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"The definition widely adopted in recent decades-'Evolution is the change of gene 
frequencies in populations' - refers only to the transformational component. It tells us 
nothing about the multiplication of species nor, more broadly, about the origin of organic 
diversity. A broader definition is needed which would include both transformation and 
diversification."

Mayr E.
The Growth of Biological Thought: Diversity, Evolution, and Inheritance
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Abstract
It is well known that many bacterial species consist of multiple sequence clusters that are 

ecologically distinct. The existence of these ecologically distinct populations raises the 

question concerning the species definition of bacteria. How does one define a species 

boundary, and how does a species maintain their genetic integrity? Among the many 

eukaryotic species concepts that have been applied to prokaryotic speciation in attempts to 

answer these questions, a combination of the ecological species concept and biological 

species concept has succeeded in establishing a foundation that explains the evolutionary 

processes and consequences of bacterial speciation. This thesis has attempted to elucidate 

the ecological and genetic structure of an enteric bacteria, Hafnia alvei, based on these 

species concepts.

The aim of the initial project was to investigate the overall genetic and phenotypic structure 

of the species. Multilocus enzyme electrophoresis was used to characterise 161 strains that 

were biochemically identified as H. alvei. Phylogenetic analysis of the allozyme variation 

revealed that this species consists of two electrophoretically distinct clusters. Two 

biochemical traits -  utilisation of malonate as a carbon source, and acid production during 

fermentation of glucose -  were distinguishing features of the two Hafnia groups. Host 

distribution of the two Hafnia groups was also considerably different. Whilst both groups 

were equally frequent in reptiles, group 2 contained isolates from fish, and mammals of any 

size, whereas the group 1 were mostly isolated from small mammals. Ten to 20 % of the 

electrophoretic and biochemical variation within each Hafnia group was explained by the 

taxonomic class of the host from which the strains were isolated.
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The next two projects investigated the difference in the phenotypic variation between the 

two Hafnia groups and the extent to which the host influenced the observed variation. The 

first trait that was examined was bacteriocin production and resistance. Approximately 20 

% of the strains produced bacteriocinogenic agents, the majority of which were Hafnia 

group 2 strains. Hafiiia group 2 isolates from reptiles produced bacteriocins with the 

strongest and broadest killing pattern. Overall there were at least 14 different bacteriocin 

phenotypes detected based on the killing patterns of the bacteriocins. Resistance against 

the bacteriocins was high, with an average of 61 % of the strains being resistant to a 

particular bacteriocin. The second trait that was examined was the variation in the growth 

rate -  temperature relationship among strains. There was a significant difference in the 

growth rate parameters of the two Hafiiia groups. Variation in the growth rate parameters 

was significantly influenced by host taxonomic class in group 2 strains, but not in those of 

group 1. After accounting for genetic group and host class, there still was residual variation 

in the parameters that were partially explained by several biochemical characteristics of the 

strains.

The final project was to identify the extent of sharing of genetic information within and 

between the two Hafnia groups. Multilocus sequence typing of partial regions of six 

housekeeping genes confirmed lack of allele sharing between the two Hafiiia groups. This 

evidence is interpreted as the two groups representing two separate species. The two 

biochemical traits, when mapped onto the maximum likelihood tree, indicated that Hafiiia 

group 2 evolved from group 1.

There are three major conclusions based on these results; that the two Hafnia groups clearly 

represent two species within the genus Hafnia, that Hafnia group 2 evolved from group 1, 

and that the genetic and ecological structure of the two Hafnia groups are shaped
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differently, where Hafiiia group 2 is under stronger selection pressure by the host 

comparison to group 1.
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Chapter 1: General introduction 1

Chapter 1

General introduction

The existence of ecological niches in bacteria
A given ecosystem contains an extensive number of organisms. The number of species in 

an environment depends on the number of ecological niches, each defined by the resources 

and conditions that they provide. Bacteria are not an exception to the classic observation of 

niche specialisation that is observed in higher eukaryotes. Two characteristics of bacteria 

provide a rich source of biodiversity. Indeed, Dykhuizen (1998) estimated that there are 

approximately 500,000 species of bacteria in 30 g of soil. First, bacteria are small. Their 

sizes range from 0.25x1.2 jam for Haemophilus influenzae to 8x50 pm for Oscillatoria 

(cyanobacterium) (Madigan 1997). As a consequence of their small size, their habitats are 

also small. Secondly, bacteria reproduce asexually by binary fission, and mutations will 

have a direct effect on the fitness of a strain. By contrast, in diploid organisms, the 

dominant phenotype will mask the mutational effect of the other gene copy. As proven by 

laboratory studies, adaptation, which is the initial step of speciation, is an easy and rapid 

process due to the mode of reproduction in bacteria (Bennett and Lenski 1993; Rainey and 

Travisano 1998).

The history of bacterial species classification
In order to estimate the number of bacterial species in any given environment, there needs 

to be a consensus definition of what constitutes a species. Until the 1970s, phenotypic 

classification (based mainly on metabolic characteristics) was used for identifying and 

categorising bacteria (Sneath 1984). With the advent of genetic techniques in the early 

1970s, DNA-DNA hybridisation was used to genotypically distinguish species, and this
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method dominated bacterial systematics for over a decade (Wayne et al. 1987). 16rRNA- 

based classification was subsequently introduced following the advent of modern 

sequencing technology with the aim to develop a global database for bacterial species 

identification (Stackebrandt and Goebel 1994). Although all of these techniques are still 

regarded as prerequisites for describing a new species, there are issues concerning the 

validity of their application and interpretation. The utility of phenotypic (metabolic) 

characterisation breaks down when mutation or recombination results in a strain acquiring a 

novel trait or losing the signature phenotypic characteristics of the species. Species 

delineation using 16S rRNA or DNA-DNA hybridisation approaches are based on arbitrary 

cut-offs of 3 % divergence and 70 % annealing at 60 °C, respectively (Wayne et al. 1987). 

However there are populations assigned to different genera that show more than 70 % 

annealing or less than 3 % divergence. A classic example is the genera Shigella and 

Escherichia (Lan and Reeves 2002). Shigella established its genus status in the 1940s, far 

before genetic techniques were available for bacterial classification. It was due to the fact 

that it had clinical significance, and had a specific host - humans. However, genetic 

classification methods now show that Shigella are no further apart from E. coli than other 

pathogenic forms of E. coli (e.g. EIEC, E. coli 0157:H7). Shigella strains are quite clearly 

members of the species Escherichia coli, yet are, phenotypically, very atypical E. coli. 

Shigella has acquired genes for an intracellular lifestyle and lost genes that code for 

functions of E. coli. Consequently the phenotypic characteristics of Shigella resembles 

other intracellular bacteria such as Yersinia sp. and Providencia sp. (Dodd and Jones 1982). 

The advent of molecular genetic techniques has shown that the classification of bacteria 

based on their clinical significance (Lan and Reeves 2001) has lead to many cases of 

species misclassification.
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By contrast, there are different populations, related well below these arbitrary cut-off 

values, that are categorised as one species such as Enterobacter cloacae (Hoffmann and 

Roggenkamp 2003).

Incorporation of eukaryotic speciation theory to bacterial speciation
The problems with current methods of bacterial species classification arise because

numerical taxonomy approaches and methods involving arbitrary cut-offs to classify 

species ignores the evolutionary history of bacterial populations. One of the goals of 

workers in the field of eukaryotic systematics has been to develop a 'universal species 

concept'. Despite the fact that none of the many attempts to formulate such a 'universal 

species concept' has been widely accepted, eukaryotic systematists recognise the need to 

interpret the results of their studies using some form of a species concept. However, it has 

only been relatively recently that prokaryotic systematists have recognised that real 

progress in the field will only be achieved using a sound evolutionary framework. At 

present, an amalgamation of two species concepts has gained fairly broad acceptance by 

prokaryotic systematists; the ecological species concept and a modification of the 

biological species concept (Rodriguez-Valera 2002). Studies based on DNA sequence data 

or other genetic analysis techniques typically show the occurrence of 'sequence clusters', 

that is the existence of a population of genetically similar taxa that are different from other 

groups of closely related taxa. Cohan (1994) argues that each of the sequence clusters 

represents an ecotype. An ecotype begins with a clone with a beneficial mutation or 

recombination event that enables the clone to exploit a novel niche that the ancestral 

population can not. Ecological isolation between the new and ancestral population will 

limit the extent of recombination and the effect of periodic selection (a purging effect of 

accumulated genetic variation caused by an adaptive mutation or recombination) to within 

the ecological niche. Therefore, an ecotype may be defined as the boundary for
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homologous recombination and periodic selection. The divergence of these ecological 

populations over time ultimately results in two distinct populations that no longer share 

genetic information. The consequence of ecological isolation on the genetic relationship of 

the two populations can be explained with the biological species concept. Dykhuizen and 

Green (1991) proposed a bacterial species boundary as the limit of homologous 

recombination. It is known that homologous recombination is less likely to occur as the 

two populations become more distinct (Vulic et al. 1997). This is due to barriers of 

recombination, such as mismatch repair and SOS systems that limit recombination to 

within genetically close populations (Matic et al. 1996). Therefore, strains share alleles 

among other members within a species, but not with members of other species because they 

are genetically too distant.

There are two ways that recombination may influence the ecological structure of bacterial 

populations. First, it can function to diversify populations by introducing novel adaptive 

genes. But recombination can also function to maintain the species integrity by shuffling 

genes within the population. Studies examining the electrophoretic variation of metabolic 

allozyme loci of different bacterial species suggested that the importance of recombination 

varies among species (Maynard Smith et al. 1993). Neisseria gonorrhoeae is known for its 

natural transformation capability, and is highly sexual. As a result a phylogenetic 'tree' can 

not be constructed, and the neutral genetic relationship between strains is better described 

as a 'network'. At the other end of the spectrum, the genus Salmonella has a highly clonal 

population structure, with minimal evidence for homologous intra-species recombination 

(Beltran et al. 1991). This barrier of recombination forms the fundamental basis of the 

argument for the application of the ecological and biological species concepts to bacteria. 

The nature of the differences between species in the frequency of recombination is 

currently unclear, although there are some hypotheses that recombination evolves in species
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that are subjected to stress from fluctuating environmental conditions (Claverys et al. 2000; 

Otto and Michalakis 1998).

The case of genotype differentiation in Hafnia
The history of H. alvei systematics begins from the initial description of the species in 1954 

(Moeller 1954). The species name alvei (from alveus, meaning beehive) originates from a 

strain isolated from bees and suspected to be a bee pathogen (Moeller 1954). It was 

assigned to the genus Enterobacter during the 1960s as Ent. alvei (Sakazaki 1961) and Ent. 

hafniae (Ewing 1968), owing to its biochemical similarities to other Enterobacter species. 

In 1975, Steigerwalt et al. (1976) conducted a wide-scale DNA-DNA hybridisation study 

on species in the genera Enterobacter and Serratia. They made two significant 

observations regarding Hafnia: 1) It exhibited only 20 % annealing to Enterobacter, and 2) 

there were two distinct groups within Hafiiia that had an annealing rate of 50 % to each 

other. Therefore the genus status of Hafnia was re-erected, however the existence of two 

groups was interpreted as 'indicative of extensive diversity' (Steigerwalt et al. 1976), hence 

they remained as one species, H. alvei. Strain characterisation by biochemical profiles 

(esculin, arbutin, salicin and D-(-)-arabinose utilisation, called Barbe biotypes) failed to 

show any consistent differences between the two genetic groups, as the most frequent 

biotype (biotype 1) was present in both Hafnia groups (Janda et al. 2002). There is an 

extensive amount of work published on the lipopolysaccharide variation of this genus 

(Romanowska 2000). The latest serotyping scheme describes 57 serotypes representing 39 

O- and 36 H- antigen types (Baturo 1978). Unfortunately there is no additional genetic or 

phenotypic information on these strains, consequently the extent to which the two groups 

are serologically different is not known.
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Despite the fact that these two groups were perfectly distinguishable using DNA-DNA 

hybridisation, Hafnia did not receive much attention because the species was not 

considered to be of any clinical significance. Its life history has not been investigated in 

detail, which has lead to relatively few strains being available for any study on this species. 

It was not until the 1990s when pathogenic isolates now known as Escherichia albertii 

were thought to be members of the genus Hafnia, that Hafnia regained the attention of 

clinical microbiologists (Albert et al. 1992; Huys et al. 2003; Ridell et al. 1995). It is now 

known that members of this genus can cause extraintestinal infection among patients with 

an underlying illness and in infants. It also has long been recognised as a significant 

species in the veterinary and food science fields.

Gordon and FitzGibbon (Gordon and FitzGibbon 1999) initiated an extensive collection of 

enteric bacteria from a wide range of Australian native mammals, which continues to grow 

in size. With the generous assistance from researchers around Australia, the collection 

currently contains over 30 described enteric species isolated from five host taxonomic 

classes (Teleostei, Amphibia, Reptilia, Mammalia, Aves) and one class of invertebrates 

(Insecta) as well as from soil, water and sediments. This collection of enteric bacteria has 

allowed many studies to be conducted, whose broad aims have been to elucidate aspects of 

the ecology and evolution of these microbes (Gordon and Cowling 2003; Gordon and Lee 

1999; Okada and Gordon 2001; Wertz et al. 2003; Wertz and Riley 2004). This thesis took 

advantage of the existence of over 180 isolates biochemically identified as H. alvei to 

investigate the genetic and phenotypic properties of the species. The basis of the study was 

established by electrophoretically typing 161 isolates (which was the maximum number of 

isolates at the start of the project) using multilocus enzyme electrophoresis. The 

biochemical profiles of all isolates were also used as phenotypic information. The next two 

studies investigated other aspects of the phenotypic diversity of the genus: The intrinsic rate



Chapter 1: General introduction 7

of growth in minimal glucose media as well as bacteriocin production and resistance. The 

last project utilised multilocus sequence typing to observe the neutral genetic structure of 

the two genetic groups.

The aims of this thesis is five fold: 1) to assess the amount of genetic and phenotypic 

diversity in the genus Hafiiia, 2) to detect the presence of ecological structure created by 

biotic / abiotic aspects of the environments from where the isolates were collected, 3) to 

detect evidence (if any) for sharing of alleles among the two Hafnia groups, 4) to 

investigate the evolutionary mechanisms of the population structure of the two genetic 

groups, and 5) to identify the ecological characteristics of Hafiiia.
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Chapter 2

Genetic and ecological structure of Hafnia alvei in Australia
Published in Systematics and Applied Microbiology 26, 585-594 (2003)

Introduction
Hafiiia alvei (Moeller 1954) is a commensal species of the family Enterobacteriaceae. It 

was originally assigned to the genus Enterobacter (Ent. hafniae) (Ewing 1968) due to 

similarities in their biochemical profiles. H. alvei was later reassigned to its own genus 

based on a DNA hybridisation study revealing that it had a binding ratio of only 20 % with 

Ent. cloacae (Steigerwalt et al. 1976). It has clinical significance as an opportunistic 

pathogen of humans, having been implicated as the cause of gastrointestinal tract disease, 

as well as extraintestinal infections, many of which were associated with nosocomial 

multiple infections (Gunthard and Pennekamp 1996; Klapholz et al. 1994; Ramos and 

Damaso 2000). El. alvei is found in water columns (Allen et al. 1983; Shirey and 

Bissonnette 1992), and is also thought to be an extraintestinal pathogen of freshwater fish 

(Gelev et al. 1990). It is frequently isolated from dairy, meat and fish products as one of 

the major bacterial food contaminants (Gonzalez-Rodriguez et al. 2001; Lindberg et al. 

1998; Tornadijo et al. 2001). Although it is currently included in the category of the 

‘coliform’ group, there is some question as to whether H. alvei truly serves a role as an 

indicator species for faecal contamination because of its ubiquity in the environment 

(Leclerc et al. 2001).

Steigerwalt et al. (1976) examined the DNA relatedness of four H. alvei strains using a 

hybridisation technique and found that these strains could be classified into two groups. 

Since then, three other studies have confirmed the existence of two genetic groups within 

the species for both clinical and non-clinical isolates (Brenner 1981; Janda et al. 2002;
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Ridell et al. 1995). H. alvei from wild Australian mammals were also found to split into 

two genetic groups that have distinct phenotypic characteristics (Okada and Gordon 2001). 

The two groups differed in their preferred temperature for growth (Okada and Gordon 

2001), and their antibiotic resistance profiles (Sherley et al. 2004).

In a study of six species of enteric bacteria Gordon and Lee (1999) demonstrated that 

ecological factors such as the taxonomic family and geographic locality of the host 

accounted for a significant fraction of the observed genetic variation in four of the five 

species examined. Although H. alvei is reported to be found in a diverse range of host 

species (Brenner 1981), past studies examining its genetic structure have been restricted to 

isolates from a single host group, usually mammals. Therefore these previous studies may 

be underestimating the genetic diversity of H. alvei at the species level. This study reports 

the results of genotypic and phenotypic characterisation of H. alvei strains isolated from 

over 150 host species representing six taxonomic classes and examines the extent to which 

variation in these characteristics is influenced by the host and its geographic location.

Material and Methods 

Isolation of bacteria
One hundred and fifty eight H. alvei strains were isolated from faecal or intestinal swabs of 

1488 hosts representing 97 bird, 78 mammal, 54 reptile, 8 frog, 6 freshwater fish and 11 

arthropod species from over 190 localities throughout Australia between 1993 and 2001. 

Three strains from water column samples in New South Wales were also included. Three 

reference strains (type strain ATCC 13337, ATCC 29926, and ATCC 29927) were included 

in this study in order to determine genetic grouping of the strains.
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Techniques used to isolate the strains are described by Gordon and FitzGibbon (1999). 

Biochemical characteristics of isolates were determined by the BBL Crystal Enteric / 

Nonfermenter Identification kit (Becton Dickinson). Methyl red and Voges -  Proskauer 

tests were conducted on all strains according to the method of Ewing (1986). Strain 

designations, host of origin and geographic locality of the strains examined in this study are 

provided in Table 1. Geographic localities were assigned to one of the major climate zones 

occurring in Australia based on maps presented by the Bureau of Meteorology 

(www.bom.gov.au).

