
Social Behaviour and Breeding 

Biology of the Yeliow-Rumped

Thornbill

Daniel Ebert

A thesis submitted for the degree of Doctor of 

hilosophy of The Australian National University

April 2004



Declaration

The research presented in this thesis is my own original work and no part has been 

submitted for a previous degree.

Signed

Daniel Ebert 

April 2004



Dedication

In memory of

Anjeli Catherine Nathan

18 March 1975 -  3 November 1999



Acknowledgements

This thesis was a work in progress, or not, for some years and many people made 

significant contributions of supervision, assistance or support.

My supervisor, Rob Magrath, and Andrew Cockburn and David Green were instrumental in 

promoting thombill research as a worthwhile pursuit. I thank them for their contributions to 

the formulation of this project and their interest in my work. Rob Magrath’s particular 

combination of insight, knowledge and patience was invaluable throughout this study. I am 

also grateful for the general advice and guidance of Rob Heinsohn and Sarah Legge.

This project involved many early morning mist-netting sessions which would have been 

even more “miss” than “hit” without the enthusiastic assistance of numerous volunteers. 

David Green, Mike Double, James Nicholls, Sarah Legge, Anjeli Nathan, Janet Gardner, 

Nie MacGregor, Rob Heinsohn, Rob Magrath, Andrew Cockburn and Peter Marsack all 

cheerfully participated in the usually unrewarding exercise of netting thombills in the mist 

and cold.

I’m especially grateful to Steve Murphy for his competence and enthusiasm in the field and 

his impressive ability to find thombill nests after half an hour of “training”.

Minisatellite DNA fingerprinting is an error-prone and frustrating procedure usually 

requiring good fortune as well as good management for success. In my case neither was 

required due to the skilled supervision of Sarah Legge. Others who provided guidance and 

advice on DNA fingerprinting and molecular sexing were Angela Higgins, Mike Double, 

Simon Gilmore, Stephen Yezerinac and Ginny Sargent.

I owe Sarah Legge, Janet Gardner and Rose Andrew a special debt of gratitude for cracking 

down on my lackadaisical approach to deadlines, forcing me to write and reading what I 

wrote. The production of this thesis would have been an even more painful process without 

the editorial assistance of Rose Andrew in particular, who took on the time-consuming



tasks of formatting tables, figures, text and references without being asked, and Merri 

Andrew, who proof-read text.

My employer, Rod Peakall, has accepted the inconvenience I have caused while writing 

this thesis with friendly understanding, and even encouragement, for which I am grateful.

The reaction of many people to Anjeli’s death in 1999 demonstrated a kindness and 

generosity of spirit that was deeply appreciated at the time and is inspiring still. In 

particular I thank my family for their support and Liz and Vis Nathan for their kindness and 

indulgence.



Abstract

This study describes the breeding biology, mating and parental care systems and 

social organization of the yellow-rumped thombill (Acanthiza chrysorrhoa, Pardalotidae) 

and the mating and parental care systems of the buff-rumped thombill (Acanthiza 

reguloides). I studied populations of both species in a woodland reserve on the outskirts of 

Canberra, Australia between 1995 and 1998.

Yellow-rumped thombills bred in pairs or small groups comprised of a single 

female and up to three males. Groups formed via the philopatry of the male offspring of a 

breeding pair. Over three years from 1995 to 1997 cooperative groups comprised 13.5% of 

breeding units. The breeding biology and demography of the yellow-rumped thombill were 

typical of its family. Females laid from one to three clutches, usually of three eggs, over a 

breeding season of 3.6 months. Breeding success was low and most clutches failed before 

fledging. Overall, 60% of breeding units succeeded in fledging young in each season and 

the mean number of fledglings produced per female per year was 2.02. In comparison with 

a previous study of the species, the yellow-rumped thornbills studied here had a much 

shorter breeding season, and much lower reproductive success due to higher rates of nest 

predation. These disparities highlight the effects of multi-brooding and nest predation on 

productivity of species exhibiting the “long and slow” breeding biology characteristic of the 

Pardalotidae.

Nest predation was overwhelmingly the major cause of breeding failure in yellow- 

rumped thombills accounting for at least 85% of clutches that failed to fledge. Changes in 

predation rates between incubation and nestling phases of the nesting cycle and over the 

breeding season indicated an important role for the pied currawong (Strepera graculina) in 

predation of yellow-rumped thombill nests. Nest predation was more severe on broods of 

nestlings than on clutches of eggs and the rate of predation on nestlings peaked in 

November of each year. This peak corresponds with the period in late spring when pied 

currawongs take the nestlings of small birds to feed their own broods. The stage-specific 

patterns of predation on yellow-rumped thombill nests provide an example of variable rates 

of nest predation that cannot be explained on the basis of characteristics of the prey species, 

such as nest concealment and the behaviour of parents and nestlings.



Assessment of parentage using minisatellite DNA fingerprinting revealed that 

both the yellow-rumped thombill and the buff-rumped thombill were overwhelmingly 

monogamous. Social sires, including dominant males in cooperatively breeding groups, 

were the genetic sires of 95.3% of yellow-rumped thombill nestlings and 96.9% of buff- 

rumped thombills. Such low rates of female infidelity indicate that helping behaviour in 

these species is not directly related to helpers gaining paternity in the brood. Genetic 

assessment of relatedness among members of cooperative groups confirmed that helpers of 

both species were usually the sons of the breeding pair they assisted. This result, in 

combination with the monogamous mating systems of both species, means that helpers 

almost always helped raise close relatives, sibs or half-sibs, thus promoting the potential for 

helpers of both species to gain indirect kin-selected benefits of helping.

Yellow-rumped thombills and buff-rumped thombills differed in their patterns of 

parental care. Parents did not change their individual provisioning rates when assisted by 

helpers in the yellow-rumped thombill and provisioning was therefore additive in 

cooperative groups. In the buff-rumped thombill, parents compensated for the contributions 

of helpers by reducing their individual feeding rates and total provisioning rates of pairs 

and cooperative groups were equal. This difference suggests that either the benefits of 

helping or the costs of provisioning differ between these two species despite the general 

similarity of their breeding biologies and mating systems.

A combination of field observation and genetic methods was used to describe the 

non-breeding social organisation of the yellow-rumped thombill. Censusing over the non

breeding period confirmed that yellow-rumped thombills overwintered in coherent flocks 

of stable membership which were largely continuous between years. Flocks formed through 

the affiliation of multiple breeding units (pairs or groups) and some of their juvenile 

offspring. Flocks occupied large home-ranges which generally overlapped substantially 

with those of neighbouring flocks. Genetic assessment of relatedness revealed that yellow- 

rumped thombill flocks were mixtures of kin and non-kin and that kinship resulted from 

male natal philopatry. The combination of sex biased dispersal, the mixture of kin and non

kin and the lack of territoriality defines a highly unusual non-breeding social organisation. 

Together with studies of other Pardalotidae, these results highlight the diversity and 

complexity of social organisation in the non-breeding season, an aspect of avian social 

organisation that has been largely overlooked.
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CHAPTER 1

General introduction

This thesis describes the social organization, breeding biology and mating system of 

the yellow-rumped thombill, Acanthiza chrysorrhoa, and the mating and parental care 

systems of the buff-rumped thombill, Acanthiza reguloides. Four of the chapters are written 

as discrete units in a form suitable to submit for publication. As such, the pertinent 

literature is addressed in the introductions and discussions of each chapter. The purpose of 

this introduction, therefore, is to provide a general overview of the themes developed in the 

following chapters, introduce the study species and outline the structure of the thesis.

The original goal of this thesis was to provide a comprehensive comparison of the 

breeding systems and social organizations of two cooperatively breeding thombill species. 

This objective was abandoned after the occurrence of a disease epidemic in the study 

population of buff-rumped thombills. As this event effectively forced a change in the 

direction and emphasis of the research described in this thesis, some comment is warranted 

on the nature of the epidemic and its consequences.

The capture and banding of thombills began at the start of the 1995 breeding 

season. At first, most effort was devoted to the yellow-rumped thombill but during the 

1996 breeding season a concerted effort was made to capture and band a study population 

of buff-rumped thombills. All capture and banding techniques, including the bands used, 

were according to the guidelines of the Australian Bird And Bat Banding Scheme and were 

carried out under the necessary permits issued by the A.B.B.B.S. and local authorities. In 

the winter of 1997 a number of banded buff-rumped thombills developed swollen lesions 

on their legs that were ultimately fatal. In light of the fact that yellow-rumped thombills, 

which are slightly larger than buff-rumped thombills, did not appear to suffer the same 

disease it was originally assumed that the problem arose from the size of the plastic colour 

bands. Intensive mist-netting was carried out and the colour bands on as many birds as 

possible were replaced with modified bands of a smaller diameter. This did not provide a 

long-term solution and in the winter of 1998 the problem recurred. Again, with the
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assistance of many volunteers, a concerted effort was made to recapture marked birds, this 

time to remove their bands. The A.B.B.B.S. was fully informed of the situation upon the 

first outbreak of disease, approved the attempt to solve the problem by modifying the 

diameter of colour bands, and established a moratorium on the colour banding of buff- 

rumped thombills.

There were two major consequences of these events. First, the time and effort 

required to monitor and recapture banded buff-rumped thombills was substantial and 

reduced the investment that could be made in the collection of data on both buff-rumped 

and yellow-rumped thombills. Second, the data that was compiled on the demography and 

breeding biology of buff-rumped thombills was compromised by the artificial increase in 

mortality. For these reasons this thesis is predominantly concerned with the biology of the 

yellow-rumped thombill. However, a substantial amount of data was collected on the 

mating system and parental care behaviour of buff-rumped thombills in the breeding 

seasons of 1996 and 1997. The first outbreak of the leg disease afflicting buff-rumped 

thombills occurred in the winter between these two seasons, however, there were no 

significant changes in mating system and parental care variables between 1996 and 1997 

(Chapter 4). For this reason, data pertaining to the mating system and parental care 

behaviour of the buff-rumped thombill is included in this thesis.

The Pardalotidae

The yellow-rumped thombill and the buff-rumped thombill belong to the old 

endemic Australian family, Pardalotidae, which comprises a large group of small 

insectivorous passerines 49 of which are resident in Australia. In this thesis I follow the 

taxonomy of Christidis & Boles (1994). The family consists of three subfamilies: the 

speciose Acanthizinae includes the thombills, gerygones, scrubwrens and allies; the 

Pardalotinae, the pardalotes; and the Dasyomithinae, the bristlebird and pilotbird. 

Compared with other Australian families, the social organisation and breeding biology of 

the group is relatively well described, although the majority of studies have focused on 

members of one subfamily, the Acanthizinae.

There is considerable variation in the social organization, parental behaviour and 

dispersal patterns among members of the Acanthizinae. Some species breed as simple pairs 

(e.g. the brown thombill, A. pusilla, Bell and Ford 1986; Green and Cockbum 1999) while 

others breed cooperatively (e.g. white-browed scrubwren, Sericomis frontalis, Whittingham

2



et al. 1997; Magrath 2001). However, the categorisation of species as “pair-breeders” and 

“cooperative breeders” appears to be simplistic in regard to the social organizations of 

members of the Acanthizinae. Behaviours that are usually associated with cooperative 

breeding are displayed by pair-breeding species and vice versa. For example, in the brown 

thombill juvenile males often delay dispersal until the beginning of the following breeding 

season, behaviour that is more typical of cooperative breeders (Green and Cockbum 2001). 

However cooperative breeding never occurs in the brown thombill and even philopatric 

males that do not find mates as yearlings do not become helpers at their parent’s nests. 

Instead, they occupy vacant territories or small areas annexed from their parent’s territories 

as solitary males (Green and Cockbum 1999). Speckled warblers, Chthonicola sagittata, 

breed as pairs or groups consisting of a female with two males (Bell 1984; Tzaros 1996; 

Gardner et al. 2004). However, as a group living and polyandrous species the speckled 

warbler is unusual in that subordinate males never help to raise offspring produced by the 

group, despite the fact that they sometimes gain paternity (Gardner et ai. 2004). White- 

browed scrub wrens are frequent cooperative breeders with groups comprised of a dominant 

breeding pair and subordinate males. Subordinate males fall into two categories: those that 

do help at the nest of the dominant pair and those that do not (Magrath and Whittingham 

1997). Subordinates are more likely to help if they are unrelated to the breeding female, 

indicating that, although groups form largely by natal philopatry and are therefore family 

based, helping by subordinate males is related to the pursuit of mating opportunities within 

the group rather than the opportunity to help raise collateral kin (Whittingham et al. 1997).

Despite relatively detailed knowledge of the breeding systems of these species, very 

little is known about social organization in the non-breeding season. Nevertheless, several 

species are known to form intraspecific flocks in winter including the speckled warbler, 

buff-rumped, yellow-rumped and striated thombills, Acanthiza lineata (Bell and Ford 1986; 

Gardner 2004). There appear to be differences in the social composition and structure of 

winter flocks of buff-rumped thornbills and speckled warblers, which may indicate 

differences in the function of flocking behaviour. For example, speckled warblers form 

flocks of unrelated individuals while those of buff-rumped thombills comprise clans of 

male and female relatives (Bell and Ford 1986; Gardner 2004), suggesting a role for both 

kin selection and individual fitness in flock formation in the Acanthizinae
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Study species

Both the yellow-rumped thornbill and buff-rumped thombill have been the subject 

of detailed study previously. Ford (1963) described some of the basic characteristics of 

breeding in the yellow-rumped thombill, and Bell and Ford (1986) provided a description 

of both breeding biology and social organization in the buff-rumped thombill. Both species 

are cooperative breeders; however, information on cooperative breeding in the yellow- 

rumped thombill is limited to anecdote. The only observations of marked birds in the 

literature are those of Immelman (1960) and Ford (1963), neither of whom described the 

frequency of cooperative breeding or the composition of cooperative groups. In the better 

known buff-rumped thombill, cooperative breeding is fairly common, with groups 

accounting for approximately 32% of breeding units in the study of Bell and Ford (1986), 

and appears to be kin-based. Groups are comprised of a breeding pair and one or two of 

their male offspring from previous breeding seasons (Bell and Ford 1986). At the end of the 

breeding season, neighbouring families coalesce into stable and winter flocks of up to 15 

individuals that occupy flock territories encompassing the breeding territories of resident 

flock members (Bell and Ford 1986). The formation of winter flocks of stable membership 

via the merging of multiple breeding units is an unusual social structure, although it appears 

to be very similar to that of the well studied European long-tailed tit, Aegithalos caudatus 

(Hatchwell et al. 2001a), and may occur widely among the thombills (Bell and Ford 1986; 

Nicholls et al. 2000). The winter social organization of the yellow-rumped thombill is 

undescribed, although they are known to form flocks (Bell and Ford 1986).

Despite considerable knowledge of some characteristics of breeding biology and 

social organization in the thombills, much remains to be understood. In particular, recent 

advances in molecular techniques now enable a much finer resolution of the genetic 

relationships of group members, as well as gender identification and assessment of 

parentage. Indeed, the use of such techniques has led to the recognition of the complexity 

and diversity of mating systems, and has refocused the debate on traits that shape social 

organization (Cockburn 1998).

The research described in this thesis combines the use of molecular techniques and 

behavioural observations to describe the mating system of buff-rumped and yellow-rumped 

thombills, and the breeding and non-breeding social organization of yellow-rumped 

thombills; areas where major gaps in our knowledge exist. The diversity of behaviours
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exhibited by closely related species within the Pardalotidae provide valuable comparative 

data and are informative in identifying traits that shape social organization.

Thesis structure

This thesis consists of four data chapters with a concluding chapter providing a 

summary of results and suggestions for future work. In Chapter 2 I describe the breeding 

biology of the yellow-rumped thombill, providing data on breeding cycle and season, 

degree of multi brooding, dispersal and reproductive success. My results are compared with 

those of Ford (1963) and are discussed in the context of recent work on other Pardalotidae 

species.

Nest predation was the most important cause of reproductive failure for yellow- 

rumped thombills and in Chapter 3 I explore patterns of predation in detail. I show that 

predation risk varies according to stage of the breeding cycle and over the breeding season 

and discuss the likely causes and consequences of this variation.

Chapter 4 examines the mating and helping systems of yellow-rumped and buff- 

rumped thombills. I use DNA fingerprinting to classify the genetic relationships among 

members of cooperative groups, and to assess the parentage of young raised by pairs and 

groups. By observing provisioning behaviour at nests, I quantify the contributions to brood 

care made by different individuals, and relate this to the mating system as revealed by DNA 

fingerprinting.

The social organization of yellow-rumped thombills in the non-breeding season is 

described in Chapter 5. I use census data to track the identity of flock members over three 

winters, and to describe the ranging behaviour and spatial relationships of each flock. The 

genetic structure of flocks is investigated using DNA fingerprinting. Comparisons with 

other winter-flocking species provide valuable insights into the function of flocking 

behaviour in yellow-rumped thombills.
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CHAPTER 2

The breeding biology of the yellow-rumped thornbill

INTRODUCTION

The majority of studies of avian life history and breeding biology have been carried 

out on northern hemisphere species (Martin 1996). In the case of the passerines this 

represents an important phylogenetic bias as the vast majority of northern hemisphere 

species are members of a single clade, the Passerida (Sibley and Ahlquist 1990; Barker et 

al. 2002), and are therefore unlikely to be representative of the passerines as a whole. The 

“old endemic” passerine families of Australia, for example, are thought to be characterised 

by life history and breeding biology traits which contrast markedly with those typical of 

Passerida species. They are longer lived and are thought to exhibit longer and slower 

reproduction characterised by small clutches, long breeding seasons and extended periods 

of juvenile development and post-fledging dependence (Woinarski 1985; Magrath et al. 

2000; Russell 2000). They are also far more likely to breed cooperatively (Russell 1989; 

Cockbum 1996). Attempts to explain differences such as these in terms of environmental, 

ecological and phylogenetic factors have been hindered by a lack of quantitative 

information on the life histories and breeding biologies of southern hemisphere species 

(Martin 1996; Magrath et al. 2000; Russell 2000).

Recent comparative studies have highlighted the role that basic traits of life-history 

might play in the evolution of social aspects of avian breeding systems, such as cooperative 

breeding and mating strategies (Poiani and Jermiin 1994; Poiani and Pagel 1997; Arnold 

and Owens 1998; Arnold and Owens 2002). The analyses of Arnold and Owens (1998; 

2002) in particular stress the importance of traits such as adult mortality and fecundity in 

the evolution of avian breeding and mating systems. Low rates of adult mortality are 

strongly associated with the frequency of cooperative breeding in avian families (Arnold 

and Owens 1998), while high rates of adult mortality and high fecundity are strongly 

associated with promiscuous mating systems and other forms of reproductive cheating such 

as intraspecific brood parasitism (Arnold and Owens 2002).
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The Australian passerine family Pardalotidae is especially interesting in this light as 

its members have diverse social systems but very similar life-histories. The Pardalotidae is 

thought to be a typical old endemic Australian family in terms of life-history and breeding 

biology with its members characterised by high adult survival, low fecundity and “long and 

slow” breeding (Woinarski 1985; Ford 1989; Green and Cockbum 1999; Magrath et al. 

2000). Furthermore, recent studies have highlighted the apparent uniformity of members of 

the family in terms of these life-history and breeding biology traits (Green and Cockbum 

1999; Magrath et al. 2000). In spite of this relative uniformity, detailed study of breeding in 

a small number of Pardalotidae species has revealed diverse social systems. The brown 

thombill, Acanthiza pusilla, is a strict pair-breeder with a monogamous mating system 

(Bell and Ford 1986; Green and Cockburn 1999; Green et al. 2002) while the white-browed 

scrubwren, Sericornis frontalis, and speckled warbler, Chthonicola sagittata, are group 

living species with variable parental care systems and complex polyandrous mating systems 

(Whittingham et al. 1997; Gardner 2004). The apparent dissociation of social 

characteristics from those of life-history and breeding biology is emerging as a feature of 

the Pardalotidae with important implications for social evolution within this speciose 

Australian family (Green and Cockburn 1999). However, very few members of the 

Pardalotidae have been studied in detail and apart from easily measured traits, such as 

clutch size, knowledge of demography, breeding biology and social behaviour is anecdotal 

or incomplete for the majority of species.

In this chapter I describe the basic reproductive biology, demography and social 

organisation of breeding in the yellow-rumped thombill, Acanthiza chrysorrhoa. The genus 

Acanthiza is of particular interest in the context of the evolution of avian breeding systems 

as it includes species such as the brown thombill, which is strictly pair breeding, although 

cooperative breeding is the ancestral condition in the genus and is thought to be exhibited 

by most thombills (Nicholls et al. 2000). Acanthiza thus represents a case where pair

breeding species have evolved from a cooperatively breeding ancestor, an evolutionary 

scenario that is now thought to have occurred numerous times in the evolution of the 

passerines (Cockbum 2003; Heinsohn and Double 2004). The potential for the thombills to 

elucidate processes of social evolution has been limited by the lack of comprehensive 

information on their breeding biology and behaviour and only one pair-breeding species, 

the brown thombill, and one cooperatively breeding species, the buff-rumped thombill, 

Acanthiza reguloides, have been studied in detail (Bell and Ford 1986; Green and
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Cockbum 1999). In this chapter I aim to extend the observations of Ford (1963), who 

described some aspects of breeding in the yellow-rumped thombill, and provide a 

comprehensive description of another cooperatively breeding member of the Pardalotidae.

METHODS 

Species and study site

Yellow-rumped thombills are small insectivorous passerines endemic to Australia. 

The species is the most widespread thombill and is abundant in south-eastern and south

western continental Australia and Tasmania (Blakers et al. 1984; Christidis and Boles 

1994).

I studied the population of yellow-rumped thornbills on the lower eastern slopes of 

the Mt Ainslie section of Canberra Nature Park (35°16’S, 149°9’E), in the Australian 

Capital Territory (ACT), from 1995 to 1997. The study area was approximately 250ha of 

open eucalypt woodland dominated by E. rossii, E. mannifera and E. macrorhyncha with a 

sparse shrubby understorey interspersed with cleared grassy areas.

Field techniques

Adult birds were captured in mist nets and banded with a numbered aluminium 

band, supplied by the Australian Bird and Bat Banding Scheme, and a unique combination 

of three coloured plastic bands. The breeding population in the first year of the study, 1995, 

contained numerous unbanded birds. However, in 1996 and 1997, due to the survival of 

birds banded in earlier years and sustained mist netting during breeding and non-breeding 

periods, the vast majority of breeding individuals was banded. There was only one pair in 

1996 and another in 1997 where neither bird was banded.

The social organisation of breeding units was assessed by observation throughout 

the breeding cycle. The classification of pairs and groups was generally straightforward in 

that supernumerary individuals were usually present from the start of the breeding season 

and were observed foraging with the breeding pair regularly during the nest-building and 

incubation stages of the breeding cycle.
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Adult survival was assessed for two years, 1995 and 1996, from the start of the 

breeding season, 1st of August, in the first year until the same date in the following year. 

Banded fledglings were monitored for survival until four weeks after fledging.

Nests were found by watching building birds, following females during incubation 

or following birds seen collecting prey to feed nestlings. Nests were visited regularly to 

determine the clutch initiation date for those found before laying, clutch size and hatching 

date for those found before hatching, and the fate of the nesting attempt, either fledging or 

failure. The incubation period, the number of days from the date of laying of the last egg to 

the date of hatching of the last nestling, was determined for a sample of clutches as was the 

nestling period, the number of days from the date of hatching to the date of fledging. 

Average incubation and nestling periods determined for these nesting attempts were used to 

back-date from hatching or fledging dates to estimate clutch initiation and hatching dates 

for those nesting attempts that were found at later stages. Nestlings were briefly removed 

from the nest for banding and blood sampling when they were between seven and 13 days 

old. The size and stage of feather development of nestlings of known age were used to 

estimate the ages of broods from nests that were found after hatching, and this estimate and 

the average incubation period was also used to estimate clutch initiation dates for these 

nesting attempts.

Nest predation was very high in the first two years of the study and in order to 

increase sample sizes for some datasets all accessible nests in 1997 were protected from 

larger predators by enclosure with wire or plastic mesh with a 5cm mesh size.

Sexing

Yellow-rumped thombills are sexually monomorphic, and although only female 

birds were thought to incubate (Ford 1963), the sex of all banded birds was determined with 

a simple PCR based sexing technique (Griffiths et al. 1996; Griffiths et al. 1998). Briefly, a 

small blood sample was taken at the time of capture and DNA extracted according to 

standard protocols (Bruford et al. 1992). A small section of the sex linked CHD gene was 

amplified using primers P2 and P3 and standard PCR methods (Griffiths et al. 1996) and 

digested with the enzyme Haelll. This enzyme does not cut the fragment amplified from 

the CHD-W gene, which only occurs in females, but does cut the equivalent fragment 

amplified from the CHD-Z gene. Digested PCR products were separated by electophoresis 

through 3% agarose in 1 X TBE buffer for one hour at 150V, stained with ethidium



bromide and photographed. The sex-specific banding pattern was unambiguous and easily 

scored with males producing two bands (cleaved CHD-Z fragments) and females three 

(cleaved CHD-Z fragments and the uncleaved CHD-W fragment).

Data analysis

Reproductive success was assessed with three analyses, the probability of clutches 

that were initiated hatching, the probability of clutches that hatched fledging and the overall 

success rate of breeding pairs in each year in terms of success or failure to fledge any 

offspring and in terms of the number of offspring fledged. Only pairs that were known well 

enough to be sure that all nesting attempts were monitored were included in the analysis of 

overall yearly success rates. The independent variables tested for their effects on 

reproductive success were year, month of clutch initiation for probability of hatching, and 

month of hatching for probability of fledging.

Nest protection in 1997 was not random with regard to height and nests left 

unprotected may not have been representative in terms of their inherent risk of predation. 

Furthermore, predators may have modified their behaviour in response to the protection of 

a subset of nests. For these reasons apparent differences in reproductive success variables 

between 1995 and 1996 arising from analyses including 1997 data were verified by 

repeating the analysis excluding 1997 data. Wherever 1997 was included in analyses of 

reproductive success or the description of predation rates, protected nests were excluded 

and all breeding pairs that had one or more nest protected in 1997 were excluded from the 

analysis of overall success rate for the year.

Some datasets contained non-independent measurements, where breeding pairs 

were represented more than once within and between years. Analyses of reproductive 

success were performed on modified datasets where a single instance of each breeding pair 

in the initial dataset was randomly selected in order to achieve independence of data. The 

same modifications were not made for simple descriptive statistics, such as timing of the 

breeding season, clutch sizes and the durations of incubation and nestling periods.

Data were analysed using JMP ver. 3 (SAS Institute 1994). Categorical response 

variables, such as probability of hatching, were analysed using logistic regression and 

statistics presented below are likelihood ratio x2 s- Continuous response variables, such as 

weight or incubation period, were analysed using standard least squares statistics. Sample
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sizes for many related analyses differ due to variation in the stage at which nests were 

found, and when they ended in the case of predated nests, and also due to variation in the 

details known of nests that were too high to access.

RESULTS

Breeding Biology

Nesting

Yellow-rumped thombills built bulky domed nests comprised mostly of grass and 

spider’s silk and lined with feathers in a variety of native tree and shrub species including 

Eucalyptus spp. (52%), the native cherry, Exocarpus cupressiformis, (12%), Acacia spp. 

(9%), mistletoes in eucalypts (9%) and Hakea spp. (6%) as well as the weed species briar 

rose, Rosa rubiginosa, and hawthorn, Crataegus monogyna, (11%, total for both weed 

species).

The heights at which nests were built varied greatly and ranged from lm to 

approximately 20m from the ground (median nest height: 2.5m, n = 144). Of the 150 nests 

that were known to be active over the three years of the study 17% were unreachable as 

they were located high in the canopies of large eucalypts.

