peak landscape dryness to occur later in the fire season in the majority of the dry to very dry fire 

seasons.  The coincidence of landscape dryness with very high to extreme fire spread potential 

has been relatively rare in the high summer period.  Thus, it can also be concluded that fire 

seasons with the highest susceptibility to LLFs appear to differ in their climate and weather 

history to those found in the rest of the less severe fire seasons. 

The primary driver behind peak landscape susceptibility to fire is the continental heat 

trough that brings dry, hot and windy air masses to this region at regular and frequent intervals 

during summer.  The passage of these heat troughs through the study area can trigger dry 

thunderstorms that are associated with limited air moisture aloft as well as very high to extreme 

conditions of fire weather.  Multiple lightning ignitions are the result of very dry landscape 

conditions, the atmospheric conditions associated with the sub-tropical temperate trough, and 

the mountainous terrain that these systems pass over.  If the sub-tropical temperate trough 

becomes even drier, severe fire weather can develop ahead of and within the trough system.  If 

the two predisposing factors follow each other in short succession, the conditions for large 

landscape fires are inevitable.  All these coincidences are most likely to occur during the period 

of peak fire susceptibility from early December to early February in the study region. 

The underlying factor behind peak fire susceptibility is the seasonal landscape dryness 

factor.  Once critical levels of low moisture in the vegetation and the underlying regolith have 

been surpassed (SWD>120 mm), increased fuel availability and heightened vegetation 

flammability create the precursory conditions for a LLF.  This predisposing condition results 

 234



 

from the continual lack of air moisture and rain in the months preceding this critical summer 

period of fire susceptibility.  At the synoptic scale, the dominance of the sub-tropical ridge in 

the preceding months over this part and elsewhere in south eastern Australia stifles the 

development of good seasonal rains.  The establishment of such strong ridges of high pressure 

leads to particular types of fire seasons identified in the classification of fire seasons in both the 

medium and long-term analyses of landscape dryness.  These high-risk fire seasons are 

remarkably distinct from the rest of the fire seasons in the classifications.  The three fire seasons 

of 1951/52, 1982/83 and 2002/03 belong to particular groups of fire seasons with distinct 

seasonal profiles in landscape dryness and potential fire spread. 

The knowledge gained in this study clearly shows that critical thresholds in landscape 

susceptibility do exist, and should be further verified in each region of south eastern Australia.  

Based on previous scientific knowledge and the results presented in this study, the fire seasons 

with the highest landscape susceptibility to large fires can be anticipated in advance by: 

(1) determining the thresholds of landscape dryness; and 

(2) simply monitoring the soil water deficit at a few representative points in a given 

region. 

This study has demonstrated that the knowledge and understanding of landscape 

susceptibility to fire can be inferred from a single point in the landscape that is representative of 

an area or region out to the boundaries of the climate zone in which it is located.  Finding these 

representative points and locating long-term weather stations at these points will further deepen 

and improve our understanding of the susceptibility of the more remote forested regions to large 

landscape fires in south eastern Australia.  Having this knowledge, together with other 

supportive climate and weather forecasting tools, helps to understand what the present fire 

susceptibility is like in relation to the past. 

The study fills a major gap in knowledge that can be applied as part of a pro-active fire 

watch system: this, and contrary to common wisdom, can be put in place in a timely manner.  

Measures and activities in this fire watch system might include: 

(1) setting up weather stations at sites representative of the different climate zones in a 

region to collect the necessary data; 

(2) routinely running the methods to analyse the trends in landscape dryness and 

potential fire spread models to determine the risk of LLFs; 

(2) field checking of the levels of soil, fuel and vegetation dryness and potential 

flammability across the region, and 

(3) enacting higher levels of fire-preparedness, increased fire suppression capability, 

and forewarning of rural and urban communities once critical thresholds in 

landscape dryness and potential fire spread are indicated. 
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A heightened sense of awareness based on the knowledge and understanding of historical 

fire susceptibility could lead to improved protection of natural, cultural, and social assets within 

a region.  In an increasingly uncertain world of potential climate change, knowing what the fire 

susceptibility was like is like having an advanced fire warning map in a temporal sense.  The 

history of landscape susceptibility to larger fires is therefore a crucial step in understanding 

when a large landscape fire might or could happen in the future. 

 236



 

References 
Alexander, M. E. (1998) Crown fire thresholds in exotic pine plantations of Australasia, PhD 

Thesis, Forestry Department, The Australian National University, Canberra 

Alpert, P., Osetinsky, I., Ziv, B. and Shafir, H., 2004. A new seasons definition based on 

classified daily synoptic systems: an example for the eastern Mediterranean, 

International Journal of Climatology, 24 (8): 1013-1021.  

Anderson, H. E., 1970. Forest Fuel Ignitability, Fire Technology, 6(4): 312–319.  

Anderson, M., 1981. The geometry of leaf distribution in some south eastern Australian forests, 

Agricultural Meteorology, 25: 195-205.  

Oxford, 2007. A Dictionary of Astronomy, Oxford University Press, Australian National 

University. Available at: 

http://www.oxfordreference.com/views/ENTRY.html?subview=Main&entry=t80.e3304 

(accessed 10/03/2008) 

ANU Forestry Department, 1973. A Resource and Management Survey of the Cotter River 

Catchment, ACT Forests Branch, Department of the Capital Territory, ACT.  

