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2 List of abbreviations
C A S3D

C A STO R

EBK

FLR

K A M

LHD

M H D
N C SX

PIES

SPE C T O R 3D

T E R PSIC H O R E
VM EC

A 3D ideal MHD stability code [4].
Complex Alfven Spectrum of Toroidal Plasmas: A 
2-D resistive MHD spectral code [3]. 
Einstein-Brillouin-Keller (method): A method for 
semiclassical quantisation in the integrable limit. 
Finite Larmor Radius: Of a model in which the limit 
Larmor radius —> 0 is not taken, or of an effect which 
is absent in that limit.
Kolmogorov-Arnold-Moser (theorem or tori): see 
section 8.5.
Large Helical Device: Currently the largest stellara- 
tor in the world, located in Japan. 
Magnetohydrodynamics
National Compact Stellarator experiment: a heav
ily optimised low aspect ratio stellarator under con
struction in the USA.[1]
Princeton Iterative Equilibrium Solver: see section
4.2.
SPECtrum of TOroidal Resistive 3D plasmas: The 
linearised resistive spectral code described in this 
thesis.
A 3D ideal MHD stability code [2],
Variational Moments Equilibrium Code: see section
4.2.

W K B Wentzel-Kramers-Brillouin (method): A semiclassi
cal technique for solving one-dimensional differential 
equations.



11

3 In trod u ction

3.1 M otivation

Maintaining our standard of living requires a vast supply of energy, most of 
which is provided by fossil fuels. The use of fossil resources will become unviable 
in the near future, and it is unclear whether any of the current alternatives will 
be able to make up the shortfall. We must therefore either find new ways of 
harnessing energy or make drastic changes to the way we live.

Controlled nuclear fusion is a possible technological solution: it promises a 
concentrated, environmentally sustainable, and economic form of power gener
ation. This prospect has spurred one of the longest focused scientific endeavors 
in recent history. Currently, the only plausible reactor candidates are based 
on the magnetic confinement of hot, high density plasmas. These confinement 
devices can be classified in terms of the shape of the magnetic field used to 
confine the plasma: we will be concerned not just with the devices known as 
stellarators and tokamaks, which are currently the focus of most of the research 
into magnetically confined plasmas, but hybrid devices which in a sense lie 
somewhere in between. It seems likely that in the near future a device from 
one of these subclasses, possibly the proposed ITER tokainak, will produce a 
sustained burning plasma, and liberate large quantities of nuclear energy with 
only modest external power input.

The size and complexity of such fusion devices will largely determine the 
cost per unit energy of fusion power: both size and complexity must be min
imised. To fit in well with existing energy infrastructure, it is also desirable 
for reactors to be relatively small in capacity, and ideally they should produce 
about as much power as conventional power stations. There are technical bar
riers to fulfilling these requirements, stemming from plasma physics and from 
the nuclear engineering of the hardware surrounding the plasma.

A detailed understanding of how these plasmas behave has been shown to 
be essential to the design of devices and to improvements in fusion performance 
criteria. However, fusion relevant plasmas are unlikely to ever be completely 
described in a unified framework derived from first-principles, as they are far 
more rich and complex than other systems which have traditionally been con
sidered intractable to analysis, like strongly turbulent fluids. Of course, this 
seldom discourages theorists, especially given the practical demand for a func
tioning reactor, and much progress has been made. In particular, fluid models 
of the plasma have been able to explain many of the constraints on plasma 
performance, and they are the topic of our thesis.
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3.2  S cop e o f  th e  th esis

The thesis investigates the dynamics of three-dimensional magnetically con
fined plasmas, focusing on the linear behaviour of the plasma about an equilib
rium as predicted by fluid models.

Of the many such fluid models relevant to magnetically confined plasma, 
ideal magnetohydrodynamics (MHD), which models the plasma as a perfectly 
electrically conductive fluid in a magnetic field, probably gives the most concise 
expression of the physics which underlies confinement. Due to the simplicity 
and elegance of its underlying equations, a great deal of analytical and numeri
cal study has been possible even in spatially complex plasmas, like stellarators. 
However, ideal MHD is only strictly applicable over a narrow range of timescales. 
It also predicts unphysical behaviours at short length scales, where the lack of 
any wavelength cutoff allows singularities, which can be particularly trouble
some in strongly three dimensional configurations. Including more physics in 
the plasma model can resolve these limitations, but complicated models are 
difficult to analyse in strongly shaped geometries. For this reason, it is gen
erally necessary to find a compromise between a good local representation of 
the plasma behaviour and a good description of the global spatial plasma dy
namics. In this thesis we examine the physics of several plasma models which 
somewhat extend ideal MHD, and explore techniques for the global analysis of 
these models in spatially complicated plasmas like stellarators.

As background, we first review the basis for linear stability analysis of mag
netic confinement devices. Section 4 discusses the theoretical and practical 
solutions to the equilibrium problem, and the energy considerations which lead 
to ideal and resistive instabilities. We then examine the relationship between 
the physical plasma behaviour and the results of normal mode analysis. This 
might seem trivial, but for both ideal and resistive MHD the relationship is 
not entirely obvious; features like the resistive Alfven paradox and continuum 
damping illustrate that the most straightforward interpretation of the MHD 
spectrum is not adequate. In section 5 we show how this difficulty is related 
to the non-normality of the MHD spectrum, and the pseudospectrum is dis
cussed as a method for relating the spectrum to the behaviour of the initial 
value problem.

As an additional motivation for a fully three-dimensional analysis of our 
wave problem, in section 5.2 we consider what qualitative differences are to be 
expected between wave analysis in axisymmetric plasmas and fully three di
mensional configurations as a result of wave chaos. The absence of a continuous 
symmetry means that the toroidal wave number is no longer a good quan
tum number and this prevents us from using a simple EBK quantisation based
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on exact symmetries to find asymptotically correct eigenmodes. We overview 
two alternatives to direct numerical calculation for obtaining information about 
spectra which can be used in the absence of a full set of good quantum numbers: 
trace formulae and quantum chaos theory. These techniques suggest that three 
dimensionality may introduce a form of disorder into the spectra and wavemodes 
of fluid models.

We began our investigation by implementing a numerical approach to solv
ing the linearised incompressible resistive MHD equations in three dimensional 
toroidal geometry. Benchmarking of the code highlighted the need to under
stand our incompressible model more clearly, leading to the investigations in 
section 6. There we consider the semi-analytical and numerical spectra of a 
range of fluid models applied to cylindrical plasmas in order to explore how well 
the physical problem is represented.

As a consequence of these results, and further numerical considerations re
lated to spectral pollution, we decided to reformulate SPECTOR3D as a com
pressible resistive stability code; the resulting formulation offers better represen
tation of the physics at the expense of reduced spatial resolution. The formula
tion is described in section 7, along with some test cases which demonstrate the 
proper functioning of the code. The application of our code to physical problems 
is of considerable interest, and we start by considering cases where the toroidic- 
ity does not qualitatively change the wavemodes of interest, but may have some 
effect on marginal stability points or growth rates. The first plasma configu
ration considered is a theoretical equilibrium of the LHD stellarator. where we 
demonstrate the effects of resistivity and toroidal coupling on MHD modes, as 
well as reproducing the published ideal MHD results. An application to tearing 
modes is presented next, for the Heliotron E stellarator, where previous studies 
have used one dimensional analytical arguments to determine stability. As the 
next step, we consider wavemodes which are not primarily composed of one 
set of poloidal and toroidal wavenumbers, but are strongly spatially localised. 
These modes often fall within the ballooning approximation, and require con
siderable Fourier space resolution to resolve at all. For this reason they are also 
a much more stringent test of the practical limitations of the code than the 
previous test cases. In subsection 7.17 we consider a sequence of tokamak-like 
equilibria with increasing ripple terms, in order to examine any toroidal locali
sation due to toroidal coupling. The equilibria chosen may be unstable in the 
ideal MHD limit to either m /n  = 1/1 kink modes or ballooning modes accord
ing to the choice of parameters, and in the resistive MHD case, we expect that 
interchange and tearing modes may also be unstable. In three dimensional ideal 
MHD, it is likely that the most unstable ballooning mode is non-normalisable, 
and only approached numerically in the infinite resolution limit. However, re-
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sistive MHD desingularises the spectrum, and so for high enough resolution we 
should be able to resolve the most unstable mode accurately. The modes we 
find become fully toroidally localised as we increase the toroidal coupling.

Although numerical techniques for plasma modelling have generated many 
useful results and can in principle fully describe the stability or dynamics of 
a plasma, analytical and semianalytical study are vital complementary tech
niques; they typically offer more physical insight, and they are often valid in 
limits where numerical approaches suffer from resolution constraints. In the 
ballooning approach, the long wavelength of instabilities along the magnetic 
field lines compared to the wavelength across the field is exploited as an order
ing parameter; this has been very successful in determining the local stability 
of both stellarators and tokamaks. The stability analysis can be extended to 
global modes by considering quantisation; this is straightforward in tokamaks 
because the toroidal symmetry leads to a conservation of the toroidal wavenum
ber, and ensures a complete set of quantum numbers. In stellarators, however, 
the toroidal wavenumber is no longer a good quantum number. One important 
consequence is that in the ideal MHD ballooning limit, semiclassical ray tracing 
predicts an unbounded growth of wavenumber, and normalisable solutions can
not be constructed. The model we choose to address in section 8, which includes 
stabilisation due to finite Larmor radius effects, does not suffer from this prob
lem, because the stabilisation is proportional to wavenumber. This conservative 
system admits a variational form, even though wave frequencies can become 
fully complex, and we show how Lagrangian methods lead to a standard semi
classical formalism. We demonstrate that even in cases with strong asymmetry 
it is possible to apply quantisation by considering the closed semiclassical orbits 
in ballooning space. Surprisingly, it is possible to justify a quantisation which 
is based on near-integrability in cases where chaos appears at first glance to be 
dominant. For some cases, however, where chaos is particularly important, it is 
necessary to use statistical arguments to provide an estimate for the quantities 
of interest.
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4 M H D  physics in s te lla ra to rs

4.1 The ideal M H D  equations

The ideal MHD model is one of the simplest models of plasma behaviour, 
and can be derived from the low order moments of the Vlasov equation:

-  + V(Pv) = 0 ( 1 )

- V - P  + J x B ( 2)

dP—— b 7-PV-vdt (3)

E + v x B  = 0 (4)

dB
dt

- V x E (5)

/x0J = V x B ( 6)

V B  = 0 (7)

We have B. J, E, and v representing the magnetic field, current density, 
electric field and fluid velocity, respectively. Also, P represents the (isotropic) 
pressure, 7 the ratio of specific heats, and p is the mass density of the plasma. 
Note the use of the convective derivatives which are defined as d/dt =  d/dt  + 
v.V.
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4.2 Steady sta te  solutions

We first consider the case of a static equilibria, with v = 0, and d/dt =  0. 
We also have E  =  0 and therefore

V P  = Jx B ,  (8)

/r0J = V x B  (9)

and

V-B = 0 (10)

In a fully three dimensional case, it is difficult to prove that nontrivial static 
solutions to these equilibrium equations exist. It has been shown [5] that there 
are 3D solutions with nested flux surfaces which can sustain a pressure difference 
between the plasma core and the edge, although the proof is not constructive, 
and the size of the domain of existence cannot be explicitly determined. From 
the theoretical perspective, it would be desirable to determine whether there are 
solutions to the MHD equations ‘nearby’ stellarator configurations of interest, 
but we do not know whether such a construction exists.

However, in practice, it is possible to find approximate solutions to these 
equations. This can be achieved using codes such as VMEC [6] and PIES [7}, or 
analytical approaches like the stellarator expansion. The error in the resulting 
approximate equilibria can often be stated in terms of the residual in the force 
balance. We might hope that a small residual force indicated that we were close 
to a true solution, and the convergence of this procedure with increasing grid 
resolution could be taken to indicate the existence of a true equilibrium solution. 
Regardless of whether such convergence takes place, we find that these equilibria 
can be very accurate at moderate to large scales, where numerical resolution is 
not an issue. At sufficiently small scales the plasma is not accurately modelled 
by ideal MHD, and it is reasonable to tolerate small departures from equilibrium.

In spite of these issues, plasma can be efficiently confined in practise by a 
non-axisymmetric field, and there is strong evidence that the stationary plasma 
states of stellarators are consistent with MHD equilibrium. A numerically com
puted equilibrium can be compared directly with such experiments by measuring 
the shape of the plasma column, the profiles of surface functions or changes in 
the magnetic field; indirect comparisons can also be made using derived quan
tities like the stability limits and structure of gap modes. One direct study
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compared the experimental measurements of the Shafranov shift to the predic
tions of MHD theory for heliotrons [8]: they were found to agree closely.

For the practical problem of finding analytic or numerical MHD equilibria, 
it is necessary to supply enough constraints on the equilibrium to fully specify 
the problem. Because MHD does not provide a full model of plasma behaviour, 
radial profiles which could in principle be calculated from knowledge of the 
experimental parameters need to be specified as constraints in an MHD equi
librium calculation. For equilibrium codes like VMEC, two independent radial 
profiles must be specified. Most MHD analysis of stellarators assumes that there 
is no net toroidal current present on any flux surface, and this zero toroidal cur
rent profile and a pressure profile are the two radial profiles most commonly 
used in stellarator analysis. The vacuum magnetic field structure also needs to 
be specified; for fixed boundary cases, the shape of an outer flux surface specifies 
the vacuum magnetic field structure uniquely.

For most present-day devices, the assumption that there is no net toroidal 
current is sufficiently accurate for studies of MHD behaviour: however, for many 
next generation devices we must consider the toroidal plasma current from the 
outset. It is possible for the toroidal current to contribute a significant propor
tion of the rotational transform in a reactor relevant stellarator, where bootstrap 
current or the secondary effects of heating can drive large currents. This is true 
in particular of configurations like NCSX. which is expected to have a large 
proportion of its rotational transform generated by bootstrap current when op
erated in the low collisionality regime.

Stellarator MHD equilibrium codes can roughly be divided into two groups, 
according to whether they assume the presence of a full nested set of flux sur
faces:

One group of codes, of which VMEC [6] is the most well known example, 
represent the stellarator geometry using a coordinate system defined on a set of 
nested tori, corresponding to magnetic flux surfaces. The equilibrium problem 
is then solved by minimising the total energy of the configuration. This is 
implemented by varying the Fourier components of the set of unconstrained 
geometrical quantities and finding the minimising perturbation. Although the 
resulting equilibria contain no islands in the VMEC description, the actual 
reconstructed magnetic field may show the presence of islands, with singular 
currents arising at magnetic surfaces often heralding this feature.

In the other group of codes, which solve the unrestricted problem, are codes 
like PIES [7]. These codes resolve fully 3D equilibria, and can predict the 
existence of broken flux surfaces, where magnetic islands and stochastic regions 
can form. At each PIES iteration a plasma current consistent with some initial 
pressure profile and magnetic field structure is found (using force balance and
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quasi-neutrality conditions). A new magnetic field can then be derived through 
Ampere’s law. The old and the new magnetic field are then blended together, 
and the iteration repeats. The procedure usually converges, although it may do 
so rather slowly in some cases, especially when compared to codes like VMEC.

4.3 General stab ility  theory

Ideal MHD stability considerations are important to the operation of mag
netic confinement devices. Many ideal instabilities can lead to a complete loss 
of plasma confinement, or serve as a hard limit on plasma pressure, and the the
oretical study of a magnetic confinement geometry usually begins with a test 
for stability against such modes.

Resistive MHD also plays an important role in assessing the stability of 
current-carrying devices, where tearing modes may disrupt the plasma on longer 
timescales, or lead to equilibria with rather different magnetic topology. It is 
not entirely clear whether more localised resistive modes limit the pressures 
in general confinement devices, but stabilising these modes (for example, by 
increasing the magnetic well) often appears to improve plasma confinement.

The analysis of MHD stability begins with the formulation of the linearised 
ideal MHD equations. These can be expressed compactly through the equation 
for the perturbed momentum,

p dt2 F ( 0 , ( 11)

where £ is the displacement from equilibrium, and F is the self-adjoint linear 
ideal MHD force operator. It is then possible to determine stability directly by 
time integrating an arbitrary small displacement of the plasma, or by considering 
the related eigenvalue problem with d/dt  —> iu. However, because of the self
adjointness of F, it is possible to express the stability of the system in terms 
of the sign of an energy functional; this is known as the energy principle. We 
consider the ‘intuitive’ form of this energy principle as described by [9] [10]:

6Wf=\L ̂ [IQj-I2 + fi2lv -«± + 2«x-kI2 + lv -«l2

- 2 « j.-VP)(k.«1) -  J | |« ixb)-Q j.]  (12)

where b = B /B, k  — b-Vb is magnetic curvature vector, and Q = V x (£ x B )  
represents the perturbed magnetic field. We have stability if for all £ satisfying 
boundary conditions, SWp > 0. This formulation is generally more amenable 
to analysis and computation than the initial value approach.
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The integral in equation (12) can be split into those parts which are always 
positive, and thus stabilising, and others which may be able to drive ÖW neg
ative. The last two terms describe the free energy available from the pressure 
gradients and parallel currents respectively. The most unstable mode can be 
found by minimising equation (12) with respect to variations in the test func
tion £ systematically. The integral can be minimised with respect to the parallel 
displacement by requiring that V-£ = 0, implying that the compressibility of 
the plasma does not affect the sign of ideal MHD stability.

4.4 Local stab ility

Many of the dangerous modes of a toroidal plasma have very short wave
length perpendicular to the magnetic field lines, and they are therefore amenable 
to analysis along the held line using the ballooning approximation which will be 
considered in detail in section 8.3. This can be used to determine the stability 
of toroidal plasma model in the short wavelength limit. One important result of 
such an an analysis is the Mercier criterion [10], which is a necessary criterion 
for stability which be expressed in terms of flux surface averages (denoted by 
angle brackets). One expression [11] for this criterion is

^ S 2 + S < J - B / lW |2 > < B2/ |W |2 > -

(< J 2/ | W | 2 ><  ß 2/ |W |2 > -  < J - B / lW |2 > 2) > 0 (13)

where 5 is a measure of the shear of the magnetic held, and f2o is a measure 
of the magnetic well and V is the enclosed volume of a flux surface. The final 
term represents the destabilising effects of pressure through the perpendicular 
current. A similar resistive criterion D/ can be derived [12] which gives a con
siderably more conservative stability boundary, because shear does not stabilise 
resistive modes.

4.5 The case for global stability  analysis

A global analysis, as opposed to a local analysis, of plasma stability, resolves 
the structure of instabilities throughout the volume of a plasma device. Such 
an analysis is necessary to comprehensively determine the stability of a toroidal 
device in addition to the local stability analysis, because the hrst modes to 
become unstable may have finite wavelengths. For tokamaks, for example, the 
internal kink modes, which deform the axis of the tokamak into a helical shape, 
and set in when the safety factor on axis goes below unity, are an important 
limitation on the achievable plasma parameters; local stability criteria alone are
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not sufficient to address this concern. However, for stellarators with no toroidal 
current the local ideal MHD analysis gives a necessary criterion for stability, and 
the most dangerous internal instabilities occur at high n, where the ballooning 
formalism is valid, so it is not clear that global stability analysis is necessary at 
all.

However, what is observed experimentally when a plasma becomes MHD 
unstable depends crucially on whether the instabilities are localised in some 
very small region of the plasma, or are global and affect a large proportion of 
the plasma volume. The conventional wisdom is that global instabilities can 
lead to a complete and rapid loss of confinement, whereas local instabilities pro
vide a soft limit to the maximum gradients which can be sustained. It is not 
straightforward to verify this, because although the global ideal MHD instabili
ties found in experiments can be reconciled with the linearised theory, the effects 
of localised instabilities are harder to measure experimentally. Interestingly, ex
periments sometimes perform significantly better than would be expected from 
linear MHD theory [13]. It seems that this is at least partly because of the 
physics missing from these simple models; in particular, we expect some of the 
neglected effects to be significantly stabilising for modes with small wavelengths 
perpendicular to the magnetic field [14] [15],

Therefore, if we wish to go beyond the simple classification of a plasma con
figuration as stable or unstable, and determine the likely effects of an instability, 
it is necessary to determine the spatial structure and growth rates of instabilities 
which arise. The important instabilities are of moderate wavenumber, rather 
than those at very small wavelength, where ideal MHD breaks down. For such 
modes, the spatial variation of plasma parameters becomes important.

One path to a global analysis is the semiclassical formalism. This can be 
used to determine the moderate wavelength ballooning spectrum for axisym- 
metric devices where quantised wavemodes can easily be constructed. For non- 
axisymmetric devices, the situation is less clear, because the eigensolutions of 
ideal MHD are generally not smooth, and quantisation is difficult to justify. For 
these cases it seems necessary to desingularise the ideal MHD model, as in [14].

Global stability can also be examined via numerics. A wavelength cutoff is 
inevitably introduced in the discretisation of ideal MHD as a consequence of 
finite gridspacing or Fourier resolution: this is generally not exactly equivalent 
to a physical cutoff, but it does desingularise the problem [16].

4.6 R esistive instabilities

Resistivity provides an interesting step away from ideal MHD because it 
relaxes the distinguishing characteristic of ideal MHD: the fluid is no longer
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frozen into the field. It also changes the fundamental nature of the spectrum of 
linear perturbations, which becomes discrete, rather than continuous.

The extent to which resistive effects are important in a toroidal plasma 
can be quantified in terms of the resistive timescale r r , which measures the 
timescale on which plasma currents diffuse across from the center of the plasma 
to the edge: for magnetic confinement devices in the field of fusion research 
this timescale is not usually less than a millisecond, and typically much longer. 
The Alfven timescale ta , on which the relevant ideal MHD behaviour takes 
place, is generally around a microsecond. Consequently we have S  > 103 and 
for hot plasmas S  may be around 107. Most MHD equilibria will dissipate 
on the resistive timescale, so when justifying a resistive stability analysis, we 
must remember that the linearisation is made around a quasi-equilibrium, rather 
than a true steady state. For this reason it is only meaningful to consider linear 
wavemodes in the system whose growth timescales are considerably smaller than 
the overall dissipation time, and the instabilities which satisfy this condition are 
strongly localised. The corresponding growth timescales r  can be somewhere 
in between ta and 77?, so that as we take S —> 00, the growth rate of the most 
unstable mode decreases, but the ratio t / t r  —> 00.

The two most relevant resistive instabilities for the purpose of this study 
are the resistive interchange instability and the resistive tearing mode. Both of 
these modes have stricter local stability criteria than ideal modes, and can be 
considered analytically by using boundary layer techniques around the rational 
magnetic surface they resonate with [12]. However, in order to determine growth 
rates for finite S in realistic plasma configurations, numerical techniques are 
necessary.
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5.1 Behaviour o f non-norm al system s: transients.

Although the normal mode picture provides an elegant and simple break
down of many linear phenomena, its application to the ideal MHD model is not 
entirely straightforward. For modes of the Alfven continua, normalised eigen- 
modes can no longer be constructed, and it is no longer possible to physically 
excite a single mode of the spectrum. Also, the ideal MHD model is singular, 
and the continua are destroyed by small physical perturbations. In resistive 
MHD, for example, there are no eigenmodes nearby most of the points in the 
ideal continuum, even when resistivity becomes vanishingly small.

Clearly a physical plasma is subject to dissipation, but experiments and time 
evolution studies show that the plasma has oscillatory behaviour at frequencies 
in the Alfven continua. For the interpretation of the seeming discrepancy, we 
turn to pseudo-spectral methods, which help explain how to interpret the spec
tra. The key is to realise that the non-Hermitian spectrum of resistive MHD is 
strongly non-normal.

As a simple example of a non-Hermitian system, consider the simple set of 
linear equations:

d
—.r = Ai x + ay (14)

d
j f y = ^2y- (15)

For Ai = A2  =  A, the solutions are given by y = Cexp(At), x =  crCtexp(At) + 
Dexp(Af). In this case, the non-Hermitian linear operator associated with the 
right hand side of the equation pair has a double eigenvalue, A. As we expect, 
given some bounded initial conditions, the solutions are bounded in the case 
A < 0, and the system is stable. However, for A close to zero, the solution for x 
can potentially grow very large before exponential damping dominates. In fact, 
even where Ai ±  A2 there can be significant transient growth of the solution 
before exponential decay occurs.

This situation is generic for non-Hermitian linear systems which have small 
damping terms, like linearised resistive MHD. In the case of fluid flow in a pipe, 
transient effects are believed to explain sub-critical turbulence, where the onset 
of turbulence occurs significantly below the linear stability threshold [17]. The 
mechanism is a transient amplification of very small fluctuations by this non
normal effect, which are then non-linearly amplified before the overall small 
damping can set in.

To analyse such transient growth, the concept of the pseudospectrum [18]
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has been useful. Several equivalent definitions exist, but we restrict ourselves 
to the following:

The 6-pseudospectrum of the linear operator A acting on the space 
X  is the set of all A G C such that

\Ax — Ax| < e (16)

for some x € X .

The definition suggests the idea of an ‘approximate eigenpair’ (A,.x). It is 
possible to find a bound on the transient response of the system (Theorem 5 in 
[18]) through these psudeospectral quantities. Small values of e at a frequency A 
which is a reasonable distance from an exact eigenvalue A0, so that | A — A0|/e 1
indicate that the system behaves for a while as if the approximate eigenvector, 
x, was a real eigenvector: for example, by behaving as though there were an 
instability for some time even in a stable case.

An investigation of the pseudospectrum of resistive MHD is related in [19]. 
In their cylindrical resistive MHD spectrum, they find that the eigenvalues and 
eigenvectors are extremely sensitive to a perturbation of the model. In the small 
resistivity limit, the entire stable annulus with |w| in the Alfven band is part 
of the 6-pseudospectrum for arbitrarily small e, indicating that the individual 
eigenvalues are no longer meaningful. The transient response is therefore dom
inated in the small resistivity limit by this pseudospectrum, and the resistive 
eigenvectors are only relevant on long timescales, of 0 (S 1/2) compared to the 
Alfven timescale.

It particular, this helps illuminate the resistive Alfven paradox: it explains 
why resistive MHD and ideal MHD predict similar short term time evolution 
for smooth wavemodes, even though the spectra are entirely different.

The long timescale behaviour of the resistive MHD model is actually en
tirely different from the ideal model, and the eigenvalues reflect this. For short 
timescales, the behaviour of the resistive MHD system is approximately the 
same as for the ideal MHD system, given a smooth initial perturbation from 
equilibrium. The problem is that this is not at all evident from the spectra, 
which have few similar eigenvalues, so that we might expect completely dif
ferent behaviour on all timescales. However, it is a mistake to try to use the 
time evolution of individual eigenmodes to characterise the time evolution of 
the entire system: most perturbations excite a large number of eigenmodes. In 
a strongly non-normal system, if we expand the initial perturbation in terms of 
the normalised eigenvalues, the coefficients can be much larger than the norm of 
the perturbation. In essence, the perturbation can then be viewed as a number
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of very large wavemodes which happen to mostly destructively interfere at t =  0. 
The short time evolution is then determined by the collective interference of the 
wavemodes, which is dependent on the spatial structure of the eigenmodes, and 
cannot be predicted from the spectrum of eigenfrequencies alone. As long as we 
keep in mind that the raw eigenvalue spectrum does not in itself yield informa
tion about the transient behaviour, there is no contradiction in there being two 
entirely different spectra (from related models) which predict the same transient 
behaviour.

The question of linear stability can still be addressed using the eigenvalue 
spectrum: however, examination of the short-timescale response requires other 
techniques, such as a consideration of the initial value problem. It may then be 
necessary to consider non-linear effects if a strong transient amplification of the 
mode occurs.

The resistive MHD spectrum in a cylinder is found to be very non-normal in 
a conventional norm [19], but almost normal with respect to the energy norm (as 
we would expect for a slightly dissipative system). The transient effects may still 
be important path to nonlinearity, however, as it is quite possible for the mode’s 
energy to become more spatially localised, and thereby more concentrated, or 
for the mode to form strong spatial gradients, by dephasing.

5.2 M H D , Q uantum  M echanics, and behaviour in the short 
w avelength lim it

Quantum mechanical waves have been so extensively and rigorously studied 
in physics that whenever any other wave system is under examination, parallels 
will inevitably be drawn to quantum mechanics. For the spectrum of several 
low-dimensional ideal MHD models there is a particularly strong relationship 
[20] with quantum mechanics because the relevant equations can be expressed 
in the Schrödinger form,

^ +  [£ -£ /(* ) ]  4> =  0. (17)

The spectrum of the Schrödinger equation is understood in great detail, and a 
comprehensive set of analytical tools exist to find it.

Even when there isn’t an exact mapping between quantum mechanics and 
fluid theory, tools of wave analysis which were developed for quantum systems 
can often be put to service elsewhere. Semiclassical techniques, in particular, 
are useful in plasma systems, where the wavelengths of interest are often much 
smaller than the system scale lengths. Such analysis is built around the eikonal 
ansatz: it is assumed that the waves in the system can be represented by a
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quickly oscillating wave component modulated by a slowly varying amplitude 
and wavenumber. It is then possible to solve the wave equations along rays, or 
characteristics, which are the paths in phase space which a wavepacket prop
agating in the system would follow. The set of ordinary differential equations 
which govern these paths, the ray equations, have a Hamiltonian form, and, like 
other Hamiltonian systems, may exhibit regular or chaotic behaviour. Semiclas- 
sical techniques can be used most effectively in systems where the ray dynamics 
are integrable or near-integrable systems: for such systems it is possible to find 
accurate eigenvalues and eigenvectors in the semiclassical limit. In chaotic sys
tems, semiclassical methods can yield useful information on the time evolution 
of the system, and average quantities of spectra. In particular, the Weyl For
mula can be used to estimate the density of eigenstates in a particular part of 
the spectrum. The exact positions of eigenvalues can be determined to high 
precision for some special chaotic models like the Hadamard-Gutzwiller model 
[21], via the trace formulae, but it is difficult to do this for real physical sys
tems where an exponentially large number of orbits are required to achieve high 
precision.

A related perspective is random matrix theory which suggests that there is 
a statistical equivalence between the spectrum of chaotic physical systems and 
the spectrum of matrices with independent random elements. This equivalence 
implies that the fine details of the chaotic spectrum are essentially random and 
probably do not need to be accurately determined. Instead, we can concentrate 
on statistical characterisation, which is related only to the symmetries of our 
physical system. Random matrix theory is only rigorously justifiable in systems 
with hard chaos, where all the periodic semiclassical orbits are hyperbolically 
unstable, but in practise even gives a good description of the statistics of systems 
in which a small proportion of orbits are stable.

