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A b stra c t

Interferometric gravitational wave observatories are coming on-line around 
the world, sensitive to infinitesimal ripples propagating through space-time 
itself. Data analysis assumes an unusual importance in gravitational wave 
astronomy; all predicted gravitational wave signals from plausible astrophys- 
ical scenarios will be at the margins of detectability for current instruments, 
and even as sensitivities improve, the majority of signals will remain in this 
regime.

The immediate goal of current observatories is to make the first widely- 
accepted direct detection of gravitational waves; to this end, I have made sig
nificant contributions to the data analysis systems of leading observatories, 
spanning design, implementation, testing, and characterisation of compo
nents ranging from basic signal-processing to tailored data conditioning op
erations. These components have been employed to produce several worlds- 
best direct observational upper limits on gravitational wave phenomena.

In the longer term, as gravitational wave astronomy becomes a reality, 
issues of how to best combine and expand the global network of observatories 
will come to the fore. I have constructed a suite of models to explore opti
mal configurations of a global network of observatories for the detection of 
a variety of proposed gravitational wave source populations, placing partic
ular emphasis on the contribution a proposed Australian gravitational wave 
observatory would make to the global community.
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C h a p te r  1 

In tro d u c tio n

I f you need to use statistics, you ought to have done a better experiment.

— Lord Rutherford

If only it was that simple. Hundreds of millions of dollars have been poured 
into the construction of phenomenally sensitive laser interferometers, kilo
metres long, pushing forward the state of the art in a number of fields and 
breaking a litany of world records. Yet even with some of the most sensitive 
instruments ever built, the gravitational waves we expect to receive will still 
be at the very margins of detectability. Though sensitivities will improve, 
the vast bulk of signals will remain in this marginal regime for the foreseeable 
future. We cannot merely do a better experiment.

This leaves us with a need to use statistics. With the interferometers 
orders of magnitude more sensitive to things as diverse as the alternat
ing current electrical supply, the moon, artillery exercises and tree-felling, 
than to the infinitesimal gravitational waves emitted by colliding black holes 
in nearby galaxies, the potential for false positives is immense—and unaf
fordable for a field whose very history begins with unsupportable claims. 
The leading US-based Laser Interferometer Gravitational wave Observatory 
(LIGO) has gone to the extraordinary length of building two vast twin in
struments at opposite corners of the continental United States, so that each 
may independently validate any detection by the other. The raw output 
of the instruments must be carefully vetoed, conditioned, filtered and com
pared to efficiently detect a signal—and all with a thorough understanding 
of how these many processes affect the statistics of, and our confidence in, 
the detection. Even with such extraordinary precautions, it is possible that

1



2 CHAPTER 1. INTRODUCTION

there may be no single, widely agreed-upon moment of discovery—only a 
growing confidence, perhaps analogous to the recent process of discovery of 
extra-solar planets.

In this context, this thesis addresses several issues involved in improving 
the sensitivity of, and confidence in, the results of the emerging field of grav
itational wave astronomy. The first is the author's contribution to the LIGO 
Data Analysis System (LDAS), including the design, implementation, and— 
most importantly—validation of primitive signal processing operations that 
will condition much of LIGO’s data output. The second is the development 
and—critically—characterisation of a specific data conditioning technique to 
remove spectral line interference. The third consists of the development of 
models of the collective sensitivity of a global collaboration of gravitational 
wave detectors, to determine the sensitivities of existing and future configu
rations to a variety of possible sources, and to develop recommendations as 
to the configuration and expansion of the network. In the latter, the possible 
contribution of an Australian gravitational wave observatory is given special 
consideration.

1.1 R ev iew

In the ‘weak-field limit’ of general relativity where only small perturbations 
hßU to the metric of flat space-time rjßL, = diag( —1.1,1,1) are considered, the 
Einstein equations can be linearised. If we choose to work in the transverse 
traceless gauge, where the coordinate system is defined by the trajectories of 
freely-falling test particles, the linearisation produces a wave equation,

(v2-?SK=°- (u)
representing a plane wave of space-time curvature propagating at the speed 
of light c.

The scale of gravitational waves can be estimated by considering the field 
equation T  =  in analogy with Hooke's law P  — Eh. The ‘stiffness'

4
of space-time. ~ j .  is a vast number: correspondingly, a large stress-energy 
density results in only a small curvature of space-time. Plausible astrophys- 
ical sources of gravitational waves produce a strain of only h % 10~21 at 
the Earth; possible laboratory sources are much weaker, only h ~  10~39.
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Only a literally astronomical expenditure of energy can produce a detectable 
gravitational wave.

Until relatively recently, debate raged about the physical reality of grav
itational waves, as to whether any experiment could actually detect them. 
Any such experiment would be embedded in space-time, and from the def
inition of the transverse traceless gauge used to formulate the problem, the 
passage of a wave will not alter the coordinates of any test particle in the 
experiment. However, it is not the coordinates of test particles but rather 
the measured distance j  yjg^dx^dx1' between two freely falling particles 
that will be changed as the space-time metric gAi£, = 4- hßU is perturbed.
Gravitational wave detection consists of making this measurement.

The first generation of gravitational wave observatories were resonant 
mass detectors, or Webber bars. Webber noted that a gravitational wave 
passing through a solid body would change its length, and if the body was 
resonant with the gravitational wave, each cycle would coherently add until 
a detectable amplitude resulted. Although Webber's claims to have observed 
gravitational radiation are discredited, over the intervening decades Webber 
bars have grown in size, sophistication and sensitivity—now approaching the 
10-21 level in narrow frequency bands—but they have not yet made any 
detections.

The current generation of gravitational wave detectors is very different: 
based, in a pleasing piece of historical serendipity, on the Michelson interfer
ometer, whose disproval of an aether drift was one of the cornerstone pieces 
of experimental evidence for relativity.

A Michelson interferometer consists of a light source (in modern instru
ments, a coherent laser light source), a beam-splitter and two mirrors. Light 
enters the beam-splitter, and is split into two beams. Each beam travels 
down an ‘arm' of the interferometer, is reflected by an end mirror back to 
the beam-splitter. The beam-splitter recombines the returning coherent light, 
producing interference fringes. These fringes depend sensitively on the dif
ference in the lengths of the two arms—to a fraction of a wavelength of the 
light—making the Michelson interferometer a sensitive measure of distance.

To detect gravitational waves with frequencies from 30 to 1000 Hz, the 
optimal arm length of a Michelson interferometer is more than 100 km, so 
that the light travel time is less than, but comparable to, (half) the period 
of the wave, and the relative change in length induces as large an absolute 
change in arm length as possible. Such an instrument cannot reasonably 
be constructed on the curved surface of the Earth. However, the arms can
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be ‘folded7 by adding an additional mirror in each arm to reflect the light 
back and forth in the arm for either a fixed (delay line) or statistical (optical 
cavity) amount of time, reducing the current generation of interferometers 
to more manageable—but still challenging—arm lengths of a few kilometres.

The limiting factors on such a large and sensitive instrument range from 
the profound (numerous quantum effects such as the uncertainty in the po
sition of the mirrors) to the absurd (seismic noise from road bumps), and 
every attempt is made to limit their effect.

However, once the signal from the output photodetector has been digitised 
and recorded, the problem of gravitational wave detection shifts from one of 
engineering and experimental physics to the nascent field of data analysis. 
The hard-won output of gravitational wave detectors must be scrubbed of 
any remaining identifiable noise sources, and scoured for the faintest of grav
itational wave signals. This thesis addresses the problems of how to remove a 
particular class of environmentally correlated noise from the output of grav
itational wave detectors, and, looking to the future, examines how best to 
combine the output of detectors around the globe as the field moves from 
gravitational wave detection to gravitational wave astronomy.

1.2 P u b lic a tio n s

Much of the work in this thesis relates to previous publications of its author. 
Specifically, Chapter 3 expands upon (2, 4 and 14). and Chapters 4, 5 and 
6 expand upon (3). (1. 5. 6. 8 and 9) contain information on the Australian 
gravitational wave effort, and in particular the local establishment of a LIGO 
Data Analysis System (LDAS) as described in Chapter 2. I am honoured to 
have participated in the analysis for, and to be one of the many authors of, 
the first LIGO observational results (7 and 10-14).

1. D McClelland. S Scott, M Gray, D Shaddock, B Slagmolen, A Searle, 
D Blair, J Lu, J Winterflood, F Benabid, M Baker, ,1 Munch, P 
Veitch, M Hamilton, M Ostermeyer, D Mudge. D Ottaway, C Hollitt. 
“Second-generation laser interferometry for gravitational wave detec
tion: ACIGA progress", Class. Quant Grav. 18 4121-4126 (2001).

2. S Scott, D McClelland, A Searle, P Charlton. B Whiting. “A Gaus- 
sianity measure for laser interferometer data". Proc. Ninth Marcel
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Grossmann Meet. Gen. Rel. (eds. V Gurzadyan, R Jantzen, R 
Ruffini), World Scientific Singapore, 1919-1920 (2002).

3. A Searle, S Scott and D McClelland, “Network sensitivity to geo
graphical configuration” , Class. Quant Grav. 19 1465-1470 (2002).

4. A Searle, S Scott and D McClelland, “Spectral Line Removal in the 
LIGO Data Analysis System (LDAS)” , Class. Quant Grav. 20 S721- 
S730 (2003)

5. J Jacob et al, “Australia’s Role in Gravitational Wave Detection” , Pub. 
Astro. Soc. Aust. 20 223-241 (2003)

6. M Gray et al, “ACIGA: Status Report” , Proc. SPIE  (Gravitational- 
Wave Detection; eds. M Cruise, P Saulson) 4856 258-269 (2003)

7. B Allen et al, “Upper limits on the strength of periodic gravitational 
waves from PSR J 1939+2134” , Class. Quant Grav. 21 S671-S676 
(2004)

8. S Scott, A Searle. B Cusack and D McClelland, “The ACIGA Data 
Analysis Programme” , Class. Quant Grav. 21 S853-S856 (2004)

9. L Ju et al, “ACIGA's high optical power test facility” , Class. Quant 
Grav. 21 S887-S893 (2004)

10. B Abbott et al, “Detector Description and Performance for the First 
Coincidence Observations Between LIGO and GEO", Nuc. Inst. .4 
517, 154-179 (2004)

11. B Abbott et al, “Setting upper limits on the strength of periodic gravi
tational waves from PSR J1939+2134 using the first science data from 
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1.3 O verview

Part I deals with the software infrastructure for the analysis of LIGO data 
throughout this decade. Chapter 2 gives an overview of the LIGO Data 
Analysis System (LDAS) and details the implementation and validation of 
the basic elements of the data conditioning A PL including its primitive signal 
processing operations. Chapter 3 considers the development of a data condi
tioning tool to remove spectral line interference: its implementation within 
the data conditioning API using the functionality of Chapter 2, validation of 
its correctness, and characterisation of its ability to improve the recovery of 
gravitational wave signals.

Part II deals with the simulation of global networks of gravitational wave 
detectors. Chapter 4 presents a basic formalism for the analyses. Chapter 5 
determines the optimal location for new observatories to supplement existing 
networks, for the case of a uniform population of binary inspiral events de
tected by coincident or coherent analysis. Chapter 6 considers the effects of 
observatory latitude on the detector’s sensitivity to a population of galactic 
neutron stars.
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C h ap te r 2

The LDAS d a ta  cond ition ing  
A PI

Shouldn't acronyms be expanded in titles?

— Katie Weir

The light amplification by stimulated emission of radiation interferometer 
gravitational-wave observatory data analysis system data conditioning appli
cation procramming interface?

— Antony Searle

This chapter is intended to serve a dual purpose: first, to familiarise the 
reader wit.r the elements of the data conditioning API utilised by the im
plementation of the line removal technique in Chapter 3; second, to provide 
a guide to the 'design and evolution’ of the data conditioning API for its 
future mahtainers and contributors. The elements referred to in Chapter 3 
are largely among those to which the author made substantial contributions, 
and, happly, are illustrative of the system as a whole.

We begin with a brief survey of LDAS, noting in particular the posi
tion and finction of the data conditioning API within it. followed by a dis
cussion of the motivating factors behind the data conditioning API itself. 
The devekpment has proceeded in parallel with the commissioning of the 
LIGO instillments, meeting milestones to facilitate engineering and science 
'runs’, incliding 'Mock Data Challenges’ (MDCs) consisting of integration 
and stress esting.

9
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The code listings presented in this chapter have been edited (often ex
tensively) for clarity. Unless otherwise noted, the original code is publicly 
available from the LDAS repository [lj. Brief notes on the C + +  language 
have been included in the text as an aid to interpreting the listings; for an 
authoritative introduction to the C ++  language, we recommend [2],

Disclaim er The author is a significant, but not the sole or even primary 
contributor to the data conditioning API, which is a collaborative effort be
tween many contributors from LSC institutions, coordinated by the Califor
nia Institute of Technology.

2.1 T he LIGO D ata  A nalysis System  (LDAS)

To search for gravitational wave signals in noisy data optimally (in the theo
retical sense) is, in general, computationally expensive. In practice, approx
imately optimal methods are used; their sensitivity is limited by available 
computational cycles, memory or network bandwidth. As the instruments 
continuously acquire data, this processing must occur in real time, or an 
unmanageable backlog will result.

The need for continuous real-time computation ruled out the use of gen
eral purpose supercomputing resources. Instead LIGO elected to develop a 
custom system to run on its own hardware.

An LDAS implementation runs on a heterogeneous network of Sun or x86 
Linux servers coupled to a Beowulf cluster of inexpensive commodity PCs. 
LDAS is responsible for acquiring on the order of a terabyte of information 
from the observatories daily and caching it locally, producing a reduced data 
set (RDS) for transfer to an archive and other LDAS implementations, and 
pre-processing the data and managing the specific parallel codes that search 
the data for gravitational wave signals.

In the course of this project, an LDAS implementation has been main
tained at The Australian National University (AXU) by the author, first 
on hardware loaned from the Pennsylvania State University, and currently 
on the ACIGA Data Analysis Cluster (ADAC). a purpose-built local LDAS 
system.
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LDAS software is implemented as a number of Application Programming In
terface (API) libraries of compiled C++ code, which are called by interpreted 
TCL (Tool Command Language [3]) script drivers. The term ‘API’ has also 
come to refer to the process relying primarily on a particular API library. 
Each API typically resides on a different machine; they communicate with 
each other over a network.

LDAS jobs are typically configured as a ‘pipeline’. Data is read into the 
system by one API, then passed along to another that processes it and passes 
it along to another API.

The manager API oversees the LDAS system. It receives incoming user 
commands and passes them on to the relevant API. It is responsible for start
ing and stopping the other APIs and regularly polls their state, restarting 
any that have crashed or become unresponsive.

The disk cache API maintains a list of the data files available to the LDAS 
system.

The frame API responds to queries for data specified by time and channel, 
and queries the disk cache API for the pertinent files. It then reads the files 
to extract segments of the channels, concatenates the data together, and, if 
necessary, converts the data to the requested sampling rate, before passing 
it on.

The data conditioning API processes data received from the frame API 
before passing it on to the wrapper API (or another target). It uses a flex
ible command language to apply a broad range of built-in signal-processing 
actions.

The wrapper API manages the parallel search codes, providing a 'wrap
per’ around an off-the-shelf implementation of the Message Passing Interface 
(MPI) [4] standard for parallel computation. It provides assistance for the 
common tasks of input, output and load-balancing.

(There are other APIs—most notably the database-wrapping metadata 
API—that do not concern us at this time.)

2.1.2 C o m m an d  language

Once an LDAS system has been successfully initialised by the manager API, 
the manager API will listen for incoming 'jobs’, then invoke the appropriate 
APIs to perform the job. Each job contains a username and password for
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authentication purposes (the manager API maintains its own structure of 
user accounts and permissions), and the email address of the user, to which 
a message containing (the URL to) the results of the job (or a diagnostic mes
sage) are sent. Often, the 'user' is in fact a driver program. (Jobs are often 
written as TCL scripts; when executed they can substitute in values derived 
from arguments or environment variables and then submit themselves.)

Listing 2.1: Example LDAS job.
IdasJob {

— name acsearle
— password *******
—email acsearle@localhost

}{
dataPipeline 
—framequery {

{ R H {} 714975000-714975001 Adc(Hl:LSC-AS_Q!resample!8!) }
}
—output { ilwd ascii }
—aliases { h 1 = HI; }
—datacondtarget { datacond }
— algorithms {

x = slice(hl, 0, 1024, 1); #  data, start, count, stride 
output(x,_,x,x,x);

}

The type of job (in this case, dataPipeline) dictates which named options are 
required.

The —framequery option lists the data that will be required by the job. 
(The data type is R, Taw', and the observatory is H. Hanford.) Xo files, 
{}, are specified; these will be automatically determined by the frame API. 
The ‘era' requested is the 1 second interval between GPS times 714975000- 
714975001. The frame API will seek the Adc (analog-to-digital) channel 
named H1:LSC-AS_Q (the output of the 4 km interferometer); the postfix 
!resample!8! instructs the frame API to downsample the channel by a factor 
of 8 (in the case of HLLSC —AS_Q. from 16384 Hz to 2048 Hz).

The —aliases option assigns human-readable aliases to the often-long 
channel names. In this case the concise alias ;hl' is associated with the 
channel whose name contains the substring ‘H1‘.
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The target for the output of the data conditioning API is the data con
ditioning API itself, -datacondtarget { datacond }, which causes its output 
to be written to disk. (To conduct searches the output would be sent to the 
wrapper API.)

The -output format will be ilwd ascii, a human-readable (ASCII-encoded) 
version of the XML-derivative Internal LightWeight Data (ILWD) format 
used by LIGO.

The —algorithms option is where the data conditioning API command 
language is embedded. It consists of a series of C- or MATLAB-like statements 
forming a fully programmable signal-processing pipeline. (In this case, it 
slices off the first 1024 elements of the input data into the variable x and 
outputs it.) It is the implementation of this functionality that will concern 
us for the rest of this chapter.

2.2 D esig n  a n d  e v o lu tio n

The original design for the data conditioning API is encapsulated in [5]. The 
seeds are to be found there of the issues that would come to dominate its 
development.

The data conditioning API library is written in ISO C ++ . The rationale 
given in [5] mentions its C heritage, the (then recent) ANSI/ISO standardi
sation of the language, and the benefits of its object-oriented features. The 
primary motivation is one of efficiency: C + +  is a compiled language, with 
mature optimisers, and typically runs faster and uses less memory than inter
preted languages. Moreover, it permits higher-level abstractions (and thus 
has better prospects for reuse and maintenance) than C while maintaining, 
bv design, ’95%! of C's performance; this is a consequence of (its designer) 
Stroustrup;s “you don't pay for what you don't use” philosophy [2] and was 
perhaps the leading factor in its widespread adoption. (Counter-intuitively, 
the combination of C + + ’s template and inline features can produce code 
that is faster than C, by shifting some computation from run-time to compile
time [6].)

Though the standardisation of C + +  represented a great step forward, 
the standard itself differed significantly from existing practice.1 Some use
ful and significant parts of the standard proved pathologically difficult for

1 ANSI/ISO C++ committee member Bruce Eckel later referred to the process as lan
guage design “by thought experiment".
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vendors to implement. It was not until late 2002 that a compiler was finally 
released that could reasonably claim compliance to the standard; the difficul
ties experienced by its implementers have been held up as reason to amend 
certain features in the next iteration of the standard (the C++-0x standard, 
expected sometime in the middle of this decade). Throughout the period 
of development discussed here (2000-2003 inclusive) the GNU C + +  com
piler used by LDAS has improved dramatically, but much of the code base 
has been impaired by this shifting foundation. (Perhaps the most obvious 
sign of this is the persistence of the once-necessary evil of explicit template 
instantiations.2)

Compounding the problem of a changing language implementation, the 
C++-97 standard also spawned a change in the C + +  programming idiom. 
Meyers laments in his foreword to Alexandrescu [7] that the C + +  commu
nity’s understanding of templates has been undergoing ‘'dramatic change” 
for a decade. Similar changes in thinking on exception specifications and 
other features have also occurred. These new features and idioms could have 
been helpful in the design and implementation of LDAS. but most were not 
even conceived of. let alone widely known, at that time. (Many of these 
techniques appear in [7] and the useful Boost library [8], some parts of which 
are proposed for inclusion in C++-0x.)

The LDAS model of an API as a compiled library driven by an inter
preted script has several benefits. The library performs specific well-defined 
tasks quickly and efficiently at the cost of flexibility (in the sense of rapid 
development). Complementarity, the script may be rapidly altered to make 
use of that functionality in different ways.

The data conditioning API inherited this two-tiered model from the de
sign of LDAS as a whole, but in its particular case the model caused problems. 
This framework is most applicable when the functionality of the library is 
stable, and the interface it presents to the script is correspondingly stable, 
concise, and well-defined. The requirements placed on the data conditioning 
API meant that these conditions were not consistent with reality. The gen
erality of the operations required by the data conditioning API—effectively 
the implementation of a numerically-oriented programming language some
what like MATLAB—caused an explosion in the number of data types3 and

2 Not, a search template!
3A data type can be thought of as a collection of bits, avd assertions about what the 

bits represent. For example. 32 identical bits may represent different numbers depending 
on if their type is int (integer) or float (floating point real). Much of C++'s power is
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operations that had to be implemented in C++ and exposed to and handled 
by the scripting layer.