Multilocus enzyme electrophoresis
H. alvei strains were genetically characterised according to the methods described by 

Gordon and Lee (1999). In brief, overnight cultures of H. alvei in Luria Bertani broth were 

collected and sonicated in lysis buffer containing NADP (100 mg/1) and 2-mercapto- 

ethanol (0.5 ml/1). Supernatants were stored in -70 °C until further use. Cellulose acetate 

gel electrophoresis was used to detect protein variation in 11 enzyme systems: adenylate 

kinase (EC 2.7.4.3), glucose-6-dehydrogenase (EC 1.1.1.49), isocitrate dehydrogenase (EC

I . 1.1.42), malic enzyme (EC 1.1.1.40), malate dehydrogenase (EC 1.1.1.37), menadione 

reductase (EC 1.6.99.2), 6-phosphogluconate dehydrogenase (EC 1.1.1.44), 

phosphoglucose isomerase (EC 5.3.1.9), phosphoglucomutase (EC 5.4.2.2), shikimic acid 

dehydrogenase (EC 1.1.1.25), and superoxide dismutase (EC 1.15.1.1). Menadione 

reductase yielded two bands, therefore the total number of loci that was used for analysis 

was 12. All strains were run at least twice for every locus to confirm their genotype.

http://www.bom.gov.au
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Table 1. Source (taxonomic class, species, and state of the host) of isolates of Hafnia 
alvei used in this study, and the MLEE results. Assignment to either genetic group 1 or 2 
was based on multilocus enzyme electrophoresis. NSW, New South Wales; QLD, 
Queensland; TAS, Tasmania; SA, South Australia; WA, Western Australia; NT, Northern 
Territory; AK , adenylate kinase; G6PDH, glucose-6-dehydrogenase; IDH, isocitrate 
dehydrogenase; MDH, malate dehydrogenase; ME, malic enzyme; MR, menadione 
reductase; PGD, 6-phosphogluconate dehydrogenase; PGI, phosphoglucose isomerase; 
PGM, phosphoglucomutase; SDH, shikimic acid dehydrogenase; SOD, superoxide 
dismutase.
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B 3 4 8 A v e s A c a n th iz a  ka th e rin a QLD 1 1 2 8 3 7 6 2 5 1 6 8 4

B 4 2 9 A v e s S e rico rn is  f ro n ta lis NSW 1 1 2 8 3 1 6 2 5 4 6 8 4

B 4 5 9 A v e s M alu ru s  cya n e us TAS 1 2 2 8 3 7 6 2 5 3 6 1 3 4

B 6 4 2 A v e s G ym norh ina  t ib ic e n NSW 1 1 2 8 3 6 6 2 4 3 3 8 4

E 0 7 2  
E 11 3

W a te r NSW 1 1 2 8 3 6 6 1 5 2 6 1 2 2

E 0 9 5 W a te r NSW 1 1 2 8 3 6 4 2 7 2 6 1 0 4

F I  38 A c t in o p te ry g ii N e m ata lo sa  e re b i SA 1 1 2 8 3 4 6 0 4 2 4 8 4

F 1 5 6 A c t in o p te ry g ii N e m ata lo sa  e re b i SA 1 1 2 8 3 6 6 4 5 2 5 1 0 4

F 1 6 9 A c t in o p te ry g ii L e io p o th e ro p o n  u n ic o lo r SA 1 1 2 8 3 6 6 2 7 3 5 1 0 4

F 1 8 2 A c t in o p te ry g ii M acqua ria  a m b igua SA 1 1 2 8 3 6 6 2 7 3 6 4 2

F 1 8 7 A c t in o p te ry g ii M acqua ria  a m b igua SA 1 1 2 8 3 4 6 2 5 3 6 4 4

H 6 1 0 M am m alia H om o sap iens NSW 1 1 2 8 3 6 2 2 5 3 6 1 2 4

1031 In s e c ta no t id e n tifie d NSW 1 1 2 8 3 7 2 6 1 5 3 6 9 4

I0 4 0 In s e c ta n o t id e n tif ie d NSW 1 1 2 6 3 6 6 1 5 3 6 1 2 4

I0 4 4 In s e c ta n o t id e n tifie d NSW 1 1 2 8 3 6 6 1 5 3 6 1 2 4

I0 9 7 In s e c ta n o t id e n tifie d NSW 1 1 2 8 3 2 6 1 5 6 5 9 4

1100 In s e c ta n o t id e n tifie d NSW 1 1 2 8 3 6 6 1 4 3 6 1 2 2

1101 In s e c ta no t id e n tifie d NSW 1 1 2 8 3 6 6 1 5 3 4 9 4

1128 In s e c ta n o t id e n tifie d NSW 1 21 2 8 3 2 6 1 6 6 5 9 4

L 0 0 9 A m p h ib ia L ito ria  ad e la id en s is W A 1 1 2 8 3 2 6 4 5 2 6 1 2 4

L 0 6 9 A m p h ib ia L ito ria  e w in g ii NSW 1 1 2 8 3 2 6 1 5 4 6 9 4

M 0 3 9 M am m a lia R a ttu s  ra ttu s NSW 1 1 2 8 3 1 6 2 5 5 5 9 4

M 0 4 4 M am m a lia A n te c h in u s  f la v ip e s NSW 1 1 2 8 3 6 6 2 5 2 6 1 4 4

M 051 M am m a lia A n te c h in u s  f la v ip e s NSW 1 1 2 8 3 1 6 2 5 4 6 1 4 4

M 061 M am m a lia S m in th o p s is  m urin a NSW 1 1 2 8 3 1 6 2 5 2 6 1 2 4

M 0 8 2 M am m a lia R a ttu s  fu sc ip e s NSW 1 1 2 8 3 6 6 2 1 0 2 6 9 4

M 0 8 9 M am m a lia R a ttu s  fu sc ip e s NSW 1 1 2 8 3 6 6 2 5 2 6 9 4

M 1 6 5 M am m alia R a ttu s  fu sc ip e s NSW 1 1 2 8 3 1 6 1 5 4 6 1 4 4

M 1 7 2 M am m alia R a ttu s  fu sc ip e s NSW 1 1 2 8 3 1 6 4 4 5 2 6 7 4

M I5 1 9 M am m a lia R a ttu s  fu sc ip e s NSW 1 1 2 8 3 6 6 2 5 2 6 7 4

M I5 6 5 M am m a lia R a ttu s  fu sc ip e s NSW 1 1 2 8 3 1 6 2 5 2 6 7 4

M I5 7 7 M am m a lia R a ttu s  fu sc ip e s NSW 1 1 2 8 3 1 6 1 6 1 3 7 4

M I581 M am m a lia R a ttu s  fu sc ip e s NSW 1 1 2 8 3 6 5 2 8 2 6 7 4

M I7 8 9 M am m a lia R a ttu s  fu sc ip e s NSW 1 1 2 8 3 6 6 2 5 2 6 7 1
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Table 1. Continued.
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M 1 2 9 M am m alia B u rra m ys  p a rv u s NSW 1 1 2 8 3 1 6 2 5 4 6 9 4

M 1 5 3 M am m alia M asta co m ys  fu scu s NSW 1 1 2 8 3 6 6 2 5 2 6 1 2 4

M I4 1 4 M am m alia D asyu rus  v ive rr in u s TAS 1 1 2 8 3 6 6 2 1 0 2 6 8 4

M I4 7 2 M am m alia D a syu ru s  v ive rr in u s TAS 1 1 2 8 3 6 6 2 5 1 5 7 4

M I4 9 0
M I4 9 4

M am m alia M a sta co m ys  fu scu s NSW 1 1 2 8 3 6 6 2 1 0 2 6 8 4

M I5 7 4 M am m alia M a s ta co m ys  fu scu s NSW 1 1 2 8 3 6 6 2 5 2 6 7 4

M I5 9 0 M am m alia M a sta co m ys  fu scu s NSW 1 1 2 8 3 6 6 2 7 2 6 7 4

M 2 7 5 M am m alia A n te c h in u s  s tu a r t i i NSW 1 1 2 8 3 6 6 4 4 5 2 6 1 2 4

M 2 7 6 M am m alia A n te c h in u s  s tu a r t i i NSW 1 1 2 6 3 6 6 2 5 2 6 1 2 4

M 3 0 6 M am m alia A n te c h in u s  s tu a r t i i NSW 1 1 2 8 3 1 6 2 5 5 6 7 4

M I7 8 2 M am m alia A n te c h in u s  s tu a r t i i NSW 1 1 2 8 3 4 6 2 5 6 6 6 4

M I7 8 5 M am m alia A n te c h in u s  s tu a r t i i NSW 1 1 2 8 3 1 6 2 5 1 5 7 4

M I1 3 0 M am m alia N yc to p h ilu s  g e o ff ro y i SA 1 1 2 8 3 6 6 2 5 2 6 7 4

M I1 47 M am m alia A n te c h in u s  fla v ip e s SA 1 1 2 8 3 1 6 1 6 3 5 6 4

M I4 4 2 M am m alia S m in th o p s is  m a c ro u ra SA 1 1 2 8 3 4 6 2 6 3 6 7 4

M I4 5 5 M am m alia T achyg lossus  a cu le a tu s SA 1 1 2 6 3 6 6 2 5 4 6 1 2 4

M I5 2 4 M am m alia A n te c h in u s  sw a in so n ii NSW 1 1 2 8 3 6 6 2 5 2 6 7 4

M I6 4 0 M am m alia A n te c h in u s  sw a in so n ii VIC 1 1 2 6 3 6 6 2 7 3 6 7 4

M I6 4 2 M am m alia P se u d o m ys  s h o r tr id g ii VIC 1 1 2 8 3 1 5 2 5 1 3 6 4

M I6 4 5 M am m alia N yc to p h ilu s  g e o ff ro y i NSW 1 1 2 8 3 6 6 2 5 2 6 6 4

M I7 7 7 M am m alia P se u d o m ys  fu m e u s NSW 1 1 2 8 3 6 6 2 5 2 6 7 4

M I7 7 9 M am m alia A n te c h in u s  sw a in so n ii NSW 1 1 2 8 3 1 6 1 5 2 5 7 4

R 0 1 2 R e p tilia E u la m p ru s  h e a tw o le i NSW 1 1 2 8 3 6 6 1 1 0 2 5 1 1 4

R 0 1 5 R ep tilia E u la m p ru s  h e a tw o le i NSW 1 1 2 8 3 6 6 1 5 4 5 1 4 4

R021 R ep tilia E u la m p ru s  h e a tw o le i NSW 1 1 2 8 3 6 6 2 5 2 5 9 4

R 0 4 4 R e p tilia E u la m p ru s  h e a tw o le i NSW 1 1 2 8 3 1 6 1 5 2 5 1 1 4

R 0 5 5 R e p tilia E u la m p ru s  h e a tw o le i NSW 1 1 2 8 3 6 6 1 5 2 5 1 1 4

R 0 6 7 R e p tilia E u la m p ru s  h e a tw o le i NSW 1 1 2 8 3 1 6 2 4 2 5 1 2 4

R 022 R ep tilia D ip lo d a c ty lu s  b y rn e i NSW 1 1 2 8 3 6 6 2 8 4 5 4 4

R 0 2 3 R ep tilia T iliqua  rugosa SA 1 1 2 8 3 3 6 1 5 2 5 1 1 4

R 0 2 7 R ep tilia T iliqua  rugosa SA 1 1 2 8 3 1 8 8 5 2 3 1 1 4

R 0 8 9 R e p tilia T iliqua  rugosa SA 1 1 2 8 3 1 6 1 5 4 5 1 1 4

R 114
R 1 2 4

R ep tilia N ive o sc in cu s

m ic ro le p id o tu s

TAS 1 1 2 6 3 6 6 1 5 2 5 4 4

R 1 2 6 R ep tilia N ive o sc in cu s  m e tta lic u m TAS 1 1 2 8 3 6 6 1 5 2 5 1 4 4

R 1 7 8 R ep tilia E u la m p ru s  ty m p a n u m NSW 1 1 2 8 3 1 6 1 5 4 3 1 1 4

R 1 8 0 R e p tilia E u la m p ru s  ty m p a n u m NSW 1 1 2 8 3 6 6 2 5 2 5 1 1 4

R 2 6 9 R e p tilia E u la m p ru s  ty m p a n u m NSW 1 1 2 8 3 4 6 2 5 4 5 4 4

R 202 R ep tilia E gern ia  saxa tilis NSW 1 1 2 8 3 1 6 2 5 2 5 1 2 4

R 2 0 4 R e p tilia E gern ia  saxa tilis NSW 1 1 2 8 3 6 6 2 5 2 5 1 2 4

R 2 1 1 R ep tilia E gern ia  saxa tilis NSW 1 1 2 8 3 1 6 2 5 2 5 1 1 4

R 2 8 5 R e p tilia P seudem o ia

e n tre c a s te a u x ii

W A 1 1 2 8 3 1 6 1 5 6 3 1 1 4

R 3 7 3 R ep tilia P seudech is  p o rp h y r ia c u s NSW 1 1 2 8 3 6 6 2 8 6 5 4 4
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Table 1. Continued.
Strain
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R384 Reptilia Rhinoplocephalus
nigrescens

NSW 1 1 2 8 3 6 6 4 5 3 5 1 2 4

R394 Reptilia Rhinoplocephalus
nigrescens

NSW 1 1 2 8 3 3 6 2 5 3 5 1 1 4

B255 Aves Gymnorhina tib icen NSW 2 1 2 8 3 4 4 6 6 8 3 3 4
F11 8 
F120 
F127

Actinopterygii Leiopotheropon un ico lo r SA 2 1 2 8 4 4 4 6 6 3 5 4 4

F1 21 Actinopterygii Leiopotheropon un ico lor SA 2 1 2 8 3 4 4 6 6 6 5 4 4
F135 
F152

Actinopterygii Nematalosa erebi SA 2 1 2 8 4 4 4 6 6 6 5 8 4

F171 Actinopterygii Macquaria ambigua SA 2 1 2 8 3 4 4 6 6 6 5 8 4
F292
F383
F404
F184
F385

Actinopterygii Macquaria ambigua SA 2 1 2 8 3 4 4 6 6 6 5 4 4

F258 Actinopterygii Macquaria ambigua SA 2 1 2 8 4 4 4 6 6 6 5 8 4
F231 Actinopterygii Bidyanus welchi SA 2 3 2 8 3 4 4 6 6 3 5 4 4
F286 Actinopterygii Macquaria ambigua SA 2 1 2 8 3 2 7 7 6 6 5 4 4
F298
F300
F348
F364
F296 
F314

Actinopterygii Macquaria ambigua SA 2 1 2 8 3 2 7 7 6 6 5 8 4

F311 Actinopterygii Macquaria ambigua SA 2 1 2 8 3 4 4 6 6 8 5 8 4
F321 Actinopterygii Macquaria ambigua SA 2 1 2 9 3 4 4 6 1 0 6 5 4 4
F397 Actinopterygii Macquaria ambigua SA 2 2 8 3 4 4 6 6 6 5 5 4
L01 3 Amphibia Litoria m oorie WA 2 1 2 8 4 4 4 6 6 4 6 2 4
H698 Mammalia Homo sapiens NSW 2 1 2 8 3 4 4 6 5 6 5 4 4
M132 Mammalia Burram ys parvus NSW 2 1 2 8 3 4 4 6 6 6 6 3 4
MI163 Mammalia Phascogale tapoa ta fa WA 2 1 2 7 3 4 4 6 1 0 6 5 6 4
MI164 Mammalia Dasyurus g e o ffro ii WA 2 1 2 8 3 4 4 6 6 6 5 6 4
MI177 Mammalia Notom ys fuscus OLD 2 1 2 8 4 4 3 5 6 3 5 6 4
MI230 Mammalia A ntechinus bellus NT 2 1 2 8 3 4 4 6 6 6 5 4 4
MI231
MI259
MI261

Mammalia Dasyurus ha llucatus NT 2 1 2 8 3 4 4 6 6 6 5 6 4

MI387 Mammalia Dasyurus ha llucatus NT 2 1 2 8 3 4 4 6 5 5 6 2 4
MI389 Mammalia Dasyurus ha llucatus NT 2 1 2 8 3 4 4 6 5 5 6 3 4
MI240 Mammalia A ntechinus s tu a rt ii NSW 2 1 2 8 4 4 3 5 6 3 5 6 4
MI242 Mammalia A ntechinus s tu a rt ii NSW 2 1 2 8 3 4 4 6 6 6 5 6 4
MI293 Mammalia R attus ra ttus NSW 2 1 2 8 7 4 4 6 6 3 6 4 4
MI310 Mammalia Rattus fuscipes NSW 2 1 2 8 2 1 7 6 6 6 5 3 4
MI319 Mammalia Rattus fuscipes NSW 2 1 2 8 7 4 4 6 6 3 5 4 4
MI332 Mammalia Dasyurus viverrinus TAS 2 1 2 8 3 4 4 6 6 6 5 3 4
MI355 Mammalia A ntechinus flavipes SA 2 1 2 8 3 4 4 6 6 6 5 6 4
MI398 Mammalia Dasyurus viverrinus TAS 2 1 2 8 3 4 4 6 6 8 5 4 4
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Table 1. Continued.
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M I4 0 0 M am m alia D a syu ru s  v ive rrin u s TAS 2 1 2 8 3 4 4 6 6 3 3 4 4
M I4 0 8
M I4 6 3 M am m a lia D asyu rus  v ive rr in u s TAS 2 1 2 8 3 1 6 6 6 6 5 4 4
M I4 6 4

M I4 6 8 M am m a lia D asyu rus  v ive rrin u s TAS 2 1 2 8 3 4 4 6 6 6 6 6 4

M I4 7 0 M am m a lia D asyu rus  v ive rrin u s TAS 2 1 2 8 3 4 4 6 6 6 5 4 4

M I4 5 4 M am m a lia T achyg lossus  a cu le a tu s SA 2 1 2 8 3 1 6 6 6 6 6 6 4

M I4 7 6 M am m a lia O rn ith o rh yn ch u s  a n a tin u s TAS 2 1 2 8 3 4 4 6 6 6 5 1 4

M I6 9 0 M am m a lia H om o sap iens W A 2 1 2 8 3 4 4 6 6 8 5 4 4
M I6 9 2

M I6 9 5 M am m a lia L a s io rh in u s  la t if ro n s SA 2 1 2 8 4 4 4 6 6 6 5 6 4

M I761 M am m a lia T rich o su ru s  can inus NSW 2 1 2 8 3 4 4 6 6 3 3 4 4

M I7 6 3 M am m a lia L a g o rch e s te s  h irs u tu s NT 2 1 2 8 3 4 4 6 6 3 3 4 4

M I7 6 5 M am m a lia P o to ro u s  tr id a c ty lu s NSW 2 1 2 8 4 4 3 5 6 2 5 6 4

R 0 0 8 R e p tilia E u lam prus  h e a tw o le i NSW 2 1 2 6 3 4 4 6 6 4 5 4 4
R 0 6 9  
R01 8 R e p tilia E u lam prus  h e a tw o le i NSW 2 1 2 6 3 4 4 6 3 4 5 4 4

R 0 4 2 R e p tilia E u lam prus  h e a tw o le i NSW 2 1 2 8 3 4 4 6 6 4 5 4 4
R 0 4 8
R 0 5 3
R 0 5 4
R 0 5 7

R 061
R 1 1 7 R e p tilia N ive o sc in cu s TAS 2 1 2 8 3 4 3 5 6 6 5 1 1 4

R 1 1 9 R e p tilia
m ic ro le p id o tu s

N ive o sc in cu s TAS 2 1 2 8 3 4 4 6 9 7 5 1 1 4

R 1 2 2 R e p tilia
m ic ro le p id o tu s

N ive o sc in cu s TAS 2 1 2 8 4 4 4 6 6 6 5 11 4

R 1 3 0 R e p tilia
m ic ro le p id o tu s  
T iliqua  rugosa SA 2 1 2 8 3 4 4 6 6 4 5 2 4

R 161 R e p tilia P seudem o ia NSW 2 1 2 8 3 4 4 6 6 6 5 1 1 4

R 1 7 5 R e p tilia
e n tre c a s te a u x ii 

R h inocepha lus  b ic o lo u r W A 2 1 2 8 4 4 4 6 6 3 5 1 1 4

R 1 8 4 R e p tilia E u lam prus  ty m p a n u m NSW 2 1 2 8 3 4 4 6 6 4 3 2 4

R 2 2 7 R e p tilia L e ris ta  d is tin g u e n d a W A 2 1 2 8 3 5 3 5 9 4 3 1 1 4

R 231 R e p tilia R a m p h o typ h lo p s  sp. W A 2 1 3 8 4 4 4 6 6 6 3 1 1 4

R 2 3 5 R e p tilia R a m p h o typ h lo p s  a u s tra lis W A 2 1 2 8 3 1 7 7 6 6 3 1 3 4

R 2 5 2 R e p tilia E chops is  c u r ta W A 2 1 2 8 3 4 3 5 9 6 3 1 1 4

R 2 5 7 R e p tilia P arasu ta  g o u ld ii W A 2 1 2 8 3 4 4 6 8 6 3 1 1 4
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Statistical analysis
Distance matrices were constructed by determining the number of loci at which two strains 

differed for all pairwise strain combinations. Phenograms were constructed from the 

distance matrices using the UPGMA.

Mean genome diversity of all strains (H) was estimated as H = £h/m, where m is the 

number of loci and h, = (l-Zp,2)[n/n-l], where p, is the frequency of allele i at locus j, and n 

is the number of isolates. Mean genome diversity based only on electrophoretic types (HET) 

was also calculated (Maynard Smith et al. 1993). Haplotype diversity (G) was estimated as 

G = (l-Zg,2)[n/n-l], where g, is the frequency of the z'th electrophoretic type for n isolates.

Linkage disequilibrium was estimated using the index developed by Brown et al. (Brown et 

al 1980). The average number of loci at which two isolates differ is K = Xfy, where there 

are n(n-l)/2 such pairs. If the alleles of different loci are independent of each other, the 

expected variance of K is Ve = Xh/l-h7). If the observed variance of K (VG) is equal to Ve, 

then this indicates the absence of linkage disequilibrium, and V/Ve will equal 1. To test if 

V(,/Ve is significantly different from one, a randomisation approach was taken. Samples 

were generated by randomly selecting alleles at a locus, without replacement, and this 

procedure was repeated for each locus to eliminate any linkage disequilibrium (Souza et al 

1992). The observed value of V0/Ve was compared with 1000 randomly generated samples 

in order to determine the probability with which the observed V0/Ve could have arisen by 

chance (Souza et al 1992).

AMOVA was used to assess the extent to which host taxonomic group or climate zone 

explained the observed genetic and biochemical variation (Peakall and Smouse 2001). 

Phenograms were used to visualise the genetic similarity among strains from different
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populations (i.e. host taxonomic class). Phenograms were constructed using the pairwise 

population differentiation estimates produced by the AMOVA analyses.

Results

Genetic structure of Hafnia alvei
The phenogram constructed from MLEE analysis of the 161 isolates and three reference 

strains showed that H. alvei consists of two major groups (70 representative strains shown 

in Figure 1), which were assigned to genetic group 1 (n = 83, including ATCC 13337 and 

ATCC 29926) and 2 (n = 81, including ATCC 29927). Allelic assignments for all 161 

strains are listed in Table 1. Genetic group accounted for 43 % (AMOVA: P < 0.001) of 

the observed genetic variation in the 161 isolates. In genetic group 1, 73 electrophoretic 

types out of 81 isolates were identified, whereas 46 electrophoretic types were identified 

out of 80 group 2 isolates (Table 2). Haplotype diversities of the two genetic clusters were 

0.991 for genetic group 1 and 0.903 for group 2 (Table 2).