AOED, 2004. The Australian Oxford Dictionary, Oxford University Press, Melbourne. 

Australian Bureau of Statistics, 2003. Year book, Australia, Issue 83, Australian Bureau of 

Statistics, Canberra. 

Banks, J. C. G. 1982. The Use of Dendrochronology in the Interpretation of the Dynamics of the 

Snow Gum Forest, PhD Thesis, Forestry Department, Australian National University, 

Canberra. 

Bartlett, A.G. 1993. A case study of wildfire management in the Byadbo and Tingaringy 

wilderness areas, Research Report No. 38, Department of Sustainability and 

Environment, Melbourne. 

Berry, S. L. 2001. A study of the relationships between climate, carbon dioxide and the 

vegetation cover of the Australian continent at the present and the last glacial 

maximum, PhD thesis, The Australian National University, Canberra. 

Berry, S. L. 2007. Unpublished data, Mean monthly estimates of Gross Primary Productivity 

(GPP) derived from MODIS imagery, Fenner School of Environment and Society, The 

Australian National University. 

Berry, S. L., Farquhar, G. D. and Roderick, M. L., 2006. Co-evolution of Climate, Vegetation, 

Soil and Air, In Encyclopedia of Hydrological Sciences, Vol. 1 John Wiley and Sons, 

Chichester. 

 237



 

Berry, S. L. and Roderick, M. L., 2002. Estimating mixtures of leaf functional types using 

continental-scale satellite and climatic data, Global Ecology and Management, 11: 23-

29.  

Berry, S. L. and Roderick, M. L., 2004. Gross primary productivity and transpiration flux of the 

Australian vegetation from 1788 to 1988 AD: effects of CO2 and land use change, 

Global Change Biology, 10: 1884-1898.  

Bessell, R. 2006 Predictability of Fire Season Severity from Atmospheric Circulation Analysis, 

School of Resources, Environment and Society, The Australian National University, 

Canberra, pp. 81. 

Brackenreg, J. G., 1926. Unpublished fire report, Federal Capital Commission, Commonwealth 

Government of Australia.  

Bristow, K. and Campbell, G. S., 1984. On the relationship between incoming solar radiation 

and daily maximum and minimum temperatures, Agricultural and Forest Meteorology, 

78: 31-51.  

Brown, A. A. and Davis, K. P., 1973. Forest Fire Control and Use, McGraw Hill, New York.  

Brunt, D., 1932. Notes on radiation in the atmosphere, Quarterly Journal of the Royal 

Meteorological Society, 58: 389-418.  

Brutsaert, W., 1975. On a derivable formula for long-wave radiation from clear skies, Water 

Resources Research, 11: 742-744.  

Budyko, M. I., 1974. Climate and Life, Academic Press, New York.  

Bureau of Meteorology, 1997. Guidelines for the Siting and Exposure of Meteorological 

Instruments and Observing Facilities, Melbourne, Bureau of Meteorology, Department 

of the Environment Sports and Territories.  

Bureau of Meteorology, 2005. Surface Irradiance Data from Australian weather stations, 

Climate Services Division, Bureau of Meteorology. Melbourne. 

Bureau of Meteorology, 2006, List of current and disused weather stations, Climate Services 

Division, Bureau of Meteorology, Melbourne. 

Bureau of Meteorology, 2007a. Australian Rainfall data, Climate Services Division, Bureau of 

Meteorology, Melbourne. 

Bureau of Meteorology, 2007b. Daily weather data collected at Canberra and Cabramurra 

weather stations (1951-2007), Climate Services Division, Bureau of Meteorology, 

Melbourne. 

Bureau of Meteorology, 2007c. Three-hourly weather data collected at Canberra weather 

station (1951-2007), Climate Services Division, Bureau of Meteorology, Melbourne. 

 238



 

Bureau of Meteorology, 2008. Australian Climatic Influences, Bureau of Meteorology. 

Available at: http://www.bom.gov.au/watl/about-weather-and-climate/australian-

climate-influences.html?bookmark=introduction (accessed 01/06/2008). 

Burroughs, W. C., 2003. Weather Cycles - Real or Imaginary, Cambridge University Press, 

Cambridge.  

Burrows, N. D., 1987. The soil dryness index for use in forest fire control in Western Australia, 

Technical Report No. 17, Department of Conservation and Land Management. 

Byram, G. M., 1959. Combustion of forest fuels, In Brown A.A. and K.P. Davis (Eds). Forest 

fires: control and use, McGraw Hill, New York, pp. 61-80. 

Byram, G. M. and Jemison, G. M., 1943. Solar radiation and fuel moisture, Journal of 

Agricultural Research, 67 (4): 149-175.  

Cary, G., 1998. Predicting fire regimes and their ecological effects in spatially complex 

landscapes PhD Thesis, The Australian National University, Canberra.  

Castro, F. X., Tudela, A. and Sebastià, M. T., 2003. Modeling moisture content in shrubs to 

predict fire risk in Catalonia (Spain), Agricultural and Forest Meteorology, 116 (1-2): 

49-59. 

Chandler, C., Cheney, P., Thomas, P., Trabaud, L. and Williams, D., 1983. Forest Fire 

Behaviour and Effects, Vol. 1, John Wiley and Sons.  

Cheney, N. P., 1981. Fire Behaviour, In Fire and the Australian Biota, Eds A.M. Gill, R. H. 