Both sexes participated in building and lining the nest. Subordinate birds in 

cooperatively breeding groups very rarely assisted with nest building and where 

subordinates were observed delivering nesting material their contributions were very minor 

in comparison with those of the breeding pair.

Birds started building nests in mid winter, June or July, although the earliest 

commencement of nest building was the 5th June 1996, more than two weeks before the 

winter solstice. The longest period between the start of nest building and clutch initiation 

was 62 days for the first pair to start building a nest in 1996. The shortest period between 

the start of nest building and clutch initiation was seven days for two pairs, both of which 

started building in September.

Old nests were re-used in 11% of nesting attempts (n = 150). The birds added a new 

nesting chamber to an old nest or relined the original nesting chamber.
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Breeding Season

The first clutches of the breeding season were initiated in August in all three years 

and overall 97% of all first clutches were initiated in August or September (Figure 2.1). 

The timing of second clutches, laid after failure or fledging, was broadly spread throughout 

the season from late August to early December and the few third clutches were initiated 

from late October to late November (Figure 2.1). Mac Arthur’s (1964) index of the length of 

the breeding season was 3.6 months. There was no difference among years in the timing of 

the last clutches of the season (ANOVA: F = 1.252,45, P = 0.29); however, there was a trend 

indicating that the synchrony of first clutches differed among years (Bartlett’s test for 

homogeneity of variances: F = 2.722, p = 0.06) and a significant difference in the timing of 

first clutches among years (Welch’s ANOVA: F = 5.42,28, P = 0.01). First clutches were 

initiated later in 1997 than in 1995 and 1996, and possibly more synchronously in 1995 

than in 1996 and 1997 (Table 2.1).

Clutch Size and Laying Interval

The most common clutch size for yellow-rumped thombills was three eggs (77% of 

97 clutches) followed by clutches of four (17.5%). Smaller clutches of two eggs (3%) or 

one (2%) may have resulted from egg loss during the laying or incubation periods.

Eggs appeared to be consistently laid at two-day intervals. No clutches were 

checked daily throughout the laying period; however, of 21 nests that were checked on two 

consecutive days before the last egg was laid all were found to contain the same number of 

eggs on both days. The number of eggs in 11 nests that were checked three days apart early 

in the laying period increased by only one and not two as would be expected for a one day 

laying interval. A two-day laying interval was confirmed for four nests that were checked 

on three consecutive days during the laying period.

Incubation, Nestling and Fledgling Care Periods

Incubation began on the day the last egg was laid and lasted from 15 to 20 days with 

a mean of 17.1 ± 1.14 (s.d.) days (n = 38). There was a decrease in the length of the 

incubation period over the course of the season (linear regression: F = 4.9i,36, n = 38, p = 

0.03; Figure 2.2). Only the female incubated the clutch.
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Clutches hatched roughly synchronously with all eggs in seven clutches that were 

checked on consecutive days hatching within 24 hours. The nestling period lasted from 17 

to 21 days with a mean of 19.3 ± 1.4 (s.d.) days (n = 18). Females, alpha-males and 

subordinate males in cooperative groups all provisioned nestlings.

The period of fledgling care was at least four to five weeks. Seven broods were 

known to be fed by their parents for at least the first four weeks post-fledging and three 

were known to be fed for at least five weeks. It was likely that parental provisioning of 

fledglings extended beyond five weeks as no observations were made to determine the 

point at which fledglings became fully independent.

Multi-brooding

Yellow-rumped thombills initiated up to three clutches per season, although the vast 

majority of pairs initiated one or two clutches and rarely fledged more than one brood 

(Table 2.1). Renesting was more common following nesting attempts that failed than after 

the successful fledging of a brood (62% of 37 failed attempts versus 26% of 39 successful 

attempts, logistic regression: x = 4.16, df = 1, p = 0.04). Both for pairs that failed and for 

those that succeeded in fledging a brood there was a decline in the probability of initiating 

another clutch over the course of the breeding season (logistic regression: x = 32.4, df = 3, 

p < 0.0001; Figure 2.3). When pairs did renest, the delay from the end of the first attempt to 

initiation of the second clutch was significantly shorter following a failed nesting attempt 

(means of 13.4 days for 14 failed attempts and 28.8 days for 7 successful attempts where 

the delay was known, t-test: t = 2.61, df = 19, p = 0.02).

Reproductive Success

Overall 67.6% of clutches initiated hatched (n=102 clutches). The main cause of 

failure was nest predation (Chapter 3). The only other cause of failure identified was 

damage to nests and clutches by high winds (n = 3) followed by abandonment. Clutches 

initiated later in the breeding season, in October or November, had a greater chance of 

hatching (logistic regression: x = 9.7, df = 3, p = 0.02; Figure 2.4). There was no effect of 

year on the proportion of clutches hatching.

Of clutches that hatched, 53.6% fledged young (n = 69 broods). Again the main 

cause of failure was nest predation (Chapter 3). Other causes of failure included one brood 

parasitised by a Horsfield’s bronze cuckoo and another abandoned after the disappearance
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of the breeding female. There was a strong effect of year on the probability of broods 

fledging: only 33% of broods successfully fledged in 1995 compared with 64% in 1996 and 

91% in 1997 (Figure 2.5). The effect of year was significant in analyses including and 

excluding 1997 broods (logistic regressions, including 1997: % = 12.2, df = 2, p < 0.01 and 

excluding 1997: % = 7.1, df = 1, p < 0.01). There was a trend for fledging success to differ 

among months (logistic regression: % = 7.4, df = 3, p = 0.06), and in all three years broods 

that hatched in November fared poorly. Overall only 33% of 12 broods hatched in 

November fledged young compared with a success rate of more than 50% for other months 

(Figure 2.6).

Despite variation among years in the probability of broods fledging there was no 

statistically significant variation among years in the proportion of pairs that fledged young, 

the number of broods fledged per pair or the number of fledglings per pair. However, there 

was some indication that 1995 was a poor year in terms of per pair productivity as it was 

the only year where no pair succeeded in fledging more than one brood and, therefore, was 

also the year with the lowest number of fledglings per pair (Table 2.1). Small sample sizes 

due to the small number of banded pairs in 1995 and the exclusion of pairs with protected 

nests in 1997 may have compromised statistical power in detecting an effect of low 

fledging success in 1995 on productivity. One effect of variation in fledging success among 

years was apparent in the extent of reproductive investment required in each year to achieve 

the virtually equal annual success rates. The proportions of pairs that succeeded in fledging 

young was almost exactly 0.6 in all three years (Table 2.1). This equality was achieved by a 

greater breeding effort per pair in 1995 with 77% of pairs initiating more than one clutch in 

1995, when the fledging success of broods was lowest, compared with 52% in 1996 and 

37.5% in 1997.

Over three years, 76 banded fledglings from 27 broods were monitored for survival 

to four weeks post fledging. The overall proportion surviving to four weeks was 0.62 and 

there was no significant variation among years (Table 2.1).

Social Organisation and Demography

Cooperative breeding

The vast majority of yellow-rumped thornbills bred in pairs (Table 2.1). Over the 

three breeding seasons the overall frequency of cooperatively breeding groups was only
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13.5%, and ranged from 5% in 1996 to 15.8% in 1997. Cooperatively breeding groups 

consisted of a single female, an alpha-male and up to three subordinate male helpers (n = 9 

subordinates sexed, one group of 5 in 1998). Helpers contributed to the provisioning of 

broods that hatched later in the same breeding season in which they themselves fledged (n 

= 2) or in subsequent seasons (n = 4 birds that became helpers as yearlings). Two 

individuals were known to be helpers for two consecutive seasons. Six helpers were of 

known origin as they were banded as nestlings. Five of these provisioned subsequent 

broods of their own parents while the sixth originally helped provision a brood of his 

parents before moving to become a helper at a neighbouring breeding attempt.

Juvenile Dispersal

Juvenile males were commonly philopatric whereas all females dispersed. Of 19 

females that were banded as nestlings and were known to be alive four weeks after fledging 

none remained in the population at the start of the following breeding season. The latest a 

juvenile female was seen with her natal flock was mid January for two females which 

fledged late in the preceding breeding season and would have just been reaching 

independence at that time. In contrast, of 29 males which were banded as nestlings and 

were known to be alive four weeks after fledging 17 were still present in their natal flocks 

in July of the following year. Of these, five became breeding males and six became helpers 

in their first breeding season. The remaining individuals may have died, although it is more 

likely that some or all of them dispersed out of the study area early in their first breeding 

season.

Territoriality

Aggressive behaviour that might indicate territoriality, though not quantified in this 

study, was minor and although breeding pairs and groups were almost always found 

foraging in the vicinity of their nests, and were very rarely seen foraging with other birds, 

they apparently did not defend exclusive breeding territories. Birds that were not directly 

involved in a breeding attempt, in that they were not regularly associated with the breeding 

pair and did not build the nest or provision the nestlings, were observed in very close 

proximity to nests on numerous occasions. In these cases the owners of the nest often 

reacted aggressively by singing and displacing the “intruder”; however, they did not chase 

it a substantial distance in a manner consistent with the defence of a territorial area
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surrounding the nest. Based on cases where identification was possible, “intruders” were 

the juvenile male offspring of a neighbouring breeding pair (n = 4), a neighbouring 

breeding male (n = 3) and on one occasion a neighbouring breeding female. The juvenile 

males observed in these interactions often made repeated visits to nests containing nestlings 

to add small amounts of nesting material, rather than to feed the brood, and invoked very 

minor reactions from the owners of the nest. Two of the three “intruders” that were adult 

breeding males appeared to displace the original breeding male from a neighbouring 

breeding pair. In both of these cases one male appeared to replace another as the social 

mate of a female. However, in neither case did the apparently displaced male leave the 

general area of the nest: one continued to provision nestlings and the other continued to 

provision fledglings. One extra-pair copulation was observed. The extra-pair male appeared 

to stop provisioning his own nestlings for a period of several days in order to associate with 

a neighbouring female who was building a nest with her mate. The female’s original male 

was present when the extra-pair copulation occurred and made no attempt to prevent it or 

repel the “intruding” male.

DISCUSSION

Breeding Biology

Clutch size

Yellow-rumped thombills most commonly laid a clutch of three eggs, which is 

typical of the Pardalotidae (Woinarski 1985; Green and Cockbum 1999; Magrath et al. 

2000; Gardner 2002). Small and relatively invariant clutch sizes are characteristic of 

Australian passerines (Woinarski 1985; Ford 1989; Rowley and Russell 1991; Magrath et 

al. 2000), but clutch size may be slightly more variable in the yellow-rumped thornbill than 

other Pardalotidae species. Three egg clutches accounted for only 77% of clutches in 

comparison with 90% or more for the white-browed scrubwren (Sericornis frontalis), 

speckled warbler (Chthonicola sagittata) and brown thornbill (Green and Cockburn 1999; 

Magrath et al. 2000; Gardner 2002). Unlike these species, clutches of four eggs were not 

especially rare in the yellow-rumped thornbill and accounted for 17.5% of all clutches laid
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in this study. Ford (1963) also found four egg clutches to be comparatively common, 

accounting for 24.2% of clutches laid.

Ford (1963) suggested that there was an increase in clutch size from early to later 

in the breeding season. Although there was no statistically unequivocal seasonal pattern in 

clutch size for the population described here, there was, if anything, a trend opposite to that 

proposed by Ford. Only two of the 24 clutches (8%) laid after September contained four 

eggs whereas 15 of 68 (22%) laid in August and September were four egg clutches. Studies 

of non-migratory multi-brooded northern hemisphere species have found that clutch size 

generally peaks in the middle of the breeding season (Lack 1968; Klomp 1970; Crick et al. 

1993; Dhondt et al. 2002), a pattern generally thought to reflect variation in resource 

availability. The yellow-rumped thombill may be unusual among the Pardalotidae in 

exhibiting a resource based pattern of seasonal clutch size variation, although there is 

evidence to suggest that the small insectivores breeding in the eucalypt forests of Australia 

do not experience the dramatic spring-summer peak in arthropod abundance that occurs in 

the northern hemisphere (Woinarski and Cullen 1984; Ford 1989). Larger sample sizes and 

more information on potential covariates such as resource availability and female age and 

breeding history will be required to fully describe and understand clutch size variation in 

the yellow-rumped thombill.

Incubation and nestling periods

Long incubation periods are a feature of the Pardalotidae (Ricklefs 1993) and the 

mean period of 17.1 days for the yellow-rumped thombills in this study is similar those 

reported for other members of the family (Woinarski 1985; Green and Cockbum 1999; 

Magrath et al. 2000; Gardner 2002). As reported for the brown thombill (Green and 

Cockbum 1999) and the white-browed scrubwren (Magrath et al. 2000) the period for 

which yellow-rumped thombill clutches were incubated decreased over the course of the 

breeding season. This was probably due to the seasonal increase in ambient temperature, 

from a mean daily maximum of 13°C in August to 23°C in November, assisting females in 

maintaining optimal incubation temperatures later in the season.

The mean nestling period of 19.3 days for the yellow-rumped thombill is slightly 

longer than that reported for other non-cavity nesting Pardalotidae speces, which range 

from 15.1 days for the white-browed scrubwren (Magrath et al. 2000) to 16.5 days for the 

speckled warbler (Gardner 2002). The small sample size of accurately known nestling
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periods may have prevented the detection of a decrease in duration over the course of the 

breeding season as has been reported for the white-browed scrubwren (Magrath et al. 2000) 

and the brown thombill (Green and Cockbum 1999).

Breeding season and multi brooding

The yellow-rumped thombills described in this study had a breeding season of 3.6 

months, which falls within the range reported for thombills breeding in south eastern 

Australia; buff-rumped thombills breed for approximately three months (Woinarski 1985; 

Bell and Ford 1986), while brown thombills and striated thombills both breed for 

approximately four months (Woinarski 1985; Bell and Ford 1986; Green and Cockbum 

1999). Although members of the Pardalotidae are known for their long breeding seasons, 

thombills appear to have comparatively short breeding seasons. The longest breeding 

season reported for a member of the Pardalotidae is 6.6 months for the speckled warbler 

breeding in the ACT (Gardner 2002). Seasons of more than five months have also been 

reported for the white-browed scrubwren (Magrath et al. 2000) and the spotted pardalote 

(Pardalotus punctatus) (Woinarski 1985).

Mac Arthur’s index of the length of the breeding season for the yellow-rumped 

thornbill in Western Australia, as calculated from the data presented by Ford (1963), was 

5.5 months. Climatic factors presumably underlie the substantial difference in the duration 

for which yellow-rumped thombills bred at Ford’s coastal study site and in the higher 

altitude and more seasonal environment of the Australian Capital Territory (ACT). The 

difference in the duration of breeding at the two locations was mainly due to when breeding 

began with first clutches initiated in early August toward the end of the comparatively 

severe winter of the ACT (mean July minimum temperature = ’3°C), and in early July 

during the mild winter of the Perth region (mean July minimum temperature = 9°C), where 

Ford’s study was conducted.

Multi-brooding is a common trait in the Australian old endemic passerine families 

(Rowley and Russell 1991) and has been reported for most members of the Pardalotidae 

that have been studied. Thombills breeding in the south-east of Australia, however, appear 

to be limited in their capacity for multiple breeding attempts by the relatively short duration 

of their breeding seasons. Both the white-browed scrubwren and speckled warbler breeding 

in the ACT can lay up to six clutches in their breeding seasons of 5.4 and 6.6 months 

respectively (Magrath et al. 2000; Gardner 2002) and the yellow-rumped thombill breeding

18



near Perth, Western Australia (WA). initiated up to five clutches over a breeding season of 

approximately 5.5 months (Ford 1963). In contrast, brown thombills and yellow-rumped 

thombills breeding in the ACT, which have breeding seasons of 4.0 and 3.6 months 

respectively, laid at most three clutches (Green and Cockbum 1999, Table 3.2). Variation 

in rates of nesting failure may have influenced the differences among species and 

populations in the absolute number of breeding attempts per season; however, the effect of 

breeding season duration on multiple breeding is also indicated by the behaviour of 

successful breeders. Near Perth, WA, 71% of yellow-rumped thornbill pairs that 

successfully fledged a brood on their first nesting attempt of the season initiated a second 

clutch (Ford 1963). In the ACT, where the breeding season was two months shorter, the 

frequency of renesting following a successful first breeding attempt was only 33% and was 

similar to the rate exhibited by brown thombills breeding in the same region where 39% of 

successful first clutches were followed by a second breeding attempt (Green and Cockbum 

1999).

Reproductive success

Annual rates of reproductive success for yellow-rumped thombills observed in this 

study were substantially lower than those observed by Ford (1963). Over the three years of 

this study approximately 60% of pairs breeding in each year succeeded in fledging at least 

one brood and on average each pair produced 2.02 fledglings per year. As calculated from 

two years of data presented by Ford (1963), approximately 96% of yellow-rumped thornbill 

pairs breeding near Perth, WA, fledged at least one brood in each year and, on average, 

pairs produced 3.6 fledglings per year. The discrepancy in reproductive success between 

these two populations appears to be due to the unusually high success of the population 

observed by Ford (1963) rather than unusual failure by the population described here. The 

productivity of yellow-rumped thombills breeding in the ACT falls within the range 

achieved by other members of the Pardalotidae breeding in the south-east of Australia. 

White-browed scrubwrens are the most successful breeders in the south-east producing 2.8 

fledglings/pair/year (Magrath and Yezerinac 1997), followed by the yellow-rumped 

thornbill (2.02), the brown thornbill (1.57) (Green and Cockbum 1999), the buff-rumped 

thornbill (1.1) (Bell and Ford 1986) and the speckled warbler (approx. 1) (Gardner 2002). 

At the population level, reproductive success is ultimately determined by the extent of 

reproductive investment by breeding individuals and the success rate of individual breeding
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attempts. It is likely that variation in both of these factors explains the discrepancy in 

reproductive success between yellow-rumped thombill populations breeding near Perth, 

WA, and in the ACT.

Rowley and Russell (1991) proposed that unlike the passerines of the northern 

hemisphere, where multi-brooding is less common, variation in seasonal reproductive effort 

within populations of Australian passerines arises from variation in the number of breeding 

attempts per season rather than variation in clutch size per attempt. For members of the 

Pardalotidae this is also likely to apply to comparisons at the population and species level 

as variation in clutch size within and among species is minor (Woinarski 1989) and is 

unlikely to greatly influence annual productivity at the population level. However, a major 

determinant of the extent of multi-brooding, the duration of the breeding season, varies 

substantially between species and populations. In the south-east of Australia, 23% of white- 

browed scrubwren pairs and 18% of speckled warbler pairs fledged more than one brood 

per season (Magrath et al. 2000; Gardner 2002). These two species have very long breeding 

seasons. By comparison three thombill species breeding in the same region had 

comparatively short breeding seasons (shorter by at least 1.5 months) and the frequencies 

with which pairs fledged multiple broods were 10% for the yellow-rumped thombill (this 

study), 3% for the brown thombill (Green and Cockbum 1999) and 0% for the buff-rumped 

thombill (Bell and Ford 1986). The comparison of yellow-rumped thombill populations 

breeding near Perth, WA, and in the ACT also indicates a role for reproductive effort 

expressed via multi-brooding in determining seasonal reproductive success. The two 

populations had almost identical mean clutch sizes of 3.2 (W.A., Ford 1963) and 3.1 (ACT, 

this study); however, yellow-rumped thombills breeding near Perth had a longer breeding 

season and higher frequency of attempted multi-brooding than those breeding in the ACT. 

The West Australian population was correspondingly more productive, with 40% of pairs 

breeding near Perth fledging more than one brood in a season (Ford 1963).

Differences in predation rates between the population described here and that 

studied by Ford (1963) may also explain the variation in reproductive success of the two 

populations. As is commonly the case in birds (Ricklefs 1969; Martin 1992) nest predation 

is the major cause of breeding failure for thombill species in the south east of Australia. 

The majority of breeding attempts fail due to predation of eggs or nestlings in the yellow- 

rumped thombill (Chapter 3), the brown thombill (Bell and Ford 1986; Green and 

Cockbum 1999), the buff-rumped thombill and the striated thombill (Bell and Ford 1986)
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breeding in south eastern Australia. In contrast, only 22% of the 111 yellow-rumped 

thombill clutches observed near Perth by Ford (1963) were lost to predators before 

fledging, which is less than half the 54% predation rate for the same species breeding in the 

ACT (Chapter 3). One contributing factor to this marked difference may be differences in 

the complement of nest predators in the two regions. A major nest predator in the ACT, and 

elsewhere in south eastern Australia, is the pied currawong (Strepera graculina) (Major et 

al. 1996; Prawiradiliga 1996; Gardner 1998; Fulton and Ford 2001), which does not occur 

in West Australia but which appears to have a significant impact on yellow-rumped 

thombills breeding in the ACT (Chapter 3).

Annual and seasonal variation in reproductive success of yellow-rumped thombills 

breeding in the ACT reflected changes in rates of nest predation between years and over the 

breeding season. The probability of clutches hatching improved over the course of the 

breeding season. This may have been due to a reduction in the exposure of clutches to nest 

predators as incubation periods declined by approximately two days over the breeding 

season. The trend for decreased fledging success of broods in November corresponds with a 

dramatic increase in predation pressure, specifically affecting nestlings rather than eggs, in 

November due to the impact of pied currawongs hunting to feed their own nestlings in late 

spring (Chapter 3). Annual variation in breeding success also corresponds with variation in 

predation pressure. Predation of nestlings was particularly high in 1995 (Chapter 3) and the 

success rate per breeding attempt in 1995 was virtually half that of 1996 when nest 

predation was more moderate (Chapter 3). Nonetheless, variation in per breeding attempt 

success rates between years did not affect the proportion of pairs that succeeded in each 

year as renesting following failed breeding attempts compensated for variation in per 

breeding attempt success rates. The proportion of pairs that fledged young was almost 

exactly 0.6 in all three years which is the same rate of success as for brown thombills 

breeding in the ACT (0.57, Green and Cockbum 1999).

In this study the survival of fledglings was monitored for only four weeks, which 

was shorter than the total period of dependence, although by four weeks fledglings were 

mostly foraging for themselves. The survival rate to four weeks after fledging for yellow- 

rumped thombills (Table 2.1) was very similar to the 63-64% survival rates to 

independence for brown thombills (Green and Cockbum 1999), white-browed scrubwrens 

(Magrath and Yezerinac 1997) and speckled warblers (Gardner 2002) breeding in the ACT,
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suggesting that survival to four weeks was an accurate measure of the probability of 

yellow-rumped thornbill fledglings reaching independence.

Social Organisation and Demography

Survival

High adult survival and longevity are characteristic of Australian passerines (Fry 

1980; Yom-Tov 1980; Rowley and Russell 1991) and the oldest recorded yellow-rumped 

thornbill was at least 9.5 years old when last captured (Grace 1979). Annual survival of 

adult yellow-rumped thombills in the ACT was at the lower end of the range reported for 

other members of the Pardalotidae (Green and Cockbum 1999) but similar to that reported 

for buff-rumped thombills near Armidale by Bell and Ford (1986).

Juvenile dispersal

Yellow-rumped thombills had a sex biased dispersal pattern with all juvenile 

females dispersing during or soon after the breeding season in which they fledged while 

males commonly remained within the natal flock over winter and then either dispersed, 

mated and bred within the flock home-range (Chapter 5), or helped in the breeding attempts 

of their parents. Several dispersal patterns have been described for members of the 

Pardalotidae. Bell and Ford (1986) found that both male and female buff-rumped thombills 

did not necessarily disperse from their natal flocks and that female yearlings could assume 

the breeding position left vacant upon the death of their mothers. In contrast Gardner 

(2002) found that juvenile dispersal was universal in the speckled warbler and both males 

and females always left the natal territory soon after reaching independence. Delayed 

dispersal is characteristic of species which breed cooperatively (Emlen 1995) although 

among the Pardalotidae it is not only exhibited by cooperatively breeding species such as 

the yellow-rumped thornbill and white-browed scrubwren (Magrath and Whittingham 

1997) but also by the strictly pair breeding brown thornbill (Green and Cockbum 2001).

Territoriality and Cooperative Breeding

Breeding pairs and groups of yellow-rumped thombills did not appear to establish 

breeding territories from which other birds were excluded. This is in contrast with all well 

known members of the family which do breed on exclusive territories (brown thornbill,
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Bell and Ford (1986), Green and Cockbum (1999); buff-rumped thombill, Bell and Ford 

(1986); white-browed scrubwren, Magrath et. al. (2000); speckled warbler, Gardner 

(2002)). Male yellow-rumped thornbills in particular were occasionally observed in 

association with more than one nest or more than one breeding female. In most cases this 

appeared to entail the toleration of the juvenile offspring of other flock members, for 

example when juvenile males began adding nesting material to nests that were already fully 

constructed and contained nestlings. However, there were also two cases where helper 

males provisioned nestlings of neighbouring breeding groups and several instances of the 

domination of one adult breeding male by another that appeared to be related to access to 

breeding females. These incidental observations suggest that flock level social affiliations 

(Chapter 5) may play a role in the social organisation of breeding particularly in regard to 

helping behaviour by male birds.

Cooperatively breeding groups of yellow-rumped thornbills were similar in size 

and composition to those of the buff-rumped thornbill described by Bell and Ford (1986). 

Helpers in buff-rumped thombill groups are the male offspring of the breeding pair, and 

with the exception of one individual who helped at the nests of two different pairs all 

yellow-rumped thombill helpers of known origin were the offspring of the pair they 

assisted. As reported by Immelman (1960) and Ford (1963) juvenile males could become 

helpers later in the breeding season in which they themselves fledged, although most 

helpers were yearlings when they first provisioned at the nest.

The frequency of cooperative breeding by yellow-rumped thornbills was low, only 

13.5% overall, and varied among years. In comparison, the frequency of cooperatively 

breeding groups in the populations of buff-rumped and striated thornbills studied by Bell 

and Ford near Armidale, New South Wales (NSW) were approximately 32% and 43% 

respectively (Bell and Ford 1986). There was some indication that the occurrence of 

cooperative breeding by yellow-rumped thornbills was influenced by annual reproductive 

success and adult survival. Given that helpers were almost always the offspring of the 

breeding pair they assisted, two prerequisites for the formation of cooperative groups are, 

firstly, the presence of male offspring from the current or previous breeding season and, 

secondly, the continuation of the breeding relationships that produced them. Annual 

reproductive success determines at least the potential number of yearling males that may be 

available to become helpers in the following year and the number of helpers in the 

population increased from one in 1996 to six in 1997 following the comparatively
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successful 1996 breeding season. From 1995 to 1998 there were 42 instances where it was 

possible to detect the persistence of a breeding pair from one season to the next and in only 

eight cases did a male and female form the same breeding pair in consecutive seasons. Of 

these, six were assisted by helpers in the second year in which they bred together. The low 

rate of continuity in breeding relationships was mostly due to the death of one or both birds 

although there were four known cases of divorce (where both members of a pair were alive 

in the subsequent breeding season but were mated to other birds). The affect of inter-annual 

persistence of breeding pairs on cooperative breeding is also indicated by the transition 

between the 1995 and 1996 breeding seasons. Corresponding with the relatively low adult 

survival between these two breeding seasons none of the 11 fully identifiable pairs breeding 

in 1995 persisted in 1996. Helpers were especially rare in 1996 and the only helper 

identified was assisting a pair of unknown history that may have bred together in the 

previous year.