Table 2. Genetic diversity estimates of Hafnia alvei, n, number of isolates; H, mean 
genome diversity based on all isolates; HEX, mean genome diversity based on 
electrophoretic types; G, haplotype diversity; V0/Ve, multilocus linkage disequilibrium 
estimate; P > V0/Ve, probability of alleles being randomly associated; V/Ve ETs, multilocus 
linkage disequilibrium estimate based on electrophoretic types; P > V(/V e ETs, probability 
of a random association of alleles based on electrophoretic types._______________

Group n H Het G V o /V e P> Vo /V e Vo/Ve ETs P>Vo/Ve ETs

all 161 0 . 4 4 2 0 . 4 5 4 0 . 9 8 2 2 . 1 4 8 < 0 .0 0 1 1 . 7 9 8 < 0 . 0 0 1
1 81 0 . 3 4 8 0 . 3 5 8 0 . 9 9 1 1 . 0 8 2 0 . 1 4 1 . 0 2 9 0 .3 1
2 8 0 0 . 2 9 2 0 . 3 3 8 0 . 9 0 3 1 . 4 8 6 < 0 .0 0 1 1 .2 7 1 < 0 . 0 0 1
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Figure 1. Genetic relationship of Hafiiia alvei isolates based on MLEE. Thirty five 

isolates were randomly chosen from each of the two genetic clusters. ATCC13337T, 

ATCC29926, and ATCC29927 are also included. The phenogram was created using the 

unweighted pair group method with arethmetic mean (UPGMA). The genetic distance is 

expressed as the proportion of loci at which two isolates differ.
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There was a trend for isolates from group 1 to show greater genetic diversity compared to 

group 2 isolates. The average number of alleles and range of allelic diversity for individual 

loci in genetic group 1 were 4.4 and 0 - 0.87, respectively, whereas those for group 2 were 

4.2 and 0 - 0.75, respectively, with nine out of 12 loci having higher allelic diversity in 

group 1 (Table 3).

Table 3. Allelic diversity estimates of the 12 loci for Hafiiia alvei. AK, adenylate kinase; 
G6PDH, glucose-6-dehydrogenase; IDH, isocitrate dehydrogenase; MDH, malate 
dehydrogenase; ME, malic enzyme; MR, menadione reductase; PGD, 6-phosphogluconate 
dehydrogenase; PGI, phosphoglucose isomerase; PGM, phosphoglucomutase; SDH, 
shikimic acid dehydrogenase; SOD, superoxide dismutase.________________________

locus all strains 1 2

No. of alleles h, No. of al leles h; No. of alleles h,
AK 4 0 .0 3 7 3 0 .0 4 9 2 0 .0 2 5

G6PDH 2 0 .0 1 2 1 0.000 2 0 .0 2 5

IDH 4 0 .1 3 0 2 0 .1 3 9 4 0 .1 2 1

MDH 4 0 .1 9 3 1 0.000 4 0 .3 5 3
IVE 8 0 .6 9 3 7 0 .6 1 8 4 0 .2 9 1
MR-1 8 0 .6 1 7 6 0 .1 6 6 4 0 .3 8 4

MR-2 7 0 .7 1 1 4 0 .5 3 0 3 0 .3 0 8
PGD 8 0 .6 3 5 6 0 .4 4 3 6 0 .2 3 4
PQ 8 0 .7 8 0 6 0 .6 7 4 7 0 .6 3 4

PGM 4 0 .5 7 2 4 0 .5 7 8 3 0 .3 7 8
SDH 1 4 0 .8 6 8 1 0 0 .8 7 2 9 0 .7 4 5

SCO 3 0 .0 6 0 3 0 .1 1 9 1 0.000

The genetic groups also significantly differed in linkage disequilibrium estimates (V /V J  

(Table 2). Group 1 had a V /V e that was not significantly different from one (1.038, P > 

0.3), suggesting the random association of alleles. On the other hand, the V0/V e of group 2 

was 1.563, indicating a significant level of linkage disequilibrium (Table 2). Estimates 

based only on the electrophoretic types showed a similar pattern (Table 2).
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Biochemical profile of H. alvei
There was significant variation in the biochemical and physiological profile of the isolates 

between the two genetic groups (AMOVA, 0PT = 0.29, P < 0.01). The frequency of 11 of 

34 biochemical and physiological characteristics differed significantly between the two 

groups (Table 4). The largest difference in the proportion positive for a biochemical trait 

was for the utilisation of malonate; 97.5 % of the isolates were positive in genetic group 1 

whereas only 22.5 % of isolates were positive in group 2. Acid production from 

fermentation of glucose (methyl red test) was also different between the two genetic 

groups, with 100 % positive for group 1 strains as opposed to 29 % positive for group 2 

strains.

The variation in biochemical profiles between these two genetic clusters of H. alvei was 

sufficiently great that the profiles could be used to assign an isolate to one of the two 

genetic clusters. Assignment tests implemented by Cornuet et al. (1999) 

www.ensam.inra.fr/URLB/geneclass/geneclass.html] using the procedure whereby the 

isolate to be assigned was not included in the data set revealed that 95 % of the isolates 

were correctly assigned to their genetic group based on the biochemical profile variation 

alone. An independent sample consisting of 31 isolates from birds, reptiles and mammals 

were assigned to genetic groups 1 or 2 based only on their biochemical profiles. These 

isolates were then characterised using MLEE. MLEE analysis revealed that 95 % of the 

isolates had been correctly assigned.

http://www.ensam.inra.fr/URLB/geneclass/geneclass.html
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Table 4. Biochemical profile of the two genetic clusters of Hafnia alvei. Numbers 
indicate the percentage of strains showing a positive reaction for each substrate. Bold 
indicates characteristics that were significantly different between genetic groups 1 and 2. 
NS, non-significantly different between the two genetic clusters in their biochemical 
profile.________________________________________________________________

S ubstra te  or te s t all Group 1 Group 2 P > x 2
Arabinose 9 4 . 4 9 0 .1 9 8 . 8 0 .0 1
Mannose 9 9 .4 1 0 0 .0 9 8 .8 NS

Sucrose 0 .0 0 .0 0 .0 NS

Melibiose 1 6 .2 9 .9 2 2 . 5 0 . 0 3

Rhamnose 7 8 . 9 6 0 . 5 9 7 . 5 0 .0 1
Sorb ito l 1 .2 0 .0 2 .5 NS

Mannito l 9 9 .4 1 0 0 .0 9 8 .8 NS

A d on ito l 0 .0 0 .0 0 .0 NS

Galactose 9 9 .4 1 0 0 .0 9 8 .8 NS

Inositol 0 .0 0 .0 0 .0 NS

p-n -p -phosphate 8.1 3 . 7 1 2 . 5 0 . 0 4
p-n-p -a -ß -g lucos ide 2 4 .2 2 1 .0 2 7 .5 NS
p-n-p-ß -ga lactos ide 7 0 .2 5 3 .1 8 7 . 5 0 .0 1
pro l ine -p -n it roan i l ide 1 0 0 .0 1 0 0 .0 1 0 0 .0 NS
p -n -p -b is -phospha te 9 9 .4 1 0 0 .0 9 8 .8 NS

p-n-p -xy los ide 0 .0 0 .0 0 .0 NS
p-n -p -a -a rab inos ide 1 0 .6 11.1 1 0 .0 NS

p-n -p -phosphory lco l ine 3.1 2 .5 3 .8 NS
p-n -p -ß -g lucuron ide 0 .6 0 .0 1 .3 NS

p-n-p -N -acety l-g lucosam in ide 8 0 .1 6 3 . 0 9 7 . 5 0 .0 1
y-L -g lu tam y l-p -n it roan i l ide 9 5 .7 9 3 .8 9 7 .5 NS

Esculin 9 .9 1 9 . 8 0 .0 0 .0 1
p-n itro -DL-pheny la lan ine 0 .6 1 .2 0 .0 NS

Urea 7 4 .5 7 2 .8 7 6 .3 NS

Glycine 5 .6 8 .6 2 .5 NS

C it ra te 7 0 .2 5 9 .3 8 1 .3 0 .0 3

M alonate 6 0 . 3 9 7 . 5 2 2 . 5 0 .0 1
T etrazo lium 6 6 .5 7 4 .1 5 8 . 8 0 . 0 4

Arginine 7 8 .3 6 7 . 9 8 8 . 8 0 .0 1
Lysine 1 0 0 .0 1 0 0 .0 1 0 0 .0 NS

Methyl red t e s t 6 4 . 6 1 0 0 . 0 2 8 . 8 0 .0 1
Motili ty 4 7 .2 3 3 . 3 6 1 . 3 0 .0 1
Indole 1 .9 3 .7 0 . 0 0 . 0 5

V oges-P roskauer te s t 9 0 . 7 8 1 . 5 1 0 0 . 0 0 .0 1
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Correlation between distance matrices of the genetic and biochemical profiles was assessed 

using a Mantel test (Peakall and Smouse 2001). Distance matrices derived using all 

isolates revealed that the genetic and biochemical results were significantly correlated (r = 

0.265, P < 0.01). However, there was no correlation between the genetic profile and 

biochemical characteristics of strains within a genetic group (group 1: r = 0.06, P > 0.1; 

group 2: r = 0.08, P > 0.1).

Ecological factors
Isolates from the two genetic clusters were non-randomly distributed with respect to the 

taxonomic class of the host. Strains from freshwater fish were predominantly in genetic 

group 2 (83 %, n = 29). Strains from birds, frogs, invertebrates and water isolates were 

most often members of genetic group 1 (89 %, n = 18). Isolates from reptiles (n = 44) and 

mammals (n = 70) were equally likely to be members of either group 1 or 2. For strains 

isolated from mammals, 90 % of genetic group 1 strains were from animals that weighed 

less than 200 g, whereas genetic group 2 strains were isolated from animals of any body 

weight (Figure 2). No body size effect could be detected in reptiles. Most reptilian species 

in this study weighed less than 200 g and there were insufficient samples from large 

reptiles.

Within each genetic cluster, taxonomic class of the host explained a significant amount of 

the genetic variation. Analysis of molecular variance (AMOVA) revealed that host 

taxonomic class explained 21 % (P < 0.01) and 12 % (P < 0.01) of the variation in genetic 

groups 1 and 2, respectively. The relationships among strains from different host 

taxonomic classes are depicted using a phenogram (Figure 3) constructed with the pairwise 

population differentiation estimates derived from AMOVA analyses (Table 5).
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Figure 2. Body mass of mammalian host species from which Hafnia alvei genetic 
clusters A and B strains were isolated. Solid circles and error bars depict the mean 
and 95 % confidence intervals (genetic group 1, n = 37; group 2, n = 33).
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------  Group 2 Fish

j ------  Group 2 Reptile

Group 2 Mammal

j ------  Group 1 Fish

____  Group 1 Mammal

--------  Group 1 Reptile

Figure 3. Genetic relationship of Hafiiia alvei strains isolated from the three major host 
taxonomic classes. The phenogram was constructed using the pairwise differentiation 
estimates derived from the MLEE data (Table 5).

Table 5. Pairwise differentiation estimates (Analysis of Molecular Variance) for the 
genetic profile of Hafnia alvei isolated from hosts of different taxonomic classes. The 
values above the diagonal are for genetic group 1 strains and those below for group 2 
strains.

Fish M a m m a l R e p t i l e

F ish - 0 . 1 3 9 * 0 . 1 7 4

M a m m a l 0 . 1 0 9 - 0 . 2 1 5

R e p t i l e 0 . 1 6 5 0 . 0 9 6 -

* all non-0 estimates are significant, P < 0.01.
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Among group 1 strains those from fish and mammals are most alike, whilst strains from 

reptiles are the most divergent. For group 2 strains, those from mammals and reptiles are 

similar, whilst fish are the most divergent.

Taxonomic class of the host also accounted for a significant amount of the variation in the 

biochemical properties within both genetic groups (20 % for group 1, AMOVA: P < 0.01; 

24 % for group 2, AMOVA: P < 0.01). Biochemical profile data revealed a similar 

relationship among isolates from the three taxonomic classes for genetic group 2 strains as 

was observed for the genetic data (Figure 4, Table 6). However, for genetic group 1, 

isolates from mammals had very divergent biochemical profiles compared to those from 

fish and reptiles.

After accounting for host taxonomic class, neither state nor climate zone were found to 

explain any of the observed genetic or biochemical variation.
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Group 2 Fish

Group 2 Reptile 

Group 2 Mammal 

Group 1 Fish 

Group 1 Reptile 

Group 1 Mammal

Figure 4. Biochemical relationship of Hafnia alvei strains isolated from the three major 
host taxonomic classes. The phenogram was constructed using the pairwise differentiation 
estimates derived from the biochemical profile data (Table 6).

Table 6. Pairwise differentiation estimates (Analysis of Molecular Variance) for the 
biochemical profile of Hafnia alvei isolated from hosts of different taxonomic classes. The 
values above the diagonal are for genetic group 1 strains and those below for group 2 
strains.

Fish Mammal Reptile

Fish - 0 .2 8 1 * 0 .0
Mammal 0 .2 3 2 - 0 .2 2 4

Reptile 0 .261 0 .2 2 9 -

* all non-0 estimates are significant, P < 0.01.



Chapter 2: Genetic and ecological structure of Australian H. alvei 30

Discussion
According to DNA hybridisation criteria, genetic groups 1 and 2 have the potential of being 

regarded as two species. This conclusion is based on the observation that there was only 51 

-  55 % DNA annealing between strains of the two clusters (Steigerwalt et al. 1976). By 

convention, for two strains to be regarded as the same species 70 % annealing should be 

achieved at 60 °C (Johnson 1986; Wayne et al 1987). Salmonella enterica is an example 

of a species that was once divided into over 50 species by serotyping (Kaufmann 1966). 

However, DNA hybridisation and a later MLEE study revealed that these serovar groups 

should be considered as subspecies within a single species (Beltran et al. 1988; Crosa et al. 

1973). Another example of genetic clustering within a species is Escherichia coli, which 

consists of four well-recognised genetic clusters (Herzer et al. 1990). Variation among 

these clusters explains 36 % of the electrophoretic variation observed in the E. coli 

reference collection [AMOVA result using MLEE data from Ochman (1984)], which is 

comparable to the 43 % for //. alvei observed in this study. While DNA hybridisation 

results suggest that the H. alvei clusters are more distinct than are the subgroups of S. 

enterica, the extent of MLEE differentiation is no greater than that observed in E. coli.

Currently there is no defined criterion that must be met to designate a bacterial species, but 

a polyphasic approach investigating both phenotypic and genotypic properties seems to be 

most reliable in terms of bacterial taxonomy (Lan and Reeves 2001; Vandamme et al. 

1996). There have been several species concepts of eukaryotes that have been applied to 

bacteria including the ecological species concept (Cohan 2001; Vanvalen 1976), and 

biological species concept (Dykhuizen and Green 1991; Mayr 1982). The ecological 

species concept assumes that each bacterial species occupies a unique ecological niche. As 

a consequence, a beneficial mutation arising within a species will result in a periodic 

selection event in that species, but not in other closely related species (Cohan 1994). If a
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bacterial species is defined by the ability of a ‘population’ to be able to maintain itself and 

not be subjected to periodic selection events by other genetically closely related 

populations, then the ‘population’ would be eligible for species status. The non-random 

distribution of strains from the two clusters among different host groups and their different 

biochemical (i.e. phenotypic) characteristics suggest that strains from the two clusters 

occupy different ecological niches.

The biological species concept for bacteria assumes that a species boundary is defined by 

the presence of lateral gene transfer (Dykhuizen and Green 1991). Lateral gene transfer is 

known to be a function of sequence divergence, whereby the frequency of recombination 

decreases exponentially with increasing DNA sequence divergence (Roberts and Cohan 

1993; Vulic et al. 1997). As a consequence, a bacterial ceil will incorporate genes that are 

from a donor of the same species more frequently than from a donor of a different species. 

For E. coli, there is extensive evidence of recombination in the housekeeping genes trp, 

gnd, phoA (Bisercic et al. 1991; Dykhuizen and Green 1991; Nelson and Selander 1994). 

Because of lateral gene transfer, E. coli maintains its species integrity, although specific 

adaptive traits that seem to transfer among strains within the genetic clusters of E. coli will 

tend to keep these clusters distinct. Further genetic analysis such as multilocus sequence 

typing (MLST) (Maiden et al. 1998) will provide information on the difference in lateral 

gene exchange and mutation rates among- and within- clusters of H. alvei. Genome 

subtraction studies (Pradel et al. 2002) will also provide information on cluster-specific 

genes that maybe responsible for the diversification within the genus Hafiiia.

In summary, this study has confirmed the existence of two genetic clusters of H. alvei. The 

two clusters differed in their host distribution, degree of genetic diversity and biochemical 

characteristics. Within each genetic cluster the taxonomic class of the host, but not
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geography, explained a significant amount of both genetic and biochemical variation. 

Similarly, the results indicate that the strains within a cluster are adapted to different host 

environments. Further work is needed to determine the nature of the traits responsible for 

this adaptation.
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Chapter 3

The frequency and diversity of bacteriocins in Hafnia alvei

Introduction
Bacteria have a wide range of defence mechanisms. Antimicrobial agents such as 

microcins and antibiotics kill or suppress the growth of other microorganisms so that 

the producing cell can gain a competitive advantage in the environment where it finds 

itself. Bacteriocins are a class of antimicrobial compounds produced by almost all 

known bacterial species. They have a typical phenotypic characteristic in that their 

toxicity range is very narrow and is mostly restricted to within-species (Reeves 1972; 

Riley et al. 2003). The most well studied of bacteriocins are colicins produced by 

Escherichia coli. Colicins are proteins encoded on plasmids (Pugsley 1987). The gene 

cluster typically consists of the colicin, immunity, and lysis gene (Pugsley 1984). The 

immunity gene codes for a protein that binds specifically to the colicin that is being 

produced in the cell and inactivates the colicin in order to protect the cell. Upon stress, 

a small fraction of the cells in a population will produce and then release colicin by 

lysing (Mulec et al. 2003).

There is ample evidence for colicins playing an important role in intra-species 

population dynamics. First, there is a high frequency of colicin production in a given 

population; on average 30 % of strains produce one or more colicins (Pugsley 1984; 

Riley and Gordon 1996). Second, the diversity of colicins is considerable. Over 20 

types of colicin gene clusters have been characterised from various E. coli populations 

(Pugsley 1984; Pugsley 1987; Riley et al. 2000). Third, resistance of E. coli to colicins 

is strikingly high. Most E. coli in the natural environment are resistant to most co

occurring colicins (Feldgarden and Riley 1998; Riley and Gordon 1992). In addition, 

there is theoretical and experimental evidence to support the ecological significance in 

the levels of colicin production in natural populations of E. coli (Czaran et al. 2002;
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Frank 1994; Gordon et al. 1998; Kerr et al. 2002; Kirkup and Riley 2004; Riley and 

Gordon 1996, 1999). However, we do not know if the conceptual framework developed 

for colicins is a paradigm for the other numerous bacteriocins found in nature. There is 

growing interest in using bacteriocins as alternatives for antibiotics and food 

preservatives. Further knowledge of other bacteriocin systems is required to establish 

safe guidelines for exploiting these antimicrobial compounds (Cleveland et al. 2001; 

Kuipers et al. 2000; Riley and Wertz 2002).

Hafiiia alvei is a member of the Enterobacteriaceae. H. alvei is known to produce 

bacteriocins, however there is limited information on any other aspect of these 

bacteriocins (Reeves 1972; Wertz and Riley 2004). H. alvei is reported frequently as a 

food contaminant in dairy, fish and meat products, and the effective use of bacteriocins 

produced by this species may decrease contamination levels of H. alvei in food 

(Gonzalez-Rodreguez et al. 2001; Lindberg et al. 1998; Tomadijo et al. 2001). The 

purpose of this study was to investigate the frequency and diversity of bacteriocin 

production and resistance in H. alvei and to contrast the results to those found for 

colicin production in E. coli.

Material and Methods 

Strains
One hundred and eighty eight H. alvei strains were isolated from faecal swabs taken 

from a variety of vertebrate hosts as well as from water column samples. Techniques 

used to isolate the strains are described by Gordon and FitzGibbon (1999). Biochemical 

and multilocus enzyme electrophoresis profiles of the isolates used in this study are 

presented by Okada and Gordon (2003).
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Detection of bacteriocin production
All 188 H. alvei strains were assayed for bacteriocin production using the method 

described by Gordon et al. (1998). A 1 ml aliquot of an overnight Luria Bertani (LB) 

culture of a H. alvei strain was transferred to 9 ml of fresh LB broth and incubated at 37 

°C with shaking for 30 minutes. Subsequently, mitomycin C was added to the culture to 

produce a final concentration of 0.1 fig ml'1. The culture was incubated for a further 4 

hours, and chloroform was added to lyse bacterial cells, from which 1.5 ml of culture 

was removed and centrifuged at 14260 g for 5 minutes. The supernatant was then 

transferred to a microfuge tube containing 50 /xl chloroform, vortexed vigorously and 

centrifuged (14260 g, 2 minutes). The crude bacteriocin extract was stored at 4 °C for 

up to a week until use. Bacterial lawns were prepared by overlaying a LB agar plate 

with 3 ml of LB soft agar containing 100 /xl of an overnight culture of the indicator 

strain. Crude bacteriocin extracts were spotted onto the bacterial lawn, dried and 

incubated overnight at 37 °C, after which killing was detected by a clear zone on the 

lawn where the extract was applied. The degree of killing was scored on a five-point 

scale between 0 and 4, 0 representing no killing, and 4 corresponding to a completely 

clear zone with no bacterial growth. Most extracts were checked for bacteriocin activity 

against indicator strains that came from the same host group, i.e. all extracts of H. alvei 

isolated from mammals were tested against all mammalian isolates. This procedure was 

repeated at least twice for all strains that had crude extracts with an antibacterial effect 

to confirm the presence of a substance that inhibits growth of lawn strains.