The possibility of chaos is a central feature differentiating stellarators from 
axisymmetric equilibria. In particular, chaos and chaotic effects are vital in 
the understanding of stellarator particle confinement: this point was recently 
underscored by the program of quasi-symmetrisation, where successful searches 
were made for stellarators with near-integrable, instead of chaotic, particle tra
jectories. However, it is collective behaviour, rather than individual particle 
dynamics, which is the dominant theme of plasma physics, and chaos may also 
have a role to play in wave phenomena; we will consider the wave chaos in stel
larators which is predicted by linearised fluid models. To this end, we review the 
background to the techniques of semiclassical chaos and random matrix theory, 
which may not have come to the attention of many in the stellarator community, 
and are central to the study of wave chaos.
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5.3 T h e  sem iclassical fo rm alism , th e  W eyl fo rm ula , and  
tra c e  fo rm ulae

The WKB solution to a wave problem is based on the eikonal ansatz, in 
which solutions take the form [22]

<f>(q,t) =  J 2 eiRAq't)/h (18)
j

where the sum allows for solutions to overlap (e.g. to form a standing wave). 
The small parameter h —> 0 in the short wavelength limit. In optics, this is 
known as the ray approximation, and the phase fronts can be considered to be 
transported by particles which travel at the group velocity, undergoing refraction 
and reflection. In quantum mechanics, the wavefronts are transported along the 
path of the classical particles. This is called a semi-classical solution because 
the ‘quantum’ parameter only enters the solution in the scale length of the fast 
phase variation, and the rest of the solution can be determined entirely from 
classical particle propagation. The formalism excludes effects like diffraction 
and tunnelling, where the scale length determines whether the wave is able to 
propagate into classically forbidden regions.

We outline the derivation of this formalism for a general wave problem

ihK--<b  =  Hd> (19)dt K ’

where K  and II are operators containing combinations of spatial derivatives up 
to finite order and smooth functions. We require that each spatial derivative is 
accompanied by a factor of h in order to appear at leading order.

It can be shown by direct substitution into the wave equation of interest that 
our ansatz is an approximate solution up to 0(h ) if the phase R j ( q , t) varies on 
the system scale. The resulting equations can be expressed to leading order as

^ K ( V R ) ^  +  t f ( V # ) ^ $  =  0 (20)

Here K (V R) . H (V R) are defined by replacing spatial derivatives in K  and H 
by the gradient of the phase.

An estimate for the average density of states in a spectrum is given by 
the Weyl formula. For wave modes propagating in a box the Weyl formula 
reduces to the observation that the number of states below some frequency 
cutoff is approximately proportional to the volume of the box. For a more 
general problem, we find that the total number of states can be estimated from 
the phase space volume in which the waves can propagate. Specifically, the
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number of modes N  in the frequency interval [0, ̂ cut0ff] is given by

/ dxdk
J v

(21)

where n is the dimensionality of the space, and we integrate over the region of 
phase space V where the local dispersion relation fl(x. k) G [0, u;cutofj].

5.4 R an d o m  M a tr ix  T h eo ry

Random matrix theory posits that wave systems that are strongly chaotic 
in the semiclassical sense have a spectrum which is statistically equivalent to 
the spectrum of particular classes of random matrices. This has been confirmed 
by statistical investigation of numerical spectra, as well as by experimental 
investigations of the spectra of various systems, like the acoustic resonances in 
a quartz block [23], and nuclear energy levels [24]. Random matrix theory is 
usually used to explore the fine structure of the spectrum, at the individual 
wavemode scale, and is therefore complementary to a trace formula approach, 
which usually converges poorly in this limit. One important feature of the 
physical spectrum of chaotic systems which is modelled correctly by random 
matrix theory is the phenomenon of level repulsion. In chaotic systems energy 
levels are seldom close together, whereas in integrable systems degeneracies and 
near degeneracies are quite common; the strong mixing of quantum numbers 
in chaotic systems usually breaks such degeneracies. The strength of this level 
repulsion can be characterised by considering the probability density function 
for the spacing between neighbouring eigenvalues, which can be derived from 
random matrix theory for specific classes of matrix. There are three such classes 
of random matrices known to be relevant to physical spectra, and they can 
be classified according to their structure, and the invariance properties of the 
systems they model:

• The G aussian O rthogonal Ensem ble. These matrices model energy- 
conserving systems with time-reversal invariance.

• The G aussian U nitary  Ensem ble These matrices model energy-conserving 
systems without time-reversal invariance.

• The G aussian Sym plectic Ensem ble These matrices model dissipa
tive systems.

Because stellarator symmetry can be shown to imply a time-reversal invari
ance for MHD [25] it is expected that MHD systems which exhibit chaotic fea
tures will have spectral features related to the Gaussian Orthogonal Ensemble.
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This has been confirmed in numerical MHD spectra [26] by examining features 
of the spectrum, and in particular, by demonstrating that level repulsion oc
curs, corresponding to that expected for the Gaussian Orthogonal Ensemble. 
The presence of quantum chaos in numerical spectra confirms the semiclassical 
predictions of chaos in such spectra [16]. More generally, it supports the use 
of global semiclassical analysis in these three dimensional systems, where the 
singularity of ideal MHD makes it difficult to assign a meaningful interpretation 
to semiclassical results. Conversely, random matrix theory helps to shed light 
on numerical results, building confidence in the numerical treatment. A more 
physical consequence of this kind of chaos is the prediction of wavemodes which 
have complicated spatial structure, and do not necessarily conform to the usual 
‘fingered’ structure seen for ballooning instabilities.

It is certainly interesting from a mathematical point of view that these sta
tistical details of the MHD spectrum are predicted by a theory developed for 
quantum mechanics, and we hope that the analogy can be extended further to 
allow access to the rich vein of understanding known as quantum chaology. One 
phenomenon which is particularly interesting is the possibility of chaos play
ing a role in the mixing and decorrelate of externally driven long wavelength 
modes. We suggest that there is a link here to the study of decoherence in 
chaotic quantum mechanical systems.

Instead of pursuing further details of spectral statistics in this thesis, we will 
concentrate on the use of the semiclassical techniques to derive quantities of 
interest, and in particular, marginal stability criteria.



31

6 A  C om p arison  o f In com p ressib le  L im its for 

R esistiv e  P la sm a s .1

6.1 Sum m ary

The constraint of incompressibility is often used to simplify the magnetohy
drodynamic (MHD) description of linearized plasma dynamics because it does 
not affect the ideal MHD marginal stability point. In this paper two methods 
for introducing incompressibility are compared in a cylindrical plasma model: 
In the first method, the limit 7 —> 00 is taken, where 7 is the ratio of specific 
heats; in the second, an anisotropic mass tensor p  is used, with the component 
parallel to the magnetic field taken to vanish, p\\ —> 0. Use of resistive MHD 
reveals the nature of these two limits because the Alfven and slow magnetosonic 
continua of ideal MHD are converted to point spectra and moved into the com
plex plane. Both limits profoundly change the slow-magnetosonic spectrum, but 
only the second limit faithfully reproduces the resistive Alfven spectrum and its 
wavemodes. I11 ideal MHD, the slow magnetosonic continuum degenerates to 
the Alfven continuum in the first method, while it is moved to infinity by the 
second. The degeneracy in the first is broken by finite resistivity. For numerical 
and semi-analytical study of these models, we choose plasma equilibria which 
cast light on puzzling aspects of results found in earlier literature.

6.2 Introduction

We devote our attention to the ideal and resistive MHD models, which, 
despite their dramatic simplification of plasma behaviour, are crucial to the 
design and operation of controlled fusion devices and are at the core of many 
astrophysical plasma models. Simplified models such as these have utility if they 
can be used to make testable predictions or if they yield insight into the internal 
processes of a system. We test two variants of incompressible resistive MHD with 
these criteria in mind. The starting point for the analysis of most plasma models 
is an understanding of the wavemodes that arise: this provides information 
about the linear response and stability of the system and provides a basis for 
much nonlinear analysis. We focus on the linear behaviour of the plasma in this 
paper. For the resistive MHD model, which includes dissipation, the wavemodes 
are non-normal: a full picture of linear plasma behaviour requires an analysis 
of the transient behaviour of the system, as well as the eigenvalue analysis 
which predicts asymptotic behaviours over long time scales. These are closely

^ u c h  of the material in this section was published in [27]. R.L. Dewar and R.G. Storer, 
as second and third authors, contributed a small proportion of the text, and had many useful 
suggestions. In particular, R. L. Dewar, derived equation (25). Thanks also go to the referees.
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related via pseudospectral methods [19]. In this paper we restrict attention to 
eigenvalue analysis.

For many plasmas of physical interest it is true that the resistive term is 
small: typically this is quantified by a large magnetic Reynolds number. It 
might have been expected that for small enough resistivity, the resistive MHD 
model could simply be treated as a perturbation of the ideal MHD model. How
ever, the change induced is actually a singular perturbation, which introduces 
higher spatial derivatives. One of the interesting effects of this property is that 
eigenfrequencies in the ideal model are not necessarily approached by the eigen- 
frequencies of any resistive modes, even for vanishingly small resistivity.

Many papers have been published on the stable resistive MHD spectrum and 
several of the early papers ([28]- [32]) focused on cylindrical models. These pa
pers have established certain generic features of the resistive spectrum. The re
sistive spectrum is discrete, unlike the ideal MHD spectrum which has continua: 
on some intervals, every frequency corresponds to a generalised wavemode. In 
the resistive spectrum, a large number of fully complex eigenfrequencies can be 
found, and in general these lie along loci, or curves, on the complex plane. Gen
erally as the resistivity is decreased to zero these lines become densely populated 
with eigenvalues.

Resistive MHD is a simple closure of the full kinetic equations, and as a 
result the plasma dynamics parallel to the magnetic field lines are often quite 
poorly represented [33]. For Alvenic modes, which do not strongly compress the 
plasma, these parallel dynamics are generally unimportant. However, for the 
slow and fast magnetoacoustic waves, the parallel dynamics and the effects of 
compressibility are important; these waves are not necessarily well modelled by 
resistive MHD.

It is possible to find the compressible resistive MHD spectrum numerically 
(as in [31]) and ignore the slow and fast magnetoacoustic waves that are present. 
On the other hand, there are approaches which promise to isolate the Alfvenic 
portion of the spectrum and simplify the analysis. We present two of these 
incompressible approximations, in which the predicted motions of the plasma 
satisfy V*v = 0 (at least approximately). One approach is to artificially set 
the ratio of specific heats 7 to infinity (as in [30] and [32]). In the other, an 
anisotropic mass tensor p  is used, with the component parallel to the magnetic 
field taken to vanish, p\\/p± —> 0. With this density tensor, ideal eigenmodes are 
incompressible, but to ensure exact incompressibility for resistive eigenmodes 7 
must again be set to 00. We can view these models as the extreme cases of 
a generalised resistive MHD model with two parameters, 7 and p\\/p±. The 
two extreme cases are not equivalent, and the resulting spectra are qualitatively 
different. We investigate these two methods, and compare them with the com-
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pressible resistive MHD model. We specialise to equilibria with zero background 
flow. Note that 7 —> 00 may be physically appropriate for particular conductive 
fluids and plasmas with ß »  1.

First, we examine the plane waves of the homogeneous incompressible MHD 
model. Then we evaluate spectra in a simple cylindrical equilibrium for varying 
values of 7, and with and without an artificial anisotropic density. This illus
trates the transition between the compressible and incompressible cases. We 
then discuss the spectra of more general plasma configurations. A WKB analy
sis of a generic incompressible model is then undertaken in order to understand 
the features of these spectra and to verify the numerics. We begin by solving 
the dispersion relation. Then the singular features of this function are explored 
by reducing it to a simpler form. To complete the groundwork for semi-analytic 
calculations, the behaviour of the wave equation near these singular points is 
examined. Finally, we use our WKB analysis to find the spectrum of an example 
case.

6.3 W avem odes in incom pressible M H D  lim its

The first step in the analysis of these incompressible limits is a determi
nation of the wavemodes in a simple homogeneous plasma. To this end we 
follow [33] and derive wave frequencies. We begin by considering a wave with 
wavevector at some angle to the magnetic field B = Boz, so k = k»z + k±x, 
travelling in a plasma with sound speed Vs = (-ypo/po)1/,J and Alfven speed 
Va =  (Bq/ nopo)1̂ 2. We recover the Alfven spectrum:

4  =  *j V«2, (22)

and also two other solutions to the plasma equations:

4  = ^ 2(K 2 + Vs2 + ( l  ±  (1 -  a 2) i )  , (23)

where

,  4 p j i j v / v »2
a “ = ----------------- --------------------- . (24)

*2P|| (K 2 +  V»2 +  ^ 1 2V,2)2

In low-/? compressible plasmas, u>+ corresponds to the fast magnetoacoustic 
wave, and u;_ to the slow magnetoacoustic wave.

In the limit 7 —» 00 (with p\\/p± = 1) we find —> 00 and u 2_ —► k2Va2,
so that the slow-mode is now degenerate with the Alfven mode. In more gen
eral plasma configurations, the slow and the Alfven wavemodes still occur at
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very similar frequencies, and therefore can be strongly mixed. We show this 
does occur, so that generic spectra determined are composed of an unphysical 
combination of these types of wavemodes. In the limit p\\/p± —> 0 we again 
have uj+ —> oo, but u>2_ —* k2V 2 +  k'±V2, which is slightly larger than the fast 
magnetoacoustic frequency. In this case we have effectively suppressed the slow 
magnetoacoustic waves because they are now stable and very weakly coupled to 
the Alfven modes.

If we set p\\/p± —> 0. we can show from the linearised equations that for 
general resistive MHD wavemodes p n  —* 0 implies:

Bo-V(V-v)
V P0.V x(r;j)

(iPo)
(25)

where Bo and Pq are the equilibrium field and pressure, r/ is the resistivity and 
j and v are the perturbed current and velocity. So for the ideal case (p =  0) 
we have that V-v is a constant on all irrational surfaces, and, by continuity, for 
finite toroidal or poloidal mode number, we must have V-v = 0. In the resistive 
case, we have small 77, but possibly large d/dr so that resistive modes are not 
strictly incompressible. However, if we also require 7 —> 00 then the resistive 
modes are strictly incompressible.

6.4 N u m erica l re su lts  o f vary in g  incom pressib ility

In order to show the effect of incompressibility on the resistive MHD spec
trum, we solved the compressible, resistive MHD equations numerically. We 
implemented a code based on the description in [34],

We examine a cylindrical, zero-shear model case, as described in [32] , with 
ß «  4%. The incompressibility is explored by varying 7 in the range 1 -  1000. 
The incompressible limits correspond to 7 —* 00, but in this case 7 ~  1000 
is high enough to demonstrate the limit. We define the magnetic Reynolds 
number S  =  tr/ ta where ta and tr are the Alfven and resistive timescales. 
For a cylinder of radius rp we have ta — rp(pop)1!2/ B z, and t r  = r2po/po. The 
magnetic field perturbations are of the form b = exp (imd — inz /rp — iut) b (r), 
with k  = nrp/ R , where by analogy with the toroidal case R can be interpreted 
in the sense that 2nR is the length of the plasma column, and is the ‘toroidal’ 
mode number. We have ß  «  4%, which allows the slow-mode spectrum to be 
shown on the same scale as the Alfven spectrum in the compressible case. The 
resulting spectra are shown in figure 1. For this case m = 1, k = 0.35, nq — 1.2 
and 5 = 1 x 104. Note that figure 1(e) corresponds to the limit 7 —> 00 and 
figure 1(f) corresponds to the limit p\\/p± —> 0.

In these cases the ideal Alfven continuum degenerates to a point, at u>a =
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0.057, but the ideal slow continuum is finite in extent because of pressure and 
field strength variation across the plasma. The slow continuum extends to the 
origin because the pressure is taken to be zero at the plasma boundary. Note the 
fork structure seen for the slow modes near the origin of figure 1(a). This fork 
structure is lost as 7 is increased [figures 1(b)- (e)]. Finally, as 7 —» 00, most 
of the mode frequencies are in the vicinity of a semicircle of radius u>a on the 
complex plane. From the figure, we see that there are many more modes near 
<jja in the 7 —> 00 model, than in the more physical compressible model. It has 
been shown in [32] that for this incompressible the wavemodes are eigenfunctions 
of the curl operator, and most of them do not correspond directly to physical 
compressible wavemodes. In figure 1(e), the two loci of eigenvalues correspond 
to wavemodes whose eigenvalues under the curl operator are of opposite sign: 
the waves can be classified according to their helicity, but not usually according 
to whether they represent shear Alfven modes.

For the p\\/p± —> 0 model, we find a spectrum [figure 1(f)] very similar to 
the compressible spectrum in figure 1(a), but with the notable absence of the 
slow-mode fork. The position of individual Alfvenic eigenvalues is in fact well 
preserved in this model. The only noticeable deviation is the eigenmode near the 
real axis, at Re(u)  ~  0.035, which has a frequency shift of magnitude ~  0.004 
as a result of setting p\\/p± —> 0. Since this Alfven eigenmode is fairly close in 
frequency to the slow modes, it is not surprising that it is the one most strongly 
modified by an assumption of incompressibility.

6.5 G eneric spectra in resistive M H D

For general plasma configurations with shear, the resistive Alfven spectrum 
is usually found to form a fork (e.g. figure 2 or those in [28] - [31]) The rather 
different shape of the spectral loci in figures l(a)-(f) is a consequence of the 
equilibrium having an Alfven spectrum which degenerates to a point.

The fork structure in the resistive MHD spectrum has been qualitatively 
explained in terms of WKB analysis by examining turning points within the 
plasma, see [29] and [31]. The fork has three lines joining at a point below 
the ideal MHD continuum. Two lines run between the intersection point and 
either end of the Alfven continuum. The third line runs around approximately 
in a quarter circle to touch the imaginary axis. In a simple model with toroidal 
current density constant across the plasma, there is an analytical solution for the 
7 —► 00 resistive MHD spectrum [32]. We show that a perturbed variant of this 
constant current model, in which a slight shear is given to the magnetic field, 
is still amenable to the manipulations performed in [32]. By introducing shear 
we produce a model which has a finite width Alfven continuum, in which we
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Figure 1: The compressible resistive spectrum of a constant current model (/? = 
4%) for various values of 7 . The frequencies u  are plotted in the complex plane 
with the real frequency along the horizontal axis and the complex frequency on 
the vertical axis. The ideal slow-mode continuum is represented by a grey line 
on the real axis.
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- 0.04

Re(frequency)

Figure 2: A typical eigenvalue spectrum for a compressible (7 =  | )  resistive
MHD case showing the complex frequencies of damped and growing normal 
modes. In this low-pressure case, slow magnetosonic modes have eigenfrequen- 
cies very close to the origin and are not shown. The plasma model parameters 
are similar to the constant current case, but with a small shear: m — 1, k =  0.35, 
nq(r) = 1.2 x (1 — O.lr) and S  = 3 x 103. The ideal Alfven continuum is repre
sented by a grey line on the real axis.

might hope to recover the generic fork structure found in compressible results. 
We therefore solved this model using WKB analysis to explain the qualitatively 
different spectrum. In the remainder of this section we set p±_ = p\\ = p.

6.6 W K B  analysis o f  a sm all shear equilibrium  in th e  lim it
7 —> 00

The model case is derived from [32], which considers a cylindrical plasma 
with a constant axial field and no shear. This model has been studied earlier in 
[35],[36]. The equations used for this analysis are those of linearised, resistive, 
incompressible MHD, with 7 —► 00:

m jJ ^ V x v )  = Vx(B-Vb-t-b-VB),

and magnetic field given by Ampere’s law

(26)

7  = V x(vxB ) -  V x (  — Vxb). (27)

The curl of the equation of motion is taken in order to suppress the perturbed 
pressure. Also, we specialise to an equilibrium state with no plasma velocity.
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Figure 3: One period of the cylindrical model.

The idea is to introduce the shear as a small quantity, of the same order as 
the inverse wave number. The analysis is then the same as the shear-free case, 
up to two orders in the inverse wavenumber. The radial dependence is included 
in the dispersion relation in the radially varying quantities: Bz(r), Bp(r) and 
q(r). We first take the large wavenumber limit by ordering V ~  0( 1/e). For 
significantly dissipative modes, maximal balance of Ampere’s law (27) occurs 
for e ~  0 (S ~ 1̂ 2). In a typical physical situation we might have S > 1000 and 
thus e < 0.03 is a good expansion parameter.

The magnetic field is expressed as B = zBz (r)+r6Bp(r) with d(\og[Bp(r)]) /  dr 
and d{\og[B z(r)]) /  dr both of O(e), in order to satisfy the requirement of small 
shear. We again look at perturbations of the form b =  exp (hnd — inz /rp — iut ) b (r) 
. For convenience we set b as 0(1) and this then implies v to be of 0(1) to 
complete the ordering. By using the relations V • b = V • v = 0, equations (26) 
and (27) can be reduced to:

The safety factor q(r) is given by rpBz(r)/RBp(r) and the non-dimensional 
resistivity r/ =  S'-1 .

In this form, the only differential operator is the curl operator. This moti
vates us to look for solutions which are eigenfunctions of this operator, suggest
ing the ansatz

— -[m — nq(r)] V x b H----- -Kb + 0(e) (28)r D r„

and

b = -  nq(r)}v -  i ( V  x V x b) + O(e). (29)
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rpV x v =  av, rpV x b  =  ab,

which solves equations (28) and (29) provided

,  ̂ =  ____________ 2[m -  nq(r)]K____________
-  S ~ 1a(r, u;)2] + [m -  nq{r)]2

By taking the curl of equation (30) we get

(30)

(31)

V x V x v =  - V 2v =  —T-v, (32)
rz

P

since the velocity is divergence-free. This implies a relation for the 2  component 
of v

1 d d f a 2 2 m2
7 f r r TrV‘ = - { ^ +n “ (33)

This is amenable to standard WKB analysis if a  is large, and in this WKB 
limit equation (33) is equivalent to:

^ 2  v 2 =  —Q (r)v2, (34)

with Q(r) =  <y2/ r 2. This will break down near the origin (r =  0) where we will 
use a Bessel function matching. Equation (34) is solved approximately by:

v 2 -  aoutQ_ i c^  +  a ^ Q - i e - *  (35)

where the amplitudes aout and ajn are slowly varying functions, and

<f>(r\c) =  J  Q*(r')dr' (36)

Thus a / r p is the radial wavenumber and equation (31) provides the disper
sion relation.
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6.7 C haracterising the Stokes points

To find the WKB solutions, it is first necessary to examine the structure 
of the dispersion relation in the plasma region. In particular, singularities and 
zeros and the associated branch structure of the dispersion relation must be 
examined. Branch points of the dispersion relation are known as Stokes points. 
The dispersion relation (31) can be written as a cubic equation in a, with the 
coefficients as functions of q(r) = rpB z(r) /RBp(r), i.e.

We would like to discover the singularity structure of our dispersion relation. 
Solving equation (37) for a leads to very ungainly equations and proves not to 
be enlightening, so we look for a simpler relation which will be topologically 
equivalent. Let us consider the case where there is no magnetic surface resonant 
with the perturbation. In this case we have [7?</(r) — m\ ^  0 within the plasma, 
and assuming also q(r) ^  0 then we can divide through the equation by 2[m — 
nq(r)]n and introduce a new variable ä  so that

(37)

o3 + x(r)a =  1, (38)

with

{2[?iq(r) — m]K5} a (39)
(q(r)R/r„)i

and

(40)

The solution of equation (38) for a is

(27 + V729+ 108 x3)

23 x
( 41 )

where £ is one of the cube roots of — 1:
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« = - 1 ,  k - 1 ^ .  (42)

We consider x as a new radial variable. The function ä is represented graphically 
by the Polya plot in figure 4.

/  /  /  J
^  s '  S  S  /  /  / a

Re (x)

Figure 4: One branch of the multivalued function ä(x) (£ = — 1) shown on the 
complex plane as a Polya plot. Branch cuts are indicated as thick lines. The 
vector (Re[ö], —Im[ä]) is displayed on a grid. The other two branches of ä(x) 
can be obtained by a rotation around the complex origin by 27t/ 3 and 47t/ 3 
respectively.

By inspection of the form of equation (41) we have candidates for branch 
points at the three roots of x3 = —27/4. However, only two of these candidate 
branch points appear on any single sheet of the function, as shown by figure 4. 
To demonstrate that there is a branch point absent from each sheet, we consider 
the £ = — 1 case, where we might expect a branch point at x = — \J27/4 from 
inspection of equation (41). At this point we have ä  =  22,/3. We note that 
equation (38) can be rewritten as the inverse function of equation (41),

x(ä)  =  _Q ■ (43)
Q

It is easy to verify that there is a neighbourhood of ä  =  22/3, where x in 
an analytic function of a and dx/da is nonzero. We can therefore construct 
an analytic inverse of this function, which will be equal to equation 41 in the
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Re (a)

Figure 5: A surface plot of the multivalued function a(x) demonstrating the 
interleaved Riemann sheets.

neighbourhood of x — — ^/27/4, ruling out the possibility of a branch point 
existing there. Similarly, it follows that each of the other cases of equation (41) 
have only two branch points each. Around a particular branch points at some 
position io, we do not have a  ot y/x — io, as is typical for many WKB analyses 
[37], Instead, we have a  ~  C + Dyjx — x,q .

6.8 Phase matching: a solution  near the singularities

In order in proceed with WKB analysis, we need to determine the behaviour 
of solutions near the Stokes points, the branch points of the dispersion rela
tion. In the neighbourhood of the branch point, we approximate the dispersion 
relation by:

This is unlike the more usual situation in WKB analysis where Q(x) ~  x around 
the Stokes points. The simplest treatment of the phase matching follows from 
considering A <C 1 in which case the A =  0 case can be used as a zeroth order 
solution in a region around the Stokes point. Note that for A = 0, the dispersion 
relation is independent of x and there is no reflection of the wave. As we will

Q(x) ~  1 + Ax  2 . (44)
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see, as A —> 0 the reflectivity goes to zero. The transmitted part of the wave 
will be decaying for finite A , so that we have partial absorption of the travelling 
wave.

Our wave equation is

^ ß  = - ( l  + Axi)y,  (45)

with an A = 0 solution

yo = e*“ , (46)

which motivates the substitution

y  =  e ~ ix + u ( x )  ( 4 7 )

The other choice of sign leads to a second solution to the equation, which is 
growing for x —> — oo. Substitution of equation (47) into equation (45) leads to

, r -  n . d U
A \fx  — 2i —— -f- dx

/  du\~ d2u 
y d x j  dx2 0 . (48)

We are looking for small departures from the T =  0 solutions and in this 
case we can choose du/d.r <§C 1 so that to first order

. r- ^.du d2u 
Ayjx -  21 —  + -r-Z =  0, ax dx* (49)

from which we can find u'(x)

u'(x) = e2 lxC -  l- A  [ 4 ^ +  e{2x~n/A)i V ^ e r f  ( e “ 37ri/4v /2 ^ ) ] . (50)

The coefficient of integration, C, must now be chosen such that we can match 
the solution on the left-hand side of the origin to the evanescent WKB solution. 
We have required u'(x) <C 1, so an oscillatory u(x) can be modelled as ee2lx 
with f «  1 (plus a constant which can be safely ignored) in which case:

y{x) = e~lx+u{x) = e~ixeee2ix ~  e~ix (l +  ee2ix) = e~ix +  eeix. (51)

These correspond to the WKB solutions, which are approximately of the form 
cie-lx-|-C2elx near the origin. We require that the WKB solution matched on the
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Figure 6: Real and imaginary components of u'(x)/A versus x for C = A(1 + 
i)n1/2/8. The function is oscillatory for x —> +oo, but not for x —» — oo.

left-hand side have C2 = 0 because the corresponding term grows exponentially 
for large negative x. We therefore must have e —» 0 as x —> — oo. Using the 
asymptotic expansion of erfc = 1 — erf, as given by equation 7.1.23 of [38], we 
find the x —► — oo limit of equation (50), allowing us to express this matching 
condition as:

C = ^ ( l  + i)y/ir. (52)

Then we have a solution for y which is asymptotically of the form:

V = P(x) ( e - "  +  ~')) (53)

for , t > l ,  with P(x) a slowly varying function. The phase matching condition 
is given by finding the nodes of these waves, which fixes the WKB phase at 
x =  0:

- i  (1 + i)Ay/ir
0o = - j  log(------ ------- )• (54)

6.9 Finding wavem odes

Global modes are found in the usual way: we look for paths C in the com
plex plane joining the axis and boundary where f B a(x)dx is real for any sub
path B  of C. These paths will be WKB solutions if the integral f c a(x)dx = 
Jj0 a(x)dx which can be guaranteed if there are no singularities of our differ
ential equation coefficients in the region. In particular, this requires that the 
circular path C — [0,1] does not enclose any Stokes points. The quantisation 
condition is supplied by requiring the correct behaviour at boundaries. At the
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origin the WKB wavemode must be matched to a Bessel function, and this gives 
the condition 4>\x=q =  7r(l/4 + m/2). At the outer boundary of the plasma, we 
require vr = 0 (fixed plasma boundary), which leads to <j)\x=\ — 7t/2.

The rays corresponding to localised modes start at the axis or outer boundary 
of the plasma and have trajectories which trace along anti-Stokes lines to a 
Stokes point. They are then evanescent on one side of the continuing anti-Stokes 
line, so it must be possible to draw a path connecting the relevant segment of the 
Stokes point neighbourhood to the other boundary without crossing a Stokes 
line. For Stokes points of the form Q(x) = a + 6x5, which are present in 
this analysis, we have a complex phase matching criterion. The phase integral 
between the Stokes point and the boundary is then required to be complex for 
matching to occur. This means that we cannot follow anti-Stokes lines exactly, 
along which the phase integral is real, to join the boundary and the Stokes point. 
The complex portion of the phase leads to a correction to the path which must 
be taken into account, but which is logarithmically small in the semiclassical 
limit.

6.10 A pplication  of the W K B  m ethod  to the sm all shear 
incom pressible case

For explicit studies, we use a small shear test case:

Bx(r)

ßp(r) =
7

24
1 -  O .lr’

10, rn =  1, rp = 1 ,q(r) = 0.12(1 — O.lr)

(55)

(56)

The WKB trajectories in the complex r plane were determined by solving 
the differential equation

dx
dr a(x)*. (57)

for real r  so that a(x)dx E Tl. Where the ray crosses a branch cut, the branches 
on which a is evaluated on either side of the cut must be chosen so that a is 
continuous along the ray.

In figure 7, we draw the six qualitatively different kinds of paths which lead 
to quantisation:

• Two which join the axis and the plasma boundary,

• two which join the axis and a Stokes point

• and two which join the plasma boundary and a Stokes point.
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These paths occur in pairs because there are two relevant branches of the disper
sion relation. It is never possible in practice to form global modes on the other 
branch of the dispersion relation: the rays inevitably escape towards complex 
infinity in the positive imaginary direction.

The process of accurately determining these paths begins with the choice of 
two reasonable initial guesses for the frequency u. For each guess, we find the 
ray from the Stokes point or (if we are searching for a path that joins the two 
boundaries) from the axis and determine where it crosses the line Real(:r) = 0 
or Real(x) = 1. We then use a secant search method to seek a value of u  where 
the path intersects at Im(x) = 0, and thus joins the originating boundary point 
either to the Stokes point or to the other boundary.