Groves, & I.R. Noble Australian Academy of Science, Canberra. 

Chuvieco, E., Aguado, I. and Dimitrikopoulos, A., 2004. Conversion of fuel moisture content 

values to ignition potential for integrated fire danger assessment, Canadian Journal of 

Forest Research, 34 (11): 2284-2293.  

Cleveland, R. B., Cleveland, W. S., McRae, J. E. and Terpening, I., 1990. STL: A Seasonal-

Trend Decomposition Procedure Based on Loess, Journal of Official Statistics, 6: 3-73.  

Cleveland, W. S. and Devlin, S. J., 1988. Locally Weighted Regression: An Approach to 

Regression Analysis by Local Fitting, Journal of the American Statistical Association, 

83: 596-610.  

Coops, N., Delahaye, A. and Pook, E., 1997. Estimation of Eucalypt Forest Leaf Area Index on 

the South Coast of New South Wales using Landsat MSS Data, Australian Journal of 

Botany, 45: 757-769.  

Costin, A. B., 1954. A Study of the Ecosystems of the Monaro Region with Special Reference to 

Soil Erosion, Soil Conservation Service of New South Wales, Sydney.  

Costin, A. B., Wimbush, D. J. and Cromer, R. N., 1964. Volume V. Soil Moisture 

Characteristics and Evapotranspiration, Studies in catchment hydrology in the 

Australian Alps, CSIRO, Melbourne.  

 239



 

Coulibaly, P., 2006. Spatial and temporal variability of Canadian seasonal precipitation (1900-

2000), Advances in Water Resources, 29(12): 1846-1865.  

Council of Australian Governments 2003. Natural Disasters in Australia: Reforming mitigation, 

relief, and recovery arrangements, Australian Government, Canberra. 

Dasgupta, S., Qu, J. J. and Hao, X., 2006. Design of a Susceptibility Index for Fire Risk 

Monitoring, IEEE Geoscience and Remote Sensing Letters, 3(1): 140-144.  

Davies, C., 1997. Analysis of Fire Causes on or Threatening Public Land 1976/77-1995/96, 

Research Report No. 49, Department of Natural Resources and the Environment, 

Melbourne. 

Deeming, J. E., Burgan, R. E. and Cohen, D. E., 1978. The National Fire Danger Rating System 

- 1978, Intermountain Forest & Range Experiment Station, General Technical Report 

INT-39, USDA Forest Service, Ogden, Utah, USA. 

Dennison, P. E., Moritz, M. A. and Taylor, R. S., 2008. Evaluating predictive models of critical 

live fuel moisture in the Santa Monica Mountains, California, International Journal of 

Biometeorology, 17: 18-27.  

Department of Environment and Climate Change, 2005. Southern Comprehensive Regional 

Assessment GIS datasets, New South Wales Government, Department of Environment 

and Climate Change, NSW.  

Department of Sustainability and the Environment, 2009. Major Bushfires in Victoria, 

Department of Sustainability and the Environment, Melbourne. Available at: 

http://www.dse.vic.gov.au/DSE/nrenfoe.nsf/LinkView/E20ACF3A4A127CB04A25679

300155B04358FFCDA5CA1F43FCA256DA6000942C9 (accessed 25/09/2009). 

Dimitrakopoulos, A. P. and Bemmerzouk, A. M., 2003. Predicting live herbaceous moisture 

content from a seasonal drought index, International Journal of Biometeorology, 47: 

73-79.  

Dimitrakopoulos, A. P. and Papaioannou, K. K., 2001. Flammability Assessment of 

Mediterranean Forest Fuels, Fire Technology, 37: 143–152.  

Donatelli, M. and Campbell, G. S. (Eds.), 1998.  A simple model to estimate global solar 

radiation 5th Congress of the European Society for Agronomy, II, Nitra, Slovakia.  

Drosdowsky, W. and Williams, M., 1991. The Southern Oscillation in the Australian Region. 

Part I: Anomalies at the Extremes of the Oscillation, Journal of Climate, 4(6): 619-638.  

Duarte, H. F., Dias, N. L. and Maggiotto, S. R., 2006. Assessing daytime downward long-wave 

radiation estimates for clear and cloudy skies in Southern Brazil, Agricultural and 

Forest Meteorology, 139 (3-4): 171-181.  

 240



 

Dudley, M., 2003. Current Methods to Assess Fire Danger Potential, In Wildland Fire Danger: 

Estimation and Mapping - The Role of Remote Sensing Data, Ed, Chuvieco, E. World 

Scientific Publishing, Singapore. 

EcoWISE, 2008. Daily weather data from Corin Dam (1996-2008). EcoWISE Environmental 

Services, Canberra. 

Environment ACT, 2004. Map of Fire History (Wildfires and Prescribed Fires), Environment 

ACT, Department of Urban Services, ACT.  

Fisher, J. B., Tu, K. P. and Baldocchi, D. D., 2008. Global estimates of the land–atmosphere 

water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET 

sites, Remote Sensing of Environment: 112: 901–919. 

Flannigan, M. and Wotton, B., 2001. Climate, weather and area burned, In Forest fires Eds, 

Johnson, E. and Miyanishi, K. Academic Press, New York, pp. 351-373. 