CONCLUSION

The breeding biology and demography the yellow-rumped thombill is typical of its 

family (see Green and Cockbum 1999; Magrath et al. 2000 for reviews of Pardalotidae). It 

is long lived, lays a small clutch with a two day laying interval, has long incubation and 

nestling periods and a long period of post fledging dependence, and can display a high rate 

of multi-brooding over a long breeding season. These results support the view of Green and 

Cockbum (1999) that factors other than variation in life-history and breeding biology traits 

must underlie the evolution of diverse social systems in the Pardalotidae.

The comparison of the yellow-rumped thombill population described here and 

that described by Ford (1963) reveals substantial within species variation in some 

reproductive characteristics. As noted by Magrath et al. (2000), few species of the 

Pardalotidae have been studied in detail and although there may be sufficient quantitative 

information to characterise easily measured traits such as clutch size at a species or family 

level, the characterisation of other, potentially more variable traits, on the basis of a single 

population may be misleading. Regional differences in breeding season duration and 

predation rates between Ford’s West Australian population and the population described 

here underlie major differences in rates of multi-brooding, reproductive success and 

productivity and would lead to very different characterisations of these aspects of yellow-
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rumped thombill breeding biology should either population alone be considered 

representative of the species. Considered together, the two populations demonstrate the 

capacity of a typical member of the Pardalotidae, exhibiting the syndrome of long and slow 

reproduction, to achieve remarkable reproductive success in favourable conditions and the 

importance of nest predation in limiting that success.
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Time of clutch initiation

Figure 2.1. Timing of clutch initiation in yellow-rumped thombills. “Early” and 

“late” in each month refers to the periods from the 1st to the 15th and the 16th to the end of 

the month, respectively.
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Figure 2.2. The decrease in incubation period over the course of a breeding season 

for yellow-rumped thombills. Points are observed incubation periods and the line 

represents the regression of incubation period on clutch initiation date. Date used is the 

Julian date, where 1 = January 1st.
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Figure 2.3. Proportion of yellow-rumped thornbills renesting after failed or 

successful nesting attempts by the month in which the previous attempt ended. Numbers 

above bars are sample sizes.
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Figure 2.4. Observed proportions of yellow-rumped thornbill clutches hatching 

according to month of initiation. Samples sizes above bars.
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Figure 2.5. Proportion of yellow-rumped thombill broods fledging by year. Sample

sizes are shown above bars.
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CHAPTER 3

Nest predation in the yellow-rumped thornbill

INTRODUCTION

Predation of eggs and nestlings is commonly the major source of juvenile mortality 

and the main constraint on reproductive success in birds (Ricklefs 1969; Martin 1992). As 

such, nest predation is an important issue in the study of avian life history evolution 

(Skutch 1949; Slagsvold 1984; Skutch 1985; Martin 1992; Martin et al. 2000a), behaviour 

(e.g. Poiani and Pagel 1997; Briskie et al. 1999; Haskell 1999; Ghalambor and Martin 

2001), ecology (e.g. Martin 1988), and the conservation of declining bird populations (see 

Ford et al. 2001; Chalfoun et al. 2002 for recent reviews). The widespread importance of 

nest predation in avian biology has inspired a substantial body of theoretical and empirical 

work seeking to understand variation in rates of nest predation. Most of this work has 

focused on ecological factors, such as habitat fragmentation and edge effects (e.g. Stephens 

et al. 2003; Batary and Baldi 2004), or traits of life-history and breeding biology, such as 

nesting habits (e.g. Martin and Li 1992; Martin 1995), that might influence rates of nest 

predation at the landscape or species level. Less attention has been devoted to variation in 

rates of nest predation within species and populations. For example, variation in rates of 

nest predation between incubation and nestling phases of the breeding cycle remains poorly 

described and understood despite its relevance to evolutionary questions, such as the 

evolution of clutch size (Skutch 1949; Martin 1996; Martin et al. 2000a). Variation at this 

level also has potentially important implications in the interpretation of artificial nest 

experiments, which, although they provide much of the data on nest predation, provide no 

information on predation during the nestling phase of the breeding cycle.

Rates of nest predation are expected to increase after hatching for at least two 

general reasons. An increase in the rate at which parents visit the nest when they are 

feeding nestlings and audible begging by nestlings are both factors that may increase the 

detection of nests by predators during the nestling period (Skutch 1949). However, despite 

empirical support for increased parental visitation rates after hatching (Roper and Goldstein
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1997; Martin et al. 2000b), and positive effects of both parental visitation and nestling 

begging calls on risk of nest predation (Redondo and Castro 1992; Haskell 1994; Martin et 

al. 2000a), evidence for a general increase in predation risk after hatching is lacking. 

Patterns of predation over the course of the nesting cycle have rarely been described 

quantitatively. However, several studies have found that predation rates on open nesting 

species do not increase after hatching (western slaty antshrike, Thamnophilus atrinucha, 

Roper and Goldstein (1997); wood thrush, Hylocichla mustelina, Farnsworth and Simons 

(1999); Eastern yellow robin, Eopsaltria australis, Zanette and Jenkins (2000), Berry and 

Lill (2003)). Furthermore, Martin et al. (2000b) quantified stage-specific predation rates for 

ten forest-dwelling North American species and found that predation rates actually 

decreased after hatching in most species. Decreased rates of nest predation after hatching 

were also reported for five of seven non-cavity nesting species included in the review of 

Clark and Wilson (1981). These surprising results may be explained by other variables 

affecting rates of nest predation in incubation and nestling phases of the breeding cycle.

Martin et al. (2000b) also assessed the effect of nest site on risk of predation and 

found evidence of fine scale temporal variation. Nests that were inherently easier for 

predators to find, due to characteristics of nest placement, were likely to be preyed upon 

earlier in the nesting cycle, during incubation, than later, after hatching. At the population 

level this effect may counteract the influences of parental visitation rates and nestling 

begging and reduce or reverse the expected increase in predation rate after hatching.

A recent study of the interactions of parents and nestlings in the white-browed 

scrubwren (Sericornis frontalis) found that parents were able to suppress the vocalization 

behaviour of their nestlings by alarm calling (Platzen and Magrath in press). This largely 

unexplored parental strategy may reduce the effects of nestling begging on nest predation 

and therefore negate the expectation that predation should increase after hatching due to 

audible begging by nestlings.

In light of the work of Martin et al. (2000b) and Platzen and Magrath (in press) 

variation in rates of nest predation between incubation and nestling phases of the breeding 

cycle, or the lack thereof, might be seen solely as the result of factors acting on the 

detectability of nests to predators. Increased parental activity at the nest after hatching and 

audible begging by nestlings may make nests more detectable, and therefore more likely to 

be preyed upon in the nestling period, while the inherent detectability of nests, due to 

characteristics of nest placement or concealment, biases risk of predation to the early stages
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of nesting attempts. However, by focusing on variation in nest detectability, this view 

neglects other potential influences on stage-specific nest predation such as variation in the 

behaviour of predators.

In this chapter I describe variation in rates of predation on nests of the yellow- 

rumped thombill (Acanthiza chrysorrhoa) at different stages of the breeding cycle, over the 

course of the breeding season and between years. I aim to demonstrate that temporal and 

stage-specific patterns of predation on yellow-rumped thombill nests cannot be explained 

by factors acting on nest detectability alone and indicate a more active role for predators 

themselves than is normally assumed. The potential practical consequences of fine scale 

variation in predation rates for the study of nest predation, particularly in a conservation 

context, are also briefly discussed.

METHODS

Species and study site

The yellow-rumped thombill, Acanthiza chrysorrhoa, is a small insectivorous 

passerine endemic to Australia. The species is widely distributed and abundant in the 

temperate regions of the south-east and south-west of continental Australia and in Tasmania 

(Blakers et al. 1984; Christidis and Boles 1994). During the breeding season, which 

extends from late winter to early summer, both sexes build bulky, domed nests in shrubs 

and trees at heights ranging from 1 to 20 metres from the ground. Only the female 

incubates the clutch, but nestlings are fed by both parents and occasionally also by one to 

three male helpers.

I studied the population of yellow-rumped thombills on the lower eastern slopes of 

the Mt Ainslie section of Canberra Nature Park (35°16’S, 149°9’E), Australian Capital 

Territory (ACT), from 1995 to 1997. The study area was approximately 250ha of open 

eucalyptus woodland, dominated by E. rossii, E. mannifera and E. macrorhyncha, with a 

sparse shrubby understorey interspersed with cleared grassy areas.

Monitoring nesting attempts

Nests were found by watching building birds, following females during incubation 

or following birds seen collecting prey to feed nestlings. Nests were visited regularly,
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generally daily or every second day, to determine the clutch initiation date for those found 

before laying, the hatching date for those found before hatching, and the date of fledging or 

failure. Average incubation and nestling periods determined from a sample of nesting 

attempts were used to back-date from hatching or fledging dates to estimate clutch 

initiation and hatching dates for those nesting attempts that were found at later stages. 

Nestlings were briefly removed from the nest for banding, blood sampling and 

measurement between the ages of 7 and 13 days, where the day of hatching was age 0. The 

size and stage of feather development of nestlings of known age were used to estimate the 

ages of broods from nests that were found after hatching. A small number of nests was 

unreachable due to height, in which cases the timing of the stages of the breeding cycle and 

the fates of these nests were inferred from the behaviour of the parent birds.

Nesting failure and predation

All nesting attempts were monitored until fledging or failure. When nests that had 

contained mature nestlings were found empty and undamaged the brood was assumed to 

have fledged. In almost all such cases fledging was confirmed by the sighting of at least 

one fledgling. Predation was inferred as the cause of failure when a nest was abandoned 

after the disappearance of some or all of the eggs or nestlings. In the vast majority of such 

cases the whole clutch or brood was missing and the nest was substantially damaged.

The fate of nesting attempts and the role of predation in nesting failure was 

assessed for each year in terms of the proportion of clutches initiated that failed to fledge. 

Stage-specific failure was assessed as the proportion of clutches initiated that failed to 

hatch and the proportion of broods that failed to fledge.

Daily predation rates were calculated following the method of Mayfield (1975). 

Problems of bias in Mayfield estimates arising from error in dating the fledging or failure 

of nesting attempts (Manolis et al. 2000) were minimized in this study by very frequent 

censusing. Daily predation rate was calculated as the number of predation events on a 

particular class of nest during a month of the breeding season or over the entire season 

divided by the number of exposure-days for the same class of nest over the same period. 

Only predation events that terminated a breeding attempt were included in the calculations. 

Daily predation rates were calculated for three stages of the nesting cycle: nests with eggs, 

nests with broods younger than seven days old, and nests with broods seven days old or 

older. The seven day old threshold in this analysis was intended to separate very young
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broods, which were more or less silent (pers. obs.), from those old enough to make begging 

calls audible from a distance. Rates were calculated for each month of the breeding season 

and for each year.

The population of yellow-rumped thombills used in this study was under 

observation for a larger breeding biology project and, in order to increase sample sizes for 

datasets not directly related to nest predation and breeding success, all accessible nests in 

1997 were protected from larger predators by enclosure with wire or plastic mesh. Nest 

protection was not random with regard to height, and nests left unprotected may not have 

been representative in terms of their inherent risk of predation. Furthermore, predators may 

have modified their behaviour in response to the protection of nests resulting in an artificial 

change in predation risk for those left unprotected. For these reasons, protected nests were 

excluded from calculations of nesting failure and predation rates and the discussion of 

annual rates of predation below focuses on differences between 1995 and 1996.

RESULTS 

Nest Predators

Nest predators were not identified in this study; however, an artificial nest 

experiment was conducted in nearby and similar habitat in the ACT by Gardner (1998) in 

the 1994-1995 nesting season. Gardner (1998) found that birds were responsible for almost 

all attacks on artificial nests (96%) where the predator could be identified to class and of 15 

attacks where the predator was photographed five were committed by pied currawongs 

(,Strepera graculina). Pied currawongs have been repeatedly identified as a major predator 

of the nests of small birds in Eastern Australia (Major et al. 1996; Prawiradiliga 1996; 

Wood 1998; Fulton and Ford 2001). They were common in the Campbell Park study site 

and were observed taking the contents of yellow-rumped thombill nests on five occasions. 

It was very likely that pied currawongs were responsible for much of the predation on 

yellow-rumped thombill nests; however, other predators may also have taken eggs and 

nestlings. Other avian nest predators present in the study site were grey shrike-thrushes 

(Colluricincla harmonica), Australian magpies (Gymnorhina tibicen), grey currawongs 

(,Strepera versicolor) and ravens (Corvus spp.). Reptiles and small mammals may also have 

contributed to nest predation.
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Nest Predation and Breeding Failure

More than half of clutches initiated failed to produce fledglings and predation was 

overwhelmingly the major cause of breeding failure at both the incubation and nestling 

stages (Table 3.1). Over the three years of the study nest predation was inferred as the cause 

of failure of 85% of clutches initiated that failed to produce fledglings (Table 3.1).

Breeding attempts were more likely to fail at the nestling stage than at the 

incubation stage and, over three years, 46% of nesting attempts which hatched failed to 

produce fledglings, whereas 32% of clutches initiated failed to hatch (Table 3.1). The daily 

predation rate for nests with eggs was 1.9% whereas that for nests containing nestlings was 

3.1% (Table 3.2). The daily predation rate on nests containing young broods was 1.6%, 

similar to that for nests with eggs, whereas the daily predation rate on older broods was 

4.0%, (Table 3.2).

Nest Predation Over The Breeding Season

The daily risk of nest predation was not constant over the breeding season and was 

clearly influenced by the contents of the nest (Figure 3.1). The daily predation risk for 

broods at least seven days old was almost five times greater in November (17%) than in any 

other month (0% - 3.6%). The November peak in daily predation risk for broods at least 

seven days old was also more than five times greater then the highest daily predation risk of 

any month for clutches or broods less than seven days old (0% - 3.3%). The pattern of daily 

predation risk on older broods over the season, characterised by a peak in November, was 

similar in all three years.

Nest Predation Over Three Years

There was a decline in daily predation risks over the three years of this study, 

specifically for old broods (Figure 3.2). The daily risk of predation for clutches and 

younger broods declined only slightly, however, the daily predation risk for older broods 

declined substantially from 1995 to 1996 and again between 1996 and 1997. The greatest 

decline in predation risk occurred from 1995 to 1996 when no nests were protected from 

predators.

Year to year variation in daily predation rates was reflected in rates of failure of 

breeding attempts. In 1995, the year with the highest daily predation rates, 79% of clutches
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initiated failed to produce fledglings (Table 3.1). The overall failure rates for 1996 and 

1997 were substantially lower at 56% and 23% respectively (Table 3.1). The impact of 

predation specifically on nestlings in creating this variation between years was clear. 

Focusing on 1995 and 1996, the two years where nests were not protected, the decline in 

daily predation rate was substantial for nests containing older broods and negligible for 

nests containing clutches or younger broods. The change in the failure rate for older broods 

was similarly large, from 67% in 1995 to 36% in 1996, and similarly slight for clutches and 

younger broods, from 38% in 1995 to 31% in 1996 (Table 3.1).

DISCUSSION

Most yellow-rumped thombill breeding attempts failed and nest predation was 

overwhelmingly the major cause of failure, accounting for at least 85% of clutches that did 

not produce fledglings. Overall stage-specific failure rates indicated that predation was 

more severe after hatching with 68% of clutches initiated hatching but only 54% of broods 

successfully fledging (Table 3.1). The comparison of daily rates of predation during 

incubation and nestling stages also reflected an increase in risk of predation after hatching. 

Brood age also had an important effect on predation rates. Daily predation rates for broods 

younger than seven days old (1.6%) were similar to those for clutches (1.9%) whereas the 

daily predation rate for broods older than seven days was twice as high (4%). Daily rates of 

predation on old broods also varied among years and within the breeding season. Predation 

on old broods was more severe in 1995 than in later years and was particularly severe in 

November in all three years.

Variation in predation risk within years

The risk of predation for yellow-rumped thombill nests varied according to the 

contents of the nest. For a single day of exposure, nests containing nestlings at least one 

week old were approximately twice as likely to be predated than nests containing eggs or 

younger nestlings. Such a substantial increase in daily rates of predation after hatching 

appears to be unusual. Of twelve open nesting species studied in central and North America 

by Roper and Goldstein (1997), Farnsworth and Simons (1999) and Martin et al. (2000b) 

only three were found to suffer increased predation after hatching, and in all three cases the 

increase was slight (Martin et al. 2000b). In Australia, daily rates of nest predation have
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been quantified for the eastern yellow-robin (Eopsaltria australis) in New South Wales, by 

Zanette and Jenkins (2000), and in Victoria, by Berry and Lill (2003), and both studies 

found no difference in predation between incubation and nestling stages. In contrast with 

these results, however, recent studies of three species breeding in the ACT have found 

substantially increased rates of nest predation after hatching. Daily rates of nest predation 

more than doubled after hatching in the brown thombill, Acanthiza pusilla, (Green and 

Cockbum 1999), the speckled warbler, Chthonicola sagittata, (Gardner 2002) and the 

white-browed scrubwren, Sericornis frontalis, (R. Magrath pers. comm.) breeding in the 

ACT. Recent work by Martin et al. (2000b) on the effects of nest placement on temporal 

changes in predation rates suggest that, in the absence of other influences, predation rates at 

the population level should decrease over the course of the breeding cycle. In this light the 

large increases in predation rates after hatching in the yellow-rumped thombill, and three 

other species breeding in the same region, require explanation.

Two factors that may contribute to an increase in predation risk after hatching are 

parental activity at the nest and audible begging by nestlings. The general pattern of an 

increase in provisioning rates with brood age described for many species (e.g. Dunn and 

Cockbum 1996; Hatchwell and Russell 1996; Hall 1999; Green 2002), including the 

yellow-rumped thombill (Chapter 4), suggests that parents, and other adults in the case of 

cooperative breeders, are likely to visit their nests at a higher frequency when feeding 

nestlings than during incubation. Comparisons of parental activity at the nest between 

incubation and nestling phases of the breeding cycle are rare but available information for a 

small number of species confirms the expected increase in visitation rates after hatching 

(Roper and Goldstein 1997; Martin et al. 2000b). That provisioning trips to the nest by 

adult birds might aid predators in detecting nests and therefore influence rates of nest 

predation during the nestling period was first proposed by Alexander Skutch in 1949 but 

has only recently been confirmed empirically. A comparative and experimental study of ten 

North American species by Martin et al. (2000b) found that, after controlling for the effects 

of nest site on predation risk, rates of nest predation were positively related to the rate at 

which parents visited their nests to feed nestlings. Parental activity at the nest during 

incubation was not quantified in my study; however, it is highly likely that the switch from 

incubation, performed only by the female, to the nestling stage where both parents, and 

occasionally helpers, provision the brood entails an increase in the rate of visits to the nest.
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As such, provisioning behaviour by parents and helpers may have contributed to the 

increased predation of yellow-rumped thombill nests after hatching.

Audible begging by nestlings represents a characteristic of the nestling phase of the 

breeding cycle that does not apply during incubation and that may enhance the detection of 

nests by predators. A recent comparative study of 25 North American species found that the 

structure of nestling begging calls was related to species level rates of nest predation 

(Briskie et al. 1999). Species subject to higher rates of nest predation made quieter begging 

calls of higher frequency than those subject to lower rates of nest predation. As both of 

these acoustic features are related to the “locatability” of the source of sound, the species 

level pattern described by Briskie et al. (1999) implies that nest predation is a selective 

force acting on nestling vocalisations and that begging incurs a predation cost (Briskie et al. 

1999). At a proximate level, studies of the effects of begging behaviour on nest predation 

have been hampered by technical and methodological problems (Haskell 2002); however, 

there is some evidence that begging entails a predation cost. Nestling vocalisations have 

been shown to attract nest predators in artificial nest experiments using recorded begging 

calls (Haskell 1994; Leech and Leonard 1997); however, the relevance of these results to 

natural nests may be compromised by the neglect of parental effects on begging behaviour 

(e.g. Platzen and Magrath in press). A positive relationship between begging intensity and 

risk of predation has been demonstrated in natural broods of the magpie, Pica pica 

(Redondo and Castro 1992). Older yellow-rumped thombill nestlings make begging calls, 

usually associated with a provisioning visit by an adult, that can be heard meters from the 

nest (pers. obs.) and as such nestling begging may have contributed to the increase in 

predation rate after hatching.

Stage-specific rates of nest predation in the yellow-rumped thombill are consistent 

with the expected effects of parental activity at the nest and audible begging by nestlings. In 

the yellow-rumped thombill, predation rates increase after the first week of the nestling 

period. This change corresponds with increased provisioning rates (Chapter 4) and is also 

likely to coincide to some extent with the development of nestlings to the stage where they 

are capable of loud vocalization. However, parental activity at the nest and audible begging 

by nestlings do not explain variation in rates of predation on older broods of nestlings over 

the course of the breeding season.

Parental activity at the nest and nestling begging are expected to influence predation 

rates in a similar manner. Both factors pertain to the detectability of nests to predators such
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that nests containing older nestlings are likely to be more detectable, and therefore more 

vulnerable to predation, than those containing eggs or younger nestlings. A third, generally 

unacknowledged, factor that may contribute to an increase in predation risk after hatching 

is the value of the contents of the nest to predators. The energetic value of the contents of a 

nest presumably increases after hatching as the nestlings enter a phase of rapid growth 

(O'Connor 1984). If nestlings are more valuable to nest predators than eggs some nest 

predators may actively “hunt” nests containing nestlings. Parental activity and nestling 

begging are both potential cues as to the contents of nests and the age of nestlings and may 

therefore influence predation risk beyond their effects on nest detectability. A nest predator 

attuned to adult birds carrying food items, or to the begging calls of nestlings, might 

effectively target nests containing nestlings and contribute to an increase in predation risk 

after hatching. Patterns of predation on yellow-rumped thombill nests over the breeding 

season suggest that predation risk is not simply determined by detectability, but is heavily 

influenced by the behaviour of nest predators themselves.

If detectability of the nest were the only influence on predation risk the number of 

predation events on nests of a particular class, those containing older nestlings for example, 

should be roughly correlated with the exposure of that class of nest to predators. Such a 

correlation would result in a more or less constant daily rate of predation over the course of 

the breeding season. This was not the case for broods of yellow-rumped thombill nestlings. 

Nests containing broods that were at least one week old were far more likely to be predated 

in November than any other month. This temporal variation in predation rate contrasts 

markedly with the pattern for nests containing eggs or younger nestlings. Despite 

substantial variation in exposure of nests containing eggs or younger nestlings among 

months of the breeding season the predation rate for these nests was virtually constant. This 

pattem is what would be expected if the predation rate was effectively determined by the 

rate at which predators encounter nests -  in months where nests with eggs or younger 

nestlings were more common more of them were predated -  and suggests a more or less 

constant hunting effort by predators. On the other hand the November peak in predation 

risk for nests containing older nestlings suggests that predators targeted older broods of 

yellow-rumped thombill nestlings in November. This possibility is supported by what is 

known of the diet of one of Eastern Australia’s main nest predators, the pied currawong 

(,Strepera graculina).
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The pied currawong is an omnivore subsisting largely on fruit and arthropods for 

most of the year but switching to the eggs and especially the nestlings of other birds when 

feeding their own dependent young in late spring and early summer (Prawiradiliga 1996; 

Wood 1998). Prawiradiliga (1996) observed 19 pied currawong nests in Canberra for two 

breeding seasons and estimated that a pair of pied currawongs killed approximately 40 

broods of small passerines in order to raise a single brood of their own. The same study 

found that the frequency of egg remains in the pellets of pied currawong collected over 

three years peaked from September to October while the frequency of nestling remains in 

pellets peaked in November when currawongs were feeding their own nestlings 

(Prawiradiliga 1996). This seasonal change of diet by pied currawongs is consistent with 

the patterns of predation on yellow-rumped thombill nests over the breeding season with a 

peak in predation of nests with eggs when they are most common in September and 

October and a peak in predation of nests containing nestlings not when they are most 

common, in October, but when pied currawongs have nestlings of their own to feed in 

November.

Variation in predation risk between years

There was a marked difference between years in the rates of predation on yellow- 

rumped thombill nests. The largest difference was between 1995 and the two subsequent 

years but due to the manipulation of some nests in 1997 I will focus on the changes 

between 1995 and 1996. A reduction in nest predation was apparent in the overall failure 

rates for breeding attempts in the two years with 79% of clutches initiated in 1995 failing to 

produce fledglings compared with a failure rate of 56% in 1996. An obvious potential 

influence on annual levels of nest predation is the interaction between the abundance and 

breeding patterns of nest predators such as pied currawongs and the abundance and 

breeding patterns of yellow-rumped thornbills and other prey species. Unfortunately the 

data required to assess these factors were beyond the scope of this study. However, the 

analysis of the provisioning behaviour of yellow-rumped thornbills presented in Chapter 4 

suggests another potential influence on annual levels of predation: variation in parental 

activity at the nest.

The rate, in terms of nest visits per hour, at which yellow-rumped thornbills 

provisioned broods of nestlings was assessed for four years from 1995 to 1998 (Chapter 4). 

A surprising finding to emerge from the these data was that yellow-rumped thornbills
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visited their nests much more frequently in the 1995 breeding season than in any other. The 

cause of the elevated feeding rate in 1995 was not clear but may have been influenced by 

annual variation in rainfall and its effect on invertebrate prey populations, as 1995 was a 

year of above average rainfall in the ACT following a year of drought. A potential 

consequence of increased nest visitation rates is increased nest predation (Martin et al. 

2000b) and the predation rate on older broods of yellow-rumped thombill nestlings was 

approximately three times greater in 1995 than in 1996 (Figure 3.2). There was indirect 

evidence to suggest that predation pressure in general, as influenced by the abundance of 

predators for example, was not substantially different between these two years. Firstly, the 

daily predation risk for nests containing eggs or younger nestlings was virtually identical in 

1995 and 1996 (Figure 3.2), and secondly, the extent of the November peak in daily 

predation risk for older broods of nestlings was also similar in both years (1995: 0.21, 

1996: 0.25). The cause of the elevated rate of predation on older broods of nestlings in 1995 

remains unclear; however, one possibility is that nests containing older nestlings were 

preyed upon to a greater extent in 1995 because they were made more detectable to 

predators by unusually high parental activity at the nest.

Implications of variable predation rates

A feature of predation on yellow-rumped thombill nests is that predation risk 

increases dramatically after hatching and that this increase appears to be due, at least in 

part, to the targeted predation of older nestlings by nest predators. The coincidence of the 

quantitative switch to avian prey by pied currawongs when they are feeding broods of their 

own (Prawiradiliga 1996; Wood 1998) and the peak in predation risk for yellow-rumped 

thombill nestlings strongly suggests that pied currawongs are a major contributor to the 

increase in predation after hatching. Pied currawongs have also been implicated as a major 

nest predator of the brown thombill, the speckled warbler and the white-browed scrubwren 

breeding in the ACT (Green and Cockbum 1999; Gardner 2002; Maurer et al. 2003) and 

these species also exhibit substantial increases in rates of nest predation after hatching. 

Daily predation rates for brown thombill, speckled warbler and white-browed scrubwren 

nests are 1.2%, 1.3% and 0.9% respectively during incubation and increase to 4%, 5.8% 

and 4.4% respectively after hatching (Green and Cockbum 1999; Gardner 2002 and R. 

Magrath pers. comm.).
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Variation in predation rates among and within species is of interest in relation to the 

evolution of various traits of avian breeding biology and life history. However, the factors 

generally assumed to underlie variable predation rates in this context tend to be heavily 

focused on the behaviour and strategies of the prey species such as nesting habit, nest site 

selection, and the roles of parental activity and nestling begging that collectively pertain to 

the vulnerability of nests to predators. The pattern of predation on yellow-rumped thombill 

nests constitutes a strong circumstantial case that the behaviour of predators can also be an 

important source of fine scale variation. This may have important implications for the 

interpretation of stage-specific variation in rates of nest predation. For example, differences 

in predation rates for nests containing eggs and those containing nestlings has been viewed 

as a potential test of the importance of parental activity on predation risk (e.g. Roper and 

Goldstein 1997). Although parental activity certainly may be an important factor in such 

variation, the targeted predation of nestlings by predators may confound the vulnerability 

effect of parental activity in some cases.