It was realised at the first Mock Data Challenge that this model of de
velopment was unsustainable. The first step in fixing the problem was the 
rapid development of a ‘universal data type’, so that only one type needed 
to be exposed to the scripting layer. It was followed by the adaptation of 
existing signal-processing operations to a new call-chain framework that is 
effectively a simple virtual machine. The involvement of the scripting layer 
in the implementation of the data conditioning pipeline was reduced until it 
merely parsed input (it still performs an important role in initialisation and 
output).

The problem of data typing, or more specifically, the problem of how 
to efficiently implement the un-typed data conditioning API command lan
guage in strongly typed C++, came to dominate the implementation, and 
has not yet been adequately addressed. Development at the moment relies 
at least partially on the brute-force handling of the multiplicity of combina
tions of operations and data types. This leaves the implementation with a 
fundamental scalability problem.

It is not readily apparent (to the author, at least) at this time how the 
original design could have been implemented in a significantly superior way. 
Radical changes in the design could be supposed to fix some or all of the 
problems that were encountered, but there would be no guarantee that they 
would not introduce their own issues. Part of the problem is due to the well- 
known issue of multiple dispatch (run-time polymorphic behaviour on more 
than one type), an issue not addressed by C++ (or most modern languages). 
The adoption of more modern C++ techniques would undoubtedly improve 
conciseness and reduce repetition, but would not in itself address the fun
damental scalability issue. No such proposal has yet merited the large-scale 
overhaul of what is, after all, a working code base.

It should be noted that the above discussion is in some sense an argument 
over aesthetics (though it does affect the practicality of future expansion). 
The problems are not apparent to the user, only the developer. In particular, 
a stringent testing regimen ensures that the results produced by the data 
conditioning API are correct.

obtained from utilising the assertions provided by type information at compile time to 
avoid the expense of considering those assertions at run time.
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2.3 U n iv e rsa l D a ta  T y p e  (U D T )

The Frame data format of LIGO and Virgo, and the ILWD format of LDAS. 
support a wide range of data types: 8-, 16-, 32- and 64-bit integers, 32- and 
64-bit floating point real numbers, and 64- and 128-bit complex numbers 
(composed of pairs of reals). The data conditioning API must be capable of 
operating on all of them, either singly (scalars) or in (homogeneous) arrays 
(vectors, matrices, and higher dimensional arrays). This means that LDAS 
must support over a dozen types. When metadata is considered—for ex
ample, decorating a vector with information declaring it to be a time series 
of a particular sample rate and start time—the number of types becomes 
immense.

The ‘universal data type’, or UDT, is intended to hide all these types 
behind a common interface. Only those operations which need to know the 
exact type of a UDT will have to look beyond the interface. Much of the data 
conditioning API implementation can remain oblivious to the exact nature 
of the data flowing through it.

2.3.1 Im p le m e n ta tio n

The inheritance mechanism of C + +  is exactly the mechanism required for the 
implementation of UDT. The UDT is a base class exposing those operations 
common to its derived classes (the data types). Each data type ‘is-a’ UDT, 
as a sedan ‘is-a' car: they are said to inherit from it.

The interface of UDT is the intersection of the interfaces of all its pos
sible derived classes, and is necessarily ‘thin', consisting only of creation, 
destruction, copying, and methods to assist in the resolution of the derived 
class.

Listing 2.2: Universal Data Type class definition.
class UDT
{
public:

virtual ~UDT(); / /  destroy
virtual UDT* CloneQ const = 0; / /  (deep) copy
template<class T> static bool lsA(const UDT& In); / /  is it really 

type T?
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template<class T >  static T& Cast(UDT& In); //a ccess  it as a type 
T (or throw an exception)

/ / . . .  (omitted)
};

In this listing, the first line opens the definition of class UDT. circumscribed 
by braces {•••}• The keyword public declares all which follows to be uni
versally accessible (the default is private, meaning that only the class imple
mentation itself has access).

The class itself (in the simplified version we present) consists only of 
methods, and has no data members. A method is a function that is a member 
of the class; its full name is prefixed with the class name, as in UDT::Clone, 
and it can only be invoked on an instance of UDT, as in my_udt.Clone(), 
in which the method receives my_udt as the implicit ‘zeroth’ argument this. 
(The static keyword indicates a method that is associated with a class, but 
is not invoked on an instance of that class.)

The virtual destructor virtual ~UDT() cleanly destroys the UDT instance 
on which it is invoked. The virtual keyword indicates that the method may 
(should) be overridden by derived classes; derived classes will replace the 
UDT method with a method that can cleanly destroy the particular imple
mentation of that derived type. Even when the UDT is destroyed in a context 
that knows nothing about the derived type, the correct method will be called.

The deep copy method virtual UDT* CloneQconst = 0 makes a copy of 
the UDT that is aware of the particular derived type, just as is the virtual 
destructor is. The method returns a pointer, UDT*, to a copy of the derived 
type instance created by the new operator. The const keyword indicates that 
the original is unaffected by the copying process. The =  0 syntax indicates 
that the method may not be supplied by UDT; this makes the method pure 
virtual and the UDT class abstract—UDT cannot be instantiated, and derived 
types must override Clone. (Ideally the virtual destructor should also be 
pure.)

The template<class T >  methods IsA and Cast are examples of generic 
code. Many data types may inherit from UDT; we cannot (and should not) 
write specific code to check each case. Instead we note that the code to 
check a particular case differs only in the particular type for which we wish 
to check. The template keyword allows us to write a generic definition that 
works for all types by writing it in terms of the template parameter ‘T \ (The 
dynamic_cast keyword performs the validation and cast.)
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Listing 2.3: UDT cast definition.
template<class T >  T&  UDT::Cast(UDT& a) \
{

return dynamic_cast<T&>(a); \
}

The IsA cT > method allows us to check if a UDT instance is really an instance 
of class T (returning a boolean true or false), and the Cast<T> method 
allows us to access the class T instance itself. If we attem pt to perform a bad 
cast—if the UDT is not a T —a bad_cast exception is thrown at runtime. 
This can be avoided by checking first with lsA<T>.

Cri t ique

The UDT as presented above is textbook object oriented programming (OOP). 
As such, it is open to the criticisms of C ++ 's implementation of OOP. Clone's 
use of raw pointers is potentially dangerous: the innocuous statement ‘my_udt 
.CIone();! is valid but results in a memory leak. The default and copy con
structors should be protected (so that only derived classes may call them) 
and the assignment operator explicitly left undefined as their default be
haviour will make slicing (copying or assigning a more derived class to a less 
derived class) possible [9]. Other implementations of OOP, for example Java, 
already have a universal base class from which all classes are defined. C ++ 
eschews this approach as introducing unacceptable overhead; the slicing and 
pointer issues arise from similar considerations.

The formulation of IsA and Cast as static methods taking a UDT argument 
rather than plain methods or helper functions is bizarre; however, at one time 
it was a necessary work-around for an equally bizarre compiler error.

A ’better' UDT would probably adopt the pomter-to-implementation (‘pim
ple') idiom. The current arrangement would be wrapped by a new handle 
class with conventional copying semantics, eliminating the problem of the 
user dealing directly with slicing and pointers. The handle could be made 
smart [7, 10] to permit lazy copying, eliminating an issue we will encounter 
in §2.4.

2.3.2 Scalar
To represent a scalar value, one must derive a class from UDT. There are 
many kinds of scalar values—integers, reals, and complex numbers, repre-
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sented at various precisions—yet they all have the same basic requirements. 
We can represent this commonality using generic coding, templatising Scalar 
on an unknown type T.

The design of Scalar presents an interesting problem. One choice denied 
to us is to inherit from the unknown type T, and thus inherit its interface, so 
that an object of type Scalar<T> could be used wheresoe’er a T is expected.

Listing 2.4: An impossible Scalar definition
templatectypename T> 

class Scalar : / /  inherits from 
public UDT, / / a n d
public T

{
/ / . . .  (omitted)

};

We cannot do this because at least some of the types we will use will be 
basic, such as int and float, which are not classes and cannot be inherited 
from. (Making basic types full classes would impose performance overhead 
in common cases. Java, for example, faces the same trade-off, but makes the 
opposite decision.) Moreover, even for the types that are classes (complex 
<f!oat> and complex<double>) derivation is problematic as they were not 
intended to be used as base classes, do not have virtual destructors, and thus 
have the potential for undefined behaviour.

Instead we must rely on implicit and explicit conversions between Scalar 
< T >  and the type T:

Listing 2.5: Scalar<T> definition.
template<typename T> 

class Scalar : 
public UDT

{
public:

explicit Scalar(T); / /  explicit conversion from T
virtual ~Scalar(); / /  override
virtual Scalar* CloneQ const; / /  override
operator T&(); / /  implicit conversion to T
operator const T&() const; / /  implicit conversion to const T
const T GetValueQ const; //accessor
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void SetValue(const T&); / /  mutator 
/ / . . .  (omitted)

private:
T m_value; / /  encapsulated value

};

The constructor accepting a T defines a conversion from an instance of T to an 
instance of Scalar<T>. As T matches almost any type (precisely, any copy- 
constructible type) it is declared explicit to prevent its implicit application 
by the compiler in situations where the programmer did not explicitly request 
it. An implicit conversion such as this would allow anything to be converted 
into its Scalar equivalent, which ‘is-a’ UDT; this would subvert the process 
of compile-time error checking.

The implicit conversion to a reference to the encapsulated T instance 
is defined by operator T& (and its const variant; which version is called 
depends on the context). As it is implicit, the compiler has license to convert 
a Scalar<T> to a T wherever it finds it expedient to do so; most commonly 
where a Scalar<T> is passed as an argument to a function expecting a T.

Listing 2.6: Scalar<T> conversions. 
Scalar<complex<double> > z(complex<double>( —1., 0.)); / /  explicit 

conversion from complex to scalar
sqrt(z); / /  implicit conversion from scalar to complex to use complex 

square root
z.realQ; / /  error: ‘real’ undeclared
complex<double>(z).real(); / /  conversion made explicit

Implicit conversion does not occur everywhere that we might hope; for ex
ample, complex<T> defines methods real and imag that we cannot invoke on 
a Scalar<complex<T> > without explicitly invoking the conversion.

For this reason, we also provide traditional accessor and mutator methods 
to get and set the wrapped value. Note that GetValue does not change the 
value, and is thus const: SetValue does change the value, and is non-const.

2.3.3 Sequence
The inapplicability of implicit conversion to many cases makes the encapsu
lation model of Scalar<T> inapplicable to types that define frequently used 
methods (complex<T> is itself a marginal case). Sequence types fall into 
this category.
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The basic C++ sequence type is the array. Inherited from C, it is an 
inconvenient and perilous language construct. The C++ Standard Tem
plate Library (STL) supplies a wide range of container types to replace it; 
its valarray<T> [2] is targeted at numerical computation. The C++ stan
dard allows implementers unusual latitude in the valarray<T> specification 
to facilitate the implementation of aggressive optimisation. It provides fast 
vector arithmetic and BLAS (Basic Linear Algebra Subprograms)-like [11] 
subsequences.

As valarray<T> is a class, we may inherit from it as well as UDT when 
we design Sequence<T>, an option which we had to reject for Scalar<T>. 
(Note that valarray<T> does not include a virtual destructor, so unfortu
nately there is the potential for undefined behaviour in the unlikely event 
of a user destroying a Sequence<T> as a valarray<T>.) This way, Sequence 
<T> automatically inherits most of valarray<T>’s interface, such as the 
subscript operator[] ’ and the size method. (Unlike many OOP languages 
C++ supports inheritance from multiple base classes.)

Listing 2.7: Sequence<T> definition.
template ctypename T> 

class Sequence : 
public UDT, 
public valarray<T>

{
public:

Sequence(size_t n); / /  construct with n (default) elements 
Sequence(const T& x, size_t n); / /  construct with n copies of x 
Sequence(const valarray<T>&:); / /  implicit conversion from valarray 
virtual ~Sequence(); / /  override 
virtual Sequence* CloneQ const; / /  override 
/ /  ... (omitted)

};

Constructors are not inherited, so much of the class definition is concerned 
with replicating the functionality of valarray<T>’s suite of constructors. It 
is not necessary to declare the implicit conversion from valarray<T> explicit 
as the pattern valarray<T> only matches valarrays. The implicit conversion 
the other way is provided by inheritance; every Sequence<T> instance ‘is-a: 
valarray<T> by definition.
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The inherited functionality allows us to invoke all the methods of valarray 
<T> on Sequence<T>:

Listing 2.8: Sequence<double> functionality. 
Sequence<double> a(3); / /  a sequence of 3 elements 
a[a.size() — 1] = 1.0; / /  set the last element

2.3.4 M a trix

There is no type in the STL representing an n x m matrix; we follow the 
suggestion in Stroustrup [2] and implement a generic Matrix<T> class using 
a packed valarray<T> of nm  elements.

Listing 2.9: Matrix<T> definition.
template<class T> 

class Matrix : 
public UDT

{
public:

Matrix(size_t rows, size_t columns); / /  rows— by—columns matrix 
virtual “MatrixQ; / /  override 
virtual Matrix* CloneQ const; / /  override 
size_t rows() const; / /  accessor 
size_t columnsQ const; / /  accessor 
/ / . . .  (omitted) 

private:
valarray<T> m.data; / /  representation 
size_t m_rows; / /  dimensions 
size_t m_columns;

};

Internally the representation is straightforward: two size_ts (non-negative in
tegers) represent the dimensions n and m of the matrix; the elements are 
packed into a valarray<T> (the packing is F ortran- rather than C-ordered 
to facilitate the use of CLapack (12]). The dimensions are set on construc
tion and may be checked with the rows() and columnsQ accessors.

As Matrix<T> inherits only from UDT we must explicitly dehne much of 
its interface by hand. Many operations can be implemented in terms of the 
corresponding valarray<T> operations; others can be handled by CLapack .
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Listing 2.10: Matrix arithmetic operation.
Matrix& operator+=(const Matrix& right)
{

/ /  ... (check dimensions)
m.data + =  right.m_data; / /  use valarray +=
return *this; / /  self—reference

}

/ /  ... (arithmetic operators)
To support C++-style subscripting of a Matrix<T> instance, as in A[i][j], 

we must implement an operator[] method. This is not a trivial undertaking, 
as operator[] must return a proxy object representing a row (or column) of 
the Matrix<T>, with its own operator]] that finally returns a reference to 
a Matrix<T> element. The STL class slice_array<T>, a proxy object for 
sub-array slices of valarray<T>, is almost ideal for our purposes, but unfor
tunately its copy-constructor is private, preventing any methods but those 
of its friend valarray<T> from returning it. Instead we implement member 
class Matrix<T>:: proxy .array, with essentially the same interface as slice_array 
< T > ,  leveraging slice_array<T> internally, to access rows and columns of the 
matrix. The slice class (another valarray<T> helper class) stores the start 
index, stride, and number of elements of the array slice.

Listing 2.11: Matrix proxy class
1 class proxy_array

{
friend class Matrix<T>;

public:
operator const valarray<T>() const; / /  conversion 
proxy_array& operator=(const valarray<T>&); / /  assignment 
T& operator]](size_t); / /  subscripting 
const T operator[](size_t i) const; / /  const subscripting 
proxy_array& operator-h=(const valarray<T>& right); / /  arithmetic 
/ /  ... (arithmetic operators) 

private:
valarray<T>& m_data; / /  reference to matrix elements 
slice m_slice; / /  subarray parameters

};
proxy_array row(size_t); / /  reference a row 
const proxy .array row(size.t) const;



24 CHAPTER 2. THE ID A S DATA CONDITIONING API

proxy .array column(size_t); / /  reference a column 
const proxy .array column(size.t) const; 
proxy .array operator]] (size.t); / /  synonym for row 
const proxy .array operator]] (size.t) const

The proxy .array forwards assignment and arithmetic operations to the indi
vidual elements of the matrix. The mutators row, column and operator]] all 
return proxy.arrays referencing the corresponding subset of the matrix; the 
proxy.array itself behaves like a valarray<T> whose elements are embedded 
in the Matrix<T>. Users will typically never see the proxy.array.

Listing 2.12: Matrix functionality.
Matrix<double> A(3, 3); / /  3x3 matrix 
A[l] =  1 . ;  / /  centre row set to [1 1 1]
A[l][1] =  0.; / /  centre element set to 0

A number of non-member operators are also supplied for Matrix<T>. 

Listing 2.13: Matrix functionality.
templatectypename T> Matrix<T> operator+(const Matrix<T>& 

left, const Matrix<T>& right)
{

return Matrix<T>(left) + =  right; / /  add to a copy and return that
}
/ /  (...) arithmetic operators

Higher-dimensional arrays have not yet been required (at the interface 
level) in the data conditioning API.

2.3.5 M etadata
Many of the series used in the data conditioning API are time series; meta
data about these series, like their sampling rate and start time (from which 
the sample times can be computed) are useful in many contexts. In the case 
of a Fourier transform, the time series metadata can be used to calibrate the 
frequency resolution of the transformed series, which can then be stored as 
frequency series metadata.

The design adopted for metadata was to mix in base classes containing 
metadata members to existing general UDTs. For example, Sequence<double
> and TimeSeriesMetaData are combined to produce the TimeSeries<double
> template class.
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Unfortunately the proliferation of ‘customised’ UDTs creates problems for 
those methods that have to support the metadata. In the case of operations 
taking more than one argument, the addition of new relevant metadata can 
cause an explosive increase in the number of special cases that have to be 
handled. Metadata has proved so time-consuming to support that relatively 
little of the data conditioning API uses it to its full potential.

2.4 Signal processing

Operations on UDTs are performed by a suite of classes. In the language 
of Design Patterns [13], they may adopt a Memento pattern to transfer an 
internal state between successive calls, or may encode their own state (the 
Command pattern). If the state is to be exposed to the user, that class must 
inherit from UDT.

Each class has a number of tasks to perform. Typically the class will 
provide two forms of most methods, one accepting UDTs, and another (often 
templatised) accepting basic (or STL) types. The former ensure that their 
arguments can be cast to a valid call of the latter. When many template 
arguments are supported (for example, a class might support float, double. 
std::complex<float> and std::complex<double>) this can be fairly compli
cated. The non-UDT methods validate their arguments against a series of 
preconditions. The final task is to perform a signal processing operation.

The data conditioning API works primarily in the time domain, to fa
cilitate the continuation of operations on successive chunks of data. Some 
operations store their state in an external Memento class; other operations 
store their own state (also a UDT) as a Command object.

It was thought to be helpful to give all these operation states a common 
base class, to help distinguish them from more traditional UDTs. The class 
State inherits from UDT, without adding any functionality.

Listing 2.14: State class definition
class State :

public UDT
{
public:

virtual State* CloneQ const = 0;
}; / /  class State
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The issue of how to efficiently return UDTs from operations is a vexed 
one. The return mechanism in C + +  makes a copy of the returned object. 
This is potentially expensive if the object is a large sequence. Furthermore, 
the returned object cannot be a UDT, since the copying would slice away 
the non-UDT components. If the returned object is an exactly known UDT 
type, slicing will not occur, but the advantages of the UDT have been lost. 
If a UDT pointer (UDT*) is returned, it can be ignored and leaked, which is 
unacceptable.

The solution of many libraries, the STL among them, is to pass the output 
structure, or some proxy(-ies) for it, as an argument to the operation. This 
solution has one drawback: it presupposes that the output type is known, 
and thus requires the output type deduction logic be performed by whatever 
calls the operation. This is unacceptable.

The solution adopted by the Data Conditioning API is to give operations 
a method of the form void apply(UDT*& output, const UDT& input). A ref
erence to a pointer to a UDT is passed as the output. If the pointer is 0 
(null), the operation is responsible for creating a new output UDT, pointed 
at and owned by the referenced pointer. If the pointer is non-null, the caller 
has asserted that they know the output type and have supplied (and proba
bly reused) it: the operation attempts to write the output to that UDT, and 
throws an exception if the type is incompatible. One common usage model 
this supports is repeated applications of similar operations; the output can 
be created on first call then over-written by successive applications.

(The smart UDT handle proposed in 2.3.1 would eliminate this return 
problem by encapsulating the return type.)

2.4.1 Mixer
To “mix" (heterodyne) a time series with an oscillator is one of the most 
basic signal processing operations.

For a series x^, the mixed series is This results in
an offset of — /  in Fourier space. The output sequence is always complex, 
whereas the input may be real or complex.

The state of a mixing operation can be represented by storing the pair 
of real values /  and o. The class MixerState may be constructed from fre
quency and phase represented either as basic doubles or as UDTs. or copied 
from a single (presumably MixerState) UDT. Accessors are supplied for the 
frequency and phase. Mutators, which validate the class invariants that
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— 1 < /  < 1 and 0 < (f) < 27t, are private and used only by the creation 
operators and the friend class Mixer, so that the only general way to change 
the value of a MixerState is to assign another MixerState to it.

Listing 2.15: MixerState class definition
class MixerState : 

public State

{
friend class Mixer; 

public:
MixerState(const doubled phase, const doubled freq);
MixerState(const UDT& phase, const UDT& freq);
MixerState(const UDT& state); 
virtual ~MixerState() 
virtual MixerState* Clone() const; 
double GetPhaseQ; 
double GetFrequency(); 

private:
MixerStateQ;
void SetPhase(const doubled phase); 
void SetPhase(const UDT& phase); 
void SetFrequency(const doubled freq); 
void SetFrequency(const UDT&. freq); 
double m_phase; 
double m_frequency;

}; / /  class MixerState

The Mixer class stores a MixerState internally; it may be (explicitly) con
structed from one, and the state may be freely accessed and altered. Note 
the twin apply methods; one templatised on explicit valarray<T>s, the other 
accepting UDTs and resolving their types before calling the former.