The eigenvalues are displayed in figure 8, together with the numerical result 
from a code based on [34], The spectrum is qualitatively similar to a fork 
structure, but also shares the features of the original simple model. Note that 
the double loci (running parallel to each other in an arc) are still present in this 
model.

The nature of the difference between the two branches of the double locus 
can be seen in equation (30), and the form of the dispersion function for large 
enough a .  Here we have two solutions for c*(uj) such that c*i ~  — Qo, and the two 
WKB solutions consist of waves of opposite helicity. Finite pressure gradients 
in this equilibrium result in waves of opposite helicity having slightly different 
frequencies.

6.11 Effects o f th e  7 —> 00 ap p ro x im a tio n

The reason why we see a pair of loci in 1(e), rather than the single locus 
usually depicted for compressible spectra (e.g. figure 1(a)) is that in this incom
pressible model (the limit 7 —> 00) there are two classes of wavemodes present 
which can be excited at the Alfven frequency. In a uniform field these wave- 
modes are degenerate: they oscillate at the same frequency. However the two 
frequencies are split when the plasma contains currents perpendicular to the 
magnetic field (i.e. in non-force-free plasmas). In the compressible model at 
low ß, these two degrees of freedom correspond to the slow (magnetosonic) and 
Alfven wavemodes and the ratio between slow frequencies and Alfven frequen
cies is of order ß 1'2.

Force-free models are important special cases, in which pairs of loci of eigen
values coincide. The 7 —> 00 approximation will still result in unphysical eigen- 
modes. We note the paper of Ryu and Grimm [30], which uses this incom
pressibility assumption to analyse a case with finite pressure gradients where 
we should see a double locus structure. We nevertheless see a simple fork struc-
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Figure 7: Stokes diagrams on the complex plane for the dispersion relation a, 
with a horizontal real axis and vertical imaginary axis. The plasma axis is at 
the origin and the plasma edge is on the real line at Re(r) = 1. Branch points 
are shown as closed circles where they lie on the sheet being plotted, and open 
circles where they do not. The branch cuts, shown as thick vertical lines, are 
chosen to avoid intersection with the rays, so that the ray propagates entirely 
on one sheet. The semiclassical rays are shown as solid curves, and the Anti- 
Stokes lines are plotted as dashed lines. Rays in subfigures 7(a),7(c) and 7(e) 
propagate on a different sheet of the function than rays in subfigures 7(b),7(d) 
and 7(f), and therefore see a different branch point structure.
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Figure 8: The resistive spectrum from numerical solution of the MHD equations 
(circles) compared to the WKB result (plus signs). The ideal Alfven continuum 
is represented by a grey bar on the real axis. Plasma parameters are given by 
equation (56) and S — 3 x 104.

ture. We believe that the splitting effect is rather small in this case, so that 
what looks like one fuzzy locus is in fact a double locus.

6.12 Conclusions

In plasma physics an assumption of incompressibility is often justified be
cause the parallel dynamics of the plasma and the fluid compression across the 
field are much less important than the forces due to the magnetic field. For ex
ample, incompressibility does not generally affect ideal MHD marginal stability 
(but this does not extend to resistive MHD [39]).

Two incompressible resistive MHD models were compared with the physical 
compressible model by analysis of their spectra. For the first model, where the 
ratio of specific heat is taken to infinity, we expect from local analysis to find 
two types of wavemodes present at the Alfven frequency. In the second model 
where we again set 7 —> 00, the parallel plasma inertia is set to zero, and we 
expect only one Alfvenic mode to be present in the spectrum, corresponding to 
the physical case. Numerical computation of the spectra of a magnetic shear- 
free plasma confirms that the second model reproduces most of the eigenmodes 
associated with the Alfvenic model correctly. The first model has twice as many 
modes present at the Alfven timescale.

It is noted that in general most of the modes resolved do not correspond to 
Alfven modes and have no physical significance. The shape of an incompressible 
spectrum for a more general model, with shear present, was determined numeri
cally and by WKB analysis. The unusual nature of the local dispersion relation
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leads to a complex structure of loci. The resulting spectrum included the ‘dou
ble locus’ of the zero shear model and also demonstrated the fork structure that 
is seen generically for stable resistive MHD spectra.

There are many qualitative features of the resistive Alfven spectrum that can 
be reproduced by simply setting 7 —► 00. Unfortunately, physical wavemodes 
and frequencies are not well modelled in this approximation. The stable part 
of the ideal Alfven spectrum is irreparably mixed with spurious modes in this 
limit. However, by using an anisotropic mass density tensor, an incompressibil
ity constraint can be introduced while preserving the Alfven modes.
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7 S p ector3D

7.1 Introduction

Stability with respect to large scale plasma perturbations is critical to the 
design and operation of fusion relevant experiments: instabilities often limit 
plasma performance, and can occasionally be so violent that they damage the 
surrounding hardware. The ideal and resistive MHD models capture much of the 
physics necessary to diagnose these relatively fast, large scale instabilities, and 
are simple enough that stability can often be explored analytically. However, 
numerical modelling is necessary to get a complete picture of plasma stability, 
especially in non-axisymmetric plasmas. Well tested codes for linear ideal MHD 
analysis of 3D configurations exist [4] [2], but there is a need for a 3D fluid sta
bility code which includes other effects. For example, the NCSX experiment [1] 
is expected to generate a substantial proportion of its transform from bootstrap 
current, and its stability to tearing modes is of some interest. There are also 
equilibria for which ideal MHD seems to be overly pessimistic: in some config
urations of LHD, where high wavenumber instabilities with small growth rates 
are predicted theoretically at relatively low values of ß, there is no experimental 
evidence of hard ß  limits or strong MHD activity [13]. It has been suggested 
that stabilising kinetic effects may be playing a role here.

3D nonlinear fluid codes [40] currently exist, and a code of this type is nec
essary to examine the saturated or disruptive dynamics of the plasma. Even 
though linear behaviour away from an equilibrium can also be examined in a 
nonlinear code, they are not necessarily the best tool for this task as they usu
ally have more limited spatial resolution. Also, nonlinear codes have difficulty 
describing the plasma at low levels of dissipation because numerical stability 
can only be guaranteed by imposing a gridsize dependent damping. Stability 
or spectral codes are generally faster and can represent plasmas with low levels 
of dissipation. Well developed ideal MHD linear codes have produced results 
with a high level of consistency and accuracy: TERPSICHORE, for example, 
has been included in an automatic configuration optimisation loop in the devel
opment of NCSX [41]. Linear codes are often used as a tool to bridge the gap 
between the limited domain where analytical considerations are sufficient and 
real world configurations.

In this chapter we present the formulation of a linear resistive MHD code, 
Spector3D, and describe the numerical method. We discuss the current form 
of Spector3D, and the reasons for this particular formulation. Benchmarking 
results will be presented against 2-D and 3-D ideal MHD codes, as well as against 
2-D resistive MHD results, and against analytic models of tearing modes in 3-D
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equilibria.

7.2 Form ulation o f Spector3D

Unlike in the ideal MHD case, we have no convenient variational form of the 
equations and must determine the response of the plasma to small amplitude 
perturbations by direct solution of the time evolution equations for the fluid 
and the fields. Specifically, the equations we wish to solve are the linearised, 
compressible, 3D resistive MHD equations, with no equilibrium flows, most 
conveniently written in dimensionless form:

p*J^(v) = ( V x b ) x B  + ( V x B ) x b - V p ,  (58)

— — v -V P  — yPV-v, (59)

^ = V x ( v x B ) - V x ( / , V x b ) ,  (60)

where v, p and b are the perturbed velocity, pressure and magnetic field, and 
P  and B are the background pressure and magnetic field. The dimensionless 
density profile p* =  p{r)/ < p > is included in equation (58) in order to account 
for variations in plasma density across the radius. The quantity 7 , the plasma 
compressibility, is usually set equal to 5/3, as for an ideal gas, but often its value 
does not strongly affect the quantities of interest, and it may then be chosen 
for numerical convenience. We can attempt to eliminate one component of b in 
order to impose V-b =  0, as in [34], but the need to include modes with m  =  0 
and n =  0 simultaneously (unlike in the 1 or 2-D case) leads to significant code 
complication, so although we initially implemented this method, we eventually 
decided to represent the perturbing magnetic field through the vector potential, 
so that b =  V x a .  We then rewrite Ampere’s law as

ddi
—  = (vxB)  -  p V x ( V x a ) .  (61)

This automatically leads to V-b =  0 because the divergence of a curl is zero. 
Boundary conditions are given by the imposition of a conducting wall at the 
plasma edge, and analyticity at the origin.
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7.3 C o o rd in a te  sy stem  an d  eq u ilib ria

Spector3D is restricted to the analysis of equilibria with a complete nested set 
of flux surfaces, but since a design requirement of most stellarators is that mag
netic islands are not significantly large, this is not a major practical limitation. 
This restriction to stellarators with nested flux surfaces considerably simplifies 
the numerics, and allows us to use the efficient and well-characterised VMEC 
code [6] to produce stellarator equilibrium descriptions. Even in a fairly well- 
optimised stellarator there are small remenant islands which would be present 
in an exact and complete MHD equilibrium analysis; these islands manifest in 
the VMEC output as singular currents at rational surfaces. This is a general 
consequence of requiring a 3-D configuration to have nested flux surfaces ([42], 
page 148). These (unphysical) singular currents are especially significant where 
they resonate with the the plasma perturbation under consideration.

The assumption of nested flux surfaces allows us to choose an index, s, 
across these surfaces as our radial coordinate. We then have a certain freedom 
of choice in the toroidal and poloidal coordinate system. Further simplification 
and improved accuracy can be achieved by specializing to a straight field line 
coordinate system, in this case, Boozer [43] coordinates (there are other pos
sibilities [42]). We use an external program (part of TERPSICHORE [2]) to 
convert equilibrium quantities from the VMEC coordinate system into Boozer 
coordinates, which are distinguished from other straight field line coordinates 
by the choice of the Jacobian:

where f (s)  is constant on each fiux surface. The poloidal coordinate, 6, and the 
toroidal coordinate, C, run from zero to 27T. The flux surface label s runs over 
the range [0,1] between the magnetic axis and the plasma edge. Because of the 
conventional choice of direction for the angles 9 and (,, and the conventional 
order assigned to the triplet (s,9, £), this is a left-handed coordinate system. 
One consequence is that the sign of the Jacobian is negative.

In Boozer coordinates, the contravariant and covariant representations of 
the magnetic field are

(62)

g  _ 4/po/( )̂®0 T 4,for(s)c^
27T

(63)

and

B = - v e s + ^ e s + (64)
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respectively, where the dot denotes a derivative with respect to the radial co
ordinate s. Checking that the two representations of the magnetic field are 
equivalent can be used to verify that the Boozer reconstruction of the equilib
rium solution is sufficiently accurate. The covariant form is used to find the 
equilibrium current through V x B :

(jpoi(s) — 27r|^)e0 + (itor(s) ~ 27r|^)e^ 
2

(65)

It can be shown by considering MHD pressure balance that u satisfies

B - V is
—l \ —1

< v ^  >
\ / 9 d

- 1 ( 66)

which can be conveniently solved for u in Fourier space,

Vmn(s) =  0 for m, n = 0. (67)

= 2typ---- . -------  otherwise. (68)
i ( m ^ po/(s) -  n ^ t0r { s ) )

Here the Fourier representation of our quantities is set to

/(»a o= Y. (69)
m,ng[-oo,oo]

for any scalar or vector function /(s ,0 , C). The denominator has a zero at 
rational surfaces, leading to a singular current unless Jmn =  0 on the relevant 
rational surface: we should be able to accurately resolve these currents in Boozer 
coordinates, unlike in other schemes these singular currents will not appear as 
explicitly.

7.4 N u m erica l eq u ilib ria  an d  in te rp o la tio n

The accuracy of any stability analysis is inevitably bounded by the accuracy 
of the equilibrium specification. The numerical equilibria used by Spector3D 
are produced by VMEC and a Boozer coordinate mapper, and in general are 
accurate to considerably less than machine precision. The input to the stability 
code consists of the metric tensor specified on a three dimensional grid with 
uniform spacing in radial position and in toroidal and poloidal angle, along with 
a set of flux surface quantities: the poloidal and toroidal magnetic fluxes, the 
pressure profile and the poloidal and toroidal current densities. Because of the 
possibly large number of radial grid points needed in the stability analysis, and 
the desirability of accumulating grid points around rational surfaces, we need to
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have access to values of equilibrium quantities at arbitrary radial positions. This 
interpolation is achieved by using cubic splines to represent appropriately scaled 
equilibrium quantities, so that any singularities at the origin are accounted for. 
The accuracy of evaluation of equilibrium quantities is then second order with 
respect to the equilibrium grid spacing, which is consistent with the order of 
accuracy of the input.

Near the magnetic axis, the output from VMEC generally satisfies the equi
librium conditions of MHD less exactly than it does elsewhere, and so this region 
of the plasma requires careful treatment in order that the linearised equations 
represent the physics. In particular the first one or two grid points are problem
atic. Because VMEC uses the normalised toroidal flux as its radial coordinate, 
the region inside the second grid point corresponds to about ten percent of the 
plasma radius for a typical VMEC run with 100 grid points. This region is 
particularly significant for modes with small poloidal mode number, because 
of the scaling of the perturbation amplitude near the origin (see section 7.7). 
One method [44] for producing improved representations of the magnetic field 
near the origin is to use the known analytic behaviour of equilibrium quantities 
and smoothing splines to produce self-consistent magnetic surfaces. For cases 
where mode amplitudes near the axis are small is is relatively simple to place 
an artificial conductive boundary condition on a flux surface close to the axis.

7.5 In tegratin g  th e  resistiv e  M H D  eq u ation s

It is usually simpler to justify a numerical discretisation of a set of differen
tial equations via the integral (or weak) form of the equations rather than by 
proceeding directly from the equations themselves. The Finite Element Method 
is based on this approach, as is the rigorous justification for Finite Difference 
methods [45], We consider a generalised vector differential eigenvalue problem

A Ax =  #x  (70)

which represents the class of linear equations of interest. Apart from specifying 
the operators A  and B it is also necessary to specify the spaces on which they 
act, in which the solutions x  G X are found, satisfying appropriate boundary 
and smoothness conditions. The operators map into some space which we label 
Y.

To produce the weak form of our eigenvalue equation, we left multiply the 
equation by some y G Y, and integrate the equation over the relevant volume
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to obtain

0 =  J  dVXyAx -  yBx =  Aa(x,y) -  6(x,y). (71)

And this suggests a reformulation of the differential equations as the problem:

Find a pair (A E C, x E X) with x /  0 such that for all y  E Y  we 
have

Au(x, y) =  b(x, y) (72)

This is known as a weak formulation of the differential equations.
The discretisation of the problem is achieved by considering finite dimen

sional subspaces Xh C X  and Yh C Y  spanned by (</>j,i E I..N) and (£i , * E 
{1.../V}), and projecting the problem into these finite dimensional subspaces. 
This is known as the Galerkin method:

Find a pair (Â  E C, Xh E Xh) such that for all yh G Yh we have

\ ha(xh, y h) =  6(xh, Yh) (73)

We can then expand the problem in terms of the coefficients of the basis vectors,

x h  =  Ci&  ( 7 4 )
i=l, N

for a set of complex numbers c*. We then have a finite dimensional linear 
eigenvalue problem,

Ah ^ 2  w i & i ’Gj) =  J 2  for a11 j € { l . . J V } .  (75)
i = l , N  i = l , N

The subscript h is included here as a figure of merit to describe how finely our 
space is discretised; in our case it describes radial grid spacing and the effective 
scale length from the cutoff in Fourier space.

In order for the discretisation to be useful for spectral studies, the spectrum 
of the finite dimensional problem must a good approximation to that of the 
infinite dimensional problem, and to be specific about this requirement, we 
consider the criteria expounded in [46]:

1. If A is an eigenvalue of equation (72), do eigenvalues Ah of equation (73) 
exist such that A =  lim/^o Â  ?

2. Are all the limit points A of \h  as h —> 0 eigenvalues of equation (72) ?
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3. Do the eigenfunctions Xh of equation (73) tend towards the function u of 
equation (72)?

4. Is it possible to obtain error estimates between the eigenelements of equa
tion (72) and equation (73) ?

These considerations can be addressed theoretically for a wide class of model 
problems. The essential result is that if the discretised operator is a good 
approximation in some sense to the full operator, we can satisfy the above 
criteria. The precise criterion for a good discretisation can be expressed in 
terms of limits of the discretisation error, as h —* 0. To satisfy this condition, 
we must choose finite elements which are of high enough order to represent the 
derivatives in our operator. This is not a sufficient condition, however, and the 
discretisation must be chosen carefully in order to avoid ‘spectral pollution’, in 
which a large number of spurious eigenvalues are found which cannot be resolved 
by improving the mesh resolution. Previous work on ideal and resistive MHD 
suggests simple physically motivated conditions which can be used to find an 
appropriate discretisation, which we consider in the next section.

7.6 The finite elem ent m ethod applied to linearized resis
tive M H D

We now discretise our equations using a finite element method, with an 
overall formulation which is similar to the 2D resistive code CASTOR [3].

In this formulation, the perturbing quantities are expanded in a Fourier 
series in the toroidal and poloidal directions, and by finite elements across the 
radius. This expansion can be written as

/ ( « , « ,  C) = 5 ?  /-.» .i F,(S)ei”*s- i"c (76)
m ,n ,l

where l is an index for the one dimensional finite elements F i(s). In practise we 
must restrict the sum over m and n so that the sum is over a finite number of 
terms.

A good choice of discretisation is vital for this problem because of the phe
nomenon of ‘spectral pollution’. This occurs in the presence a non-compact 
spectrum: in our case the spectrum of fast magneto-sonic wavemodes is non
compact because the mode frequency increases with radial wavenumber. The 
pollution manifests as a very large number of spurious radially oscillatory eigen- 
modes in the numerical spectrum: it often becomes impossible to distinguish 
any physically relevant eigenmodes, and the effect cannot be resolved by increas
ing the radial resolution. The cause of this pollution is a spurious numerical
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coupling between wavemodes of very different frequency [46]. Such coupling can 
be induced by ‘numerical divergence’, which is often a consequence of a poorly 
discretised representation of a divergence-free quantity. In our particular prob
lem, we are particularly concerned that no compression of the magnetic field 
be introduced by our discretisation. It is therefore necessary for the large class 
of approximants which represent incompressible modes to satisfy V*(vß2) = 0 
exactly. We also require that the magnetic field satisfy V-b = 0 , but this is 
always the case in our vector potential representation. For a poor choice of 
discretisation, it is possible that representations of incompressible wavemodes 
can only satisfy V -(vß2) = 0 at a small number of radial points per grid in
terval. The result is an oscillating value of V -(vß2) in the representation of 
any smooth wavemode. Because the forces due to the oscillatory component are 
proportional to the wavenumber, the spurious forces may not converge to zero 
as we increase the grid resolution, and our approximation may never converge.

We examine the divergence of \ B 2 in terms of the contravariant components.

v  , v aea + v °ee +  v cec 1
\ [Q b

(77)

We set v s = tq, v° =  V2  and = ^3, where tq, tq and tq are piecewise 
polynomial in radius, and Fourier expanded in the angular coordinates. It is 
then possible to satisfy equation (77) exactly for piecewise polynomial tq , V2  

and tq as long as the order of the polynomial tq is one higher than that of tq 
and tq. It is also useful to set the direction of one velocity component to be 
along the field line:

V* =  ( v i , V 2 +  i ' Po l V3 ,  'I'torV- ĵ (78)

For the representation of the magnetic field, it is desirable that we be able 
to take the necessary derivatives induced by Newton’s law. We require that the 
magnetic field be smooth, and be divergence-free. This can be achieved by rep
resenting the vector potential a in covariant components, piecewise polynomial 
in radius, with as one order lower than a<? and clq.

a i  =  ( a i ,  0 2 , 0 3 ) (79)

We then have seven scalar variables (tq, V2 , tq,p, a\, a2, 03) representing the 
physical quantities (v,p, a), which are discretised using finite elements. The 
finite elements must be chosen with the correct order of smoothness so that we 
can take the spatial derivatives which are present in equations (58), (59) and
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Figure 9: Finite element basis functions for radial discretisation.

(61). In particular, we require the second order derivatives of 02, <23 and v\, 
but only the first order derivatives of the other variables. This can be satisfied 
by representing v \ ,  «2 and 03 by cubic spline functions, and t>2, U3, p  and a  1 
by quadratic Hermite polynomials. The perturbed pressure is represented by a 
quadratic Hermite polynomial. The cubic Hermite elements are

Hj(s)

' 3 ( -£n£i^i-')2 — 2 ( -£z£i=i.

3 /  3 i + l - S  \ 2  _ 2  (  S J  +  1 - S  

\ S j + 1  S j  J  \ S j + l - S j

0

S j  — i  ^  S S j ,

S j  <  S <  Sj'+l) 

s j  [s j - i i s i+ i] )

and

Hj{s) =
(s ~  s j ) S j - i  <  s  <  S j ,

( S -  Sj ) S j  <  S <  Sj+1,

0 Sj [ s j- i , Sj-f-i],

and the quadratic Lagrange elements are

h j ( s )  =  <

' 2
( n  Sj+Sj-l ^ ( s  —  S j -  1)
>  2  J ( S j - S j - l ) 2

2
0

(s-Sj+l)
r  2 ) (Sj+l-Sj)2

S j  — 1 — S ^  S j ,

S j  <  s  <  S j . (-I, 

s j  $  [5J-1' s j+l]>

(80)

(81)

(82)

and

h j ( s )

a  ( s - s j - i X s j - s )  

(sj-sj-1)2
0

S j  — 1 5: S 5; S j , 

s j  £  [s j -11 ] •
(83)

We note that other choices of discretisation are possible, and several variants 
of the formulation were devised and implemented. In particular, in the original 
code implementation we represented the perturbed magnetic field b, directly, 
with satisfactory results, but using the vector potential leads to a more elegant 
formulation.
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7.7 B o u n d a ry  co n d itio n s

For the sake of simplicity, we have implemented a fixed boundary code. 
Physically this is equivalent to placing an infinitely conductive wall at the last 
closed flux surface. This boundary condition is given by requiring that the 
velocity normal to the wall and the electric field parallel to the wall vanish:

n>v = 0, (84)

n x E  =  AnXa =  0, (85)

as we have chosen Aa =  E. Because of the choice of the finite element basis, 
these can be expressed as the essential boundary conditions

a^|r=,i — a#|r— i v |t'=i — d (S6)

Near the magnetic axis we need to impose analyticity on the perturbed quan
tities. To find the appropriate condition, we Taylor expand the Fourier sum 
near the magnetic axis. The cut torus of the stellarator can be continuously 
deformed onto a straight cylinder, with the magnetic axis and the cylindrical 
axis brought together, so the analyticity condition is the same as that of a vector 
valued function in cylindrical coordinates,

OO OO /

v(r , 0 , z ) =  £ q M mt(2)r2*+|m- l leim‘’ +
m= — oo fc=0 '

0Bmfc(2)r2fc+|m" V me + zCmk(z)r2k+^ e iTn6̂ j (87)

and for the purposes of analyticity the cylindrical coordinate 2 is equivalent to 
the toroidal angle £. Scalar functions take the form

OO OO

P =  Y ,  Y ^ D ^ z Y 2
m =  — 0 0  fc= 0

(88)
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The VMEC coordinate system has r  ~  s 1/2, e, ~  s 1//2r and eg ~  s1/ 29 so that 
the contravariant components of a vector can be written

oo oo

V s =  J 2  Y , A m k ( z ) s k + 1 / 2 + " m l - lW 2 e iT n e , (89)
m =  —oo fc=0 

oo oo

ve = ^ ß m^ ) ^ ' 1/2+l|m|_1|/2eime, and (90)
m =  —oo /c=0 

oo oo

u 2 =  J2 Y l Cmk(z)sk+lm]/2eiTn6 ( 9 1 )
m =  —oo /c=0

and the covariant components can be expressed as

OO OO

v* =  f l  X > m * (2 )s fc- 1/2+l|m!- 1|/2eir"*, (92)
m= — oo k=0 

oo oo

=  J 2 E m k ( z ) s k + 1 / 2 + l l m  !-1|/2eim0, and (93)
m = — oo fc=0 

oo oo

V , =  Y ,  ^ f m t ( z ) ä ‘+l’" l/2eim9. (94)
m= — oo A;=0

The most singular term is the m = ±1 components of and u0, which contain 
a factor of s -1/2. In our implementation we do not resolve these singularities 
at the origin, as we found good convergence in radial grid-number for test cases 
based on analytic equilibria, indicating that a polynomial approximation of these 
singularities near the origin did not introduce large errors.

7.8 Sym m etries and m ode coupling

In the case of axisymmetric equilibria, the continuous rotation symmetry 
(or corkscrew symmetry in the helical case) leads to a ‘good quantum number’, 
and the problem of stability separates so that each toroidal wave number, n, 
can be considered individually. Stellarators do not have an (exact) continuous 
symmetry, and therefore the coupling between different toroidal wave numbers 
must be considered. However, most stellarators have a finite rotational symme
try group, whose size is the number of field periods of the device. This is central 
to the understanding of stability in stellarators, as pointed out in [47]:

It is not obvious at first glance that there is a stability problem 
(for stellarators) since at least some of these (equilibrium) codes 
determine the equilibrium by finding the minimum potential energy 
of the system. Such equilibria should be stable by definition unless 
the chosen minimization fails to lead to the lowest energy state. In 
actual practice, most equilibrium configurations are prescribed to
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have periodic behaviour over the magnetic field period ... Thus, the 
equilibrium should be stable with respect to any perturbation that 
does not destroy this helical periodicity. For this reason, stability 
is usually thought of as the question of whether relaxation of this 
periodicity constraint can lead to a lower energy state.

The nested flux surface condition is an additional constraint on the minimisation 
in equilibrium codes, and can be broken by resistive perturbations, which may 
access a lower energy state by introducing magnetic islands. However, an ideal 
perturbation with a toroidal wavenumber which is a multiple of the number of 
field periods of the device will not break either the discrete symmetry or the 
nested flux surface condition, and should therefore not be relevant from the 
point of view of stability analysis. In this work we will limit our consideration 
of resistive modes to those which break the discrete symmetry of the device, in 
order to avoid problems that might arise when our perturbing wavefunction is 
resonant with the singular currents of a numerical equilibrium.

In Fourier space, the discrete symmetry induces a condition on pairs of 
toroidal wavenumbers which must be satisfied for corresponding pairs of basis 
functions to be coupled together by inhomogeneities in the equilibrium. As a 
result the toroidal wavenumbers separate into classes known as mode families. 
For a pair of Fourier components with toroidal wave numbers n and n' to couple 
we require n = n' +  ik for some integer i, with k equal to the number of field 
periods of the device. Most stellarators also possess ‘stellarator symmetry’ [25] 
which corresponds to a simultaneous reversal of the toroidal and poloidal angles 
of the device, and corresponds to a time reversal symmetry in the field line 
Hamiltonian. This does not induce a restriction on the coupling in Fourier 
space, however we would expect that eigensolutions which are resonant with 
the toroidal field variation (coupling to n =  0 or n =  k/2) could be classified as 
either symmetric or antisymmetric under stellarator symmetry.

7.9 C alculation o f the m atrix elem ents

The matrix elements of A and B  are calculated by substituting the finite ele
ment representation of the variables and weighting functions into the integrated 
formulation of equations (58), (59) and (60). The integrals can be manipulated 
easily by hand in the usual coordinate-free vector notation. However, in order to 
perform the final evaluation in our curvilinear coordinate system, the geometry 
must be explicitly included in terms of the metric tensor glj 1 and its Jacobian 
J. The operators needed for these calculations can be expressed simply in these 
coordinates so long as the operands are in the correct representation (Chapter
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2 of [42] presents the formalism nicely.):

1 . d
(V x a  )• =  _ £ * * _ « * ,

y/9 OX]
(95)

(axb)j =  y/geijkaJbk, (96)

(a x b )1 = e^ajbk. (97)

Other choices of operands will involve the metric tensor gij or its inverse. The 
choice of representation of the perturbing quantities in co- or contra- variant 
form and the choice of scaling factor therefore makes a significant impact on 
the simplicity of the expression for the matrix elements. Spectral pollution con
siderations suggest a particular choice for the representation of our perturbing 
quantities, and it is pleasing, but not coincidental, that this leads to one of the 
simplest expressions for the matrix elements.

Once we have the vector operator and equilibrium quantities explicitly de
scribed, we can perform the integration over the angles 6 and £ symbolically; we 
then express the result in terms of the Fourier transform of various equilibrium 
quantities. The radial integration uses a high order Gaussian scheme which 
is exact for our piecewise polynomial integrands (both the finite elements and 
splined equilibrium quantities are at most cubic).

7.10 A m p e r e ’s law

The integral from of Ampere’s law is

A J  dVk-a=  j  dV 'ä-(vxB )- V x a ) . (98)

For explicit calculations, all the operators are be given an explicit representation 
in co/contravariant formalism,

A J  drddd^ygalaj (99)

= J  drdQd(,ri(s) (̂ elokd0^=al ĵ (emn->dnaj)  +  a lejj iv - * B l , (100)

where there is an implied sum over each the sub- and superscripts, except i , 
so we have three equations, one corresponding to each component of the vector 
equation. We then replace the trial and weighting vectors with their discretised 
component representation. The combined finite element and double Fourier sum
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which represents our vector a is

a =  ^ ' (h /(s)a i:mn/,C;(s)a2:mn/, c/(s)a3:mn/) e (101)
m,n,l

for the trial vector and

ä =  (h ?(s)a1:,hÄ' , Cl-(s)a2:AÄ' , cf(s)a3:rf,ft') e-*A9+iÄ< (102)
rh,n,i

for the weighting functions.
The complete sets of coupling functions are contained in appendix A. As an 

example of the calculation we isolate the term coupling v\ mni and a2'innl :

v i .mnia2'™ 1 J dsdOdC, ci(r) Q(r)ei(Tn~Th)g- i(n~ft)c (103)

The integral over 9 and C is a double Fourier transform, and in the actual im
plementation, any surface functions which appear factor out, so that in general 
we need only take Fourier transform of various products of the metric tensor 
and the Jacobian.

7.11 The Equation o f m otion

The equation of motion reads:

p* — (v) =  ( V x V x a ) x B l  J x ( V x a )  — V/;, (104)

and the integral form is then

A J dVp*v-v =  j  ( f b v - ( V x V x a ) x B  +  v J x ( V x a ) - v - V p  (105)

As before, we replace the operators by their explicit forms in curvilinear 
coordinates; this yields

A J dsd0d{^p* ̂ /gvlgijvj (106)

j  dsdädat)’ ) ^ £j/iK!e‘m"9,,,g,,oE0',iö,a,][B']) (107)

(108)

+ ( S , J V ) p (109)

Integration by parts can be used to reduce derivatives on the perturbing quan-
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tities to first order.