Many bird species native to the woodlands of southern Australia have suffered 

substantial population declines largely due to habitat loss (Ford et al. 2001) and the 

possibility of increased nest predation due to the fragmentation or degradation of remaining 

habitat has been a subject of concern for the conservation of residual populations (Ford et 

al. 2001). The pied currawong is of particular interest in this context as it appears to have 

increased in abundance and expanded its breeding range in some areas as a result of urban 

development and the proliferation of fruit bearing weeds (Ford 1993; Prawiradiliga 1996).

Two recent studies have attempted to assess the role of the pied currawong in nest 

predation using artificial nests (Major et al. 1996; Fulton and Ford 2001). Although both 

concluded that pied currawongs were important nest predators, data from artificial nest 

experiments are unlikely to accurately reflect the impact of pied currawong predation on 

the success of real nesting attempts. The many limitations of artificial nest experiments are 

well documented (reviewed by Major and Kendal 1996) and include the potential to 

overestimate real predation rates (e.g. Zanette 2002; Burke et al. 2004). On this basis Bayly 

and Blumstein (2001) argued that the role of the pied currawong in nest predation, as 

estimated by artificial nest experiments, may be overstated. Direct observation of the prey 

of breeding pied currawongs by Prawiradiliga (1996) and Wood (1998), and the increase in 

rates of predation after hatching for four species subject to pied currawong predation in the 

ACT, suggests that much of the impact of pied currawong predation occurs after hatching.
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Daily rates of nest predation doubled after hatching for yellow-rumped thombills (this 

study), more than tripled for brown thombills (Green and Cockbum 1999), and increased 

more than fourfold for speckled warblers (Gardner 2002) and white-browed scrubwrens (R. 

Magrath pers. comm.) breeding in the ACT. The magnitude of these increases suggests that 

the impact of pied currawong predation on the nesting success of prey species is far more 

likely to be underestimated by artificial nest experiments, which by their nature neglect 

predation on nestlings, than overestimated, as suggested by Bayly and Blumstein (2001).

CONCLUSION

Stage specific variation in rates of nest predation has important theoretical 

implications in the context of avian life-history evolution and behaviour, as well as 

practical consequences for the study of predation with artificial nests. The factors usually 

considered to underlie such variation, such as nest placement and the behaviour of parents 

and nestlings, focus on characteristics of the prey species that might influence the detection 

of nests by predators. In the yellow-rumped thombill population studied here daily rates of 

nest predation increased substantially after the first week of the nestling period as might be 

expected according to hypotheses related to nest detectability. Annual variation in the rate 

of predation on broods that were at least one week old was also consistent with the effect of 

parental visitation on nest detectability and likelihood of predation. However, variation in 

rates of predation over the course of the breeding season suggests that stage-specific 

changes in nest detectability were not wholly responsible for stage-specific variation in 

rates of nest predation. Predation of eggs and young broods showed little variation over the 

five months of the breeding season whereas predation of older broods of nestlings jumped 

dramatically in November, the peak month of brood rearing in the pied currawong. These 

patterns, combined with information on the diet of pied currawongs, are consistent with the 

targeted predation of older broods of nestlings by pied currawongs when they are feeding 

their own nestlings.

The capacity of nest predators to specifically target nestlings has implications for 

the study of nest predation. On one hand, predator behaviour potentially confounds the 

vulnerability effects of nest placement and parental and nestling behaviour in comparisons 

of nest predation during incubation and nestling phases of the breeding cycle. On the other 

hand, however, targeted predation of nestlings highlights the potential importance of factors
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likely to influence the vulnerability of nests during the nestling phase of the breeding cycle 

in particular. Variation in the behavioural adaptations of parents and nestlings during this 

critical period may be an important influence on variation in predation rates within and 

among species. Finally, an important practical implication of targeted predation of nestlings 

is that artificial nest experiments, a predominant source of information on nest predation, 

cannot account for what, in some cases, might be a major determinant of breeding success 

in prey species and need to be interpreted accordingly.
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Table 3.1. The role of nest predation in the failure of yellow-rumped thombill 

breeding attempts during incubation and nestling stages. Clutches and broods in nests 

protected from predators in 1997 were excluded.

1995 1996 1997 Years

combined

Clutches failing to hatch

n clutches

Proportion failed before hatching 

Proportion of failed clutches depredated1

Broods failing to fledge

n broods

Proportion failed before fledging 

Proportion of failed broods depredated1

Overall -  clutches failing to fledge

n clutches

Proportion failed before fledging 

Proportion of failed clutches depredated1

53 36 13 102

0.38 0.31 0.15 0.32

0.85 1.0 1.0 0.91

33 25 11 69

0.67 0.36 0.09 0.46

0.77 0.77 1.0 0.78

53 36 13 102

0.79 0.56 0.23 0.64

0.81 0.90 1.0 0.85

1 This is the proportion of failed breeding attempts that were known to have failed due to predation and is 

a minimum estimate of the contribution of predation to failure of breeding attempts, as some attempts that 

failed for reasons unknown may have been preyed upon.



Table 3.2. Predation events and daily predation rates on yellow-rumped thombill 

nests at various stages of the nesting cycle, data pooled over three years, 1995 -  1997.

Nest Contents n Exposure Days Predation

Events

Daily Predation 

Rate

Clutches 84 1344 26 1.9%

Broods 50 647 20 3.1%

Clutches and young 85 1648 31 1.9%

broods1

Young broods1 50 304 5 1.6%

Old broods2 50 343 15 4.0%

1 Young broods = broods of nestlings younger than 7 days old.

2 Old broods = broods of nestlings 7 days old or older.
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Figure 3.1. Seasonal pattern of daily predation risk (lines) and number of exposure 

days (bars) for yellow-rumped thombill clutches and broods less than 7 days old 

(triangles and white bars), and broods 7 days old or older (circles and grey bars). Data 

was combined over three years.
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Figure 3.2. Daily predation risk (lines) and number of exposure days (bars) by year 

for clutches and broods younger than 7 days old (triangles and white bars), and for 
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CHAPTER 4

Mating systems, social organisation and helping

INTRODUCTION

Avian cooperative breeding systems, in which some individuals apparently forego 

or delay breeding themselves and assist in the breeding attempts of others, present a 

fundamental evolutionary problem. By caring for offspring that are not their own, the 

behaviour of “helpers” appears to flout the most basic tenets of natural selection and has 

prompted a vast amount of theoretical and empirical work seeking to describe the 

occurrence and explain the evolution of cooperative breeding. A major finding of this 

empirical effort has been the diversity of social and genetic systems within which 

cooperative breeding occurs (Brown 1987; see Cockbum 1998 for recent review). The 

application of genetic methods has been instrumental in describing and understanding this 

diversity by allowing the direct assessment of two critical factors, relatedness among 

members of cooperative groups and the individual reproductive success of those members. 

Patterns of relatedness and mating system characteristics are major determinants of the 

benefits of helping and are fundamental in understanding the occurrence of cooperative 

breeding in any species.

In many cooperatively breeding birds, helpers are related to the breeding pair they 

assist, commonly as their offspring, and therefore may gain indirect inclusive fitness 

benefits by contributing to the production of non-descendent kin (Brown 1987; Emlen 

1997). In other species the cooperative care of young is directly related to parentage such 

that “helpers” are actually co-breeders that stand to gain direct fitness benefits by providing 

care to descendent kin (Davies 1992; Hartley and Davies 1994). These two modes of 

cooperation are not mutually exclusive and in some species subordinate group members 

may accrue indirect kin-selected benefits by helping to raise non-descendent kin or pursue 

opportunities for individual reproduction depending on, among other factors, their 

relatedness to the dominant breeders in their group and their offspring and their access to 

mating opportunities within and outside the group (Emlen 1995; Richardson et al. 2002).
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In most cooperatively breeding birds, groups form when the offspring of a socially 

dominant breeding pair delay dispersal and assist with the production of later broods 

(Brown 1987). In such systems the potential benefits of helping, particularly with respect to 

individual reproductive opportunities, are likely to be constrained by the social and genetic 

structure of the family. Incest avoidance generally precludes the possibility of helpers 

gaining parentage within family groups (Emlen 1997), severely restricting the potential for 

direct reproductive benefits; however, the close kinship between helpers and the young they 

help raise promotes the potential for indirect inclusive fitness benefits of helping through 

enhancing the production of non-descendent kin. Even within the constraints imposed by 

family based cooperative breeding, relatedness among group members and the reproductive 

options open to subordinates may vary. The replacement of deceased breeders with 

individuals from outside the group can produce groups where helpers are no longer closely 

related to both members of the dominant pair. This scenario not only reduces the helper’s 

kinship with subsequent offspring of the dominant pair but also, where the replacement 

breeder is of the opposite sex, may allow helpers to pursue mating opportunities within the 

group (Emlen 1995; Magrath and Whittingham 1997). Promiscuous mating systems can 

also dramatically affect patterns of relatedness and the reproductive opportunities available 

to subordinate group members. Genetic assessments of parentage in cooperatively breeding 

birds have revealed high rates of promiscuity even in species that appear to be 

monogamous. Among the fairy-wrens (.Malurus spp.), for example, groups are comprised 

of a socially monogamous breeding pair and their philopatric offspring, but the majority of 

young are sired by males from outside the social group (Brooker et al. 1990; Mulder et al. 

1994). Extreme promiscuity has multiple effects on the nature of cooperative breeding in 

this genus. It reduces the incidence of genetically incestuous matings despite the frequent 

occurrence of socially incestuous pairings in the splendid fairy-wren (M. splendens, 

Brooker et al. 1990) while in the superb fairy-wren (M. cyaneus) it has a double effect. On 

one hand it reduces the relatedness of helpers to the offspring they care for, thus reducing 

their potential to gain inclusive fitness benefits by helping, but on the other hand it provides 

the opportunity for helpers to achieve individual reproductive success as extra-group sires 

(Mulder et al. 1994; Dunn and Cockbum 1999).

In cooperative breeding systems the relationship between the genetic mating 

system and the relatedness between helpers and the recipients of their care is both 

potentially complex and crucial to understanding the behaviour of helpers. In this chapter I
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use multi-locus DNA fingerprinting to describe the mating systems and patterns of 

relatedness within groups in two cooperatively breeding thombill species, the buff-rumped 

thornbill (.Acanthiza reguloides) and the yellow-rumped thombill (A. chrysorrhoa). I also 

describe the provisioning of nestlings by pairs and groups in both species with the aim of 

exploring the potential benefits of helping behaviour in each species within the genetic 

context established by the fingerprinting results. The genus Acanthiza is of particular 

interest in the context of the evolution of avian breeding systems as cooperative breeding is 

exhibited by most but not all of the 13 species and is the ancestral breeding system in the 

genus (Nicholls et al. 2000). As such it represents a clade where pair-breeding species have 

evolved from a cooperatively breeding ancestor, an evolutionary scenario that is now 

thought to have occurred on a much larger scale in the evolution of the modem passerines 

(Cockbum 2003). However, despite their potential informativeness very little is known of 

the breeding systems of thombill species and this study is the first to describe the mating 

and provisioning systems of cooperatively breeding thornbills.

METHODS 

Species and study site

The genus Acanthiza comprises 13 small (< 10g) insectivorous species, 12 of 

which are Australian residents, and is one of the three main genera, with Sericornis and 

Gerygone, in the old endemic Australian passerine family Pardalotidae (Christidis and 

Boles 1994). The buff-rumped thombill inhabits the eucalypt woodlands and open forests 

of the south-east of continental Australia and co-occurs with the yellow-rumped thombill 

over much of this area, although the yellow-rumped thornbill’s range also extends to the 

interior of the continent, southern Western Australia and Tasmania (Blakers et al. 1984). 

The breeding seasons of both species extend from late winter to early summer; females may 

lay several clutches in one season. The usual clutch size is three, and the clutch is incubated 

by female members of breeding pairs and groups. Nestlings are fed by both members of the 

breeding pair and sometimes also by one or more helpers (Immelmann 1960; Ford 1963; 

Brown and Brown 1982; Bell and Ford 1986).

Both the buff-rumped thombill and the yellow-rumped thombill have an unusual 

two-phase social structure where breeding pairs and groups affiliate in larger groups
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throughout the non-breeding period of each year (Bell and Ford 1986, Chapter 5). In the 

yellow-rumped thombill non-breeding flocks are stable groups of up to 15 individuals 

usually including the members of more than one breeding pair or group, some male 

offspring from the preceding breeding season, immigrant birds and occasional transients 

(Chapter 5). As some males are natally philopatric, adult male flock-mates are often but not 

always relatives (see Chapter 5 for details). The composition of non-breeding flocks in the 

buff-rumped thombill is less well documented. Bell and Ford’s study (1986) suggests that 

flock composition is broadly similar to that of the yellow-rumped thombill, with some 

differences in the timing of the dispersal of young.

The role of flock level sociality, if any, in the breeding season social organisation is 

unclear for both species. Bell and Ford (1986) described discrete breeding units, pairs or 

groups, in the buff-rumped thombill that actively defended exclusive breeding territories 

against members of the same flock although they also observed the cooperative care of 

fledglings by members of more than one breeding unit. The yellow-rumped thombill also 

forms discrete breeding units where pairs and groups occupy an area within the flock home- 

range surrounding their nest and almost always forage separately from other breeding units. 

However, the territorial behaviour of this species may not extend to the active exclusion of 

other flock members from a clearly defined breeding territory (pers obs).

I studied the populations of yellow-rumped thombills and buff-rumped thombills on 

the lower eastern slopes of the Mt Ainslie section of Canberra Nature Park (35°16’S, 

149°9’E), Australian Capital Territory, from 1995 to 1997. The study area was 

approximately 250ha of open eucalypt woodland dominated by E. rossii, E. mannifera, E. 

meliodora and E. macrorhyncha with a sparse shrubby understorey interspersed with 

cleared grassy areas.

Field Methods

Adult birds were captured in mist nets and were each banded with a numbered 

aluminium band supplied by the Australian Bird and Bat Banding Scheme and a unique 

combination of three coloured plastic bands to allow individual identification. A small 

blood sample, less than lOOul, was collected from the brachial vein as a source of DNA.

Breeding was monitored for three full seasons from 1995 to 1997 and for the first 

broods raised in the 1998 breeding season. The social organisation of breeding units was 

assessed by regular observation of breeding pairs and groups throughout the breeding
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season. The classification of a breeding unit as a group rather than a pair was generally 

straightforward for both species in that supernumerary individuals were present from the 

beginning of the breeding season and were seen in the company of the primary pair in 

almost all observations during the nest building and incubation phases of the breeding 

cycle. The identification of the breeding pair in cooperative groups was similarly 

straightforward in that one male (defined as the alpha-male) was clearly more closely 

associated with the breeding female throughout the breeding season in all cases.

Nests were found at varying stages of the breeding cycle by watching building 

birds, following females during incubation or following birds seen collecting prey to feed 

nestlings. Most nests were found before hatching and were visited regularly in order to 

determine clutch size and the date of hatching. Clutches of both species hatched roughly 

synchronously, with all eggs hatching within 24 hours, and the date of hatch was regarded 

as age zero for the purpose of ageing broods. Nestlings were briefly removed from the nest 

for banding and blood sampling between the ages of seven and 13 days and at this point 

brood size was confirmed and the ages of broods that were found after hatching were 

estimated by comparing nestling size and feather development with those of known age. 

Two yellow-rumped thornbill and eight buff-rumped thombill broods that were included in 

provisioning observations were taken by predators before they were handled and the 

number of chicks in these broods was assumed to be equal to the number of eggs in the 

clutch as this was true for the majority of broods that were handled for both species.

Provisioning at the nest was observed through binoculars from a distance of 

approximately 25m from most nests. Where nests were not visible from a distance a hide 

was used to enable a closer point of observation. Observations were made between 8:00 

and 16:00 and lasted 30 or 60 minutes. During each observation the identity of the bird 

visiting the nest was recorded for every visit to the nest. Nests that were found before 

hatching were observed every two to four days, from the day after hatching (i.e. brood age 

of one day) until the brood either fledged or was taken by a predator. As some nests were 

not found until after hatching, and many broods were taken by predators before fledging, 

the distribution of provisioning observations with regard to brood age varied among nests.

Due to nest predation the dataset for the genetic analysis of parentage and social 

organisation and that for the analysis of nestling provisioning were overlapping but not 

equivalent in terms of the breeding units and breeding attempts they included.
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Sexing

Both species of thombill are sexually monomorphic and although only female buff- 

rumped thornbills build the nest (Bell and Ford 1986) and only the females of both species 

incubate (Ford 1963; Bell and Ford 1986) the sex of all banded birds was determined with a 

simple PCR based sexing technique (see Griffith et al. 1999 for method).

Fingerprinting Methods

DNA was isolated from blood following standard procedures (Bruford et al. 1992). 

Ten to 20ug of DNA was digested overnight with Haelll, and 5ug of digested DNA was 

then electrophoresed at 3.5V/cm through a 40cm 0.8% agarose gel with 7.5ng of in-lane 

size standard (X/EcoRl+HindIII Marker, 3 (MBI Fermentas)). Gels were run in 1 X TBE 

buffer for 72 hours at 4°C. The running buffer was replaced after 36 hours. Gels were 

depurinated in 0.25M HCL for 10 minutes then denatured in 0.4M NaOH, 1.5M NaCl for 

30 minutes and neutralised in 0.5M Tris, 1.5M NaCl for 30 minutes. DNA was then 

transferred to Hybond-Nfp membranes (Amersham) by capillary transfer and fixed by UV 

crosslinking at the energy level recommended by the membrane manufacturer. Membranes 

were separately hybridised to 33.15 and 33.6 (Jeffreys et al. 1985; Shin et al. 1985) 

minisatellite probes followed by the in-lane size standard labeled with tt-[32P]-dCTP at 

65°C for a minimum of 6.5 hours. Unbound probe was removed from membranes by 

washing at least four times with 6XSSC at 65°C or by washing three times with (Piper and 

Rabenold 1992) 2XSSC, 0.1% SDS at 65°C followed by two washes with room 

temperature 1XSSC. Sealed membranes were exposed to X-ray film for one to 14 days with

or without an intensifying screen at ~70°C.

Scoring Fingerprints

Individuals were arranged on gels in family units. Families varied in size from three 

to 17 individuals and where families shared a member they were run on the same gel and 

scored together. The largest group scored as a unit consisted of 21 individuals. Distance 

between lanes has been shown to bias fingerprint scoring (Piper and Rabenold 1992). In 

order to minimise this potential scoring error, putative parents in large families were 

duplicated on gels such that almost all offspring were within four lanes of their putative 

parents. The largest separation of offspring and putative parent was six lanes. The banding
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patterns of duplicated samples and in lane size standards were used to account for uneven 

migration of fragments across large families.

Autoradiographs were scored by eye by marking the position of bands from 2kb to 

21kb on acetate overlays. Bands that differed in position by less than 1mm and in intensity 

by less than two-fold were scored as shared. Bands that may have been obscured by more 

strongly hybridizing fragments of similar mobility were excluded as were weakly 

hybridizing bands that may not have been discernible in fainter lanes of an autoradiograph.

The independence of probes was assessed for each species by scoring the three 

autoradiographs for one fingerprint onto a single acetate overlay. A small degree of overlap 

was found in fragments detected by the three probes for both species. The largest overlap 

was for the probes 33.15 and 33.6, where 10% and 9% of all bands scored for buff-rumped 

thombills and yellow-rumped thombills, respectively, were detected by both probes. The 

smallest overlap was for the probes 33.6 and per where, for both species, 2% of all bands 

scored were detected by both probes. In light of the capacity for the probes to detect the 

same fragments the scoring of all novel fragments was checked between autoradiographs to 

ensure none was scored more than once. Otherwise the scores for the three probes were 

treated as independent and all statistics presented here are derived from the accumulated 

scores across probes.

The average number of bands scored per individual was 50.2 ± 10.9 (SD) for buff- 

rumped thombills and 48.1 ± 9.2 (SD) for yellow-rumped thombills. Mutation rates, 

estimated from nestlings with 0-2 novel fragments (see Burke and Bruford 1987 for 

method), were used to calculate the probability of a given number of novel fragments in an 

offspring’s fingerprint arising from mutation alone (e.g. Whittingham et al. 1997). 

Fingerprint similarity coefficients, the proportion of bands shared by a pair of individuals, 

were calculated following Wetton et al. (1987) using a computer program written 

specifically for this purpose.

Parentage

Putative parents were identified for each brood based on repeated observation of the 

breeding attempt. In no case was more than one female observed to be associated with a 

nest and hence the classification of putative mothers was based simply on identification of 

the female that built the nest, incubated the clutch and provisioned the brood. The 

identification of putative sires was similarly straightforward for breeding pairs where a
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single male was observed in close association with each nesting female and provisioned her 

brood. In the case of breeding groups the male most closely associated with each female 

throughout the breeding attempt, the alpha-male, was classified as the putative sire of her 

brood, other males in the group were regarded as potential sires and were also included in 

parentage analyses. Most broods included in the analysis of parentage were from 

completely sampled families, where all associated adults were captured, but a small number 

of broods of both species were produced by partially sampled families, where at least one 

adult associated with the brood was not captured and could not be fingerprinted.

Parentage exclusion and assignment was based on a two step analysis of novel 

fragments and pairwise similarity coefficients very similar to that of Lifjeld et al. (1993) 

and as follows:

1. Novel fragments, nestlings from complete families only - Putative parents were 

accepted as the actual parents of any offspring with zero or one novel fragment, (the 

probability of one novel fragment occurring by mutation was 0.12 for buff-rumped 

thombills and 0.14 for yellow-rumped thombills). The occurrence of three or more novel 

fragments in an offspring’s fingerprint was taken to indicate that one or both of the putative 

parents were not the genetic parents of that individual, (the probability of three novel 

fragments arising by mutation was less than 0.001 for both species). Offspring with two 

novel fragments were considered ambiguous cases based solely on novel fragment analysis, 

(the probability of two novel fragments arising by mutation was 0.008 for buff-rumped 

thombills and 0.01 for yellow-rumped thombills). For nestlings produced by breeding 

groups novel fragments were scored for all combinations of the female and each of the 

males in the group, including the alpha-male.

2. Similarity coefficients - Dyads of known relatedness were used to create reference 

distributions of similarity coefficients for unrelated birds, second order relatives and first 

order relatives of both species. Members of breeding pairs provided the samples of 

unrelated dyads; n = 29 for buff-rumped thombills and n = 32 for yellow-rumped thombills. 

The samples of first order relatives were comprised of all parent-offspring dyads assigned 

according to the occurrence of novel fragments and all full-sib dyads inferred from 

assigned parentage; n = 323 for buff-rumped thombills and n = 434 for yellow-rumped 

thombills. Similarly the samples of second order relatives were comprised of all half-sib 

dyads that could be inferred from assigned parentage, n = 51 for buff-rumped thombills and 

n = 142 for yellow-rumped thombills.
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The sample of unrelated dyads was limited by the arrangement of individuals on 

gels and was necessarily based on assumption, as it was not possible to know with certainty 

which individuals in the population were “truly” unrelated. Due to the likelihood of a kin- 

based social structure in both species, particularly among males, and the likelihood that 

juvenile females disperse to find breeding positions, dyads comprised of breeding pairs 

were used to create reference distributions for “unrelated” dyads. The use of breeding pairs 

as a reference for unrelated dyads assumed that the mating of close relatives did not occur. 

A somewhat circular test of this assumption was possible and the highest coefficients of 

similarity between the members of a breeding pair were 0.246 and 0.220 for the buff- 

rumped thombill and the yellow-rumped thombill, respectively. These values are 

considerably lower than the similarity expected of first order and second order relatives 

according to the rules of inheritance and the nature of multi-locus minisatellite markers 

(Lynch 1988).

Confidence intervals derived from reference distributions of similarity coefficients 

were used to classify the relationships of offspring and putative parents in cases where 

novel fragment data indicated a misassignment of one or both parents and in cases where 

novel fragment data were ambiguous (i.e. offspring from complete families with two novel 

fragments), or where novel fragment data were not available (i.e. offspring from partial 

families).

The similarity index thresholds most commonly used in previous studies to classify 

the relationship between two individuals are a one-tailed upper confidence limit from a 

distribution of known unrelated dyads and/or a lower one-tailed confidence limit from a 

distribution of known first order relatives. However, in species where natal philopatry is 

known or suspected, the crucial threshold in deciding parental relationships, assuming no 

incest, is that between second and first order relatives. This is due to the likelihood of 

putative parents of the philopatric sex having relatives as neighbours during the breeding 

season or indeed as members of their breeding groups in the case of cooperatively breeding 

species. Both species in this study show male philopatry; it was therefore assumed that at 

least some putative sires were likely to have close male relatives at neighbouring nests, or 

as helpers at their own nests. Hence, judgements of paternity based on fingerprint similarity 

should encompass the possibility that a misassigned putative sire might be related to a 

nestling at a second order level as an uncle or grandfather.
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Consequently, the upper one-tailed 99% confidence interval for second order 

relatives and the lower one-tailed 99% confidence interval for first order relatives were 

used as thresholds for parentage classification. If a putative sire/offspring similarity 

coefficient fell below both thresholds the putative sire was rejected as the genetic sire of 

that nestling. If a putative sire/offspring similarity coefficient exceeded both limits the 

putative sire was accepted as the genetic sire of that nestling. For both species the upper 

one-tailed confidence limit for second order relatives exceeded the lower one-tailed 

confidence limit for first order relatives, creating a zone of overlap where a simple 

classification of relationships was not possible. Putative sire/offspring dyads with similarity 

coefficients in the zone of overlap were assessed as individual cases; where possible a 

conservative judgement of the relationship was made (see below).

In breeding groups, reference distributions of fingerprint similarity coefficients were 

also used to classify the relationships of helpers to the female and the alpha-male, and to 

the brood to which they contributed care.

Analysis o f provisioning rates

The rate of feeding was analysed in two ways for both species. For each observation 

period at a nest the total number of feeds to the brood delivered per hour and the number of 

feeds to the brood per hour for each individual in the pair or group were calculated. Two 

datasets were thus created for each species, one for the analysis of total feeding rate and 

another for the analysis of the feeding rates of individual adults.

Provisioning data contained many non-independent observations due to the repeated 

observation of broods and the observation of multiple broods for some breeding pairs and 

groups. The data were also unbalanced with regard to most explanatory variables. To cope 

with repeated sampling and an unbalanced design, linear mixed models were used. Random 

effects (brood and pair/group identity) were estimated using the restricted maximum 

likelihood procedure in Genstat 5.4.1 for Windows (Genstat 5 Committee 1997), and fixed 

effects were estimated from weighted least squares. The significance of fixed effects was 

assessed using the Wald statistic, which approximates to a Chi-squared distribution.

The explanatory variables, year, brood age, brood size and whether the breeding 

unit was a pair or a cooperative group, were tested for their effects on the total feeding rate 

to broods. The same variables plus individual status (breeding female, alpha-male or helper 

male) were tested for their effects on the feeding rates of individual adults. Broods were
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classified into five age categories: age one to four days, five to eight days, nine to 12 days, 

13 to 16 days and older than 16 days. Although broods of three chicks were most common, 

brood size ranged from one to four in both species. For analysis, broods were classified as 

small (one or two chicks) or large (three or four chicks). Broods fed by more than three 

adults were rare and breeding units were therefore classified as pairs or groups. Two 

yellow-rumped thombill breeding units were unusual in that their memberships appeared to 

change while they were provisioning a brood. In the first case two males fed at the nest 

during the first observation period, but this was followed by a further six observation 

periods in which only one male provisioned the brood. This breeding unit was classed as a 

group for the first observation and as a pair thereafter. In the second case, one male fed at 

the nest for the first two observations and then, after an observation where only the female 

fed, a different male provisioned the brood in the final four observations. This breeding unit 

was classed as a pair for every observation since no more than one male fed at the nest in 

any single observation.