Listing 2.16: Mixer class definition
namespace datacondAPI
{

class Mixer
{
public:

explicit Mixer(const MixerState& state);
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void apply(UDT*& out, const UDT& in);
template<typename out_type, typename in_type> void apply(std:: 

valarray<std::complex<out_type> > &  out, const std::valarray< 
in_type>& in)

MixerState getStateQ const throw(); 
void getState(MixerState& state) const throw(); 
void getState(State*& state) const 
void setState(const MixerState^ state) throwQ; 

private:
MixerState m_state;

}; / /  class Mixer 
} / /  namespace datacondAPI

The implementation of these apply methods is instructive. The templa- 
tised std::valarray method contains the actual implementation of the opera
tion, computing the new values and maintaining the internal state.

Listing 2.17: template method Mixer::apply definition
templatectypename out_type, typename in_type> void Mixer::apply( 

valarray<std::complex<out_type> > &  out, const valarray<in_type 
>&  in)

{
if (lin.sizeQ)

throw invalid_argument(" Mixer::apply: Input Sequence is empty” );
/ /  check for non-empty input 

if (out.sizeQ ! =  in.size()) 
out.resize(in.size()); / /  resize the output 

double t =  m_state.GetPhase();
const double dt =  m_state.GetFrequency() * LDAS_TWOPI; / /  

compute the phase difference between elements 
for (int k =  0; k < in.sizeQ; k-f-+)
{ / /  (actual implementation unrolls this loop ...) 

out[k] =  in[k] * complex<double>(cos(t), sin(t)); 
t + =  dt;

}
m_state.SetPhase(fmod(phi,LDAS_TWOPI)); / /  update the state

}

In contrast, the UDT method is concerned with resolving types. The code
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involved—little more than a “switch on type”—is exactly the kind of code 
railed against by C++ texts. The helper template method applyAs helps 
minimise odious duplication.

Listing 2.18: UDT method Mixer::apply 
void Mixer::apply(UDT*& out, const UDT& in)
{

bool ok =  applyAs<Sequence<complex<float> >,Sequence<float> 
>(out, in);

if (!ok)
ok =  applyAs<Sequence<complex<double> >, Sequence<double 

> >(out, in);
if (!ok)

ok =  applyAs<Sequence<complex<float> >, Sequence<std:: 
complex<float> > >(out, in);

if (!ok)
ok = applyAs<Sequence<complex<double> >, Sequenceccomplex 

<double> > >(out, in);
if (!ok)

throw General::unimplemented_error(” Mixer::apply: apply on 
unimplemented type” );

}
The Mixer.-.apply method posits all the supported types and attempts 

to perform the mixing operation on them. Mixer::applyAs is responsible for 
the per-type testing and casting; it firsts establishes if the input type is 
appropriate, then ensures that the output type exists and is appropriate, and 
finally casts input and output to Sequences so that the concrete apply method 
may be used on them. In the case of an exception occurring anywhere, 
applyAs is careful to catch it and delete any output UDT it created.

Listing 2.19: Helper template method Mixer::applyAs 
template <class Tout, class Tin> bool Mixer::applyAs(UDT*& out,

const UDT& in)
{

bool ok =  false;
bool nulLout = ( out = =  0 );
try
{
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if (UDT::lsA<Tin>(in)) / /  ensure input is the suggested type

{
if (nulLout) / /  i f  output was not supplied 

out = new Tout; / /  create output 
else if (!UDT::lsA<Tout>(*out)) / /  i f  supplied output is not the 

suggested type
throw std::invalid_argument(” datacondAPI::Mixer::applyAs<>: 

type out not compatible with type in” ); 
apply(UDT::Cast<Tout>(*out), UDT::Cast<Tin>(in));
ok = true;

}
}
catch(...) / / a n  exception occurred

{
if(nulLout)
{

delete out; / /  destroy up the output we created 
out =  0;

}
throw; / /  rethrow the exception

}
return ok; / /  return success or failure (wrong input)

C r i t i q u e

The implementation of Mixer is ugly. Explicit casting is unsightly; mixing 
exceptions and native pointers is error-prone. Numerous solutions have been 
considered—virtual functions, the Visitor pattern—but the issue is funda
mentally the multiple-dispatch problem. C ++ (and the bulk of modern lan
guages) have no facility to make a function virtual on more than one type, 
and workarounds [7] for this issue leave much to be desired. Fundamentally, 
the design means the code has to be ugly somewhere.

The alternative, a major rethinking of the system to design around this 
limitation, is superficially attractive, but it is not clear that this would pro
duce a solution, or that it would be reasonable to rewrite a body of tested, 
working code on primarily aesthetic grounds.
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The use of smart pointers would obviously assist with issues of ownership 
and error management; however, at the time of development the idiom was 
relatively new and issues of thread safety were raised.

Another more fundamental problem with the design is the arbitrary— 
and in hindsight unnatural—decision to separate the mixer and its state, 
producing a class with methods but no non-trivial data, and a class with 
data but no non-trivial methods. This is a subversion of the spirit of object- 
oriented programming, and results in nothing but needless code proliferation. 
The logical next revision of the design would be to move the Mixer::apply 
methods to MixerState, remove Mixer altogether, and rename MixerState to 
Mixer. The amount of working, if unsightly, code that would be broken by 
this primarily aesthetic revision make it unfeasible.

2.4.2 L inF ilt

Another fundamental signal-processing operation is linear filtering. More 
typically performed in the frequency domain (and for good reason), time- 
domain linear filtering gives the Data Conditioning API the ability to seam
lessly filter consecutive time-domain sequences, but introduces some inter
esting effects.

A time-domain causal linear filter is defined by a series of coefficients, 
ai . . .  an and b\ . . .  bm. Applying such a Biter to a discrete series u(t) produces 
a series y(t) where

y(t) =  - a i y ( t  -  1 )---------any(t -  n) + bxu{t -  1) H--------F bmu(t -  m). (2.1)

Filters for which the a* — 0 depend only on the values of u(t) for the samples 
t — m , . . . ,  t, and are known as Finite Impulse Response (FIR) filters, as 
the response to the input for any one time will affect only a finite portion 
of the sequence y{t). Nonzero a* allows the sequence y{t) to depend on its 
own past state, permitting an Infinite Impulse Response (HR)- Despite their 
name, the HR filters we will be concerned with have the property that their 
dependance on a sample decreases rapidly (typically exponentially) as the 
time since that sample increases. (Such HR filters can be thus be arbitrarily 
well approximated by FIR filters.)

When the input series u(t) is finite, as is the case for all data handled in 
the data conditioning API, u(t) for t < 0 is unknown, and by convention set 
to zero. Yet the dependance of. for example, y(0) on u( — m) = 0, means that
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this convention affects the samples produced by the filter. The result is a 
start-up transient of the same duration as the impulse response of the filter.

Listing 2.20: LinFiIt class definition
class Li n Fi It
{
public:

LinFilt(const LinFiltState& state);
LinFilt(const valarray<double>& b, const valarray<double>& a); 
LinFiltState getStateQ; 
void getState(LinFiltState& state); 
void getState(UDT*& state) 
void setState(const LinFiltState& state); 
template<c!ass T> void apply(valarray<T>& x) 
template<class TOut, class Tln> void apply(valarray<TOut>& out, 

const valarray<Tln>& in) 
void apply(UDT*& out, const UDT& in) 

private:
template <class T> bool applyAs(UDT*& out, const UDT& in) 
bool asSequence(UDT*& out, const UDT& in) 
bool asTimeSeries(UDT*& out, const UDT& in)
LinFilt();
LinFiltState m_state;

};

One Lin Fi It constructor accepts two valarray<double>s representing a i . . .  an 
and b\ The others are concerned with the LinFiltState memento, in
UDT or resolved form. Like Mixer, the apply method is overloaded to accept 
(untyped) UDTs or (typed) valarrays.

Listing 2.21: LinFiltState class definition
class LinFiltState : 

public State
{
public:

LinFiltStatefconst Sequence<double>& b, const Sequence<double 
>& a =  Sequence<double>(1.0, 1));

LinFiltState(const Sequence<complex<double> >& zeroes, const 
Sequence<complex<double> >& poles, const doubled gain);
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Sequence<double> LinFiltState(const UDT& b, const UDT&. a); 
LinFiltState(const UDT& b_or_state); 
void getB(Sequence<double>& b) const; 
void getA(Sequence<double>& a) const; 
void getSize(int& aSize, int& bSize); 
virtual LinFiltState* Clone() const; 
template<class T> void apply(valarray<T>& x); 
template<class TOut, class Tln> void apply(valarray<TOut>& y, 

const valarray<Tln>& y); 
private:

void checkAB() const;
Sequence<double> m_b;
Sequence<double> m_a; 
auto_ptr<Filters::LinFiltBase> mJinfilt;

}; / /  class LinFiltState

The linear filter is not a trivial implementation of Equation 2.1. Instead, 
the filter maintains an internal ‘stack' z; whose length is m ax(m ,n), ini
tialised to zero. When an element of u is read in, is added to the value 
of Zi. The corresponding element of y is given by Z\. Then the stack is 
‘shifted’ so that —* zt- 1 , and then yat is added to the value of ẑ . This
implementation has the virtue that it does not need the random-access to 
previous elements of the sequence implied by the form of equation 2.1.

(The core filtering code proved so useful that it was moved to the general 
library, so it could be used on data exiting the FrameAPI, and elsewhere in 
LDAS.)

Most of the criticisms of the design of Mixer are equally applicable to 
LinFilt. Better integration with the Filters class it spawned in the general 
library could abrogate the need for its existence.

2.4.3 R esam p le

The Resample class is responsible for changing the sampling rate of a time 
series provided to it—for example, downsampling a 16384 Hz channel to 
2048 Hz. It is not sufficient to construct a new series yz =  x &l: power from 
the 1024-8192 Hz band will be aliased into the 0-1024 Hz band. Instead the 
series must first be low-pass filtered to remove power from the high band, and 
this low-pass filtering introduces the usual host of subtleties to the process.
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For upsampling, an interpolation filter is used.
Resampling can be performed not just to integer multiples or quotients 

of the sampling rate, but to general rationals, provided by the upsampling 
and downsampling ratios, p and q.

The exact results of the resample operation depend on the filter parame
ters; this is equivalent to shaping the falloff of the low-pass filter.

The implementation of Resample combines the filtering and sampling 
stages to eliminate the production of an intermediate sequence and atten
dant waste of computations and memory.

Listing 2.22; Resample class definition.

class Resample
{
public:

Resample(int p, in t q, in t n =  10, double beta =  5);
Resample(const UDT& p, const UDT& q, const UDT& n =  Scalar< 

in t> (10), const UDT& beta — Scalar<double>(5.0)); 
Resample(const UDT& state);
Resample(int p, in t q, const Sequence<double>& b);
Resample(const Resampled rsmpl);
~Resample();
void operatorQ (UDT*& out, const UDT& in); 
template<class T >  void operator() (valarray<T>& out, const 

valarray<T>& in);
void apply(UDT*& out, const UDT& in);
template<class T >  void apply(valarray<T>& out, const valarray<T 

> &  in);
ResampleState getState();
void getState(ResampieState& state) const;
void getState(UDT*& state);
template<class T >  void getState(Sequence<T>& state); 
void setState(const ResampleState«^ state); 
void getPQ(int& p, int&i q); 
void getNBeta(int& n, doubled beta); 
void getDelay(double& delay); 
double getDelay(void); 

private:
ResampleState m.state;
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Conceptually, downsampling is the application of a low-pass filter followed 
by the decimation of the result (similarly upsampling is zero-padding followed 
by the application of a filter). Practically, speed and memory usage can be 
improved by combining the operations.

(Like LinFilt, Resample proved sufficiently useful to the rest of LDAS for 
its functionality to be abstracted into the Filters library.)

Listing 2.23: ResampleState class definition.

I class ResampleState : 
public State

{
public:

ResampleState(int p, in t q, in t n =  10, double beta =  5.0); 
ResampleState(const UDT& p, const UDT& q, const UDT& n =  

Scalar<int>(10), const UDT& beta =  Scalar<double>(5.0)); 
ResampleState(const ResampleState^);
ResampleState(const UDT&);
ResampleState(int p, in t q, const Sequence<double>& b); 
v irtua l ~ResampleState() throwQ;
ResampleState^ operator=(const ResampleState^);
in t getPQ const throwQ;
in t getQQ const throw();
in t getNQ const throw();
double getBeta() const throwQ;
in t getOrder() const throwQ;
double getDelayQ const throwQ;
void getB(Sequence<double>& b) const;
tem plate<class T >
void apply(valarray<T>& out, const valarray<T>& in);

I v irtua l ResampleState* CloneQ const; 
private:

ResampleStateQ;
bool m_first;
valarray<double> m_b;
auto_ptr< Filters::ResampleBase> m.resample;

}; / /  class ResampleState
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Usefully, the state of the resample action provides a method to extract 
the relative delay of the resampled sequence.

The criticisms of the previous classes apply equally to Resample, but it 
should be noted that Resample needlessly duplicates many of the accessors 
of ResampleState. This could charitably be viewed as the first steps to the 
adoption of a model removing the arbitrary division of a ‘stateful’ operation 
into two classes.

2.5 A c tio n s

The simple data conditioning API command language, within the —algorithms 
option of the LDAS job, is C-like. It consists of a list of statements of the 
form

[identifier=] action ([ character-string (, character-string) *]);

i.e. an ‘action’ taking a parenthetic tuple of zero or more comma-separated 
character-strings, terminated with a semicolon, and with the result optionally 
assigned to a named identifier.

Listing 2.24: Valid data conditioning API commands.
z = add(x, y); 
i = length(z);

This syntax is rigidly adhered to. Much of the ‘syntactic sugar’ of common 
languages is not supported, in the interests of keeping the syntax parser 
simple (and bug-free).

Feature Unsupported Equivalent
Trivial assignment y = x; y — value(x);
Infix operators z = x + y; z = add(x, y);
Vested functions w — add(x, sub(y, z)); t = sub(y, z); w = add(x, t);

Unlike C (but like C-R-f-), actions may be overloaded on the number and 
type of their arguments. This means that z = add(x, y) will perform one 
operation if x and y are scalars, and another if they are sequences.

The data conditioning API command language is interpreted, not com
piled. and is not type safe. Any action can be called with any number arid 
type of arguments, but it is a runtime error to do so for all but supported 
numbers and types of arguments.
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Arguments are passed to actions as text, so it is not necessary that they 
be valid identifiers. For example, the output command interprets several of 
its arguments as field names for its XML-based output format.

The data conditioning API —algorithms are intended to form a pipeline. 
As such, there are no control flow statements (such as i f . .. else branches or 
while loops); each statement is executed exactly once, in the order given.

The command language is parsed by the interpreted TCL layer; it is re
sponsible for determining the number of arguments and the text associated 
with the return, action and argument identifiers. It then passes this infor
mation to the data conditioning API's library of compiled C-h-h code.

2.5.1 Call chain

A data conditioning API pipeline is represented in the library as a CallChain 
object. It stores both a series of objects corresponding to each action call, 
and a ‘heap’ of named UDT instances.

Listing 2.25: CallChain class definition.
class CallChain
{
public.

void AppendCallFunction(string Function, vector<string> Params, string 
Return);

void AddSymbol(string Name, UDT* Symbol); / /  overwrites if the 
symbol already exists

UDT* GetSymbol(string Name); / /  throws exception if not found 
bool ExecuteQ;
/ / . . .  (omitted)

}■■

The AppendCallFunction method is called by the TCL layer to pass on the 
identifiers associated with and action, its arguments and return data. Simi
larly the AddSymbol method is used to add the input data (under the names 
given in —aliases) to the CallChain.

Once all data and actions have been added to the CallChain. the Execute 
method runs the pipeline.
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2.5.2 Call chain function

Just as a UDT type was required to enable the TCL layer and the call chain to 
store data without regard to its type, a base class CallChain::Function serves 
as the common interface for all signal processing actions.

Listing 2.26: CallChain::Function definition.
class CallChain
{

/ / . . .  (omitted) 
class Function
{
public:

Function(string Name); 
virtual ~Function();
virtual void Eval(CallChain* Chain, vector<string>& Params, string 

Ret) const = 0;
/ / . . .  (omitted)

};
/ /  ... (omitted)

}:

The CallChain class maintains a global list of named Functions so it can 
look up and invoke them from the name supplied in AppendCallFunction. 
The Eval method provides a common interface to the implementation of the 
action, supplying a pointer Chain to the calling environment, a vector Params 
of argument identifiers, and a Return value name (which is the empty string 

if no return value is given).
Specific actions are implemented by deriving a class from CallChain:: 

Function; they implement the Eval operation to check and resolve the ar
guments, then forward them to a signal processing class.

2.5.3 m ix

Class MixFunction inherits from CallChain::Function in a straightforward way 
to implement the mix action.

Listing 2.27: MixFunction class definition, 
class MixFunction :
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CallChain::Function
{
public:

virtual void Eval(CallChain* Chain, vector<string> Params, string Ret) 
const; / /  override 

/ / . . .  (omitted)
};

It is the implementation of Eval where the interesting work occurs. The num
ber of parameters is checked. Different numbers of parameters are handled 
by different code blocks. Each acquires a reference to the UDTs referred to 
by the symbols in the parameter list (throwing an exception if this is impos
sible). Once the references are obtained, the apply method is called on them. 
State is saved back to a symbol name if supplied, and finally the output is 
saved to the symbol name given as the action’s return value. An unsupported 
number of parameters causes a BadArgumentCount exception to be thrown.

Listing 2.28: Mix action evaluator.
void MixFunction::Eval(CallChain* Chain, vector<string> Params, string 

Ret) const
{

UDT* out =  0; / /  will store output
switch (Params.sizeQ) / /  how many arguments?
fX
case 4: / /  y  = mix(p, f, x, z); / /  this syntax 
case 3: / /  y = mix(p, f, x); / /  or this syntax 

{ / /  use this implementation
/ /  —  get the arguments from the call chain-----------------------------
UDT& phase(*(Chain — >GetSymbol(Params[0]))); / /  GetSymbol 

throws an exception if symbol is not found 
UDT& frequency(*(Chain->GetSymbol(Params[l])));
UDT& in(*(Chain — >GetSymbol(Params[2])));
/ / ---- create and apply mixer using th em ------------------------------------
Mixer mixer(MixerState(phase, frequency)); 
mixer.apply(out, in);
if (Params.sizeQ = =  4) / /  y = mix(p, f, x, z);
{ / /  there is a state to write to the chain 

Chain —>AddSymbol(Params[3], new MixerState(mixer.getState()
) ) ;
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}

}
break;

case 2: / /  y  =  mix(x, z); / /  this syntax 
{ / /  uses this implementation

/ /  —  get the arguments from the call cha in ---------------------------
UDT& in(* (Chain — >GetSymbol(Params[0])));
UDT& state(*(Chain — >GetSymbol(Params[l])));
/ /  —  create and apply mixer using them --------------------------------
MixerState temp(state);
Mixer mixer(temp); 
mixer.apply(out, in);
/ / ----update the mixer state U D T ------------------------------------------
Chain — >AddSymbol(Params[l], new MixerState(mixer.getState()));

}
break;

default: / /  unsupported syntax 
throw BadArgumentCount(/* ... * /) ;

}
/ /  —  write result to call chain under name given by R e t-----------------
Chain —>AddSymbol(Ret, out);

}

The implementations of linfilt and resample use similar techniques.

2 .5 .4  S im p le  actions

Operations already supported by C ++ and its libraries need no programmer- 
level interface, but they do need to be exposed to the user. For example, the 
indispensable slice command can be simply implemented in terms of the std 
::slice STL class, within the body of a CallChain::Function::Eval override.

A difficulty arises again from resolving the exact type of the UDTs in
volved to apply the simple operations, for exactly the same reasons as the 
implementation of apply(UDT) is problematic. When the number of argu
ments and the number of types involved is large, the number of cases can 
be very large. This is unfortunately the case for basic and very important 
actions like add. Actual implementations often use generic programming and 
macros to automatically to relieve the programmer of some of this burden.
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2.6 Testing

Testing is of such importance to the Data Conditioning API that contributors 
travelled to regular Mock Data Challenges (MDCs). A suite of automated 
tests mirrored the code as it was developed; an automated nightly build and 
check exercised the entire system and caught problems regularly and early.

For signal processing classes like Mixer, the test exercises all code paths 
through the class, and checks their self-consistency or consistency with known 
data (from, for example, Matlab).

Typically comparisons are allowed to be approximate, as the precise order 
of operations employed will result in different values of floating point ‘noise’, 
the value of the least significant bits.

It is of course impossible to test every possible invocation of a method, 
but with knowfledge of the internal structure of the method, it is possible to 
identify at least some corner cases and test for them as well as random cases 
hopefully representative of typical use.

A simple LDAS-wide UnitTest class is provided to help produce tests 
conforming to the expectations of the make check target, which allows the 
automatic testing of LDAS as part of its nightly build. The return value of 
the executable indicates success or failure of the test; the UnitTest class keeps 
track of this state.