7.12 Equation o f state

We have the equation of state: 

dp
— = —v-VP — qPV-v. dt '

with the integral form:

( 110)

AJ  dVpp = J dV pv-V P — pr/P’V -v

leading to a simple expanded form:

( 111)

/A / dVdOdQJpp

/ dvdddc p| V +7p ,0V1 ,ö v 2 ,öv3 \
p-ä7 + p-m +f,-dcJ\ ( 112)

7.13 C ode generation

To deal with the large number of terms which arise in the matrix elements 
of A and B with a lower likelihood of error, the code generation procedure 
is automated using Mathematica. This symbolic calculation requires a certain 
care in handling the co- and contra-variant components of quantities. We use 
capitalisation of the first letter of each symbol to denote this: contravariant 
vectors and operators with contravariant results are in capitals, and covariant 
quantities are lower case. These definitions are inserted into a Mathematica 
notebook together with the definitions of the equilibrium functions J , B and 
P and the metric tensor, the vector components of the perturbing quantities 
b and v and the linearised resistive MHD equations; we can then set up the 
Mathematica system to output (Fortran 77) code for each of the coupling coef
ficients. The code is converted to (Fortran 95) free source form by an external 
routine. Details of this procedure and the Mathematica code are in appendix 
A.

7.14 Solution of the eigenvalue equation

We can determine whether a system with a finite number of degrees of free
dom is stable by considering the eigenvalues of the time evolution operator: if 
all the eigenfrequencies are in the lower half of the complex plane, the system is 
linearly stable. The discretised linear equations are a time evolution equation
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choose a starting guess for the eigenvalue Ao, and for the eigenvector xo  
i =  0
for j  =  0 to n do

Find the LU decomposition LU = (B — A, A), where L is lower triangular, 
and U is upper triangular 
for k =  0 to n do

i =  i +  1
Solve Xi = (LU)_1Ax,_i 
Find x .4 =  Ax*, and xg = Bx^
The new guess for the eigenvalue is Ai = (x .x g )/(x ,x ^ )
If we have |A* — Aj_i| < e we have convergence, so exit 
Normalise x  ̂ if necessary

end for 
end for

Figure 10: The shift and invert algorithm for solving the eigenproblem (AoA — 
B)x =  0.

d/dtAx  =  Bx, and we consider solutions x to this equation whose time depen
dence can be expressed as exp(At), and whose complex growth rates A satisfy 
AAx = Bx. The matrix B is non-Hermitian, and the growth rates are, in gen
eral, fully complex. In order to solve the generalised eigenproblem by standard 
techniques, we convert the generalised eigenproblem to a standard one, and 
look for eigenvalues A around a start eigenvalue Ao, <rx = (B — A o A ) - 1  Ax with 
A — A0 + 1/a. We have implemented two iterative methods for solving these 
eigenvalue problems; invert and shift and the Jacobi-Davidson method. The 
invert and shift algorithm described in figure 10 is the simplest of the two. This 
iterative procedure has reliable convergence because the eigenvalues of interest, 
near the guess Ao, are the largest eigenvalues of (B — A0A )-1A. In the case 
where we have a full basis of (right) eigenvectors with eigenvalues crjt, we can 
express our eigenvector guess as

X0 = ^ 2 Ckuh (113)
k

and after step i we have

Xi =  y^o-QVfcUfc (114)
k

so that the largest eigenvalue will eventually dominate the sum as long as our 
initial guess has a non-zero component in the direction of the corresponding 
eigenvector: a random initial guess almost always meets this requirement.

The Jacobi-Davidson method is a more sophisticated subspace procedure
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which can find multiple eigenvalues at the same time. It does not need an exact 
matrix inverse, and there is a variant which solves the generalised non-Hermitian 
eigenvalue problem without first converting it to a standard eigenvalue prob
lem: this means that the method does not require a computationally costly 
LU decomposition step. However, we implemented the simplest version of the 
procedure, in which we first convert to a standard eigenproblem. The details of 
this technique can be found in [48] and [49],

For problems with strong toroidal and poloidal coupling, many modes need 
to be considered, and the matrices can become very large. Because we have 
implemented only in-core solvers, this limits the problem size. For example, 
with 24 modes included, and 60 radial grid points, we need approximately. 2.7 
GB to store the matrix coefficients. This is close to the limit of feasible memory 
requirements for a single CPU in the Australian Partnership of Advanced Com
puting (APAC) supercomputer with AlphaServer SC ES45 nodes. Setting up 
the matrices and calculating a single eigenvector for such a case consumes of the 
order of 30 CPU minutes computer time on a single CPU of this supercomputer 
(as of 2004). On typical multi-CPU supercomputers, however, it is possible to 
access considerably larger amounts of memory. We therefore implemented a 
parallelised version of Spector3D. using the message passing protocol MPI, and 
the SCALAPACK and PBLAS libraries, which implement parallelised versions 
of the LAPACK and BLAS linear algebra libraries respectively. The banded in
verse solver implemented in SCALAPACK uses a divide and conquer strategy, 
which introduces a restriction on the number of CPUs that can be used for a 
given relative matrix bandwidth for our code. For a radial grid resolution n, 
we can utilise up to n/4 CPUs, although there are diminishing returns above 
about n / 16 CPUs which sets a practical limit. The Fourier space resolution is 
then limited by the single CPU memory size.

7.15 ID  test cases

To check the correctness and accuracy of the code, we first examine the 
incompressible constant current model of [32], as detailed in section 6. The 
spectrum of this test case contains a variety of unstable and stable resistively 
modified global Alfven modes, as well as a possibly large number of unphysical 
modes (again, see section 6). We select a few eigenvalues near the marginal 
stability point for accuracy and convergence tests.

For the purpose of comparison, we consider the example parameters used 
in figure 1 of that paper, with m  =  1, k =  1.4, nq =  1.2 and S  =  2 x 104. 
The relevant incompressible limit is given by 7 —» 00; in the numerics we can 
simply set this to some very large number, 7 > 106. In this case we tabulate
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the convergence of the frequencies u  =  iX of the three unstable inodes, along 
with the frequencies of two slightly damped oscillatory inodes:

Analytic i = 10 i = 30 i =  100 i = 300
0 .316973 ; 0 .312480 ; 0 .316450 ; 0 .316932 ; 0 .316975 ;

0 . 199164; 0 . 190809 ; 0 . 198089; 0 . 199077 ; 0 . 199165;

0 . 114088; 0 .099565 ; 0 . 112084; 0 . 113919; 0 . 114098;

0.034428 0.064044 0.040721 0.035142 0.034533
- 0 .0051255 ; - 0 .005661 ; - 0 .0051920 ; - 0 .005116 ; —0 .005111 ;

0.103563 0.115853 0.105873 0.103869 0.103655

- 0 .0076193 ; - 0 .008516 ; - 0 .0770312 ; - 0 .007577 ; - 0 .007571 ;

It is also interesting to compare the rest of the spectrum with the analytic re
sult. Figure 11 shows that even for radial 200 grid points a significant fraction 
of the numerical eigenvalues have not converged to the neighbourhood of an ac
tual eigenvalue. These are generally modes with very high radial wavenumber, 
and are correspondingly strongly damped, so they are less interesting from the 
physical perspective than the modes near the real axis. However, the cause of 
the poor convergence is still relevant from the point of view of code validation. 
It has been shown [19] [50] that the positions of such eigenvalues are extremely 
sensitive to small numerical errors; this is related to the strong non-normality 
of the MHD spectrum.

-0.05

-0.15

-0.25

Figure 11: The frequencies u  = iX of the stable modes of the ID incompressible 
spectrum plotted in the complex plane. The spectrum from the numerics (X) is 
shown together with the analytic result (+). Modes along the stable imaginary 
axis have been omitted.

We then considered the cylindrical test case described in section 4.2 of [31], 
in which a radial variation in toroidal current can lead to internal tearing modes. 
The peaked current profile is described by

j ( 0  =  6 o  (l - r 2/a2) v , (115)
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the toroidal magnetic field is set to B-£ =  1, and the density profile is p =  1. 
For these profiles the ratio of safety factor at the plasma surface r — a to the 
safety factor on axis is q(a)/q(0) =  v +  1. The instabilities resolved in [31] 
are the m = 2 internal tearing mode and external kink, and we reproduce a 
tearing mode for the purpose of code verification and as a simple demonstration 
of tearing mode physics.

As with the constant current model, we have the toroidal closure modelled 
by a simple periodicity in the £ direction, and we consider modes with toroidal 
mode number n — 1. We have the m =  2 tearing mode unstable for 2.20 < 
q(a) < 4.0, as shown in figure 12, which is visually identical to that in [31]. On 
an enlarged scale (see figure 13) we can see that as q(a) approaches the tearing 
mode marginal stability value of 2.2 from below there is still an instability with 
a significant growth rate, as we would expect considering that the resistive 
interchange stability condition is violated.

0.0012
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00008
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0.0004

0.0002

2 2.2 2 4  2.6 2.8 3 3.2 3.4 3.6 3.8 4

Figure 12: The fixed boundary growth rate A of the most unstable mode of a 
cylindrical equilibrium versus q(a), the safety factor at the plasma surface. The 
tokamak-like toroidal current profile is described in equation (115).
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Figure 13: The scaled growth rate Ax 103 of the two most unstable inodes
of a cylindrical equilibrium near the tearing mode marginal stability boundary, 
versus q(a), the safety factor at the plasma surface. The tokamak-like toroidal 
current profile is described in equation (115).
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7.16 2D test cases: Solov’ev equilibria

There exist a class of exact solutions to the MHD equilibrium equations 
known as Solov’ev equilibria [51]. In these equilibria the derivatives with re
spect to 0 (poloidal flux) of the pressure and the integrated poloidal current are 
constant across the radius. The analytic solutions cover a range of aspect ra
tios and elongations and also allow a choice in ßp, the proportion of confinement 
generated by toroidal current. Some of these axisymmetric equilibria are similar 
to tokamak configurations of interest, making them a natural target for theoret
ical studies of tokamaks, and for the benchmarking of codes; several papers on 
two dimensional resistive and ideal stability codes have published the tables of 
growth rates for various Solov’ev configurations, and we present our results for 
these cases. The most well tested fixed boundary case is an equilibrium with no 
poloidal currents (ßp = 1), an ellipticity near the magnetic axis of 2, and an as
pect ratio of 3. The remaining parameter is the safety factor (inverse rotational 
transform) on axis, which takes on values between ^(0) = 0.2 — 1.3 in [52], but 
in particular the values <?(0) = 0.3. 0.7 have tabulated results [3] for the most 
unstable eigenvalue in the n =  2 mode family. This is an internal kink mode, 
with the dominant m  value dependent on the safety factor. The eigenvalues in 
these tables are normalised to the poloidal Alfven time at the plasma edge, and 
thus are related to the (un-normalised) eigenvalue from Spector3D by

7 ApRq{ i)
B {  0 )

(116)

where R is the major radius of the device, <7(1) is the safety factor at the plasma 
boundary, and B(0) is the magnetic field strength on axis.

In order to produce the input required by Spector3D, we describe the ana
lytical Solov’ev equilibrium in VMEC output format, then use the mapper code 
to recalculate this equilibrium description in Boozer coordinates. The radial 
parameter s is chosen equal to the normalised poloidal flux 0 to allow accu
rate resolution of the equilibrium near the magnetic axis, where the standard 
VMEC description with s = 0, the normalised toroidal flux, is rather sparse. 
It is also important to ensure sufficient poloidal resolution, particularly in the 
reconstruction of the equilibrium in Boozer coordinates. We use 30 poloidal 
modes to solve the magnetic differential equation whose solution gives the map
ping from our input coordinate system into Boozer coordinates. The mapped 
equilibrium which is input into SPECTOR3D is described on 97 radial and 128 
poloidal grid points.

For comparison we display eigenvalues resolved by other MHD codes against 
those of SPECTOR3D in table 1. Our eigenvalues are clearly not in as close
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-0.3 0

(a) (b)

Figure 14: A Solov’ev equilibria in Boozer coordinates, with R/a — 3, an ellip- 
ticity of 2, and q(0) = 0.7. Lines of constant poloidal flux <fi and Boozer angle 
Of are shown on a ( /  =  constant surface. The rightmost figure shows that the 
C/ = constant surface is not a surface of constant cylindrical angle £c, despite 
this being an axisymmetric equilibrium.

agreement as those of the other codes, departing by approximately 7% in the 
second case. Although some effort has been expended to determine the source 
of the discrepancy, it does not appear to lie with limited numerical resolution 
in either the equilibrium or stability codes.

The next item of interest is the convergence behaviour. Figure 15 shows 
that the convergence with respect to the radial grid-number is quartic. This 
is in line with the high degree of convergence expected when approximating 
smooth eigenmodes with this relatively high order finite element scheme. Figure 
16 shows that the convergence with respect to the number of poloidal Fourier

9(0 ) S P E C T O R 3D C A ST O R ER A TO M ARS T E R P S IC H O R E
0.3 1.295 1.255 1.26 1.26 1.25
0 .7 0 .262 0 .284 0 .284 0.284 0 .284

Table 1: Comparison of the eigenvalue A of the most unstable n =  2 ideal
instability of fixed boundary Solov’ev Equilibria with e-1 = 3, n = 2 and E — 2 
as calculated by various MHD spectral codes.
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Figure 15: The convergence of the growth rate A of the most unstable mode
with respect to the number, N,  of radial grid points included. This is an n = 2 
instability in a fixed boundary Solov’ev equilibrium with e_1 = 3 and E = 2. 
The convergence is quartic, so that Su oc 1/./V4.

components is exponential, but as other authors have pointed out [52] [3], a 
relatively large number of Fourier harmonics must be resolved in order to obtain 
a converged result: for the example here, with qo = 0.7, we require 16 Fourier 
components to obtain a relative error in eigenvalue of one part in 10~4.

7.17 R esistive ballooning m odes in near axisym m etric de
vices

For tokamak configurations without any poloidal currents, the 1/1 kink mode 
alone is enough to limit the maximum ß  which can be achieved. For configu
rations with poloidal currents, the pressure limiting ideal MHD instabilities are 
often not the simple interchange modes, as the Mercier criterion usually indi
cates stability, but ballooning modes. [53] [54]. These modes become unstable 
at high ß when the large Shafranov shift generated by the strong plasma pres
sure gradients produces unfavourable curvature on the outboard side of the 
plasma. However, even at low ß  where these ideal modes are stable, their re
sistive versions, the resistive ballooning modes, can become unstable. For an 
axisymmetric device the most unstable resistive ballooning modes will also be 
localised on the outboard side of the plasma. We consider the transition between 
such an axisymmetric equilibrium, and a strongly toroidally shaped equilibrium, 
where toroidal localisation is expected. We are not attempting here to compre
hensively explore the scaling behaviour with respect to ß, S , and toroidal mode 
number: we simply wish to show the qualitative evolution of such modes as 
toroidal coupling is introduced, demonstrating the mode localisation.
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Figure 16: The convergence of the most unstable eigenvalue with respect to
the number. M, of poloidal Fourier harmonics included. This is an n =  2 
instability in a fixed boundary Solov’ev equilibrium with e-1 =  3 and E — 2. 
The deviation of the eigenvalues from the converged value, for which we use the 
M  =  40 eigenvalue, is plotted. An exponential dependence is suggested by the 
constant slope of the interpolating line.

0 0.2 0.4 0.6 0.8
s

Figure 17: Surface quantities for the tokamak-like equilibrium of section 7.17.

The equilibria studied have aspect ratio R/a  =  4, and are restrained by a 
conductive wall which is circular in cross section. The basis configuration has 
a safety factor profile which increases by a factor of three from the axis to the 
plasma edge (qa/qo =  3), and has no poloidal currents; the corresponding pres
sure and toroidal current profiles are strongly peaked, with J ~  (1 — 4')2. We 
introduce three dimensionality into these configurations by imposing sausage
like deformations, with a toroidal mode number of 5, to the outermost flux 
surface (see figure 7.17); for moderate deformations this might represent the 
effect of the finite number of poloidal field coils, and for extreme values, the 
configuration is similar to a set of linked mirrors. The stronger field in the 
waist regions can provide an MHD anchor, and localise the mode toroidally. 
On the other hand, in the low field regions the magnetic field lines have more 
unfavourable curvature. Therefore, as we introduce the deformation, we ex-
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R

Figure 18: A cross-section of the flux surfaces of the tokamak-like equilibrium 
of section 7.17. Lines of constant Boozer angle 6 are also plotted.

Figure 19: The outermost flux surface for a tokamak-like equilibrium with a
strong toroidal field modulation.

pect the strongest resistive MHD instabilities to localise around a point on the 
outside of the torus in the low field region.

For these configurations, we found the most unstable mode with dominant 
toroidal mode number n = 1 for a range of values of the resistivity. The mode 
family which is toroidally coupled to n =  1 includes mode pairs with toroidal 
indices n =  1 + 5k for integer k. The set of Fourier harmonics chosen for 
the stability analysis have toroidal index n = —9 ,—4,1,6 and 11. We would 
expect to find large n instabilities which have higher growth rates than the n =  1 
modes, so for the purposes of this study, we do not include any Fourier harmonics 
resonant with the field apart from those at n — 1. This allows is to examine the 
change in the dominantly n — 1 mode as we introduce toroidal shaping. The 
coupling between resonant n = 1 harmonics and resonant terms with n /  1, 
which have Sm > 5 and Sn > 5, is weak, as the equilibrium has no strong shaping 
with this mode number (unlike, perhaps, a helical equilibrium); the terms we 
do include are those with small jumps in mode number from the resonant n — 
1 modes. For higher n instabilities, coupling between resonant modes with
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different n would be more critical, and it would no longer be reasonable to 
exclude such Fourier components. Mode with a wide range of n and m would 
then need to be included, and this could be numerically infeasible.

We include compressibility in the study by setting 7  =  5/3; this has a 
stabilising effect for these resistive modes via a coupling to the sound spectrum. 
Analytical ballooning theory indicates that there may be unstable modes with 
fully complex frequency in the compressible case. For the axisymmetric base 
configuration, the instability is strongest at S  ~  50, well below the values of S 
expected to be relevant for magnetic confinement devices. Between this value 
and S  ~  3000 the most unstable mode is ballooning-like with large amplitudes 
for the resonant and near resonant Fourier components, and no strong radial 
localisation of any of the Fourier components. There is clear poloidal localisation 
in the region of bad curvature in this regime, and the mode magnitude is largest 
at mid-radius, where there are strong pressure gradients. At S  ~  3000 the most 
unstable mode begins to localise near the plasma edge, which is where it stays 
between this value of S  and S ~  105, the highest value of S  resolved in this 
case. The asymptotic scaling of the growth rate is linear with the resistivity, 
so that the growth rates are very small for realistic S  in this configuration. 
However, it is unclear that the modes found localised near the plasma edge 
are of physical significance: the equilibrium may not be well resolved near the 
conducting boundary. Nevertheless, the linear bound on the growth rate still 
holds, indicating that for small resistivity the resistive modes should always have 
very small growth rates, and are experimentally unimportant. Linear scaling is 
found analytically and via ballooning theory for such low-11 modes in [39].

0.001

0.0001
1e-05 0.0001 0.001

Figure 20: The growth rate, normalised to the Alfven time, of resistive modes 
in an axisymmetric configuration as a function of the Lundquist number S.

For the non-axisymmetric cases, we resolve most of the Fourier components
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which have toroidal mode numbers n € —9, —4,1,6,11 and poloidal mode num
bers m e —2, —1, ..,6, 7. The radial displacements associated with each Fourier 
component of the most unstable mode are plotted in figure 22. Keeping the 
value of S  fixed at 103, and introducing non-axisymmetric shaping into the 
equilibrium leads to a coupling into the toroidal sidebands which is roughly 
proportional to the degree of the shaping. For this q profile, and the partic
ular choice of Fourier components, only the modes with n =  1 are resonant. 
However, the toroidal sideband coupling is sufficient for Sr/ro =  0.2 to produce 
strong destructive interference in the waist region, as can be seen in figure 23. 
The growth rate (figure 21) increases somewhat with the introduction of non- 
axisymmetry, as the mode toroidally localises in region which have worse than 
average curvature.

5 r / <r>

Figure 21: The maximum growth rate of an m =  1 unstable resistive ballooning- 
like mode with S — 1000 as a function of the toroidal ripple Sr/ < r >.
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n -9
(a) Sr / r  — 0.05 (b) S r / r  =  0.1

n -9n .9 -4
(c) S r / r  =  0.15 (d) S r / r  =  0.2

Figure 22: The sets of radial displacements for each Fourier harmonic (m, n )
of the most unstable eigenmode resolved by SPECTOR3D for four different 
values of the shaping factor St/ tq. Each grid square corresponds to one Fourier 
component, with rows all having the same poloidal mode number, and columns 
sharing toroidal mode number. Some grid squares are marked with crosses: 
these correspond to mode pairs which were excluded from the calculation. In 
the other grid squares, the radial plasma displacement is plotted as a function of 
minor radius, with the magnetic axis as the leftmost point, and the conductive 
wall as the rightmost. For this configuration we have S  = 1000, qo = 1.25,ga = 
3.75 and ß = 0.3%.
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Figure 23: The radial and poloidal plasma displacements corresponding to a
resistive ballooning mode in a tokamak-like configuration with strong toroidal 
ripple, 8r/ro =  0.2. To show the toroidal variation in the mode strength, we 
plot the displacements on six plasma cross sections evenly spaced on a half field 
period (these are surfaces of constant Boozer angle £) . The vertical axis is the 
poloidal Boozer angle 9 and the horizontal axis is the normalised toroidal flux 
'll). For this configuration q0 =  1.25, qa = 3.75 and ß  =  0.3%. We set S  =  10000.
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7.18 H eliotron E

In [55], a technique based on averaging over both the toroidal and poloidal 
directions was used to analyse the ideal and resistive stability of a wide range 
of force-free large aspect ratio heliotron configurations. These configurations 
have varying vacuum rotational transform and toroidal current profiles, but can 
be constructed by varying a standard Heliotron E configuration. Most of the 
parameter space is occupied by truly hybrid devices in which a large proportion 
of the rotational transform is generated by the toroidal currents. These series 
of equilibria were later investigated with the semi-3D ideal MHD code STEP 
in [56], The ideal MHD stability of these configurations with respect to kink 
modes was found to closely agree with the results of analysis in [55],

The vacuum rotational transform profiles considered are of the form t =  
io(0.286 + 0.714-0), where 0  is the normalised toroidal flux, and lq takes some 
value in the range [0,2], We can closely reproduce these profiles by choosing 
an appropriate Heliotron configuration. The basis configuration is a standard 
Heliotron E configuration, with 17 field periods, and an almost planar magnetic 
axis. The flux surface cross sections are approximately elliptical, with the orien
tation of the ellipse rotating through an angle of n per field period. We modify 
this basis configuration to examine the parameter space of interest. The trans
form on axis, <.q, is a function of the flux surface shaping, and can be controlled 
by changing the magnitude of the helical deformation coefficients in the VMEC 
input. The most important shaping term is the m  =  1 jn  — 1 component of 
the VMEC flux surface series, for which we impose R = e and Z = — 1.05e. 
The rotational transform at the edge is approximately proportional to e, and 
the transform profile generated by this shaping closely matches the required 
profile. We then introduce a strongly peaked toroidal plasma current into these 
configurations, with J  =  Jo(l — 0 )4, with the pressure profile still constrained 
to be zero. Poloidal currents are then produced to provide force balance. We 
label the additional rotational transform produced at the edge of the plasma 
by the introduction of currents Iq, so that the total transform at the edge is 
t0 = + The strongly peaked current profile leads to much larger transform
increase near the center of the plasma than at the edge.

The most unstable ideal MHD modes found are the m =  1/n =  1 internal 
kink modes, which are associated with the rational surface where t =  1. In cases 
with small vacuum rotational transform m = 2/n = 1 and m = 3/n = 1 resistive 
tearing modes are predicted analytically. We consider these instabilities by 
resolving the n — 1 mode family (coupling to n — —16,+1,-|-18,..). Preliminary 
runs indicated that there was not much toroidal or poloidal coupling, and for 
the configurations chosen the non-dominant components of the mode were at 
most ~  10% as large as the dominant component. The toroidal coupling was
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negligible for the cases with low vacuum transform, where the tearing modes 
are seen, but was approximately as important as the poloidal coupling for some 
of the cases there the m / n  = 1 / 1  kink mode is present, as indicated by figure 
24. Being able to resolve the toroidal and poloidal coupling in this case provides 
an important check for physically motivated arguments that suggest that such 
coupling should not have a large effect. For the parameter survey we only 
considered the n = 1 Fourier components of the perturbation, as the tearing 
modes were of most interest for our study. We chose poloidal mode numbers 
m  G [—1,8], and this was sufficient to resolve the limited poloidal coupling of 
the equilibrium. For zero resistivity we find only an m  = 1/n =  1 internal kink 
mode. However for finite resistivity m  =  2/n  =  1 instabilities are seen in some 
regions of the parameter space as indicated by figure 27.

,

Figure 24: The strength of various Fourier components of the most unstable
ideal MHD mode in a current carrying heliotron configuration as a function of 
poloidal and toroidal wavenumbers m  and n. The vacuum transform tg is 0.5 
and the current induced transform Lq is 0.3. The volume of each box in the 
figure is proportional to the maximal radial displacement found for each Fourier 
component.

The instabilities of these configurations can be resolved accurately by SPEC- 
TOR3D even with a small number of Fourier modes, but a reasonable amount of 
radial resolution is required in cases with low resistivity, and we use 400 radial 
grid points for our equilibrium scans. In the resistive case, we perform a param-
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Figure 25: The growth rate of an m = 2/n — 1 tearing mode in a zero ß  current 
carrying heliotron as a function of the Lundquist number S. The straight line 
shows the predicted asymptotic dependence, u  oc >S-3/5. The vacuum rota
tional transform at the plasma edge, to*5, is 0.15, and the additional rotational 
transform at the plasma edge produced by toroidal currents, is 0.14.

eter scan in S  for the configuration most unstable to tearing modes: the growth 
rates are plotted in figure 25, and a representative set of eigenfunctions is shown 
in figure 28. We are well into the asymptotic scaling regime for S  = 10-7 , which 
is the value we choose for the scan over the rest of configuration space. The 
boundaries of the region unstable to internal m = l / n  = 1 modes agrees well 
with that found in previous literature [56] [55], These modes become unstable 
when the resonant rational surface with t = 1 lies in a region of strong current 
gradient. As the toroidal current is increased, the t = 1 rational surface moves 
outwards in minor radius. A free boundary analysis would show that the plasma 
becomes unstable to an external kink mode when this surface moves beyond the 
plasma edge, but we have imposed a conductive wall at the plasma boundary 
and our model becomes stable. Resistive tearing modes are found only in the 
tokamak-like configurations where the vacuum rotational transform at the edge 
of the plasma, £q, is 0.15.
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Figure 26: Rotational transform profiles for a current carrying heliotron with 
varying values of the total toroidal current J. The outermost flux surface shape 
is held constant.

Figure 27: Kink mode (m =  l ,n  =  1, bars) and resistive tearing mode (m =  
2,n = 1, diamond prisms), showing relative growth rates for configurations 
with varying vacuum rotational transforms, to5, and plasma current generated 
transform toCT.
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(a) S  =  10-4  (b) S  = 10-5  ( c ) S = 1 0 - °

Figure 28: Radial plasm a displacement of the dom inant m  =  2 /n  =  1 com
ponent of a tearing  m ode in a zero ß  current carrying heliotron as a  function 
of normalised toroidal flux ip. The vacuum rotational transform  at the plasma 
edge, to5, is 0.15, and the additional rotational transform  at the plasm a edge 
produced by toroidal currents, toCT, is 0.14.



7.19 LHD 85

7.19 LHD

Figure 29: An outer vacuum flux surface of a 15cm inwards shifted LHD config
uration. This serves as the plasma boundary for our LHD stability comparisons.

In this section we describe stability results for a set of configurations based 
on the LHD stellarator and used in earlier literature [47] for the comparison 
of various ideal MHD stability codes. First, we reproduce the published ideal 
MHD behaviour for small toroidal mode number. Then we consider the effects 
of resistivity applied to these test cases.

LHD is, at the time of writing, the world’s largest stellarator; it has a major 
radius of 3.9m, and 10 field periods; the field is produced by a pair of helical 
coils and a set of poloidal field coils. It serves as a useful test case for high
dimensional codes because it has only a moderate amount of three dimensional 
shaping, reducing the requirements on poloidal and toroidal resolution. In the 
LHD configuration used for the comparison of stability codes coil currents are 
adjusted so that the magnetic axis is shifted 15cm inwards from its nominal 
position. An appropriate outer flux surface is then chosen to serve as the plasma 
boundary for a fixed boundary equilibrium calculation using the VMEC code. 
In order to ease comparison between the stability codes, which may not clearly 
resolve instabilities with small growth rates, a broad pressure profile was chosen, 
which induces a strong instability above a critical ß. In this case, the largest 
pressure gradients occur nearer the edge of the plasma, where the magnetic 
field line curvature is strongly unfavourable. The resulting test case becomes 
Mercier unstable as ß  is increased. The codes under comparison in [47] are 
KSTEP, TWIST, TERPSICHORE, CAS3D, RESORM and CHAFAR. We give 
a brief overview of the most important differences in formulation amongst these 
codes and also between these codes and SPECTOR3D:

• Only TERPSICHORE and CAS3D are fully 3D codes, in the sense that 
they can resolve toroidal coupling. The other codes use toroidal averaging 
to reduce the stability problem to two dimensions.

• Most of the codes in this comparison make some modifications to the ideal 
MHD model for numerical convenience; TERPSICHORE and CAS3D (in
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recent versions) can include the effects of compressibility, but in this com
parison are incompressible and use a non-physical kinetic energy term, 
and other codes utilise reduced MHD or incompressibility assumptions. 
Such models have the same marginal stability point as ideal MHD, and 
the growth rates and eigenvalues of unstable modes are often very similar 
to those obtained by a full compressible ideal MHD analysis.

• Both fixed and free boundary conditions can be treated with many of these 
codes, unlike SPECTOR3D, which is a fixed boundary code.

• All the codes apart from RESORM, which includes resistivity in its for
mulation, are based on the ideal MHD equations.

The growth rates and wavemodes are strongly dependent on the details of 
the equilibrium. It is therefore helpful that we use the same equilibrium input 
format (VMEC output) as many of the codes in the study, and we have been able 
to obtain this output from one of the authors of the study. Furthermore, because 
we are using a module from TERPSICHORE for Boozer coordinate mapping, 
we can isolate the comparison between our code and TERPSICHORE to the 
stability sections of the codes.