Fogarty, L. G., Pearce, H. G., Catchpole, W. R. and Alexander, M. E., 1998b.  Adoption vs. 

adaptation: lessons from applying the Canadian Forest Fire Danger Rating System in 

New Zealand. In Proceedings, 3rd International Conference on Forest Fire Research 

and 14th Fire and Forest Meteorology Conference, Luso, Coimbra, Portugal, 16-20 

November, 1998.  

Foley, J. C., 1947. A Study of Meteorological Conditions associated with Bush and Grass Fires 

and Fire Protection Strategy in Australia, Bureau of Meteorology, Commonwealth of 

Australia. Melbourne. 

Fowler, A.G. 1992. Climate change and water resources in the Auckland region, PhD, 

University of Auckland, Auckland. 

Fowler, A. G. 1994. User Manual for DBMS92 software, University of Auckland, Auckland, 

Fowler, A. G., 1999. Potential climate change impacts on water resources in the Auckland 

Region (New Zealand), Climate Research, 11 (3): 221-245. Available at: 

http://www.int-res.com/abstracts/cr/v11/n3/p221-245/ (accessed 10/04/2008). 

Fowler, A.G. 2002. Assessment of the validity of using mean potential evaporation in the 

computation of the long-term water balance, Journal of Hydrology, 256: 248-263.  

Fowler, A.G. and Adams, K., 2004. Twentieth century droughts and wet periods in Auckland 

(New Zealand) and their relationship to ENSO, International Journal of Climatology, 

24 (15): 1947-1961.  

Gash, J. H. C. and Shuttleworth, W. J., 1991. Tropical Deforestation: Albedo and the Surface-

Energy Balance, Climatic Change, 19: 123-133.  

Geerts, B., 2003. Empirical estimation of the monthly-mean daily temperature range, 

Theoretical and Applied Climatology, 74 (3-4): 145-165.  

 241



 

Gellie, N. J. H., 2005. The Vegetation of the Southern Forests: South-East Highlands, 

Australian Alps, South-west Slopes, and SE Corner bioregions, Cunninghamia, 6 (2): 

219-253.  

Geoscience Australia, 2003. 1:2.5 Million Topographic Data, Geoscience Australia, 

Commonwealth of Australia, Canberra. 

Gill, A. M., 2005. Landscape fires as social disasters: An overview of 'the bushfire problem', 

Environmental Hazards, 6: 65-80.  

Good, P., Moriondo, M., Giannakopoulos, C. and Bindi, M., 2008. The meteorological 

conditions associated with extreme fire risk in Italy and Greece: relevance to climate 

model studies, International Journal of Wildland Fire, 17: 155-165.  

Gordon, A. D., 1987. A Review of Hierarchical Classification, Journal of the Royal Statistical 

Society. Series A (General), 150 (2): 119-137. 

Hanstrum, B. N., Wilson, K. J. and Barrell, S. L., 1990. Prefrontal Troughs over Southern 

Australia. Part II: A Case Study of Frontogenesis, Weather and Forecasting, 5 (1): 32-

46.  

Hargreaves, G. L., Hargreaves, G. H. and Riley, P., 1985. Irrigation water requirement for the 

Senegal Water Basin, Journal of Irrigation Drainage Engineering ASCE, 111: 265-275.  

Hari P., Mäkelä A., Berninger F. et al. (1999). Field evidence for the optimality hypothesis of 

gas exchange in plants. Australian Journal of Plant Physiology, 26, 239–244. 

Harrison, M. S. J. 1986. A synoptic climatology of South African rainfall variations, PhD 

Thesis, University of Witswatersrand, Johannesburg. 

Hessl, A. E., McKenzie, D. and Schellhaas, R., 2004. Drought and Pacific Decadal Oscillation 

linked to Fire Occurrence in the inland Pacific Northwest, Ecological Applications, 14 

(2): 425-442.  

Hobbs, J. E., 1998. Present Climates of Australia and New Zealand, In Climates of the Southern 

Continents - Present, Past and Future Eds, Hobbs, J. E., Lindesay, J. and Bridgman, H. 

A., John Wiley and Sons, Chichester. 

Horel, J. D. and Wallace, J. M., 1981. Planetary-Scale Atmospheric Phenomena Associated 

with the Southern Oscillation, Monthly Weather Review, 109 (4): 813-829.  

Idso, S. B., 1981. A set of equations for full spectrum and 8- to 14m and 10- to 12.5m 

thermal radiation from cloudless skies, Water Resources Research, 17: 295-304.  

Idso, S. B. and Jackson, R. D., 1969. Thermal radiation from the atmosphere. Journal of 

Geophysics Research, 74: 3397-3403.  

IPCC, 2007a. Climate Change 2007 - The Physical Science Basis. Contribution of Working 

Group I to the Fourth Assessment Report of the IPCC, Cambridge University Press.  

Iqbal, M., 1983. An introduction to solar radiation Academic Press, Toronto.  

 242



 

Iziomon, M. G., Mayer, H. and Matzarakis, A., 2003. Downward atmospheric long-wave 

irradiance under clear and cloudy skies: measurement and parameterization, Journal of 

Atmospheric and Solar-Terrestrial Physics, 65: 1107-1116.  

Jarvis, P. G., James, G. B. and Landsberg, J. J., 1976. Coniferous Forest, In Vegetation and the 

Atmosphere Vol. 2, Ed, Monteith, J. L., Academic Press, New York. 