Listing 2.29: Mixer class unit test, 
^include ” general/unittest.h"

General::UnitTest Test;

int main(int ArgC, char** ArgV) try
{

Test.lnit(ArgC, ArgV);

try / /  simple sanity check
{

valarray<float> in( 1.0, 122880); / /  a sequence o f 122880 copies of 
1.0

mixer(MixerState(0.0, —0.1)); / /  mix with —.1 Nyquist frequency 
valarray<complex<float> > out; / /  sequence to store output
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mixer.apply(out, in); / /  apply the mixer
for (valarray<float>::size_type i =  0; i <  in.sizeQ; + + i)
{ / /  compare each element o f output with an independently computed 

value
complex<float> expected(cos( — .1 * LDAS_PI * i), sin(— .1 * 

LDAS-PI * i));
if  (abs(out[i] — expected) > le —5)
{ / /  difference is too great

Test.MessageQ < <  "Unacceptable error at ” < <  i < <  endl; 
throw  exceptionQ; / /  abort test

}
}
Test.Check(true) < <  "Sanity" < <  endl; / /  test passed

}
catch (...)
{

Test.Check(false) < <  "Sanity" < <  endl; / /  test failed

}
/ /  more tests ...
Test.ExitQ; / /  returns number o f failures

}
catch (exception^ x)
{

cout < <  "Exception: " < <  x.what() < <  endl; 
throw; / /  aborts (test suite fails)

}
catch (...)
{

cout < <  "Exception: (non-standard type)” < <  endl; 
throw; / /  aborts (test suite fails)

}

In the case of testing the action wrapper for an operation, a call chain 
is manually prepared and executed. The tests have a different focus— 
correctness has already been ensured by the test of the implementation, so 
the testing concentrates on ensuring that in all possible cases the implemen
tation is correctly invoked by the action.
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Listing 2.30: Mix action (MixFunction class) unit test 

/ /  ... (initialisation)
/ / ---- mix via call chain -----------------------------------------------------------------------
CallChain commands;
Parameters arguments;
commands.AppendCallFunction(” double” , arguments. set(l, ” 0.0” ), ’’ phase

commands.AppendCallFunction(” double” , arguments.set(l, ” —0.1” ), ” 
frequency” );

commands. AppendCallFunction(” double", arguments.set(l, ” 1.0” ), ’’ base” )

commands.AppendCallFunction(” double” , arguments.set(l, ” 122880” ), "n"

);
commands. AppendCallFunction(” dvalarray” , arguments. set(2, ’’ base” , "n ")

commands.AppendCallFunction(” mix” , arguments.set(3, ’’ phase” , ’’ 
frequency” , ” x” ), ” y” ); 

commands.Execute();
/ / ---- mix d irectly -------------------------------------------------------------------------------
double phase =  0.; / /  
double frequency =  —.1; 
valarray<double> x(1.0, 122880);
Mixer mix(MixerState(phase, carrier)); 
valarray<complex<double> > y; 
mix.apply(y, x);
/ / ---- compare results--------------------------------------------------------------------------
UDT* y_udt =  commands.GetSymbol(” y” ); / /  extract named result from 

call chain
Test.Check(y_udt) < <  ’’ Sanity (output exists)” < <  endl; 
Test.Check(UDT::lsA<Sequence<complex<double> >(*y_udt)) < <  ” 

Sanity (output is a sequence)” < <  endl;
Sequence<complex<double> > &  y_seq =  UDT::Cast<Sequence< 

complex<double> >(*y_udt);
Test.Check(y_seq.size() = =  y.sizeQ) < <  "Sanity (output size)” < <  endl; 
for (valarray<complex<double> >::size_type i =  0; i < y.sizeQ; + + i)

{
i f  (abs(y[i] -  y_seq[i]) > le -5 )



44 CHAPTER 2. THE LDAS DATA CONDITIONING API

{ / /  difference is too great
Test.MessageQ < <  ’’Unacceptable error at ” < <  i < <  endl; 
throw exception}); / /  abort test

}
}
/ /  ... (further tests)

The above tests are automatically performed nightly and are designed so 
that any problem can be detected by machine and quickly brought to the 
attention of a maintainer.

The final stage in the testing of any piece functionality is to submit an 
actual LDAS job making sure the system works together as a whole:

Listing 2.31: LDAS mixing test job.
IdasJob { —name ******** —password ******** —email ******** } { 

conditionData
—outputformat { ilwd ascii }
— aliases { raw=mdc_input_data:chan_01:data }
— algorithms {

xO =  slice(raw,0,100,1);# Use 100 samples
frequency =  value(0.125);
phase =  value(O.l);
zO =  mix(ph\,frequency,xO);
output(z0,_,_,z0,mixed whole);
xl =  slice(x0,0,50,1);# Use first 50 samples
phase =  value(O.l);# Reset phase
zl =  mix(phi,frequency,xl,state); #  Mix, saving state
output(zl,_,_,zl,mixed first half);
x2 =  siice(x0,50,50,1); #  Use second 50 samples
z2 — mix(x2,state);# Use state to continue mixing
output(z2,_,_,z2,mixed second half);
}

}
The above performs mixing on a sequence as a whole, then as two parts. A 
human will inspect the output and the test will pass only if the two methods 
yield identical results. These human-involving tests, and their capability to 
assess the ability of LDAS as a whole to perform a particular tasks, are the 
heart of MDCs.
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2.7 Sum m ary

LDAS is the core of LIGO’s gravitational wave data analysis infrastruc
ture. The data conditioning API component performs programmable signal 
processing as part of the data analysis pipeline. The author is a significant 
contributor to the data conditioning API. A suite of signal processing oper
ations have been implemented in the API. and exposed to the user through 
a command language. Extensive testing of the components have been per
formed, both automatically and by hand. Hindsight may suggest better ways 
of implementing this functionality, but LDAS is a workable and extensively 
validated platform for gravitational wave data analysis.
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Line rem oval

High power in narrow frequency bands, spectral lines, are a feature of the out
put of interferometric gravitational wave detectors. Some lines are coherent 
between interferometers, in particular between the co-located 2 km and 4 km 
LIGO Hanford instruments. This is of particular concern to data analysis 
techniques, such as the stochastic background search, that use correlations 
between instruments to detect gravitational radiation. Several techniques of 
'line removal' have been proposed. Where a line can be attributed to a mea
surable environmental disturbance, a simple linear model may be fitted to 
predict, and subsequently subtract away, that line. This technique has been 
implemented (as the command oelslr) in the LIGO Data Analysis System 
(LDAS). We demonstrate its application to LIGO Si data.

We use data from a triple-coincidence epoch of the Si science run in 
August-September 2002; all figures are composed of data drawn from the 
GPS times 714975000-714975600, except where noted. The LIGO interfer
ometers have changed significantly since then: better shielding and equip
ment have reduced the magnitude of the lines we investigate, but the noise 
floor has also been reduced. The lines we investigate still remain prominent.

We also touch upon the use of line removal in the SI stochastic back
ground analysis. Though line removal was not employed to produce the 
upper limit on the strength of a cosmological stochastic background of grav
itational waves [14], it was used to prove that spectral lines did not have a 
significant impact on the computed upper limit.

Some of the material in this chapter has appeared in Searle et al. [15].

47
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H1:LSC-AS_Q

Figure 3.1: Lines in the power spectrum of the 4 km LIGO Hanford Obser
vatory.
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3.1 M otivation

The extreme sensitivity of the nascent LIGO instruments makes them par
ticularly susceptible to contamination from the environment. Seismic noise, 
dictating the lower limit on the frequency of detectable astrophysical sources 
is perhaps the most dramatic example. Over the rest of the observation band, 
the theoretical limiting factors are thermal and shot noise. There are also, 
however, a number of narrow-band noise sources: spectral lines. Resonances 
of the mirror suspension wires (violin modes) are one example of these, but 
among the most prominent lines in each LIGO instrument are the combs of 
lines at 60 Hz and its harmonics (Figure 3.2), appearing across the entire 
observation band. These lines are the largest single factor in the coherence 
between the 2 km and 4km LIGO Hanford interferometers (Figure 3.3).

Spectral lines are concerning for several reasons: they add power to the 
system; they increase the dynamic range of the data; they render the data 
non-gaussian. Depending on the nature of the search algorithms used, any 
of these effects can impair the detection rate, obscuring gravitational wave 
signals at or near the frequency of the lines. When the lines are correlated 
between interferometers, as is the case for some due to anthropogenic ef
fects or large-scale environmental phenomena, they impair the ability of the 
interferometers to perform independent mutual verification.

A variety of approaches have been proposed to deal with spectral lines. 
The simplest is to ignore them; robust search algorithms have to be able 
to cope with non-gaussianity in all its forms, and we accept a potential 
decrease in sensitivity. The next simplest approach discards a frequency band 
containing the line, using a ‘notch' filter; any attempt to extract information 
from the frequencies affected by the line is abandoned.

More sophisticated techniques attempt to construct a model of the line 
that can be subtracted from the data. These are referred to as line removal 
algorithms.

A Kalman filter proposes a linear model for the process producing the line, 
and fits that model to the history of the line to predict its future behaviour 
[16]. Where a line is one of a family of harmonics, Coherent Line Removal 
(CLR) exploits the commonality between the harmonics to approximate a 
shape shared by them all [17]. Once a model of the line is formed by either 
method, it is subtracted out of the raw data.

Both of the above methods use only a single time-series: the gravitational 
wave channel. This is undesirable, because the presence of a gravitational
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wave signal has the potential to feed back into the behaviour of the line 
removal algorithm, possibly resulting in the attenuation of the gravitational 
wave signal as well as the line. For example, Sintes [17] finds that an injected 
sinusoid is only partially recovered by CLR: the sinusoid alters the common 
line shape approximation, not only resulting in its own partial removal but 
also reducing the quality of line removal at any the other harmonics where 
the shape is used.

In addition to the gravitational wave ‘output’ channel, gravitational wave 
observatories record thousands of channels of other data: some to control and 
monitor the instrument itself, others to detect environmental disturbances 
and enable the veto of candidate detections corresponding to physical anom
alies. These other channels provide an additional source of information for 
line removal algorithms to use; and if a line removal algorithm can operate 
solely in terms of channels not sensitive to gravitational waves, it avoids the 
difficulty of altering the very signal it hopes to reveal. Allen, Hua and Ot- 
tewill [16] have comprehensively studied the removal of correlations between 
the gravitational wave channel and a number of environmental monitor chan
nels, over all frequencies.

The comb of prominent lines at 60 Hz and its harmonics are due to the 
ubiquitous continental US power grid, which supplies alternating current at 
60 Hz. The lines are strongly correlated with both the harmonics measured 
in the incoming electrical supply (Figure 3.4), and those observed by mag
netometers distributed around the LIGO sites. Both of these environmental 
monitors are recorded in parallel with the interferometer output.

As spectral lines have the potential to impact a wide range of astrophys- 
ical searches, it is appropriate to implement line removal functionality as 
one of the tools available in the common LIGO data conditioning pipeline. 
We implement a time-domain spectral line removal algorithm as the data 
conditioning API action oelslr (Output Error Least Square Line Removal, 
pronounced 'oelestra'). It permits line removal functionality to be straight
forwardly added to the existing data conditioning API algorithms script 
for an astrophvsical search, as another pre-processing stage in the analy
sis 'pipeline’. Such a line removal stage has already been added to the data 
conditioning script for the stochastic background search.

Our implementation is intended as the first step in adding line removal 
functionality to the data conditioning API. Similarly to Allen et al. [16], it 
makes use of the additional information available in the form of a measure
ment of the disturbance to the instrument, in particular the voltage monitor
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Figure 3.2: LHO (a) 4 km and (b) 2 km interferometers and (c) LLO 4 km 
interferometer output power spectra (uncalibrated), before (dotted) and after 
(solid) line removal.
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Figure 3.3: (a) Coherence of, and (b) accum ulated coherence of, HFLSC- 
AS_Q and H2:LSC-AS_Q before (dotted) and after (solid) line removal, with 
the accum ulated coherence of H1:LSC-AS_Q and L1:LSC-AS_Q (dashed) pro
vided for reference.
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Figure 3.4: (a) LHO and (b) LLO voltage monitor channel (uncalibrated) 
power spectra.
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channels recorded by an observatory (Figure 3.4). Unlike Allen, we imple
ment the algorithm in the time domain, to facilitate easy continuation of 
the algorithm over LDAS jobs, as for most other data conditioning API ac
tions. With a known, measured (albeit imperfectly) disturbance, we may 
use system identification theory techniques [18] to construct a model of the 
interferometer response to the disturbance from actual data recorded over 
some epoch. At subsequent times, the model can then be used to predict 
the interferometer’s response from the measured disturbance; this prediction 
can then be subtracted away to remove those lines from the interferometer 
output.

3.2 D esign

The line remover model proposes that a spectral line in a discrete time series 
y[t] with no white noise present is due to a measurable disturbance u[t]. It 
estimates a model M  such that

y — M(u)  (3.1)

predicts the spectral line. Any component of y[t] predictable (by this type 
of model) from u[t], such as the spectral line, should thus be removed from 
the time series r[t] =  (y — y)[t]. Features that cannot be predicted from u\t] 
should be unaltered.

The Finite Impulse Response (FIR) model is the simplest special case of 
a regression model h where the (possibly complex) input u and output y of 
a system are related by (following Ljung [18], where t is a discrete sample 
number)

y(t) «  bxu(t -  1) +  b2u{t -  2) H-------(- bmn(t -  m). b\ ■ ■ ■ bm G C, (3.2)

where the model for the system is 0 = [bi . .. bm]T. The model order m 
controls the range of samples contributing to the model output.

If we define g?(t) = [u(t -  1) . . .  u(t — m)]T , then y{t\0) = ^ T(t)6 is the 
modelled output of the system. For given y and u. the best model Oy (which 
minimises, over 0, the sum over N  samples of the square of the prediction

Tine removal in the datacond API was originally designed to use the Output-Error 
(OE) model, but the complexity of an OE model estimator has delayed its implementation.
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error) is given by

N
9N = arg min V  \y(t) -  {t)612

u
(3.3)

and can be determined analytically (where ip(t) denotes the complex conju
gate of <p(t)):

For an FIR model with a white noise (or error) term, e(t), such that

it is important to note that 6^  is an unbiased estimate of 9, converging as

In the context of gravitational wave data analysis, we assume that the 
detector output y(t) would consist of white noise e(£), but for another channel 
u(t) that linearly and additively contaminates it with b\u(t — 1) +b2u(t — 2) + 
. . .  +  bmu(t — rn). To remove the contamination, we estimate 6; and subtract 
away the model prediction from the measured data:

Where the contamination is localised in frequency space, as for spectral 
lines, it would be wasteful to apply the method to the raw time series. (It 
would also introduce problems of the kind encountered in §3.3.1.) Using pre
existing components of the data conditioning API we can produce new time 
series of fewer elements containing only the information from a particular 
narrow frequency band.

If u(t) is sampled with Nyquist frequency and a line is restricted to 
/  ±  f ’Sy/n for some integer n, then u is first mixed down to zero frequency 
with multiplication by e- l27rA//Ny> The non-trivial data conditioning API 
resam ple algorithm [19] is then used to down-sample (by a factor of n) to 
a new series with Nyquist frequency fsy/'n (including a filtering stage to 
prevent the aliasing of high-frequency components into the result). Restrict
ing the bandwidth to an integer fraction of the Nyquist frequency allows 
the time-domain resampling to be performed simply and efficiently. The

(3.4)

y(t) =  biu(t -  1) +  62u(t -  2) +  • • • + bmu(t -  m) + e(t), (3.5)

i \ H  [18].

yr(t) =  y(t) -  vT(t)0jv. (3-6)
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down-sampling factor n may typically be quite large—we use 128 below—to 
identify a narrow band. A side-effect of the resampling algorithm is that any 
sequences processed by the line remover must contain an integral multiple of 
n samples, making it advantageous to make n correspond to some common 
divisor of the desired sample counts—typically a power of 2. It is on this 
pre-processed version of u that the model is fitted. The process is reversed 
to produce y by up-sampling (again including a smoothing filter) and up- 
mixing the model prediction. These operations have been abstracted into 
the datacondAPI::BandSelector class, and have already seen reuse in the data 
conditioning API implementation of the Kalman filter.

In the data conditioning API, line removal is performed using the oelslr 
action to both estimate 6 and predict y. (Recall from §2.5 that, like its 

underlying C + +  implementation [2], the datacondAPI command language 
allows overloading of function names, so that o e ls l r  may perform different 
tasks depending on the number and type of arguments supplied to it.)

f6 =  oelslr(y.u.——,n,m); (3-7)
/ n  y

y =  oelslr(u,0); (3.8)

The general purpose sub action is used to perform the final subtraction.

yr = sub(y.y); (3.9)

The time-domain causal linear filters employed both in the band-selection
and the model implementation introduce transients and time-delays into the 
prediction, which manifest in the first prediction from any model (subsequent 
calls are not affected as the linear filters are preserved in the model internal 
state 6). The model implementation as a causal linear filter produces start
up transients invalidating the first nm  samples of the prediction. The band- 
selection also truncates the prediction by an implementation-defined multiple 
of n samples (128n samples for the current resample implementation). These 
issues can be simply addressed by providing u for [t\ — 5t. t2 +  St] where y 
for [ti.t2] is required; for typical parameters, 5t = O(seconds).

A line removal LDAS 'job' is composed as follows. An estimation era is 
sliced from incoming channels (aliased as u and y).

ue = slice(u, 0, 1228800, 1); 
ye = slice(y, 0, 1228800, 1);
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Recalling the definition of slice from 2.5, we have sliced off 1228800 samples, 
starting from 0, with stride 1. For these 2048 Hz channels, this corresponds 
to the first 10 minutes of each. To remove the 180 Hz line, we estimate a 
model theta from ye and ue. in a region of (0.17578125 ±  128_1) / nv, with 
order of 8.

theta -  oelslrfye, ue, 0.17578125, 128, 8); |

The next stage is to slice a prediction era from u. We wish to predict y for 
the subsequent 10 minutes, and allowing (for simplicity) a generous St of 1 
minute, we use a slice of u extending for 12 minutes from 9 minutes after the 
beginning of the channel.

up =  slice(u, 1105920, 1474560, 1); |

To produce a prediction yp requires only the model theta and the predictor 
up.

yp =  oe!slr(up, theta);
yp = slicefyp, 122880, 1228800, 1);

Once the prediction has been produced, we reset it to a slice of its own middle 
10 minutes (beginning 1 minute into the almost 12 minute raw prediction), 
effectively discarding the start-up transients and trailing truncation.

ym = slice(y, 1228800, 1228800, 1); 
yr = sub(ym, yp);

We store the measured values of y for the corresponding times in ym, in 
preparation for subtracting the prediction from the measurement to produce 
the line-removed sequence yr. The sequence yr can then be output to other 
LDAS APIs for further processing by astrophysical searches, or, as in §3.3, 
written to file for inspection.

3.3 C h a ra c te r is a t io n

The obvious figure of merit for line removal is the change it produces in the 
sensitivity of the astrophysical searches whose data it pre-processes. Such 
tests have been already performed by the author in the specific case of the 
stochastic background search [14], conclusively demonstrating the robustness 
of the search algorithm in the presence of strong spectral lines (§3.4). Here
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we demonstrate reductions in line power and line coherence, two effects can 
reasonably be expected to impact many astrophysical searches.

Though line removal is conceptually simple, the quantification of line 
removal quality is not a trivial matter. The obvious metric is the remain
ing power in the line. Yet by this metric the notch filter—or even a zero 
multiplier—are optimal methods. The line should be removed to the noise 
floor, but this requires the identification of what the noise floor is under and 
around the line. The frequency band around the line should be unaltered, but 
in practice some small alteration will occur, requiring some judgement of the 
relative merits of alterations to the line and nearby frequencies. Gaussianity 
should be improved, but Sintes [17] demonstrates inconclusive results by this 
metric, as spectral lines were not the primary source of non-Gaussianity.

This introduces problems with automated testing and verification proce
dures. Ultimately, the only metric that makes sense is the ability of a line re
moval technique to improve the sensitivity of a gravitational wave search. In 
this section we assess performance in recovering an injected sinusoid masked 
by the line, and in reducing coherence between two observatories. The first 
test is equivalent to the tests carried out in [17].

It would be desirable to be able to conduct a direct comparison with other 
algorithms such as [17, 16], some of which are publicly available. Existing 
publications on these codes, however, use much less modern data from proto
type interferometers. To produce a meaningful comparison would require the 
author to run the codes on the same modern data segments as OELSLR. As 
these codes are not part of LDAS. however, this is not a simple matter—new, 
non-LDAS pipelines would have to be constructed from scratch, or alterna
tively, the codes themselves would have to be retrofitted into LDAS. The 
limited success of a similar project by an earlier member of our group [20] 
convinced us that the difficulty of such an undertaking was prohibitive under 
present circumstances.

3.3.1 In jec tio n
Three sinusoids of equal amplitude were added to the H1:LSC-AS_Q channel, 
at approximately 299.4, 300.0 and 300.6 Hz. Their amplitude was selected 
to be intermediate between the line amplitude and the noise floor.

Ideally, we expect to see all traces of the 300 Hz line removed to the level 
of the surrounding line, leaving the surrounding features unaltered, and the 
recovery of the injected line.
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We wish to determine the robustness of the system and investigate the 
quality of line removal achieved by a wide variety of parameters.

Model estimation depends on four parameters: the central frequency, the 
bandwidth, the model order, and the length of the estimation epoch. It is 
impractical to cover this four-dimensional parameter space, so we vary each 
parameter separately from a set known anecdotally to produce acceptable 
results. The parameters were 300 ±  8 Hz with order 8, with estimation era 
GPS 714974400-714975000 and line removal era GPS 714975000-714975600.

Note in particular the characteristics produced by this reference case (Fig
ure 3.5). The line itself is removed down to the level of the noise floor, and 
the noise floor itself is unperturbed, at least by any effect of comparable 
magnitude to it. The injected signals are all present at their full amplitudes; 
the signals on either side of the line are in fact unperturbed. The only un
desirable feature is the broadening of the signal recovered from beneath the 
line.