For each analysis an initial model including all main effects and two-way 

interactions was fitted and a final model was selected by iteratively dropping non

significant interaction terms and then non-significant main effects from the model. Effects 

that were dropped from models in early iterations were re-entered into final models to 

confirm their lack of significance. Residual plots were examined for all models to check for 

deviations from normality. Wald’s statistics for significant (p < 0.05) effects as well as 

those for non-significant effects of biological interest are reported below. The influence of 

statistically significant effects on feeding rates are presented graphically using the predicted 

mean for each level of the effect calculated with the final model controlling for the other 

significant effects. Sample sizes in terms of the number of broods, the number of pairs and 

the number of observations are presented in Table 4.1.

RESULTS

Social organization

In both species the most common breeding unit was the unassisted pair (Table 4.1). 

Over three breeding seasons 86.5% of all yellow-rumped breeding units were pairs 

(Chapter 2). Over two breeding seasons 80% of 64 buff-rumped thombill breeding units
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were pairs (1996: 71%, n = 31; 1997: 88%, n = 33). Trios were the most common 

cooperative group with three adults provisioning 13 of 15 buff-rumped thombill and four of 

seven yellow-rumped thornbill broods that were fed by groups. The largest number of 

adults to provision a brood was five (one group of five for each species). All of the 13 buff- 

rumped thombill and seven yellow-rumped thornbill helpers that were sexed were male.

Helpers generally, but not always, assisted their social parents and could become 

helpers in the same breeding season in which they fledged. Only one buff-rumped thombill 

helper was banded as a nestling and this individual became a helper at the nest of his 

parents later in the same breeding season in which he fledged. Six yellow-rumped thombill 

helpers were banded as nestlings and four of these helped at nests of their social parents one 

year after they fledged while the remaining two became helpers in the same breeding 

season in which they fledged. In both species helpers were not always the offspring of the 

breeding pair they assisted. One yellow-rumped thornbill helper assisted his social parents 

for one week before abandoning them to provision a similarly aged brood of a neighbouring 

breeding pair. One buff-rumped thombill helper fed two broods belonging to a single 

female; however, the alpha-male from the first breeding attempt disappeared and was 

replaced before the second attempt. Another buff-rumped thornbill helper provisioned the 

broods of two different breeding pairs.

Relatedness in cooperative groups

Nine buff-rumped thombills included in the genetic analysis were helper males in 

cooperative groups, with one of these participating in two breeding attempts with different 

breeding pairs (Figure 4.1). The occurrence of novel fragments indicated that five of these 

individuals, including one helper that was banded as a nestling, were the offspring of both 

the female and the alpha-male in their groups. The relatedness of three of the remaining 

buff-rumped thombill helpers to the dominant pair in their groups was clearly indicated by 

their genetic similarity coefficients. Two were close relatives (most likely first order 

relatives) of the breeding female but unrelated to the alpha-male, while one was closely 

related to the alpha-male but unrelated to the breeding female. The latter individual helped 

at the nests of two different breeding pairs. This helper was unrelated to both of the females 

he was associated with and was a close relative (most likely a first order relative) of the 

first male he assisted. His relatedness to the second male was ambiguous because their 

genetic similarity index (0.267) fell within the distributions of both unrelated dyads (upper
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99% C.I. = 0.295) and second order relatives (lower 99% C.I. = 0.183). One buff-rumped 

thombill male became a helper at the nest of a pair late in the breeding season after 

attempting to breed independently as a member of a pair. This individual was also clearly 

unrelated to the female of the pair he assisted but was a first or second order relative of the 

breeding male. Their coefficient of genetic similarity, 0.4, was within the reference 

distribution for second order relatives (upper 99% C.I. = 0.47), and at the lower end of the 

distribution for first order relatives (lower 99% C.I. = 0.41).

The varying levels of relatedness between helper buff-rumped thombills and the 

breeding pairs they assisted led to a range of relationships among helpers and the offspring 

they helped raise. Five helper males helped raise full siblings, three helped raise half 

siblings and, by virtue of being related at a second order level to one parental bird and 

unrelated to the other, three helped raise third order relatives.

Nine yellow-rumped thombill males were involved in breeding attempts as helpers 

(Figure 4.2). Novel fragment analysis confirmed that all nine were the genetic offspring of 

both the female and the alpha- male they initially assisted. However, due to the movement 

of one helper between the breeding attempts of two neighbouring pairs and the replacement 

of the breeding female in one trio there were two cases where a helper male was not the 

offspring of one or both of the dominant individuals in his group. Both cases relate to the 

same helper and occurred in consecutive years. In the first year this helper abandoned the 

nest of his parents after provisioning his siblings for one week and became a helper at the 

nest of two birds to which he was probably unrelated. This individual’s coefficients of 

genetic similarity with the breeders at the second nest were both below the lower 99% 

confidence interval for second order relatives and well within the distribution for unrelated 

birds. In the second year the same male was “reunited” with his parents as a helper in a trio 

until his mother disappeared, and presumably died, early in the breeding season, and was 

replaced by a new female.

Therefore, most helper males in yellow-rumped thombill cooperative groups helped 

raise nestlings to which they were related as full siblings, but occasionally they helped 

unrelated young.

Parentage

The vast majority of offspring from complete families of both species could be 

classified as the genetic offspring of their putative parents simply on the basis of the
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occurrence of novel fragments. The fingerprints of 91 buff-rumped thombill nestlings 

(94.8%) and 97 yellow-rumped thombill nestlings (91.5%) had zero or one novel fragments 

when compared with their putative parents (Figures 4.3 and 4.4, respectively).

The relationships of a small number of nestlings to their putative parents could not 

be classified without ambiguity on the basis of novel fragments. The fingerprints of two 

buff-rumped thombill and four yellow-rumped thombill nestlings displayed two novel 

fragments (Figures 4.3 and 4.4). There was no evidence of misassigned maternity for any of 

these nestlings as all of them had fingerprint similarity coefficients with their putative 

mothers that were greater than the lower one-tailed 99% Cl for first order relatives. Both 

buff-rumped thombill nestlings and two of the yellow-rumped thombill nestlings were also 

classified as the genetic offspring of their putative sires with similarity coefficients in 

excess of the upper one-tailed 99% Cl for second order relatives. The two remaining 

yellow-rumped thombill nestlings had similarity coefficients that fell between the two 

threshold confidence limits. Both of these nestlings were more likely first order relatives to 

their putative sire than second order relatives: both similarity coefficients exceeded the 

upper one-tailed 95% Cl for second order relatives and the lower one-tailed 95% Cl for 

first order relatives. On this basis both were classified as legitimate offspring of their 

putative parents.

Based on fingerprint similarity coefficients almost all nestlings from partially 

sampled families could also be classified as legitimate with respect to the putative parent 

that had been sampled. Of 16 buff-rumped thombill nestlings from partial families that 

could be compared against their putative mothers, 15 had coefficients exceeding the lower 

one-tailed 99% confidence interval for first order relatives. Of the ten buff-rumped thombill 

nestlings from partial families that could be compared against a putative sire eight could be 

classified as first order relatives. All yellow-rumped thombill nestlings from partial families 

(ten compared against a putative mother and six against a putative sire) also could be 

classified as legitimate, with respect to the sampled parent, on the basis of genetic 

similarity.

Extra-pair paternity

A small number of nestlings from completely sampled families were clearly the 

result of extra-pair paternity. The fingerprints of two buff-rumped thombill nestlings (both 

from groups) and four yellow-rumped thombill nestlings (two from groups, two from
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unassisted pairs) contained numerous novel fragments when compared against their 

putative parents and displayed high genetic similarity with their putative mothers but low 

genetic similarity with their putative sires (Figures 4.3 and 4.4).

In addition, one nestling of each species had an anomalous combination of novel 

fragments and putative parent/offspring genetic similarities. The fingerprints of one buff- 

rumped thombill nestling and one yellow-rumped thombill nestling contained three and 

four novel fragments respectively when compared against those of their putative parents, 

numbers unlikely to result from mutation. However they both also had high genetic 

similarities with both of their putative parents. The most likely explanation of these data is 

extra-pair parentage where the extra-pair parent is a close relative of one of the putative 

parents. The buff-rumped thombill nestling in question displayed a level of genetic 

similarity with its putative mother typical of a nestling of legitimate parentage while its 

genetic similarity with its putative sire was lower than all other such comparisons involving 

legitimate nestlings (Figure 4.3). The yellow-rumped thombill nestling in question 

displayed very similar levels of genetic similarity with both its putative parents (Figure 

4.4), however on the basis of female-biased dispersal and male philopatry in this species 

(Chapter 5) extra-pair paternity involving a male closely related to its putative sire was far 

more likely than extra-pair maternity (e.g. via egg dumping) involving a close relative of its 

putative mother. Therefore both nestlings were most likely the result of the cuckoldry of the 

putative sire by a close relative. The buff-rumped thombill nestling was one of a brood of 

four raised by a trio. Treating the helper male as the putative sire of this nestling resulted in 

a count of five novel fragments indicating that he also was extremely unlikely to be its 

genetic sire.

In summary, rates of extra-pair paternity, based on nestlings from complete 

families, were 4.7% of yellow-rumped thombill nestlings in 12.8% of broods, and 3.1% of 

buff-rumped thombill nestlings in 10% of broods (Table 4.2).

Paternity in cooperative groups

The alpha-male in a cooperative group was excluded as the genetic sire of only two 

nestlings in each species (Table 4.2). The two buff-rumped thombill nestlings were 

produced by different breeding groups and in both cases the helper male was also excluded 

as the sire of the extra-pair offspring on the basis of novel fragment analysis. The two cases 

of extra-pair paternity in the yellow-rumped thombill involved the cuckoldry of the same
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alpha-male in consecutive years. In the first year the breeding group was a trio consisting of 

a breeding pair and a helper male who was the offspring of both the female and the alpha- 

male. Both males were excluded as the sire of one nestling in a brood of three on the basis 

of novel fragment analysis. However, when the alpha-male from the nearest neighbouring 

group was considered as the putative sire the number of novel fragments in the nestling’s 

fingerprint was zero, indicating that he was the extra-pair sire. In the second year the 

female member of the trio disappeared early in the breeding season and was replaced by a 

new female. The nesting attempt that ensued was notable for the sustained aggressive 

interaction of the two males and resulted in a brood of only one chick which, according to 

the occurrence of novel fragments, was sired by the helper male.

Provisioning at the nest

Total feeding rates of pairs and groups

Age of the brood was a strong influence on the total number of feeds per hour 

delivered to the nest by both species (Tables 4.3 and 4.4; Figures 4.5 and 4.6). Both species 

increased their total feeding rates substantially after the brood reached five days old, but 

yellow-rumped thombills showed a decline in feeding rate to broods in the older age 

classes.

Brood age was the only significant effect in the final model for total feeding rate of 

buff-rumped thombills. Brood size, breeding unit, and brood age had no significant effect 

(Table 4.3).

In contrast to buff-rumped thombills, total feeding rate in yellow-rumped thombills 

was affected by year, brood size, and the type of breeding unit, in addition to brood age 

(Table 4.3). The year effect was due largely to an unusually high feeding rate in 1995 

(Figure 4.7). Yellow-rumped thombills also provisioned broods of three or four chicks 

significantly more than smaller broods of one or two chicks (Figure 4.8), and groups also 

provisioned their broods at a significantly greater rate than pairs (Figure 4.9).

Individual feeding rates

The rate at which individuals of both species provisioned at the nest depended on 

their status and the age of the brood (Table 4.4). Females of both species fed broods in the 

youngest age class, one to four days old, at very low rates (Figures 4.10 and 4.11). Females
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of both species brood young nestlings for approximately the first week after hatching (pers. 

obs.) and their feeding rates increased to broods in the second two age classes as their time 

spent brooding declined. In both species females eventually fed at the highest rates (Figures 

4.10 and 4.11). Yellow-rumped thombill alpha-males and helpers showed similar patterns 

of increasing feeding rates over the first three brood age classes before decreasing their 

feeding rates to older broods, although helper males consistently fed less often than alpha- 

males (Figure 4.10). In contrast, buff-rumped thombill continued to increase their feeding 

rates as the chicks aged. Also unlike yellow-rumped thombills, buff-rumped thombill 

alpha-males and subordinates fed at similar rates (Figure 4.11).

Individual feeding rates of yellow-rumped thombills were affected by year with 

feeding rates substantially higher in 1995 than any other year, and by brood size, with 

individuals feeding broods of three or four chicks at almost twice the rate at which they fed 

broods of one or two chicks (Table 4.4). There was no significant effect of breeding unit on 

the feeding rates of individual yellow-rumped thombills (Table 4.4) and the lack of a 

response to breeding unit did not depend on status (pair vs group * status interaction: x  2 = 

2.7, p = 0.3) indicating that neither females nor alpha-males adjusted their feeding rates 

when they were assisted by helper males.

Unlike yellow-rumped thombills, individual buff-rumped thombills modified their 

feeding rates with brood age in different ways, depending on their breeding unit (Table 

4.4). Individuals in groups did not increase their feeding rates as broods got older, whereas 

those in pairs did (Figure 4.12). The effect of breeding unit on individual feeding rates did 

not depend on status (pair vs group*status interaction: X 1 = 0.55, p = 0.5), indicating that 

both females and alpha-males responded to the assistance of helpers by failing to increase 

their feeding rates as broods got older. In contrast with yellow-rumped thombills, 

individual buff-rumped thombill feeding rates were not affected by year or by the size of 

the brood (Table 4.4).

DISCUSSION

This study represents the first application of genetic methods to elucidate the 

breeding systems of cooperative thombill species. Despite the small sample of cooperative 

groups, two important breeding system characteristics were confirmed for both yellow- and 

buff-rumped thombills. First, helper males are generally close relatives of one or both
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members of the breeding pair in their group. Second, the mating systems of both species are 

overwhelmingly monogamous. These two characteristics define the genetic context of 

cooperative breeding in yellow-rumped and buff-rumped thombills and have important 

implications for the potential benefits that helpers might accrue via natal philopatry and 

helping. This study also includes the first quantitative description of nestling provisioning 

in both species. When considered in the light of the genetic results these data provide 

further insight into the means by which helpers in cooperative thombills might benefit from 

their helping behaviour.

Social organisation and mating systems

Observations of marked birds by Ford (1963), Bell and Ford (1986) and in this 

study suggest that cooperative groups are formed by the natal philopatry of male offspring 

in both the yellow-rumped and the buff-rumped thombills; the genetic analysis presented 

here confirms that most helpers of both species are the male offspring of both the female 

and the alpha-male in their groups. The formation of family based breeding groups through 

natal philopatry is common among cooperatively breeding birds (Brown 1987; Emlen 

1995; Emlen 1997).

Cooperative breeding based on the nuclear family implies certain constraints on the 

benefits of helping particularly with regard to the reproductive opportunities available to 

helpers. The within-group reproductive opportunities available to helper/subordinate males 

are likely to be limited by incest avoidance (Emlen 1997). However, a promiscuous mating 

system may provide the opportunity to obtain individual reproductive success outside the 

group. For example, in the highly promiscuous superb fairy-wren, which also forms kin- 

based breeding groups via the natal philopatry of male offspring, helpers very rarely gain 

paternity within the group but can be highly successful extra-group sires (Mulder et al. 

1994; Dunn and Cockbum 1999). In contrast to the promiscuity displayed by Malurus 

species (Brooker et al. 1990; Mulder et al. 1994) the mating systems of the two thombills 

studied here are characterised by the fidelity of females to their social mates. The rates of 

extra-pair paternity (3.1% of nestlings for buff-rumped thombills, and 4.7% of nestlings for 

yellow-rumped thombills) are lower than the average for socially monogamous birds (11% 

of nestlings, Griffith et al. 2002) and are the lowest rates of extra-pair paternity yet 

described for members of the Pardalotidae (Acanthiza pusilla: 6.2% of nestlings (Green et 

al. 2002); Sericornis frontalis: 24% of nestlings (Whittingham et al. 1997); Chthonicola
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sagittata: 10.7% of nestlings (Gardner et al. 2004)). Such low rates of female infidelity 

suggest that subordinate males of both species are extremely unlikely to derive any benefit 

from natal philopatry or helping via the achievement of individual reproductive success as 

extra-group sires.

Changes in group composition can provide within-group reproductive opportunities 

to helpers in family based cooperative breeders (Emlen 1995; Emlen 1997). Although most 

helpers in both thombill species were the sons of the breeding female in their group, there 

was one instance in each species where this was not the case. The disappearance, 

presumably due to death, of a female from one yellow-rumped thombill trio led to the 

replacement of the helper’s mother with an unrelated female. Although the histories of the 

individuals involved were not known, a similar replacement may also have given rise to the 

only buff-rumped thombill trio where the subordinate was unrelated to the female. The 

single brood produced by each trio represent the only situations where incest avoidance did 

not preclude helpers from gaining paternity within their groups. The sample size of one 

brood for each species provides no information regarding the frequency with which helpers 

gain paternity in such groups. However, the fact that the single nestling produced by the 

yellow-rumped thombill trio was sired by the helper rather than the alpha-male indicates 

that, at least in that species, there are occasional opportunities for helpers to gain direct 

reproductive benefits from delayed dispersal. Since direct reproductive benefits for helpers 

are probably uncommon within their group, they are unlikely to be an important factor in 

the evolution of helping behaviour in yellow-rumped or buff-rumped thombills.

Although the combination of a family-based social grouping and monogamy 

severely restrict one of the major routes by which helpers might gain direct benefits from 

helping, it is likely to have the opposite effect on their potential to accrue indirect benefits. 

An important corollary of the monogamous mating systems of both species is that males 

that delay dispersal and help one or both of their social parents raise later broods will 

almost always be contributing care to close relatives (full or half siblings). The mating 

systems and social organisation of breeding in yellow-rumped and buff-rumped thombills 

therefore provide the potential for helpers to gain inclusive fitness benefits from their 

contributions to breeding.
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Redirected helping

In the populations studied here most cooperative breeding occurred in the social and 

genetic context of the nuclear family. However there were indications in both species that 

social organisation at the flock level may also influence helping behaviour. Two buff- 

rumped thombill males and one yellow-rumped thombill male moved from their original 

breeding units and become helpers at nearby nests. These movements were temporary, 

occurred during the nestling phase, and lasted only as long as the breeding attempt. With so 

few observations it is not possible to discern the significance of this behaviour, but similar 

“redirected helping” occurs in other cooperatively breeding birds including the long-tailed 

tit CAegithalos caudatus), a species with a similar two-tiered social organisation to the 

cooperative thombills. Long-tailed tits form stable kin-based flocks over winter that break 

down into monogamous pairs at the start of the breeding season (Hatchwell et al. 2001a; 

Russell and Hatchwell 2001). All birds attempt to breed independently but some 

individuals become helpers at the nests of flock-mates after the failure of their own 

breeding attempts (Gaston 1973). Helpers are usually male. Their contributions to 

provisioning nestlings and fledglings are strongly biased toward close kin and are not 

related to paternity (Russell and Hatchwell 2001; Hatchwell et al. 2002).

As in the long-tailed tit, both yellow-rumped and buff-rumped thombills may have 

close relatives as neighbours during the breeding season. Both thombill species form kin- 

based non-breeding flocks (Chapter 5). When breeding begins the flocks break down into 

pairs and small groups that nest within the flock home range (Chapter 5, Bell and Ford 

1986). The two instances of redirected helping in the buff-rumped thombill were similar to 

the behaviour of long-tailed tits in two important respects. First, both males moved 

immediately after the failure of their own breeding attempt, in one case due to nest 

predation and in the other due to the disappearance (presumably death) of the breeding 

female. Second, both males moved to become helpers at the nests of male relatives and 

neither sired any of the nestlings they provisioned. The single instance of redirected helping 

in the yellow-rumped thombill differed. The helper in a trio abandoned the ongoing 

breeding attempt of his parents after provisioning their nestlings for one week and instead 

became the second helper provisioning the nestlings, none of which he sired, of a 

neighbouring but unrelated breeding pair. More observations are required to determine the 

frequency and significance of redirected helping in thombills, however my observations
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suggest that, at least in the buff-rumped thombill, the behaviour may be a means of making 

the best of a bad situation by investing in the breeding attempts of related flock mates 

following breeding failure. The yellow-rumped thombill observation remains anomalous 

but may indicate that factors other than relatedness influence helping in that species.

Provisioning at the nest

The response of parents to the provisioning contributions of helpers differed for 

yellow-rumped and buff-rumped thombills. Buff-rumped thombill parents compensated by 

reducing their own provisioning rates when assisted by helpers, whereas yellow-rumped 

thombill parents did not. Thus, buff-rumped thombill broods raised by pairs and groups 

were fed at the same overall rate, but yellow-rumped thombill broods raised by groups 

received more food than those raised by pairs. This difference is surprising as it suggests 

that despite similar life-histories and social organizations, buff-rumped and yellow-rumped 

thombill helpers may derive different benefits from helping.

Yellow-rumped thombill

Reviews of provisioning patterns among avian species where helping is kin-based, 

rather than directly related to parentage, have identified a dichotomy in the occurrence of 

feeding compensation related to the frequency of nestling starvation (Hatchwell et al. 1999; 

Legge 2000). In species where nestling starvation is an important limitation on reproductive 

success, the provisioning contributions of helpers tend to be additive and compensation by 

parents (and other helpers) is rare. Conversely, compensation by parents is common among 

species where nestling starvation has little or no impact on reproductive success (Hatchwell 

et al. 1999; Legge 2000).

Additive provisioning in yellow-rumped thombills seems anomalous because 

nestling starvation was very rare (only one of 156 nestlings that were marked in this study 

was found dead in its nest), allowing limited potential for helpers to enhance the 

reproductive success of their groups. Alternatively, additive provisioning may be beneficial 

if it results in increased fledging weights, and this translates into enhanced post-fledging 

survival and recruitment. For example, a study of long-tailed tits, which also experience 

very little nestling starvation, showed that although helpers have no immediate effect on the 

success of breeding attempts, there is a highly significant relationship between the number 

of helpers provisioning a brood and the subsequent survival and recruitment of those
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juveniles into the breeding population (Hatchwell 1999). This effect was due to the 

improved condition of juveniles caused by the higher provisioning rates of groups, resulting 

in heavier fledglings (MacColl and Hatchwell 2003; Hatchwell et al. 2004).

Although the data required to test this possibility in yellow-rumped thombills were 

not collected in this study, there was a weak indication from data available on nestling 

weight that male nestlings provisioned by groups (n = 15) were heavier than those 

provisioned by pairs (n = 56) (t-test using residuals from regression of nestling weight on 

age: t = 1.627, d.f. = 69, p = 0.10). Female nestlings did not show this trend (n = 8 for 

groups, n = 57 for pairs, t = 0.572, d.f. = 63, p = 0.57). However, male yellow-rumped 

thombills are larger than females (4.5% heavier on average, D. Ebert unpublished data) and 

may have higher nutritional demands and therefore benefit more from increased 

provisioning. More data on nestling condition, juvenile survival and analyses controlling 

for possible confounding variables such as parental quality, brood size and territory quality 

would be required to explore the potential benefits of additive provisioning in yellow- 

rumped thombill groups.

Buff-rumped thombill

Unlike yellow-rumped thombills, buff-rumped thombill parents compensated in 

response to the contributions of helpers. This is the usual pattern among kin-based 

cooperative breeders, especially when nestling starvation is rare (Hatchwell et al. 1999; 

Legge 2000). However, despite the widespread occurrence of the behaviour, conclusive 

demonstrations of the benefits of such compensation, or ‘load-lightening’ have been 

lacking, partly due to two practical difficulties. First, the effects of load-lightening are 

commonly confounded by group size and territory quality effects (Cockbum 1998) and, 

second, the hypothesised benefits of load-lightening may be subtle and difficult to measure 

in short term studies. Nevertheless, three potential benefits of load-lightening do have 

empirical support, and each is briefly discussed below with regard to the provisioning 

behaviour of buff-rumped thombill groups.

First, in the superb fairy-wren dominant males benefit from load-lightening through 

an increase in their opportunity to pursue extra-group matings (Green et al. 1995). This 

model does not apply to the buff-rumped thombill, where strong monogamy precludes a 

mating system explanation for load-lightening. Second, load-lightening may reduce nest 

predation, if breeders can invest more in nest defence when helpers take on some of their
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provisioning duties. For example, in the stripe-backed wren (Campylorhynchus nuchalis) 

both breeders, but especially the male, reduce their provisioning rates when assisted by 

helpers (Rabenold 1984). Male breeders are far more active in nest defence than either 

female breeders or helpers, and groups of stripe-backed wrens have much higher 

reproductive success than pairs largely due to reduced nest predation (Rabenold 1984). In 

buff-rumped thombills, nest predation was the major cause of breeding failure, responsible 

for 72% of all failed broods (n = 32). However, the relative frequencies of predation for 

pairs versus groups was similar: 35.3% of broods fed by groups (n = 17) and 40.5% of 

broods fed by pairs (n = 42) failed from predation (%2 = 0.14, p = 0.71). Thus nest defence 

does not appear to be a benefit of load-lightening in the buff-rumped thornbill.

The third, and most widely cited, potential benefit of load-lightening is an increase 

in the survival or the future fecundity of breeders due to the amelioration of reproductive 

costs (Brown 1978; Brown 1987; Crick 1992). Where helpers are related to the breeders 

they gain inclusive fitness benefits. Khan and Walters (2002) reviewed the correlative 

evidence for this hypothesis and found that load-lightening was associated with increased 

survival of breeders in a number of species: red-cockaded woodpecker, Picoides borealis 

(Khan and Walters 2002); white-browed sparrow weaver, Plocepasser mahali (Lewis 

1992); splendid fairy-wren, Malurus splendens (Rowley et al. 1989); bicolored wren, 

Campylorhynchus griseus (Austad and Rabenold 1985); pied kingfisher, Ceryle rudis 

(Reyer 1984); and the rifleman, Acanthisitta chloris (Sherley 1990). However, other studies 

have failed to find positive correlations between load-lightening and breeder survival (e.g. 

western bluebird Sialia mexicana (Dickinson et al. 1996); stripe-backed wren, 

Campylorhynchus nuchalis (Rabenold 1984); long-tailed tit, Aegithalos caudatus 

(McGowan et al. 2003)). Cooperatively breeding species are often very long-lived and 

small effects on adult survival may be difficult to detect (Hatchwell et al. 2004), may occur 

only under poor conditions, or apply only to certain categories of breeder (Magrath 2001). 

This study was too brief to assess the potential survival benefits of load-lightening in the 

buff-rumped thornbill, and cannot be ruled out as a potential benefit of helping in this 

species.
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CONCLUSION

Both the buff-rumped thornbill and the yellow-rumped thornbill usually bred in 

pairs, but cooperative groups occurred at a low frequency. Both species were genetically 

monogamous; the vast majority of nestlings were legitimate. These species therefore 

present a case where the social and mating systems are largely congruous.