To test whether the killing of the crude extract was due to bacteriocin or bacteriophage 

activity, subsamples of the crude extracts were digested with trypsin overnight at 37 °C 

or stored at - 70 °C overnight. Trypsin digests most bacteriocins and -  70 °C kills most 

bacteriophage. These treatments had no effect on some extracts, and these extracts were 

then passed through a Microcon 100 000 Da microconcentrator (Amicon). This 

procedure eliminates most bacteriophage from the extract, and therefore if the filtered



Chapter 3: The frequency and diversity of bacteriocins in H. alvei 41

extract produces a clear zone on a sensitive lawn the activity is bacteriocinogenic 

(Gordon et al. 1998).

Bacteriocin typing and resistance profile
The efficacy of all bacteriocin-producing strains was assessed by spotting crude extracts 

from all producer strains onto different lawns, each containing one of the bacteriocin- 

producing strains. Identical bacteriocin genotypes have the following two physiological 

properties: (1) similar killing patterns when tested against a set of lawn strains, and (2) 

do not kill strains that produce the same bacteriocin type due to the presence of the 

immunity gene. A killing matrix was then organised to group bacteriocins that had 

similar killing patterns.

Resistance against each bacteriocin was calculated as the proportion of the 38 lawns that 

were not killed by a particular bacteriocin.

Results

Bacteriocin production in Hafnia alvei
Of the 188 H. alvei strains, 38 produced bacteriocin. H. alvei has been shown to consist 

of two genetic groups, which are arbitrarily designated as genetic groups 1 and 2 (Janda 

et al. 2002; Okada and Gordon 2003). Isolates belonging to genetic group 2 had a 

significantly higher fraction of bacteriocin production than those of group 1 (Table 1, 

nominal logistic regression, X 2(l) = 39.1, p < 0.01). Isolates from reptiles had the highest 

percentage of bacteriocin production, whilst isolates from fish, despite the fact that the 

majority belonged to genetic group 2, had the lowest frequency of production (Table 1, 

nominal logistic regression, %2(3) = 22.6, p < 0.01).
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Table 1. Percentage of bacteriocin production in Hafiiia alvei. Numbers in brackets 
indicate the number of strains in each host by genetic group.________

H ost Group G enetic  Group
1 2

Overall 4 .5  (8 8 ) 3 4  ( 1 0 0 )
Fish 0 .0  (5 ) 4 .0  (2 4 )
Reptiles 0 .0  (2 7 ) 6 4 .0  (2 8 )
M ammals 5.1 (3 9 ) 2 9 .0  (4 2 )
Birds 1 4 .0  (7 ) 5 0 .0  (6 )
O th e rs 1 0 .0  (1 0 ) -

Bacteriocin typing in H. alvei
Patterns of the killing scores resulting from testing the 38 bacteriocins against lawns of 

the 38 bacteriocin-producing strains revealed that the bacteriocins cluster into three 

major groups based on the combination of lawn strains that a particular bacteriocin 

would kill (Figure 1). The bacteriocin group that killed the majority of lawns consisted 

of genetic group 2 strains isolated from reptiles (Figure 1, phenotypes 1 to 7). This 

group of bacteriocins was further split into at least seven different bacteriocin types, as 

there were bacteriocins that killed other bacteriocinogenic lawns within the cluster. The 

next cluster of bacteriocins consisted of genetic group 2 strains isolated from mammals 

and birds. With the exception of the two strains isolated from birds (Figure 1, 

phenotype 8), all other bacteriocins were likely to be of a single type (Figure 1, 

phenotype 9). This result is supported by the fact that five of the bacteriocin plasmids 

from this cluster have been sequenced and shown to be genetically identical (Wertz and 

Riley, 2004). There were four unique bacteriocin producers that were isolated from fish 

(Figure 1, phenotype 10) and mammals (Figure 1, phenotypes 11, 12, 13). We could 

not further characterise the remainder of bacteriocins as they killed only a minority of 

the lawns they were tested against (Figure 1, phenotype 14). This analysis suggests 

that, in total, there are a least 14 different types of bacteriocins being produced in this

collection of strains.
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Figure 1. The killing matrix of Hafiiia alvei bacteriocins. Killing intensity is in the 

scale of 1 (+) to 4 (++++). Cells with empty scores denote absence of killing.
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Resistance profile of H. alvei to bacteriocin
The proportion of the 38 strains that were resistant to the 38 bacteriocins ranged from 

5.5 % to 100 % (Figure 2). On average 61 % of the strains were resistant to a particular 

bacteriocin. A significantly greater fraction of strains (88 %) were resistant to the 

bacteriocins produced by genetic group 1 isolates compared to the fraction (58 %) of 

strains resistant to the bacteriocins produced by genetic group 2 strains (Wilcoxon test, 

X2(1)=  4.3, p<  0.05).

20 40 60 80
Percentage of bacteriocins resisted by a strain

100

Figure 2. Resistance of Hafnia alvei strains to the bacteriocins produced by H. alvei. 

The X axis represents the fraction (%) of the 46 bacteriocin producing strains that the 

bacteriocin extracts failed to kill.
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Discussion
The aim of this study was to observe phenotypic variation in bacteriocin production of 

H. alvei and assess its ecological significance in terms of the intra-specific competition 

theory by comparing the data to what is known from studies looking at colicin biology 

and dynamics.

The frequency of colicin production in different E. coli populations ranges between 16 

and 60 %, with an overall average of 30 % (Gordon et al. 1998; Pugsley 1984; Riley 

and Gordon 1992). The frequency of bacteriocin production in H. alvei found in this 

study (20 %) is comparable to that found for colicin production.

This study found at least 14 different bacteriocin phenotypes in H. alvei. While the 

total number of colicin types described exceeds 20, the number of different colicin types 

found in a given E. coli population is far less, ranging between three and nine (Riley 

and Gordon 1996). Most of these studies have only examined isolates from a single 

host species (usually from humans), whilst this study included isolates from four 

different vertebrate groups. Therefore it appears that the diversity of bacteriocins in H. 

alvei is comparable to that found for colicins in E. coli.

The high resistance of H. alvei to its bacteriocins is very similar to observations of 

colicin resistance in different populations of E. coli (Feldgarden and Riley 1998; 

Gordon et al. 1998). The higher level of resistance to bacteriocins produced by genetic 

group 1 isolates compared to those of genetic group 2 isolates may be due to the 

different titres of bacteriocin being produced by each strain in these groups. Gordon et 

al. (1998) found that titre explained a significant amount of the variation in resistance of

E. coli to colicin.
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The prevalence, diversity and resistance patterns of the bacteriocins in this study were 

all influenced to an extent by the genetic background of the strains and the host from 

which they were recovered. The ecological significance of these patterns is unknown. 

Growth rate studies have shown that there is a fitness cost associated with colicin 

production (Chao and Levin 1981). Theoretical (Frank 1994; Kerr et al. 2002) and 

empirical (Chao and Levin 1981) studies have shown that colicin-producing cells have a 

competitive advantage over colicin-sensitive cells in structured, nutrient-rich 

environments, whilst sensitive cells are favoured in unstructured, nutrient-poor habitats. 

These outcomes indicate that the frequency of bacteriocin production in a community of 

strains should vary depending on the nature of the environment. However, the exact 

environmental factors that contribute to the seven-fold difference in bacteriocin 

production between genetic group 2 H. alvei isolates from reptiles and fish are 

unknown.

In summary, the prevalence of bacteriocinogeny in H. alvei, the diversity of bacteriocins 

produced, and the levels of resistance to these bacteriocins are similar to the patterns 

found for colicins in E. coli. These results support the idea that our understanding of 

the evolution and ecology of colicins will serve as a paradigm for the phenomenon of 

bacteriocinogeny in the Enterobacteriaceae. However, more empirical and theoretical 

work is required in order to understand the reasons for the frequency of bacteriocin 

production depending on the type of hosts from which the strains originate. Further 

work is also required to determine the molecular mechanisms responsible for the 

different bacteriocin types and resistance patterns found in H. alvei strains of the two 

genetic groups.



Chapter 3: The frequency and diversity of bacteriocins in H. alvei 48

References
Chao L, Levin BR (1981) Structured habitats and the evolution of anticompetitor 

toxins in bacteria. Proceedings of the National Academy of Sciences of the 

United States of America 78:6324-6328.

Cleveland J, Montville TJ, Nes IF, Chikindas ML (2001) Bacteriocins: safe, natural 

antimicrobials for food preservation. International Journal of Food 

Microbiology 71:1 -20.

Czaran TL, Hoekstra RF, Pagie L (2002) Chemical warfare between microbes 

promotes biodiversity. Proceedings of the National Academy of Sciences of the 

United States of America 99:786-790.

Feldgarden M, Riley MA (1998) High levels of colicin resistance in Escherichia coli. 

Evolution 52:1270-1276.

Frank SA (1994) Spatial polymorphism of bacteriocins and other allelopathic traits. 

Evolutionary Ecology 8:369-386.

Gonzalez-Rodriguez MN, Sanz JJ, Santos JA, Otero A, Garcia-Lopez ML (2001) 

Bacteriological quality of aquacultured freshwater fish portions in prepackaged 

trays stored at 3 degrees C. Journal of Food Protection 64:1399-1404.

Gordon DM, FitzGibbon F (1999) The distribution of enteric bacteria from Australian 

mammals: host and geographical effects. Microbiology 145:2663-2671.

Gordon DM, Riley MA, Pinou T (1998) Temporal changes in the frequency of 

colicinogeny in Escherichia coli from house mice. Microbiology-UK 

144:2233-2240.

Janda JM, Abbott SL, Khashe S, Probert W (2002) Phenotypic and genotypic 

properties of the genus Hafiiia. Journal of Medical Microbiology 51:575-580.

Kerr B, Riley MA, Feldman MW, Bohannan BJM (2002) Local dispersal promotes 

biodiversity in a real-life game of rock-paper-scissors. Nature 418:171-174.

Kirkup BC, Riley MA (2004) Antibiotic-mediated antagonism leads to a bacterial 

game of rock-paper-scissors in vivo. Nature 428:412-414.



Chapter 3: The frequency and diversity of bacteriocins in H. alvei 49

Kuipers OP, Buist G, Kok J (2000) Current strategies for improving food bacteria. 

Research in Microbiology 151:815-822.

Lindberg AM, Ljungh A, Ahrne S, Lofdahl S, Molin G (1998) Enterobacteriaceae 

found in high numbers in fish, minced meat and pasteurised milk or cream and 

the presence of toxin encoding genes. International Journal of Food 

Microbiology 39:11-17.

Mulec J, Podlesek Z, Mrak P, Kopitar A, Ihan A, Zgur-Bertok D (2003) A cka-gfp 

transcriptional fusion reveals that the colicin K activity gene is induced in only 3 

percent of the population. Journal of Bacteriology 185:654-659.

Okada S, Gordon DM (2003) Genetic and ecological structure of Hafnia alvei in 

Australia. Systematic and Applied Microbiology 26:585-594.

Pugsley AP (1984) The ins and outs of colicins .1. Production, and translocation across 

membranes. Microbiological Sciences 1:168-175.

Pugsley AP (1987) Nucleotide sequencing of the structural gene for colicin N reveals 

homology between the catalytic, C-terminal domains of colicin A and colicin N. 

Molecular Microbiology 1:317-325.

Reeves P (1972) The Bacteriocins. Springer-Verlag, New York.

Riley MA, Cadavid L, Collett MS, Neely MN, Adams MD, Phillips CM, Neel JV, 

Friedman D (2000) The newly characterized colicin Y provides evidence of 

positive selection in pore-former colicin diversification. Microbiology-UK 

146:1671-1677.

Riley MA, Goldstone CM, Wertz JE, Gordon DM (2003) A phylogenetic approach to 

assessing the targets of microbial warfare. Journal of Evolutionary Biology 

16:690-697.

Riley MA, Gordon DM (1992) A survey of col plasmids in natural isolates of 

Escherichia coli and an investigation into the stability of col plasmid lineages. 

Journal of General Microbiology 138:1345-1352.



Chapter 3: The frequency and diversity of bacteriocins in H. alvei 50

Riley MA, Gordon DM (1996) The ecology and evolution of bacteriocins. Journal of 

Industrial Microbiology 17:151-158.

Riley MA, Gordon DM (1999) The ecological role of bacteriocins in bacterial 

competition. Trends in Microbiology 7:129-133.

Riley MA, Wertz JE (2002) Bacteriocins: Evolution, ecology, and application. 

Annual Review of Microbiology 56:117-137.

Tomadijo ME, Garcia MC, Fresno JM, Carballo J (2001) Study of Enterobacteriaceae 

during the manufacture and ripening of San Simon cheese. Food Microbiology 

18:499-509.

Wertz JE, Riley MA (2004) Chimeric nature of two plasmids of Hafiiia alvei encoding 

the bacteriocins alveicins A and B. Journal of Bacteriology 186:1598-1605.



Chapter 4: Growth rate variation in the genus Hafiiia 51

Chapter 4

Adaptive nature of the growth rate variation in the genus 
Hafnia

Introduction
The growth characteristics of a bacterial population is a property of fundamental 

adaptive significance. The doubling time can vary among species from as little as 10 

minutes to more than several days (Madigan 1997). In addition to the among-species 

variation, population growth rates will vary with temperature, nutrient levels and types, 

pH, water availability and oxygen concentration.

The gastrointestinal tract is a dynamic environment where intra-and inter-specific 

competition will occur among established populations as well as with cells attempting 

to invade the habitat. Cells of microbial population are lost from the gut at a constant 

rate due to cell death or with the passage of digested food material. In order to maintain 

a viable population, the population growth rate must be sufficient to counteract these 

losses. Gut transit time, nutrient levels and food types will differ substantially 

depending on the host species in which the bacteria finds itself. Faunivores have 

shorter guts with a lower intestinal surface to body weight ratio compared to herbivores, 

which need a longer gut with more surface area to digest plant material (Stevens and 

Hume 1995). Food retention times will be substantially longer for animals that 

consume plants as opposed to those that eat animal material (Stevens and Hume 1995). 

Among animals with similar diet, those with a small body size have shorter food 

retention times compared to larger animals (Karasov et al. 1986). Reptiles have lower 

metabolic rates than mammals, and their food retention time can be ten times longer 

(Karasov et al. 1986). Fish have varying food retention times and retention times are 

known to be temperature dependent (Stevens and Hume 1995). For freshwater fish in 

particular, herbivorous species seem to have shorter food retention times compared to
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carnivorous fish (Stevens and Hume 1995). Therefore one would expect the growth 

characteristics of a commensal bacterial species inhabiting the gut would vary with the 

gastrointestinal environment of the host.

Laboratory experiments demonstrate that enteric bacteria adapt and maximise their 

growth rate in response to the environment. Escherichia coli strains maintained in 

minimal glucose media at 37 °C for 20,000 generations increased their maximum 

growth rate at 37 °C compared to the ancestral strain (Cooper et al. 2001). An increase 

in maximum growth rate at 45 °C compared to the ancestral strain was also observed in 

Pseudomonas pseudoalcaligenes maintained at 45 °C for 10 months (Shi and Xia 2003).

The growth characteristics of E. coli strains isolated from different environments have 

been found to vary. Commensal E. coli isolated from humans had higher growth rates 

at temperatures > 26 °C compared to those isolated from a septic tank. On the other 

hand, the septic tank strains grew better at lower temperatures compared to the human 

strains (Gordon et al. 2002). A shift in optimal temperature for growth in different E. 

coli populations has also been detected. The optimal temperature for growth of E. coli 

isolated from turtles was 2 °C lower compared to E. coli isolated from a herbivorous 

mammal (Bronikowski et al. 2001).

Hafnia alvei (Enterobacteriaceae) is a gut commensal distantly related to E. coli 

(Brenner 1981). It is a species of some concern to public health as it occasionally 

causes nosocomial infections (Gunthard and Pennekamp 1996; Ramos and Damaso 

2000), and is frequently found as a contaminant of fish, dairy and meat products 

(Gamage et al. 1998; Gaya et al. 1987; Gonzalez-Rodriguez et al. 2001; Morales et al. 

2003). H. alvei can be isolated from a variety of vertebrate species and is most 

prevalent in ectotherms (Okada and Gordon 2003). This species is known to consist of 

two genetic groups with distinct biochemical characteristics (Brenner 1981; Janda et al.
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2002; Okada and Gordon 2003Ridell et al. 1995; Steigerwalt et al. 1976). A previous 

study characterising the thermal niche of H. alvei showed that the two genetic groups 

have significantly different thermal niches (Okada and Gordon 2001).

This study examined the growth rate-temperature relations of 90 H. alvei isolates from 

fish, reptiles and mammals. The aims were two-fold; to detect any differences in the 

growth characteristics between the two genetic groups of H. alvei, and to determine if 

aspects of host taxonomy and/or the biochemical traits of the individual H. alvei strains 

explained any of the variation in their growth characteristics.

Material and Methods 

Bacterial strains
Ninety strains of H. alvei were used in this study: 14 from fish, 46 from mammals, and 

30 from reptiles. Isolation and biochemical identification procedures are described in 

Gordon and Fitzgibbon (1999). AH strains were genotyped by allozyme variation and 

assigned to one of the two previously described genetic groups (Okada and Gordon 

2003). Three temporary freezer cultures were prepared for each strain set by culturing 

the strains overnight in Luria Bertani broth. One ml of overnight culture was mixed 

with 30 [x\ of glycerol and stored at -70 °C until required.

Growth characteristics
The growth characteristics of the 90 H. alvei strains were determined as follows, there 

were three replicates of each strain and each strain/replicate combination was assigned 

at random to the wells of three 96 well microtitre plates. An inoculum of the 

appropriate freezer cultures were grown overnight at 30 °C in a microtitre plate 

containing minimal glucose medium (per 1L; K2HP04, 7 g; KH2P04, 2 g; (NH4)2S04, 1 

g; Na citrate, 0.5 g; Glucose, 0.5 g; 10 % MgSO4/0.2 % VBi, 1 ml). Twenty five /xl of
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the overnight cultures were transferred to 225 /xl of fresh minimal glucose medium to 

produce a starting density of about 5 x l0 6 cells m l1, and incubated at 5, 10, 14, 18, 22, 

25, 28, 31, 33, 35, 37, 39, or 41 °C. The optical density (OD) at 640 nm was taken in 

regular intervals (30 minutes for 5 and 10 °C, 20 minutes for 14 °C, 10 minutes for 18 

°C, and 5 minutes for remaining temperatures) using a Powerwave X Microplate 

Scanning Spectrophotometer (Bio-tek Instruments, Inc.) until the cultures reached 

stationary phase. The plates were shaken for one minute prior to every reading.

Calculation of the growth rate parameters
To determine the growth rate of a strain at a given temperature, the average rate of 

change in the OD versus time curve was calculated as the range of points over which 

the OD reading was increasing. A non-linear model (cpTh 1 = (B - C x T) x DT) was then 

fitted to the growth rates calculated at each temperature, where cpTh 1 is the maximum 

growth rate at a temperature, and B, C, and D are the parameters determining the shape 

of the curve. From this model the following four variables were estimated for each 

strain:

1) Lethal temperature, the temperature at which the growth rate is zero, 

calculated by B/C

2) Maximum growth rate, calculated by C/ln(D)*exp[{B*ln(D)/C} - 1]

3) Optimal temperature, defined as the temperature at which the maximum 

growth rate occurs, calculated by B/C - l/ln(D)

4) The inflection temperature, defined as the temperature where the growth rate 

stops increasing with increasing temperature, calculated by B/C - 2/ln(D).

Analysis of variance was used to assess if any of the variation in the three model 

parameters and four derived variables were explained by the genetic group of the 

strains, host taxonomy, and biochemical properties of the strains. To determine if the 

biochemical characteristics of the strains explained any of the variation in the growth
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rate-temperature relationship a stepwise regression analysis approach was taken (Miller, 

2002) after adjusting for the variation due to genetic groups.

Results

Effect of genetic group

The genetic group of the strains explained a significant amount of the variation for the 

three model parameters and four derived variables (Table 1). Genetic group 1 strains 

had significantly lower values for all parameters and variables. The resulting growth 

curves showed that group 1 strains, on average, had a lower maximum growth rate 

compared to group 2 strains and that their optimal temperature for growth and their 

lethal temperature were 1 °C lower compared to genetic group 2 strains (Figure 1).