Examination of the figure shows the difficulties in forming a simple test 
for the effectiveness of the line remover. It should test that the line is di
minished, but this requires an automated identification of just where the line 
is, and a judgement as to just where its flanks taper into insignificance. It 
should test that the line is removed to the noise floor, but this requires the 
identification of the noise floor, which in turn requires the identification of 
any features that are not representative of the noise floor. The result should 
not deviate significantly from the original, except at the location of the line. 
The problems are effectively ones of pattern recognition, where the human 
eye and brain excels, and algorithms do quite poorly; any algorithm would 
be complicated, replete with ‘magic numbers’ and pragmatically justified 
heuristics. Relying on such techniques would scarcely add confidence to the 
analysis. We resort to visual inspection to detect artifacts, but employ spe
cific measures of quality where appropriate (while recognising they cannot 
tell the whole story). The ultimate such measure is of course the effect on a 
gravitational wave search.

C en tra l  frequency

The frequency of the alternating current electrical supply—and thus the har
monics it induces in the gravitational wave detector—are allowed to wander 
by some small fraction of a Hertz by the generating utilities (this assists in 
load balancing across the electrical grid). Other lines may wander; many
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299.6 299.8 300.6 300.8299.2 299.4 300.2 300.4

Figure 3.5: Power spectrum of H1:LSC-AS_Q and added sinusoids before 
(dotted) and after (solid) application of line removal to 300 ±  8 Hz with 
order 8. The power spectrum of the injected sinusoids alone is dashed. The 
estimation era was GPS 714974400-714975000 and the line removal era was 
GPS 714975000-714975600.
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may have no precisely known frequency. It is important to characterise the 
performance of the line removal code when the line is not centrally located. 
Within the majority of the interval of removal, there is no reason to expect 
any effect, but at the edges of the interval, the filters employed in down- and 
up-sampling should produce a fall-off in the accuracy and amplitude of the 
prediction, and a corresponding decrease in effectiveness.

In the /  = 300-307 Hz regime there is no change in the effectiveness of 
the line removal; the results are substantially as in Figure 3.5

At f  = 308 Hz, where the edge of the interval corresponds to the line 
itself, the line removal algorithm has only a slight effect: the line is somewhat 
diminished, as seen in Figure 3.6.

For /  = 309 Hz the line lies outside the nominal affected area. No effect 
from line removal is visible around the line, Figure 3.7. Note that around / , 
there is a minor perturbation to the noise floor, visible in Figure 3.8. The 
model should consist of all zeros in this case, but in practise the finite data 
on which the correlations are taken introduce uncertainties from random 
correlations that fail to average out completely; the result is a weak transfer 
of noise from the predictor channel to the line removal channel. This is 
unfortunate, but turns out not to be a cause for concern. It will be addressed 
in §3.3.2.

B an d w id th

The bandwidth of the line remover is another property that should ideally 
have comparatively little effect. However, the bandwidth affects the number 
of terms considered in the determination of the model, and if the model order 
is large and the bandwidth small the model may suffer from high variance. 
Correspondingly, if the model order is small and the bandwidth is large, the 
line may be a relatively trivial component in the whole, and the optimal 
solution will be dominated by the minimisation of chance correlations in the 
noise rather than the removal of the line. Since these chance correlations will 
not persist at subsequent times, what cancelled them in a previous epoch 
instead becomes an additive noise source of comparable magnitude to the 
noise floor itself.

As the bandwidth is decreased (by increasing the down-sampling ratio) 
no effect is observed up to the maximum possible down-sampling ratio of 
4096. (This is the greatest power of two by which the sequence length is 
divisible.)
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300.2 300.4 300.6 300.8299.2 299.6 299.8299.4

Figure 3.6: Power spectrum of H1:LSC-AS_Q and added sinusoids (dashed) 
before (dotted) and after (solid) application of line removal to 308 ±  8 Hz 
with order 8. The estimation era was GPS 714974400-714975000 and the 
line removal era was GPS 714975000-714975600. The line lies on the edge of 
the removal interval, and is only slightly attenuated. Other frequencies are 
unaffected.
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300.4 300.6 300.8299.2 299.4 299.6 299.8 300.2

Figure 3.7: Power spectrum of H1:LSC-AS_Q and added sinusoids (dashed) 
before (dotted) and after (solid) application of line removal to 309 ±  8 Hz 
with order 8. The estimation era was GPS 714974400-714975000 and the 
line removal era was GPS 714975000-714975600. The line lies outside the 
removal interval. No frequencies are significantly affected.
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308.2 308.4 308.6 308.8 309.2 309.4 309.6 309.8
Hz

Figure 3.8: Power spectrum of HPLSC-AS-Q before (dotted) and after (solid) 
application of line removal to 309±8 Hz with order 8. The estimation era was 
GPS 714974400-714975000 and the line removal era was GPS 714975000- 
714975600.
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As the bandwidth is increased (by decreasing the down-sampling ratio), 
the line removal becomes less effective, and broadband noise is introduced. 
With a down-sampling ratio of 16, the line is partially removed (Figure 3.9) 
but the model has added noise to the surrounding band (Figure 3.10).

M odel o rder

The model order is intimately bound up with the bandwidth, and the effects 
posited above can also be induced by variation of the model order. The 
determination of a model order able to physically model the process causing 
the line is a separate issue. If the process is simple over the width of the 
line, then we might expect that a trivial model—an amplitude adjustment 
and phase delay, provided by multiplication by a complex scalar—would be 
sufficient. If not, a higher-order model will be needed. (One possible cause 
would be additional noise in the prediction channel; a higher-order model 
would be able to average some of this noise out of its prediction by relying 
on the contributions of multiple samples.)

As the model order decreases, there is little effect on the quality of the 
prediction. The trivial model—multiplication by a single complex scalar— 
produces excellent results (Figure 3.11).

On the other hand, as the model order increases the recovery of the signal 
is unaffected. The method begins to perturb the noise floor, however, as seen 
in Figure 3.12.

E stim a tio n  e ra

As the length of the estimation epoch decreases, so does the number of data 
points and hence the variance of the model estimate increases. Signs of 
deterioration are evident at 60 seconds; the quality of the removal of the line 
using only 4 seconds is reasonable, but the perturbation to the noise floor is 
obvious (see Figure 3.13).

No improvements were witnessed at shorter times, implying that the 
timescale of variation of the physical process is longer than 10 minutes. Since 
the data conditioning API handles data on that timescale, all is well in this 
regard.
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300.2 300.4 300.6299.8 300.8299.2 299.4 299.6

Figure 3.9: Power spectrum of H1:LSC-AS_Q before (dotted) and after 
(solid) application of line removal to 300 ±  64 Hz with order 8. The es
timation era was GPS 714974400-714975000 and the line removal era was 
GPS 714975000-714975600. The line is partially removed; note the noise 
floor has been perturbed.
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Figure 3.10: Power spectrum of H1:LSC-AS_Q before (dotted) and after 
(solid) application of line removal to 300 ±  64 Hz with order 8. The estima
tion era was GPS 714974400-714975000 and the line removal era was GPS 
714975000-714975600. The algorithm has introduced noise across its band 
of operation.
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299.6 300.4 300.6 300.8299.2 299.4 299.8 300.2

Figure 3.11: Power spectrum of H1:LSC-AS_Q before (clotted) and after 
(solid) application of line removal to 300 ±  8 Hz with order 1. The estima
tion era was GPS 714974400-714975000 and the line removal era was GPS 
714975000-714975600. The line has been removed to the noise floor; there is 
little evidence of broadening of the signal.
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Figure 3.12: Power spectrum of H1:LSC-AS_Q before (dotted) and after 
(solid) application of line removal to 300 ± 8  Hz with order 128. The estima
tion era was GPS 714974400-714975000 and the line removal era was GPS 
714975000-714975600. Note perturbation of the noise floor throughout the 
line removal band.



70 CHAPTER 3. LINE REMOVAL

Figure 3.13: Power spectrum of H1:LSC-AS_Q before (dotted) and after 
(solid) application of line removal to 300 ± 8  Hz with order 8. The estima
tion era was GPS 714974996-714975000 and the line removal era was GPS 
714975000-714975600. Note perturbation of the noise floor throughout the 
line removal band.
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3.3.2 C oherence

The intent of this section is to use a quantification inspired by the stochastic 
background search.

Data taken during LIGO runs is formatted as frames of named chan
nels. The 4- and 2-km Hanford and 4-km Livingston observatories ‘grav
itational wave channels’ are, respectively, H1:LSC-AS_Q, H2:LSC-AS_Q and 
LI :LSC-AS_Q. Here we use data from the Si Science Run, specifically from a 
stretch of ‘triple-coincidence’ data from GPS 714974400-714975660, during 
which time all interferometers were locked; all figures are produced using the 
10 minutes of data from GPS 714975000-714975600.

The LSC-AS_Q channels of all three interferometers show lines at multiples 
of 60 Hz in their power spectra (Figure 3.2), particularly for odd harmonics 
(60 Hz, 180 Hz, 300 Hz, . . . ) .  These lines are strongly coherent between HI 
and H2 (Figure 3.3), but not between HI and LI or H2 and LI (not shown). 
The lines are attributed to interference from the 60 Hz alternating current 
mains supply, and the coherence is attributed to the fact that a common 
mains supply is shared between HI and H2 at Hanford, WA, but not by LI 
at Livingston, LA, as the electrical grid is not coherent between the sites on 
this short timescale [21].

The power spectra of the mains voltages at both observatories (Figure 3.4) 
exhibit prominent lines at the odd harmonics of 60 Hz, and weaker lines at 
the even, harmonics. At each observatory, the voltage of the incoming mains 
supply is measured by several monitors and recorded to corresponding chan
nels: we use HO : PEM-LVEA2A/1 and L0 : PEM-LVEA.Vl. The LSC-AS_Q channels 
are typically strongly coherent with their local voltage monitors at odd har
monics, and weakly coherent at even harmonics (Figure 3.14). This indicates 
that the voltage monitor channels should be good predictors of the odd har
monics, and fair predictors of the even harmonics, given the simple linear 
model used by the line remover.

Assuming that we may regress *:LSC-AS_Q against *0:PEM-LVEA*_V1, 
we construct an LDAS job to separately remove lines at each of the 17 
multiples of 60 Hz beneath the 1024 Hz Xvquist frequency of the 2048 Hz 
*0 : PEM-LVEA*_V1 channels (the *:LSC-AS_Q channels are downsampled from 
16384 Hz to 2048 Hz before this stage of the data conditioning). This pro
ceeds for each line as in Appendix A. with the exception that for each channel 
we store a single prediction sequence consisting of the sum of the predictions 
for each of the lines for that channel—a single unified y predicting all lines.
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(a) Coherence of H1 :LSC-AS_Q and H0:PEM-LVEA2_V1
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Figure 3.14: Coherence of (a) H1:LSC-AS_Q, (b) H2:LSC-AS_Q and (c) 
L1:LSC-AS_Q with their respective voltage monitor channels, H0:PEM- 
LVEA2_V1 and L0:PEM-LVEA_V1, before (dotted) and after (solid) appli
cation of the line removal technique described in §3.3.
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(a) H1:LSC-AS_Q

) 500 60(
(b) H2:LSC-AS_Q

(c) L1 :LSC-AS_Q

Frequency (Hz)

Figure 3.15: Power spectra of the prediction for (a) H1:LSC-AS_Q, (b) 
H2:LSC-AS_Q and (c) L1:LSC-AS_Q (solid). Corresponding power spectra 
of the channels are provided for reference (dotted).
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Several features are notable on the power spectra of the predictions (Fig
ure 3.15). First, the power of the prediction never exceeds the power of the 
LSC-AS_Q channel. Outside the bands selected for line removal, the power 
is 5-10 orders of magnitude below the *:LSC-AS_Q noise floor. Within the 
bands selected for line removal, the power is at least 2 orders of magnitude 
below the *: LSC-AS_Q noise floor. Most importantly, for the lines themselves, 
the power of the prediction is comparable to the power of the lines.

When the prediction is subtracted from the measured channel, the lines, 
as measured in the power spectra of Figure 3.2, are affected to varying de
grees. Many are no longer visible above the noise floor; others have been 
reduced but are still present; some are unaffected. The residual coherence 
(Figure 3.14) between the line removed channels and their predictors is sim
ilar. For most lines, the coherence has been reduced; for many there is no 
residual coherence above the noise level of the estimate.

Similarly, the line coherence between the HI and H2 interferometers (Fig
ure 3.3) has been reduced or removed for almost all lines. (The coherence 
between HI or H2 and LI, not shown, is unaffected.) This can be most 
clearly seen by considering the accumulated coherence; lines appear as steps 
in the accumulation. For HI and H2, those steps have been reduced or elim
inated. Furthermore, the accumulation demonstrates that there has been 
no significant broadband coherence added to the interferometers. The net 
effect has been a reduction in the total accumulated coherence between the 
interferometers; in this case halving the non-accidental coherence between 
the interferometers, with much of the remaining coherence attributable to 
low frequencies.

3.4 S to c h a s t ic  b a c k g ro u n d  S i  u p p e r  l im it

The first LIGO Science run, SI, provided the data used by a number of 
Upper Limits groups to produce the first astrophysical results from the 
observatories—a set of upper bounds on the strength of various astrophysical 
sources.

One such astrophysical source is the hypothesised cosmological stochas
tic gravitational wave background, produced in the early universe. It is the 
gravitational wave analogue of the more familiar electromagnetic Cosmolog
ical Microwave Background. To detect the stochastic (gravitational wave) 
background requires an analysis of correlations between more than one de-
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H1-H2 coherence before and after line removal

pipelineremoval.tclsh (DSO analysis path)

300
frequency (Hz)

Figure 3.16: Hl-H‘2 coherence with (red) and without (blue) the line removal 
stage of the stochastic pipeline.

tector, and as such the search was feared to be particularly susceptible to 
correlated noise sotirces. In particular, there were concerns for the reliability 
of the analysis for the co-located HI and H2 interferometers. Spectral lines 
were a major source of correlations, and the stochastic background search 
code was an early target for line removal.

For the Si analysis, the data analysis ‘pipeline’ included the data condi
tioning API, which computed various statistical properties of the data before 
passing its results onto the search kernel. (Full details of the Si analysis are 
available in [14].) The optional line removal phase could condition the data 
as soon as it arrived in the data conditioning API, and before any statistics 
were computed.



76 CHAPTER 3. LINE REMOVAL

Segment number

Figure 3.17: Per-da.ta-segment (x) and total (horizontal lines) upper limit 
results with and without line removal, showing no significant differences. The 
dashed lines are 90% confidence bounds on the (solid line) limit.

Despite the seemingly substantial reduction in coherence between HI and 
H2, visible in Figure 3.16, there was no significant difference between the 
upper limits computed with and without line removal.

To confirm this apparent insensitivity (Figure 3.17) of the stochastic 
background search to correlated spectral lines, artificial spectral lines were 
injected into the data (Figure 3.18). Again, the upper limit was not signifi
cantly affected.

The upper limit’s insensitivity to spectral lines, though advantageous, 
is somewhat counter-intuitive. It is not that the upper limit is insensitive 
to correlations, but rather that the high power of those lines results in the 
contribution of correlations at those frequencies being strongly suppressed.
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-----  psd(Hl :LSC-AS_Q)
psd(line.ilwd)_______

<53 -50

300
frequency (Hz)

Figure 3.18: The power spectrum of the injected line (red) compared to that 
of the 4 km Hanford interferometer (blue).
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H1-H2 optimal filter, with noise power

. ./output/dco_2048_H 1 _H2_714636431 -714637331 . i Iwd

I ( f j  ft i 1

ra 20

----- psd(H1)
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Figure 3.19: Structural comparison of the search’s optimal filter (top) and HI 
and H2 spectra (bottom), showing that deep notches in the filter correspond 
to spectral lines.

The optimal filter employed by the search algorithm, shown in Figure 3.19, 
has strong dips corresponding to the spectral lines, effectively ‘notch-filtering’ 
out the line frequencies. Correspondingly, the line removal stage was not 
employed in the production of the major SI upper limit result [14].

The line removal and injection studies, undertaken as part of the SI 
analysis, demonstrated that the upper limit was insensitive to correlated 
spectral lines, and demonstrated that the lines would not impede any upper 
limits analysis of HI and H2 correlations. (It was ultimately broad-band 
acoustic noise which prevented an H1-H2 upper limit.)
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3.5 C o n c lu s io n

The data conditioning API o e l s l r  line removal algorithm provides a non- 
intrusive way for LIGO astrophysical searches to reduce the power and inter
instrumental coherence of spectral lines attributed to interference from the 
electrical supply.

Building upon the existing functionality of the data conditioning API, 
the line remover provides a general framework for time-domain system iden
tification techniques, and implements a simple class of linear model. One 
particular advantage of the model type chosen is that after the estimation 
stage is conducted, the prediction depends only on an environmental moni
tor, and is linearly summed with the gravitational wave channel, so that the 
line remover cannot interact with any incoming gravitational wave signal.

Testing of the line remover on interferometer data taken during the Si 
science run have shown the method to be quite robust with respect to the 
selection of its free parameters. Lines are removed to the level of background 
noise: around the lines the background noise remains practically undisturbed. 
Particularly gratifying is the recovery of injected signals; other line removal 
methods [17] can suppress signals as wrell as the line. The good performance of 
the code, and in particular the good performance in the limit of a trivial order 
1 model, indicate that potential problems such as nonlinear interference do 
not limit the method under realistic conditions. It had also been feared that 
the lines could inject small but cumulatively significant correlations in their 
bands of operation, but the accumulated coherence results again indicate 
that this is not the case.

A line removal stage was added to the stochastic background search for 
the Si analysis [14]. By executing the search with and without an active 
line removal stage, and also with and without the injection of artificial lines, 
the expected but counter-intuitive robustness of the search against spectral 
lines was conclusively established. This increased confidence in the validity 
of the upper limit on the strength of an astrophysical stochastic background 
of gravitational waves.
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N etw ork  sim ulation

Even after the launch of the four NASA orbital 'great observatories’ [22], most 
electromagnetic astronomy is still affected by the geometry of the Earth. The 
latitude of a terrestrial optical telescope dictates how much of the northern 
and southern skies are visible, and the sidereal rotation of the Earth is mir
rored in the 'hours’ of right ascension of the celestial coordinate system.

For gravitational wave observatories, the geometry and rotation of the 
Earth have an analogous impact. In comparison to an optical or radio tele
scope, an interferometric gravitational wave observatory is only weakly di
rectional, but detectors have the advantage of being able to detect sources 
through the Earth. This weak directionality determines the (sidereal) aver
age sensitivity of an observatory to sources at various declinations; it also 
means that observatories in different locations will have different responses 
to the same gravitational wave.

When multiple gravitational wave observatories are combined into a single 
instrument, in a process analogous to aperture synthesis in radio astronomy, 
the relative locations of the observatories become important. The baselines 
between the detectors are important for triangulation of gravitational wave 
sources. The relative orientations of the antenna patterns of observatories 
affects their ability to detect any particular signal. As both the baselines 
and antenna patterns are dictated by the siting, these properties cannot be 
decoupled and independently optimised.

The detectability of a population of gravitational wave sources depends 
not only on these geometric factors, but also on the data analysis strategy 
employed. A single detector may be considered in an analysis, or data from 
multiple detectors may be analysed cooperatively. If data from multiple

83
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detectors is to be considered, the data may be combined coherently or inco
herently. An analysis may be limited by available computational power or 
bandwidth.

A great deal of effort has gone into optimising the performance of these 
analyses, but scant work has been done on optimising another component in 
the sensitivity: the siting of the component detectors. Next-generation grav
itational wave observatories, such as the proposed Australian Interferometric 
Gravitational Observatory (AIGO), should be located so as to optimise both 
their capacity for individual discovery and their contribution to the global 
network of gravitational wave detectors.

This chapter presents a strategy for computing figures of merit with which 
to compare systems of gravitational wave detectors and analyses, and the 
common constructions for the specific figures of merit and analyses intro
duced in Chapters 5 and 6.

4.1 G e o m e tr ic a l c o n s id e ra tio n s

4.1.1 In te rfe ro m e tr ic  g rav ita tio n a l wave d e tec to rs
Consider a reference frame co-rotating with the Earth. Define twin carte
sian [ x y z } and spherical polar [ r  # 0 ] coordinate systems with their 
origins at the centre of the Earth (assumed to be a perfect sphere). Then

[ x y z ] = [ rco s# co s0 rc o s# s in 0 rs in #  ], (4.1)

where # and 0 correspond to latitude North and longitude East respectively 
(in radians). Along any line of constant # and 0, the orthonormal unit vectors 
local North 6 and local East 0  may be defined in cartesian coordinates:

6 — f — sin#cos0 — sin#sin0 cos# ], (4.2)
<0 = [ — sin0 cos 0 0 j.

A horizontal interferometric gravitational wave observatory at sea level with 
mutually perpendicular arms of equal length may be described by its latitude 
#. longitude o and the orientation angle 0  of its arms clockwise from local 
North. The unit vectors along the arms are

eT =  0 cos u  + 0  sin 0,
ey = 0sin t ’ — 0 co s0 . (4-3)
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and the ideal linear response m of such a detector [23] to incident strain H 
is given by

3

RLHu (4-4)
i j = 1

where
R = eTxex -  e j e y. (4.5)

4.1.2 G ravitational wave sources

Similarly to an interferometer, a source of gravitational radiation can be 
instantaneously described [23] in terms of the latitude 6 and longitude 0 for 
which it is overhead (i.e., it lies on the line of sight 0, 0) and an orientation 
angle -0 (required to uniquely determine the polarisations) from North 6. 
The x and y axes of the source are then as in Equation 4.3, producing a 
polarisation basis

F  — pT’p _-L'+
E x  =  e 7ey + e 7ex

and the time-dependent strain H (t) produced by plane gravitational waves 
may be described in this basis by the two functions of time h+ and /ix, so 
that

H(t) =  M t ) E + + M t ) E x (4-7)

in the limit where t Tsidereai, i.e., when the rotation of the Earth does not 
significantly change the relative orientations of the source and detector over 
the duration of the signal.