The shape of the pressure profile is particularly important for the purposes 
of this comparison. We use the profile p  =  (1 — ip 2 ) 2 , where ip is the normalised 
toroidal flux. This is the profile known as p n  in [47]. There are several other 
possibilities considered in [47], but because VMEC takes a polynomial function 
of the toroidal flux as its input for the pressure profile, this is the most con
venient. Using p  =  (1 — 02)2, with (p the normalised poloidal flux, leads to a 
rather different set of instabilities, whose squared growth rates are different by 
approximately a factor of ten.

Two toroidal mode families are chosen for stability analysis, with no = 2 and 
no = 3. Because many of the codes under comparison use a form of toroidal 
averaging, a test case was specified where toroidal coupling was not likely to 
be important. The absence of strong toroidal coupling was confirmed in [47] 
by examining the results of the fully 3-D codes. We also resolve a certain 
amount of toroidal coupling with Spector3D, induced mostly by the helical flux 
surface shaping, with most of the toroidal coupling between components with 
ö r n / ö i i  =  2/10, as shown in figure 31.

We omit toroidal coupling for the purposes of the rest of the comparison, 
and instead use our numerical resources to increase radial resolution, because 
the most unstable mode has a sharp peak, especially near the marginal stability 
point. We resolve poloidal wavenumbers in the range [—2,12] to include not 
only the perturbations resonant with the rational magnetic surface, but also the
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Figure 30: The rotational transform of the LHD testcase as a function of the 
normalised toroidal flux for ßo = 4.1%.

effects of the non-resonant modes which can be important when the equilibrium 
contains significant toroidicity. We choose 100 evenly spaced finite element grid 
points. For the no = 2 case we determine the growth rates and wavemodes 
for a range of different ß  values. The stability parameter A we find is plotted 
alongside that from KSTEP and TERPSICHORE in figure 32 as a function of 
ßo. We have ßo = 2po/Bo2, where p0 is the non-dimensional pressure at the 
magnetic axis, and is the non-dimensional magnitude of the vacuum field 
at the major radius Rq = 3.74m. The stability parameter A is related to the 
growth rate u  from SPECTOR3D through the relation A =  uj1 \pRo~j Bo2]. As 
is conventional for stellarator stability analysis, p is taken to be constant across 
the radius. It can be seen that there is relatively good agreement among the 
three codes, even though we are finding the compressible growth rates, and 
the other codes are using reduced MHD or a model kinetic energy term. The 
radial displacements associated with the most important Fourier components 
of the instability are shown in figure 33, for a fixed boundary mode with a 
dominant n = 2 component. Near the critical ß  value these eigenmodes are 
very strongly radially localised, and are composed almost entirely of one Fourier 
component, but they become much smoother for higher ß, where many Fourier 
modes contribute significantly.

To examine the effects of resistivity on the stability of this testcase, we find 
the most unstable eigenvalue (figure 35) as a function of ßo for several values 
of the Lundquist number S. The ideal growth rates are shown for comparison. 
Unstable modes are found below the predicted ideal MHD marginal stability 
point with resolvable growth rates, localised in the region of strong pressure 
gradients: this is consistent with the local stability criteria plotted in figure
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(a) (b)

Figure 31: The strength of various Fourier components of the most unstable
ideal MHD mode in LHD for ßo =  4.1% (left), and of the most unstable resistive 
MHD mode with S =  106 for ßo =  3.0% (right). The volumes of boxes in the 
figure are proportional to the maximal radial displacement found for each mode.

34. The eigenfunctions and eigenvalues of the strongly unstable ideal modes 
are not significantly altered by the addition of small values of resistivity, as is 
expected for these smooth, well isolated global instabilities. However, the effect 
of resistivity is mainly interesting where the ideal modes are stable, or almost 
stable. For this model, there are unstable resistive modes with significant growth 
rates for all values of ßo for S =  105. However, for low resistivity (S > 105), 
the growth rates of these resistive modes is only significant above ßo ~  1%.
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Figure 32: The largest instability value A as a function of plasma pressure ßo 
for ideal modes with n =  2 in a LHD equilibrium with a broad pressure profile.

Figure 33: The radial displacements for the most significant Fourier components 
of the most unstable n  =  2 mode in a broad pressure profile LHD configuration 
for various values of ßo.
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Figure 34: The Mercier criterion D[ governing ideal interchange stability
and the resistive interchange stability criterion D r . plotted versus normalised 
toroidal flux -ip, for a broad pressure profile LHD configuration with ßo =  2%. 
Dj < 0 and Dr < 0 are necessary criteria for ideal and resistive stability, 
respectively.

Figure 35: The largest instability growth rate A resolved by SPECTOR3D as 
a function of plasma pressure ßo for resistive modes with n = 2 in an LHD 
equilibrium with a broad pressure profile.
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logto(S)

Figure 36: The largest instability growth rate A (points) as a function of S  for 
n =  2 modes in an LHD equilibrium with a broad pressure profile and ßo =  2%. 
The growth rate scaling conforms closely to the expected scaling for resistive 
interchange modes, <*> oc 5 1/3, which is the line plotted in the figure.
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8 S te llarator  sta b ility  w ith  resp ec t to  g lob a l ki

n etic  b a lloon in g  m odes.

8.1 Sum m ary

Ballooning modes are usually the most dangerous ideal MHD instabilities 
in stellarators, but the unstable ballooning modes often have such short per
pendicular wavelengths that finite Larmor radius (FLR) effects are sufficient 
to stabilise the plasma. We use semiclassical techniques to analyse this effect. 
In tokamaks the ignorable toroidal coordinate leads to a simple quantisation 
of the ballooning mode, but this is not the case for stellarators. Although for 
stellarator models there is sometimes a quantisation which arises from a sepa
ration of scales, we present a method for determining marginal stability which 
is applicable to the non-integrable case.

8.2 Introduction

There are obvious physical reasons for considering the FLR stabilisation of 
the ideal MHD model, but there is also a compelling theoretical reason: MHD 
theory lacks an intrinsic scale length. This can be seen, for example, in the local 
dispersion relation for shear Alfven waves in the interchange ordering, which is 
asymptotically independent of the wavelength perpendicular to the magnetic 
field. The independence of scale leads to singularities, which are particularly 
troubling in stellarators, where the unstable modes may have singular angular 
dependence over a range of flux surfaces [57]. In axisymmetric systems, such 
singularities cannot arise because only a finite number of Fourier harmonics can 
contribute significantly to the mode. The reason is that shear Alfven waves of 
different toroidal wavenumber n do not couple together in axisymmetric systems 
and there is a natural cutoff in poloidal wavenumber space for each n which arises 
from the requirement that unstable modes are flute-like, with m / n  ~  q. On the 
other hand, for non-axisymmetric systems there is no natural cutoff in poloidal 
wavenumber, as modes may couple to arbitrarily high toroidal wavenumber. In 
[57] ideal MHD ballooning modes were studied in a fully three dimensional con
figuration, and it was shown how the absence of such a cutoff complicates the 
analysis. For some cases this entirely confounds quantisation, but even where it 
is possible to extract a quantisation condition, the eigenmodes are predicted to 
be singular functions of the poloidal angle. Such generalised eigenmodes can
not be directly interpreted as motions of a real plasma; they arise here because 
the system can transport wave energy to arbitrarily short wavelength. This is 
not unusual: a well known example of this kind of energy transport occurs in
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a stable cylindrical plasma with a radially varying Alfven frequency, where an 
initially smooth perturbation evolves into a state with strong radial variation 
as the Alfven modes dephase. At some point in this evolution, the wavenumber 
will grow large enough that the ideal MHD model becomes inadequate. In order 
for the model to be valid as t —* oo (which is the relevant limit for the eigen
mode picture) non-ideal effects need to be included. Such effects desingularise 
the problem by introducing a (physical) wavelength cutoff, and may lead to a 
stabilisation or destabilisation of the plasma.

For tokamaks a straightforward semiclassical analysis is enough to find the 
eigenmodes and eigenvalues of kinetically stabilised ballooning modes; the toroidal 
symmetry leads to a good quantum number, and the rest of the dynamics occur 
in a one degree of freedom Hamiltonian system, which is necessarily integrable. 
In a nonaxisymmetric mirror configuration [14], it was shown how semiclassical 
quantisation could be extended to systems lacking a continuous spatial symme
try if a separation of timescales in the ray dynamics exists, so that the problem 
is nearly integrable. We extend the analysis to the regime where there is no 
separation of timescales, and chaos is present in part or all of the phase space.

For systems whose semiclassical ray orbits exhibit even quite substantial 
non-integrability, it has been shown that near-integrable semiclassical theory 
can provide very good estimates of eigenvalues [58], The non-integrability does 
not need to be neglected, and the parameters which enter the formula can be 
easily and accurately measured. We apply this technique to a system in which 
almost half the semiclassical phase space is ergodic.

One of the signatures of strong semiclassical chaos is in the more subtle 
features of the spectrum, like those predicted by random matrix theory. This 
is the topic of [26], where they find that the eigenvalue spacing probability 
distribution function of a numerical ideal MHD spectrum agrees nicely with 
random matrix theory. However, for the purpose of marginal stability analysis, 
sufficient information about the distribution of eigenfrequencies in the strongly 
chaotic case can be derived by applying the Weyl estimate, which we review 
in section 8.11; this was utilised in [16] as a tool for ballooning mode stability 
analysis. In that paper an artificial cutoff was introduced, intended to model 
finite resolution in numerical studies of ballooning stability; we consider the 
more physical case.

We begin the analysis by exploring the drift stabilised MHD model and 
explaining how the use of semiclassical analysis can be justified in this system 
where fully complex wave frequencies arise.
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8.3 A rev iew  o f th e  ba lloon ing  m o d e  fo rm alism

The ballooning mode formalism is structured around the observation that 
many of the most dangerous unstable MHD modes are flute-like: they vary 
slowly along the magnetic field, but have short perpendicular wavelengths. It 
is often possible to find a sequence of increasingly unstable modes for which 
k_L —> oo. The form of such perturbations can be captured by the semiclassical 
representation

=  r,± e'S

with T7j_ varying slowly, and

B-VS = 0.

(117)

(118)

The perpendicular wavenumber is defined via kj_ = VS.  In this section we will 
use the standard ballooning coordinate system described in [57] where the flux 
surface is parameterised by a poloidal angle 6 and the field line label a. The 
field line label a runs between 0 and 2n over one toroidal traversal of the device. 
The choice of the safety factor q as the radial coordinate is also standard, as it 
simplifies the analysis. In this coordinate scheme we represent the perpendicular 
wave vector k as

k =  A;a Va + kqSJq (119)

We then proceed to systematically minimise the ideal MHD energy princi
ple (12) for these flute like perturbations, after expanding iq± in terms of the 
small ordering parameter, l/|kj_|a, which is the ratio of the wavelength to the 
system scale length. The zeroth order of the expansion of equation (12) leads 
to k_i_*77±0 =  0, allowing us to express r/x0 through a scalar Y,

77±0 = Tbxk_i_. (120)

The next contributions to equation (12) are at second order, leading to

1
2po / dV fci|b-vx|; -2^-(b x k± • Vp) (b x kj.-k) ( 121)

where k = b-Vb is the field line curvature, and X  — YB.  These terms represent 
the balance between the destabilising effect of unfavourable curvature and the 
stabilising effect of field line bending.

Because S  is constant on any particular field line, k^ twists along a field 
line according to the shear of neighbouring magnetic field lines. X  is the only
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perturbing quantity that can be varied on field lines: only the derivative of 
X  parallel to the field line is present in equation (121) so the minimisation 
can be considered separately on each field line; this leads to a one-dimensional 
differential equation for X.  The solution to this equation is dependent on the 
choice of field line and the value of kj_ at toroidal angle C — Co (Co is arbitrary).

The next step is to determine whether solutions to this field line equation 
exist. In toroidal systems this reduces to determining whether the solutions are 
compatible with the toroidal and poloidal periodicity requirement. On ratio
nal surfaces it is possible to find ballooning eigensolutions, but in systems with 
shear the consequence of imposing the periodicity requirement on the phase S 
is that no solutions exist. However, this periodicity constraint is unnecessarily 
restrictive: it is possible for semi-classical solutions to have multi-valued repre
sentations which, when summed, satisfy the periodicity constraints even when 
the individual terms of the representation are not periodic.

The concept of a covering space is useful in describing the multi-valued 
semiclassical solution we wish to use to describe the ballooning perturbation. 
The idea is to choose a covering space (in this case an infinite plane), and deform 
it via a continuous mapping onto the space of the physical problem (a torus). 
We then solve the ballooning equation on the covering space, analogously to the 
demonstration in figure 37. The mapping we take (a simple periodic wrapping 
in both directions) maps an infinite number of points on the plane to a single 
point on the torus. The solution on the plane is then wrapped onto the torus, 
and the solution on each sheet of the wrapping is superimposed: this ensures 
the periodicity of the solution. The solution is then

£ '±= 5 2  J2 ^ ± ( ö - 2 7 r m , a - 2 T m ) e i5(0- 27rrn'Q- 27rn). (122)

where S(9,a) and ri(6,a) are now defined on the infinite plane and we have 
suppresses the radial dependence. Lines of constant a are wrapped onto field 
lines in this mapping, and cover irrational surfaces densely. We require the 
function 77 ± be normalisable on the covering space to guarantee that the sum 
is meaningful.

We now consider a more explicit form of the ballooning equation [59],
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OO oo

m =  — oo 7i =  — oo

(123)

with coefficients given by

A — --------- T
J | V ^ | 2

! ^ h [ ß + ( Ö M ) ( 0 - < W 1 2. (124)
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Figure 37: A wave propagating around a torus intersects with itself in a compli
cated fashion. The lower figure shows a simple circularly symmetric wave on the 
plane. Wrapping the plane around the torus and superimposing the amplitudes 
constructs the complicated structure of the wave on the torus. This illustrates 
the utility of the covering space, where solutions often have much simpler spatial 
structure due to the relaxation of the periodicity constraints.

K  =  {«„ + + (0*,)(0 -  0*)K,} , (125)

N  =  J2A (126)

where the local integrated shear is given by R + Od^q =  —Vq-V ^ /|V ^ |2, and 
the normal and geodesic components of the magnetic curvature vector k =  b* Vb 
are given by nn =  k>V'I'/|V'I/| and ng = K’V'I' x B / |ß V ^ | respectively. The 
background magnetic field and pressure are B and p, and J is the Jacobian. 
The phase fronts are sheared with the magnetic field as we proceed along a field 
line; 6k = kq/ka is the poloidal angle where the local ballooning phase fronts 
are perpendicular to Va.

Although this ballooning equation should in principle be solved along the 
entire infinitely long field line, numerical analysis on a finite segment of the 
field line is sufficient if the ballooning eigenfunction converges to zero along the 
field line sufficiently quickly. It can be shown that the convergence criterion 
is simply the Mercier criterion [10]: this is evident in many derivations of the 
Merrier criterion [33],
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8.4 K in e tic  co rrec tio n s  to  Idea l M H D  balloon ing

In order to account for effects beyond ideal MHD, the ballooning ordering 
can be applied to more general plasma models. In particular, we utilise the 
results of [60], where the ballooning ordering is applied to the Maxwell-Vlasov 
equations and various limits are taken. Two separate effects are present in 
the kinetic ballooning model, corresponding to the trapped particle effects and 
the finite-gyroradius term. For modes with moderate toroidal wavenumber, it 
can be shown that the dominant non-ideal effect is the stabilisation due to 
the diamagnetic drift. We will ignore the relatively small additional stabilising 
effects of the curvature drift. In this regime, the kinetic ballooning equations 
are given in terms of the ideal MHD ballooning equation by the replacement:

u p  —* ui(ui T ujP) (127)

as in [60] (where the notation is slightly different) or [14], where

cT
u *  =  k -B xV p (128)eBp

is the diamagnetic drift frequency for the wave under consideration. We define 
the flux surface quantity Dj such that

= flikQ (129)

On each field line this kinetic effect is equivalent to a simple frequency shift, and 
the eigensolution of the ballooning equation along the field line is not modified 
by kinetic effects: we can calculate the local kinetic growth rates from the 
ideal growth rates by substituting equation (127) into the local ideal MHD 
dispersion relation. The region of ideal MHD instability is commonly fairly 
radially localised, and since varies on the equilibrium scale, it is set to a 
constant for the purposes of our analysis.

The formal semiclassiclassical quantisation of a system begins with the calcu
lation of the dispersion relation; the next step is to determine the ray equations 
which govern the transport of the local phase, and the equation which governs 
the transport of the amplitude. The ray and amplitude equations can be de
termined from general considerations [37] for any wave equation which admits 
an integral form, and in particular for the differential equations which we are 
interested in. The wave equation which is relevant here is the linearised form 
of the Vlasov-Maxwell equations, but we use the approximate dispersion rela
tion given by the ballooning ordering. The semiclassical ray equations can be
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expressed through the dispersion relation as

^  =a[k(y),y,w]^|A [k(y),y,u>]|

and

=  -a[k(y),y,a;]^ |A [k(y),y,a;]|

where the choice

a[k(y),y,u;] 1
|A[k(y),y,u;]|

(130)

(131)

(132)

gives the conventional form for geometrical optics. The same method [37] can 
in general be used to find the amplitude evolution, but it is more enlightening 
and more elegant to derive the amplitude evolution via Lagrangian techniques. 
The Vlasov-Maxwell equations can be derived via a variational principle [61] 
[62], and this implies the existence of several conserved quantities. Using the 
notation of [63], we can express the conservation conditions as

dT,lv dCit -  <133>

with

T^v =  ----- r]p -  £6flu, (134)
ar)p,u

xo = t and ( . r i , X 2 , X 3 )  = (a.q .s ). There is an implied sum over indices which 
appear in pairs. The Lagrangian density L is usually a function of x. 77 and 
dri/dx and derivatives of 77 with respect to time; the total derivative in equa
tion (133) takes into account the x dependence of 77 and its derivatives in the 
Lagrangian density. We are interested in the // = 0 component of equation (133) 
which is typically associated with energy conservation. We show how this leads 
to a conservation of wave action for systems in which the Lagrangian can be 
(approximately) minimised by a semiclassical trial solution of the form

77 =  r}(r) exp[iS(r)h — iut], (135)

with h a small parameter and wavevector defined by k = VS. The slow variation 
along the field can be captured entirely by the function 77, so we set k-B = 0 
and specialise to flute-like modes.

The semiclassical ordering applies across the field line so that 77Pil/ ~  krjip
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for v € 1,2. Expanding the p.

(  d dCI -----------

0 component of equation (133) leads to

d ÖC d
da dkQ dq dkq ds _dVp,

Vp,s -  £ - £ . (136)

When the configuration is Mercier stable [33], the solutions rj(r) asymptot
ically tend to zero along the field lines. In this case we can integrate along the 
field line to find

d dC d dC
da dka dq dkq

(137)

where £ is the field-line-integrated Lagrangian. The eigensolutions f/ are 
proportional to the ideal MHD ballooning eigenfunctions,

T){9\a,q,9k,ka ,u;2) =  p(kQ)f)MUD(9\a, q: 9k,u>(u; -  kaQt)) (138)

for which we choose the conventional normalisation

Ö ^ M H D ^ M H D ^ “ )] 1 1 1 o n \
---------------------- = '• (139)

We then normalise the ballooning eigenfunctions of the kinetic model, for which 
we have £[r)MHD(u;)] = ^ mhd^ mhdM ^  ~ ^i^a})], in the same way:

1 = d^ )] = p2( ^ ) 9£ mhd M M  =  (2w _ n ika)p2 (ka)

(140)

So that we require

P2(ka ) = \ /(2lo -  rtika). (141)

The semiclassical solution in configuration space is

rj =  aqexp[iS(a,q)]r)(0\a, q,9k,ka ,u;2) (142)

where we use the notation aq = aq(a, q) for the amplitude in configuration space. 
An analogous representation is possible in momentum space with amplitude 
ap =  a(ka,kq). Minimising the Lagrangian with respect to the wave amplitude 
gives £[77] =  0 ; we can then insert the definition of the semiclassical solution
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[equation (142)] into the Lagrangian to find the relations

(143)

(144)

(145)

(146)

since the Lagrangian is bilinear, and the phase and amplitude factor out. Equa
tion (137) can then be expanded in its original form or with the order of dif
ferentiation swapped, to give conservation conditions both in momentum and 
configuration space,

dC[rj] 2 du>
dq = ° q^

dC[ri\ 2 ^
da Uq da

dC[rj\ 2
dkq =  üpdk~q

dC[ri] 2
dka =  apdk,~

d , 0 du  . d , 9 du .
+ =  ° ’ and

(147)

d . 09u. d , o d u s
dk^^ap^ + =  °' (148)

This can be used to determine the time evolution of the amplitudes along 
the ray determined by equations (130) and (131),

daq 
dt

where v =  (dq/dt,da/dt) is the ray velocity. The divergence has singularities 
at caustics, where the momentum description should be used, but otherwise 
is well behaved. The conserved quantity is actually the phase space density 
a2(a, q1 ka, kq) defined jointly in momentum and position space; this quantity 
is analogous to the conserved brightness of a propagating light field. This ad- 
vection of wave action is conceptually the same as its quantum mechanical 
counterpart, but the wave action of interest is not proportional to the square of 
the wave amplitude.

The form of the normalisation in equation (141) implies that the physical 
displacements associated with the semiclassical solution might be singular at 
the marginal stability point, where 2aj -  Qika =  0, even though the phase space 
density a2 is conserved. Generally there is no physical singularity because wave

da2 dq ^  da2 da 
dq dt da dt
d f  2 du> 
dq \ qdkq 
- a 2V -v

- a 2 d2u
+q dqdkq da

2 \
aqdk~n)

a2 d2 to
q dadka

(140)

(150)

(151)
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solutions do not simultaneously possess a well-defined momentum and position, 
so that the singularity is averaged out over a number of wavelengths. However, 
in the semiclassical limit, where h —* 0, we would expect modes to become 
increasingly singular at this surface. This is typical of strongly non-normal 
wave systems where, even though there is an approximately conserved quantity, 
the physical displacements are not well bounded in the h —> 0 limit. However, 
the equilibrium is unstable in this limit anyway.

It is relevant at this stage to consider how the use of a Lagrangian formulation 
is justified in this situation, in which fully complex frequencies can arise, even 
though there is no dissipation. Typically the eigenfrequencies of Lagrangian 
wave problems are either real (as in quantum mechanics) or lie on the axes 
of the complex plane (as in ideal MHD). This is because the time derivative 
occurs only in a single order in the Lagrangian of these systems. In our system 
both d/d t  and d2/d t2 occur, leading to the term u(u> — katt). The eigenvalue 
problem associated with the Lagrangian is of the form u 2Ar) + uHr] + Crj = 0, 
which in general has complex eigensolutions even when the matrices A. B and 
C are Hermitian. It is relatively straightforward to show that the terms in the 
Lagrangian are Hermitian: it is well known that the ideal MHD force operator 
is Hermitian, as is the additional term iuiVtid/da which in the semiclassical limit 
gives the contribution —kCtujQl to the dispersion relation.

Now that we have described the spatial variation of the semiclassical phase 
and amplitude, we have a complete description of the wave problem in the 
short wavelength limit, as any wave which satisfies the semiclassical equations 
will approximately solve the exact problem. In the integrable case it is possible 
to construct approximate eigensolutions to the wave equations via Einstein- 
Brillouin-Keller (EBK) quantisation: these converge to the exact solutions 
in the semiclassical limit. In the chaotic and near-integrable case, the time- 
dependent solutions of the wave equations are still straightforwardly accessible 
through the semiclassical technique, and can be shown to correspond in the 
semiclassical limit to the exact solutions, but it is difficult to construct the 
eigenfunctions explicitly. An indirect approach which considers the response of 
the system to periodic perturbations is more fruitful; the semiclassical trace of 
the Green’s function can be shown to converge (in a restricted sense) to the ex
act Green’s function. These approaches rely only on a conservative semiclassical 
formulation of the wave problem, rather than any special properties of quantum 
mechanics: this can be seen by examining the derivation of the trace formula, 
which is accessibly described in [22].
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8.5 E inste in -B rillou in -K eller quan tisation

For systems with a full set of quantum numbers, semiclassical rays propagate 
on topologically toroidal surfaces in phase space known as Lagrangian manifolds 
or Kolmogorov-Arnold-Moser (KAM) tori. In systems which are close enough 
to an integrable system, the KAM theorem guarantees that the phase space will 
consist almost entirely of a nested set of these KAM tori. A quantised wave 
function can be constructed if it is possible to assign well-behaved phase to each 
point on some KAM torus, consistent with the semiclassical ray equations which 
transport the phase along the Lagrangian surface. However, the projection of 
this manifold onto configuration space, the space associated with the positions 
q, is usually multivalued, and the semiclassical amplitude of the wave function 
diverges at the boundaries of the layers of the Lagrangian manifold. One ap
proach to resolving the wave near the edges of the layers is to use a boundary 
layer approach, but this requires a new solution to our original set of differen
tial equations. A more elegant approach is to consider the momentum space 
representation of the solution,

= A(p) exp{ —ih S (p, I) + iß}, (152)

which approximates the Fourier transform of the configuration space solution. 
To satisfy the wave equation, the action S(p) is defined by integrating the phase 
along the ray, so that

S ( p ) = f  q(pM p. (153)
Jpo

This momentum representation of the semiclassical wavefunction is also multi
valued and cannot be continued smoothly across the entire Lagrangian manifold. 
However, it can be shown that the points where the momentum space and po
sition space representations break down never coincide. To find the complete 
semiclassical wavefunction it is therefore necessary to match the two represen
tations together at various points: they are related via the Fourier transform

A(q) exp[z^S'(q)] ~  J  dp'A(p) exp[—iftS'(p)] exp[zpq']. (154)

This Fourier transform can be evaluated in a region away from the boundary 
(where caustics form) via a stationary phase approximation. This gives a rela
tionship for the phases S(p) and S'(q),

p(q)q -  S(p (q  ) J )  = S( q). (155)
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Near the caustics it is possible to perform a canonical transformation on the 
coordinates (p. q) —> (p '.q ') so that the phase S'(p/) corresponds to one of the 
finite set of normal forms. The Fourier transform of the momentum represen
tation can then be found analytically. In the generic case where there is a fold 
in the Lagrangian surface, the action S(p±) ~  — p\_ perpendicular to the fold, 
and the Fourier transform is an Airy function. The matching is completed by 
requiring the asymptotic oscillation of this function match the configuration 
space wavefunction; this implies that there is an additional phase change of 7t/ 2 
whenever the ray crosses the boundary between two sheets of the Lagrangian 
manifold. This is included in the semiclassical phase through the Maslov index 
p, which counts the number of folds encountered.

In the multidimensional case, the phase can be propagated along the surface 
and back to some original point by a continuous family of curves. In order for 
the phase to be well defined, we require that the phase propagated around the 
curve, S\, be equal to the original phase at that point, So, plus some multiple 
of 2-7T for any such curve. However, this phase difference can be shown to be 
equal for any pair of topologically equivalent loops on the Lagrangian surface, 
so that it is sufficient to simply consider the N  independent loops which form a 
basis on the surface; the two loops in figure 41, for example, are sufficient. We 
then have N  independent quantisation conditions,

which are the Einstein -Brihoum Keiler (EBK) quantisation conditions.

8.6 Q uantisation in near-integrable system s

The discovery by Gutzwiller [64] of a semiclassical formula for the density of 
states in a system based on the periodic orbits of semiclassical rays opened up 
a new perspective on the quantisation of wave systems. Because periodic orbits 
are the foundation of dynamical systems theory, a semiclassical quantisation 
based on these orbits is a vital bridge between the dynamics of wave systems 
and those of low dimensional Hamiltonian systems. However, for integrable 
and near integrable systems, the formula of Gutzwiller cannot be applied, as it 
depends on the periodic orbits being well isolated in the phase space. This is the 
case for only a small proportion of the orbits of a near-integrable system, even 
in the h —* 0 limit. Also, although EBK quantisation is also an effective method 
for quantising integrable systems, it cannot systematically address issues such 
as the bifurcation of periodic orbits or small departures from integrability.

A quantisation of integrable systems in terms of periodic orbits was provided
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(156)



8.7 Semiclassical analysis of ballooning modes 105

by Berry and Tabor. For near integrable systems, the theory was extended 
by Ozorio de Almeida [65] to include the effects of resonances which break 
the invariant tori, although the practical application of the theory was limited 
because of the strict conditions for the application of this theory. A simple and 
accurate method for applying the corrections was derived in [66]: the application 
of this method to the hydrogen atom in a magnetic field in [58], which is a 
canonical problem in semiclassical quantisation, was an important milestone.

Expressions like the Berry-Tabor and Gutzwiller formulae are known as 
trace formulae, because they can be derived by taking the trace of the Green’s 
function, G(q. q',u;), which measures the response at point q of the system to 
periodic perturbations at point qb At eigenfrequencies, the system response is 
singular, and there is a corresponding pole in the trace dqG(q. q, u). The 
actual evaluation of the trace in the short wavelength limit involves a stationary 
phase approximation, and the dominant contributions to the trace integral are 
from semiclassical rays which close on themselves in phase space, which are 
known as periodic orbits. This is the point where the Gutzwiller and Berry- 
Tabor formalisms diverge, because in the former, periodic orbits arc assumed to 
be isolated in phase space, as is typical of chaotic systems, whereas in the latter, 
they occur in continuous families, spread across a rational invariant torus.

In the intermediate case where the periodic orbits are not sufficiently isolated 
to justify independent stationary phase approximations, but do not occur in 
continuous families, it is still possible to use a stationary phase argument to 
integrate the trace over the directions perpendicular to the Lagrangian surface, 
but the integral on the surface which contains the phase variation must be 
evaluated explicitly. An elegant method to perform such integrals was given by 
[66], where a formula is given in terms of periodic orbit quantities; this gives a 
smooth interpolation between the Gutzwiller and Berry-Tabor limits.

8.7 Sem iclassical analysis o f ballooning m odes

Although there are some notable exceptions [67] it is difficult to find analytic 
representations of global ballooning wavefunctions in 2D and 3D systems.

The drift stabilised MHD ballooning model has a dispersion relation of the 
form:

D(ka , kg, a, q) — Q2 — — kQfli) = 0 (157)

The term fb models the drift stabilisation and will be taken to be constant 
across the plasma volume for the sake of simplicity. D € M is a function of (a , q) 
and Ok =  kg/ka-, it is the wave frequency in the absence of FLR effects.
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The semiclassical formalism uses a short wavelength ordering to analyse the 
propagation of wavefronts travelling at the group velocity in an inhomogeneous 
system. The trajectory in the phase space which describes the position and 
central wavelength of the wavefront as a function of time is known as a ray, and 
is governed by the ray equations:

d =
dD
dka . . a ,  -  i{n2)1 ka dek (158)

q =

dD 1 d{D2)
(159)dkq ka d@k

k —
dD
da

d(D2)
da (160)

k —
dD
dq

II 1 ja
, to

(161)

with 9k =  kq/ k a. These differential equations are equivalent to those of a Hamil
tonian system given by H — u, and consequently it is clear that the frequency 
of our wavefront is conserved if the dispersion relation is time-independent.