Table 1. Parameter values and calculated growth variables of Hafiiia alvei strains by 
genetic group.___________________________________________________

Genetic group 
1 2

P > F

No. of strains 46 44
B 0.019 0.017 < 0.01
C 0.000 0.000 < 0.01
D 1.137 1.141 < 0.05
Maximum growth rate 0.206 0.218 < 0.05
Optimal temperature 31.052 32.096 < 0.01
Lethal temperature 38.851 39.716 < 0.01
Inflection temperature 23.253 24.476 < 0.01

Effect of host taxonomy

Nested analysis of variance was conducted to detect the effect of host taxonomic rank 

on the growth rate - temperature relations of the strains. After accounting for genetic 

group, there was a significant effect of host taxonomic class on the maximum growth 

rate (genetic group, F(U) = 6.01, P < 0.02; host class within genetic group, F(44) = 3.86, P 

< 0.01). The two genetic groups were then assessed separately for the effects of host
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Figure 1. Growth curves of Hafnia alvei strains by genetic group. Dashed line, group 
1; solid line, group 2.
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taxonomic class. Host class explained a significant amount of the variation in the 

maximum growth rate for genetic group 2 strains, but not for those of group 1 (Table 2).

Table 2. Parameter values and calculated growth variables of Hafiiia alvei strains by 
genetic group and host taxonomic class. F values for analysis of variance for the effect 
of host taxonomic class on the variables and significance is also shown. Max GR, 
maximum growth rate; Opt T, optimal temperature; Lethal T, lethal temperature; Inf T, 
inflection temperature._____________________________________________________

G enetic  group Host c la ss N B C D Max GR Opt T Lethal T Inf T

1 Fish 5 0 . 0 2 1 2 0 . 0 0 0 5 1 .1 3 3 1 0 .21 3 0 . 9 9 3 9 . 0 0 2 2 . 9 7

Mammal 2 4 0 . 0 1 8 6 0 . 0 0 0 5 1 . 1 3 8 2 0 .21 3 1 . 0 6 3 8 . 8 2 2 3 .3 1

Reptile 17 0 . 0 1 8 8 0 . 0 0 0 5 1 .1 3 7 1 0 . 2 0 3 1 . 0 6 3 8 . 8 6 2 3 . 2 6

F (2 ,4 3 ) 2 . 5 8 2 .71 0 .9 1 0 . 1 4 0 . 0 4 0 . 1 6 0 . 3 8

P > F 0 . 0 9 0 . 0 8 0 .4 1 0 . 8 7 0 . 9 6 0 . 8 6 0 . 6 9

2 Fish 9 0 . 0 1 7 5 0 . 0 0 0 4 1 . 1 3 9 0 0 . 2 2 3 1 . 9 2 3 9 . 6 2 2 4 .2 1

Mammal 2 2 0 . 0 1 7 0 0 . 0 0 0 4 1 . 1 4 2 2 0 . 2 3 3 2 . 2 3 3 9 . 7 8 2 4 . 6 8

Reptile 13 0 . 0 1 5 8 0 . 0 0 0 4 1 . 1 3 9 3 0 . 2 0 3 1 . 9 9 3 9 . 6 7 2 4 .3 1

F (2 ,4 1 ) 1 .4 9 1 .8 8 0 . 7 0 7 . 0 8 0 . 7 7 0 .1 1 1.91

P > F 0 . 2 4 0 . 1 7 0 . 5 0 0 .0 1 0 . 4 7 0 . 9 0 0 . 1 6

In genetic group 2, strains from reptiles had a lower maximum growth rate than those 

from fish and mammals (Figure 2, Table 2). After accounting for host taxonomic class 

and order, family had a significant effect on the variation in the optimal and inflection 

temperatures for group 2 strains (optimal temperature: class, FM  = 1.69, P > 0.2, order 

within class, F(U) = 1.30, P > 0.2, family within order, F(U) = 12.27, P < 0.01; inflection 

temperature: class, F(22) = 3.24, P > 0.05, order within class, F(1>1) = 0.77, P > 0.3, family 

within order, F(U) = 10.72, P < 0.01). Strains from the teleost family Terapontidae (n = 

5) had optimal and inflection temperatures that were 1 °C higher than those from the 

teleost family Percichthyidae (n = 3), which had the lowest optimal and inflection

temperatures.
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Temperature, ‘C

Figure 2. Growth curves of Hafiiia alvei strains by host taxonomic class. A, genetic 
group 1; B, genetic group 2. Solid line, fish isolates; dashed lines, mammalian isolates; 
unevenly dashed lines, reptilian strains.
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Effect of biochemical characteristics
A stepwise regression approach was taken to determine if any of the variation in the 

phenotypic profiles of the strains was responsible for the observed variation in the 

growth parameters. After accounting for genetic group and host taxonomic class, the 

ability of a strain to utilise melibiose as a carbon source, the ability to reduce 

tetrazolium, and the production of acetoin during aerobic glucose fermentation 

(assessed by the Voges-Proskauer Test) were found to explain a significant amount of 

the variation in some of the parameters and derived variables. Strains that were able to 

utilise melibiose had lower lethal temperatures, optimal and inflection temperatures and 

maximum growth rates in both genetic groups (Figure 3, Table 3).

Table 3. Multiple regression analysis. Effects of genetic group, melibiose utilisation, 
tetrazolium reduction and acetoin production on the three growth variables are 
presented as F values. TTC, tetrazolium._______________________

DF F P > F
Lethal temperature
Genetic group 
Melibiose utilisation 
TTC reduction

Maximum growth rate

1
1
1

31.54
8.16
8.39

o
 q

 q
 

o
d

d
V

 
V

 
V

Genetic group 1 7.55 < 0.01
Melibiose utilisation 1 33.9 < 0.01
Acetoin production 1 4.98 < 0.03

Inflection temperature
Genetic group 1 79.87 < 0.01
Melibiose utilisation 1 23.18 < 0.01
Acetoin production 1 4.73 < 0.04

Strains that produced acetoin during fermentation of glucose had increased maximum 

growth rates and inflection temperature in both genetic groups (Table 3). Strains 

capable of reducing tetrazolium were more tolerant to high temperatures than those that 

could not (Table 3).



G
ro

w
th

 r

Chapter 4: Growth rate variation in the genus Hafiiia 60

Temperature, ’C

Figure 3. Growth curves of Hafiiia alvei strains by genetic group (group 1 and 2) and 
their ability to utilise melibiose as a carbon source. Grey line, group 2 melibiose- 
negative strains; solid line, group 1 melibiose-negative strains; thin-dashed line, group 2 
melibiose-positive strains; thick-dashed line, group 1 melibiose-positive strains.
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Discussion

Adaptation of H. alvei group 2 strains to its host but not in group 1
Enteric bacteria (represented by Escherichia coli) cycle between two environments, the

gastrointestinal tract of the host and environments external to the host such as soil, 

water and sediment (Savageau 1983). The two environments differ markedly in their 

biotic and abiotic characteristics such as the microbial community structure, nutrient 

availability and physical conditions. There is empirical evidence to suggest that the two 

environments harbour populations with different genetic backgrounds within a species, 

in other words there is ecological structure (Cohan 1994). For example, Whittam 

(1989) found that the E. coli population in the gastrointestinal tract of domestic birds 

were genetically distinct to ones found in their litter, water and soil in the shed. Gordon 

et al. (2002) found the E. coli population in a septic tank to be genetically different from 

those isolated from faeces of the humans that had produced the inputs into the septic 

tank. The lack of evidence for adaptation of genetic group 1 strains to their host in terms 

of growth characteristics is also correlated with lack of host effects on their genetic 

structure (based on multilocus sequence typing of six housekeeping genes; Okada, 

chapter 6). These results suggest that the host digestive tract may not be the primary 

habitat for group 1 strains. Rather, group 1 strains may prefer the external environment 

of the host as their main habitat.

The difference between the two genetic groups in their optimal temperature is also 

highly correlated with the results from our previous study investigating the thermal 

niche of six enteric bacterial species including H. alvei (Okada and Gordon 2001). Five 

genetic group 1 strains and nine genetic group 2 strains were subjected to serial dilution 

culturing for up to five days in minimal glucose medium for five days at temperatures 

between 7 and 42 °C, and the change in population density was monitored daily during 

the culturing period. Group 1 strains on average had an upper thermal niche limit for
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growth that was 1 °C lower than that of group 2 strains. This is in agreement with the 1 

°C downshift in the optimal temperature of group 1 strains compared to those of group 

2. However, Okada and Gordon (2001) also detected a difference in the lower thermal 

niche limits between the two genetic groups of H. alvei. The population growth rate of 

group 1 strains was zero at temperatures below 16 °C, whereas the population growth 

rate of group 2 strains only stopped at temperatures below 11 °C. In this study we could 

not detect differences in the growth characteristics at the lower temperatures between 

the two genetic groups of H. alvei that would explain the difference that was observed 

in serial dilution culturing (Okada and Gordon 2001). During the five-day serial 

dilution culturing, the population growth rate over time is a function of the growth rate, 

cell death, and loss of cells due to daily dilution. The growth rate of the two genetic 

groups of H. alvei may initially be similar for lower temperature ranges (as was found 

in this study), but then group 2 strains may gradually decrease their growth rate over the 

course of five days of culturing in temperatures lower than 16 °C. On the other hand, 

group 1 strains may be capable of maintaining their maximum growth rate for five days 

in temperatures higher than 11 °C.

Correlation of some growth parameters to biochemical characteristics
It is not surprising to see certain characteristics of cellular metabolism correlating with

the characteristics of reproductive physiology in bacteria. As mentioned in the 

introduction, growth characteristics can be influenced by factors such as temperature, 

amount of available nutrients and chemical toxicity.

In E. coli, melibiose utilisation is known to be temperature dependent; the melibiose 

transporter is activated at 30 °C but not at 37°C (Prestidge and Pardee 1965). The 

activation of the melibiose transporter at lower temperatures is controlled at the genetic 

level, by genes upstream of the transporter gene (Tamai et al. 1998). In H. alvei there 

may be a subtle but significant metabolic shift for more efficient sugar catabolism of
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slightly lower temperatures for strains that can utilise melibiose, which may result in a 

lower optimal temperature for growth. The reasons for the decrease in maximum 

growth rate of strains that can utilise melibiose are unknown.

The increase in the maximum growth rate of H. alvei strains that produced acetoin may 

be due to their ability to degrade acetate into acetoin and hence escape the toxic effect 

of acetate. E. coli strains can not reduce acetate, and its intracellular accumulation 

results in a decreased growth rate (Luli and Strohl 1990). E. coli strains that produce 

less acetate had higher growth rates compared to strains that produced acetate in higher 

concentrations (Luli and Strohl 1990). Genetic engineering of E. coli with the Bacillus 

subtilis acetolactate synthase gene (the enzyme responsible for acetate reduction into 

acetoin) resulted in a higher cell yield under controlled pH conditions compared to the 

strain that was not genetically modified (Aristidou et al. 1995). H. alvei that produce 

acetoin (indicated by the positive response of the Voges - Proskauer test) may reduce 

acetate accumulation, which in turn will increase the growth rate relative to a strain not 

capable of reducing acetate.

The mechanism by which the ability to reduce tetrazolium leads to increased high 

temperature tolerance is unclear. This observed correlation between metabolistic and 

growth characteristics indicates that differences in the biochemical profiles between the 

two genetic groups of H. alvei has a significant effect on their rate of cell division.

Future directions
It would be of interest to further investigate the adaptive nature of the growth rate 

variation in the genetic group 1 strains of H. alvei. Variation in growth characteristics 

of bacteria is known to be influenced primarily by the efficiency of nutrient uptake and 

metabolism. Investigation of the glucose and melibiose utilisation cascade may reveal 

some of the molecular pathways and genes responsible for such adaptation.
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Investigating the phenomenon of the 'viable but not culturable' state induction and 

resuscitation may shed further light on the preferred habitat of these two groups of 

Hafiiia.
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Chapter 5

Genetic and phenotypic characterisation of the genus Hafnia 
and proposal of Hafnia tempus sp. nov.

Introduction
Hafnia alvei (Moeller 1954) is a commensal bacterial species that inhabits the 

gastrointestinal tract of vertebrates (Brenner 1984; Okada and Gordon 2003). It is 

frequently found as a contaminant of fish, dairy and meat products (Bruhn 2004; 

Lindberg et al 1998), and is indicated as a cause of meat spoilage (Bruhn 2004; Dainty 

1986; Kang et al. 2002). This species is also of veterinary significance. It is reported to 

cause haemorrhagic septicaemia in laying hens (Real et al. 1997) and trout species 

(Acosta et al. 2002; Gelev et al. 1990), and liver infections in commercial pullets 

(Proietti et al. 2004). In humans it is an opportunistic pathogen causing nosocomial and 

community-acquired extraintestinal infections (Gunthard and Pennekamp 1996; Ramos 

and Damaso 2000).

H. alvei is distantly related to Escherichia coli (relative DNA binding ratio of 20 % at 

60 °C) (Steigerwalt et al. 1976), and several phylogenetic studies of the family 

Enterobacteriaceae suggest that its closest relatives is Serratia (Dauga 2002; Hedegaard 

1999; Wertz et al. 2003). A DNA hybridisation study using four isolates of H. alvei 

found two genetically distinct groups (Steigerwalt et al. 1976). Since then random 

amplified polymorphic DNA-PCR (Ridell et al. 1995), partial 16S rDNA sequencing 

(Janda et al. 2002), and multilocus enzyme electrophoresis (Okada and Gordon 2003) 

have confirmed the existence of two genetic groups in this species. These two groups 

also have distinct biochemical and physiological properties (Brenner 1984; Janda et al. 

2002; Okada and Gordon 2001; Okada and Gordon 2003).
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The partitioning of strains of a bacterial species into largely distinct genetic subgroups 

is common among species of the family Enterobacteriaceae. E. coli and Salmonella are 

classic examples of species consisting of genetically distinct subgroups (Beltran et al. 

1988; Kotetishvili et al. 2002; Ochman et al. 1983; Pupo et al. 1997; Whittam et al. 

1983). How then does one distinguish sub-specific from species structure? In order to 

do so there needs to be a species concept for bacteria. Several eukaryotic species 

concepts have been embraced by prokaryotic taxonomists, including the ecological 

species concept, biological species concept, cohesion species concept, and evolutionary 

species concept (Cohan 2001). Among them, the biological species definition as 

applied to bacteria identifies a species as a cluster of strains that exchange genetic 

information among them (Dykhuizen and Green 1991). If there are multiple sequence 

clusters within a defined species (such as in E. coli and Salmonella), those clusters must 

share genetic information among them to be classified as one species. The genes of 

interest in the biological species concept refer to housekeeping genes that code for 

enzymes responsible for basic metabolic functions. They are assumed to be neutral in 

fitness and are not subjected to positive selection (Urwin and Maiden 2003). The 

multiple groups of E. coli are indeed one species because alleles of housekeeping genes 

are shared among groups (Wirth, unpublished results; website: http:/Avww.web.mpiib- 

berlin.mpg.de). It is not known if the two genetic groups of Hafnia share any alleles at 

the genetic level. In order to identify the presence (or lack) of allele sharing between 

the two genetic groups of H. alvei, a nucleotide sequence-based comparison of six 

housekeeping genes (multilocus sequence typing, MLST) (Maiden et al. 1998) was 

conducted. Here we present evidence for lack of genetic recombination between the 

two groups, and propose a new species, H. tempus sp. nov., based on the biological 

species concept.
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Material and methods 

Strain selection
Ninety six H. alvei strains, 48 strains each from the two electrophoretic groups in the 

strain set used by Okada and Gordon (2003) were chosen at random. Strain 

designation, genetic group designation based on MLEE (Okada and Gordon 2003), host 

of origin and geographic locality are provided in Table 1.

Gene selection
Portions of six housekeeping genes were selected for sequencing. Because the 

complete genome sequence for H. alvei was not available, the distribution of the genes 

over the chromosome was assumed to reflect the distribution observed in E. coli. The 

six genes chosen for this study were gapA, grid , groEL, gyrA,  gyrB and m/B. 

Information on the genes, primers, and PCR products are given in Table 2.

Sequencing procedure
Chromosomal DNA was extracted with DNAzol® (Molecular Research Center, Inc., 

Cincinatti, Ohio) from 50 /xl of an overnight culture grown in Luria Bertani broth. The 

PCR reaction mix (40 /xl) contained 20 pmol each forward and reverse primers, 2 mM 

MgCh, 1.25 U Taq polymerase and 2 /xl DNA template in polymerisation buffer (67 

mM Tris-HCl (pH8.8), 16.6 mM (NH4)2S04, 0.45 % Triton X-100, 0.2 mg gelatin ml-1 

and 0.2 mM dNTPs; Fisher Biotec, Australia). PCR was carried out on a PC-960 

aircooled thermal cycler (Cobrett Research Inc., Australia). Because five of the six 

primers were designed for E. coli and not H. alvei, a temperature gradient protocol was 

created as follows: 94 °C for 4 minutes, 2 cycles of 94 °C for 30 seconds, 60 °C for 20 

seconds, 72 °C for 80 seconds, 2 cycles of 94 °C for 30 seconds, 55 °C for 20 seconds, 

72 °C for 80 seconds, 2 cycles of 94 °C for 30 seconds, 50 °C for 20 seconds, 72 °C for 

80 seconds, 2 cycles of 94 °C for 30 seconds, 45 °C for 20 seconds, 72 °C for 80
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seconds, 35 cycles of 94 °C for 30 seconds, 40 °C for 20 seconds, 72 °C for 80 seconds, 

and 72 °C for 4 minutes. PCR products were purified with either ammonium acetate for 

single band products, or with the Ultra Clean 15 DNA purification kit (Mo Bio 

Laboratories, Inc., USA) for multiple band products. Five to 20 ng of the purified PCR 

product was added to the sequencing reaction mix and sequencing was performed using 

BigDye Terminator chemistry (Applied Biosystems Inc.) on an ABI Prism 3100 

Genetic Analyzer (Applied Biosystems Inc.).

Phylogenetic analysis
Consensus sequences for each of the 6 genes were obtained by aligning forward and 

reverse sequences, editing ambiguous nucleotides, and trimming all 96 consensus 

sequences to the same length using Sequencher v3 (Gene Codes Corp.). Maximum 

likelihood trees of the six individual genes as well as the concatenated sequences were 

constructed using a heuristic search approach using PAUP v4 (Swofford 2003) Identical 

regions of the six genes for Escherichia coli K12 and Salmonella enterica subsp. 

enterica serovar Typhi Ty2 were used as out groups (Blattner et al. 1997; Deng et al. 