When this is not the case, (i.e., for continuous gravitational wave sources), 
the variation in real-time orientations must be taken into consideration. One 
way to achieve this is to treat the response as a function of time, R (t). This 
is the approach taken in Chapter 6.

3

Y .  7 ĵ(E+);j,
i , j = 1

4.1.3 A ntenna patterns

The antenna patterns [23]

(4.8)
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Figure 4.1: Antenna pattern (F+ + F%){0, ( f ) )  of an ideal interferometric grav
itational wave detector with arms = x and ey = y.
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3

F *  =  -Rij(Ex )tj, (4-9)
» J = l

are a particular detector's response to the ‘4-’ or ‘x ’ polarisations. The 
detector’s response to a signal described in that basis by h+(t) and hx(t) is 
thus given by

m(t) = F+h+{t) + Fxhx(t). (4.10)

The quantity
Fl + Fl (4.11)

is independent of the choice of polarisation basis; it corresponds to the rela
tive power received, from an unpolarised source in a particular direction, by 
an ideal detector. It is plotted in Figure 4.1.

Peak sensitivity occurs when the source is perpendicular to the plane 
of the arms; for a terrestrial detector, this corresponds to a source directly 
above or below. The detector is insensitive along the ‘arm diagonal' directions 
± ex ± ey, where symmetry dictates that the strain on each arm is equal.

4.1 .4  Im p lem en ta tio n
The formulation of response in terms of matrix operations facilitates its im
plementation in the matrix-based MATLAB language.

Listing 4.1: Compute the response matrix of a gravitational wave detector, 
function out = detector(theta, phi, psi)
?oDETECTOR Response matrix for an ideal interferometric gravitational

wave detector
o /
/ o

% DETECTOR(THETA, PHI, PSI) returns a detector object with location 
members X, Y, Z in Cartesian and THETA, PHI in spherical polar 
coordinates, arm orientation PSI and a RESPONSE matrix to incident 
gravitational waves.

%
°o See also SOURCE, RESPONSE.

up = [ cos(theta) * cos(phi), cos(theta) * sin(phi), sin(theta)]; 
north =  [— sin(theta) * cos(phi), — sin(theta) * sin(phi), cos(theta)]; 
east =  [— sin(phi), cos(phi), 0];
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out.x = east * cos(psi) + north * sin(psi); 
out.y =  — east * sin(psi) + north * cos(psi); 
out.z =  up;

out.response = 0.5 * (out.x’*out.x — out.y’*out.y);

out.theta =  theta; 
out.phi =  phi; 
out.psi =  psi;

Similarly, the polarisation basis for a gravitational wave source may be 
constructed.

Listing 4.2: Compute the polarisation basis of a source.
function [plus, cross] =  source(theta, phi, psi)
%SOURCE Polarisation basis strains for a gravitational wave source
%
% SOURCE(THETA, PHI, PSI) returns polarisation basis strains [PLUS, 

CROSS] for a source on the ray (THETA, PHI) with orientation PSI
%
% See also DETECTOR, RESPONSE.

north =  [— sin(theta) * cos(phi), — sin(theta) * sin(phi), cos(theta)];

east =  [— sin(phi), cos(phi), 0];

x =  east * cos(psi) 4- north * sin(psi); 
y =  — east * sin(psi) +  north * cos(psi);

plus =  (x’*x — y’*y); 
cross =  (x'*y + y’*x);

To determine the amplitude of an ideal detector response to an incident 
polarisation we sum over the elements of the response matrix.

Listing 4.3: Compute the response of a detector to a given strain.
function out =  response(d, strain)
%RESPONSE The response o f an ideal detector to incident strain
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Figure 4.2: Antenna patterns of existing detectors (a) LIGO Hanford (both 
instruments), (b) LIGO Livingston, (c) VIRGO, (d) GEO, (e) TAMA and 
proposed detector (f) AIGO.

%

% RESPONSEfD, STRAIN) returns the response of detector D to strain S.
%
% See also DETECTOR, SOURCE

out =  sum(sum(d.response .* strain)); % Note that performs 
componentwise (not matrix) multiplication
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4.1.5 E x isting  and  p roposed  d e te c to rs

The geometrical properties of existing interferometric gravitational wave de
tectors have been collated by Allen [24]1. Scripts were created to facilitate 
the inclusion of detectors with the properties of real observatories in the 
simulations.

Listing 4.4: Compute the response of a real observatory.
function out =  Iho
%oLHO returns a detector object corresponding to LIGO Hanford 

Observatory
%
% Latitude 46.45 north, longitude 119.41 west, and arm orientation 36.8 

degrees counter-clockwise from north
%
% See also DETECTOR, LLO, VIRGO, GEO, TAMA, AIGO.

out =  detector(radians(46.45), radians( —119.41), radians(36.8));

The antenna patterns of the different detectors may be compared in Fig
ure 4.2.

4 .2  F ig u r e s  o f  m e r it

We will call a system of interferometric gravitational wave observatories and 
their co-operative data analysis technique a network, and present a simple 
formalism providing a general basis for the comparison of networks under 
certain criteria. Computationally-amenable figures of merit approximating 
signihcant properties of the network—such as the rate of detections produced 
by a network for a given source population under a given co-operative data 
analysis technique—are used to rank the relative performance of different 
networks.

Consider the set Af  of all networks. A figure of merit f  is defined as a 
real function on some subset S  of networks, /  : S  C Af —>► R, for which 
/ ( a )  > f ( ß)  (where a £ S  and ß  G S)  is interpreted as the statement that 
network a  is better than network ß. An example of a figure of merit is the

lrTo maintain compatibility with [24] the scripts 44-4 use slightly different conventions 
to those presented in subsections 4.1.1-3.
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inverse of the cost of the construction of a network. There are many possible 
figures of merit and, in general, they will not produce the same rankings; 
assessment of the significance of the results of different figures of merit must 
be done by assessing the significance of the figures of merit themselves.

It is important, also, that figures of merit be computationally tractable 
as well as significant. The restriction of the domain of the figure of merit 
to a particular subset S  C J\f of networks may simplify computation of the 
figure of merit while still permitting the examination of problems of interest. 
Frequently, this involves finding the optimal network or networks d in a set 
T  C S  which is determined by the constraints on the problem.

a = {ß : 3 G T, f (ß )  = max/}. (4.12)

Here we restrict ourselves to considering subsets S  C J\[ of networks of 
fixed numbers of interferometric gravitational wave detectors, where all de
tectors in S  are assumed to be identical. A subset S  is completely described 
by the number n of detectors in a network, the ‘design’ Ö of the identical 
detectors and the co-operative analysis method E used. Any particular net
work a E S  is then completely described by, for each detector, the latitudes 
9, and longitudes (pl of the beam-splitters, and the orientation angles ipi of 
the x-arms counter-clockwise from North (under the assumption of horizon
tal detectors on a perfectly spherical Earth). Each network is then a point 
in the 3-n-dimensional parameter space [(9\, F q ) , . . . ,  (9n, f>n. Un)\-

We will consider families of figures of merit /(n,e,E); these permit compar
isons of different geographical configurations of networks in a subset S, but 
not comparisons of networks with different numbers of detectors n, designs 
0  or analysis algorithms E.

4.3 S u m m a r y

An interferometric gravitational wave detector's sensitivity to incoming grav
itational radiation is dependent upon the relative orientation of detector and 
source. When a detector is restricted to lie on the Earth’s surface, this an
tenna pattern is dictated by the siting of the instrument. The response of 
an ideal detector to a strain polarisation can be modelled with some simple 
vector algebra.

To answer questions about the relative merits of different sites or parame
ters of detectors or networks of detectors, a simple figure of merit formalism
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can be used as a basis. In Chapter 5 we consider the merit of different config
urations of observatories around the Earth for the purpose of detecting binary 
inspiral events by either coincident or coherent data analysis strategies. In 
Chapter 6, we examine how the latitude of detectors impacts upon their 
ability to detect a galactic population of sources of continuous gravitational 
waves.
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G eographical configuration

The theoretically-known waveforms of the inspiral phase of merging binary 
compact stellar systems is one of the most promising sources for first-generation 
terrestrial interferometric observatories. The events are rare, brief and pre
dominantly faint. Distinguishing between real signals and instrumental arti
facts is the limiting factor. Combining data from multiple observatories can 
improve both sensitivity and confidence, by weeding out such artifacts. In 
fact, the dual-detector LIGO design embodies the opinion that detection of 
an event by at least two independent instruments is required for the wide
spread acceptance of a claim. Network analysis is the generalisation of this 
concept.

The coincident network analysis technique [25, 26], in its simplest form, 
allows independent searches to be performed by each detector in the network; 
a signal is only detected by the network when the signal is detected by each 
member detector. A more recently proposed technique is coherent network 
analysis [27, 28], whereby the output of all detectors is collected and then 
a single search is performed on the combined data. The coherent network 
analysis has a theoretical advantage over the coincident network analysis, 
but the practical merits of each are still under debate.

The twin LIGO sites were chosen to facilitate a coincidence analysis— 
they are distant enough to reduce common environmental disturbances and 
produce a measurable arrival time difference, but close enough to have similar 
antenna patterns [23] and so produce similar responses to an incident gravita
tional wave. Likewise, the location of the proposed Australian-International 
Gravitational Observatory (AIGO) [29] has been selected to be near-antipodal 
to the LIGO sites and thus share their antenna patterns, whilst introducing

93
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a significant arrival time delay [30]. The site of VIRGO, however, and the 
proposed Laser Cryogenic Gravitational Telescope (LCGT) were not selected 
[31, 32] to facilitate a global network analysis. This implies that any realistic 
global' network will likely be, in this sense, sub-optimal and we will determine 
how significantly this will impact the ability of the network to do science.

Questions of how to optimally configure the global network arise in this 
context. We describe a formalism for comparing different geographical con
figurations of a global network of interferometric gravitational wave observa
tories, using both the coincident network analysis method and the coherent 
network analysis method. We have constructed a network model to compute 
a figure of merit based on the relative detection rate for the particular case 
of a uniform population of standard-candle binary inspirals.

The increasing viability of the new coherent network analysis technique 
[27, 28] encourages us to reconsider existing results about the global network; 
in particular, the influence of instrument siting on the quality of the network 
as a whole [26].

5.1 D e te c t io n  o f b in a ry  in sp ira l e v en ts

We define a particular figure of merit corresponding to the detection rate for 
a population of standard-candle binary inspiral events.

Consider a particular class of binary inspiral systems, producing a particu
lar deterministic gravitational waveform. Distribute these systems uniformly 
in flat space and randomly orient them. Let the distribution be unchanging 
in time so that any volume of space produces a constant rate of events. The 
property on which we will base the figure of merit f(n,Q.z) is the rate at which 
events from this population may be confidently detected by the application 
of some network analysis algorithm E to any given network of n gravitational 
wave detectors of design 0 .

5.1.1 W aveform  and  resp o n se

A simple binary inspiral [23] produces a quadrupole strain of the form

H = v{t) (E+h+{t) + E xhx(t)).r (5.1)
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where

h+(t) = (1 + cos2 i) cos £(£) 
hx(t) = 2 cos i sin £(£),

(5.2)
(5.3)

and r is the distance traversed by the gravitational radiation, i is the in
clination angle of the source to the line of sight, and 77 and £ depend on 
other properties of the emitting system (and are unaffected by the system’s 
distance and orientation with respect to the component detectors). Note 
that r](t) is the envelope of the more-rapid sin£(f) and cos £(£) oscillations; 
the structure of rj(t) and £(£) beyond this is not relevant to the rest of our 
analysis [23].

The response of any single detector in the network to this strain is

where the antenna patterns and source inclination F+, Fx, and i encode the 
relative orientations of the emitting system and detector.

5.1.2 A nalysis s tra teg ie s

The output g(t) of the detector also consists of noise n(t), assumed to be 
additive with the signal response and stationary on the timescale of the 
signal.

The noise component of the detector output can be made Gaussian by the 
application of a linear whitening filter ('), also stationary on the timescale of 
the signal,

The application of the filter also alters the response.
Following Finn [27]. to determine with confidence if a particular signal 

response m(t) is present in the filtered output g'(t) of a single detector, 
consider the mutually exclusive hypotheses H0, that the detector output 
consists solely of Gaussian noise g'(t) = n'(t), and Hm, that the detector 
output consists of the sum of Gaussian noise and the filtered signal response,

g(t) = m(t) + n(t). (5.5)

g'(t) = m'(t) + n'(f). (5.6)
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g'(t) =  n'(t) +  m'(t). The likelihood ratio A is then the ratio of the probabil
ities of the observed output g'(t) arising under each hypothesis.

A (g',m') = P(9'\Hm)
P(9'\Ho)
P ( g ' - m ' \ H 0)

P(g'\Ho)  ‘

The likelihood may be readily computed by matched filtering [27], 

In A(g'\m') = 2(g ,rri) -

(5.7)

(5.8)

(5.9)

where (,) denotes the inner product of the two time series. This allows 
us to determine the ‘plausibility’ that the detector output arose from any 
particular signal response.

The maximum likelihood

Amaxtel-A'Q =  max A(flf'|m') (5.10)
m £ M

is the likelihood of the most plausible signal response rh in some set of re
sponses A4. A confident detection of a candidate signal rh G A4 is said to 
have occurred when

Amaxfp'IAd) =  A{g\rh!) > A0 (5.11)

where Aq is a threshold value that is set sufficiently high to ensure that when 
no signal is present it is exceeded only at an acceptable false alarm rate. A 
false dismissal occurs when the likelihood for a weak but real signal fails to 
exceed the threshold.

A simple coincident network analysis can be performed using only the 
above algorithm on each detector: a detection occurs only when each ob
servatory detects a signal rh,. This requirement allows the thresholds A, to 
be lower than for a single detector, as more frequent false alarms are ‘ve
toed- by other detectors. For a network of identical detectors, the thresholds 
themselves are identical, so that a detection occurs when

min Amax(g-|Ad) > ACOjnCjdent;. (5.12)

Alternatively, coherent network analysis vectorises the maximum likeli
hood test to treat the network as a whole, a confident detection occurring 
when

A  max ( g \M)  > A coherenti (5.13)
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where g7 = [g0 ... gn\. No single detector is required to meet any threshold. 
This technique is theoretically optimal in the same sense as the maximum 
likelihood test is optimal for a single detector. When the noise is uncorrelated 
between detectors in the network, the likelihood is separable, so that

n

A(g7|m) =  Yl A (^ K )>  (5-14)

but as the maximisation occurs for the system as a whole, the individual 
signal responses m* typically do not correspond to maximum likelihoods for 
the individual detectors [27],

n

max I I A( g.■| U l{) > A coherent- (5.15)
rm£M  -*■ i=l

5.1.3 D e te c tio n  ra te

We are concerned only with the case where a physical signal is present, as 
false alarms have been limited to an acceptably low rate.

Consider the gravitational wave signal from a particular binary inspiral 
event, with all parameters fixed except its distance to the detectors (cor
responding to the inverse amplitude of the wave-. Equation 5.4). We may 
establish an effective maximum distance rmax beyond which the probability 
of detecting such a source falls below some threshold. This value could be 
computed from the definitions of the tests above, for example, by Monte 
Carlo simulation.

Consider a population of otherwise identical binary inspiral systems uni
formly distributed in (flat) space and randomly oriented. The effective vol
ume V of space in which the events can be detected can be computed from 
r ma.x by integrating over the sky and averaging over source orientation and 
inclination,

r^ax cos#sinzdfh (5.16)

For a constant event rate per unit volume p, the rate of confident detections 
from the network is pV.

This constitutes a valid figure of merit /  = pV. A network with a higher 
rate of detections (for the same level of confidence) is clearly better than a
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network with a lower rate of detections, at least so far as detection of this 
particular class of binary inspirals is concerned.

This figure of merit is, however, prohibitively expensive to compute naively. 
Instead, we simplify it and introduce approximations to implement a new, 
computable, figure of merit.

5.1.4 Im p lem en ta tio n

From Equation 5.4,
1 -4- rn s 2 ?

m'(t) = fo(t)cosC M l — -r
, , . . . . . . 2 cosi ^

+ 7?(£)sinC( 0  ------- Fx .r
Noting that

((77 cos £)', (77 cos C)') % ((77 sin ()'. fasinC)'),
((77cos £)', (77sin £)') «  0,

then when a signal nn! is present

In A(g'\m') =  2(m + n ,m') — (m ',m f)
— (m \  m )  + 2 (77/, m )
% ((77 cos C)7, fa cos O')

x - i [ ( l  +  cos2 i)2F l  + 4 cos2 iF\]

+ 2 ( n , m r). (5-21)

We assume that for confident detections

In Amax{g') ~  In A{g'\m') «  In A(g'\m'), (5.22)

in other words, that the most plausible signal approximates the real signal, 
and that the contribution of noise to the likelihood is negligible.

Under this assumption, the coincident test in Equation 5.12 becomes

In Acoincident < min In A^'lm*)i
( f a  COS O h  (77 COS C X ) 

r 2
x min[(l + cos2 i)2(F+)?i
+  4 cos2 i(F x)"],

(5.17)

(5.18)
(5.19)

(5.20)

(5.23)
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and the coherent test in Equation 5.15 becomes

In  Acoherent 1^ A ( ^  17Tij)

i
(P  COS C);, p  c o s  O') 

r 2

x E [(1 +  cos2*)2(F +)
i

+ 4 cos 2i{Fx)f], (5.24)

The two tests differ only in their use of min or to combine the likelihoods.
The maximum detectable distance r max is the distance at which the 

threshold is reached; for a coincident analysis

2 =  ( p c o s p y p c o s p ')
P nax 1 a

1114 ‘■coincident

x min[(l + cos2 i)2(F+)2

and for a coherent analysis

Then,

+  4cos2'i(Fx)2],

((7? COSpy (77 cos C)7)
In A d h e r e n t

x Y f t l  + cos2 i)2{F+)
i

4- 4 cos2 f(F x)2].

^coincident, CC f n .Q ,  coincident

oc [  {min[(l +  cos2 z)2(F+)2 
J  n 1

+ 4 cos2 f(Fx)2]}^ cos^sin idQ,

^coherent CC fn .Q .  coherent

°< [  { ^ K 1 +  cos22')2(F+)2
Jp. i

+ 4 cos2 i(F x)“]}  ̂ cos#sin idQ,

(5.25)

(5.26)

(5.27)

(5.28)
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where the neglected term ( ( 7 7 cos Q', (rj cos £)') depends only on the source 
class, and the thresholds A coincident and A coherent are assumed to depend only 
on the detector design. We neglect the dependance of the thresholds on the 
geographical configuration of the network1.

The figures of merit coincident and coherent are (granted approxima
tions) linearly proportional to the actual rate pV. To evaluate these figures 
of merit, the response matrices R ( are first computed for each detector using 
Equation 4.5. Numerical Monte Carlo integration is implemented, randomly 
selecting source parameters from the population and evaluating the interior 
of the integral many times (using Equations 4.8 and 4.9 to compute the 
antenna patterns), and averaging the result.

The 3n-dimensional parameter space is too large to be computationally 
amenable, and so we consider only proper subsets of particular interest. For 
example, the best site (under our figure of merit) to augment an existing 
network of n detectors can be found by fixing the first n detectors of a n 4 - 1 
detector network, and varying only (0n+i,0n+i ,^ n+i). Furthermore, noting 
that the figure of merit depends only weakly on the orientation2, ipn+1 , we can 
fix it to an arbitrary value, and vary only the latitude and longitude. The 
figure of merit over this two-dimensional section of parameter space then 
corresponds to a map of the relative merit of different sites on the Earth for 
augmenting an existing network.

5.2 R e s u lts

We may use our figures of merit, Equations 5.27 and 5.28, to answer a variety 
of questions about the network; we choose to determine the optimal detector 
to augment an existing network of identical detectors.

Formally, consider a network of n detectors. Detectors 1 to n — 1 represent 
the existing detectors with fixed latitude 6n longitude <A and orientation W 
Detector n represents the augmenting detector with variable latitude <9n. 
longitude (f>n and orientation v n. Effectively we wish to compute the merit 
/  over the subset T C S n Q_-= C A/”, where T  represents the 3-dimensional 
surface of constant (90 <pl, 1y for i < n.

1 Thanks to Peter Shawhan for pointing this out.
2See Figures 5.1, 5.2. 5.3. 5.4: at the upper and lower edges, corresponding to the north 

and south geographic poles, the detectors rotate in place as the longitude varies: despite 
this the figure of merit remains constant to a good approximation.
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Figure 5.1: Relative merit of an additional site to augment the LIGO Liv
ingston Observatory in a coincident analysis (lighter is better, contours every 
2.5%). The minimum detection rate is 41% of the maximum.

We can further reduce T  by noting that /coincident and /coherent vary only 
weakly with ?/>n. We may then additionally fix the orientation ijjn at an ar
bitrary value, and consider only the 2-dimensional slice produced by varying 
0n and <f)n.