Where cooperative groups did exist, helpers were always males, and usually related 

to at least one member of the breeding pair. Although helpers may often be unable to gain 

within-group paternity because of incest taboos, they are potentially able to seek extra-pair 

copulations with neighbouring females. However, even this occurred rarely, indicating that 

it is probably not because of direct reproductive benefits to helpers that cooperative 

breeding is maintained. The helpers contributed substantial amounts of care to young. Since 

they were usually closely related to the breeders and their young, helpers may be gaining 

inclusive fitness benefits. In this study, helpers had no discemable effect on the success of 

each breeding attempt, mainly because the incidence of predation was so high (Chapter 3). 

However, predation may have been artificially inflated due to the proximity of the study 

site to suburban gardens, which foster large populations of predatory birds like pied 

currawongs; in less disturbed situations helpers may have positive effects on breeding 

success.

Buff-rumped thornbill breeders responded to the provisioning of helpers by 

reducing their own feeding rates. Yellow-rumped thombills showed no such compensation. 

This is an intriguing difference between two species that are apparently so similar in terms 

of general ecology, social and mating systems. The two species may have diets that are 

critically different so that foraging costs for yellow-rumped thombills are much less than 

for buff-rumped thombills. If so, load-lightening might provide no substantial energetic 

benefits. Alternatively, the benefits of extra provisioning to nestlings (in terms of post- 

fledging survival) may be more important for yellow-rumped thombills compared with 

buff-rumped thombills. Whatever the reason, the different patterns of provisioning 

behaviours imply subtly different benefits of cooperative breeding in the two species.
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Table 4.1. Sample sizes for nestling provisioning observations for both species. If 

more than one brood for a single pair was observed, for example in more than one year, 

the pair was included only once in this count. Pairs were classified on the basis of the 

identities of both birds in breeding pairs and the female and alpha-male in breeding 

groups.

Yellow-rumped thornbill Buff-rumped thornbill

Breeding unit Breeding unit

Pair Group Total Pair Group Total

Broods 24 7 30 25 15 40

Breeding pairs 22 4 24 23 13 33

Observations 84 35 119 81 49 130

Hours 61.5 31 92.5 67 37 104



Table 4.2. Extra-pair paternity in broods raised by groups and pairs of yellow- 

rumped and buff-rumped thombills. Total numbers of nestlings and broods are shown in 

parentheses.

Yellow-rumped thornbills Buff-rumped thornbills

Nestlings Broods Nestlings Broods

Complete families

Pairs 3 (86) 3(31) 1(58) 1(17)

Groups 2(21) 2(8) 2(38) 2(13)

Total 5(107) 5(39) 3(96) 3 (30)

% extra-pair paternity 4.7% 12.8% 3.1% 10%

Partial families1

Pairs 0(10) 0(6) 0(17) 0(5)

Groups 0(7) 0(2) 1(6) 1(2)

Total 0(17) 0(8) 0(23) 0(7)

1 Inferred paternity for partially sampled families was based on genetic similarity between offspring and

sampled putative sires.



Table 4.3. Factors tested for their effect on the total number of feeds per hour to 

broods of yellow-rumped thombills and buff-rumped thombills. Statistics derived from 

linear mixed models using the REML procedures of Genstat 5 (Genstat 5 Committee 

1997). Only main effects are included as no two-way interactions were significant for 

either species. Probabilities below 0.05 are in bold type.

Yellow-rumped thornbill Buff-rumped thornbill

Wald Wald

statistic d.f. P statistic d.f. P

Brood age 13.32 4 0.010 42.96 4 <0.001

Number of chicks 8.8 1 0.003 1.30 1 0.330

Breeding unit 12.89 1 <0.001 0.51 1 0.474

Year 13.18 3 0.004 0.44 1 0.440

1 Breeding unit (pair or group).

2 There were four year classes, from 1995 to 1998, for the yellow-rumped thornbill and two year classes, 

1996 and 1997, for the buff-rumped thornbill.



Table 4.4. Factors tested for their effect on the feeding rates of individual adults to 

broods of yellow-rumped thombills and buff-rumped thombills. Statistics derived from 

linear mixed models using the REML procedures of Genstat 5 (Genstat 5 Committee 

1997). Only main effects not involved in significant interactions are shown. 

Probabilities below 0.05 are in bold type.

Yellow-rumped thornbill Buff-rumped thornbill

Wald Wald

statistic d.f. P statistic d.f. P

Brood age - -

Status1 - -

Breeding unit 0.66 1 0.415 -

Number of chicks 22.96 1 <0.001 1.00 1 0.930

Year3 9.66 3 0.022 0.53 1 0.466

Brood age * status 22.4 8 0.004 22.71 8 0.004

Brood age * br. unit2 - 10.56 4 0.032

1 Status in breeding unit (female, alpha-male or subordinate)

2 Breeding unit (pair or group).

3 There were four year classes, from 1995 to 1998, for the yellow-rumped thornbill and two year classes, 

1996 and 1997, for the buff-rumped thornbill.
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Figure 4.1. The genetic similarity of buff-rumped thornbill subordinate males to the 

female and alpha-male of their group. The broken line marks the lower 99% confidence 

interval of the distribution of genetic similarity for second order relatives (0.18); the 

solid line marks the upper 99% confidence interval of the distribution of genetic 

similarity for unrelated birds (breeding pairs; 0.29). Triangles represent a single 

subordinate that was a member of two different breeding groups.
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genetic similarity for unrelated birds (breeding pairs; 0.25). Triangles represent a single 

subordinate that was a member of three different breeding groups.
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Figure 4.3. The number of novel fragments and the genetic similarity of buff-rumped 

thornbill nestlings to their putative mothers (A) and fathers (B). Vertical lines depict 

lower (broken) and upper (solid) 99% confidence intervals for the distribution of 

genetic similarity of second order relatives (lower, 0.18; upper, 0.47). The lower 99% 

confidence limit for first order relatives was 0.41 (not shown). The horizontal line 

shows the threshold of 2 novel fragments, above which one or both of the putative 

parents were not the genetic parents of an individual. The triangle depicts a nestling of 

ambiguous parentage.



2 8 -

2 4 -

O 2 0 -
EO)
03 1 6 -

O 1 2 -  
>O
2  8 H

4 -  

0 -
i i I i i i r

0.0  0.1 0.2  0.3  0.4  0.5  0.6  0.7  0.8
Genetic similarity

<Jj ■*—> c  
0
E
03

>O
2

o
CD

i 
i 

i

o

...
...

...
...

...
..Q

...
..

C

A
,..... ....................

i i

.........................

0°«S
i i i

nmmssD
i i

0.0  0.1 0.2  0.3  0.4  0.5  0.6  0.7  0.8
Genetic similarity

Figure 4.4. The number of novel fragments and the genetic similarity of yellow-rumped 

thornbill nestlings to their putative mothers (A) and fathers (B). Vertical lines depict 

lower (broken) and upper (solid) 99% confidence intervals for the distribution of 

genetic similarity of second order relatives (lower, 0.21; upper, 0.52). The lower 99% 

confidence limit for first order relatives was 0.41 (not shown). The horizontal line 

shows the threshold of 2 novel fragments, above which one or both of the putative 

parents were not the genetic parents of an individual. Triangle depicts a nestling of 

ambiguous parentage.
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Figure 4.5. REML predictions of the effect of brood age on total feeding rate to 

broods in yellow-rumped thornbills, controlling for the effects of year, brood size and 

breeding unit (pair or group). The line shows the average standard error of differences 

(s.e.d. = 1.86).
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Figure 4.6. REML predictions of the effect of brood age on total feeding rate to 

broods in buff-rumped thornbills, controlling for the effects of year, brood size and 

breeding unit (pair or group). The line shows the average standard error of differences 

(s.e.d. = 1.74).
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Figure 4.7. REML predictions of the effect of year on total feeding rate to broods in 

yellow-rumped thombills, controlling for the effects of brood age, brood size and 

breeding unit (pair or group). The line shows the average standard error of differences 

(s.e.d. = 2.33).
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Figure 4.8. REML predictions of the effect of brood size on total feeding rate to 

broods in yellow-rumped thornbills, controlling for the effects of year and breeding unit 

(pair or group). The line shows the standard error of differences (s.e.d. = 1.66).
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Figure 4.9. REML predictions of the effect of breeding unit (pair or group) on total 

feeding rate to broods in yellow-rumped thombills, controlling for the effects of year 

and brood size. The line shows the standard error of differences (s.e.d. = 1.89).
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Figure 4.10. Model predictions of the effect of brood age on individual feeding rates 

of females, males and helpers in the yellow-rumped thornbill, controlling for effects of 

year and brood size (see text). The average standard errors of differences (s.e.d.) for the 

age*status (female, male or helper) interaction were 1.20 for the same age level, 1.20 

for the same breeding unit level and 1.22 overall.
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Figure 4.11. Model predictions of the effect of brood age on individual feeding rates 

of females, males and helpers in the buff-rumped thornbill, controlling for effects of 

year and brood size (see text). The average standard errors of differences (s.e.d.) for the 

age*status (female, male or helper) interaction were 1.16 for the same age level, 1.20 

for the same breeding unit level and 1.20 overall.



Breeding unit

Figure 4.12. REML predictions of the effect of breeding unit (pair or group) on total 

feeding rate to broods in buff-rumped thornbills, controlling for the effects of year and 

brood size. The line shows the standard error of differences (s.e.d. = 1.72).



CHAPTER 5

The non-breeding social organization of the yellow- 

rumped thornbill

INTRODUCTION

There have been numerous studies of the social organization of birds during the 

breeding season, including descriptions of parental care systems, mating systems, dispersal 

behaviour, and so on. This focus has intensified with the advent of molecular techniques for 

assessing parentage and relatedness, which allow a much finer resolution of the 

reproductive pay-offs to individuals that adopt different social, parental, mating or dispersal 

strategies. In contrast, the social organization of birds during the non-breeding season has 

received far less attention. This is despite the fact that many species are social to some 

extent over the non-breeding period, and that this period, commonly spanning winter, is 

often a critical period in terms of survival and is also often the period during which juvenile 

birds disperse and seek a mate or breeding territory. As such, social behaviour during the 

non-breeding period may influence important components of life-history, such as survival 

(Ekman 1990; Smith 1994; Koivula et al. 1996; Lahti 1998), dispersal (Smith 1984; Ekman 

1989; Ekman et al. 2001) and future reproductive success (Ekman 1989; Ekman 1990; 

Koivula et al. 1996; Otter et al. 1999). Social organization in the non-breeding period is 

also closely linked to social aspects of breeding and may have implications for mate choice 

and pair-bonding (Ekman 1990; Matthysen 1990), and the occurrence of cooperative 

breeding (Nicholls et al. 2000; Hatchwell et al. 2001b; Kraaijeveld and Dickinson 2001; 

Russell and Hatchwell 2001).

The information that is available on non-breeding sociality comes from two main 

sources; long term studies of cooperative breeders (see Stacey and Koenig 1990 for 

examples), and the large body of work on northern hemisphere tits and chickadees (Parus 

spp, reviewed by Ekman 1989; Matthysen 1990). These two sources reflect a basic 

dichotomy in the form of non-breeding sociality exhibited by sedentary birds, particularly
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in regard to the relationship between non-breeding and breeding social organizations and 

underlying patterns of dispersal and kinship. Most cooperatively breeding species live in 

more or less permanent groups that are usually generated by natal philopatry (Emlen 1995). 

This commonly results in roughly equivalent social organizations in the breeding and non

breeding seasons, with relatively constant groups that are socially and genetically based on 

nuclear family units. In contrast, most Parus species are strictly pair-breeding, not natally 

philopatric, and only form groups outside the breeding season (Ekman 1989; Matthysen 

1990). Not surprisingly, studies of cooperative breeders and Parus species have 

accentuated different factors in understanding the occurrence and evolution of avian social 

behaviour. Cooperative breeding studies have emphasised the causes and consequences of 

kinship in social groups (Emlen 1995; Emlen 1997; Cockbum 1998), with the focus 

overwhelmingly on the breeding season and reproductive costs and benefits of kin-based 

sociality. On the other hand, studies of Parus social systems have focused on the social and 

ecological factors at play within groups of non-relatives in a non-reproductive context.

As a consequence of the focus cooperative breeding our understanding of the role of 

kinship in avian social organization is biased toward its effects on reproduction while our 

knowledge of social systems characterized by sociality outside the breeding season is 

biased toward those, exemplified by Parus species, where kinship does not play a role. 

These biases do not reflect the diversity of avian social systems, particularly in regard to the 

relationship between breeding and non-breeding social organizations and the potential 

importance of kinship in the non-breeding season. Species such as the Siberian jay 

(Perisoreus infaustus) display aspects of kin-based sociality in the non-breeding season 

without breeding cooperatively (Ekman et al. 1994), demonstrating that kin-based social 

organization is not necessarily linked to, or explained by, the reproductive consequences of 

cooperative breeding. On the other hand the long-tailed tit (Aegithalos caudatus) displays 

kin-based cooperative breeding, but forms larger, and not strictly kin-based, social groups 

in the non-breeding season (Hatchwell et al. 2001b; Russell and Hatchwell 2001), 

suggesting that the kinship that underlies breeding social organization may not have the 

same importance in non-breeding social organisation. These examples highlight the 

diversity and complexity of non-breeding social organization and the fact that the role of 

kinship may be difficult to predict on the basis of breeding season social organisation. In 

this light, the dearth of studies that specifically address non-breeding social organization in
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birds with kin-based breeding systems represents a weak point in our understanding of 

avian social behaviour and evolution.

In this chapter I describe the non-breeding social organization of the yellow-rumped 

thombill (Acanthiza chrysorrhoa) a member of the old endemic Australian passerine family 

Pardalotidae. The Pardalotidae is a relatively well known family in that there is some 

information on non-breeding social organization in a number of species. Two species, the 

strictly pair breeding brown thombill (.Acanthiza pusilla) and the group living, 

cooperatively breeding white-browed scrub-wren (Sericornis frontalis), are known to 

maintain essentially the same social structure throughout the year (Bell and Ford 1986; 

Green and Cockburn 1999; Magrath et al. 2000), although brown thombill pairs often 

tolerate a single male offspring on their territories over the winter (Green and Cockburn 

2001). Three other species, however, are known to display dramatically different breeding 

and non-breeding social organizations. The buff-rumped thombill (Acanthiza reguloides) 

and the less well known striated thombill (.Acanthiza lineata) both breed cooperatively, and 

form stable and discrete pairs or small breeding groups of up to five individuals which 

occupy exclusive territories over the breeding season (Bell and Ford 1986, Chapter 4). 

When breeding concludes, pairs and cooperative groups coalesce and overwinter in stable, 

coherent flocks of up to 20 individuals (Bell and Ford 1986). In the better known buff- 

rumped thombill, where natal philopatry was observed by Bell and Ford (1986) and genetic 

analysis has confirmed that cooperatively breeding groups are nuclear family units (Chapter 

4), non-breeding flocks are likely to be kin-based. The speckled warbler (Chthonicola 

sagittata) also forms non-breeding flocks via the coalescence of previously territorial and 

discrete breeding pairs (Gardner 2004); however, this species is not natally philopatric and 

flocks are not comprised of kin (Gardner et al. 2003; Gardner 2004). An interesting feature 

of the Pardalotidae is the diversity of breeding systems displayed by its members despite 

relative uniformity in life-history traits (Green and Cockburn 1999; Green and Cockburn 

2001). On the basis of available information, the family will continue to be of interest in the 

context of avian social evolution due to the equally diverse nature of non-breeding social 

organizations possessed by its members.

Virtually nothing is known of the non-breeding social organization of the yellow- 

rumped thombill. The only quantitative information available is that of Bell and Ford 

(1986) who found that yellow-rumped thornbills occurred in groups, with an average size 

of 3.7 birds, during breeding and flocks, with an average size of 9 birds, when not breeding.
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The yellow-rumped thombill is natally philopatric and has a nuclear family based 

cooperative breeding system similar to that of the buff-rumped thombill (Chapter 4) 

suggesting that non-breeding flocks might also be kin-based in this species. I used a 

combination of field observation and DNA fingerprinting to assess the social and genetic 

structure of yellow-rumped thombill non-breeding flocks and investigate the potential 

significance of kinship in its non-breeding social organization.

METHODS

Study area and population

Campbell Park is a nature reserve on the eastern outskirts of metropolitan Canberra. 

Historic disturbance of the area has resulted in an open eucalypt woodland with a sparse 

understorey interspersed with cleared grassland patches. The area surveyed in this study 

was approximately 200 hectares in 1996 and 1997 and was expanded in 1998 to include an 

additional 40 hectares.

Yellow-rumped thombills were banded with one numbered aluminium band, 

supplied by the Australian Bird and Bat Banding Scheme, and a unique combination of 

three coloured plastic bands. Many birds were banded during the breeding seasons from 

1995 to 1997 and were therefore identifiable from the beginning of each non-breeding 

period. These birds included adult breeders and juveniles banded as nestlings. However a 

number of birds were banded during the non-breeding periods and were therefore not 

identifiable for the duration of each censusing period.

The individuals involved in non-breeding flocks fell into four categories, banded 

adults that bred in the preceding breeding season, banded juveniles fledged in the preceding 

breeding season, birds of unknown history that were banded during the non-breeding period 

and birds which remained unbanded.

Field methods

Censusing

The population of yellow-rumped thombills in Campbell Park was censused during 

three non-breeding periods. In 1996 and 1997 censusing was from early May to late July
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and in 1998 from late March to early July. Each census consisted of searching a section of 

the study area until a flock of yellow-rumped thombills was encountered whereupon 

individuals were counted, banded birds were identified and the location of the flock was 

recorded using a grid system and map. By alternating areas searched the entire study 

population was censused at a rate of approximately once every five days during the 

censusing periods. Birds were encountered in flocks ranging in size from two to more than 

twenty-five and due to the constant movement of individuals, and the flocks as a whole, 

censusing was imperfect in that it was often impossible to be sure that every bird in a flock 

was counted, or that every banded bird was identified. Error in estimating flock size and 

composition was minimized by counting both the whole flock and the number of banded 

birds repeatedly during a single observation. The maximum count was then recorded as the 

flock size and the observation was continued until at least the majority of banded birds 

present were identified. A typical record thus consisted of identifications for all, or almost 

all, banded birds and a count of the number of unbanded birds present. If during a single 

observation a flock moved more than 100 metres the new location was also recorded.

The area censused was not the same over the three non-breeding periods of the 

study. The expansion of the study area in 1998 resulted in the inclusion of a large number 

of yellow-rumped thombills that were only partially censused in the preceding two years. 

The partial census data for the birds in this area for 1996 and 1997 are included in the 

results presented here although the small number of observations mean they are not 

included in some summary statistics.

Flock Home Ranges

Home range areas were estimated for each flock in each non-breeding period. Areas 

were calculated as minimum convex polygons including all locations recorded for the 

flock. One exception to this was flock D in 1998, (see Figure 5.1). An area which would be 

included in a convex polygon based on the locational fixes for this flock was excluded from 

the estimate of its home range as it was a paved carpark for a nearby office building and in 

none of the 34 observations of the flock were the birds seen to visit it.

Defining flocks

In the field - Foraging yellow-rumped thombills move continuously, gleaning small 

invertebrates from the groundcover and regularly making small flights of several to tens of
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metres and returning to the ground to continue foraging. Flocks of birds are therefore 

highly dynamic in their dispersion and any instantaneous measure of proximity would be 

both impractical to estimate and of dubious validity as a measure of association. In light of 

this no formal criterion of proximity was used in the field to define flocks, however on the 

time scale of a single observation, ranging from 10 to 90 minutes, the association of 

individual birds in flocks was unambiguous. Individuals were rarely more than 15 metres, 

and were commonly only several centimetres, from their nearest neighbour while foraging. 

Birds observed at the more distant end of this range were usually only so “isolated” briefly 

before they were joined by others or flew to join others themselves. In this way a flock of 

foraging yellow-rumped thombills moves continuously, but cohesively, in small steps with 

individuals making short flights of five to twenty metres to be quickly followed and joined 

by the rest of the flock. Also illustrative of the association of yellow-rumped thombills in 

flocks was the cohesiveness displayed by flocks moving greater distances. During longer 

observations it was typical for flocks of birds to make one or two flights of 100 metres or 

more. These events almost always involved the synchronous flight of the entire flock and 

when this was not the case the remaining individuals typically followed within minutes. 

The only occurrence of groups of yellow-rumped thombills splitting up during a single 

observation involved groups that were very large when first encountered and which 

presumably comprised more than one flock. Consistent with this assumption was the 

frequent observation of the opposite event, where a flock was observed to temporarily 

merge with another. Encounters of one flock with another could last 30 minutes or more 

and although the original flocks were not discernable within the larger group there was 

often an increase in what may have been aggressive singing and such encounters invariably 

ended with the departure of one of the original flocks, usually synchronously, in another 

long distance movement of 100 metres or more.

Over a single non-breeding period - Consistent groupings of birds were identified 

from census records for each non-breeding period. In most cases flocks consisted of a 

majority of banded birds however there were cases where flocks of mostly unbanded 

individuals were recorded (e.g. flock L, 1997, Figure 5.2). For each flock of mostly banded 

birds a core membership consisting of individuals repeatedly recorded together over a 

census period was unambiguous, however there were individuals associated with most 

flocks that were recorded less frequently and for whom membership of the flock was 

questionable. A large contributor to the variation in the number of records for individuals
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was technical. Forty-one percent of the banded birds recorded in flocks over the three years 

of the study were first captured and banded during the censusing periods. These individuals 

were not identifiable for the duration of the non-breeding period in which they were first 

recorded and irrespective of other factors were necessarily recorded in fewer censuses than 

many birds banded before the start of censusing. The combination of imperfect censusing 

and variation in capture date prompted the use of a rule of thumb to categorise individuals 

as flock members, if a bird was recorded three times or more with the same flock over a 

period spanning at least three weeks it was categorised as a member of that flock. This rule 

is arbitrary however under its application there were few individuals for whom flock 

membership was borderline and no individual was assigned membership of more than one 

flock in a single year. Individuals that were not assigned membership of a flock are 

discussed further below.

The three sightings over at least three weeks rule was not applied to records where 

the majorities of two flocks were included in a census record. Such records reflected the 

occurrence of interactions between flocks, a fact that was generally obvious in the field due 

to the observation of one of the flocks involved immediately before or after the interaction. 

Observations of two flocks at the same locations, although in some cases frequent enough 

to qualify pairs of flocks for reciprocal membership under the three sightings over at least 

three weeks rule, were also obvious in census records as they were considerably 

outnumbered by records of the individual flocks involved over the course of a census 

period.

Between years - The continuity and consistency of non-breeding flocks between 

years was assessed by comparison of flock membership determined for each non-breeding 

period from 1996 to 1998. There was no case of flocks in consecutive years having 

identical memberships however there was clear evidence for continuity of some flocks 

between years. Firstly, the birds surviving from one year to the next formed the same 

affiliations in that they were classified as flock-mates in both years. And secondly, in some 

flocks the birds surviving from one year to the next comprised a majority of the flock 

membership in the first year and they, and their offspring from the intervening breeding 

season, also comprised a majority of the flock membership in the second year. In these 

cases flocks in consecutive years were assumed to represent essentially the same social 

unit, despite some change of membership, and as such were regarded as the same flock. For 

some flocks however continuity between years was less clear-cut. The disappearance of
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banded birds between years combined with the presence of unbanded and recently banded 

birds resulted in some flocks where the majority of members were of unknown history in 

terms of their flock memberships, if any, in the preceding year. In these cases any 

continuity of membership and the absence of changes in membership, that is no surviving 

member of the flock from the first year changed affiliation between years and no member 

in the second year was a member of a different flock in the first year, was taken to indicate 

continuity and the flocks in consecutive years were regarded as the same.

Wherever changes in flock membership were apparent the possibility that a new 

flock had formed was considered. In cases where members of a flock had been classified as 

members of different flocks in the preceding year the proportion of the flock which was of 

known history, and the proportion of these individuals that were members of the same flock 

in the preceding year were both taken into account. Where most of the members of a flock 

were of known history and only one individual was a member of a different flock in the 

preceding year it was assumed that the outstanding bird had joined an old flock. Where 

there was no clear majority among the birds of known history in terms of their previous 

flock memberships the flock was assumed to be new.

Sexing

Yellow-rumped thombills are sexually monomorphic and can only be sexed in the 

field by observing nesting behaviour as only females incubate. All sampled individuals 

were sexed using a simple molecular technique (see Griffiths et al. 1998 for method).

Fingerprinting Methods

Individuals were arranged on gels in sets based on flock membership in order to 

maximise the number of within flock pairwise comparisons that could be made. In total 118 

individuals were fingerprinted on six gels with 21 to 23 lanes per gel. Although the 

arrangement of samples on gels prioritised within flock comparisons all gels contained 

individuals from different flocks to allow between flock comparisons. Two gels contained 

two flocks and four contained a single flock and a random selection of individuals from 

other flocks.

DNA was isolated from blood following standard procedures (Bruford et al. 1992). 

Ten to 20ug of DNA was digested overnight with Healll and 5ug of digested DNA was
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then electrophoresed at 3.5V/cm through a 40cm 0.8% agarose gel with 7.5ng of in-lane 

size standard (7/EcoRl+HindIII Marker, 3 (MBI Fermentas)). Gels were run in 1 X TBE 

buffer for 72 hours at 4°C. The running buffer was replaced after 36 hours. Gels were 

depurinated in 0.25M HCL for 10 minutes then denatured in 0.4M NaOH, 1.5M NaCl for 

30 minutes and neutralised in 0.5M Tris, 1.5M NaCl for 30 minutes. DNA was then 

transferred to Hybond-Nfp membranes (Amersham) by capillary transfer and fixed by UV 

crosslinking at the energy level recommended by the membrane manufacturer. Membranes 

were separately hybridised to 33.15 and 33.6 (Jeffreys et al. 1985) and per (Shin et al. 

1985) minisatellite probes followed by the in-lane size standard labeled with a-[32P]-dCTP 

at 65°C for a minimum of 6.5 hours. Unbound probe was removed from membranes by 

washing at least four times with 6XSSC at 65°C or by washing three times with 2XSSC, 

0.1% SDS at 65°C followed by two washes with room temperature 1XSSC. Sealed 

membranes were exposed to X-ray film for 1 to 14 days with or without an intensifying

screen at "70°C.

Scoring fingerprint profiles and pairwise comparisons

The presence or absence of hybridising bands was scored across all lanes of each 

autoradiograph. Autoradiographs were scored by eye by marking the position of bands 

from approximately 2 to 21 kb on acetate overlays. Bands that differed in position by less 

than 1mm and in intensity by less than two-fold were scored as shared. Bands that may 

have been obscured by more strongly hybridizing fragments of similar mobility were 

excluded as were weakly hybridizing bands that may not have been discernible in fainter 

lanes of an autoradiograph. The scores for the three probes for each gel were pooled and the 

average of the total number of bands scored per lane was 32.1 (st. dev. = 7.6). Coefficients 

of similarity were calculated for every pair of individuals run on each gel following Wetton 

et al. (1987). Such comparisons were limited to pairs of individuals run on the same gel as 

bands were not scored across multiple autoradiographs; however, by running two different 

sets of flock-mates together or by including randomly selected individuals from other 

flocks each gel yielded numerous within-flock and between-flock pairs.
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Genetic similarity

In total there were 951 unique pairwise comparisons (dyads) involving birds that 

were members of flocks in the same year. Dyads were classified firstly according to 

whether the two birds were from the same or different flocks and secondly by the sex of 

each bird such that six datasets were created (Table 5.1). Four within-flock versus between- 

flock comparisons were made, one overall comparison where the sex of the birds was not 

taken into account and one for each sex specific classification, male-male dyads, male- 

female dyads and female-female dyads. All datasets contained inter-dependent data in that 

individuals occurred in multiple dyads. The problems this presents for parametric statistics 

are well known (Lynch 1988; Lynch 1990; Danforth and Freeman-Gallant 1996) and the 

sub-sampling procedure of Danforth and Freeman-Gallant (1996) was used to estimate the 

standard error of the mean coefficient of similarity for each dataset using only independent 

pairwise comparisons. A computer program, written specifically for this purpose was used 

to take 2000 samples of n similarity coefficients from each dataset. Each sample was 

randomly selected except for one constraint: that no individual occurred more than once in 

a single sample. The mean similarity coefficient was calculated for each sample and the 

standard deviation of these means was used as an estimate of the raw mean’s standard error. 