An important feature of these equations is that there is a scaling transforma
tion (ka , kq: a. —> (ska, skq, a, f2,/s, q) which conserves the ray trajectories
up to a time reparameterisation r  —> s t . The phase along these rays also scales 
with s, which we choose to equal fi, for the purposes of explicit ray tracing. The 
structure of the dynamics is independent of this scaling, which considerably sim
plifies the semiclassical analysis, and makes it reasonably straightforward to find 
mode spectra in In this kinetically stabilised theory, the parameter f2, will 
play an equivalent role to that of h in quantum mechanics.

There are several practical complications to applying the semiclassical for
mulation to our ballooning system. One of these is the lack, in general, of 
integrability of the system. The other problem is that the frequency of the 
wavemode may not be real. In this case we have the partial derivatives of 
u  being in general complex. The dispersion relation has a quadratic depen
dence with uj, and real solutions are found when the coefficients of u  satisfy 
(kaQi)2 + 4fl2 > 0. Complex frequencies are possible for local modes which are 
ideal MHD unstable and have small enough wavenumber ka. The semiclassical 
formalism can be extended to complex phase space for one dimensional cases, 
but the extension to higher dimensional models is less obvious. We circumvent 
this analysis by considering only the modes with real frequency and using the 
disappearance of these modes as an indication of the existence of modes with 
complex frequency. This is illustrated by figure 38. Growth rates of slightly 
unstable complex modes can be found if needed by analytical continuation of
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the mode frequency.

<3 4

Figure 38: A schematic view of the spectrum of modes in terms of the frequency 
üü and the drift stabilisation parameter f1,. The spectrum of mode frequencies 
for a particular value of fb is given by the intersections of the solid lines with a 
dashed horizontal line, with points at the eigenfrequencies. For f l i  < 4, modes 
disappear from the real spectrum in pairs as the stabilisation effect is reduced. 
This value corresponds to marginal stability.

The most unstable modes of this model are strongly spatially localised in 
the most unstable region, but have wavelengths as large as possible to reduce 
the stabilisation effect at small wavelength; their spatial extent is usually of the 
order of the mean wavelength in some directions. For this reason, semiclassical 
analysis, which is derived in the limit where the wavelength is much smaller than 
any other spatial variation, is not rigorously justifiable. However, it is generally 
found that the semiclassical quantisation of systems gives surprisingly good re
sults even where the wavelength is of the order of the other scale lengths. For 
example, in both [58] and [21], the error even for the first eigenmode is within 
a few percent of the average spacing between eigenvalues. For this reason it is 
reasonable to expect that the marginal stability point with respect to varying 
diamagnetic drift frequency fb as given by our semiclassical analysis will be 
considerably more accurate than an order of magnitude guess. A precise re
production of the theoretical marginal stability point is unlikely to occur in an 
experiment, and one would be more interested in determining the nature of the 
drift stabilised modes, and obtaining a good estimate for the marginal stability



8 STELLARATOR STABILITY TO GLOBAL K IN ETIC  BALLO O NING  
108 M O DES

ß value.

8.8 An application o f the sem iclassical theory to  the H -l  
stellarator

The H-1NF heliac is one of several stellarators which are not amenable to 
toroidally averaged calculations due to their strong helicity. There are several 
classes of ideal MHD ballooning modes which may exist in H-lNF equilibria, 
according to their toroidal and poloidal localisation: we consider the most unsta
ble and most localised class of modes of the H-lNF equilibrium studied in [16], 
which has ß ~  1%, and a somewhat peaked pressure profile. These modes are lo
calised toroidally, poloidally and radially, so that their amplitudes are strongest 
around a point inside the plasma on the outboard side of the magnetic axis. The 
primary object of our investigation is to find the marginal stability criterion, or, 
equivalently, the frequency of the most unstable mode. The value of ß is cho
sen so that the ideal MHD unstable ballooning regions are localised toroidally, 
but occupy a substantial fraction of a field period. This is an interesting case 
because the constant fl2 surfaces of ideal MHD instability, while topologically 
spherical, are strongly shaped near marginal stability, and the marginally sta
ble modes propagate in a reasonably large volume if the plasma: such moderate 
scale instabilities are believed to the most likely candidate for a stability limit 
in stellarators. The limiting case, where the region of ballooning instability 
becomes very small, is also of interest because it corresponds to the marginal 
stability limit for D, —> 0.

To begin the analysis, we determine the ideal MHD local ballooning disper
sion relation by integrating the ballooning equations along the field lines of the 
finite-beta computed equilibrium. For this case, the region of interest is in the 
neighbourhood of the most unstable spatial position. The dispersion relation is 
calculated on an evenly spaced grid in (a,q,9k), and then a low-order polyno
mial fit is found which is accurate around the most unstable point in the plasma. 
This provides a fast evaluation of the dispersion relation, and consequently an 
efficient solution to the ray equations.

In [16], chaotic ballooning orbits are found in the ideal MHD limit, with an 
artificial wavelength cutoff, which is intended as a simple model for some FLR 
stabilisation effect, or the effect of finite numerical resolution in an Ideal MHD 
stability code. We would expect that using a more physical drift stabilisation 
term instead of this cutoff would lead to qualitatively similar results: however, 
there is a sense in which the physical drift stabilisation is smoother, and this 
tends to suppress the ray chaos slightly. In fact, we find that this substitution 
leads to almost integrable ray orbits in the equilibrium considered in [16] . A
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Figure 39: Contours of the ideal MHD instability value in phase space, with
darker shades of gray indicating increasing instability. These topologically 
spherical surfaces in (6k,ot,q) space surround the most unstable position of 
the plasma.

typical ray orbit for this case is displayed in figure 42.

To access the regime where the ray equations lead to chaos, we allow some 
of the parameters in the polynomial form of our dispersion relation to vary. We 
do not relate this directly to the variation of an experimental control parameter: 
a more complete study would determine the dispersion relation throughout the 
configuration space of H-1NF. Instead, we consider the generalised dispersion 
relation to be typical of ballooning stability about the most unstable point in a 
strongly shaped plasma. The new dispersion relation u>(0k, cv, q)' =  u(6k/c, a, q), 
allows us to control the sensitivity to the position of the mode along the field 
Vine. In the integrable case, the ratio of the two timescales is approximately 
proportional to c, so that we expect the separation of timescales to break down 
for some c.

We examine values of c 6 [1,4], permitting ray orbits which display chaotic, 
mixed and integrable behaviour. In particular, we integrate the ray equations 
for the values c = 1,1.5, 2,2.5,3 and 4, using standard numerical techniques. 
Because the rays propagate on a three-dimensional surface, they are difficult to 
visualise, and it is more useful to consider the Poincare plots generated by the 
intersections of these rays with a surface. In order to visualise this Poincare 
surface, we map it into the 2-D plane of the plot with a one-to-one function, so 
that distinct features do not overlap. The Poincare punctures of rays on KAM 
surfaces lie on curves, whereas those in the ergodic region fill an area of the 
plane as they propagate. Figure 40 shows the intersections of the rays with the 
surface a  =  0, demonstrating the transition between the case where almost all 
the phase space is occupied by KAM tori (c =  1), and the case where where 
only a few small remenant tori are present (c = 4). This transition is typical of 
a Hamiltonian system with an incomplete set of conserved quantities, where the
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Figure 40: Intersections of semiclassical rays with the surface a  = 0 for several 
values of the scaling function c. These rays propagate on the surface u 2 =
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phase space generally consists of a mixture of nested tori and stochastic regions: 
a homoclinic web. The example familiar to those working with stellarators is 
their vacuum magnetic field structure: even when magnetic islands have been 
considered in the design, small remenant islands inevitably exist, with regions 
of stochastic field between. Likewise, in any region of stochastic magnetic field, 
there are small regions of order.

In the almost-integrable case c =  1, there is only a very small chaotic region 
of phase space, due to the existence of a separation of timescales, as in [14]. 
Quantisation can be achieved by finding the two action integrals on the KAM 
tori, although because of the separation of scales, it is a reasonable approxima
tion to consider only one of the integrals.

In the mixed case, where there is no large separation of timescales, this 
approach fails. However, it is possible to analyse these near-integrable systems 
in the semiclassical approach, and we demonstrate a quantisation for the case 
where c — 2 and half the phase space is ergodic. The chaotic motion here 
can be thought of as a diffusive motion across the phase space, rather than a 
fast mixing of the trajectories: this is the kind of chaos present in stellarator 
magnetic fields just outside the last closed flux surface.

For the almost completely ergodic case, the structure of the dynamics be
comes more complicated, and can no longer be approximately separated into two 
separate oscillations. We therefore do not attempt to extend the previous analy
sis to this case. Also, because there are remnant KAM surfaces even in the case 
where c — 4, we would expect the structure of the spectrum to deviate from the 
predictions of random matrix theory somewhat, which is only rigorously appli
cable in the case where the whole phase space is ergodic. Nevertheless, the Weyl 
estimate for the first unstable mode, as described in section 8.11, should still be 
reasonable in this limit where there is not a strong separation of timescales.

8.9 The topology of the Lagrangian surfaces

In the integrable case the Lagrangian surfaces of our semiclassical system 
are qualitatively similar to the torus shown in figure 41. The two loops Cl 
and C 2 shown there can be used to quantise any such surface, leading to two 
quantisation conditions,

The two Maslov indices /hi and H2 arise because the projection onto configura
tion space shown there is multivalued, and it is necessary to determine matching

and

( 162)
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q
Figure 41: The Lagrangian surface associated with an integrable semiclassical 
ray of our model ballooning system with c =  2, projected onto configuration 
space. Two topologically distinct irreducible loops C\ and C2 are shown on the 
surface: any other loop can be generated by tracing a curve around M \ loops 
of C\ and/or M2  loops of C2 , and then deforming the curve on the Lagrangian 
surface.
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criteria between the various sheets of this projection. They can be determined 
by counting the number of caustics which the irreducible loops cross. For this 
case the loops both have two crossings with positive sign so that /ii = ^ 2  =  2.

8.10 The integrable case

Estimates for typical values of the phase integrals I\ and I2 can be given 
simply by considering the shape of constant u> surfaces in phase space, and 
finding the area of the projections onto the (a, ka ) plane and the (q, kq) plane 
for I\ and I2 respectively, because the motion effectively separates in these 
directions, as can be seen in typical ray orbits like those of figure 42. A rough 
estimate is

where the starred quantities give an estimate of the size of the constant ui surface 
in that direction. Because these surfaces are roughly spherical in 9k, q and a, the 
starred quantities 9*k,q* and a* go to zero with the same power near the most 
unstable point in the plasma, and / 2 / / 1  —* 0 because 12 involves a product of 
two quantities (as noted by [14]); consequently, the ray orbits will be integrable 
there. The Tatio I2 / I 1 also approaches zero in the axisymmetric limit where the 
toroidal variation in ui —* 0.

This quantisation problem was solved approximately for an integrable case 
in [14] by finding a KAM surface where the action integral ( /2 ) associated with 
the fast timescale is equal to n. The maximum value of I 2 on the constant energy 
surfaces occurs on the degenerate KAM torus that the others nest around. The 
other action, Ji, varies much more quickly than I2 on the energy surface, so there 
is a torus near this degenerate torus which has both I\ and I2 quantised for some 
values of u>i, and which has approximately the same I2 as the degenerate torus. 
It is practicable to quantise both I\ and I2 (especially since computational issues 
are now less of a restriction than in [14]), but as this should have only a small 
effect on the marginal stability condition, we only explicitly quantise the mixed 
case, where these effects are more important. For the full quantisation, marginal 
stability occurs where

(163)

(164)

(165)
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Figure 42: A semiclassical ray trajectory traversing a KAM torus for the H-l 
ballooning model with c =  1. Two distinct motions are obvious corresponding 
to a fast and slow traversal of the torus respectively.

8.11 Box quantisation and the W eyl formula

The Weyl formula gives an asymptotic estimate for the number of quantised 
modes below some frequency u  based on the volume of phase spaced enclosed 
by the constant u> contour:

^ W ey lH  =  (5^77 /  ". (166)

It is illustrative to consider its application to the quantisation of a particle in a 
two-dimensional box. For this case we have the frequency u  =  y/kx +  ky, where 
kx and ky are the two wavenumbers; and to satisfy the boundary conditions we 
require that kx = 7r(2n — \ ) /x  and ky = ir(2m — 1 )/y  for integers m and n, 
where x  and y are the length and width of the box. The volume of phase space 
enclosed by a constant u> contour is nxyE/A.

We consider two differently shaped boxes with (x, y) set to (0.5,0.4) and 
(0.1, 2) respectively. The staircase function given by the number of modes with 
u>i < u  is plotted for each case together with the Weyl estimate. We can see 
that the staircase function for the nearly square box follows the Weyl asymptotic 
formula closely, whereas the long, thin box has significant departures from the 
asymptotic result in this frequency range.

We are mainly interested in the lowest quantised frequency; if the spectrum 
conforms well to the Weyl formula then a simple estimate for this frequency 
can be found by requiring iVyyeyj = 1/2, and in this case the estimate would 
be u>\ = 1.26. This is a fairly good estimate for the nearly square box where 
ui\ — 1.01, but fairly poor for the thin box, where u>\ = 9.89. A good estimate
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for the lowest eigenmode of the thin box is given by considering quantisation of 
the short direction only.

If we were to consider the spectrum of a system which exhibits hard semiclas- 
sical chaos (all the periodic orbits of such a system are hyperbolically unstable) 
we would expect to see even smaller deviations from the Weyl spectrum than for 
our nearly square box. In this regime quantum chaos theory is applicable, and 
governs the departures from the average level density given by the Weyl formula 
p(u). One relevant quantity which can be derived is the probability distribu
tion for the extremal eigenvalue ^ mjn ; this allows us to determine whether the 
system is likely to exhibit unstable modes. This probability is approximately 
Gaussian and the mean is at -/V\yeyi = 1/2, so that the Weyl formula should 
also give a good estimate for the frequency of the most unstable mode in this 
case.

Aspect ratio = 1.2 
Aspect ratio = 20 

Weyl estimate

Figure 43: The number of quantised states below a frequency u  for particles in 
a rectangular box. This is compared with the Weyl estimate for the integrated 
density of states.

Thus the only situation in which the Weyl formula is likely to give a poor 
estimate for the lowest frequency mode is where there is a significant timescale 
separation; and in this limit semiclassical quantisation is easy to apply.
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8.12 A pplying th e W eyl formula to  drift stabilised bal
looning m odes

In the ergodic case, the Weyl estimate of the number of unstable modes 
should be very close to the true number of unstable modes, as a consequence 
of the strong level repulsion found in physical systems, and modelled random 
matrix theory. An approximate condition for marginal stability is then given 
by requiring that the estimated number of unstable modes be 1/2. This would 
not have been an appropriate estimate for a case with a separation of timescales 
where ‘level clustering’ in the spectrum must be taken into account.

It is first necessary to show that the Weyl formula is applicable even where 
the dispersion relation is complex in some of the phase space. The simplest way 
to demonstrate this is to consider the spectrum not with respect to the frequency 
u>, but with respect to the drift stabilisation parameter f^. The reason is that 
the relevant dispersion relation, E  =  f 9, ka , a, q) is real for real (6. ka ,a, q), 
as can be demonstrated by solving equation (157).

The Weyl estimate for the number of modes in the spectrum of fb above o 
is then the volume of phase space enclosed by the contours Q* = oo, fh =  0 *0 :

^Weyl =  ^ I  /  H ( k ' r x ~k„)dV

where

j^m ax _  1 /  Q~(a, g. 6) ^  \

fho \  u  J

(167)

(168)

Proceeding with the integration we have 

1 r (Linax\2

^Weyl =  ^ 2  Js — 2— Mdadq

1 f \ (  ft2(0,9,Q)
47r2Qf J s  2 V u

1
47r 2fl^

cV(u),

2

dOdadq

(169)

(170)

(171)

where the volume S  is all (q,a ,6 ) for which 0 < fl2(0,q,a) < —u, and we 
have defined a normalised volume V(u). The highest quantised value of f1, is 
approximated by setting A\yeyj ~  1 /2, and therefore

Hi =  (cV'(a,)/(27r2) ) 1 (172)
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for this mode. The marginal stability condition is then found by requiring

düj dV
du du (173)
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Figure 44: The volume of phase space enclosed by the constant u surface for 
Qi =  1 and c =  1 as a function of u /u Q. ojq =  — ̂ jnm-

For our dispersion relation the values of the volume V are plotted in figure 
44. Marginal stability is associated with the minimum phase space volume as a 
function of u, V — 0.00473. Substituting this volume into equation (172) yields 
the marginal stability condition fh = 0.0155c1//2.

8.13 A quantisation o f the m ixed regim e

It has recently been shown [58] that it is possible to accurately determine 
semiclassical spectra even in systems which have near-integrable or mixed reg
ular chaotic dynamics. Extensions of the Berry-Tabor formula [68] to near 
integrable systems [65] have allowed the systematic determination of effects of 
the breakup of KAM surfaces on the quantum spectrum. This leads to a very 
simple criterion for determining how much our spectrum will differ from the 
spectrum of a nearby integrable wave equation; the criterion can be expressed 
in terms of the difference in action between the pairs of orbits which survive the 
breakup of KAM tori.
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For our model with c = 2 we are well into the mixed regime of behaviour, 
where almost half of the phase space is traced out by ergodic orbits. For this 
parameter regime, it is still possible to describe the dynamics in most of the 
phase space in terms of two more or less separate oscillations, even well into the 
ergodic region. It is therefore reasonable to consider this system as a perturba
tion to a nearby integrable system. Rather than explicitly finding this nearby 
system, we proceed based on knowledge of quantities calculated on periodic 
orbits in the phase space, as in [58].

In an integrable two-dimensional system, the conserved frequency, u  can be 
expressed in terms of the two independent actions on the KAM tori. I\ and 12 , 
as u  =  H (I i . l 2 ). The actions are associated with loop integrals around the 
two independent angles on the corresponding tori, which can be rather difficult 
to construct for integrable systems; such tori are difficult to even define in the 
chaotic region of a near-integrable system. In order to calculate the actions of 
these tori in our mixed system, we use the method of [66] to find the inverse 
of u), the function gE(h) =  I2 , by considering the parameters of the pairs 
of periodic orbits which survive the destruction of a resonant torus M. The 
relevant primitive periodic orbits [stable (s) and hyperbolic unstable (h)] are 
specified by the winding numbers M\ and A/2 , and their parameters are related 
to the function qe via

7TAI2 As

with

A s = i ( s / l - s s) (175)

the difference between the scaled actions, and Ds and Dh the monodromy matri
ces of the two orbits. Equation (174) becomes exact in the limit of an integrable 
system.

We also follow [58] in applying equation (174) deep into the chaotic regime 
where there are no stable orbits. Here, the remnants of the broken tori are 
present as a pair of unstable orbits, one hyperbolic and one inverse hyperbolic. 
This is a natural extension, and is justified in part by the accuracy of the 
quantisation in [58]. However, we depart from [58] in that we apply a simple 
EBK quantisation, rather than considering the Berry-Tabor formula, as the two 
formalisms are equivalent, and for our purposes the EBK quantisation is more 
straightforward.

The action of each orbit s = M\ I 1+M 2 I 2 and the quantity g" are used to find 
the actions I\ and I2 . We have the winding number q — M2 /M 1 = —d l \ jd l 2

+
\Jdet(Ds -  1) >/-  det(Dh -  1)

(174)
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M x m 2 s As det(T>h -  1) det (Ds — 1)
3 10 0.93032 3.53 IO"7 -0.008356 0.008351
2 7 0.645361 8.943 10~6 -0.053907 0.058636
1 4 0.352544 2.0241 IO“3 -2.173502 1.825331
1 5 0.385912 6.6934 IO“4 -0.870845 2.156580
1 6 0.399885 1.2069 IO“3 -8.503382 4.471618
1 7 0.405856 0.5088 IO“4 -3.831766 9.653869
1 8 0.408461 4.8473 10~4 -18.73693 8.659744

Table 2: Parameters for several pairs of periodic orbits which are remnants of 
KAM tori. The orbits are specified by their winding numbers M i and M2 in 
each direction around the torus; for each pair of orbits the mean action s = 
(si + s2)/2, the difference in action As = si — s2 and the stability determinants 
det{Dh — 1) and det(Ds — 1) are tabulated.

from the conservation of action, implying that

„ d2h ( h , E ) dq d f d l 2\  dq 1
9 d l \  d h  dq \ d l j  d h q 2 '

We can then solve for h  and /2

h(q) JJ  at<?„dq q2 9"'
h{q)

s - M x h j q )
M 2

(176)

(177)

since I\(qo) = 0 for our tori.

The main numerical task is the determination of a representative set of 
periodic orbits and their associated actions, winding numbers and monodromy 
matrices. Because of the (stellarator) symmetry u>(6, xa ) —► u{—9, —xa), a large 
number of the periodic orbits intersect the line (0, xQ) =  (0,0) (in particular, 
those for which M2 =1) ,  simplifying the search for periodic orbits considerably. 
In the integrable region of phase space it is possible to find periodic orbits by 
seeking rational values of the winding number, and visually inspecting the struc
ture of the broken tori. The fixed points can then be iteratively refined. Because 
we need to find only a small number of relatively short closed orbits, this simple 
approach is sufficient, unlike, for example, in the evaluation of Gutzwiller’s trace 
formula, where it is often necessary to find a very large number of long closed 
orbits using sophisticated techniques.

Relatively high numerical accuracy in necessary for some of the calculations, 
especially for the calculation of the phase difference of the 10/3 resonant fixed 
points, which is smaller by seven orders of magnitude than the average phase. 
The fourth order Runge-Kutta algorithm we used is fast enough to produce 
these results interactively to the precision indicated by the number of significant 
figures shown.
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The difference between the phases of the two remnant orbits As is very small 
(< 2 10-3) for all the orbits we have considered here. A complete analysis
would consider the effects of these phase shifts on the semiclassical quantisation 
by using the extension of the Berry-Tabor formula to near integrable systems. 
However, as pointed out in [58]:

For small phase shifts the extension of the Berry-Tabor formula to 
near-integrable systems ... seems not to affect the frequencies, i.e. 
the semiclassical eigenvalues Uk ..

In their case, even without considering the corrections due to broken tori, their 
quantisation is accurate to within a few percent for most of the mode frequen
cies. The maximum phase splitting in [58] is wAs = 0.44; the phase splitting of 
the periodic orbits considered here is no larger than than 0.04 for the frequency 
of most interest (the first semiclassical frequency), which should be inconse
quential.

We therefore proceed with our simple quantisation, and determine the quan
tity g" on each of the orbits using equation (176). g" and s /M2 are smooth func
tions of winding number, and we interpolate between these data points with a 
cubic spline to calculate the approximate values of the two functions in the full 
range of winding numbers, which are plotted in figure 8.13. We then integrate 
to obtain the actions I\ and 1 2 -

M2/M 1 M2/M !

Figure 45: The orbit action per ‘toroidal’ rotation (left) and the quantity g" 
(right) as a function of winding number. The data points represent the values 
calculated on periodic orbits; the smooth curve is a spline fit of this data. The 
scaling parameter = 1.

The quantisation is completed by requiring that the actions I\ =  (2ni — l)7r 
and I2 =  (2ri2 — l)7r. The mode with the lowest frequency has n\ =  n2 =  0 
and / 1 / / 2  =  1, and occurs at q =  M2/M i = 4.45 with scaled phase s =  0.0682.
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m2/m 1 m2/m 1

Figure 46: Actions /i (left) and I2 (right) as a function of the winding number. 
The scaling parameter = 1.

The quantised value of the scaling parameter must satisfy s/fli  = n/2, so fh =  
0.04342. The Weyl estimate for the scaling parameter is given by equation ( i73): 
for u> = uq and c =  2 we find fi* = 0.0247. The Weyl estimate is significantly 
different from that given by the EBK quantisation, but is still gives a rough 
guide to the magnitude of this drift stabilisation.

8.14 C onclusions

Strongly localised ballooning modes are often the first instabilities to become 
evident in a stellarator. In the ideal MHD limit, we expect the plasma to become 
unstable as soon as the local stability analysis indicates a negative fi2 anywhere, 
but the localised unstable modes predicted by the theory are very singular, and 
it is not clear how to proceed with quantisation. Instead, we have considered a 
drift-stabilised model, and approached the ideal MHD limit by setting fli —> 0.

We have demonstrated that fairly straightforward semiclassical quantisation 
can be applied to this system even when half of the phase space is ergodic. 
Interestingly, the ray chaos does not play any significant role in the quantisation 
of the first few modes. In fact, the qualitative results could all have been 
obtained from a simple two time-period analysis. The difficulty here was to 
extract the regular behaviour of the system from the chaotic corrections: we 
utilised a technique based on quantities on periodic orbits. It is possible that 
chaos may be important for stable plasma waves which feel the details of the 
equilibrium more strongly, but that would be the subject of a separate study.

Even the cases with c > 2, which have almost their entire phase space 
ergodic, are not truly examples of ‘hard chaos’, as there are still stable fixed



8 STELLARATO R STABILITY TO GLOBAL K IN ETIC  BALLO O NING  
122 M ODES

points and nested tori present in the phase space. This is typical of physical 
systems; the examples of systems with rigorous hard chaos are few and far 
between. It is therefore not necessarily appropriate (and certainly not easy) to 
apply Gutzwiller’s trace formula to quantise these systems. However, because 
there is no strong separation of timescales in these systems, we can be confident 
that the Weyl formula will give a reasonable estimate for the first unstable mode, 
and we have demonstrated how this can be applied.

None of these semiclassical techniques can be expected to be precisely ac
curate for the most unstable modes, which typically have wavelength approxi
mately equal to the scale length of the regions they propagate in. However, they 
should give good estimates of the approximate amount of drift stabilisation to 
be expected, and the approximate values of ß  where the instability should set 
in. Qualitatively, the result is as expected: configurations with small regions of 
ballooning instability with low growth rate are expected to be strongly stabilised 
by these drift effects. The effects of toroidal localisation will be important when 
12 > I\ which according to equation (164) occurs when q*@l > 2a*. In this 
case, /i is the more difficult quantisation condition to satisfy, and will control 
the value of drift stabilisation required for marginal stability. In the original 
H-lNF model we found I\ ~  21-2 for frequencies near marginally stability so 
the effects of toroidal localisation were of similar importance to the effects of 
poloidal localisation: this will also be true for other strongly shaped configu
rations. Modes which are not toroidally localised have an effective a* ~  2tt 
compared with a* < 27t/ ( #  of field periods) for localised modes, so that this 
toroidal quantisation is much more difficult to satisfy foT toroidally localised 
modes, even if they can propagate over most of a field period. As a consequence 
the first modes to become unstable may be marginally toroidally localised, and 
will be somewhat difficult to deal with in semiclassical analysis.
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9.1 A R eview

Although the goal of the thesis was an exploration of the physics of strongly 
three dimensional plasmas, and stellarators in particular, the path of investi
gations led us through the realms of general plasma physics. In particular, it 
was necessary to understand how the spectrum of the models being solved was 
related to that of the actual plasma, and how to use the eigenspectrum to gain 
insight into the dynamics of physical systems. Such spectra are very power
ful tools in most areas of physics, and it is natural to examine the eigenvalue 
spectra of plasma fluids. However, in ideal and extended MHD models, the re
lationship of such spectra to the actual plasma behaviour is not always obvious. 
This is because the eigenmodes of these models are strongly non-normal and the 
dynamics are often dominated by the interference between these modes, rather 
than by the individual eigenmodes themselves. We believe concepts like tran
sient behaviour and the pseudospectrum, which were explored in our literature 
survey, provide a useful link between spectral analysis of plasmas and the initial 
value problem.

Next, we considered the relationship between the spectra of compressible 
and incompressible MHD models; demonstrating the qualitative differences be
tween the spectra of these models and explaining the origin of the modes in the 
spectra through local wave theory and the VVKB method. This study was moti
vated by the need to interpret the results of an incompressible resistive spectral 
code, and to establish what physical meaning could be assigned to the various 
eigenmodes. We have demonstrated that in the relevant incompressible limit 
(where the ratio of specific heats is artificially set to oo) most of the modes of 
the cylindrical spectrum bear no direct resemblance to the more physical com
pressible eigenmodes. This conclusion is not limited to the strongly damped 
modes, as there are physically spurious weakly damped modes introduced by 
this particular incompressibility assumption. We expect that a code which for
mulates incompressibility in this way may still be useful for finding the marginal 
stability points to non-oscillatory modes, which is the usual purpose of a lin
ear code; it would also be appropriate if there was a need to model conductive 
fluids which are truly incompressible (like plasmas with ß  1, or conductive 
liquids). Other ways of introducing incompressibility to the plasma model, like 
setting the parallel inertia of the plasma to zero, allow for better access to phys
ical plasma modelling, but we have not examined how such a scheme might be 
implemented in a fully 3D stellarator code.

We were then in a position to consider numerical approaches to three-
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dimensional resistive MHD. A flexible formulation was chosen in order to address 
problems of spectral pollution which have caused difficulty in many numerical 
approaches to MHD. and which had become apparent in an incompressible for
mulation of our resistive MHD spectral code. A compressible model was chosen 
to resolve as much of the physics as possible, and avoid the spurious modes seen 
in the most straightforward incompressible formulation. We then demonstrated 
that our new implementation of the code was able to reproduce the instabili
ties and growth rates found in earlier analyses, and did not suffer from spectral 
pollution. Next, we looked at cases not explored by earlier studies, which could 
not resolve the full three-dimensional geometry and the plasma compressibility. 
First we considered ideal and resistive modes in relatively large-aspect ratio stel- 
larators, where toroidal effects are not strongly important, and reproduce the 
expected instabilities and the associated compressible growth rates. We also 
considered a case with strongly toroidally localised instabilities, where codes 
based on toroidal averaging of the equilibrium are inapplicable: we resolved a 
toroidally localised resistive instability for a tokamak with strong mirror terms.

In the last section of the plasma we explained how to use semiclassical analy
sis to determine marginal stability limits for drift stabilised MHD in stellarators. 
We determined a variational form for the problem, implying the presence of a 
wave action, and providing a justification for the use of the standard techniques 
of semiclassical quantisation in this problem. We explain the conditions un
der which the semiclassical analysis is near-integrable and separates into two 
separate timescales, and then consider cases in which the semiclassical rays are 
chaotic. The semiclassical analysis in the presence of chaos involved the use of 
some recently discovered techniques; with these tools we were able to quantise 
the system in a significantly non-integrable case, where approximately half the 
phase space was ergodic. The most strongly chaotic cases are difficult to quan
tise exactly, but in these cases the Weyl estimate can be used to provide an 
indication of the expected marginal stability boundary.