This 2-dimensional set has a straightforward interpretation as the geo
graphical map of the merit of any site on the surface of the Earth to augment 
an existing network of n — 1 identical detectors with another such detector.

Consider first a single interferometer, at the site [24] of the LIGO Liv
ingston Observatory (LLO). For a coincident network analysis, the merit of 
an additional site to augment LLO is given in Figure 5.1. It demonstrates, 
as expected, that sites near or near-antipodal to LLO are best to augment 
it. This is the rationale behind the siting of the LIGO detectors, and the 
proposed AIGO detector. The worst configurations produce a substantially 
reduced detection rate; approximately 40% that of the optimal configuration. 
Unfortunately, the locations of VIRGO and the proposed LCGT fall into this 
category.

It is interesting to note that for this simple case the map bears some 
resemblance to the “peanut” antenna pattern of the fixed single detector;
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longitude (degrees, east)

Figure 5.2: Relative merit of an additional site to augment the LIGO Liv
ingston Observatory in a coherent analysis (lighter is better, contours every 
2.5%). The minimum detection rate is 89% of the maximum.

the weak directionality of the varying detector, and the superiority of a co- 
aligned network [33] are responsible for this effect. This resemblance breaks 
down for more complicated networks.

Considering the same configuration of a fixed LLO detector and a vary
ing detector with a coherent network analysis in Figure 5.2, the qualitative 
structure of the map is similar, but quantitatively it is quite different. For a 
coherent analysis, the worst configurations produce a detection rate that is 
still 90% of optimal; site merit does not vary substantially with location.

We now move on to consider an approximation to the existing global net
work of the larger interferometric gravitational wave detectors. We model 
the LIGO-VIRGO network as three identical interferometers at the sites 
of LIGO Hanford Observatory (LHO), LIGO Livingston Observatory and 
VIRGO [24], Note that this model neglects the 2 kilometre LHO instrument, 
and the differences between the LIGO and VIRGO instruments. Similarly, 
we augment this three-detector network with a fourth (identical) detector at 
different locations and compare the relative detection rates of the resulting 
network.

Using a coincident network analysis in Figure 5.3, we see that the merit of
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Figure 5.3: Relative merit of an additional site to augment a network con
sisting of the LIGO Hanford (4km) Observatory, the LIGO Livingston Ob
servatory and a 4km LIGO I instrument at the VIRGO site, in a coincident 
analysis (lighter is better, contours every 2.5%). The minimum detection 
rate is 69% of the maximum.
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Figure 5.4: Relative merit of an additional site to augment a network con
sisting of the LIGO Hanford (4km) Observatory, the LIGO Livingston Ob
servatory and a 4km LIGO I instrument at the VIRGO site, in a coherent 
analysis (lighter is better, contours every 2.5%). The minimum detection 
rate is 94% of the maximum.

the network varies moderately with location, with multiple minima of about 
70% of the best achievable detection rates.

Under a coherent network analysis in Figure 5.4, we once again see a 
qualitative similarity to Figure 5.3 in the locations of maxima and minima, 
but quantitatively much less variation than in the coincident case, with only 
6% separating the best and worst sites. As expected, this indicates that 
AIGO is an optimal site to augment the existing global network; however, 
the weak dependance of event rate on geographical location for a coherent 
analysis means that its advantage over other sites is slight.

5.3 C o n c lu sio n

We have proposed a formalism for conducting studies of the relative mer
its of differently configured systems of gravitational wave observatories and 
different collaborative analysis techniques.

We have demonstrated that, given certain assumptions, simple imple-
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mentations of the coincident and coherent analysis techniques exhibit very 
different dependencies on the geographical locations of their component de
tectors.

Under our model, it is clear that the (binary inspiral) detection rate 
for a global network is insensitive to the geographical configuration of its 
component detectors when a coherent analysis is used, in contrast to when 
a simple coincident analysis is used. Whilst the LIGO detectors and the 
proposed AIGO detector are well sited to complement one another under 
a coincident analysis, the sites of the VIRGO detector and the proposed 
LCGT detector are far from optimal; our results demonstrate that under a 
coherent analysis the cost of this sub-optimal siting is substantially reduced, 
on at least one figure of merit. In this sense, the global network is closer to 
optimal for a coherent analysis than for a coincident analysis. Our results also 
indicate that since, under a coherent analysis, detection rate is insensitive to 
detector siting, the location of an augmenting detector could be optimised 
for other network properties (for example, directional resolution) without 
compromising the event rate.

It is important to note that the model does not compare the absolute de
tection rates for the two analysis techniques; we cannot say that one method 
would produce a higher detection rate than the other for a given false alarm 
rate. Though we have considered only one class of source and one figure of 
merit, our formalism is general enough to extend to more general problems.
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C ontinuous-w ave sources

6.1 In tro d u c tio n

The most optimistic estimates place the strain produced by continuous wave 
sources at least three orders of magnitude below those of inspiral and other 
burst events [34], Hopes of their detection are due to the fact that the signal 
can be integrated over months, or potentially even years of observation.

The motions of the Earth serve to modulate the incoming continuous 
gravitational wave signal. Daily rotation varies the angle of the source, and 
hence the sensitivity of the detector, leading to variations in amplitude. Or
bital motions provide a seasonally-varying Doppler shift to the frequency.

Currently, it is computationally unfeasible to cover all the possible para
meters governing the waveform (as is done with template banks for inspirals). 
Optimal searches are restricted to match the parameters of nearby pulsars 
known from their electromagnetic emissions [34]. Hierarchical searches, com
putationally feasible but with less-than-optimal sensitivity, will be used to 
search for continuous wave sources not associated with electromagnetically 
identified pulsars.

6.2 M ethodology
Consider a neutron star and an interferometric gravitational wave detector. 
The neutron star has principal axes C, I2 and / 3, and rotates about / 3 with 
angular frequency uJp. The neutron star is a distance r from the detector, 
and / 3 is inclined at an angle i to the line of sight is oriented at an angle v p
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from geographic north. The strains produced for the two polarisations along 
the line of sight are

h+{t) =

hx(t) =

“V £ ( l + COS l
COS UJgt

u 2Ie
cos i sin ujgt

where

I =

E =

h  + h
~2

h - h

LJ g 2 lJp,

( 6 . 1)

( 6 .2)

(6.3)

(6.4)

(6.5)

noting that the frequency of the gravitational waves ug is twice that of the 
pulsar. The strain measured by the observatory will be

h(t) = F+h+(t) + ( 6 .6)

where the antenna-pattern factors F+ and Fx are functions of the (time- 
varying) relative orientation of the neutron star and the detector.

(N i e
h(t) = F4 1 + cos“i cos ujat + Fx cos i sin ujnt

This is a sinusoid of some amplitude A and phase ß

h(t) = Acos(ujgt + ß)

where

A2 =
2 T '  2cczls

F 2 (1  +  COS2 Z)2

4
4- F2 cos2 i

(6.7)

( 6 .8)

(6.9)

We neglect motions of the Earth (and indeed the neutron star) other than 
their rotation.

As the Earth, and any ground-based interferometer, rotates once each 
sidereal day, the value of A2 will vary with this period, T. Moreover, this
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value will not depend on the right ascension 0P of the neutron star. The 
average over one sidereal day is equal to the average over right ascension.

A 2 =
1

2n
F:

(1 + cos2 i)2
~~4

+ F 2 cos2 i d0P ( 6 . 10)

where the parameters of the observatory (most importantly, its latitude and 
orientation) are implicit in the antenna patterns.

6.2.1 Im plem entation
The solution of the integral in 6.10 is a simple but arduous process. Noting 
that

ex
— sin 9 cos 0 cos 0  — sin 0 sin 0
— sin 6 sin 0 cos 0  T cos 0 sin 0

cos 0 cos 0
— sin 0 cos 0 sin 0  +  sin 0 cos 0
— sin 9 sin 0 sin 0 — cos 0 cos 0

cos 9 sin 0

and from Equation 4.5,

R  =  exe£ -  e ye^,

we may expand the dependance of R  on 0 as follows:

( 6 . 11)

( 6 . 12)

(6.13)

R(0) =  R a cos2 0TRasin'2 0 + R r cos0 s in 0 + R dco s0 -fR g sin 0 + R /, (6.14)

where

R a

R&

R c

sin2 9 cos 20 — sin 9 sin 20 0
— sin 9 sin 20 — cos 20 0

0 0 0 _

— cos 20 0 sin 9 sin 20
sin 9 sin 20 sin2 9 cos 20 0

0 0 0
2 sin 9 sin 20 (sin2 9 T 1) cos 2u 0 

(sin2 9 +  1) cos 20 — 2 sin 9 sin 20 0
0 0 0

(6.15)

(6.16)

(6.17)
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R e

cos 9

cos 9

0 0 sin 9 cos 20
0 0 sin 20

sin 6 cos 20 sin 20 0
0 0 — sin 20
0 0 — sin 0 cos 20

— sin 20 — sin 9 cos 20 0

R f =
0 0 0 
0 0 0 
0 0 cos2 6 cos 20

(6.18)

(6.19)

( 6.20)

The sidereally averaged squared response—the incident power—is given by

R  (zUi r,M)h,,)2 W
— S-TT cos2 0 + Sb sin2 0 + Sc cos 0 sin 0 +  Sj  cos 0 4- 5e sin 0 + S/)  “ d0
— f  (351" + 35g- -f- «S'2 + 45^ + dS'2 +  ßS*2 + 2SaSb +  SSaSf  + 8S^Sj^j ,

( 6 .21)

where
3

S „ =  (6.22)
* J  =  1

and similarly for Sb et cetera.
The sidereally-averaged squared response of a detector to a strain is read

ily computed in Matlab; see Appendix B.
The sidereally-averaged antenna patterns are depicted in Figure 6.1. No

tably, those of observatories at latitudes ± |  retain their characteristic ‘‘peanut" 
shape, but their dimpled minima are averaged out. In contrast, at near-0 
(equatorial) latitudes, the primary lobes have been swept by the average into 
a torus-like structure whose exact shape depends on the orientation of the 
detector. Note that an equatorial detector with a |  orientation is completely 
insensitive to sources at the celestial poles. Existing detectors in the |  to |  
latitudes have intermediate forms.

6.3 D e te c tio n

For a single detector and a particular neutron star, the neutron star is de
tectable if the mean square amplitude exceeds a certain threshold A2. For
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Figure 6.1: Sidereally-averaged response to a uniform distribution of pulsars 
of interferometers with varying latitudes and orientations—effectively the 
familiar peanut antenna pattern averaged over a rotation. The responses are 
independent of longitude; the vertical axis of the diagram is the Earth’s axis 
of rotation. From left to right, latitudes of 0°, ±30°, ±60° and ±90°. From 
top to bottom, orientations of 0, |  and j  from north. Note that for the 
equatorial detector with a |  orientation, an antenna pattern null aligns with 
the Earth’s axis of rotation so that no sources from that direction could be 
detected.
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a given declination, orientation and inclination, the maximum distance r max 
that such a neutron star can be detected is

A2

r2
m ax

A 2

O

1 [ n n2(l + cos2z)2 
t o L F+ 4

1 r
O'rr /  /I

+ F 2 cos2 i d<SP 

+  F 2 cos2 1 d(f)p

(6.23)

(6.24)

(6.25)

Under the simplification that this threshold is the same for all observable 
neutron star parameters, we would like to equate this seeing distance r max 
with an observable volume of space. To do this we must, however, form not 
an average seeing distance, but rather the average cubed seeing distance r;^ax 
over the different seeing distances for different orientations and inclina
tions ip of the population of neutron stars along the line of sight.

i  r n / 2  i  /*7r

^3 -  1 / 1 /  ̂3
2 ^  J - t t / 2  2

so that the total observable volume is

r n / 2

rmax cos i dipdipT (6.26)

V =  2tt
-tt/2

r m ax C O S 0 p d 0 p , (6.27)

noting that r max is independent of right ascension.

6.4 G a la c tic  d is tr ib u tio n

A simple model of neutron star distribution in the galaxy (Figure 6.2) is 
provided by [35]. For a population of neutron stars with a particular set of 
intrinsic parameters, we can determine what proportion of the total galac
tic population may be detected by a particular observatory for a particular 
threshold.

The result for any given threshold may be computed as a Monte-Carlo 
integration, but the same computation can be used to simultaneously com
pute the fraction for any threshold. We store all the thresholds computed in 
the Monte-Carlo sum, and sort it into a monotonically-decreasing list (A2)*.
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Galactic neutron star population

Figure 6.2: Model for the distribution of galactic pulsars, in celestial coordi
nates.



114 CHAPTER 6. CONTINUOUS-WAVE SOURCES

Figure 6.3: Detectable fraction (vertical) of a galactic pulsar population 
against relative detection (horizontal) threshold for various detector latitudes 
and orientations (lines). The latitude and orientation have a minimal effect 
on an detector's ability to observe galactic neutron stars, which is almost 
wholly governed by its baseline strain sensitivity.
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For a particular threshold (A2)*, its normalised position in the list i /N  is the 
detectable population fraction.

Figure 6.3 shows this relation for a variety of detector latitudes and ori
entations. As we would expect, in the regimes of very high and very low 
sensitivity, the position of the detectors is irrelevant. However, even at inter
mediate sensitivities, the siting of an observatory has only a minimal impact. 
Strain sensitivity, not geometry, dominates.

6.5  C o n c lu s io n

Despite the large differences in the sidereally-averaged antenna-patterns of 
terrestrial gravitational wave observatories at different latitudes, the fraction 
of a galactic population of neutron stars they can detect is almost indepen
dent of latitude. (Of course, their ability to detect any particular neutron 
star is highly dependent on latitude.)



C h a p te r  7

S um m ary  and  fu tu re  d irections

The practical scientist is trying to solve tomorrow’s problems with yesterday’s 
computer

— Numerical Recipes

7.1 D a ta  c o n d itio n in g

... and perhaps tomorrow’s as-yet-unfinished C++ compiler.
LDAS is quite an achievement, engineered by only a handful of hardy 

souls and now entrenched at the very heart of LIGO science (Chapter 2). 
As with any complicated project, hindsight suggests alternative routes and 
useful lessons, but the most important fact to note is that LDAS delivered 
the extensive, and extensively tested, functionality that the Si analyses [14, 
34, 36, 37] required.

The data conditioning API is the bridge between LDAS’s roles as LIGO's 
data librarian and search coordinator, taking raw data and converting it into 
the input expected by each particular search code. The author participated 
in the development and implementation of the Universal Data Type frame
work that underpins the current data conditioning API, allowing the uniform 
support of the API's many different types of data—scalars, vectors, and ma
trices of integer, real or complex values represented at various precisions. 
He also participated in the design, implementation and testing of the basic 
signal processing operations—heterodyning, linear filtering and resampling— 
and their integration into the data conditioning API command language, as 
well as in the extensive testing including Mock Data Challenges.
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The line removal algorithm built using that functionality promises to be a 
useful tool for removing environmental disturbances [15]. It has been exten
sively characterised, leading to its inclusion in the first stochastic background 
upper limits analysis. Rather than conditioning data for the analysis, it was 
used to prove that the then level of correlations introduced by spectral lines 
did not have a significant impact on the analysis. W ithout this result there 
may have been less confidence in the stochastic background upper limit re
sults [14].

OELSLR compares favourably with earlier line removal techniques, in 
terms of its ability to recover signals from beneath lines without attenua
tion and because of its ready availability—it can be deployed for any search 
code merely by pasting a few lines of text into the search's Idas Job. Though 
currently only applied to the anthropogenic 60 Hz lines, the model itself is 
exceedingly general and could be applied to any measurable environmental 
disturbance over narrow or broad frequency bands. Obvious candidates are 
low-frequency seismic noise, vibrational and acoustic couplings, and magnetic 
effects other than the 60 Hz lines—in fact most of the physical environment 
monitor channels. Further work will identify the optimal parameters for these 
new operating regimes, and perhaps a way of automatically identifying the 
parameters. Application to searches beyond the stochastic background will 
either improve their sensitivity or prove their resilience against environmen
tally induced correlations.

Generalisation of the underlying system identification model could only 
improve the performance of the line remover. Allowing multiple input chan
nels could permit the system to remove many kinds of environmental noise 
simultaneously. The system identification model could be improved from an 
auto-regression to an output error or even more advanced system, though this 
would be a major undertaking. Finally, the model could be made adaptive, 
so that it ‘automagically’ refines its model as it processes data.

The future of LDAS itself is ultimately in the hands of its users. So far it 
has seen great use as a data distribution technology throughout LIGO. and as 
one of a variety of analysis tools employed by science searches. In the future 
it is likely to migrate to data grid and even computation grid technologies, 
linking together clusters across the US (and Australia) into coherent virtual 
machines.
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7.2 N etw ork  sim ulation

The interplay between a gravitational wave observatory’s location, orienta
tion and sensitivity is intriguing. Most sensitive to gravitational wave sources 
directly above or below the plane of the two (perpendicular) arms, there is 
lesser interferometer sensitivity to sources from almost all other directions, so 
phase and timing information must be used to reconstruct the direction and 
polarisation of sources from the output of multiple interferometers. Useful 
time delays between interferometers correspond to many hundreds of kilo
metres of separation, and as the interferometers are constrained to lie on the 
curved surface of the Earth, this produces a misalignment of the instruments. 
The exception is when detectors are situated on opposite sides of the Earth, 
as would be the case for an Australian complement to the North American 
detectors.

We first considered the detection of known short waveforms—the classic 
inspiral source, though our model is slightly more widely applicable—by two 
different techniques: the simple coincidence test (currently implemented by 
the global network of bar detectors), and a fully coherent search (analogous 
to aperture synthesis in radio astronomy). By varying the configuration 
of one interferometer while keeping the others—corresponding to existing 
observatories—fixed, and performing a Monte-Carlo estimate of the sensitiv
ity of the whole network, we were able to plot out the relative merit of new 
observatory locations. Western Australia, by virtue of its antipodean loca
tion, was always an optimal location. The difference between the best and 
worst configurations for a coherent search was only a few percent suggesting 
that a coherent search is more robust against misalignment and thus more 
likely to suit a real global network. When considering the detection of contin
uous wave sources—specifically a galactic population of neutron stars—only 
the faintest of dependencies on detector configuration was observed. These 
results are good news for global gravitational wave astronomy: the geograph
ical arrangement of existing gravitational wave interferometers will not sig
nificantly impair their ability to work together as a single global instrument.

The models used are plausible, but for computational tractability a large 
number of simplifications had to be made—most importantly the assump
tions of identical interferometers and neglecting issues of frequency response 
and the impact of environmental noise. The LDAS implementation on the 
growing AC’IGA Data Analysis Cluster gives us the computing horsepower 
and framework to perform much more in-depth and realistic studies, even
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up to testing the recovery of injected signals by mocked-up network search 
codes based on their real single-detector equivalents. Using the ACIGA phys
ical environment monitoring station at The Australian National University 
and data from our overseas partners, we will be able to simulate a southern 
hemisphere detector with the characteristics of a LIGO instrument, yet with 
southern hemisphere environmental disturbances and a southern hemisphere 
response time and matrix to simulated signals.

Perhaps the most promising role of an Australian detector is not so much 
to add to the detection capability of a network, but rather by providing a 
long baseline to the mid-latitudes of the northern hemisphere, and improving 
the angular resolution of the whole network—a study which is a priority of 
ACIGA. W ith an application made for funds in 2005 to model an Australian 
detector, including angular resolution and global noise correlations, we may 
soon have definitive answers.

7.3 C o n c lu s io n

My development of aspects of the LDAS Data Conditioning API comprised 
part of the infrastructure for the LIGO upper limits papers, [14, 34, 36. 37], 
some of the first ‘big science’ results of the 21st century. I also considered 
how to optimally develop the astronomical discovery capacity of a global 
network of gravitational wave observatories, particularly focussing on the 
role Australia might play.

I am proud to continue to play my small part in this great scientific 
adventure.

— Antony Charles Searle, Canberra, 2004



A ppend ix  A

Line rem over im p lem en ta tio n

Implementation is naturally broken into two pieces of functionality: an output- 
error model, and a band-selector. They are tied together by a line-remover 
class.

Disclaimer The code presented here is substantially, but not entirely, the 
work of the author. Contributions of others are limited to stylistic issues and 
minor compatibility issues.

A .l  B a n d  se le c tio n

Though seemingly trivial, the combination of heterodyning, resampling, and 
the introduced transients and delays made band selection a difficult task to 
get right. Eventually, it was abstracted into a class.

To select a band centred around /  of width /]\jy/n , and then to reverse 
that selection, it is necessary to create two Mixer objects, mixing by ± / / f y y, 
and two Reasample objects, up- and down-sampling by n.