The number of random samples was arbitrarily set at 2000 for all datasets. The sample size, 

n, was also arbitrary and although it was the same for each within-flock versus between- 

flock comparison it was adjusted according to the total number of dyads in each dataset and 

the extent of interdependence among them. Where the variance of the sampled means was 

equal a standard Student’s t-test with 2(n-l) degrees of freedom was used to assess any 

difference in the within-flock and between-flock mean coefficients of similarity. Where 

variances were unequal a modified t-test with n-1 degrees of freedom was used (Sokal and 

Rohlf 1995).

Relatedness

The power of minisatellite similarity coefficients to resolve levels of relatedness is 

limited by characteristics of the markers themselves, the potential for scoring error and bias 

and the interdependent nature of the pairwise datasets usually produced (Lynch 1988). The 

usual approach to classification of relatedness is to use distributions of similarity
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coefficients for dyads of known, or assumed, relatedness to set thresholds for the 

classification of dyads of unknown relatedness. The use of empirically derived reference 

distributions ameliorates the potential effects of scoring error or bias and incorporates the 

effect of background bandsharing, (the degree of minisatellite similarity not due to 

relatedness), in the determination of classification thresholds (Lynch 1990; Danforth and 

Freeman-Gallant 1996). However, the fundamental difficulty described by Lynch (1990); 

the overlap of distributions of similarity coefficients for adjacent and even non-adjacent 

levels of relatedness, remains. A two-step approach acknowledging these limitations was 

adopted here. First, a reference distribution created from dyads assumed to be unrelated, or 

at least not closely related, was used to set a “related” versus ’’unrelated” classification 

threshold. Second, the resolution of this threshold, in terms of the levels of relatedness 

likely to be defined by it, was assessed directly by comparison with a reference distribution 

for known first order relatives and indirectly by extrapolating theoretical distributions for 

lower order levels of relatedness. A sub-sampling procedure similar to that of Negro and 

Torres (Negro and Torres 1999) was used to estimate means and standard deviations for 

both empirically derived reference distributions in order to limit the potential for bias 

caused by the repetition of individuals within the datasets. In this procedure unique sub

samples of independent dyads, where no individual occurred more than once in a single 

sample and no sample was comprised of the same selection of dyads, were extracted and 

the averages of the sample means and standard deviations were used to describe normal 

distributions. The number of samples and sample size were determined by the number of 

dyads in each dataset and the extent of interdependence among them. All sub-sampling and 

calculation was done using a computer program written specifically for this purpose.

Incestuous matings are extremely unlikely in the yellow-rumped thombill (Chapter 

4) and 35 dyads, including 39 individuals, that were comprised of birds that formed 

breeding pairs were used to create a reference distribution for dyads that were not closely 

related. Seventy-five unique samples of 17 independent breeding pair dyads gave an overall 

mean similarity coefficient of 0.107 and an overall standard deviation of 0.055. Assuming 

normality, the value that would exclude one percent of the upper tail of a distribution with 

this mean and standard deviation was 0.234 (0.107 + 2.33*0.055) and any dyad with a 

similarity coefficient larger than 0.234 was classified as “related”.

A previous genetic study of parentage in the same study population (Chapter 4) 

allowed the classification of 30 dyads, including 29 individuals, as first order relatives,
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either parent-offspring or sibling relationships. These dyads were used to create a reference 

distribution for first order relatives by taking 32 samples of 12 independent dyads and 

calculating the average of the 32 means and standard deviations. The normal distribution 

characterised by a mean of 0.504 and a standard deviation of 0.054 was effectively non

overlapping with that estimated for unrelated dyads (the value excluding 1% from the lower 

tail was 0.377), suggesting that dyads related at a first order level were extremely unlikely 

to be classified as “unrelated” using the 0.234 threshold and indeed none of the 30 dyads 

known to be first order relatives were misclassified.

“Simulated” distributions of similarity coefficients were created for second and 

third order relatives using means predicted with the equation 0 + r(l-0) (Lynch 1991) 

where 0, the mean similarity coefficient for non-relatives, was 0.107 and r, the coefficient 

of relatedness, was 0.25 and 0.125 for second and third order relatives respectively. On the 

assumption of equal variances the standard deviation of the empirically derived distribution 

for first order relatives was used to describe normal distributions around the predicted 

means. The 0.234 threshold for classifying a dyad as “related” was clearly not capable of 

resolving third-order relatives from non-relatives as the predicted mean similarity 

coefficient for third order relatives was 0.219 which was less than the threshold value. 

However, the predicted mean similarity coefficient for second order relatives was 0.33 and 

less than 4% of a normal distribution with this mean and a standard deviation of 0.054 

would fall below the threshold value of 0.234. On this basis it was assumed that most 

second order relatives in this dataset would be classified as “related” using the 0.234 

threshold.

In summary, although the use of threshold similarity coefficient to classify 

relatedness is arbitrary and assumes a degree of error almost all dyads related at a first order 

level (parent-offspring and siblings) and most related at a second order (grandparent, 

uncle/aunt and half-sib relationships) level were likely to be classified as “related” here. 

Similarly almost all dyads that were unrelated, in that they were at least as distantly related 

as breeding pairs, were likely to be classified as “unrelated”. However dyads related at a 

third order level (e.g. cousins), or lower, were at least as likely to be classified as 

“unrelated” as “related” and in view of this dyads with a similarity coefficient less than 

0.234 are referred to below as “unrelated” while those with higher similarty coefficients are 

referred to as “close relatives”.
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RESULTS

Flock size and home range area

Flock size ranged from 2 to 14 with an overall mean of 8 individuals per flock 

(Table 5.2). The number of banded birds recorded in censuses over the three non-breeding 

periods was 117. Nine of these were not assigned membership of a flock in any year while 

59, 34 and 15 individuals were classified as flock members in one, two and three years 

respectively.

Flock home ranges varied substantially in area and in the extent of overlap between 

them (Figure 5.1). The smallest home range was 7.8ha for a flock of 10 birds in 1997 while 

the largest was 48.3ha for a flock of 11 birds in 1998. All but one of the well characterised 

home ranges, (excluding the southern most flock in 1996 and 1997), overlapped to some 

extent with one or two other home ranges. For those flocks with overlapping home ranges 

the minimum overlap with a single neighbouring flock was 2% of home range area and the 

maximum was 67%. Taking overlaps with more than one neighbouring flock into account 

the minimum shared area of a single flock’s home range was 11% and the maximum was 

77%.

Annual consistency

Within a single non-breeding period flocks were highly consistent in that the same 

individuals were repeatedly observed together and most individuals were recorded in the 

majority of census records for the flock to which they were assigned membership under the 

three sightings in at least three weeks rule (Figure 5.2).

Flock members

Nine individuals that were assigned membership of a flock were seen with other 

flocks. Eight of these were recorded only once or twice with another flock however one 

individual was seen several times with two different flocks, (without meeting the three 

sightings over three weeks requirement for membership), before being regularly and 

exclusively sighted with a third flock. This bird was a female of unknown history as she 

was first captured immediately before the censusing period in question. She subsequently 

bred with a male member of the third flock. The most likely explanation of her behaviour is
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that she was a juvenile in the process of dispersing when first recorded and that she briefly 

associated with the first two flocks before settling with the third.

Individuals not assigned flock membership

Eleven banded individuals that were observed during one or more non-breeding 

periods were not assigned membership of a flock under the three records in over three 

weeks rule of thumb. There are five possible explanations for birds not classified as 

members of a flock. First, they may have been members of the flock they were recorded 

with but were not so classified due to insufficient or imperfect censusing. Second, they 

might have been members of another flock that was not recorded at all. Third, they may 

have been solitary individuals that were recorded on the irregular occasion when they 

interacted with a recognised flock. Fourth, they may have been individuals with no strong 

flock affiliation that associated temporarily with more than one flock. And fifth, they may 

have died or dispersed out of the study population after being recorded in one or a few 

census records. Although imperfect censusing cannot be dismissed as a factor, death or 

dispersal is the most likely fate of nine of the eleven birds that were recorded in insufficient 

census records to be classified as flock members. Seven of these individuals were seen once 

or twice during a single non-breeding period and then never again in non-breeding or 

breeding observations. One was seen three times within one week with the same flock and 

then never again. And the last was a juvenile fledged in the preceding breeding season that 

was seen three times, spanning less than three weeks, in a non-natal flock and then never 

again.

In contrast to the nine individuals that most likely died or dispersed there were two 

birds not assigned membership of a flock that were known to be alive for the duration of 

the non-breeding period in which they were recorded. One of these was most likely not 

classified as a flock member in the 1996 non-breeding period due to insufficient censussing 

as it was recorded twice in 1996 with the flock it was classified as a member of in 1997 

(see interannual continuity below). Notably the flock in question occupied the southern 

extremity of the 1996/1997 study area and was not censused as effectively as the rest of the 

population in those years. The second individual was classified as member of a flock in 

1996 then was seen only twice in 1997 with a different flock before being classified as a 

member of that flock in 1998. It was unlikely that this individual was not classified as a 

flock member in 1997 simply because of insufficient censusing as the flock it was recorded
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with was censused 8 times over more than two months. It may have been a rare case of a 

bird that was unaffiliated over the course of a non-breeding period although it was never 

sighted alone or with another flock 1997. More likely this bird moved out of the study area 

in 1997 to associate with an uncensused flock and then returned to join a recognised flock 

in 1998.

Interannual consistency and continuity

Continuity of flocks between years was high and the affiliations of individuals 

generally did not change between years. There were nine cases where the majority of a 

flock in one year was banded and a majority of these birds survived to be present in non

breeding flocks in the following year. In eight of these cases the surviving individuals not 

only formed the same affiliations among themselves but also they and their offspring from 

the intervening breeding season comprised the majority of the memberships of their 

respective flocks in the second year. Thus it was typical for the members of a flock that 

survived between years to form a core of continuous flock membership in consecutive 

years. In this way the persistence of four flocks through the three years of the study (flocks 

A, B, C and D Figure 5.2) and one additional flock for two years (flock I Figure 5.2) was 

apparent despite some change of membership from year to year due to the loss of some 

individuals and the addition of others. Further evidence of consistency in the formation of 

flocks in consecutive years was the fact that most birds surviving between years were 

members of the same flock in both years. Over the three years of the study there were 49 

occasions, involving 32 birds, where an individual was assigned membership of a flock in 

two consecutive non-breeding periods. On 39 occasions, 80%, the individual was a member 

of the same flock in both years. There were 17 individuals that were flock members in all 

three years of the study and 13 of these, 76%, were members of the same flock in all three 

years.

In contrast to the flocks with relatively stable memberships between years there 

were several cases where changes in membership were substantial enough to suggest that a 

new flock had emerged from the combination of birds from two flocks in the preceding 

year. The clearest example of this was flock I in 1997 (Figure 5.2) which was comprised of 

five banded birds and two unbanded birds. Four of the banded birds were known from the 

previous year and comprised two pairs of birds from two different 1996 flocks. Nine of the 

eleven members of the two original flocks were banded, four were presumed dead in 1997,
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while one was known to be alive but was not classified as a member of any 1997 flock. 

Given that most of the birds involved over the two years were banded, the affiliations of the 

four birds known to be flock members in both years were probably an accurate reflection of 

the merging of the remnants of two 1996 flocks into a new flock in 1997. Two slightly less 

clear-cut cases of changing flock memberships involved the flocks J in 1997 and M in 1998 

(Figure 5.2). In both cases there were indications that the flocks represented new social 

units, that is that their memberships were substantially different from any flock in the 

previous year or included birds from more than one flock of the previous year, however the 

presence of birds of unknown history meant it was not possible to accurately describe the 

change of membership between years.

Flock composition

Breeding units and flock membership

Members of breeding pairs were always members of the same flock. Over the three 

years of the study there were 16 cases where both members of a breeding pair were 

members of non-breeding flocks following a breeding season and in all 16 cases both were 

members of the same flock. There were 28 cases where both members of a breeding pair 

were members of flocks in a non-breeding period and again in all cases both were members 

of the same flock.

Flocks almost always included representatives of more than one breeding unit. The 

two smallest flocks were flock H, in 1996, which consisted of three birds and flock K, in 

1997, which consisted of two birds (Figure 5.2). The two birds that comprised flock K were 

known to be a breeding pair in the preceding breeding season and it is possible that the 

three birds in flock H, one female and two males, also comprised a single breeding unit 

from the preceding season however it is very likely that flocks based on individual breeding 

pairs were rare. In 1996 three of the five flocks that contained birds known to have bred in 

the preceding breeding season contained members of more than one breeding pair. In 1997 

and 1998, with improved knowledge of the breeding histories of the birds involved, twelve 

of the thirteen flocks that contained birds known to have bred in the preceding season 

contained members of more than one pair. The largest number of breeding pairs represented 

in a single flock was four. Flock G in 1996 contained four members that bred in four 

separate breeding pairs in the preceding season and flock C in 1997 contained six such
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individuals. Due to the presence of unbanded individuals in breeding pairs and the 

disappearance, most likely due to death, of breeders before the census periods there were 

few known occurrences of all members of multiple breeding pairs being members of a 

single flock. In two years, 1997 and 1998, flock A contained four individuals that 

comprised the same two breeding pairs in the preceding seasons and in 1997 flock C 

similarly contained four members that comprised two breeding pairs in the preceding 

season.

Juvenile birds

Only male juveniles became members of their natal flocks. Over the three years 20 

male birds that were members of non-breeding flocks were of known parentage and 

geographical origin as they were banded as nestlings in the breeding seasons preceding 

census periods. Eighteen of these birds were members of their natal flocks, that is flocks 

that contained one or both of their parents. In addition to the two males that dispersed to 

join non-natal flocks, one female bird, fledged in the 1995 breeding season and then not 

recorded in 1996 or 1997, was subsequently discovered to be a member of a non-natal flock 

in 1998 when the study area was expanded. The fact that only one of 21 individuals fledged 

during this study and subsequently recorded in flock censuses was female is consistent with 

a strong sex bias in dispersal (Chapter 2).

A detailed example of flock composition

The membership of flock A (Figure 5.2) was especially well characterised over 

three years as almost all birds involved were banded and as such it was illustrative of the 

general characteristics of yellow-rumped thombill flocks, flock A consisted of four birds in 

1996, eight birds in 1997 and 11 birds in 1998 and apart from one individual in 1996 and 

another in 1997 all birds involved were banded. In 1996 the flock initially consisted of two 

banded males and one unbanded bird, which were joined by a fourth individual, a banded 

female which had been observed with two other flocks in the preceding weeks and 

appeared to be in the process of dispersing. These four birds formed two breeding units in 

the 1996/1997 breeding season and remained in the same flock in the 1997 non-breeding 

period. The four additional members of the flock in 1997 comprised two male offspring of 

one of the 1996/1997 breeding pairs and two other birds, one a banded female of unknown 

history and the other unbanded. Neither of these birds could have been juveniles natal to the
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flock as all offspring of the two breeding pairs from the 1996/1997 season were banded. 

The original two breeding pairs reformed in the 1997/1998 breeding season and one of the 

yearling males became a helper at the nest of his parents. The other natal yearling and both 

of the other new flock members were not involved in the 1997/1998 breeding season and 

must have died or dispersed (or continued to disperse) before breeding began. The 1998 

flock of 11 birds were all banded and included the two breeding units, one pair and one trio, 

from the preceding season and four of their juvenile male offspring as well as two birds, 

one male and one female, of unknown history although known not to be natal juveniles. 

The male bird of unknown history was clearly in the process of dispersal in that he was 

known to be non-natal, was recorded with the flock only four times over approximately five 

weeks before disappearing and was recorded once with another flock during this period. 

The female bird of unknown history was also very likely a juvenile disperser although in 

her case she remained with the flock for the duration of the 1998 non-breeding period 

before taking up a breeding position within the flock. This female replaced one of the 

original breeding females from the flock after she disappeared immediately before the 

1998/1999 breeding season. One of the juvenile males also disappeared during the 1998 

non-breeding period while the other three remained and participated in the following 

breeding season. Two of them became helpers at the nest of the trio from the preceding 

season, making a breeding group of five, and the other formed a trio with his father and the 

new breeding female.

Flock A illustrated several characteristics that appear to apply generally to yellow- 

rumped thombill flocks. First, the flock included two breeding units in all three years and 

although there were two cases where it was probably not the case, Flock K and Flock H 

(Figure 5.2), flocks comprised of multiple breeding units were typical. Second, flock 

membership was stable between years in that no surviving member left the flock. Again, 

there were exceptions but the overwhelming weight of evidence was for a stable core of 

flock membership continuing from year to year. Third, expansion of the membership of the 

flock occurred mostly through the natal philopatry of male juveniles. Excluding the 

breeding female captured immediately after the 1996 census period, six of the nine new 

flock members added in 1997 and 1998 were male offspring of the two breeding pairs in 

the flock. Fourth, there were two permanent dispersal events into flock A, both were female 

birds and both assumed a breeding position in the breeding season following their arrival.
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DNA fingerprinting results

Genetic similarity

On average yellow-rumped thombills were more genetically similar to individuals 

from the same flock than to individuals from different flocks (Table 5.1). Sex-specific 

comparisons revealed that this was largely due to relatively high genetic similarity between 

male birds from the same flock. On average male-male dyads comprised of birds from the 

same flock were significantly more genetically similar than dyads comprised of birds from 

different flocks (Figure 5.3, Table 5.1). Male-male dyads comprised of birds from the same 

flock were also more variable in their genetic similarity than those comprised of birds from 

different flocks (Figure 5.3, Table 5.1). The patterns of genetic similarity between male- 

female dyads were qualitatively similar to those for male-male dyads and the genetic 

similarity of birds from the same flock was both higher on average and more variable than 

for birds from different flocks, although the difference between the mean genetic similarity 

for within-flock and between-flock dyads was weaker and was not statistically significant at 

a  = 0.05 (Figure 5.3, Table 5.1). In contrast, female birds were on average no more 

genetically similar to other females from the same flock than they were to females from 

different flocks and nor were they more variable in their genetic similarity (Figure 5.3, 

Table 5.1).

Relatedness

The comparison of sex-specific patterns of relatedness highlights three features of 

kinship in yellow-rumped thombill flocks (Figure 5.4, Table 5.3). First, females from the 

same flock were rarely close genetic relatives. The few female-female dyads that did 

exceed the threshold value of genetic similarity used to distinguish relatives from non

relatives did so only marginally and if these pairs of birds were indeed relatives their degree 

of their relatedness was clearly low. This is in contrast to male-male and male-female dyads 

comprised of birds from the same flock among which close genetic relationships were 

comparatively common. Second, females tended to be either unrelated to males from their 

own flock or related to them at a first order level. This contrasts markedly with the 

distribution for male birds from the same flock among which intermediate level genetic 

relationships were almost as common as first order relationships. Third, unrelated dyads 

were common. Even among dyads of male birds from the same flock the majority of dyads
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were unrelated. Finally, a number of close genetic relationships were detected among birds 

from different flocks particularly among male-male dyads where there were a small number 

of first order genetic relationships between individuals from different flocks.

Due to nearly complete sampling the 1998 flocks provide the best information 

available on the fine scale details of relatedness among flock members and illustrate two 

general features of the genetic structure of flocks. First, it is very likely that flocks 

commonly contained individuals that were unrelated to any other member (Figure 5.5). In 

only one flock, which contained two unsampled birds, did every sampled individual have at 

least one relative among the other sampled birds from its flock. The lack of relatives among 

flock-mates probably applied to males and females although was probably more prevalent 

for female birds (Figure 5.5). Second, most individuals had at least one close relative 

among the other sampled birds from their flock and many individuals were closely related 

to several of their flock-mates (Figure 5.5). The occurrence of close relatives among the 

sampled individuals from a flock was sex biased and 78.6% (n=42) of males had at least 

one close relative as a flock-mate compared with 46.2% (n=26) of females.

Three 1998 flocks, involving 31 birds, were completely sampled (flocks A, D and 

M Figure 5.2) and further exemplified the general patterns described above. Ten birds from 

a flock of eleven, eight birds from a flock of thirteen and five from a flock of seven birds 

had at least one relative as a flock mate. Of the nine individuals that were not related to any 

of the other birds in their flocks five were female and four were male. The average number 

of related flock-mates per individual was 1.8 and ranged from zero to four.

DISCUSSION

The combination of field observations and genetic data presented in this study 

provides the first comprehensive description of non-breeding social organisation in the 

yellow-rumped thombill. Census and genetic data established that non-breeding flocks 

were characterised by three features. First, they were stable social groups with 

memberships that were highly consistent over the course of a single non-breeding period 

and to a large extent continuous from year to year. Second, flocks occupied large home 

ranges that were not exclusive and usually overlapped substantially with the ranges of other 

flocks. Third, flocks consisted of adults from adjacent breeding ranges (pairs or groups), 

some of their offspring from previous breeding seasons and some immigrant individuals.
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The combination of these features defines a highly unusual non-breeding social 

organization in which the role of kinship is of particular interest.

Dispersal and kinship in winter flocks

Genetic data on the sex and relatedness of individuals indicated that kinship in 

flocks was male biased and was generated by male natal philopatry. Juvenile birds that 

became members of their natal flocks were always male. Natal philopatry by males was 

reflected in the very high genetic similarities, indicative of first order relatedness, between 

some male-male and male-female dyads from the same flock. Male-male dyads related at a 

first order level may have been father and son or brothers, while male-female dyads related 

at a first order level were almost certainly all mothers and sons. In contrast to males, 

females were never philopatric. No pair of female birds from the same flock had a genetic 

similarity approaching that expected of a parental or sororal relationship and no female 

banded as a nestling became a member of its natal flock. These results indicate that 

dispersal of juvenile females was universal and occurred before the censusing period, either 

during or soon after the breeding season in which they fledged.

Relationships between male flock-mates were not limited to parentage or fraternity, 

and included many lower order relationships. Half-sibship, arising from the recruitment 

into the same flock of the sons of a parent that changed breeding partners, may explain 

some of these relationships. Changes in breeding partnerships between seasons, usually due 

to the death of one member, were not unusual in this population however there was 

evidence to indicate that some lower order relationships between males may not represent 

half-sibship but may have arisen through extended family relationships within flocks. Most 

flocks contained representatives of more than one breeding unit and in six of the fifteen 

cases where a pair of male flock-mates was comprised of two birds that were known to be 

breeders in the preceding breeding season they were found to be close relatives. Close 

kinship between breeding male flock-mates potentially links nuclear families producing 

extended families of male kin with various degrees of relatedness within some flocks.

Although genetic analysis highlighted the role of male natal philopatry in generating 

kinship within flocks it also revealed that such kinship was not universal. In 1998, the year 

with the most complete sampling (85%), most females (53.8%, n = 26) and a substantial 

proportion of males (21.4%, n = 42) were not closely related to any of their sampled flock- 

mates. Female birds without related flock-mates were found in all eight flocks while male
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birds without related flock mates were found in six of eight flocks, including all three of the 

flocks where every individual was sampled. These results are consistent with dispersal of 

some males; indeed two males marked as nestlings were found to be members of non-natal 

flocks. A second line of evidence further highlights the lack of universal male kinship in 

flocks. Although some pairs of male flock-mates comprised of birds that were known to be 

breeders in the preceding breeding season were found to be close relatives most, 9 of 15, 

were not. This suggests that where flocks contained elements of more than one nuclear 

family, they were often not linked by close kinship between male breeders and therefore 

often did not represent extended families of male kin.

The social structure of yellow-rumped thombill flocks appears similar to that 

described in the buff-rumped thombills by Bell and Ford (1986). Buff-rumped thombill 

flocks also consist of stable social groups that persist between years and are based on the 

affiliation of adults and juveniles from several adjacent breeding groups (Bell and Ford 

1986). However, juvenile females in the buff-rumped thombill delay dispersal until the end 

of winter (Bell and Ford 1986); so kinship in flocks includes parent-daughter relationships 

and potentially also sibling relationships between female birds. Dispersal of male buff- 

rumped thombills into non-natal flocks was not observed by Bell and Ford (1986) and all 

marked male juveniles were recruited into their natal flocks. A consequence of these 

dispersal patterns is that kinship within flocks may be more extensive in the buff-rumped 

thombill than in the yellow-rumped thombill, where all female juveniles disperse before 

winter and some males disperse into non-natal flocks. The apparent lack of male dispersal 

in the buff-rumped thombill implies that flocks may be strictly kin-based in terms of male 

membership which is not the case in the yellow-rumped thombill where male kinship is 

mixed and far from absolute. Dispersal and relatedness are crucial parameters in 

understanding social organisation and behaviour but are inherently difficult to measure and 

it is possible that a low level of male dispersal in the buff-rumped thombill was not 

detected in the purely observational study of Bell and Ford (1986). Despite this it is clear 

that yellow-rumped thombills are socially very similar to buff-rumped thombills, and 

probably also to striated thombills (Bell and Ford 1986), and kinship within non-breeding 

flocks, although differing in extent, is significant in these species.

Kinship can be an important modifier of the costs and benefits of social interaction 

(Hamilton 1964) and the prevalence of kin in the non-breeding flocks of yellow-rumped 

thombills, buff-rumped thombills and probably also striated thombills suggests that
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relatedness arising from natal philopatry is an important factor in the social behaviour of 

thombills. However, as exemplified by the social organisations of two related species 

kinship is neither necessary or sufficient for the occurrence of winter flocking in members 

of the Pardalotidae. The speckled warbler (Chthonicola sagittata), like the social thombills, 

forms stable non-breeding flocks comprised of adults from adjacent breeding ranges and 

juvenile birds, however kinship within flocks is precluded in this species by the dispersal 

before winter of all juvenile birds, both male and female (Gardner et al. 2003; Gardner 

2004). The contrary case is demonstrated by the brown thombill (Acanthiza pusilla) which 

never breeds cooperatively or forms non-breeding flocks (Bell and Ford 1986; Green and 

Cockbum 1999; Nicholls et al. 2000). The absence of cooperative breeding and non

breeding sociality in the brown thombill occurs despite the opportunity for kin-based social 

affiliations provided by philopatric male offspring remaining on their parent’s territories 

over winter and commonly breeding on territories adjacent to their parents (Green and 

Cockbum 2001). The dissociation of natal philopatry and winter flocking in the 

Pardalotidae suggests that kinship may not be a causal factor in the flocking behaviour of 

the social members of the family. In the case of the yellow-rumped thombill, kinship within 

flocks is probably a consequence of natal philopatry occurring within a broader, and not 

necessarily kin-based, social organisation.