2003). Optimised values for the maximum likelihood parameters were calculated using 

MODELTEST v3.06 (Posada and Crandall 1998). Bootstrap analysis (maximum 

likelihood approach, 100 replications) was conducted for the six genes and the 

concatenated sequences. The biochemical profiles of the individual strains were 

mapped onto the maximum likelihood tree of the concatenated sequence using 

MacClade v4.05 (Maddison 2002).
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Table 1. The 96 isolates of Hafnia used in this study. Strain, strain identification; 
MLEE type, multilocus enzyme electrophoresis type. QLD, Queensland; NSW, New 
South Wales; TAS, Tasmania; SA, South Australia; WA, Western Australia; NT, 
Northern Territory.___________________________________________________

S tra in MLEE g ro u p F lost c lass H o s t sp ec ies H o s t lo c a lity

B 3 4 8 1 A ves A can th iza  katherina QLD

B 4 2 9 1 A ves Sericornis fron ta lis NSW

B 4 5 9 1 A ves Malurus cyaneus TA S

B 6 4 2 1 A ves Gymnorhina tib icen NSW

E 072 1 w a te r NSW

F I 38 1 A c tin o p te ry g ii Nem atalosa e reb i SA

F I 56 1 A c tin o p te ry g ii Nem atalosa e reb i SA

F I 69 1 A c t in o p te ry g ii Le iopo the ropon  un ico lo r SA

F I 8 2 1 A c t in o p te ry g ii Macquaria am bigua SA

F 1 8 7 1 A c t in o p te ry g ii Macquaria am bigua SA

I0 4 0 1 Insec ta n o t id e n tif ie d NSW

1128 1 Insec ta n o t id e n tif ie d NSW

L 0 0 9 1 A m p h ib ia L ito ria  adelaidensis W A

L 0 6 9 1 A m p h ib ia L ito ria  ew ing ii NSW

M 0 4 4 1 M am m alia A ntech inus flavipes NSW

M 051 1 M am m alia A ntech inus flavipes NSW

M 061 1 M am m alia Sm inthopsis m urina NSW

M 0 8 2 1 M am m alia R attus fuscipes NSW

M l 2 9 1 M am m alia Burram ys parvus NSW

M l 7 2 1 M am m alia R attus fuscipes NSW

M 3 0 6 1 M am m alia A ntech inus s tu a rt ii NSW

M I47 2 1 M am m alia Dasyurus viverrinus TA S

M I4 9 0 1 M am m alia M astacom ys fuscus NSW

M I52 4 1 M am m alia A ntech inus swainsonii NSW

M1581 1 M am m alia R attus fuscipes NSW

M I5 9 0 1 M am m alia M astacom ys fuscus NSW

M I77 7 1 M am m alia Pseudomys fum eus NSW

M I78 2 1 M am m alia A ntech inus s tu a rt ii NSW

M I78 5 1 M am m alia A ntech inus s tu a rt ii NSW

M I78 9 1 M am m alia R attus fuscipes NSW

R 0 1 2 1 R eptilia Eulamprus hea tw o le i NSW

R01 5 1 R eptilia Eulamprus hea tw o le i NSW

R021 1 R ep tilia Eulamprus hea tw o le i NSW

R 022 1 R ep tilia D ip lodacty lus byrne i NSW

R 023 1 R ep tilia Tiliqua rug os a SA

R 0 2 7 1 R eptilia Tiliqua rug os a SA

R 0 4 4 1 R eptilia Eulamprus hea tw o le i NSW

R 055 1 R eptilia Eulamprus hea tw o le i NSW

R 0 6 7 1 R eptilia Eulamprus hea tw o le i NSW

R 1 1 4 1 R eptilia Niveoscincus m icro lep ido tus TA S
R 1 2 4 1 R eptilia Niveoscincus m icro lep ido tus TA S

R 1 2 6 1 R eptilia N iveoscincus m e tta licum TA S
R 1 8 0 1 R eptilia Eulamprus tym panum NSW

R 202 1 R eptilia Egernia saxatilis NSW
R 2 1 1 1 R eptilia Egernia saxatilis NSW

R 285 1 R eptilia Pseudemoia en trecasteaux ii W A

R 373 1 R eptilia Pseudechis po rphyriacus NSW

R 3 9 4 1 R eptilia Rhinoplocephalus nigrescens NSW
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Table 1. Continued.
S tra in MLEE g ro u p H o st c lass H o s t sp ec ies H o s t lo c a lity

B 2 5 5 2 A ves Gym norhina tib icen NSW

F I 18 2 A c tin o p te ry g ii Le iopo the ropon  un ico lo r SA

FI 21 2 A c t in o p te ry g ii Le iopo the ropon  un ico lor SA

F I 52 2 A c t in o p te ry g ii N em atalosa erebi SA

F231 2 A c tin o p te ry g ii Bidyanus welchi SA

F 29 2 2 A c t in o p te ry g ii Macquaria am bigua SA

F 2 9 6 2 A c t in o p te ry g ii Macquaria ambigua SA

F 2 9 8 2 A c t in o p te ry g ii Macquaria ambigua SA

F 3 1 1 2 A c t in o p te ry g ii Macquaria am bigua SA

F321 2 A c tin o p te ry g ii Macquaria am bigua SA

F 3 4 8 2 A c t in o p te ry g ii Macquaria am bigua SA

F 3 6 4 2 A c t in o p te ry g ii Macquaria am bigua SA

F 3 9 7 2 A c t in o p te ry g ii Macquaria am bigua SA

H 6 9 8 2 M am m alia Hom o sapiens NSW

L 0 1 3 2 A m p h ib ia L ito ria  m oorie W A

M l 32 2 M am m alia Burram ys parvus NSW

M il 6 4 2 M am m alia Dasyurus g e o ffro ii W A

M il 7 7 2 M am m alia N otom ys fuse us QLD

M I23 0 2 M am m alia A ntech inus bellus NT

M I231 2 M am m alia Dasyurus ha llucatus NT

M I2 4 0 2 M am m alia A ntech inus s tu a rt ii NSW

M I293 2 M am m alia R attus ra ttu s NSW

M I3 1 0 2 M am m alia R attus  fuscipes NSW

M I31 9 2 M am m alia R attus  fuscipes NSW

M I38 7 2 M am m alia Dasyurus ha llucatus NT

M I39 8 2 M am m alia Dasyurus v iverrinus TA S

M I40 8 2 M am m alia Dasyurus v iverrinus TA S

M I463 2 M am m alia Dasyurus viverrinus TA S
M1464 2 M am m alia Dasyurus viverrinus T A S

M I46 8 2 M am m alia Dasyurus viverrinus TA S

M I4 7 0 2 M am m alia Dasyurus viverrinus TA S

M I4 7 6 2 M am m alia O rnithorhynchus anatinus TA S

M I6 9 0 2 M am m alia Homo sapiens W A

M I761 2 M am m alia Trichosurus caninus NSW

M I763 2 M am m alia Lagorchestes h irsu tus NT

M I765 2 M am m alia P oto rous t r id a c ty l us NSW

R 048 2 R eptilia Eulamprus hea tw o le i NSW

R 053 2 R eptilia Eulamprus hea tw o le i NSW

R 054 2 R eptilia Eulamprus hea tw o le i NSW

R 057 2 R eptilia Eulamprus hea tw o le i NSW

R061 2 R eptilia Eulamprus hea tw o le i NSW

R 1 1 7 2 R eptilia Niveoscincus m icro lep ido tus TA S
R 119 2 R eptilia N iveoscincus m icro lep ido tus TA S
R1 22 2 R eptilia N iveoscincus m icro lep ido tus TA S

R 175 2 R eptilia Rhinocephalus b ico lo u r W A

R 1 8 4 2 R eptilia Eulamprus tym panum NSW

R231 2 R eptilia R am photyphlops sp. W A

R 252 2 R eptilia Echopsis c u r ia W A
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Results

Genetic differentiation between the two genetic groups of Hafnia
Allele assignment revealed total lack of allele sharing between the two genetic groups

of Hafiiia. The clustering of the two genetic groups in the maximum likelihood tree 

using the concatenated data had over 95 % bootstrap support (Figure 1). The pairwise 

differences between the two genetic groups ranged between 4.1 % (groEL) and 11.5 

% (gnd), with an overall average of 7.3 % (Table 3). Bootstrap support for the two 

genetic groups based on the individual genes was substantially lower, in particular for 

the clustering of group 1 strains for gapA and groEL (Figure 2). Maximum likelihood 

trees of all six gene trees with the exception of gyrB had equal branch lengths from 

the out group species Escherichia coli and Salmonella enterica, indicating the 

presence of a common ancestor of the two Hafiiia groups (Figure 2). The gene tree 

for gyrB showed that genetic group 1 diverged from group 2 (Figure 2). In order to 

observe the fine scale relationship between the two genetic groups of Hafiiia, 

maximum likelihood trees of the individual genes were reconstructed without the 

outgroup rooting of E. coli and S. enterica. All unrooted gene trees showed a similar 

overall structure with the rooted gyrB tree (Figure 3). Genetic group 1 of all six trees 

were connected to a certain clade of strains in genetic group 2 (Figure 3, 4). This 

group 2 clade consisted of seven isolates, three from mammals and four from fish 

(Figure 4). Of the 269 nucleotides that distinguished the two genetic groups, the 

group 2 clade of seven strains shared from 4.3 % (gyrB) to 13 % (groEL) of those 

nucleotides with group 1 strains.

Figure 1. Maximum likelihood tree of the six concatenated sequences of Hafiiia. 
Escherichia coli K12 (K12) and Salmonella enterica (saen) are used as outgroups to 
root the tree. 1, genetic group 1; 2, genetic group 2. The branches marked with a 
solid line correspond to the clade in genetic group 2 that is genetically closest to 
group 1. Branches with bootstrap scores > 90 are indicated.
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Table 3. Average percentage pairwise distances o f the six partial sequences of 
Hafiiia. K12, Escherichia coli K12; saen, Salmonella enterica subsp. enterica serovar 
Typhi Ty2.____________________________________________________________

group 1 group 2 K12 saen

gapA group 1 0 .36
group 2 6.78 0.23

K12 14.42 16.20 0 .00
saen 16.71 17.51 6 .50 0 .00

gnd group 1 2 .26
group 2 11.53 1.19

K12 19.77 21.21 0 .00
saen 19.38 18.73 14.88 0 .00

groEL group 1 0 .75
group 2 4 .14 0 .39

K12 10.41 11.24 0 .00
saen 12.28 12.58 6.95 0 .00

gyrA group 1 0.51
group 2 6.35 0 .30

K12 18.54 18.16 0 .00
saen 17.94 18.02 8 .16 0 .00

gyrB group 1 1.74
group 2 8 .17 1.04

K12 15.53 14.84 0 .00
saen 15.97 14.92 7 .97 0 .0 0

infB group 1 1.26
group 2 7 .00 0 .90

K12 15.39 16.07 0 .00
saen 13.90 15.22 9 .04 0 .00
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Figure 2. Maximum likelihood trees of the six genes of Hafiiia. Escherichia coli 

K12 (k 12) and Salmonella enterica (saen) are used as outgroups to root the tree. 1, 

genetic group 1; 2, genetic group 2. The branches marked with a solid line 

correspond to the clade in genetic group 2 that is genetically closest to group 1. 

Bootstrap scores > 60 are indicated.

Figure 3. Maximum likelihood trees of the six genes of Hafiiia. The trees are 

unrooted. 1, genetic group 1; 2, genetic group 2. The genetic group that is separated 

due to the positioning of the other genetic group in the individual trees are surrounded 

by a dashed rectangle. The branches marked with a solid line correspond to the clade 

in genetic group 2 that is genetically closest to group 1. Bootstrap scores for the 

clustering of the two Hafnia groups are indicated.

Figure 4. Maximum likelihood tree of the six concatenated sequences of Hafiiia. 

The tree is unrooted. 1, genetic group 1; 2, genetic group 2. The branches marked 

with a solid line correspond to the clade in genetic group 2 that is genetically closest 

to group 1. Bootstrap scores > 80 are indicated.
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Biochemical differentiation between the two genetic groups of Hafnia
The concatenated tree of the six genes was highly correlated with two biochemical

traits that largely distinguished the two genetic groups. All genetic group 1 strains 

were able to utilise malonate as a carbon source and produce high amounts of acid 

during glucose fermentation (as indicated by the methyl red test). On the other hand 

the majority of genetic group 2 strains were negative for both of these characters (95 

% negative for malonate utilisation and 80 % negative for acid production) except for 

the clade in group 2 that was genetically closest to group 1. Unlike the majority of 

group 2 strains, the seven strains in this clade were all positive for malonate utilisation 

and 70 % (five isolates out of seven) were positive for acid production during glucose 

fermentation (Table 4).

Although motility was one of the physiological properties that Brenner (1984) found 

to be a distinguishing characteristic of the two genetic groups of Hafnia, 33 % of the 

group 1 strains in this study were motile (compared to 56 % of group 2 strains; Table 

4). There were eight other biochemical characteristics for which the proportions of 

strains with positive reactions were significantly different between the two Hafnia 

groups. Seven of these traits are presented in Table 4.

Table 4. Ten phenotypic characteristics of the 96 isolates of Hafiiia. Characteristics 
are mapped onto the maximum likelihood concatenated sequence tree. The branches 
marked within a solid line correspond to the clade in genetic group 2 that is 
genetically closest to group 1. Motility was scored on a visual three-scale point 
system; no motility; + moderate motility; ++, strong motility. MLO, malonate; MR, 
methyl red test; MOT, motility; MEL, melibiose; RHA, rhamnose; NPG, p-n-p-ß- 
galactoside; NAG, p-n-p-acetyl glucosaminide; ESC, esculin; ARG, arginine; TTC, 
triphenyl tetrazolium chloride. Escherichia coli K12 (k 12) and Salmonella enterica 
(saen) are used to root the tree.
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Discussion

Application of the biological species concept to bacterial speciation
The biological species concept as applied to organisms that reproduce sexually

defines a species as the boundary of sexual reproduction (Mayr 1963). There are two 

major arguments against the application of the biological species concept to bacteria. 

The first argument is that bacteria reproduce asexually, therefore mutation is the 

driving force of genetic divergence and that recombination is too rare to have an 

effect on genetic diversity (Cohan 2002). However, there is strong evidence based on 

studies investigating sequence variation in housekeeping genes of bacterial 

populations that genetic exchange is frequent enough to have a significant influence 

on their population structure (Guttman and Dykhuizen 1994a; Spratt et al. 2001; 

Suerbaum et al. 1998; Thampapillai et al. 1994). It is also important to note that 

periodic selection (termed 'selective sweep') in local regions of the chromosome is an 

extreme consequence of intergenic recombination that results in allele sharing among 

strains of a species (Guttman and Dykhuizen 1994b; Majewski and Cohan 1999). 

The second argument against the application of the biological species concept is that 

genetic exchange in bacteria, unlike sexually reproducing organisms, occurs beyond 

the species boundary (Hoffmann et al. 1998). It has been shown that the rate of 

homologous recombination of chromosomal genes decreases with increasing 

sequence divergence (Vulic et al. 1997). This outcome will limit recombination 

among strains with a certain degree of genetic similarity. Lawrence (2002) suggests 

that bacterial speciation is a continuous process whereby the gradual accumulation of 

neutral mutations over time will decrease the rate of homologous recombination 

between two populations (each of which exploits a novel niche) until they reach total 

reproductive isolation. Genes acquired through interspecies recombination will 

gradually change over time to resemble the recipient chromosome because the foreign 

gene will be exposed to the mutational processes of the recipient DNA (Lawrence and
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Ochman 1997), and therefore will consequently recombine with other members of the 

group. The biological species concept has been successfully applied to bacterial 

populations including E. coli (Dykhuizen and Green 1991), species in the family 

Enterobacteriaceae (Wertz et al. 2003), Shigella species (Lan and Reeves 2002), 

Pseudomonas syringae (Sarkar and Guttman 2004), and Brucella species (Moreno et 

al 2002).

Subspecific versus species structure in bacterial populations
What makes a subspecies genetic clustering a distinct species as opposed to just a

subspecies structure within a species? The most important distinction between 

species versus subspecies structure is whether or not the separate genetic clusters 

share a significant amount of genetic information. E. coli is an example of a species 

with extensive subspecies structure. It has long been known that the E. coli reference 

(ECOR) collection, which was compiled to represent the species' genetic diversity 

(Ochman 1984), consists of four major genetic clusters (Goullet 1989). Most 

pathogenic and non-pathogenic strains of E. coli fall more or less into one of the four 

genetic clusters (Pupo et al. 1997; Pupo et al. 2000). There is extensive evidence for 

intergenic recombination of housekeeping genes among the four genetic clusters 

(Dykhuizen and Green 1991; Guttman and Dykhuizen 1994a; Lecointre et al. 1998; 

Nelson and Selander 1994; Wirth, unpublished results). The presence of allele 

sharing in E. coli strongly suggests that although the genetic clusters are formed by 

some force of cohesion (e.g. ecological structure shaped by host biology) (Gordon 

and Cowling 2003), they all belong to one species. This is in contrast to the lack of 

allele sharing between the two Hafiiia groups.
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The extent of genetic differentiation between the two Hafnia groups
Wertz et al. (2003) looked at partial sequences of five housekeeping genes from seven

species in the family Enterobacteriaceae. They found that the proportion of pairwise 

differences of the five genes between Klebsiella pneumoniae and K. oxytoca ranged 

from 6 to 11 %, while the average pairwise differences within each species varied 

from 0 to 5 %. By contrast, divergence among six enteric bacterial species of 

different genera exceeded 10 %. The pairwise genetic distance among and within the 

two Hafiiia groups in this study are comparable to the pairwise distances found 

between the two Klebsiella species, which suggests that the two Hafiiia groups should 

be considered two different species within the same genus.

The ancestor group of Hafnia may be genetic group 1
The presence of an outgroup taxa in the gene tree may provide information on the 

evolutionary relationships among subgroups of the ingroup taxa (Lecointre et al. 

1998). However, in order to maintain the true genealogy of the ingroup taxa, the 

outgroup sequence must retain some of the same genetic signals that distinguish the 

ingroup populations (an illustrative example is presented in Figure 5) (Wheeler 1990). 

Potential outgroup species (e.g. Serratia plymuthica, Enterobacter cloacae) were 

selected for each individual gene tree based on BLAST searches for the individual 

genes. However, all of the selected outgroup species resulted in equal branch lengths 

of the two Hafnia groups from the outgroup species (data not shown). This 

observation can be interpreted in two ways; either that there was an ancestral species 

of the two Hafiiia groups that no longer exists, or that the selected outgroup taxa were 

random roots that failed to provide any historical information on the genetic 

relationship among the ingroup taxa (Wheeler 1990).



Ingroup 1 ------ 1---------- 1-------------------------------1---------------\

Ingroup 2 | 1 1 1

Outgroup 1 I I

Outgroup 2 ■ ■ ■ ■ ■ 11 ■ I 1 ■!

Figure 5. A hypothetical diagram of an ideal outgroup taxon. Vertical 
bars on the sequence depict informative bases that distinguish a taxon 
from others. Outgroup 1 is ideal as an outgroup taxon, as it shares two 
bases with ingroup 1 that idstinguishes it from ingroup 2. On the other 
hand, outgroup 2 is a random root that does not share any bases that 
distinguish the two ingroup taxa, and therefore is not ideal as an outgroup 
taxon.
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Based on the phylogenetic order from E. coli and S. enterica to the two Hafiiia groups 

of gyrB, it appears as though Hafiiia group 1 evolved from group 2 (Figure 3). The 

structures of the six unrooted gene trees support the fact that the clade in genetic 

group 2, which shared two biochemical characteristics with group 1 strains, were 

genetically closest to group 1. If group 1 evolved from group 2, a convergent 

evolution must have occurred for the two characteristics after genetic divergence of 

the two groups (Figure 6a). On the other hand, if group 2 evolved from group 1, there 

is only one evolutionary step involved for the loss of the two phenotypic 

characteristics in group 2 (Figure 6b). Therefore, the more likely scenario is that the 

ancestral species is group 1, where all strains had the ability to utilise malonate and to 

produce acid during glucose fermentation, from which a population in group 2 after 

genetic divergence lost those two traits. The bootstrap values for each of the groups 

in the individual gene trees (except for gyrB) was over 75 % for group 2 strains, 

whilst gnd was the only gene where the clustering of group 1 strains had over 60 % 

bootstrap support (Figure 3). This observed relationship between the two Hafnia 

groups where there is less support for clustering of strains in one group (group 1) than 

the other (group 2) is analogous to the emergence of a new ecotype from an ancestral 

population (Cohan 2001). Because the origin of the derived population is a single 

mutant or recombinant, that population of strains would tend to have lower genetic 

diversity, and as a consequence will have higher bootstrap support.

Among the six genes investigated in this study, gyrB was the only gene where E. coli 

and S. enterica shared enough genetic information (i.e. parsimony informative 

nucleotides) with one of the two Hafnia groups. There is suggestive evidence for 

Hafiiia group 1 (represented by H. alvei type strain ATCC 13337) acquiring the gyrB 

gene through interspecies horisontal gene transfer (Dauga 2002). Because of the 

more likely explanation for group 1 being the ancestral population, Hafiiia group 1



Figure 6. A hypothetical diagram of convergent evolution versus one-step 
evolution of a phenotypic trait. In case A, the ancestral population does not 
possess the trait that the evolved population has. If there is a cluster of strains 
within the ancestral population that also possesses the trait, then the trait 
would have had to arise twice (convergent evolution). In case B, the ancestral 
population possesses the trait, from which a population evolves. The majority 
of the evolved population loses the trait, but a fraction of the strains that are 
genetically closer to the ancestral population retains the trait. Therefore the 
evolution of the trait in case B is a one-step process.
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may have acquired the gyrB gene from the group 2 lineage before the two groups 

diverged.

Polyphasic taxonomy requires not only genotypic differences to demarcate a species, 

but the phenotypic traits must also be distinct (Vandamme et al. 1996). The two 

Hafiiia groups significantly differ in their host distribution. The majority of group 1 

strains recovered from mammals were only isolated from hosts weighing less than 

200 g. By contrast, group 2 strains from mammals were isolated from hosts of any 

body mass. The majority of fish hosts carried group 2 strains (Okada and Gordon 

2003). Furthermore, Janda et al. (2002) found a higher proportion of the clinical 

isolates of Hafiiia belonging to group 2. On the other hand, 70 % of the Hafnia 

strains isolated from minced meat belonged to group 1 identified by RAPD-PCR 

analysis (Ridell et al. 1995). This difference in distribution of the two Hafiiia groups 

indicates that these two groups have different ecological niches. The two groups also 

differ in their phenotypic characteristics. Group 1 strains have a more narrow thermal 

niche (14 to 40 °C) compared to group 2 strains (10 to 40 °C; (Okada and Gordon 

2001). Group 2 strains also had a significantly higher maximum growth rate at its 

optimal temperature, which was 1 °C higher than that of group 1 strains (Okada, 

Chapter 4). An isolate can be biochemically assigned to one of the two Hafiiia groups 

with 95 % accuracy (Okada and Gordon 2003).

All of the genetic and phenotypic information that has been collected provides solid 

evidence for strains belonging to genetic group 2 being a separate species within the 

genus Hafiiia, and we propose a new species, Hafnia tempus sp. nov. (tempus 

meaning opportunity or occasion). Although limited, available data suggests that 

Hafiiia group 2 strains have clinical significance, and that group 1 strains are 

responsible for food contamination and are of veterinary significance (Gelev et al.