We hope that the codes and techniques described in the thesis will find 
further application to existing stellarator configurations and design studies (the 
author of the thesis considered the design of stellarator vacuum magnetic fields 
in [69] and [70], rather than the stability issues explored in the thesis).

9.2 On the use o f linear eigenspectra

The growth rates and global structure of unstable eigenmodes are important 
in practice because they have been found to give useful information about how 
an instability will affect the plasma, and whether it will be significant for con
finement. Such questions can also in principle be addressed by more complete
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models, which include the neglected fluid effects, and the nonlinearity of the 
plasma.

For the stable spectrum, the situation is slightly more complex: the naive 
interpretation of the resistive MHD spectrum based on an analogy with the 
spectrum of Hermitian systems, like quantum mechanics, is misleading. We 
believe that an anaylsis based on resonances or pseudospectral theory could 
be used to extract information about the behaviour of the plasma at different 
timescales; such models can consider the effects of the isolated oscillatory modes 
along with those of the continua. It would be possible for instance to make a 
comparison between the MHD activity seen experimentally and the degree of 
resonance predicted numerically for a relevant set of perturbing forcings.

The spectrum of linear modes often serves as the zeroeth order model for non
linear studies of plasma, particularly in the weak turbulence approach. In weak 
turbulence theory, the state of the system can be expressed via the spectrum of 
wave amplitudes at different length scales; the spatial structure of the plasma is 
usually not considered. The nonlinear coupling then provides a mechanism for 
coupling between different scale lengths. The availability of a linear mechanism 
to transport wave energy from short to long wavelength and back again may be 
particularly significant for the study of turbulence in these three-dimensional 
systems; the means for decorrelation of wavepackets through quantum chaos 
may also be of relevance. Resonances (or pseudomodes) may be more relevant 
than eigenmodes for nonlinear analysis, because the short decorrelation time 
and relatively strong forcing often mean that the linear behaviour as t —> oo is 
not explored.

9.3 On further application and enhancem ent of Spector3D

The determination of stellarator stability is a very mature field, and there are 
well understood and fairly comprehensive analytical criteria for the classification 
of equilibria as either stable or unstable. Certain problems still require numerical 
methods in order to find an accurate boundary of stability, however, especially 
when models beyond ideal MHD are considered.

We believe that Spector3D in its present form is very useful for the study 
of global resistive modes: it allows the calculation of physical growth rates for 
such modes, and a determination of their structure. In particular, we expect 
that it will allow further study of tearing modes in three dimensional plasmas, 
which can be difficult to handle analytically, especially where they appear in 
pairs, or in conjunction with other instabilities. The code could be reasonably 
easily extended to include other fluid effects, like FLR stabilisation.

In order to be able to address stability for high mode number instabilities
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in strongly three dimensional geometries, it will be necessary to represent a 
much larger number of Fourier coefficients in the perturbation than we have 
considered here. The practical limit is currently about 50 mode pairs, but in 
ideal MHD analysis a somewhat larger number of mode pairs is required to 
accurately resolve the growth rate; for example, for a TERPSICHORE test case 
[71] with limited toroidal coupling, 94 mode pairs were required to properly 
resolve the growth rates of moderate wavelength ballooning modes. Although 
increases in computer memory and speed will presumably improve the resolution 
limit, a more immediate solution is to improve the parallelisation of the code. 
There are several sophisticated numerical techniques implemented in similar 
spectral codes [72]: given enough time these could be reimplemented, or even 
reused if co-operation was established.

It is also clear that there is a need for further study and hopefully im
provement of the accuracy of the code: although the eigenmodes and stabil
ity behaviour predicted by the code are qualitatively correct for the testcases 
under consideration, and show very good convergence and accuracy for one
dimensional cases, some of the calculated 2-D growth rates were only approxi
mately correct, even though the convergence was still fast. Generally accuracy 
can be improved in plasma codes by more explicitly separating the different 
physical wavemodes and the forces acting on them, so that cancellation can 
occur before approximation: there may be some progress to be made in this 
respect.

9.4 On sem iclassical app ro ach es to  ba lloon ing  m odes in 
3D system s

There were basically two impediments to the semiclassical analysis of the 
drift stabilised ballooning equations in stellarators. The first was an incomplete 
understanding of how semiclassical analysis could be applied to this model, and 
the second was the additional complication of semiclassical chaos. We believe 
we have explored these difficulties in sufficient detail to confidently apply the 
semiclassical technique.

There are a couple of areas where the work could be extended. Firstly, 
for completeness, the cylindrical surfaces of the ballooning dispersion relation 
should also be quantised. Secondly, other fluid models may also be amenable 
to such an analysis. Thirdly, it would be intriguing to explore how the three 
dimensional effects transport wave energy between wavelengths and between 
locations in the plasma: this transport may be a rather fundamental difference 
between stellarators and tokamaks.

As an aside, it seems like the quadratic Lagrangian approach to the drift
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stabilised ballooning problem given in section 8.4 could be the basis for a rea
sonably straightforward numerical formulation of linearised drift stabilised MHD 
analysis: this polynomial Hermitian eigenvalue problem could be solved using a 
technique from [49], for example.
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A T he m a trix  elem ents of Spector3D

We list the coupling terms which comprise the matrices A and B in terms 
of the equilibrium quantities. The mode numbers of the relevant weighting and 
variable elements are (m,n) and (m,n), corresponding to the coefficients of 
exp(—imO + inQ and exp(im$ — inQ respectively. The general term is

I  dsd$d<:fie-'M + a <(eqUi),j f j e'ml!-"'(, (178)

The indices i and j  here run from 1 to 7 corresponding to the variables vi,V2 ,V3 ,p.61,62 
and 63. The terms (equi)y are dependent on the equilibrium shaping and on 
surface quantities. The finite elements are

f  € [h, W, H, H'} with H' =  t i  =  ^  and (179)as as

rl K  dk
f  e lk .k ' .K.K'}  with K ' = - r - . k '  =  — . (180)as as

with {H, K}  corresponding to quadratic finite elements, and {h, k} corresponing 
to cubic elements. We have suppressed for simplicity the radial grid number and 
the two finite elements at each grid point.

Because the matrix elements which result from finite element analysis in 
this complex geometry involve fairly complicated equilibrium coupling, the use 
of the symbolic mathematics program Mathematica [97] considerably eased the 
burden of code implementation. Because it reduces the number of symbolic 
calculations which have to be performed by hand, it also reduces the likelihood 
of some kinds of coding errors.

The next few pages show how a mathematica notebook can be used to gen
erate these matrix elements: this notebook is a little tidier than the one actually 
used for software development, and for the sake of brevity, only a few matrix 
elements are shown in FORTRAN output form.
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I n [49]:=

O u t [49]= 

I n [50] : =

I n [51]:=

I n [52] : = 

I n [53] : = 

In [54] : =

I n [55]:= 

I n [56]:=

I n [57]:=

In [58] : = 

I n [59]:=

I n [60]:=

I n [61]:=

In [62] : 

I n [63]: 

I n [64]: 

I n [65]:

I n [66]:

(* The integrated, linearised.
Resistive MHD equations in an explicit vector component form. The perturbations 
to the equilibrium are Fourier transformed, as are the weighting vectors. *)

(* We have only extracted a couple of example terms
in final Fortran form for the sake of brevity. Otherwise, 

the symbolic calculation is here in full. Lower case vector quantities 
are covariant vectors, or operators with covariant results. Upper case 
for contravariant. Vector indices run (1,2,3) on (p,theta,zeta). *)

Off[General::spell]

SetOptions[$Output, PageWidth-»WindowWidth];

(* The Metric tensor g (which is a lowering operator). g_ij = e_i . e_j *) 
g[r_, t_, z_] := {{gcomp[l, 1, r, t, z] J[r, t, z] ,

gcomp[l, 2, r, t, z] J[r, t, z] , gcomp[l, 3, r, t, z] J[r, t, z]},
{gcomp[l, 2, r, t, z] J[r, t, z] , gcomp[2, 2, r, t, z] J[r, t, z] ,
gcomp[2, 3, r, t, z] J[r, t, z]}, {gcomp[i, 3, r, t, z] J[r, t, z] ,
gcomp[2, 3, r, t, z] J[r, t, z] , gcomp[3, 3, r, t, z] J[r, t, z]}}

(* Differential and vector operators. Jacobian J=Sqrt (Det[g]) *)

cros [A_, B_, r_, t_, z_] := (A[ [2] ] * B[ [3] ] - A[ [3] ] * B[ [2] ] ,
A[[3]] * B [ [ 1 ] ] - A [ [ 1] ] *B[[3]],

A[[l]] * B[ [2] ] - A[ [2] ] *B[[1]]}* J [p, t, z]

Curl [a_, p_, t_, z_] := {D[a[[3]], t] -D[a[[2]], z] ,
D [ a [[1] ] , z] - D [ a [[3]] , p ] ,

D[a[[2]], p] - D[a [ [1] ] , t]}/J[p, t, z]

grad [a_, p_, t_, z_] := {D[a, p] , D[a, t] , D[a, z] )

Div[a_, p_, t_, z_] : =
(D[J[p, t, z] * a [ [1] ] , p] +D[J[p, t, z] * a [ [2] ] , t] +D[J[p, t, z] *a[[3]], z] ) / 
J[p, t, z]

(* Magnetic field in straight field line coordinates - note BT = 
deriv of poloidal flux/2 pi,
BZ = deriv of toroidal flux/2 pi*)

B[p, t, z] := (0, BT [ p ] , BZ[p])/J[p, t, z]

(* perturbed quantities Vprime,aprime,
pprime and weighting quantities Vprimel, Aprimel,pprimel 
in Fourier representation. *)

pprime[p, t, z] := press[p] * Exp [I * m  * t - I * n * z]

pprimel [p, t , z] : = pres si [p] * Exp [ - I * mp * t + I * np * z]

(* One velocity component is aligned with the magnetic field. *)

Vprime [p, t, z] : = (B [p, t, z] *J[p, t, z] *V3 [p] + {0, 1, 0} V2 [p] + VI [p] *{1, 0, 0}) * 
Exp [I * m  * t - I * n * z] /J[p, t, z]

Vprimel [p, t, z] : =
(B[p, t, z] * J[p, t, z] * V31 [p] + {0, 1, 0) V21 [p] + Vll[p] * (1, 0, 0}) *
Exp [ - 1 * mp * t + I * np * z ]
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I n [67];= 

I n [68]:= 

I n [69] : =

I n [70] : =

I n [71] : = 

0ut[71]=

aprime [p, t, z] : = (al[p], a2[p], a3[p]}* Exp [I * m * t - I * n * z ]

Aprimel [p, t, z] : = {All[p], A21[p], A31[p]}* Exp [-1 * mp * t + I * np * z]

(★Current in explicit contravariant form. As with magnetic field,
JT = deriv of poloidal current flux/2 pi,
JZ = deriv of toroidal current flux/2 pi *)

Jc[p, t, z] := (0, JT[p] *delta[t, z] -D[nu[p, t, z] , z] ,
JZ [p] * delta [t, z] + D[nu[p, t, z], t] } / J[p, t, z]

(* Equation of motion. The only nonzero contribution to the integral comes from 
Fourier components of the equilibrium which have the form 

Exp[I*(mp-m)*t-I*(np-n)*z]. *)

EqOfMotionRHS = Simplify[J[p, t, z] * (
-Curl [aprime [p, t, z] , p, t, z] .

(g [p, t, z] .Curl [cros [Vprimel [p, t, z], B[p, t, z], p, t, z], p, t, z])
+ Vprimel [p, t, z] .cros [ Jc [p, t, z] , Curl [aprime [p, t, z], p, t, z], p, t, z]
- Vprimel [p, t, z] . grad [pprime [p, t, z],p, t, z] )];

EqOfMotionFourierRHS = Simplify [EqOfMotionRHS * Exp[I* (mp - m) * t - I *  (np-n) * z] ]

mpnal[p] BT[p] gcomp[l, 2, p, t, z] Vll [p] - 
nnpal[p] BZ[p] gcomp[l, 2, p, t, z] Vll[p] +
mmpal[p] BT[p] gcomp[l, 3, p, t, z] Vll[p] -
m np al [p] BZ [p] gcomp [1, 3, p, t, z] Vll[p] - imal[p] delta [ t, z] JT [p] Vll [p] + 
i n al [p] delta [t, z] JZ[p] Vll[p] - nnpalfp] BZ[p] gcomp [2, 2, p, t, z] V21[p] - 
mpnal[p] BZ[p] gcomp[2, 3, p, t, z] V21[p] -
mnpal[p] BZ[p] gcomp[2, 3, p, t, z] V21[p] -
mmp al [p] BZ [p] gcomp [3, 3, p, t, z]V21[p]-imJ[p, t, z] press [p] V21 [p] - 
imBT[p] J[p, t, z] press [p] V31[p]+inBZ[p]J[p, t, z] press [p] V31 [p] + 
i mp BT [p] gcomp [1, 3, p, t, z]Vll[p]a2'[p]- 
i np BZ [p] gcomp [1, 3, p, t, z]Vll[p]a2'[p] +
delta[t, z] JT[p] Vll [p] a2' [p] - i np BZ [p] gcomp[2, 3, p, t, z]V21[p]a2'[p]- 
i mp BZ [p] gcomp[3, 3, p, t, z]V21[p] a2'[p] -
i mp BT [p] gcomp [1, 2, p, t, z ] Vll[p] a3'[p] +
i np BZ [p] gcomp [1, 2, p, t, z]Vll[p] a3'[p] +
delta [ t , z] JZ [p] Vll [p] a3' [p] + i np BZ [p] gcomp [2, 2, p, t, z]V21[p]a3'[p] +
i mp BZ [p] gcomp [2, 3, p, t, z] V21[p] a3'[p] -
i n al [p] gcomp [2, 2, p, t, z] Vll[p] BT' [p] —
i m al [p] gcomp [2, 3, p, t, z] Vll[p] BT' [p] + gcomp[2, 3,p, t, z]Vll[p]a2'[p] BT' [p]
gcomp[2, 2, p, t, z] Vll [p] a3' [p] BT' [p] - i n al [p] gcomp[2, 3, p, t, z] Vll [p] BZ' [pj 
i m al [p] gcomp [3, 3, p, t, z] Vll[p] BZ' [p] +
gcomp [3, 3, p, t, z]Vll[p]a2'[p] BZ' [p] - gcomp [2, 3, p, t, z]Vll[p]a3'[p] BZ' [p] - 
J[p, t, z] Vll [p] press' [p] - i n al [p] BT [p] gcomp[2, 2, p, t, z] VlT [p] - 
i m al [p] BT [p] gcomp [2 , 3, p, t, z ] Vll' [p] -
i n al [p] BZ [p] gcomp[2, 3, p, t, z] Vll' [p] -
i m al [p] BZ [p] gcomp [3, 3, p, t, z]Vll'[p] +
BT[p] gcomp[2, 3, p, t, z] a2' [p] Vll' [p] + BZ[p] gcomp[3, 3, p, t, z] a2' [p] Vll' [p] -
BT [p] gcomp [2, 2, p, t, z]a3'[p]Vll'[p]-BZ[p] gcomp [2, 3, p, t, z]a3'[p]Vll'[p] +
imal[p]Vll[p] nu(0'0,1) [p, t, z] -Vll[p] a2'[p] nu(0'0,1) [p, t, z] +
inal[p]Vll[p] nu(0,1,0) [p, t, z] +Vll[p] a3'[p] nu(0,1,0) [p, t, z] +
na2 [p] (BZ [p] (np gcomp [1, 1, p, t, z]Vll[p] +np gcomp [1, 2, p, t, z]V21[p] + 

mp gcomp[1, 3, p, t, z] V21[p] - i delta [t, z] JT[p] V31 [p] + 
i gcomp[l, 3, p, t, z]Vll'[p] +iV31[p] nu10,0'1’ [p, t, z]) + 

i (delta [t, z] JZ [p] V21 [p] + gcomp [ 1, 2, p, t, z]Vll[p] BT' [p] + 
gcomp[1, 3, p, t, z]Vll[p] BZ' [p] +V21[p] nu(0'1,0) [p, t, z]) +

BT[p] (-mpgcomp[l, 1, p, t, z] Vll[p] + i (delta[t, z] JZ[p] V31[p] + 
gcomp[1, 2, p, t, z] Vll'[p] +V31[p] nu<0'1,0) [p, t, z]))) + 

ma3[p] (BZ [p] (np gcomp[ 1, 1, p, t, z] Vll [p] + n pgcomp[1, 2, p, t, z] V21[p] + 
mpgcomp[l, 3, p, t, z] V21[p] - i delta[t, z] JT[p] V31 [p ] + 
i gcomp[l, 3, p, t, z] Vll'[p] + iV31[p] nu|0,0,1) [p, t, z]) + 

i (delta [ t, z] JZ [p] V21 [p] + gcomp [ 1, 2, p, t, z]Vll[p] BT' [p] + 
gcomp[l, 3, p, t, z]Vll[p] BZ' [p] +V21[p]nu<0'1,0) [p, t, z]) +

BT [ p ] (-mpgcomp[l, l,p, t, z]Vll[p]+i (delta [t, z] JZ[p] V31[p] + 
gcomp[l, 2, p, t, z] Vll' [p] + V31 [p] nu(0,1'0) [p, t, z]) ) )
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In[72]:= EqOfMotionFourierLHS = Simplify [J[p, t, z] *
Vprimel [p, t, z] . g [p, t, z] .Vprime [p, t, z] * Exp [I * (mp - m) * t - I * (np - n) * z] ]

Out [72]= J[p, t, z] (gcomp[l, 1, p, t, z ] VI [p] VI1 [p] +
gcomp[2, 2, p, t, z] V2 [p] V21 [p] +BZ[p] gcomp [1, 3, p, t, z]Vll[p]V3[p] +
BT[p] gcomp[2, 2, p, t, z] V21 [p] V3 [p] + BZ[p] gcomp[2, 3, p, t, z]V21[p]V3[p] +
BZ [p] gcomp [1, 3, p, t, z ] VI [p] V31 [p] + BT [p] gcomp [2, 2, p, t, z] V2 [p] V31 [p] +
BZ [p] gcomp [2, 3, p, t, z]V2[p]V31[p] +BT[p]2 gcomp [2, 2, p, t, z]V3[p]V31[p] + 
2 BT [p] BZ [p] gcomp [2, 3, p, t, z]V3[p]V31[p] +
BZ [p]z gcomp[3, 3, p, t, z]V3[p]V31[p] +
gcomp [ 1, 2, p, t, z] (Vll [p] (V2 [p] + BT[p] V3 [p] ) + VI [p] (V21 [p] + BT[p] V31 [p] ) ) )

In [73]:= (* An example term *)

In[74] : = Expand[Coefficient[EqOfMotionFourierRHS, Vll[p] a2[p]]]
Out [74] = -mpnBT[p] gcomp[l, 1, p, t, z] +nnpBZ[p] gcomp[l, 1, p, t, z] + 

i n gcomp [1, 2, p, t, z] BT' [pj + i n gcomp [1, 3, p, t, z] BZ' [p]

In [75]: = (* We need to replace symbolic derivatives
before we can produce explicit FORTRAN code *)

ln[76] := Bderivlist =
{D [BT [p] , p] -» BTprime[p], D[BZ[p], p] -» BZprime[p], BT[p] ->BT[p], BZ [p] -»BZ[p]};

In [77] : = nulist = ( nu(1,0,0) [p, t, z] -*nul00[p, t, z] ,
nu(0'i'0) [p, t, z] -» Impnu[p, t, z] , nu10,0,11 [p, t, z] -» -Inpnu[p, t, z]};

In[78]:= SetOptions [$Output, PageWidth -* 72] ;

In[79]:= (* Next line produces FORTRAN 77
Code: default Mathematica setting is to use sign for continuation

lines. Can use "-fpconstant" in Fortran compiler switches so that 
integers like (0,1) are converted to (0.0 dO, 1.0 dO) . Mathematica 
outputs short lines of code without mandatory FORTRAN 77 spaces, 

so must be hand edited to add spaces. *)
In [80]:= FortranForm[

Expand[Coefficient[EqOfMotionFourierRHS /. Bderivlist /.nulist, Vll[p] al[p]]]]
Out[80]//FortranForm=

mp*n*BT(p)*gcomp(1,2,p,t, z ) - n*np*BZ(p)*gcomp(1,2,p,t,z) + 
m*mp*BT(p)*gcomp(l,3,p,t,z) - m*np*BZ(p)*gcomp(1,3,p,t,z) - 
(0,1)*n*BTprime(p)*gcomp(2,2,p,t,z) - 
(0,1)*m*BTprime(p)*gcomp(2,3,p,t,z) - 
(0,1)*n*BZprime(p)*gcomp(2,3,p,t,z) - 
(0,1)*m*BZprime(p)*gcomp(3,3,p,t,z) - 
(0,1)*m*delta(t,z)*JT(p) + (0,1)*n*delta(t,z)*JZ(p) - 
mp*n*nu(p,t,z) + m*np*nu(p,t,z )

In[81]:= SetOptions[$Output, PageWidth-♦ WindowWidth] ;

In [ 82] : = Simplify [Aprimel [p, t, z].aprime[p, t, z]]

Out [82]= e1 (rot-roPtM-n̂ np) z) (a]_ [p] All[p] + a2[p] A21[p] + a3[p] A31[p])

In [83 ] : = Simplify [Aprimel [p, t, z] . (cros [Vprime [p, t, z] , B[p, t, z] , p, t, z])]

e‘ (n>t-mpt.(-n*np) z) (A 31 [p ] BT [p] VI [p ] + BZ [p] (-A21 [p ] VI [p] + Al 1 [p ] V2 [p] ) )
UU C t o J  J -  -------------------------------------------------------- -- — ------ ---------------------------------------------------------J[p, t, z]

ln[84]:= (* Ampere' s law: a large number of terms are generated from the resistive term
(eta*Curl[Curl[a]]) because of the choice of representation of the 
weighting vector of the vector potential. Using a covariant weighting 
vector simplifies the equations (particularly the Laplacian term) 
but leads to a polluted approximation of the ideal problem. *)

AmpereRHS = Simplify [Aprimel [p, t, z] . (cros [Vprime [p, t, z] , B[p, t, z] , p, t, z]
+ g [p, t, z] .Curl [g [p, t, z] .Curl [aprime [p, t, z], p, t, z], p, t, z]) ];

In [ 85] : = AmpereFourierRHS = Expand [Simplify [AmpereRHS* Exp[I*(mp-m) *t-I* (np - n) * z] ] ]
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Out[85]= -n2 al[p] All [p] gcomp[l, 2, p, t, z]2 -
n2 a2[p] A21 [p] gcompfl, 2, p, t, z]2 -mnA21[p] a3[p] gcomp[l( 2, p, t, z]2 -
2mnal[p] All [p] gcompfl, 2, p, t, z] gcomp[l, 3, p, t, z] -
mna2[p] A21[p] gcompfl, 2, p, t, z] gcomp[l( 3, p, t, z] -
m2 A21[p] a3[p] gcompfl, 2, p, t, z] gcomp[l, 3, p, t, z] -
n2 a2 [p] A31 [p] gcomp[1, 2, p, t, z] gcomp[1, 3, p, t, z] -
mna3[p] A31[p] gcomp[l, 2, p, t, z] gcomp[l, 3, p, t, z] -
m2 al[p] All[p] gcomp[l, 3, p, t, z]2 -
mna2[p] A31[pj gcompfl, 3, p, t, z]2 - m2 a3 [p] A31[p] gcompfl, 3, p, t, z]2 +
n2 al[p] All [p] gcomp[l, 1, p, t, z] gcomp[2, 2, p, t, z] +
n2 a2 [p] A21[p] gcompfl, 1, p, t, z] gcomp[2, 2, p, t, z] +
mnA21[p] a3 [p] gcomp[l, 1, p, t, z] gcomp[2, 2, p, t, z] -
mnalfp] A21[p] gcompfl, 3, p, t, z] gcomp[2, 2, p, t, z] +
n2 al[p] A31 [p] gcomp[l, 3, p, t, z] gcomp[2, 2, p, t, z] +
2mnal[p] All [p] gcompfl, 1, p, t, z] gcomp[2, 3, p, t, z] + 
mna2[p] A21[p] gcompfl, 1, p, t, z] gcomp[2, 3, p, t, z] + 
m2 A21[p] a3[p] gcompfl, 1, p, t, z] gcomp[2, 3, p, t, z] +
n2 a2 [p] A31 [p] gcompfl, 1, p, t, z] gcomp[2, 3, p, t, z] +
mna3[p] A31[p] gcompfl, 1, p, t, z] gcomp[2, 3, p, t, z] + 
mnalfp] A21[p] gcompfl, 2, p, t, z] gcomp[2, 3, p, t, z] - 
n2 alfp] A31 [p] gcompfl, 2, p, t, z] gcomp[2, 3, p, t, z] -
m2 alfp] A21[p] gcompfl, 3, p, t, z] gcompf2, 3, p, t, z] +
mnalfp] A31[p] gcompfl, 3, p, t, z] gcomp[2, 3, p, t, z] + 
m2 alfp] All [p] gcompfl, 1, p, t, z] gcomp[3, 3, p, t, z] + 
mna2[p] A31[p] gcompfl, 1, p, t, z] gcomp[3, 3, p, t, z] + 
m2 a3 [p] A31[p] gcompfl, 1, p, t, z] gcomp[3, 3, p, t, z] +
m2 alfp] A21[p] gcompfl, 2, p, t, z] gcomp[3, 3, p, t, z] -
mnalfp] A31[p] gcompfl, 2, p, t, z] gcomp[3, 3, p, t, z] +
A31[p] BTfp] VI[p] _ A21[p] BZfp] VI[p] + Allfp] BZfp] V2[p] _

Jfp, t, z] Jfp, t, z] + Jfp, t, z]
i n All [p] gcompfl, 3 , p, t, z] gcomp [2, 2,p, t, z] al' [p] +
i n All [p] gcomp [ 1, 2 , p, t, z] gcomp [2 , 3, p, t, z] al' [p] -
i mAll [p] gcompfl, 3, p, t, z] gcomp[2, 3, p, t, z] al' [p] -
i m A21 [p] gcomp [2, 3, p, t, z]2 al'[p] + inA31[p] gcomp [2, 3, p, t, z]2 al'[p] +
i m All [p] gcomp [ 1, 2 , p, t, z ] gcomp [3, 3, p, t, z] al'fp] +
i mA21 [p] gcomp[2, 2, p, t, z] gcomp[3, 3, p, t, z] al' [p] -
i n A31 [p] gcomp [2, 2, p, t, z] gcomp [3, 3, p, t, z] al'fp] -
i n All [p] gcompfl, 2, p, t, z] gcompfl, 3, p, t, z] a2'[p] -
1 m All fp] gcompfl, 3, p, t, z]2 a2'[p] -
2 i nA21 [p] gcompfl, 3, p, t, z] gcomp[2, 2, p, t, z]a2'[p] +
1 n All fp] gcompfl, 1, p, t, z] gcomp [2, 3, p, t, z] a2'fp] +
2 i n A21 [p] gcompfl, 2, p, t, z] gcomp [2, 3, p, t, z] a2'[p] -
i m A21 fp] gcomp [ 1, 3 , p, t, z ] gcomp f 2 , 3, p, t, z] a2'[p] - 
inA31[p] gcompfl, 3, p, t, z] gcomp[2, 3, p, t, z] a2'[p] +
i mAll fp] gcompfl, 1, p, t, z] gcomp[3, 3, p, t, z] a2' [p] +
i m A21 [p] gcomp [ 1, 2 , p, t, z ] gcomp [3, 3, p, t, z] a2'[p] +
i nA31 fp] gcompfl, 2, p, t, z] gcomp [3, 3, p, t, z] a2'[p] +
i n All [p] gcompfl, 2, p, t, z]2 a3'fp] +
i mAll fp] gcompfl, 2, p, t, z] gcompfl, 3, p, t, z] a3' [p] -
i n All [p] gcompfl, 1, p, t, z] gcomp [2, 2, p, t, z] a3'[p] -
i m A21 [p] gcomp [ 1, 3 , p, t, z] gcomp [2, 2, p, t, z] a3'[p] -
i nA31 [p] gcompfl, 3, p, t, z] gcomp[2, 2, p, t, z] a3' [p] -
i mAll [p] gcompfl, 1, p, t, z] gcomp[2, 3, p, t, z] a3' [p] +
i mA21 [p] gcompfl, 2, p, t, z] gcomp[2, 3, p, t, z] a3' [p] +
1 nA31 [p] gcompfl, 2, p, t, z] gcomp[2, 3, p, t, z] a3' [p] -
2 i m A31 [p] gcompfl, 3, p, t, z] gcomp [2, 3, p, t, z] a3'[p] +
2 i m A31 [p] gcompfl, 2, p, t, z] gcomp[3, 3, p, t, z] a3'[p] +
Allfp] gcompfl, 3, p, t, z] gcomp[2, 3, p, t, z] a2" [p] +
A21[p] gcomp[2, 3, p, t, z]2 a2" [p] -
All fp] gcompfl, 2, p, t, z] gcomp[3, 3, p, t, z] a2'' [p] -
A21 [p] gcomp[2, 2, p, t, z] gcomp[3, 3, p, t, z] a2” [p] -
Allfp] gcompfl, 3, p, t, z] gcomp[2, 2, p, t, z] a3" [p] +
Allfp] gcompfl, 2, p, t, z] gcomp[2, 3, p, t, z] a3" [p] +
A31[p] gcomp[2, 3, p, t, z]2 a3" [p] -
A31[p] gcomp[2, 2, p, t, z] gcomp[3, 3, p, t, z] a3" [p] + 
i nAll fp] a2 [p] gcompfl, 2, p, t, z] gcomp<0'0,0'0,11 [1, 1, p, t, z] +
imAllfp] a3 [p] gcompfl, 2, p, t, z] gcomp10,0'0,0'11 [1, 1, p, t, z] +