Jiang, N., Neelin, J. D. and Ghil, M., 1995. Quasi-quadrennial and quasi-biennial variability in 

the equatorial Pacific, Climate Dynamics, 12 (2): 101-112. Available at: 

http://dx.doi.org/10.1007/BF00223723 (accessed 16/09/2008) 

Jimenez, J. I., Alados-Arboledas L., Castro-Diez Y. and G, B., 1987. On the Estimation of 

Long-Wave Radiation Flux from Clear Skies, Theoretical Applied Climatology, 38: 37-

42.  

Johnson, E. A., 1992. Fire and Vegetation Dynamics: Studies from the North American Boreal 

Forest, Cambridge University Press.  

Johnson, E. A. and Larsen, C. P. S., 1991. Climatically Induced Change in Fire Frequency in the 

Southern Canadian Rockies Ecology, 72: 194-201.  

Keetch, J. J. and Byram, G. M., 1968. A Drought Index for Forest Fire Control, Research Paper 

SE-38, South-East Forest Experimental Station, USDA Forest Service, Asheville, NC, 

USA. 

Kidson, J. W., 1988. Indices of the Southern Hemisphere zonal wind, Journal of Climate, 1: 

183-194.  

Kimball, J. S., Running, S. W. and Nemani, R., 1997. An improved method for estimating 

surface humidity from daily minimum temperature, Agricultural and Forest 

Meteorology, 85 (1-2): 87-98.  

Klein, J. L., 1997. Statistical Visions in Time, Cambridge University Press, Cambridge. 

Kuczera, G. 1988. The Soil Dryness Index Streamflow Yield Model: An Overview of Its 

Development and Capabilities, In 18th Hydrology and Water Resources Symposium, 

Canberra, A.C.T, Institution of Engineers, Australia, Barton, ACT. 

Langford, K. J., Duncan, H. P. and Heeps, D. P., 1978. Evaluations and use of a water balance 

model., Institute of Engineers of Australia Civil Engineering Transactions: 48-53.  

Leuning, R., Cleugh, H. A., Zegelin, S. J. and Hughes, D., 2005. Carbon and water fluxes over a 

temperate Eucalyptus forest and a tropical wet/dry savanna in Australia: measurements 

and comparison with MODIS remote sensing estimates, Agricultural and Forest 

Meteorology, 129 (3-4): 151-173.  

Lhomme, J. P., 1997. Towards a rational definition of potential evaporation, Hydrology and 

Earth System Sciences, 1 (2): 257-264.  

Linacre, E., 1992. Climate Data and Resources - a reference and guide, Routledge, London.  

 243



 

Linacre, E., 2004. Evaporation Trends, Theoretical Applied Climatology, 79: 11-21.  

Linacre, E. and Geartz, B., 1997. Climates and Weather Explained, Routledge, London.  

Lindesay, J., 2003. Climate and Drought in Australia, In Beyond Drought - People, Policy and 

Perspectives Eds, Botterill, L. C. and Fisher, M., CSIRO Publishing, Collingwood. 

Lindesay, J., 2005. Climate and Drought in the Sub-Tropics-The Australian Example, In From 

Distaster Response to Risk Management - Australia's National Drought Policy (Eds, 

Botterill, L. C. and Wilhite, D. A.) Springer, Dordrecht, The Netherlands. 

Liu, D. L. and Scott, B. J., 2001. Estimation of Solar Radiation in Australia from rainfall and 

temperature observations, Agricultural and Forest Meteorology, 91: 209-221.  

Luke, R. H. and McArthur, A. G., 1978. Bushfires in Australia, Australian Government 

Publishing Service, Canberra.  

Mathsoft 2005. S-PLUS language Reference Guide, Data Analysis Products Division, Mathsoft, 

Palo Alto. 

McArthur, A. G., 1962. The Application of a Drought Index to Australian Fire Control, Forest 

Research Institute, Forestry and Timber Bureau, Canberra. 

McArthur, A. G., 1962. Control Burning in Eucalypt Forests, Leaflet No. 80, Forest Research 

Institute, Forestry and Timber Bureau.  

McArthur, A. G., 1966. Weather and Grassland Behaviour, Leaflet No. 100, Forest Research 

Institute, Forestry and Timber Bureau, Canberra. 

McArthur, A. G., 1967. Fire Behaviour in Eucalypt Forests, Leaflet No. 107, Forest Research 

Institute, Forestry and Timber Bureau, Canberra. 

McArthur, A. G. and Cheney, N. P., 1972. Source Notes on Forest Fire Control, Forest 

Research Institute, Forestry and Timber Bureau, Canberra. 

McBride, J. L. and Nicholls, N., 1983. Seasonal Relationships between Australian Rainfall and 

the Southern Oscillation, Monthly Weather Review, 111 (10): 1998-2004.  

McKenzie, N., Jacquier, D., Isbell, R. and Brown, K., 2004. Australian Soils and Landscapes - 

an illustrated compendium 2nd Edition, CSIRO, Collingwood. 

McLeod, R., 2003. Inquiry into the Operational Response to the January 2003 Bushfires in the 

ACT, ACT Government, Department of Urban Services.  

Monteith, J. L., 1965. Evaporation and the Environment, Proceedings of Symposium on 

Experimental Biology, 19: 205-234.  

Moore, C. J., 1976. A comparative study of the radiation balance above forest and grassland, 

Quarterly Journal of the Royal Meteorological Society, 102: 889-899.  