Chapter 5: Genetic and phenotypic characterisation of Hafiiia 90

1990; Janda et al. 2002; Proietti et al. 2004; Ridell et al. 1995). A wider survey of the 

clinical, veterinary, and food isolates will provide better information on the 

prevention of disease and quality control of food products.

Description of Hafnia tempus sp. nov.
Hafnia tempus. Gram negative, rod shaped and motile. Forms white colonies on 

McConkey and Luria Bertani agar. Oxidase and indole negative, ferments D-glucose, 

D-mannose, D-mannitol, D-galactose. Negative for D-sucrose, D-adonitol, D-inositol 

fermentation and esculin. Positive for the Voges-Proskauer test. Phenotypic 

differentiation from Hafiiia alvei (type strain ATCC13337) is based on the positive 

probability of a combination tests represented by malonate utilisation, production of 

acid during glucose fermentation (indicated by the methyl red test), and motility 

(Table 3). Type strain is ATCC 29927 (American Type Culture Collection, USA), 

which was assigned to Hafiiia genetic group 2 by MLEE (Okada and Gordon 2003).
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Chapter 6

Comparative analyses on the population genetics of the two 
Hafnia groups

Introduction
The evolutionary mechanism of species diversity in bacteria is unique in space and 

time. A broad spectrum of genetic diversity can be seen in the bacterial world; from 

species with a highly clonal structure like Salmonella enterica (Beltran et al. 1991) to 

others with a panmictic structure such as Helicobacter pylori (Suerbaum et al. 1998). 

This happens because different species have different modes of creating genetic 

diversity. A totally clonal population happens when mutation is the driving force of 

divergence. On the other hand, a panmictic population structure is created by 

promiscuous intra-species recombination (Maynard Smith et al. 1993). However, the 

amount of genetic diversity that is observed at any one time in a bacterial population 

due to mutation can be as high (or low) as that caused by recombination.

Escherichia coli has been extensively studied in the context of bacterial population 

biology. Multilocus enzyme electrophoresis studies showed a highly clonal population 

structure in this species (Ochman et al. 1983; Whittam et al. 1983). With the advance 

in molecular genetic techniques in the early 1990s, many studies have detected evidence 

for frequent intra- and inter-genic recombination (Dykhuizen and Green 1991; Guttman 

and Dykhuizen 1994; Nelson and Selander 1994). How can a species with frequent 

recombination maintain a clonal population structure? Cohan (2001) suggested the 

presence of 'ecological structure' in bacterial species. He argues that bacterial species 

are comprised of sequence clusters, each representing an ecotype. Each ecotype 

occupies a unique niche that strains in other niches can not, and therefore homologous 

recombination and periodic selection are limited to strains within a given niche.
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Okada and Gordon (2003) recently reinvestigated the population genetics and ecology 

of Hafnia alvei (family Enterobacteriaceae) (Moeller 1954). This species is distantly 

related to E. coli (Brenner 1984). It is found in the faeces of a wide range of vertebrate 

and invertebrate hosts as well as in the external environment of the host (Allen et al. 

1983; Brenner 1984; Okada and Gordon 2003; Shirey and Bissonnette 1992). H. alvei 

consists of two genetically distinct groups that can be distinguished by several 

biochemical properties (Janda et al. 2002; Okada and Gordon 2003; Ridell et al. 1995; 

Steigerwalt et al. 1976). Multilocus sequence typing with partial sequences of six 

housekeeping genes found that there were no alleles shared between the two genetic 

groups (Okada chapter 5). Along with the fact that the two genetic groups were 

phenotypically different (Janda et al. 2002; Okada and Gordon 2003), we concluded 

that the two Hafnia groups represent separate species (Okada chapter 5).

Both allozyme analysis (Okada and Gordon 2003) and sequence variation of the 

housekeeping genes (Okada chapter 5) showed that genetic group 1 strains were more 

genetically diverse compared to group 2 strains. However, the evolutionary forces that 

create the observed structure are unknown. Is it recombination or mutation in these 

populations that drive genetic diversification? Can the ecological structure that was 

found in allozyme polymorphism be detected in neutral sequence variation? What 

forces of cohesion can be seen that maintain species integrity? We conducted a series 

of phylogenetic analyses with the sequences collected for multilocus sequence typing 

(MLST) (Maiden et al. 1998) to find the answers to these question and contrast it to 

what is currently known concerning the evolution of E. coli. This paper covers the 

evolutionary aspect from the results of MLST; the systematics aspect of the genus 

Hafiiia is described elsewhere (Okada chapter 5).
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Material and methods 

DNA sequences
The data set comprised ninety-six isolates of Hafiiia, 48 each from the two species, 

(Okada chapter 5) chosen at random from a larger set of strains. Partial sequences of 

six housekeeping genes (gapA, gnd, groEL, gyrA, gyrB, and infB) were used for the 

following analyses. Strain information is provided elsewhere (Okada chapter 5). 

Sequence type and allele designations of the individual strains are given in Tables 1 and 

2.

Phylogenetic analyses
Each unique sequence was given an allele designation, from which allelic and haplotype 

diversity estimates were calculated using GenAlEx v5 (Peakall and Smouse 2001). A 

standardised index of association (stnd.IA) was calculated using LIAN 3.0 (Haubold and 

Hudson 2000). This association index quantifies the degree to which alleles at different 

loci are non-randomly associated. G+C content was calculated by S.T.A.R.T. (Jolley et 

al. 2001).

Recombination estimates were calculated using three separate methods. The homoplasy 

test (Maynard Smith and Smith 1998) as implemented in the S.T.A.R.T. package 

calculates a probability of recombination that is relatively accurate for sequences that 

have low diversity (1 - 5 %) when compared to other algorithms. It compares values 

between the number of steps in a most-parsimonious tree and the number of 

polymorphic sites in the third codon of a set of sequences to find
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Table 1. Strain identification and allele designations for the six genes of Hafiiia group

1. ID, identification; ST, sequence type.

ID H afn ia  g ro u p H o s t  class ST g a p A g n d g ro E L g y rA g y rB in fB

M I5 9 0 1 Mammalia 3 6 1 0 2 1 0 3 1 1 8 1 0 7 101 1 1 9

FI 6 9 1 A c t in o p te ry g i i 3 7 1 2 0 1 0 6 1 1 5 1 0 8 1 0 2 1 2 4

R 373 1 Reptil ia 3 8 1 0 4 1 0 7 1 0 9 1 1 6 1 0 3 1 2 7

R 022 1 Repti l ia 3 9 1 2 0 1 0 8 1 2 2 1 1 5 1 0 4 1 2 5

F 1 3 8 1 A c t in o p te ry g i i 4 0 1 1 3 121 1 1 2 1 0 4 1 0 5 1 1 6

B 6 4 2 1 A ves 41 1 1 4 1 2 2 1 1 2 1 0 4 1 0 5 1 1 7

F 1 8 2 1 A c t in o p te ry g i i 4 2 1 2 0 1 0 9 1 2 2 1 0 9 1 0 6 1 2 6

R01 5 1 Reptil ia 4 3 1 1 8 1 1 3 1 1 4 1 0 2 1 0 7 1 2 9

B 3 4 8 1 A ves 4 4 111 1 2 0 1 1 2 1 0 5 1 0 7 1 2 9

M 0 8 2 1 Mammalia 4 5 1 1 9 1 1 4 1 0 7 1 0 6 1 0 7 1 2 2

M I4 9 0 1 Mam m alia 4 5 1 1 9 1 1 4 1 0 7 1 0 6 1 0 7 1 2 2

R01 2 1 Reptil ia 4 5 1 1 9 1 1 4 1 0 7 1 0 6 1 0 7 1 2 2

M I78 2 1 Mam m alia 4 6 1 0 6 1 0 4 1 0 5 121 1 0 8 121

R 0 4 4 1 Reptil ia 4 7 1 1 5 1 2 9 1 0 3 111 1 0 9 1 0 2

M I7 8 5 1 Mammalia 4 8 1 1 5 1 2 9 101 1 2 0 1 1 0 1 0 2

R 0 2 7 1 Reptil ia 4 8 1 1 5 1 2 9 101 1 2 0 1 1 0 1 0 2

L 0 6 9 1 A m ph ib ia 4 9 1 1 5 1 2 8 1 0 4 111 111 1 0 2

1128 1 Insecta 5 0 1 2 2 131 1 0 4 111 111 1 0 2

R 2 8 5 1 Reptil ia 5 0 1 2 2 131 1 0 4 111 111 1 0 2

B 4 2 9 1 A ves 51 1 1 6 1 2 8 1 0 4 1 1 2 111 1 0 2

M l  2 9 1 Mam m alia 52 121 111 101 1 1 0 1 1 2 1 0 3

E 0 7 2 1 w a te r 53 1 1 3 1 2 0 1 0 7 1 0 4 1 1 3 1 1 6

M I7 8 9 1 Mam m alia 53 1 1 3 1 2 0 1 0 7 1 0 4 1 1 3 1 1 6

R 0 5 5 1 Repti l ia 54 111 1 3 2 1 1 6 1 0 4 1 1 3 1 2 9

R 0 2 3 1 Reptil ia 55 111 1 3 3 1 1 6 1 0 5 1 1 3 1 0 5

M I7 7 7 1 Mam m alia 5 6 1 0 9 1 1 9 1 1 0 1 1 8 1 1 3 1 2 3

R 1 8 0 1 Reptil ia 57 1 0 9 1 1 9 1 1 0 1 1 8 1 1 3 1 2 2

MI581 1 Mam m alia 58 1 0 8 1 1 9 1 0 2 1 2 0 1 1 3 1 1 5

M051 1 Mammalia 59 1 2 0 1 3 0 1 0 4 111 1 1 4 1 0 2

1040 1 Insecta 6 0 1 0 5 1 2 5 121 1 1 7 1 1 5 1 0 7

B 4 5 9 1 A ves 61 1 0 7 1 1 2 1 2 6 1 1 2 1 1 6 1 0 8

R 1 2 6 1 Reptil ia 62 1 1 7 1 2 3 1 1 0 1 1 1 1 1 7 1 1 3

R 202 1 Reptil ia 63 1 0 2 1 2 3 1 1 0 1 2 2 1 1 7 1 1 0

L 0 0 9 1 A m p h ib ia 6 4 1 1 5 1 1 6 1 1 0 1 1 4 1 1 8 1 0 6

F 1 5 6 1 A c t in o p te ry g i i 6 5 101 1 1 7 1 0 6 1 1 3 1 1 9 1 0 4

R021 1 Reptil ia 6 6 1 0 2 1 2 6 no 1 2 4 1 2 0 1 1 0

R 0 6 7 1 Reptil ia 6 7 1 0 2 1 2 7 1 2 3 1 1 2 121 111

R 1 14 1 Reptil ia 6 8 1 1 5 101 1 2 0 1 1 9 121 1 1 0

R 1 2 4 1 Reptil ia 6 8 1 1 5 101 1 2 0 1 1 9 121 1 1 0

M 1 7 2 1 Mammalia 6 9 1 0 2 1 0 2 1 1 7 1 1 4 1 2 2 1 1 4

M I5 2 4 1 Mammalia 7 0 1 0 2 1 1 8 1 1 9 101 1 2 3 1 1 2

M I4 7 2 1 Mammalia 71 1 0 2 1 1 5 1 1 9 1 0 3 1 2 3 1 0 7

M 0 4 4 1 Mammalia 7 2 111 1 2 0 1 1 3 1 0 6 1 2 4 101

M 3 0 6 1 Mammalia 73 1 0 2 1 2 5 111 111 1 2 5 1 0 9

M061 1 Mammalia 7 4 1 0 3 1 2 4 1 2 4 111 1 2 6 1 2 8

R21 1 1 Reptil ia 7 5 1 0 2 1 0 5 1 2 5 1 2 3 1 2 7 1 1 8

R 3 9 4 1 Reptil ia 7 5 1 0 2 1 0 5 1 2 5 1 2 3 1 2 7 1 1 8

F 1 8 7 1 A c t in o p te ry g i i 7 6 1 0 2 1 1 0 1 0 8 1 2 3 1 2 8 1 2 0
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Table 2. Strain identification and allele designations for the six genes of Hafiiia group
2. ID, identification; ST, sequence type.

ID H afn ia  g ro u p H o s t  class ST g a p A g r id g roE L g y rA g y rB in fB

MI231 2 Mammalia 1 4 23 3 4 1 3

F 3 1 1 2 A c t in o p te ry g i i 2 4 8 4 4 2 9

M I76 5 2 Mam m alia 3 4 11 8 4 2 14

M i l  7 7 2 Mam m alia 4 4 11 8 4 2 15

M I2 4 0 2 Mammalia 4 4 11 8 4 2 15

R 1 7 5 2 Reptil ia 4 4 11 8 4 2 15

R 0 4 8 2 Reptil ia 5 4 14 6 4 3 19

R 1 8 4 2 Reptil ia 5 4 14 6 4 3 19

R 0 5 4 2 Reptil ia 6 12 14 6 4 3 8

R 053 2 Reptil ia 7 12 14 6 4 3 19

R 0 5 7 2 Reptil ia 7 12 14 6 4 3 19

R061 2 Reptil ia 7 12 14 6 4 3 19

L01 3 2 A m p h ib ia 8 13 18 11 4 4 2

M I4 6 8 2 Mammalia 9 4 8 4 4 5 12

M I29 3 2 Mammalia 1 0 4 15 13 4 5 12

M I3 1 9 2 Mammalia 10 4 15 13 4 5 12

R 1 17 2 Reptil ia 11 4 1 9 2 6 12

R 1 2 2 2 Reptil ia 12 4 9 4 4 7 18

R 1 1 9 2 Reptil ia 13 3 16 7 5 8 10

R 252 2 Reptil ia 13 3 16 7 5 8 10

M I2 3 0 2 Mammalia 14 1 17 1 1 5 9 18

R231 2 Reptil ia 15 4 2 0 1 1 4 10 11

B 2 5 5 2 A ves 16 8 21 4 3 11 18

M I6 9 0 2 Mam m alia 16 8 21 4 3 11 18

M I3 9 8 2 Mam m alia 17 4 2 6 1 4 11 1 0

F321 2 A c t in o p te ry g i i 18 4 13 4 5 11 2 0

M I3 8 7 2 Mam m alia 19 4 7 4 6 11 9

M I4 0 8 2 Mammalia 2 0 7 2 7 4 5 12 2

MI761 2 Mammalia 2 0 7 2 7 4 5 12 2

M I76 3 2 Mammalia 2 0 7 2 7 4 5 12 2

F 2 9 2 2 A c t in o p te r y g i i 21 4 2 4 1 0 1 13 2

F 3 4 8 2 A c t in o p te r y g i i 2 2 6 3 12 9 14 5

F 2 9 6 2 A c t in o p te r y g i i 23 1 1 5 12 7 15 4

M l  3 2 2 Mam m alia 2 4 7 12 3 4 16 16

FI 52 2 A c t in o p te ry g i i 25 4 2 5 4 5 17 2

M I4 7 6 2 Mam m alia 2 6 4 19 4 11 18 12

Ml 1 6 4 2 Mam m alia 2 7 4 2 2 4 5 19 2

F 3 9 7 2 A c t in o p te ry g i i 2 8 13 10 2 4 2 0 15

F I  21 2 A c t in o p te ry g i i 2 9 13 10 5 4 2 0 15

H 6 9 8 2 Mammalia 2 9 13 1 0 5 4 2 0 15

FI 18 2 A c t in o p te ry g i i 3 0 2 2 7 9 4 2 0 18

M I4 7 0 2 Mam m alia 31 9 9 13 4 2 0 9

M I46 3 2 Mam m alia 32 5 2 12 10 21 6

M I4 6 4 2 Mammalia 32 5 2 12 10 21 6

F231 2 A c t in o p te r y g i i 33 9 15 4 5 2 2 17

M I3 1 0 2 Mammalia 3 4 6 4 12 8 23 1

F 2 9 8 2 A c t in o p te r y g i i 3 5 10 6 12 10 23 7

F 3 6 4 2 A c t in o p te r y g i i 35 10 6 12 10 23 7
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significantly higher numbers of apparent homoplasies. If the estimated distribution of 

homoplasies with no recombination does not include the number of apparent 

homoplasies, then this would suggest the occurrence of recombination. The second 

program, developed by Kühner et al. (RECOMBINE) (Kühner et al. 2000) uses a 

maximum likelihood approach to estimate 0 = 2Nep, (the per-site mutation rate, p, times 

the effective population size, Ne) and r = C/p (the per-site recombination to mutation 

ratio). The third program, LDhat (McVean et al. 2002) uses a permutation approach, 

based on coalescent theory, to detect recombination in genes that are known to have 

relatively high rates of mutation. LDhat requires an estimate for 0,and the estimate 

used was that calculated by RECOMBINE. In order to visualise conflicts in 

phylogenetic signals, split decomposition analysis (Bandelt 1992) was conducted for 

each of the individual gene trees and the tree based on the concatenated sequences using 

Splitstree v3.2 (website: http://www.bibiserv.,techfak.uni-bielefeld.de/splits; (Huson 

1998)). Genetic variation of strains that is not supported by a unique tree will result in a 

network-like relationship.

Congruence between gene genealogies was assessed by three methods. The first was 

the incongruence length difference (ILD) test (Farris et al. 1994). This test determines 

if there are significant differences between the branch lengths of maximum parsimony 

trees based on two different genes. All pair-wise comparisons of individual gene trees 

were tested using the partition homogeneity test as implemented in PAUP*. Identical 

sequences were omitted from the data sets, and 100 replicates with a maximum of 1000 

saved trees were compared. Because there are arguments concerning the excessive 

sensitivity resulting in type 1 error of the ILD test (Barker and Lutzoni 2002), the 

Shimodaira-Hasegawa test (SH test; in PAUP*) was also conducted as a comparison. 

In this test, the maximum likelihood trees of each of the six genes were compared to the 

sequence data for the other five genes in order to assess the extent to which the topology

http://www.bibiserv.,techfak.uni-bielefeld.de/splits
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of each tree matched the sequence variation in the other genes (Shimodaira and 

Hasegawa 1999). Finally, bootstrap analyses (n = 100) of the maximum likelihood 

gene trees were conducted using PAUP*. The strain membership of clusters with over 

70 % bootstrap support were compared among the 6 gene trees in order to identify those 

strains that did not consistently cluster in each of the gene trees.

For each of the genes and the concatenated data set, analysis of molecular variance 

(AMOVA) was used to assess the extent to which host taxonomic class explained the 

observed among strain variation. The AMOVA routine implemented in GenAlEx v5 

(Peakall and Smouse 2001) was used for these analyses. Due to the small sample sizes 

for some host groups, only isolates from fish, mammals, reptiles and birds (bird isolates 

were used in the analyses for group 1 isolates only) were included in the analyses. The 

relationships among isolates from different taxonomic groups were visualised using 

principal co-ordinates analysis as implemented in GenAlEx v5.

Results

Allelic variation in Hafnia group 1
The number of alleles per locus for group 1 isolates ranged from 20 (gapA) to 33 (gnd), 

and alleles were non-randomly associated among loci (stnd IA = 0.24, p < 0.000)(Tables 

3, 4). There were 41 unique allelic profiles among the 48 strains, indicating a high 

degree of haplotype diversity (G = 0.992 ± 0.0007; Table 4). The number of 

polymorphic sites per locus varied from 22 for gapA and gyrA to 71 for gnd (Table 3). 

The average G+C content of the six genes was 49.8 %.
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Table 3. Nucleotide polymorphism of the six genes in the two Hafiiia groups.