i n a 2  [p] A21 [p] gcomp [2 , 2 , p, t , 
imA21[p] a3 [p] gcomp[2, 2, p, t, 
ina2[p] A31 [p] gcomp[2, 3, p, t, 
ima3[p] A31[p] gcomp[2, 3, p, t, 
inAllfp] a2 [p] gcomp[l, 1, p, t, 
imAll[p] a3[p] gcomp[l, 1, p, t, 
inal[p] All [p] gcomp [1, 2, p, t, 
ina2[p] A21 [p] gcomp [ 1, 2 , p, t, 
imA21[p] a3 [p] gcomp[l, 2, p, t, 
ina2[p] A31 [p] g c o m p [ 1, 3, p, t , 
ima3[p] A31[p] gcompfl, 3, p, t, 
i n al [p] A21[p] g c o m p [2, 2, p, t, 
inal[p] A31[p] g c o m p [2, 3, p, t, 
All [p] gcomp[l, 2, p, t, z] a3'[p] 
A21[p] gcomp[2, 2, p, t, z] a3'[p] 
A31 [p] gcomp [2 , 3, p, t, z]a3'[p] 
imal[p] All [p] gcomp[l, 2, p, t, 
imal[p] A21[p] gcomp[2, 2, p, t, 
imal[p] A31[p] gcomp[2, 3, p, t, 
All [p] gcomp [1, 2, p, t, z] a2' [p] 
A21[p] gcomp[2, 2, p, t, z] a2' [p] 
A31 [p] gcomp [2, 3, p, t, z]a2'[p] 
i n al [p] All [p] gcomp [1, 1, p, t , 
i n al [p] A21[p] gcomp [1, 2, p, t, 
i nal[p] A31[p] g c o m p [1, 3, p, t, 
All [p] gcomp[l, 1, p, t, z] a3' [p] 
A21 [p] gcomp[l, 2, p, t, z] a3' [p] 
A31[p] gcomp[l, 3, p, t, z] a3'[p] 
imal[p] All [p] gcompfl, 1, p, t, 
imal[p] A21 [p] gcomp[l, 2, p, t, 
imal[p] A31 [p] gcomp[l, 3, p, t, 
All [p] gcomp[l, 1, p, t, z] a2' [p] 
A21[p] g c o m p [1, 2, p, t, z] a2' [p] 
A31[p] gcomp[l, 3, p, t, z] a2' [p] 
inAll[p] a2 [p] gcompfl, 3, p, t, 
imAll[p] a3 [p] gcompfl, 3, p, t, 
inazfpj A21fpj gcomp[2, 3, p, t, 
imA21[p] a3 [p] gcomp[2, 3, p, t, 
i n a 2  [p] A31 [p] gcomp[3, 3, p, t, 
ima3[p] A31[p] gcomp[3, 3, p, t, 
i n  al[p] All[p] g c o m p [1, 3, p, t, 
inalfp] A21[p] gcomp [2 , 3 , p, t, 
inalfp] A31[p] g c o m p [3, 3, p, t, 
All [p] gcompfl, 3, p, t, z] a3' [p] 
A21 [p] g c o m p [2, 3, p, t, z]a3'[p] 
A31 fp] gcomp[3, 3, p, t, z] a3' [p] 
i n All [p] a2 [p] gcompfl, 1, p, t, 
imAllfp] a3 [p] gcompfl, 1, p, t, 
ina2[p] A21 [p] g c o m p [1, 2, p, t, 
imA21[p] a3 [p] gcompfl, 2, p, t, 
imalfp] All [p] gcompfl, 3, p, t, 
ina2[p] A31 [p] gcompfl, 3, p, t, 
ima3[p] A31 [p] gcomp [ 1, 3 , p, t, 
imalfp] A21 fp] gcomp[2, 3, p, t, 
imalfp] A31 [p] gcomp[3, 3, p, t,
All [p] gcompfl, 3, p, t, z] a2' [p]
A21 [p] gcomp[2, 3, p, t, z] a2' [p]
A31 [p] gcomp[3, 3, p, t, z] a2' [p]
inalfp] All [p] gcompfl, 1, p, t, 
inalfp] A21[p] gcompfl, 2, p, t, 
i n al [p] A31 [p] gcomp [ 1, 3 , p, t , 
All [p] gcompfl, 1, p, t, z] a3' [p]

z] gcomp'u,u,u,u,i' [1, 1, p, t, z]
z] gcomp'0,0'0'0,11 [1, 1, p, t, z]
z] gcomp'0,0,0,0'11 [1, 1, p, t, z]
z] gcomp'0,0,0,0,11 [1, 1, p, t, z]
z] gcomp'0,0,0,0,11 [1, 2, p, t, z]
z] gcomp'0,0,0,0,11 [1, 2, p, t, z]
z] gcomp'0,0,0,0,11 [1, 2, p, t, z]
z] gcomp'0,0,0,0,11 [1, 2, p, t, z]
z] gcomp'0,0,0,0,11 [1, 2, p, t, z]
z] gcomp'0,0,0,0,11 [1, 2, p, t, z]
z] gcomp'0,0,0,0,11 [1, 2, p, t, z]
z] gcomp'0,0,0,0,11 fl, 2, p, t, z]
z] gcomp'0,0,0,0,11 [1, 2, p, t, z]
gcomp'0,0,0,0,11 [1, 2, p, t, z] -
gcomp'0,0,0,0,11 [1, 2, p, t, z] -
gcomp'0,0,0,0,11 [1, 2, p, t, z] -
z] gcomp'0,0,0,0,11 [1, 3, p, t, z]
z] gcomp'0,0,0,0,11 [1, 3, p, t, z]
z] gcomp'0,0,0,0,11 [1, 3, p, t, z]
gcomp'0,0,0,0,11 [1, 3, p, t, z] +
gcomp'0,0,0,0,11 [1, 3, p, t, z] +
gcomp'0,0,0,0,11 [1, 3, p, t, z] +
z] gcomp'0,0,0,0,11 [2, 2, p, t, z]
z] gcomp'0,0,0,0,11 [2, 2, p, t, z]
z] gcomp'0,0,0,0,11 [2, 2, p, t, z]
gcomp'0,0,0,0,11 [2, 2, p, t, z] +
gcomp'0,0,0,0,11 f2, 2, p, t, z] +
gcomp'0,0,0,0,11 [2, 2, p, t, z] +
z] gcomp'0,0,0,0,11 [2, 3, p, t, z]
z] gcomp'0,0,0,0,11 [2, 3, p, t, z]
z] gcomp'0,0,0,0,11 [2, 3, p, t, z]
gcomp'0,0,0,0,11 [2, 3, p, t, z] -
gcomp'0,0,0,0,11 [2, 3, p, t, z] -
gcomp'0,0,0,0,11 [2, 3, p, t, z] -
z] gcomp'0,0,0,1,01 [1, 1, p, t, z]
z] gcomp'0,0,0,1,01 [1, 1, p, t, z]
z] gcomp''0,0,0,1,0'' fl, 1, p, t, z]
z] gcomp'0,0,0,1,01 [1, 1, p, t, z]
z] gcomp'0,0,0,1,01 [1, 1, p, t, z]
z] gcomp'0,0,0,1,01 [1, 1, p, t, z]
z] gcomp'0,0,0,1,01 [1, 2, p, t, z]
z] gcomp'0,0,0,1,01 [1, 2, p, t, z]
z] gcomp'0,0,0,1,01 [1, 2, p, t, z]
gcomp'0,0,0,1,01 [1, 2, p, t, z] + 
gcomp'0,0,0,1,01 fl, 2, p, t, z] + 
gcomp'0,0,0,1,01 [1, 2, p, t, z] + 
z] gcomp'0,0,0,1,01 [1, 3, p, t, z] 
z] gcomp'0,0,0,1,01 [1, 3, p, t, z] 
z] gcomp'0,0,0,1,01 [1, 3, p, t, z] 
z] gcomp'0,0,0,1,01 [1, 3, p, t, z] 
z] gcomp'0,0,0,1,01 [1, 3, p, t, z] 
z] gcomp'0,0,0,1,01 [1, 3, p, t, z] 
z] gcomp'0,0,0,1,01 [1, 3, p, t, z] 
z] gcomp'0,0,0,1,01 [1, 3, p, t, z] 
z] gcomp'0,0,0,1,01 [1, 3, p, t, z] 
gcomp'0,0,0,1,01 [1, 3, p, t, z] - 
gcomp'0,0,0,1,01 [1, 3, p, t, z] - 
gcomp'0,0,0,1,01 [1, 3, p, t, z] - 
z] gcomp'0,0,0,1,01 [2, 3, p, t, z] 
z] gcomp'0,0,0,1,01 [2, 3, p, t, z] 
z] gcomp'0,0,0,1,01 [2, 3, p, t, z] 
gcomp'0,0,0,1,01 [2, 3, p, t, z] -
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A21[p] gcomp[l, 2, p, t, z] a3' [p] gcomp’0,0,0,1,01 [2, 3, P, t, z] -
A31[p] gcomp [1, 3, p, t, z] a3'[p] gcomp’0,0,0,1,01 [2, 3, P- t. z] -
imal[p] All [p] gcomp[l, 1, p, t, z] gcomp’0,0,0,1,01 [3, 3, P- t, Z] -
imal[p] A21[p] gcomp[l, 2, P, t, Z] gcomp’0,0,0,1,01 [3, 3, P, t, Z] -
imal[p] A31[p] gcomp[l, 3, p, t. Z] gcomp’0,0,0,1,01 [3, 3, P- t, z] +
All [p] gcomp[l, 1, p, t, z] a2'[p] gcomp’0,0,0,1,01 [3, 3, P- t, Z] +
A21[p] gcomp [1, 2, p, t, z] a2' [p] gcomp’0,0,0,1,01 [3, 3, P< t. z] +
A31 [p] gcomp[l, 3, p, t, z] a2' [p] gcomp’0,0,0,1,01 [3, 3, P- t, Z] +
inAll[p] a2 [p] gcomp[l, 3, p, t, Z] gcomp’0,0,1,0,01 [1- 2, P< t, Z] +
imAll[p] a3 [p] gcompfl, 3, p, t, Z] gcomp’0,0,1,0,01 [1- 2, P< t, Z] +
i na2 [p] A21 [p] gcomp[2, 3, p, t, Z] gcomp’0,0,1,0,01 [1. 2, P, t, z] +
imA21[p] a3 [p] gcomp[2, 3, P, t, Z] gcomp’0,0,1,0,01 [1. 2, P- t, Z] +
i na2 [p] A31 [p] gcomp [ 3, 3, p, t, Z] gcomp’0,0,1,0,01 [1- 2, P, t. z] +
ima3[p] A31[p] gcomp[3, 3, P, t, Z] gcomp’0,0,1,0,01 [1. 2, P- t, Z] -
inAll[p] a2[p] gcompfl, 2, p, t. Z] gcomp’0,0,1,0,01 [1, 3, P- t. z] -
imAll[p] a3 [p] gcomp[l, 2, P< t, z] gcomp’0,0,1,0,01 [1- 3, P- t, Z] -
i na2 [p] A21 [p] gcomp[2, 2, P, t, Z] gcomp*0, °*11 °'01 [1- 3, P- t, z] -
imA21[p] a3 [p] gcomp[2, 2, p, t, Z] gcomp’0,0,1,0,01 [1, 3, P< t, Z] -
i na2 [p] A31 [p] gcomp[2, 3, p, t, Z] gcomp10,0,1,0,01 [1, 3, P- t, z] -
im a3[p] A31[p] gcomp[2, 3, P, t, Z] gcomp’0,0,1,0,01 ti 3, P, t, Z] -
in al[p] All[p] gcompfl, 3, P, t, Z] gcomp’0,0,1,0,01 ts, 2, P, t, z] -
in al[p] A21[p] gcomp[2, 3, p, t, Z] gcomp’0,0,1,0,01 [2, 2, P, t. Z] -
inalfp] A31[p] gcomp[3, 3, P- t, z] gcomp«0,0,1,0,01 [2, 2, P- t, Z] -
All [p] gcompfl, 3, p, t, z] a3' [p] gcomp’0,0,1,0,01 [2, 2, P. t, Z] -
A21 [p] gcomp[2, 3, p , t, z] a3' [p] gcomp’0,0,1,0,01 [2, 2, P, t, z] -
A31[p] gcomp[3, 3, p, t, z] a3' [p] gcomp’0,0,1,0,01 [2, 2, P- t, z] +
in al[pj All[p] gcompfl, 2, P, t, Z] gcomp’0,0,1,0,01 [2, 3, P, t, z] -
imalfp] All [p] gcompfl, 3, p, t, z] gcomp’0,0i 1' °'01 [2, 3, P- t, Z] +
inalfp] A21[p] gcomp [2 , 2, p, t, Z] gcomp’0, °’1' °'01 [2, 3, P- t. Z] -
imalfp] A21[p] gcomp[2, 3, p, t, Z] gcomp’0, °’ -1, °'01 [2, 3, P, t, Z] +
inalfp] A31[p] gcomp[2, 3, p, t, Z] gcomp’0,0,1,0,01 [2, 3, P- t, Z] -
imalfp] A31[p] gcomp[3, 3, P, t, Z] gcomp’0,0,1,0,01 [2, 3, P- t, z] +
All[p] gcompfl, 3, P, t, z] a2' [p] gcomp’0,0,1,0,01 [2, 3, P- t , z] +
A21fp] gcomp[2, 3, P, t, z] a2' [p] gcomp’0,0,1,0,01 [2, 3, P, t, z] +
A31[p] gcomp[3, 3, P- t, Z] a2' [p] gcomp’0,0,1,0,01 [2, 3, P, t , z] +
Allfp] gcomp[1, 2, P- t, Z] a3' [p] gcomp’0,0,1,0,01 [2, 3, P, t, Z] +
A21 fpj gcoiripf2, 2, P. t , z j a3' fp] gcoirip'0,0,1,0,01 1.2 , 3, P, t. , Zj
A31fp] gcomp[2, 3, P, t, z] a3' [p] gcomp’0,0,1,0,01 [2, 3, P- t , Z] +
imal[p] All [p] gcomp[l, 2, p, t, z] gcomp’0,0,1,0,01 [3, 3, p, t, z] +
imal[p] A21[p] gcomp[2, 2, p, t, z] gcomp’0,0,1,0,01 [3, 3, p, t, z] +
imal[p] A31[p] gcomp[2, 3, p, t, z] gcomp’0,0'1'0'01 [3, 3, p, t, z] -
All[p] gcomp[l, 2, p, t, z] a2'[p] gcomp’0,0'1,0'01 [3, 3, p, t, z] -
A21[p] gcomp[2, 2, p, t, z] a2'[p] gcomp’0,0,1,0'01 [3, 3, p, t, z] -
A31 [p] gcomp [2, 3, p, t, z]a2'[p] gcomp10,0,1,0,01 [3, 3, p, t, z]

In [86] := (* An example term *)

In[87] := Expand[Coefficient[AmpereFourierRHS, A31[p] a2[p]]]

Ou t [87 ] = -n2 gcomp[l, 2, p, t, z] gcomp[l, 3, p, t, z] -
m n gcomp [ 1, 3, p, t, z]2 +n2 gcomp [1, 1, p, t, z] gcomp [2, 3, p, t, z] +
m n gcomp [ 1, 1, P- t, z] gcomp[3, 3, p, t, z] +
i n gcomp [ 2, 3, P- t, z] gcomp’0,0,0,0,11 [1- 1, P- t, z] -
in gcomp f1, 3, P- t, z] gcomp’0,0,0,0,11 [1- 2, p, t, z] -
in gcomp[3, 3, P- t, z] gcomp’0,0,0,1,01 [1- 1, P, t, Z] +
in gcomp[1, 3, P- t, z] gcomp’0,0,0,1,01 [1- 3, p, t, z] +
in gcomp[3, 3, P- t, z] gcomp«0,0,1,0,01 fi 2, p, t, z] -
in gcomp[2, 3, P, t, z] gcomp’0,0,1,0,01 ll- 3, P, t, Z]

In [88] := (* Confound metric tensor elements. All terms of a coupling element
which have variation on a flux surface need to be grouped together, 
and reciprocals must be taken before the Fourier transform! *)
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ln [89] : = Rulecomp =
(gcomp[a_, b_, p, t, z] gcomp[c_, d_, p, t, z] -♦ gcompprod [a, b, c, d, p, mnp, nnp] , 
gcomp[a_, b_, p, t, z] A2 -» gcompprod[a, b, a, b, p, mnp, nnp], 
gcomp[a_, b_, p, t, z] D [gcomp [c_, d_, p, t, z], p] -» 
gcompproddp[a, b, c, d, p, mnp, nnp] , 

gcomp[a_, b_, p, t, z] D [gcomp [c_, d_, p, t, z] , t] -> 
gcompproddt[a, b, c, d, p, mnp, nnp], gcomp[a_, b_, p, t, z]
D[gcomp[c_, d_, p, t, z] , z] -» gcompproddz[a, b, c, d, p, mnp, nnp], 

g[a_, b_, p, t, z] g[c_, d_, p, t, z] -» gprod[a, b, c, d, p, mnp, nnp] , 
g[a_, b_, p, t, z] A2 -4 gprod[a, b, a, b, p, mnp, nnp] }

Out [89] = {gcomp[a_, b_, p, t, z] gcomp[c_, d_, p, t, z] -» gcompprod[a, b, c, d, p, mnp, nnp],
gcomp[a_, b_, p, t, z]2 -4 gcompprod[a, b, a, b, p, mnp, nnp],
gcomp[a_, b_, p, t, z] gcomp*0'0'1'0'0* [c_, d_, p, t, z] -» 
gcompproddp[a, b, c, d, p, mnp, nnp] , 

gcomp[a_, b_, p, t, z] gcomp*0'0'0'1'01 [c_, d_, p, t, z] -> 
gcompproddt [a, b, c, d, p, mnp, nnp], 

gcomp[a_, b_, p, t, z] gcomp*0'0,0'0'11 [c_, d_, p, t, z] -> 
gcompproddz [a, b, c, d, p, mnp, nnp], 

g[a_, b__, p, t, z] g[c_, d_, p, t, z] ->gprod[a, b, c, d, p, mnp, nnp],
g[a_, b_, p, t, z]2 -*gprod[a, b, a, b, p, mnp, nnp]}

In [90] : = SetOptions [$Output, PageWidth-» 72] ;

In [91]:= (* Next line produces FORTRAN 77 code *)

In [92 ] : = FortranForm[Expand[Coefficient[AmpereFourierRHS, A31[p] a2[p]]] /. Rulecon^)]
Out[92]//FortranForm=

n* * 2 *gcompprod(1,1,2,3,p ,mnp,nnp) + 
m*n*gcompprod(l,1,3,3,p,mnp,nnp) - 
n**2*gcompprod(1,2,1,3,p,mnp,nnp) - 

- m*n*gcompprod(l,3,1,3,p,mnp,nnp) -
(0,1)*n*gcompproddp(2,3,1,3,p,mnp,nnp) 
(0,1)*n*gcompproddp(3,3,1,2,p,mnp,nnp) 
(0,1)*n*gcompproddt(1,3,1,3,p,mnp,nnp) 
(0,1)*n*gcompproddt(3,3,1,1,p,mnp,nnp) 
(0,1)*n*gcompproddz(1,3,1,2,p,mnp,nnp) 
(0,1)*n*gcompproddz(2,3,1,1,p,mnp,nnp)

In[93]:= SetOptions [$Output, PageWidth -» WindowWidth] ;

In[94J.-= AinpereFourierLHS =
Simplify [Aprimel [p, t, z] . aprime [p, t , z] * Exp [I * (mp - m) * t - I * (np - n) * z] ]

Out [94]= al[p] All [p] +a2[p] A21[p] + a3[p] A31[p]

In [95]:= (»Equation of state *)
EqOfStateFourierRHS = Simplify[

pprimel[p, t, z] * ( - J[p, t, z] * gamma * pressureO [p] * Div[Vprime [p, t, z], p, t, z] - 
J[p, t, z] * grad [pressureO [p] , p, t, z].Vprime[p, t, z] ) *

Exp [I * (mp - m) * t - I * (np - n) * z] ]
Out [95]= -pressl[p] (VI[p] pressureO'[p] +

gamma pressureO [p] (imV2[p] + imBT[p] V3 [p] - i n BZ [p] V3[p] + VI' [p] ) )

In[96] : = EqOfStateFourierLHS = Simplify[
pprimel [p, t, z] *J[p, t, z] * pprime [p, t, z] * Exp [I* (mp-m) * t - X *  (np-n) *z] ]

Out [96]= J[p, t, z] pressfp] pressl[p]
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B Splining of E quilib rium  q u an titie s

The equilibrium quantities output from the mapper are:

J,9n,9i2 = 921,922,922, =  932,931 = 9i3, 933, BZ, BT, JZ, JT  (181)

In the VMEC coordinate system where s ~  r 2 the surface functions are smooth 
near the magnetic axis, and generally attain some finite value in the limit r —> 0. 
However, there are possible singularities in the metric tensor elements, partic
ularly in 0ii, which ~  1/s in the limit. Also, 022 — s , and to ensure accuracy 
near the origin, we would like to impose 022^=0 = 0 . Accurate splining of such 
quantities can be achieved by using a test function; this is equivalent to splining 
the quantites sgu and 022/s instead of g\\ and 022-

In testing it has been found that splining the equation coefficients is more ac
curate than splining the equilibrium quantities; this is because some cancellation 
of the equilibrium quantities occurs when they are combined into coefficients at 
the equilibrium grid points. For each coefficient, we determine the leading power 
of s near the origin and divide this out, and then spline the regularised quantity 
using unsmoothed cubic splines. The power of s is then recombined.

In is often the case that the Boozer coordinate mapping of the output from 
the equilibrium code VMEC is not as accurate near the origin as elsewhere. It 
is sometimes helpful to extrapolate the offending splined quantities from the 
second or third grid point in order to account for this deviation. Also, in cases 
where there is no large mode amplitude expected near the axis, the first finite 
element grid point can be moved slightly away from r = Ü with a negligible 
effect on the predicted eigenfrequencies.



145

C E igen valu e so lvers for S P E C T O R 3 D

For matrix eigenvalue problems, a direct evaluation of the complete set of 
eigenvalues and eigenvectors is possible through a diagonalisation technique. 
However for large problems this is often computationally infeasible and we must 
use an iterative technique to extract a small number of eigenvectors and eigen
values. A useful resource for these iterative techniques is [49], In order to keep 
the description of our code self contained, and to illustrate how our particular 
problem influences the choice of eigenvalue solver, we provide a description of 
the two techniques used in our code.

This is not the first implementation of these methods, but unfortunately as 
of the time of writing, there were no publicly available codes which suited our 
needs.

C .l  T h e  Ja c o b i-D a v id so n  eigenvalue solver: b ack g ro u n d  
an d  im p lem en ta tio n

Even though various algorithms for extracting a small portion of the spec
trum exist, the relatively new Jacobi-Davidson method [48] combines the most 
desirable features of these algorithms for our problem:

1. Convergence can be very fast (quadratic) under certain conditions.

2. It includes eigenvector deflation, allowing a significant number of eigen
vectors to be found.

3. We can find interior eigenvalues without the need for exact matrix inverses, 
leading to potentially significant savings on computational resources.

4. It has a good track record for a closely related problem, the 2D linearised 
resistive MHD code CASTOR [3], where it was also shown to parallelise 
well.

The technique is a subspace method; at each step, the large matrix problem is 
represented in terms of small matrices acting on low dimensional subspaces and 
the projections between the full and restricted spaces. The eigenvalue problem 
can then be easily solved in the small dimensional subspace; the distinguishing 
feature of the Jacobi-Davidson method is the means used to refine this subspace.

Our problem is a generalised non-Hermitian eigenvalue problem, requiring 
the solution of

ABx = Ax (182)
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for complex matrices A, B, a complex vector x, and complex A. It is possible 
to deal directly with this generalised problem using a variant of the Jacobi- 
Davidson technique [49], or to convert the problem to a standard eigenvalue 
problem with a shifted eigenvalue. The disadvantage of converting to a standard 
eigenproblem is that we must then perform a complete LU decomposition of a 
matrix, which can be computationally costly. However, we have found this speed 
penalty is not terribly burdensome, as the most significant limitation seems to 
be memory requirements, rather than the patience of the investigator. Direct 
solution of the generalised problem requires considerably more implementation 
effort as a result of increased algorithmic complexity, especially since a good 
preconditioner must be found. We implemented the Jacobi-Davidson technique 
for standard non-Hermitian eigenvalue problems, as described in [49],

The algorithm in SPECTOR3D implements deflation and restart, and in
volves preconditioning in the inverse solver (using the Generalised Minimal 
RESidual (GMRES) method [91]), and can be found in pseudocode form as 
Algorithm 4.17 of [49], However, the description here is limited to the Jacobi- 
Davidson method without deflation and restart, for pedagogical purposes: we 
would like to convey the flavour of the algorithm for those plasma physicists 
interested in similar problems.

Consider an eigenvalue problem Au =  Xu. To gain an understanding of the 
Jacobi Davidson method, we think about how we might refine an approximation 
Uk to an eigenvector u with eigenvalue A. The approximation at step k to 
the eigenvalue A is 9k, which is found though 9k = u*kAuk/ukUk- Because 
the magnitude of the eigenvector is irrelevant, there should be a correction, v, 
perpendicular to Uk which brings it into line with u. We are therefore interested 
in the projection of A in this perpendicular direction, B = (1 -  UkUk*)A( 1 — 
UkUk*). After some algebra we can find an relation for the correction in terms 
of the residual r =  Auk — 9kUk and B:

(B -  AI)v =  - r  (183)

Because we do not know A, we are forced to replace it by 9k, the current guess 
for the eigenvalue. The vector v can then be found, and added to our search 
space.

The complete method is described by Algorithm 1 in [48]:

1. Start: Choose an initial nontrivial vector v

• Compute v\ =  u/[|u ||2 , w\ =  Av\, h \ \  =  v\w\, set V\ =
[iq], W\ =  [tci], H i = [h1 1], u — v\, 9 = hil,  compute 
r = w i — 9u.

2. Iterate: Until convergence do:
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3. Inner Loop: For k =  1 , m — 1 do:

• Solve (approximately) t _L u,

(1 — uu*)(A — 9I)(I — uu*)t =  — r (184)

• Orthogonalise t against 14 via modified Gram-Schmidt, 
and expand 14 with this vector to 14+i-

• Compute Wk+1 := Av^+i and expand 114 with this vector 
to I14+i.

• Compute V£+lWk+i, the last column of Hk+i := Vj*+1AVk+i, 
and vl+1Wk, the last row of H^+i (only if A /  A*).

• Compute the largest eigenpair (0, s) of Hk+ i (with ||s||2 =

I ) -

• Compute the Ritz vector u := 14+is, compute ü := Au 
(= H4+is), and the associated residual vector r := ü — 6u.

• Test for convergence. Stop if satisfied.

4. R estart: Set V\ — [u], W\ =  [ü], H\ =  [0], and goto 3.

C .2 C on vergence o f th e  e igen valu e solvers.

We illustrate the convergence behaviour of the shift and invert and Jacobi- 
Davidson algorithms with a test case. The convergence of iterative techniques 
for non-symmetric problems is generically non-monotonic, and in strongly non
normal problems like resistive MHD, may be considerably slower than expected 
from simple estimates based on eigenvalue separation.

For the shift and invert solver, we can interpret the behaviour of the iterated 
approximate eigenvector by formally considering powers of B(A — AoB)~l . The 
long term dynamics of these iterates can be given in terms of the eigenvalues of 
this matrix. For a large number of iterations, n, we expect components in the 
direction of the largest eigenvector to dominate over the remaining components 
by C(||Ao||/||Ai||)n, where Ao and Ai are the first and second largest eigenval
ues, respectively. However, for strongly non-normal matrices, this asymptotic 
dominance may only occur for very large n, and there may be large transient 
growth of our iterated eigenvector in other directions [18].

In figure 47, we show a convergence plot for the two methods, used to find 
an eigenvalue of the resistive MHD spectrum of a simple cylindrical plasma. We 
should note that the number of iterations is not a good indication of the speed 
of these two algorithms: the computational expense of each iteration needs to 
be considered.
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shift and invert — *—  
Jacobi-Davidson

Iteration no.

Figure 47: Convergence versus the number of iterations for a well isolated eigen
value. For the invert and shift method, we choose an optimal shift every 20 iter
ations. The correction step in the Jacobi-Davidson technique uses 10 GMRES 
iterations.

For the iterate and shift algorithm, there is no convergence until about the 
tenth iteration, and fairly slow convergence until the twentieth iteration, where 
a new shift is applied based on the current approximate eigenvalue. After this 
shift there is very fast convergence, as the guess (u >  ~  0.274) is quite close to 
the true eigenvalue (u> ~  0.27), and the corresponding eigenvalue in the shifted 
and inverted matrix is strongly dominant. It is important that the shift is not 
made after too few iterations or we may not find the eigenvalue closest to our 
guess; if we make a shift every 10 inner iterations, this example case converges 
to a different eigenvalue. The number of inner iterations needed depends both 
on the problem and the quality of the initial guess. We usually iterate the inner 
loop 50 times between shifts, which is almost always sufficient in practise.

In the Jacobi-Davidson algorithm, there has been considerable convergence 
within 10 steps, but the convergence then slows considerably. If we solve the cor
rection equation exactly, we expect quadratic convergence, so slow convergence 
usually indicates that the correction equation is not being solved accurately. 
Nevertheless, we converge after 20 steps. The Jacobi-Davidson method almost 
never converges to a eigenvalue which is not the closest to our initial guess [49], 
unlike shift and invert, which can miss eigenvalues.

We usually find that shift and invert is the faster of the two algorithms, 
so this is usually the preferred choice for finding a single eigenvalue. However, 
being able to find a large number of eigenvalues around a particular point in the 
complex plane has been of considerable interest, and Jacobi-Davidson is very 
suitable for this purpose.
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C.3 S to rag e  costs an d  c o m p u ta tio n a l issues.

The total memory required to execute SPECT0R3D is strongly dependent 
on the resolution in radial and Fourier space. Almost all of the storage for a 
significant test case is consumed by the coupling matrices and the storage of 
matrix inverses. The coupling matrices are block tridiagonal with blocks of size 
T V x T V , so that the full array is n N x n N ,  where n is the number of radial grid 
points, and TV = number of Fourier modes x  finite elements per grid point x  
number of scalar equations. For k Fourier modes, and our specific finite element 
scheme, TV = 14k. There are 3n — 2 blocks in each matrix. Each matrix element 
is represented by a double precision complex value, requiring 16 bytes of storage. 
The memory associated with storing each matrix is then 16(3n — 2)(14k)2 for k 
Fourier modes.

SPECTOR3D requires the calculation and storage of a matrix inverse. The 
original implementation of SPECTOR3D used a blockwise inversion, and the 
additional storage requirement is then 16(3n)(14fc)2 leading to a total storage 
requirement of 16(9n — 2)(14k)2. However, we found that the LAPACK band 
inverse solver (in PZGBTRF and PZGBTRS) was capable of significantly more 
accurate inverses, which was important for the discrimination of modes with 
small growth rates. For band storage, we require somewhat more memory, and 
the total memory requirement is then approximately 16n(14[14fc] — l)(14/c), an 
increase in memory requirement of approximately 50%.

Execution time can be divided into two parts: The time taken to set up the 
finite element coupling coefficients, and the time taken by the eigenvalue solver.

The finite element coupling coefficients took approximately 30 minutes to 
setup on a single processor for the largest job we have run to date ( 3GB). It 
took another 30 minutes to calculate a single eigenvector. The eigenvalue solver 
is not guaranteed to converge, however, and it is not possible to put an upper 
bound on the execution time.