Moore, I. D., Norton, T. W. and Williams, J. E., 1993. Modelling environmental heterogeneity 

in forested landscapes, Journal of Hydrology, 150 (2-4): 717-747.  

 244



 

Morgan, P., Heyerdahl, E. K. and Gibson, C. E., 2008. Multi-season climate synchronised forest 

fires throughout the 20th century, Northern Rockies, USA, Ecology, 89 (3): 717–728.  

Mount, A. B., 1972. The derivation and testing of a soil dryness index using run-off data, 

Forestry Commission of Tasmania, Hobart. 

Mount, A. B. 1980.  Estimation of evaporative losses from forests; a proven simple model with 

wide applications, Hydrology and Water Resources Symposium, Institute of Engineers 

of Australia, Adelaide.  

Murphy, B. F. and Timbal, B., 2008. A review of recent climate variability and climate change 

in southeastern Australia, International Journal of Climatology, 28(7): 859-879.  

Noble, I. R., Bary, G. A. V. and Gill, A. M., 1980. McArthur's fire-danger meters expressed as 

equations, Australian Journal of Ecology 5: 201-203.  

Oke, T. R., 1987. Boundary Layer Climates, Methuen, London.  

O'Loughlin, E.M., Cheney, P. and Burns, J., 1986. The Bushranger's experiment: Hydrological 

response of a eucalypt catchment to fire, In The First National Symposium on Forest 

Hydrology, Eds, E.M. O'Loughlin and Bren, L. J., Institute of Engineers Australia, 

Canberra. 

Palmer, W. C., 1965. Meteorological drought, US Department of Commerce Weather Bureau, 

Washington DC. 

Paltridge, G. W., 1975. Net Radiation over Australia, Search, 6: 37-39. 

Paltridge, G. W. and Proctor, D., 1976. Monthly mean solar radiation statistics for Australia, 

Solar Energy, 18 (3): 235-243.  

Pellizzaro, G., Cesaraccio, C., Duce P., Ventura, A. and Zara, P., 2007. Relationships between 

seasonal patterns of live fuel moisture and meteorological drought indices for 

Mediterranean shrubland species, International Journal of Wildland Fire, 2007(16): 

232-241.  

Penman, H. L., 1948. Natural evaporation from open water, bare soil, and grass, Proceedings of 

the Royal Society of London, Series A, Mathematical and Physical Sciences, 193: 120-

145.  

Pompe, A. and Vines, R. G., 1966. The influence of moisture on the combustion of leaves, 

Australian Forestry, 30: 231-241. 

Pook, E. W., Costin, A. B. and Moore, W. E., 1966. Water stress on native vegetation during the 

drought of 1965, Australian Journal of Botany, 14 (2): 257-267.  

Prata, A. J., 1996. A new long-wave formula for estimating downward clear-sky radiation at the 

surface, Quarterly Journal of the Royal Meteorological Society, 122: 1127-1151.  

Prescott, J. A., 1940. Evaporation from a water surface in relation to evaporation, Transcripts of 

the Royal Society of South Australia, 54: 114-118.  

 245



 

Priestley, C. H. B. and Taylor, R. J., 1972. On the assessment of surface heat flux and 

evaporation using large scale parameters, Monthly Weather Review, 100: 81-92.  

Pryor, L. D., 1939. The Bushfire Problem in the ACT, Australian Forestry, 4: 33-38.  

Raupach, M. R., Kirby, J. M., Barrett, D. J., Briggs, P. R., Lu, H. and Zhang, L., 2001. Balances 

of Water, Carbon, Nitrogen, and Phosphorus in Australian Landscapes: (2) Model 

Formulation and Testing, CSIRO Land and Water Technical Report 41/10, CSIRO, 

Canberra. 

Rawson, R.P., Billing, P.R., & Duncan, S.F. 1983, The 1982/83 forest fires in Victoria, 

Australian Forestry, 46 (3): 163-172. 

Reiff, J., Blaauboer, D., de Bruin, H. A. and van Ulden, A. P., 1984. An air mass transformation 

model for short-range weather forecasting, Monthly Weather Review, 112:393-412.  

Roderick, M. L., 1993. Methods for Calculating Solar Position and Day Length Including 

Computer Programs and Subroutines, Western Australian Department of Agriculture, 

Perth.  

Roderick, M. L., 1999. Estimating the diffuse component from daily and monthly measurements 

of global radiation. Agricultural and Forest Meteorology, 95: 169-185.  

Romesberg, H. C., 1984. Cluster Analysis for Researchers, Lifetime Learning Publications, 

Belmont, California.  

Rothermel, R. C., 1972. A mathematical model for predicting the spread in wildland fuels, US 

Department of Agriculture Forest Service, Intermountain Forest and Range 

Experimental Station, Ogden, Utah, USA. 

RSBS (2008) Short and long-wave radiation measurements taken at Canberra Airport (2007-

2008), Research School of Biological Sciences, Canberra. 

Schoennagel, T., Veblen, T. T., Romme, W. H., Sibold, J. S. and Cook, E. R., 2005. ENSO and 

PDO variability affect drought-induced fire occurrence in rocky mountain subalpine 

forests, Ecological Applications, 15 (6): 2000-2014.  

Sear, C. B., Kelly, P. M., Jones, P. D. and Goodess, C. M., 1987. Global surface-temperature 

responses to major volcanic eruptions, Nature, 330: 365-367.  