Gene Sequence

length

variable sites in fo rm ative  sites no. alleles dn /ds

group 1 group 2 group 1 group 2 group 1 group 2 g roup l group2

gapA 692 22 11 10 9 20 13 0 .019 0 .023

gnd 598 71 43 54 28 33 27 0 .00 6 0 .009

groEL 561 24 12 19 10 26 13 0 .01 6 0 .01 9

gyrA 711 22 14 13 8 24 11 0 .013 0.000
gyrB 577 47 25 33 20 28 23 0.000 0.000
infB 542 35 24 21 15 29 19 0.021 0 .01 6

Table 4. Genetic diversity of the six genes and standardised index of association in the 
two Hafiiia groups. P, significance for the test of the null hypothesis H0:VD = Vc by a
p a ra m e tr ic  a p p ro a ch .

group 1 group 2

n 48 41 48 35

stnd.lA 0 .24 0.11 0 .2 0 0 .07

P

g e n e tic  d iv e rs ity

0 .00 0 .00 0 .0 0 0 .00

mean 0.95 0 .96 0 .87 0 .87
gapA 0.91 0 .92 0 .79 0 .76
gnd 0 .98 0.99 0 .97 0 .98
groEL 0 .96 0 .96 0 .87 0 .87
gyrA 0.95 0 .96 0 .69 0.71
gyrB 0 .96 0 .97 0 .95 0 .97
infB 0 .96 0 .97 0 .93 0 .95

Allelic variation in Hafnia group 2
Compared to the group 1 strains, there were fewer alleles per locus for group 2 isolates 

(11 {gapA) to 27 (gnd)\ Table 3), but as in group 1, alleles were non-randomly 

associated among loci (stnd IA = 0.20, p < 0.000)(Table 4). There were 35 unique allelic 

profiles among the 48 strains, indicating a lower degree of haplotype diversity 

compared to group 1 strains (G = 0.986 ± 0.001; Table 4). The number of polymorphic 

sites per locus varied from 11 for gapA to 43 for gnd (Table 3). The average G+C 

content of the six genes was 50.4 % and this value was significantly different from the 

G+C content of the group 1 strains (AOV:, F(i,i) = 408.7, p < 0.0001)
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Intragenic recombination estimates of the six genes in the two Hafnia groups
Comparison of the r/p. estimates (RECOMBINE) between genetic group 1 and group 2,

revealed that the r/p estimates for each of the genes were greater for group 2 isolates, 

with gyrA being the sole exception. The per region recombination rate estimates, p 

(LDhat) showed a similar pattern, with generally higher estimates of p for group 2 

isolates (exceptions gyrA and gyrB). Homoplasy ratio estimates were determined only 

for genes with more than 10 informative sites (Table 3). Significant homoplasy 

estimates suggested intragenic recombination occurs in all genes (Table 5). Contrasting 

the estimates derived for group 1 and group 2 strains showed evidence for intragenic 

recombination in grid for group 2 but not group 1 strains, in gyrB for both groups, and 

in infB for group 1 but not group 2 strains (Table 5).

Table 5. Intragenic recombination rate estimates and probability of recombination of 
the two Hafnia groups. Homoplasy ratios were calculated for genes with more than 10 
parsimony informative sites. Watterson, Watterson estimate of theta. Significant 
homoplasy ratios (P < 0.05) are indicated in bold-face._______________________

gene gene tic  group W atte rson T he ta # r /m u # 2N er# LDhat rho hom oplasy
gapA 1 0 .0 0 7 0 .0 0 8 1 .4 94 0 .0 1 2 16 .33 na

2 0 .0 0 4 0 .0 0 4 2 .9 9 4 0 .0 1 3 4 2 .5 2 na

gn d 1 0 .0 2 7 0.061 0 .1 7 5 0.011 8 .5 0 0 .03
2 0 .0 1 6 0 .0 3 0 0.531 0 .0 1 6 11 .56 0 .31

groEL 1 0 .0 1 0 0 .0 1 4 1 .4 16 0 .0 2 0 3 6 .73 0 .5 5
2 0 .0 0 5 0 .0 0 5 1 .9 70 0 .0 1 0 17 .35 na

gyrA 1 0 .0 0 7 0.011 1 .3 26 0 .0 1 4 2 1 .43 0 .3 2
2 0 .0 0 4 0 .0 0 4 0.000 0.000 0 .0 0 na

gyrB 1 0 .0 1 8 0 .0 4 0 0 .3 1 8 0 .0 1 3 17 .35 0 .2 4
2 0 .0 1 0 0 .0 1 6 1 .129 0 .0 1 8 8 .1 6 0 .4 9

in fB 1 0 .0 1 5 0 .0 2 6 0 .0 2 6 0.001 3 .06 0 .1 3
2 0 .0 1 0 0 .0 1 4 0 .9 6 7 0 .0 13 4 .0 8 0 .0 6

#, estimates calculated by RECOMBINE.

Split decomposition analysis of the six genes suggested potential intragenic 

recombination events (as indicated by the network-like relationship between strains) in
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all genes but infB for genetic group 1 strains, whereas for group 2 strains gap A and 

groEL were the only genes for which recombination events were suggested by the 

analysis (Figures 1, 2).

Intergenic recombination estimates of the two genetic groups of Hafnia
Bootstrap scores for the individual maximum likelihood gene trees using only the

unique allele set were calculated for each Hafnia group. There were two group 1 strains 

(FI56, MI524) that occurred in different clades with > 70 % bootstrap support in the 

maximum likelihood trees for gnd and gyrA (Figure 3). Among group 2 strains, there 

was no evidence for conflict among the allelic clusters that had >70 % bootstrap support 

for any of the six genes (Figure 4).

Congruence between gene trees within each Hafnia group was assessed by pairwise 

comparisons of the six gene trees using the incongruence length difference (ILD) test. 

The ILD test results indicated significant incongruence between all gene pairs for 

genetic group 1 strains, whereas over half of the gene tree comparisons were congruent 

for the group 2 strains (Table 6). The Shimodaira-Hasegawa (SH) test also indicated 

significant incongruence for all gene and gene tree comparisons involving group 1 

strains. Comparison of the individual genes with the concatenated gene tree for group 1 

strains indicated significant incongruence for groEL, gyrA and infB. although the 

probability values for groEL and infB were marginal (Table 7). For group 2, all gene - 

gene tree comparisons were incongruent, with the exception of most comparisons 

involving gyrA (Table 8). Group 2 gene -  concatenated tree comparisons only revealed 

significant incongruence for the gnd data and statistical borderline incongruence for the 

groEL gene data (Table 8).
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Figure 1. Split decomposition analysis of the six genes of Hafnia group 1 strains 
(n = 48). Parsimony, hamming distances. Numbers on each node refer to the 
designated allele numbers as in Table 1.
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Figure 2. Split decomposition analysis of the six genes of Hafnia group 2 
strains (n=48). Parsimony, hamming distances. Numbers on each node refer 
to the designated allele numbers as in Table 2.
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Figure 3. Maximum likelihood trees of the six genes for Hafnia group 1 strains. 
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Split decomposition analysis using the concatenated sequences provided little evidence 

for the presence of recombination events. Both Hafnia groups were similar in overall 

structure, with one outgroup that was genetically distinct from the other strains that 

composed a star phylogeny (Figure 5).

Table 6. Incongruence length difference (ILD) test of the two Hafiiia groups. 
Probability values above the diagonal are the pairwise comparisons of group 1 strains, 
and those below are of group 2 strains.________________________________________

gene gapA gnd groEL gyrA gyrB infB
gapA - 0.04 0.05 0.01 0.01 0.01
gnd 0.24 - 0.01 0.01 0.01 0.01
groEL 0.38 0.23 - 0.01 0.01 0.01
gyrA 0.04 0.60 0.51 - 0.01 0.01
gyrB 0.22 0.01 0.03 0.23 - 0.01
infB 0.02 0.01 0.01 0.14 0.01 -

Table 7. Shimodaira-Hasegawa (SH) test of Hafiiia group 1 strains. Significant 
incongruence between a gene and maximum likelihood gene tree (P > 0.05) are bold
faced. ________________________________________________________________

maximum likelihood tree
gene gapA gnd groEL gyrA gyrB infB concatenated
gapA - 0.020 0.017 0.017 0.021 0.025 0.193
gnd 0.00 - 0.000 0.000 0.000 0.000 0.214
groEL 0.00 0.000 - 0.000 0.000 0.000 0.032
gyrA 0.00 0.000 0.000 - 0.001 0.000 0.002
gyrB 0.00 0.000 0.000 0.000 - 0.000 0.096
infB 0.00 0.000 0.000 0.000 0.000 - 0.036
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Table 8. Shimodaira-Hasegawa (SH) test of Hafiiia group 2 strains. Significant 
incongruence between a gene and maximum likelihood gene tree (P > 0.05) are bold
faced. ___________________________________________________________

maximum likelihood tree
gene gapA gnd groEL gyrA gyrB infB concatenated
gapA - 0.009 0.012 0.007 0.011 0.011 0.144
grid 0.000 - 0.001 0.000 0.001 0.000 0.026
groEL 0.001 0.005 - 0.000 0.002 0.003 0.035
gyrA 0.062 0.083 0.087 - 0.047 0.087 0.228
gyrB 0.000 0.000 0.000 0.000 - 0.000 0.405
infB 0.000 0.003 0.000 0.000 0.002 - 0.060

Effect of host taxonomic class on the genetic structure of the two Hafnia groups

Analysis of molecular variance (AM OVA) revealed a striking difference between the

two genetic groups in the effect the host had on their genetic structures (Table 9). 

Among Hafiiia group 1 strains, the taxonomic class of the host explained a significant 

amount of the among strain variation for three of the six genes and extent o f the 

explained variation ranged from 5 % {gyrA, gyrB) to 12 % {grid). For Hafnia group 2 

strains host taxonomic class accounted for a significant fraction of the variation in five 

of the genes and the extent of the variation ranged from 8 % (infB ) to 20 % {gyrB). 

Overall, host class explained a consistently greater amount of the observed genetic 

variation in group 2 strains, as compared to group 1 strains.

Table 9. Analysis of molecular variance. The percentage of the genetic variation
explained by host taxonomic class was calculated for each gene within each of the 
Hafnia groups. Significant percentages (P < 0.05) are bold-faced.

gene % group 1 (P > F) % group 2 (P > F)
gapA 2 (0.12) 11 (0.005)
gnd 12 (0.001) 11 (0.004)
groEL 0 (0.45) 12 (0.002)
gyrA 5 (0.02) 6 (0.08)
gyrB 5 (0.02) 20 (0.001)
infB 2 (0.20) 8 (0.04)
concatenated 6 (0.002) 12 (0.004)



Figure 5. Split decomposition analysis of the concatenated sequence of Hafnia group 1 
(1) and group 2 (2). Parsimony, hamming distances.
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In order to eliminate a bias due to the presence of multiple clones in each of the six loci, 

strains with identical sequences were excluded and AMOVA was run on the non- 

redundant sequence set (Table 10). Host class explained twice as much of the genetic 

variation in gyrB among group 1 strains in comparison to the complete sequence set. 

Among the group 2 strains, significant host class effects were only detected for groEL 

and gyrB (Table 10). These results indicate that for Hafnia group 1 strains, the same 

gyrB alleles are distributed across different host classes, whereas for group 2 strains, the 

distribution of identical alleles tended to be limited to within host classes for gapA, grid, 

gyrA and infB.

Table 10. Analysis of molecular variance with the non-redundant data set for each 
Hafnia group. The percentage of the genetic variation explained by host taxonomic 
class was calculated for each gene within each of the Hafnia groups. Significant 
percentages (P < 0.05) are bold-faced.________________________________

gene % group 1 (P > F) % group 2 (P > F)
gapA 0 (0 .6 7 ) 0 (0 .4 3 )
gnd 9 (0.02) 0 (0 .3 8 )
groEL 0 (0 .9 9 ) 20 (0.05)
gyrA 5 (0 .0 9 ) 0 #  (0 .8 1 )
gyrB 10 (0.02) 21 (0.019)
infB 7 (0 .1 3 ) 0 (0 .4 2 )
c o n c a te n a te d 7 (0.01) 6 (0 .0 8 )

#, only one sequence type for reptilian strains

The concatenated data set was analysed using AMOVA and the pair wise population 

(host class) differentiation estimates used in a principal coordinates analysis (PCA). 

Both Hafnia groups had a significant amount of their overall genetic variation explained 

by host class (Table 9). However, the host effect on the overall genetic variation was 

insignificant in the non-redundant data set for group 2 strains, again illustrating the
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distribution of identical haplotypes within the same host class among strains in Hafnia 

group 2 (Table 10). A plot of the first two PCA axes showed that for group 2, strains 

from reptiles were different from strains from mammals or fish, whilst for group 1, 

strains from mammals and reptiles were similar but different from those isolated from 

birds or fish (Figure 6).

Reptile 2 •

Reptile 1 4k Mammal 1 

Bird 1 A A Fish 1

Fish 2 % •  Mammal 2

1st principal coordinate

Figure 6. Principal coordinates analysis of the genetic distance matrix for Hafiiia 

groups 1 and 2 by host taxonomic class. The distance between each host class by 

genetic group indicates their relative degree of genetic relatedness. Each legend next to 

the plots indicates the host followed by the Hafiiia group.

Discussion

Contributions of recombination and mutation in the two genetic groups of the 
genus Hafnia
Genome diversity and haplotype diversity in the two groups of Hafnia were 

considerably higher compared to other studies that have used MLST to observe the 

extent of genetic diversity in bacterial populations (Urwin and Maiden 2003). This is
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partially due to the fact that the strains in this study were commensal isolates that were 

recovered from a diverse range of non-domesticated hosts collected across a continent. 

In contrast, the majority of MLST studies have investigated clinical isolates, which in 

many cases, only represent a single clonal population of the species (Feil and Enright 

2004).

The different approaches used to examine the extent to which recombination shapes the 

genetic structure of the two Hafiiia groups yielded conflicting results. The intragenic 

recombination to mutation ratio estimates calculated by two different algorithms 

(RECOMBINE and LDhat) suggest that recombination is more predominant within 

group 2 strains in comparison to group 1 strains. However, these results must be 

interpreted with caution, as estimates of r//x are only valid when certain assumptions are 

met (Stumpf and McVean 2003). One of the crucial assumptions is that the variation 

observed in the genes under study is not a consequence of selection (McVean et al. 

2002). The six genes examined in the present study are housekeeping genes and 

therefore it is generally thought that variation in these genes should reflect largely 

neutral variation. However, the observation that the type of host from which the strains 

were isolated explained a significant amount of the variation in most of these genes 

suggests that selection is shaping the observed sequence variation (Tables 9, 10). Given 

that significant host effects were detected more frequently in group 2 strains compared 

to group 1 strains, it is difficult to determine if the greater r//x estimates for group 2 

strains reflect higher rates of intragenic recombination or if it is a bias due to the 

consequences of selection. Although there was a lack of data for some genes, the 

results of the homoplasy ratio tests, whilst suggesting that recombination has occurred, 

did not indicate that the rate of intragenic recombination differed between Hafnia 

groups. Compared to the r//x estimates, the split decomposition analysis suggested more 

intragenic recombination among strains of group 1 than those of group 2.
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Analyses investigating intergenic recombination also gave rise to conflicting outcomes. 

The results of both the ILD tests and the SH tests are consistent with the idea that 

recombination shapes the genetic structure of Hafiiia. Whilst the ILD test results 

suggests that group 2 strains have a more clonal genetic structure than do group 1 

strains, the results of the SH tests provide little evidence that the importance of 

intergenic recombination differs among Hafiiia groups.

The repeated isolation of identical haplotypes from different hosts or geographic 

locations is also a hallmark of a clonal genetic structure. For Hafiiia group 2 strains, 

identical haplotypes were more common and often collected from different hosts or 

localities than was the case for group 1 strains. Thus the balance of the results would 

suggest that Hafiiia group 2 strains are more clonal than Hafiiia group 1 strains.

How does the genetic structure of the two Hafiiia groups compare with other members 

of the Enterobacteriaceae? The degree of clonality in these two Hafiiia groups, when 

compared using the standardised index of association, is similar to that of E. coli (stnd 

IA = 0.29 with 197 non-pathogenic isolates) and < that of S. enterica (stnd IA = 0.49 with 

249 isolates; based on the allelic profile provided by M. Achtman; website: 

http://web.mpiib-berlin.mpg.de/mlst/). Thus the two Hafnia species would be said to 

have a moderately clonal genetic structure (Maynard Smith et al. 1993).

Conclusion
The two Hafiiia species were found to differ in their population genetic structure; group 

2 strains constitute a more clonal structure in comparison to those of group 1. The 

degree of selective pressure that is created by the host is acting differently upon the two 

Hafiiia groups, with group 2 strains sharing a greater amount of host adaptation than

http://web.mpiib-berlin.mpg.de/mlst/
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group 1 strains. At present the importance of recombination versus mutation in shaping 

the genetic structure of these two Hafiiia groups can not be determined. To better 

address the question, longer sequences containing more neutral genetic variation (i.e. 

regions that have a certain amount of functional constraint on the coding protein) is 

needed.
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Chapter 7

General discussion

Life history of the two Hafnia species
This study has shown that the two genetic groups of Hafnia are indeed distinct species. 

The results of the phylogenetic analyses suggest that Hafiiia group 2 evolved from group 1. 

Hafiiia group 2 appears to exhibit a more clonal genetic structure than does Hafiiia group 1, 

but there is no compelling evidence to suggest that the relative importance of mutation 

versus recombination differs substantially among the two groups of strains. Overall, the 

degree of clonality in both Hafnia groups is comparable to that of non-pathogenic 

Escherichia coli.

A comparison of the ecological characteristics of the two Hafnia species is presented in 

Table 1. Both Hafiiia species are most commonly isolate from hosts living in temperate 

regions, and rarely recovered from hosts in desert or tropical regions (Gordon and 

FitzGibbon 1999; D.M. Gordon, personal communication). Both Hafnia species are most 

likely to be isolated from ectotherms and are rare in birds (D.M. Gordon, personal 

communication). The majority of Hafiiia group 1 strains isolated from mammals were 

recovered from hosts with a body mass of < 200 g, whereas group 2 strains from mammals 

were found in hosts of any body size. Group 2 strains were quite common in fish, but 

group 1 strains were not. For group 2 strains host effects explained a substantial fraction of 

the observed phenotypic and genotypic variation, but accounted for a smaller fraction of the 

variation observed in group 1 strains. Overall the two Hafnia species are isolated at equal 

frequencies from the intestinal tracts of vertebrates and appear to be equally frequent in 

water samples (J. Wyer, personal communication).
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Table 1. Summary of the differences between the two Hafnia species.
G roup 1 G roup 2

D is trib u tio n  in:

M am m als sm all m am m als any body size

R eptiles any any

Fish rare any (m ost a b u n d a n t)

H ost e ffe c t in:

B iochem ica l tra its s tro n g s tro n g

S equence v a ria tio n m o d e ra te s tro n g

G row th ra te va ria tio n none s tro n g

B acte rioc in  p ro d u c tio n rare fre q u e n t

O the rs m ea t co n ta m in a n t 

v e te r in a ry  s ign ificance

hum an c lin ica l s ign ificance

What are the ecological niches of these two Hafnia species? The life-history characteristics 

of members of the Enterobacteriaceae indicate that the relative importance of the host 

versus external environment varies among species. Species such as E. coli are 

predominantly host adapted, whist other species such as Rahnella aquatilis appear to 

exhibit a more free-living lifestyle (Ledere et al. 2001). All of the evidence indicates that 

aspects of host biology shape the phenotypic and genotypic characteristics of group 2 

strains to a greater extent than for group 1 strains. Bacteriocin production is more prevalent 

in group 2 strains and bacteriocin production has been shown to mediate intra-strains 

interactions in the mouse intestinal tract (Kirkup and Riley 2004). Do group 1 strains then 

exhibit a more free-living life style? Whilst group 1 strains are apparently as likely to occur 

in a host as group 2 strains perhaps they are less capable of persisting in a host than are 

group 2 strains. If this were true, then it would imply that group 1 strains are more capable 

of persisting in external environments than are group 2 strains (Davis and Gordon 2002). 

The observation that group 1 and 2 strains are detected at similar frequencies in water
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samples is at odds with this hypothesis, but perhaps the survival of the two groups is 

different in soils and sediments.

Future directions
The relative fitness of the two Hafiiia species in the gastrointestinal tract may be 

investigated using in vivo competition experiments with animal models such as rats, skinks 

and guppies (Kirkup and Riley 2004). Based on the observation of a stronger host effect in 

shaping the genetic and phenotypic variation in group 2, the expected outcome will be that 

group 2 strains will win more often than group 1 strains. By contrast, competition trials in 

soil, water and sediment will provide information on the relative fitness of the two Hafnia 

groups to conditions in the external environment of the host (Bogosian et al. 1996). It is 

expected that group 1 strains will exhibit better survival in these trials, but that the extent of 

the fitness advantage may vary depending on the nature of the environmental conditions 

(eg. soil versus water).

Other molecular genetic approaches may provide further information on the evolutionary 

origin and subsequent speciation of Hafiiia group 2 from group 1. Genome subtraction 

may shed some light into the genes responsible for adaptation to the gut environment. 

Investigation of the genetic relationship of isolates from human-related sources (clinical 

samples, food, domesticated animals and humans faeces) to the commensal isolates may 

identify potential reservoirs of these strains. Such information may contribute to better 

measures for controlling disease and food contamination. Virulence factor identification 

and subsequent development of a standard screening protocol may aid in clinical typing of 

Hafiiia strains, in particular, virulence factors responsible for septicemia (e.g. adhesin gene 

cluster, Babai et al. 1997) and peritonitis (Gunthard and Pennekamp 1996; e.g. hemoglobin 

protease, Otto et al. 2002; degS, Redford et al. 2003).
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The methods used in this study to elucidate the ecological and genetic structure of Hafnia 

may be applied to other bacterial populations of which their structures are currently poorly 

understood (e.g. Klebsiella pneumoniae, Enterobacter cloacae). An understanding of the 

intricate relationship of bacterial populations can only be achieved by extensive 

investigation using a set of samples that best represents the distribution of the species as a 

whole. Not until more bacterial species are studied may we start to understand the true 

nature of bacterial population structures and how they evolve.
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