Spatial arrangement of winter flocks

The spatial organization of yellow-rumped thombill flocks was distinguished from 

that of buff-rumped thombills and speckled warblers by the fact that flock home ranges 

overlapped extensively. Unlike yellow-rumped thombills, speckled warblers and buff- 

rumped thombills occupy exclusive flock ranges that appear to be actively defended (Bell 

and Ford 1986; Gardner 2004). It is unclear why yellow-rumped thombill flocks do not 

defend exclusive areas, although observations during breeding in this study suggest that 

they also do not defend exclusive breeding territories, again in contrast with buff-rumped 

thombills (Bell and Ford 1986) and speckled warblers (Gardner 2002). It is possible that 

differences in habitat requirements or food resources may result in larger, undefendable, 

home ranges in the yellow-rumped thombill. However, all three species have similar diets, 

particularly in winter when they forage predominantly on ground-dwelling invertebrates 

(Ford et al. 1986; Recher 1989; Bell and Ford 1990). Furthermore, this study was 

undertaken at the same study site and overlapped with that of Gardner’s (Gardner 2002;
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Gardner 2004) study of the speckled warbler, suggesting that broad habitat differences do 

not explain differences in territoriality and, more importantly, allowing a direct comparison 

of home range size. Speckled warbler and yellow-rumped thornbill flocks at Campbell Park 

occupied home ranges of similar size: 7-30ha in the speckled warbler and 8-48ha in the 

yellow-rumped thornbill. Yellow-rumped thornbill flocks are themselves larger than those 

of the speckled warbler, 4-14 birds and 2-7 birds in 1998 respectively, which does not 

match expectation if the number of individuals relates directly to the capability of flocks to 

defend exclusive areas. Presumably the costs and benefits of territory defence for yellow- 

rumped thombills differ in a significant way from those experienced by buff-rumped 

thombills and speckled warblers, although where these differences lie remains unclear at 

this stage.

Yellow-rumped thombills and speckled warblers at Campbell Park had similarly 

sized flock home ranges despite large differences in the size of breeding “territories”. 

Although flock territories of speckled warblers are large, they directly correspond, both in 

size and outer borders, to the amalgamated breeding territories of their two or three 

constituent breeding pairs (Gardner 2004). In contrast, although yellow-rumped thornbill 

flocks generally encompassed the breeding ranges of their resident members flock ranges 

could be much larger than the sum of the breeding ranges they included. Breeding ranges 

were not systematically measured in this study but were approximately two to four hectares 

in size. Flocks generally contained two to four breeding units yet flocks home ranges were 

commonly 20 hectares or more in area, and were as large as 48 hectares, indicating that 

flock ranges were not directly related to the breeding ranges of their constituent members 

and could be much larger than their combined breeding ranges.

The fact that the space occupied by yellow-rumped thombills expands in winter 

such that flocks occupy ranges of similar area to speckled warbler flocks may reflect a 

seasonal change in foraging mode or diet in the yellow-rumped thornbill and the potential 

importance of food resources in the spatial arrangement of winter flocks. Speckled warblers 

are relatively invariant in their foraging behaviour and forage on the ground year-round 

(Ford et a l 1986; Tzaros 1996). Yellow-rumped thombills are also predominantly ground 

foragers (Ford et al. 1986; Higgins and Peter 2002) but may be more generalist than 

speckled warblers and also forage throughout various strata of the vegetation (Ford et al. 

1986). No data are available on seasonal changes in yellow-rumped thornbill foraging, 

however, seasonal changes are well documented in other thombills (Recher 1989; Bell and
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Ford 1990; Ford et al. 1990) and it is possible that yellow-rumped thornbills become more 

restricted to ground foraging over winter (pers. obs) as has been observed in the buff- 

rumped thombill (Bell and Ford 1990; Ford et al. 1990). Similarity in the food resources 

exploited by speckled warblers and yellow-rumped thornbills over winter may explain the 

similarly large areas occupied by flocks of both species.

The benefits of flocking

Over the three years of this study there was one case where a breeding pair of 

yellow-rumped thornbills persisted throughout an entire non-breeding period as a “flock” of 

only two individuals. This anomalous observation indicates that, at least in some 

circumstances, membership of a larger social group is not necessary. Given that non

breeding flocks are optional, they presumably provide some benefit to the majority of birds. 

The potential benefits of non-breeding sociality in sedentary birds have been addressed in 

two largely separate contexts. The large body of work on northern hemisphere Parus 

species has focused on the direct benefits gained by individuals in non-kin-based winter 

flocking systems (Matthysen 1990; Ekman and Rossander 1992). The equally large body of 

work on avian social systems based on natal philopatry has recently expanded beyond the 

study of cooperative breeding to explicitly include aspects of non-breeding sociality and 

has stressed the potential for fitness benefits arising specifically from overwintering with 

kin (Ekman and Rossander 1992; Ekman et al. 1994; Ekman et al. 2001; Kraaijeveld and 

Dickinson 2001). The mixture of kin and non-kin characteristic of yellow-rumped thombill 

flocks suggests that both individual and inclusive fitness benefits may apply.

Kin-based benefits

The study of avian cooperative breeding has elucidated a number of benefits that 

can accrue to parents and offspring from natal philopatry (Emlen 1982; Brown 1987; 

Stacey and Ligon 1987; Koenig et al. 1992; Emlen 1994; Emlen 1995). These benefits are 

generally related to long-term reproductive consequences of delayed dispersal, largely 

ignoring aspects of non-breeding sociality beyond the effects of group augmentation, and 

often relate explicitly to survival benefits of living on a permanent territory or the 

acquisition of a territory and the breeding opportunity it represents. The parental facilitation 

concept (Brown and Brown 1984; Brown 1987) for example, explains natal philopatry in 

terms of long-term reproductive benefits to both parents and offspring. In populations
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where territories are a limiting breeding resource, or vary in quality, offspring may benefit 

from natal philopatry via the inheritance of their parent’s territory. Territorial inheritance 

may also represent a fitness benefit to parents in that it promotes the reproductive success 

of their offspring. Benefits of philopatry such as parental facilitation that explicitly relate to 

the acquisition of breeding territories are unlikely to apply to yellow-rumped thombills due 

to their lack of classical territoriality.

The “prolonged brood care” hypothesis (Ekman and Rossander 1992; Ekman et al. 

1994; Ekman et al. 2001), although it too includes long-term reproductive benefits 

associated with territoriality, explicitly includes potential benefits arising from the 

association of parents and offspring in the non-breeding period. These benefits arise from 

nepotistic behaviour of parents that enhances the survival or fitness of their mature 

offspring in much the same way as classical parental care does for dependent offspring. 

Parents may facilitate access to food for their offspring (Ekman et al. 1994; Pravosudova et 

al. 1999) or actively protect them from predators (e.g. Griesser 2003). The extended 

association of parents and offspring in yellow-rumped thombill flocks provides the 

potential for “prolonged brood care” which, if it occurs, would represent a benefit of 

flocking for juvenile males that remain in their natal flocks and their parents. Furthermore, 

the long-term nature of yellow-rumped thombill flocks and the likelihood of non-parental 

relationships among males presents the possibility of nepotistic interactions beyond those 

of “prolonged brood care”. Male birds banded as nestlings were known to remain in natal 

flocks for at least two years in this study which suggests that they may reach a level of 

independence and maturity whereby they might direct nepotistic behaviour toward their 

parents and, given the nature of male kinship in yellow-rumped thombill flocks, inclusive 

fitness benefits of nepotism among brothers and other male kin are also possible.

Individual benefits

The direct benefits of flocking in Parus species include short term benefits 

associated with survival over winter, and longer term social benefits associated with 

maintaining or gaining a territory or mate for the ensuing breeding season (Ekman 1989; 

Matthysen 1990). The survival benefits of flocking can include a reduction in predation risk 

and an increase in foraging efficiency. An individual’s risk of predation may be reduced in 

a flock through the increased vigilance of “many eyes” (Pulliam 1973; Elgar 1989) and the 

dilution of risk (Pulliam 1973; Bednekoff and Lima 1998). Where investment in vigilance
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trades off with investment in foraging, the reduction in individual vigilance can increase 

foraging time (Pulliam 1973; Elgar 1989), furthermore, social foraging itself, regardless of 

predation risk, can increase foraging efficiency (Krebs et al. 1972; Pulliam 1973; Baker et 

al. 1981; Beauchamp 1998) and reduce variation in foraging success (Clark and Mangel 

1986; Ekman and Hake 1988).

The foraging habit of the yellow-rumped thombill may entail a significant predation 

risk and thus promote the potential for group size benefits of flocking. Within the open 

habitats in which they occur the ground foraging yellow-rumped thornbill has a preference 

for sparsely vegetated grassland areas and often forage some distance from cover (pers. 

obs., see Higgins and Peter 2002). The confamiliar speckled warbler is also a ground 

foraging species with a preference for open habitats and Gardner (2004) found that benefits 

relating to group size were probably an important factor in the formation of winter flocks of 

speckled warblers.

The social organisation of speckled warblers differed between two years of 

observation by Gardner (2004). In one year flocks comprised only a single breeding pair 

and immigrant juveniles but in another year with unusually low rainfall speckled warblers 

formed larger, more thombill like, flocks comprised of residents from adjacent breeding 

territories as well as immigrant juveniles (Gardner 2004). The formation of larger flocks 

when conditions are unusually harsh has also been observed in some Pams species (e.g. 

great tit, Pams major (Saitou 1978); willow tit, Pams montanus (Hogstad 1988)) and is 

thought to reflect the general importance of individual survival benefits arising from group 

size effects on individual vigilance and social foraging in winter flocking Pams species 

(Ekman 1989; Matthysen 1990). That flock size may be important to yellow-rumped 

thombills was suggested by the amalgamation of the remnants of previously independent 

flocks after poor inter-year survival. Most yellow-rumped thombill flocks persisted 

between years in that surviving birds usually formed a core of continuous membership from 

one year to the next and new flock members were probably mostly natal or immigrant 

juveniles. However, there were several instances where adult birds joined existing flocks or 

formed new flocks incorporating the surviving members of previously independent flocks. 

These mergers, occurring after a reduction in size of the original flocks, are consistent with 

yellow-rumped thombills actively seeking to achieve larger group sizes in some 

circumstances.
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Winter flocking may facilitate the acquisition of a breeding territory in some species 

but this is unlikely to be a major benefit of flocking in the yellow-rumped thombill. Parus 

species typically form winter flocks via the association of juvenile birds with a territory 

holding adult pair (Ekman 1989; Matthysen 1990). Juveniles that join flocks early are often 

socially dominant over those that settle later and can benefit from priority over territory 

ownership, and hence access to a breeding vacancy, upon the death of a dominant bird. 

Access to a territory as a benefit of flocking in Parus systems has some power to explain 

the occurrence of flocking itself in that it applies differentially to juveniles that become 

flock members by settling with dominant territory holders and those that do not (Matthysen 

1990). This benefit, as it applies in the context of universal juvenile dispersal and 

territoriality characteristic of Parus social systems, may not be relevant to the yellow- 

rumped thombill. Unlike most Parus species breeding yellow-rumped thombills do not 

occupy discrete and exclusive territories, which suggests that access to a “territory” or 

breeding range probably does not represent a critical breeding resource as it does in Parus 

systems. Furthermore, there was no direct relationship between the winter home range of 

yellow-rumped thombill flocks and the breeding ranges of their constituent breeding pairs 

and groups. These characteristics suggest that membership of a winter flock is not 

significantly related to maintaining or achieving ownership of a breeding territory in the 

yellow-rumped thombill.

Although flocking may not promote access to territorial vacancies, yellow-rumped 

thombill flocks may facilitate breeding opportunities. In Parus species (Ekman 1989; 

Matthysen 1990), and in the speckled warbler (Gardner 2004), breeding pairs tend to 

consist of birds that were in the same flock in the preceding winter and this appears to also 

be true of the yellow-rumped thombill. For male yellow-rumped thombills breeding 

opportunities are probably constrained by a shortage of females. There were more males 

than females in flocks: in the 1998 flocks there were 42 males versus 26 females overall, 

and 20 males versus 11 females in the three completely sampled 1998 flocks. This sex bias 

suggests that male birds are probably in competition over access to mates. Social 

dominance hierarchies within flocks, such as those found in some Parus species (Ekman 

1989; Matthysen 1990), might have important implications for male yellow-rumped 

thombills to the extent that rank or status may influence their ability to attract or keep a 

mate. Furthermore, social dominance structures might be expected among males given that 

they vary in age, origin (natal or immigrant), and relatedness to other flock members.
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Elucidating the potential social functions of flocking, such as the facilitation of pairing for 

the subsequent breeding season, requires detailed behavioural data not currently available 

for the yellow-rumped thombill. However, although it may be the case that winter flocks 

provide the social context for important interactions among yellow-rumped thombills with 

implications for subsequent breeding, it is not clear that this represents a benefit, rather than 

secondary consequence, of forming winter flocks.

CONCLUSION

Yellow-rumped thornbills display a non-breeding social organization that is unusual 

even among the social members of their family. The social affiliation of adults from 

multiple breeding units, sex biased dispersal, and the mixed dispersal strategies of male 

juveniles creates large non-breeding flocks with complex mixtures of related and unrelated 

individuals. Kinship may provide family based or inclusive fitness benefits to some birds in 

non-breeding flocks. However, although kinship arising from male natal philopatry is a 

feature of yellow-rumped thombill flocks, the lack of correlation between natal philopatry 

and winter flocking in the Pardalotidae and the mixture of kin and non-kin in flocks 

suggests that kin-based benefits of sociality do not wholly explain the formation of winter 

flocks in the yellow-rumped thombill. The individual benefits of winter flocking, as 

elucidated in the non-kin-based social systems of Parus species and the speckled warbler, 

probably also apply to the yellow-rumped thombill and may be an important factor in the 

social affiliation of both kin and non-kin in flocks. Furthermore, changes in the use of space 

between breeding and non-breeding seasons suggests that seasonal changes in the food 

resources exploited by yellow-rumped thornbills may be an important ecological factor 

underlying the formation of winter flocks.
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Table 5.1. Sample sizes and test statistics for differences between mean genetic 

similarity coefficients of within-flock and between-flock dyads. Standard errors for t- 

tests were calculated with a sub-sampling procedure following Danforth and Freeman- 

Gallant (1996) see text for explanation. Equality of variances assessed by F-tests, a  = 

0.05.

Coefficient of similarity 

mean ± SE

Dyad type Within Between t d.f. P

All 0.161 ±0.0227 0.107 ±0.0103 2.17 434& 5131 0.031

Male/Male 0.209 ± 0.0405 0.110 ± 0.0163 2.27 127 & 1721 0.025

Male/Female 0.146 ±0.0225 0.103 ±0.0104 1.73 226 & 2411 0.085

Female/Female 0.123 ±0.0150 0.108 ±0.0146 0.75 1772 0.45

1 variances unequal

2 variances equal.
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Table 5.3. Numbers and proportions of related within-flock dyads. Dyads with 

similarity coefficients greater than the upper 99% confidence interval for the 

distribution of unrelated (breeding pair) dyads were classified as related. Of the dyads 

classified as related, those with similarity coefficients less than the lower 99% 

confidence interval for the distribution of known first-order relatives were classified as 

related at less than a first-order level.

Total no. 

dyads

No. related 

(as proportion)1

No. related at less than 1st 

order level 

(as proportion)2

Male-Male 128 40 (0.31) 16 (0.40)

Male-Female 227 22 (0.10) 3 (0.14)

Female-Female 80 5 (0.06) 5 (1.00)

1 Shown in parentheses as a proportion of the total number of dyads.

2 Shown in parentheses as a proportion of the total number of related dyads.
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Figure 5.1. Home ranges of yellow-rumped thombill flocks in 1998. Letter 

codes correspond to Figure 5.1.
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CHAPTER 6

Conclusions and future directions

INTRODUCTION

This thesis investigated the breeding biology, mating system and social organization 

of the yellow-rumped thombill and the mating and parental care systems of the buff- 

rumped thombill. In part, the study was designed to add to the body of knowledge on the 

ecology of members of the Pardalotidae, a large and socially diverse group of old endemic 

Australian passerines. In addition, earlier anecdotal reports strongly suggested that the 

yellow-rumped thombill would exhibit a complex two-tiered social organization, similar to 

that described for the buff-rumped thombill, where adjacent breeding units of two or more 

individuals coalesce during winter to form stable flocks. A central aim of this study was 

therefore to describe the social organization and mating system of the yellow-rumped 

thombill breeding units, and also the non-breeding social organization of winter flocks. As 

well as relying on standard observational techniques, I used molecular methods to examine 

the genetic relationships among individuals during the breeding and non-breeding seasons. 

These techniques have greatly accelerated and improved our abilities to investigate social 

structures.

In this final chapter, I briefly summarise the main findings of the thesis, and discuss 

the most promising avenues for future research.

Social organization -  breeding season

Members of the Pardalotidae studied to date have shown little variation in aspects of 

their demography and breeding biology. They tend to be long-lived, lay small clutches, 

have long incubation and nestling periods, and lay multiple clutches over a long breeding 

season. At the species level yellow-rumped thombills do not differ from this model and 

exhibit typical “long and slow” life history traits. However, the comparison of the 

population studied here and that described by Ford (1963) revealed marked differences in

94



reproductive success. This appeared to be due to a much longer breeding season and much 

lower rates of nest predation in Ford’s West Australian population than in the Canberra 

population described in this study.

In contrast to the homogeneity of life history characteristics, the Pardalotidae 

display a diverse range of social organisations and mating systems, which has proven 

valuable to researchers interested in the evolutionary basis for complex breeding sociality, 

particularly the evolution of pair-breeding in cooperative clades (Green and Cockbum 

1999; Green and Cockburn 2001). Some species, like the brown thornbill, breed as simple 

pairs, the buff-rumped thornbill has been reported to breed in nuclear family groups, while 

the white-browed scrubwren breeds in pairs or cooperative groups comprised of both 

related and unrelated individuals. The application of genetic techniques has revealed the 

genetic mating systems of a small number of species. The brown thornbill has been shown 

to breed monogamously (Green et al. 2002), the speckled warbler has been found to have 

low rates of shared paternity within groups and low rates of extra-group paternity (Gardner 

et al. 2004), while the white-browed scrubwren has a moderately high incidence of both 

shared paternity within groups and extra-group paternity (Whittingham et al. 1997). In 

keeping with this diverse theme, the thombills studied here had a breeding social 

organisation and mating system that are unique within the family, although yellow-rumped 

thombills and buff-rumped thombills shared many breeding system characteristics. Like 

buff-rumped thombills, yellow-rumped thombills often bred in pairs, but formed 

cooperatively breeding groups based on nuclear family units via the philopatry of male 

offspring. However, cooperative groups were less common in the yellow-rumped thornbill 

population studied here than they were for buff-rumped thombills both in this study, and an 

earlier study by Bell and Ford (1986). DNA fingerprinting revealed that the mating system 

of both species was overwhelmingly monogamous with very low rates of extra-group 

paternity and no within-group shared paternity.

Both yellow-rumped thornbill and buff-rumped thornbill helpers made substantial 

contributions to the provisioning of nestlings. The only clear difference between the 

cooperative breeding systems of the two species was the provisioning behaviour of 

individuals in groups. Buff-rumped thombills reduced their individual contributions when 

assisted by helpers, so that groups and unassisted pairs fed at the same overall rate. This 

was not true of the yellow-rumped thornbill, where the contribution of helpers was additive 

and groups fed at a higher overall rate than pairs. This difference is important because it
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suggests that the costs and benefits of helping behaviour differ between the two species in 

some critical way, and thus the underlying basis for cooperative breeding in the two species 

may differ.

Social organization -  non-breeding season

The diversity of non-breeding social organizations within the Pardalotidae is 

comparable to the diversity of breeding systems within the family. For example, whereas 

the brown thornbill and white-browed srubwren continue to defend their breeding 

territories throughout the winter, speckled warblers, buff-rumped thombills and striated 

thombills form multi-member flocks with varying space-use patterns.

During this study, yellow-rumped thombills formed flocks through the 

amalgamation of adjacent breeding units. Flock membership was stable throughout the non

breeding season, and was even stable, to a large extent, among years. In this respect, 

yellow-rumped thornbill flocking patterns are similar to that reported for buff-rumped 

thombills. However, whereas buff-rumped thornbill flocks are reported to use and defend 

exclusive territories delineated by the shared borders of the breeding territories, yellow- 

rumped thornbill flocks ranged widely over winter and used areas that overlapped 

considerably with neighbouring flock ranges. This points to critical differences in diet 

and/or resource use between the two species, in the same way that the different 

provisioning patterns of yellow and buff-rumped thombills suggested a key divergence in 

foraging constraints.

Nest predation

Most studies of the factors that influence nest predation have focused on traits of 

prey species that affect the vulnerability of nests to predation. Characteristics of nest 

concealment and parental and nestling behaviour are generally considered to influence rates 

of nest predation via their effects on the detectability of nests to predators. Patterns of 

predation on yellow-rumped thornbill nests strongly suggested that the behaviour of 

predators is also an important influence on the timing and intensity of nest predation. The 

coincidence of heightened predation specifically on yellow-rumped thornbill nestlings and 

the brood rearing period of the predatory pied currawong (Strepera graculina) indicated 

that pied currawongs actively targeted nests containing nestlings when they were feeding 

their own broods. These results point to a weakness in the study of nest predation from the
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exclusive perspective of the prey species. The yellow-rumped thombill population studied 

here represents an example where information on the behaviour of a particular predator was 

required to explain patterns of predation at different stages of the nesting cycle and over the 

course of the breeding season.

Future directions

This study suggests three major avenues for future work on the thombills:

1) What is the basis for the large variety o f social systems in the Pardalotidae during the 

breeding season ?

Before this question can be answered, more detailed information is required on the 

breeding and social systems of various species in the family. When cooperative breeding 

does occur, we need to know how helpers and breeders benefit from the system, and what 

the constraints and options for individual birds are. With regard to the thombills, this study 

clearly showed that helpers did not gain any substantial access to mating opportunities, 

either within or outside their groups. Thus cooperative breeding is not driven by direct 

reproductive benefits to helpers. In addition, provisioning by helpers was unconditional, 

unlike the facultative helping displayed by white-browed scrubwrens (Magrath and 

Whittingham 1997), and therefore not linked to paternity in the brood. Helpers of both 

species were close relatives of the breeders and their young, so inclusive fitness benefits 

may be important. This study could not address this question adequately, partly because the 

incidence of cooperative breeding was low, and thus the sample of groups was small. 

Preliminary indications were that helpers did not increase the success of breeding attempts, 

but yellow-rumped helpers may have increased the quality of young produced, and buff- 

rumped thombill helpers may have benefited the longer-term survival and/or fecundity of 

their parents by reducing their provisioning workload. These issues need to be examined in 

more detail, either by studying a larger population (and thus increasing the sample of 

cooperative groups) or by studying a population with a higher incidence of cooperative 

breeding. In addition, an experimental approach to some problems may be warranted, to 

avoid the problem of confounding effects that plague studies of cooperative breeding 

(Cockbum 1998). For example, it may be possible to design experiments to test whether a 

fundamental difference in foraging constraints is responsible for the different provisioning 

patterns in the buff and yellow-rumped thombills.
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Breeding buff-rumped thombills could be given supplementary food to reduce their 

foraging costs, and the effect of this on load-lightening, fledgling weight and post-fledging 

survival measured. If foraging costs have a proximate role in load-lightening the 

amelioration of these costs may induce additive provisioning by parents and helpers. If 

additive provisioning was induced, the measurement of fledgling weight and post-fledging 

survival may provide valuable information on the potential costs of load-lightening in 

relation to the optimal provisioning of nestlings. Similarly, the foraging costs of yellow- 

rumped thombills could be experimentally increased by adding small weights to their tails 

(e.g. Wright and Cuthill 1989), in order to test whether heightened foraging constraints 

induce load-lightening in this species. Again, the measurement of fledgling weight and 

survival may point to the costs of load-lightening in relation to the consequences of sub- 

optimal provisioning of nestlings.

2) What is the basis o f the diverse non-breeding social organizations in the Pardalotidae?

The diversity of social systems in the Pardalotidae has only recently come to light 

after several long-term studies that were not restricted to aspects of breeding biology and 

behaviour (e.g. Bell and Ford 1986; Green and Cockbum 2001; Gardner 2004). The 

description of group size and composition, and space use, in the non-breeding period for 

other species is likely to increase the range of social systems known to occur within the 

family. Based on the comparison of the few species studied to date, an important factor in 

non-breeding social organization is likely to be diet, or resource dispersion, during winter. 

Although buff-rumped thombills and yellow-rumped thombills are similarly sized 

insectivores with broadly similar foraging modes, there may be a subtle difference in diet or 

patterns of resource dispersion that influence foraging requirements, and hence space use, 

in winter. Unlike buff-rumped thombills, yellow-rumped thombill flock home ranges 

overlapped considerably with those of neighbouring flocks. This may point to a difference 

in the area required to sustain flocks over winter and the defendability of these areas. 

Quantification of home range, or territory, size in winter in buff-rumped thombills and 

other species may provide some clues as to the importance of the area flocks occupy and 

their tendency to be territorial. Issues of resource availability and dispersion could be 

addressed by providing supplementary food to flocks to reduce foraging costs and change 

the spatial requirements of foraging. The resulting effects on the size of flock ranges,
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territorial defense and possibly even the tendency to form flocks may provide an 

explanation for some of the variation in social organization within the Pardalotidae.

The non-breeding social organization of the yellow-rumped thombill is unique 

within the Pardalotidae and may present an ideal opportunity to study the role of kinship in 

some aspects of avian sociality. As social units yellow-rumped thornbill flocks are unusual 

in that they are qualitatively different social groupings from those of the breeding season 

and they are mixtures of kin and non-kin. As such, the detailed observation of flocks, 

quantifying aspects such as dominance, aggression, foraging efficiency and vigilance with 

regard to relatedness among individuals, may provide valuable insight into the role of 

kinship in social groups in a context not directly related to reproduction. The application of 

new genetic techniques (e.g. microsatellite genotyping) that allow the rapid assessment of 

relatedness would be invaluable in such studies and would allow observational protocols to 

be designed with advance knowledge of relationships among individuals.

3) What is the basis o f mixed male dispersal strategies in the yellow-rumped thornbill?

Juvenile male yellow-rumped thombills displayed two discrete dispersal strategies, 

some males dispersed to become members of non-natal flocks, while others were natally 

philopatric and became members of their parent’s flock. It is unclear what the costs and 

benefits of either strategy are, who decides whether a juvenile stays or leaves, and whether 

the individuals that adopt each strategy differ in some way, such as individual quality or 

social status. Studies in other species with mixed dispersal strategies have found that 

juvenile philopatry entails a survival benefit to those individuals that delay dispersal (e.g. 

gray jay, Perisoreus canadensis, Strickland (1991); Siberian jay, Perisoreus infaustus, 

Ekman et al. (2000); brown thombill, Green and Cockbum (2001)). There is also evidence 

in some species of competition among siblings over who stays and who leaves with larger 

and/or socially dominant individuals more likely to delay dispersal (gray jay, Strickland 

(1991); Siberian jay, Ekman et al. (2002); red-cockaded woodpecker, Picoides borealis, 

Pasinelli and Walters (2002)). However, in the brown thombill, although a maximum of 

one male ever delays dispersal even when broods include multiple males, there is no 

evidence of intra-brood competition over dispersal and larger brood mates are not more 

likely to delay dispersal (Green and Cockbum 2001).

The costs and benefits of alternative dispersal strategies in the yellow-rumped 

thombill could be addressed in a long-term study comparing survival and recruitment rates
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of individuals that disperse and those that do not. It may also be possible to test some of the 

costs of dispersal by comparing the fates of birds that are forced to “disperse”, by 

translocation, with those of a control group. Detailed behavioural observations of flocks 

may elucidate the issue of how dispersal decisions are made. By quantifying aggression 

between parents and offspring, between siblings, and more generally between juvenile birds 

and their flock-mates, it may be possible to establish whether individuals are evicted from 

their natal flocks or choose to disperse. Related to this issue is the possibility that 

dispersing birds differ in quality or social status from those that are natally philopatric. 

Measurement of size and condition of juvenile birds, either as nestlings or, preferably, at 

the point of independence, may point to differences in quality that could be related to 

subsequent dispersal decisions.
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