Silberstein, R., Held, A., Hatton, T., Viney, N. and Sivapalan, M., 2001. Energy balance of a 

natural jarrah (Eucalyptus marginata) forest in western Australia: measurements during 

the spring and summer, Agricultural and Forest Meteorology, 109: 79-104.  

Simard, A. J., 1991. Fire severity, changing scales, and how things hang together, International 

Journal of Wildland Fire, 1 (1): 23- 34.  

Stewart, J. B., 1971. The albedo of a pine forest, Quarterly Journal of the Royal Meteorological 

Society, 97: 561-564.  

 246



 

Stretton, L. E. B., 1939. Report of the Royal Commission to Inquire into the Causes of and 

Measures Taken to Prevent the Bush Fires of January 1939, and to Protect Life and 

Property, Government Printer, Melbourne. 

Stull, R. R., 2000. Meteorology for Scientists and Engineers, Brooks Cole, California.  

Sturman, A. and Tapper, N., 2006. The Weather and Climate of Australia and New Zealand. 

2nd edition, Oxford University Press, Melbourne.  

Supit, I. and van Kappel, R. R., 1998. A simple method to estimate global radiation, Solar 

Energy, 63 (3): 147-160.  

Swinbank, W. C., 1963. Long-wave radiation from clear skies, Quarterly Journal of the Royal 

Meteorological Society, 89: 330-348.  

Talsma, T., 1983. Soil of the Cotter catchment, ACT: distribution, chemical and physical 

properties, Australian Journal of Soil Research, 21: 241-255.  

Taylor, J. and Webb, R., 2005. Meteorological aspects of the January 2003 southeastern 

Australia bushfire outbreak, Australian Forestry, 68 (2): 94-103.  

Taylor, S. W. and Alexander, M. E., 2006. Science, technology, and human factors in fire 

danger rating: the Canadian experience, International Journal of Wildland Fire, 15(1): 

121-135.  

Thresher, R. E., 2002. Solar correlates of Southern Hemisphere mid-latitude climate variability, 

International Journal of Climatology, 22: 901-915.  

Turner, D. P., Ritts, W. D., Cohen, W. B., Gower, S. T., Running, S. W., Zhao, M., Costa, M. 

H., Kirschbaum, A. A., Ham, J. M., Saleska, S. R. and Ahl, D. E., 2006. Evaluation of 

MODIS NPP and GPP products across multiple biomes, Remote Sensing of 

Environment, 102(3-4): 282-292. 

Trevitt, A. C. F., 1989.  Weather parameters and fuel moisture content: standards for fire model 

inputs, In Proceedings - Conference on Bushfire Modelling and Fire Danger Rating 

Systems, CSIRO Canberra.  

Trnka, M., Zalud, Z., Eitzinger, J. and Dubrovsky, M., 2005. Global solar radiation in Central 

European lowlands estimated by various empirical formulae, Agricultural and Forest 

Meteorology, 131: 54-76.  

University of Wyoming , Department of Atmospheric Science, 2008. Atmospheric Soundings, 

College of Engineering, University of Wyoming. (acccessed online between 01/07/2006 

and 04/04/2008). 

Van Wagner, C. E., 1972. Heat of combustion, heat yield, and fire behavior, Forestry Service 

Informational Report PS-X-35, Environment Canada.  

Van Wagner, C. E., 1987. Development and Structure of the Canadian Forest Fire Weather 

Index System, Petawawa National Forestry Institute, Canadian Forestry Service, Ottawa. 

 247



 

Vertessy, R. A., Watson, G. R. and O'Sullivan, S. K., 2001. Factors determining relations 

between stand age and catchment water balance in mountain ash forests, Forest Ecology 

and Management, 143: 13-26.  

Viegas, D. X., Bovio, G., Ferreira, A., Nosenzo, A. and Sol, B., 1999. Comparative study of 

various methods of fire danger evaluation in southern Europe, International Journal of 

Wildland Fire, 9(4): 235-246.  

Vines, R. G., 1974. Weather patterns and bushfire cycles in southern Australia, CSIRO 

Division of Chemical Technology Technical Paper No. 2, CSIRO, Melbourne. 

Viney, N. R., 1991. A Review of Fine Fuel Moisture Modelling International Journal of 

Wildland Fire, 1 (4): 215-234. 

Ward, R. C. and Robinson, M., 2000. Principles of Hydrology 4th Edition, McGraw Hill, 

London.  

Westerling, A. L., Gershunov, A., Brown, T. J., Cayan, D. R. and Dettinger, M. D., 2003. 

Climate and Wildfire in the Western United States, American Meteorological Society, 

May 2003: 595-604. 

Williams, A. J. and Stone, R. C., 2008. An assessment of relationships between the Australian 

subtropical ridge, rainfall variability, and high-latitude circulation patterns, 

International Journal of Climatology, 2008 (9999): 9999 (Early view). 

Winslow, J. C., Hunt, E. R. and Piper, S. C., 2001. A globally applicable model of daily solar 

irradiance estimated from air temperature and precipitation data, Ecological Modelling, 

143: 227-243.  

World Meteorological Organization, 1983. Guide to Meteorological Instruments and Methods 

of Observation, WMO.  

World Meteorological Organization, 1988. Technical Regulations, General Meteorological 

Standards and Recommended Practices, WMO.  

Wotton, B., 2008. Interpreting and using outputs from the Canadian Forest Fire Danger Rating 

System in research applications, Environmental and Ecological Statistics, accessed 

20/06/2008). 

 248



 

Appendix 1: Calculations of All-wave Net 
Radiation, Evaporation, and their respective 
Components for Canberra Airport and the 
upper Cotter River catchment 

 

 

Refer to CD-ROM 
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Appendix 2: Calculations of Soil Water 
Deficit (SWD) for Canberra Airport and the 
upper Cotter River catchment 

 

 

Refer to CD-ROM. 
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Appendix 3: Method for Calibrating the 
Fowler daily soil water balance model 

 

The rainfall and cumulative EP data were combined to produce a single dataset for input to 

the Fowler daily soil water balance model supplied by Fowler (1994).  This model requires a 

detailed set of parameters to run the model (Table A3.1).  Acronyms for the model parameters 

are documented in Fowler’s user manual that explains how these input variables can be used to 

calibrate the Fowler (F-DSWBM) model. 

To calibrate the Fowler daily soil water balance model, the values of the key parameters 

for this model at Canberra Airport and in the upper Cotter River Catchment were adjusted in a 

series of model runs until a satisfactory fit between F-DSWBM and the RSDI model were 

achieved (R2>0.80). 

First, the interception values in the Fowler daily soil water balance model were matched 

with those used until a close fit was attained.  Then the values of the key parameters to adjust 

values of evapotranspiration and runoff were PEtsPEg0, PEtsPEg5, AWC, DMAX, Dc and 

SRF_RL.  Available water capacity was increased from 165 to 200 mm to reflect the increase in 

soil water capacity in the deeper forest soils (see Table A3.1).  At the start of simulations, 

PEtsPEg0 was set as equal to 1.0 and PEtsPEg5 as equal to 0.65. 

For Canberra Airport, values of PEtsPEg0 and PEtsPEg5 were adjusted downwards to 

values of 0.75 and 0.45 from their initial values of 1.0 and 0.5 in order to obtain a calibrated 

SWD time series for Canberra Airport, based on dry sclerophyll forests in the sub-montane 

climate zone.  The values of the parameter DMAX was also adjusted downwards from 1.0 to 0.5 

to reflect the slower drainage of water out of the red podzolic soils underlying dry sclerophyll 

forests.  The value of Dc was also set at 8 to reflect slow drainage out of the soil. 

In the upper Cotter River catchment, the value of PEtsPEg0 was left unchanged at 1.0.  

This higher value characterizes the higher evaporation found in the more productive forests 

within the moister montane climate zone.  The parameter PEtsPEg5 was adjusted downwards to 

0.60 in order to obtain the best correlation between values of SWD produced by the F-DSWBM 

and the RSDI models.  The values of DMAX and DC were set to 1 and 4 respectively to reflect the 

better soil drainage in the more friable soils found in the upper Cotter River catchment. 
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Table A3.1 Model parameters and final values for the Fowler daily soil water 
balance model 

Parameter Description of parameter 

Values for Canberra 
Airport 

 

Values for the 
upper Cotter 

River catchment
 

*INT0P Effective rainfall threshold (mm) 0.2 0.2 

*INT1P, INT1Peff 
Rainfall and effective rainfall values for 
hinge point 1 (mm) 3, 2.6 3, 1.8 

*INT2P, INT2Peff 
Rainfall and effective rainfall values for 
hinge point 2 (mm) 7, 5.0 7, 4.5 

*PEtsPEg0 

Overall potential dry canopy evaporation as 
a proportion of EP estimated from Priestley 
Taylor equation. (mm) 0.75 1.0 

*PEtsPEg5 
potential dry canopy evaporation set for 
particular vegetation types 0.45 0.60 

*EiPEts 
Evaporation effectiveness ratio on a wet day 
(mm) 3 3 

*AWC Available water capacity (mm) 165 200 

*AWCup 
Starting available water capacity (AWC) 
(mm) 200 0 

*SWD0 Starting soil water deficit (mm) 0 0 

SWCup0 Starting AWC (mm) 0 0 

*DMAX 

Amount of drainage when soil water (SW) 
exceeds available water capacity (AWC) 
(mm) 0.5 1 

Dc Drainage function parameter C 8 4 

SSC Surface storage capacity (mm) 0.5 1.0 

IAa Initial abstraction parameter 1.0 1.0 

*SRF_RL 
Threshold at which soil water resistance 
commences (mm) 25 25 

QQ0 Starting quickflow value (mm) 5 5 

QQa, QQb Quickflow recession parameters 4, 1, 31 4, 1, 31 

QQprop 
Proportion of quickflow in relation to total 
runoff (Q) 0.8 0.8 

QB0 Starting baseflow value (mm) 0.3 0.3 

QBa, QBb User defined baseflow recession parameters 35, 0.8 35, 0.8 

 

Notes: (1) * denotes variables varied in the Fowler daily water balance model in this study.  Interception (EI) values 

found for a dry sclerophyll forest type near Canberra Airport were employed to calibrate the interception 

values in the F-DSWBM model.  Runoff values were not adjusted due to a lack of suitable run-off data 

needed to calibrate these parameters. 

(2) The last five parameters relating to run-off were left unadjusted in the calibration procedure. 
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Appendix 4: Calculations of Fire Weather 
Index (FWI) for Canberra Airport 

 

 

Refer to CD-ROM. 
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