Listing A.l: BandSelector class definition, 
class BandSelector 
{

public:

BandSelector(const doubled frequency, const std::size_t factor)
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: m_downmixer(MixerState(0.0, —frequency))
, m_downsampler(l, factor)
, m_downshifter(0)
, m_upsampler(factor, 1)
, m_upshifter(0)
, m_upmixer(MixerState(0.0, +frequency))

{
}

BandSelector(const BandSelector& bs)
: m_downmixer(bs.m_downmixer)
, m_downsampler(bs.m_downsampler)
, m_downshifter(bs.m_downshifter ? bs.m_downshifter—>Clone

0  : o)
, m_upsampler(bs.m_upsampler)
, m_upshifter(bs.m_upshifter ? bs.m_upshifter—>Clone() : 0)
, m_upmixer(bs.m_upmixer)

{
}

~BandSelector()
{

delete m.downshifter; 
delete m_upshifter;

}

BandSelector& operator=(const BandSelector& bs)

{
if (&bs ! =  this)
{

m_downmixer — bs.m_downmixer; 
m_downsampler =  bs.m_downsampler; 
delete m_downshifter;
m_downshifter =  bs.m_downshifter ? bs.m_downshifter—> 

Clone() : 0;
m_upsampler =  bs.m_upsampler; 
delete m_upshifter;
m_upshifter =  bs.m_upshifter ? bs.m.upshifter—>Clone()
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: 0 ;
m_upmixer — bs.m_upmixer;

}
return *this;

}

BandSelector* clone() const
{

return new BandSelector(*this);
}

templatectypename out_, typename in_>
void apply(std::valarraycout_>& out, const std::valarray<in_ 

> &  in)
{

std::valarray<out_> downmixed; 
m_down mixer, apply (down mixed, in);
Sequence<out_> downsampled; 
m_downsampler.apply(downsampled, downmixed); 
if (!m_downshifter) m_downshifter =  new ShiftState<out_>( 

m_downsampler.getDelay(), 1);
dynamic_castcShiftStatecout_>&>(*m_downshifter).apply(

downsampled);
out.resize(downsampled.size()); 
out =  downsampled;

}

templatectypename out_, typename in_>
void ylppa(std::valarrayCout_>& out, const std::valarray<in_ 

> &  in)
{

Sequence<in_> upsampled; 
m_upsampler.apply(upsampled, in); 
if (!m_upshifter) m_upshifter =  new ShiftState<in_>( 

m_upsampler.getDelay(), 1);
dynamic_castcShiftStatecin_>&>(*m_upshifter).apply(

upsampled);
m_upmixer.apply(out, upsampled);
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}

private:

BandSelectorQ;

Mixer m_downmixer; 
Resample m_downsampler; 
State* m_downshifter; 
Resample m_upsampler; 
State* m_upshifter;
Mixer m_upmixer;

};

A .2 O u tp u t-e rro r  m odel

The development of components for the line remover occurred when the 
Data Conditioning API was comparatively complete and stable. Knowledge 
of the issues encountered in the development of earlier components allowed 
a different approach to be taken in their implementation.

The output-error model exposes only one class to the user, which both 
stores internal state and applies the action. As such, the OEModel class 
inherits from State.

The type of the internal data is determined by the type of the series the 
model is required to estimate; all subsequent methods must be invoked with 
compatible types. Methods that invalidate the estimated model can be used 
to reset the instance to an uninitialised state.

Listing A.2: OEModel interface.
class OEModel :

public State
{

public:
virtual "OEModelQ;
OEModel* CloneQ const;
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A broad range of constructors are supplied, supporting initialisation from 
another OEModel, from the model orders nb and rif, from a raw model 
state 6. or to automatically model a given system. Where appropriate, the 
constructors are templatised and given UDT parallels.

Listing A.3: OEModel interface (continued).
OEModelQ; / /  blank model 
OEModel(const OEModel&);
OEModel(const int& order_b);
OEModel(const int& order_b, const int& order_f); 
template<typename type> explicit OEModel(const std::valarray< 

type>& theta, const int& order.b); 
explicit OEModel(const UDT& order_b);
OEModel(const UDT& order_b_or_theta, const UDT& 

order_f_or_order_b); 
template<typename type>

OEModel(const std::valarray<type>& y, const std::valarray<type 
>& u, const int& order.b); 

template<typename type>
OEModel(const std::valarray<type>& y, const std::valarray<type 

>& u, const int& order_b, const int& order_f);

OEModel(const UDT& y, const UDT& u, const UDT& order.b); 
OEModel(const UDT&: y, const UDT& u, const UDT&i order_b, 

const UDTÄ' order_f);

A large number of accessors are provided for the data stored by the model. 
Those which write to a provided argument require the correct types be pro
vided, or an exception will be thrown.

A model is created in an undefined state. The model order is then pro
vided. Finally the series u and y are provided and a model for y in terms of u 
is estimated. The model may be applied to different epochs of u to produce 
predictions of the corresponding y. or if u and y are provided for a different 
epoch, the model may be further refined.

Listing A.4: OEModel interface (continued).
/ /  accessors
int getOrderB() const;
int getOrderFQ const;
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void getOrderB(UDT*& order.b) const; 
void getOrderF(UDT*& order_f) const; 
tem plate<typenam e type> 

void getTheta(std::valarray<type>& theta) const; 
void getTheta(UDT*& theta) const; 
void getFilterB(UDT*& filter_b) const; 
void getFilterF(UDT*& filter_f) const; 
tem plate<typenam e type> 

void getFilterB(std::valarray<type>&) const; 
tem plate<typenam e type> 

void getFilterF(std::va!array<type>&) const;
Mutators are also provided. They typically reset the internal state.

Listing A.5: OEModel interface (continued).
OEModel& operator=:(const OEModel&); 
void setOrderB(const int& order_b); 
void setOrderF(const int& order_f); 
void setOrderB(const UDT& order_b); 
void setOrderF(const UDT& order.f); 
tem plate<typenam e type>

void setTheta(const std::valarray<type>& theta, const int& 
order_b);

void setTheta(const UDT& theta, const UDT& order_b);
As well as apply methods that accept a series u and return an estimate of y. 
the refine methods can use additional u and y series to improve the model.

Listing A.6: OEModel interface (continued).
tem pla tec typenam e type> 

void apply(std::valarray<type>& w,
const std::valarray<type>& u) const; 

void apply(UDT*& w,
const UDT& u) const; 

tem pla tec typenam e type>
void refine(const std::valarray<type>& y, const std::va!array<type 

>&. u);
void refine(const UDT& y, const UDT<  ̂ u);

A figure of merit for the model's performance can be computed, and may be 
used to automatically estimate a good model order for the system.
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Listing A.7: OEModel interface (continued).
te m p la te c ty p e n a m e  type>

type m erit(const std::valarray<type>& y, const std::valarray<type 
>&l u) const;

vo id  merit(UDT*&. m, const UDT& y, const UDT& u) const;

The way OEModel stores its internal state is instructive.

Listing A.8: OEModel interface (continued).
private:

in t m_order_b; 
in t m_order_f; 
class Abstraction;
te m p la te c typ e n a m e  type> class Implementation; 
m u tab le  Abstraction* m_data;

}:

While data common to all input data precisions— the model orders— is stored 
trivially, the rest of the state can be real or complex, single or double pre
cision, depending on the nature of the input. OEModel stores a pointer to 
an implementation of the state, accessed through as the abstract base class 
of the implementations for various precisions. This model has the benefit of 
allowing v irtu a l functions to perform some of the odious type-checking tasks 
caused by the UDT.

Listing A.9: OEModel state abstraction.
class OEModel::Abstraction

{
public:
v irtu a l ~Abstraction() =  0; / /  abstract base class 
v ir tu a l Abstraction* cloneQ const =  0; / /  enable copy without 

knowledge o f exact type, like a UDT  
v ir tu a l void getTheta(UD T*&) const =  0; / /  accessors 
v ir tu a l void getF ilterB (U D T*&) const =  0; 
v irtu a l vo id  getF ilterF(UDT*&) const =  0; 
v ir tu a l vo id apply(UDT*& w, const UDT& u) const =  0; 
v ir tu a l vo id refine(const UDT& y, const UDT& u) =  0; 
v ir tu a l vo id m erit(U D T*&  m, const UDT& y, const UDT& u) const 

=  0 ;
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protected: / /  only derived classes can perform the following 
AbstractionQ;
Abstraction(const Abstraction«^);
Abstraction«^ operator=(const Abstraction«^);

};

Abstraction passes on all the accessors and mutators involving UDTs and 
hence type resolution via virtual functions; their overrides in types derived 
from Abstraction will support exactly one U D T type and can avoid switch- 
on-type blocks.

Abstraction does not support methods that are statically typed; these are 
only valid for a single Implementation type. This means that Implementation 
has a larger interface than Abstraction. It also stores the actual model data. 
Implementation in fact resembles OEModel— except that the class itself is 
templatised, not its methods, and the methods accept the model orders as 
arguments, passed to them from OEModel.

Listing A. 10: OEModel state implementation.
template<typename type> class OEModel::lmplementation : 

public OEModel::Abstraction
{
public:

ImplementationQ;
Implementation (const Implementation«^); 
virtual ~lmplementation();
Implementation«^ operator=(const Implementation«^); 
virtual Implementation* cloneQ const;
explicit lmplementation(const int& order_b, const int& order_f =  

order.b);
explicit lmplementation(const std::valarray<type>& theta, const int& 

order_b);
lmplementation(const std::valarray<type>& y, const std::valarray<type 

>& u, const int&  order_b, const int& order_f); 
virtual void getTheta(UDT*&) const; 
virtual void getFilterB(UDT*«S«i) const; 
virtual void getFilterF(UDT*&) const; 
void getTheta(valarray<type>&) const; 
void getFilterB(valarray<type>«^) const; 
void getFilterF(valarray<type>&) const;
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void apply(valarray<type>& w, const valarray<type>& u) const; 
void apply(UDT*& w, const UDT& u) const; 
void refine(const valarray<type>& y, const valarray<type>& u); 
void refine(const UDT& y, const UDT& u);
type merit(const valarray<type>& y, const valarray<type>& u) const; 
void merit(UDT*& m, const UDT& y, const UDT& u) const;

The data stored by the implementation serves several purposes. The model 
itself is stored in m_theta. m_matrix and m_vector are the raw products of 
the estimation method, allowing an estimate to be continued and refined. 
m_state is the state of the custom linear filter invoked by OEModel. (LinFilt 
supported only real coefficients at the time of development.)

Listing A .ll:  OEModel state implementation (continued).
private:

valarray<type> m.theta; 
mutable valarray<type> m_state;
/ /  /// ARX estimator *not* OE estimator !!
Matrix<type> rrumatrix;
Matrix<type> m_vector; 
std::valarray<type> m_history_y; 
std::valarray<type> m_history_u;

};

Several of the implementations of OEModeLs methods are instructive.

Listing A. 12: Progressive model estimator.
templatectypename type> void lmplementation<type>::refine(const 

valarray<type><^ y, const valarray<type>& u)
{

/ /  Solve Ax =  b for x where
/ /  A =  \s u m - { t= l }  ~N \ps i(t) \ps i' 'T (t)
/ /  b =  \sum _ {t= l}  "A/ \overline{\psi(t)}y(t)
/ /  and
/ /  \psi(t) — [  u(t— 1) \ldots u ( t-n -b )  y ( t—l )  \ldots y( t  — n_f) ]~T  
valarray<type> intermediate(m_theta.size()); 
valarray<type> temporary(m_theta.size()); 
for (unsigned int t  =  0; t <  u.size(); + + t)
{
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intermediate[std::slice(0, m_history_u.size(), 1)] =  m_history_u; 
intermediate[std::slice(m_history_u.size(), m_history_y.size(), 1)] =  

m_history_y;
temporary =  conj(intermediate);
/ /  accumulate A
for (unsigned int i =  0; i < m_theta.size(); + + i)  

m_matrix.column(i) + =  (temporary * intermediate^]);

m_vector.column(0) + =  (temporary * y [t]);

/ /  rotate psi

if (m_history_u.size() > 0)
{

m_history_u =  m_history_u.shift( —1); 
m_history_u[0] =  u [t];

}
if (m_history_y.size() > 0)
{

m_history_y — m_history_y.shift( —1); 
m_history_y[0] =  y[t];

}
}

Matrix<type> buffer;
TheCLAPACKSoHandle.SV(m_matrix, buffer, m.vector); 
m_theta =  buffer. column(O);

}

Listing A. 13: OEModel linear filter implementation.
templatectypename type> void lmplementation<type>::apply(valarray 

< type>& w, const valarray<type><^ u) const
{
w.resize(u.size()); 
if (m_theta.size() > 0)
{

for (unsigned int t =  0; t <  u.sizeQ; + + t)
{
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w[t] =  m_state[0]; 
m_state =  m_state.shift(l); 
m_state[std::slice(0, m_history_u.size(), 1)]

+ =  m_theta[std::slice(0, m_history_u.size(), 1)] * u[t]; 
m_state[std::slice(Or m_history_y.size(), 1)]

+ =  m_theta[std::slice(m_history_u.size(), 
m_history_y.size(), 1)] * w[t];

}
}
}

A .3 In terface

Listing A. 14: LineRemover interface.
# ifn def LINE_REMOVER_HH 
#define LINE_REMOVER_HH

^include <complex>
^include <valarray>
^include <vector>

^include " StateUDT.hh”

namespace datacondAPI

{

class LineRemover : public State

{

public:

/ /  override defaults

/ / :  Construct a line remover 
LineRemover(const doubled frequency, 

const std: :size_t<Sz factor,
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const std::size_t& order);

//: Constructs a line remover
LineRemover(const UDT& frequency, const UDT& factor, const 

UDT& order);

//: Copy a line remover
//Iparam : a — line remover to be copied
LineRemover(const LineRemover& a);

/ / :  Destructor 
~LineRemover();

/ / :  Assignment
//Iparam : a — line remover to be copied 
LineRemover& operator=(const LineRemover& a);

/ /  UDT functionality

/ / :  Deep copy
//Ire tu rn : Pointer to a deep copy o f the line remover 
virtual LineRemover* CloneQ const;

virtual ILwd::LdasElement*
ConvertTollwd(const CallChainÄ: Chain,

UDT::target_type Target =  UDT::TARGET_GENERIC)
const;

/ /  accessors
void getFilter(UDT*& b) const;

/ /  fit model

/ / :  (Re)Fit the line remover to system input and output
//Iparam : y — system output
//Iparam : u — system input
template<typename type>
void refine(const std::valarray<type>& y,
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const std::valarray<type>& u);

/ / :  (Re)Fit the line remover to system input and output 
//Iparam : y  — system output 
//Iparam : u — system input 
void refine(const UDT& y, 

const UDT& u);

/ /  predict

/ / :  Apply the line remover to system input to produce a prediction
//Iparam : w — prediction
//Iparam : u — system input
template<typename type>
void apply(std: :valarray<type>&i w,

const std::valarray<type>& u);

/ / :  Apply the line remover to system input to produce a prediction 
//Iparam : w — prediction 
//Iparam : u — system input 
void apply(UDT*& w, 

const UDT& u);

private:

LineRemoverQ; 

class Abstraction;

templatectypename type> / /  scalar only 
class Implementation;

double m_frequency; 
std::size_t m.factor; 

std::size_t m_order;

Abstraction* m_data;
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};

}

#endif / /  LINE-REMOVER_HH

Listing A. 15: LineRemover implementation.
^include <algorithm>
^include <clim its> //:todo: <limits>

^include <genera!/unimplemented_error.hh>

^include ’’fft.hh”
^include ’’ ifft.hh”
^include ’’ LineRemover.hh"
#include "OEModel.hh"
^include ” ScalarUDT.hh”
^include ” SequenceUDT.hh"
^include " Mixer.hh”
#include ” Resample.hh"
^include ” ShiftState.hh”

namespace datacondAPI

{
template<typename T >  struct complex-traits
{

typedef std::complex<T> complex_type; 
typedef T real-type;

};

template<typename T >  struct complex_traits<std::complex<T> >

{
typedef typename complex_traits<T>::complex_type 

complex-type;
typedef typename complex_traits<T>::real_type real-type;
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class LineRemover::Abstraction
{

public:

/ /  override defaults 

virtual ~Abstraction();

/ /  interface

virtual Abstraction* cloneQ const =  0; 

virtual void apply(UDT*& w, const UDT& u) =  0; 

virtual void getFilter(UDT*& b) const =  0; 

protected:

AbstractionQ;
Abstraction(const Abstraction^);

Abstraction^ operator=(const Abstraction^);

private:

I };
template<typename type>

class LineRemover::lmplementation : public Abstraction
{

public:

/ /  override defaults 

lmplementation();
Implementation (const Implementation^);
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virtual ~lmplementation();

Implementation«^ operator=(const Implementation«^);

/ /  interface

virtual Implementation* clone() const;

void refine(const std::valarray<type>& y, 
const std::valarray<type><^ u, 
const doubled frequency, 
const std::size_t& factor, 
const std::size_t& order);

virtual void apply(UDT*& w, 
const UDT& u);

void apply(std::valarray<type>& w, 
const std::valarray<type>& u);

virtual void getFilter(UDT*& b) const; 

private:

OEModel* m_model;

BandSelector* m_refine_y;
BandSelector* m_refine_u;

BandSelector* m_apply_y;
BandSelector* m_apply_u;

} :

LineRemover::LineRemover(const doubled frequency, const std:: 
sizejt& factor, const std::size_t& order)
: m_frequency(frequency)
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, mJactor(factor)
, m_order(order)
, m_data(0)

{
}

LineRemover::LineRemover(const UDT& frequency, const UDT& 
factor, const UDT& order)

try : m_frequency(dynamic_cast<const Scalar<double>&>( 
frequency ).GetValue())
, m _factor(dynamic_cast<const Scalar<int>&>(factor). 

GetValue())
, m_order(dynamic_cast<const Scalar<int>&>(order).GetValue

0 )

, m_data(0)
{
}
catch (const std::exception& x)
{

throw std::logic_error(std::string(” LineRemover::LineRemover: 
intercepted exception \ ”") + x.what() -f std::string(”\ ”” ));

}

LineRemover::LineRemover(const LineRemover& Ir)
: m_frequency(lr.m_frequency)
, m_factor(lr.m_factor)
, m_order(lr.m_order)
, m_data(lr.m_data ? Ir.m_data —>clone() : 0)

{
}

LineRemover::~LineRemover()
{

delete m_data;
}

LineRemover& LineRemover::operator=(const LineRemover& Ir)
{
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if (this !=  &lr)
{

m_frequency =  lr.m_frequency; 
m .factor =  I r.m .factor; 
m.order =  Ir.m.order; 
delete m.data;
m.data =  Ir.m.data ? Ir.m.data —>clone() : 0;

}
return *this;

LineRemover* LineRemover::Clone() const
{

return new LineRemover(*this);
}

ILwd::LdasElement* LineRemover::ConvertTollwd(const CallChain& 
Chain, UDT::target_type Target) const

{
throw General::unimplemented_error(” LineRemover:: 

ConvertTollwd is unimplemented” );
}

void LineRemover::getFilter(UDT*& b) const 
try
{

if (m.data)
{

m.data — >getFilter(b);
}
else
{

throw std::logic_error(" LineRemover::getFilter: no filter 
estimated ye t\n ");

}
}
catch (const std::exception& x)
{
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throw std::logic_error(std::string(” LineRemover::getFilter:
intercepted exception \ ” ” ) +  x.whatQ +  std::string(” \ ” ” ));

}

template<typename type>
void LineRemover::refine(const std::valarray<type>& y, const 

std::valarray<type>& u)
try
{

if (!m_data)
{

m_data =  new lmplementation<type>;

}
dynamic_cast<Implementation<type>&>(*m_data).refine(y, u, 

m_frequency, m jactor, m_order);
}
catch (const std::exception& x)

{
throw std::logic_error(std::string(” LineRemover::refine: intercepted 

exception \ " " ) +  x.what() +  std::string(” \ " " ));

}

void LineRemover::refine(const UDT& y, const UDT& u) 
try
{

if (const std::valarray<float>* p =  dynamic_cast<const std:: 
va larray<floa t>*>(&y))

{
if (const std::valarray<float>* q =  dynamic_cast<const

std::valarray<float>*>(&u))
{

refine(*p, *q);

}
else
{

throw std::invalid_argument(” LineRemover::refine: input 
types mismatch” );
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}
}
else if (const std::valarray<double>* p =  dynamic_cast<const

std::valarray<double>*>(&y))
{

if (const std::valarray<double>* q =  dynamic_cast<const
std::valarray<double>*>(&u))

{
refine(*p, *q);

}
else
{

throw std::invalid_argument(” LineRemover::refine: input 
types mismatch");

}
}
else if (const std::valarray<std::complex<float> > *  p =  

dynamic_cast<const std::valarray<std::complex<float> 
> *> (& y ))

{
i f  (const std::valarray<std::complex<float> > * q =

dynamic_cast<const std::valarray<std::complex<float> 
> *> (& u ))

{
refine(*p, *q);
}
else
{
throw std::invalid_argument(” LineRemover::refine: input types 

mismatch");
}

}
else if (const std::valarray<std::complex<double> > * p =  

dynamic_cast<const std::valarray<std::complex<double> 
> *> (& y ))

{
if (const std::valarray<std::complex<double> > * q =

dynamic_cast<const std::valarray<std::complex<double
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> > *> (& u ))
{
refine(*p, *q);
}
else
{
throw std::invalid_argument(" LineRemover::refine: input types 

mismatch” );

}
}
else
{

throw std::invalid_argument(" LineRemover::refine: 
unsupported types” );

}
/
catch (const std::exception& x)

{
throw std::logic_error(std::string(” LineRemover::refine: intercepted 

exception \ ” ” ) +  x.what() 4- std::string(” \ " " ));
}

template<typename type>
void LineRemover::apply(std::valarray<type>& w, const std:: 

valarray<type>& u)
try
{

if  (lmplementation<type>* p =  dynamic_cast<lmplementation< 
type>*>(m_data))

{
p — >apply(w, u);

}
else
{

throw std::logic_error(” LineRemover::apply: no model yet or 
type mismatch” );

}
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}
catch (const std::exception^ x)

{

}

throw std::logic_error(std::string(” LineRemover::apply: intercepted 
exception \ ” ” ) +  x.whatQ +  std::string(” \ ” " ));

void LineRemover::apply(UDT*& w, const UDT& u) 
try
{

if (m_data)
{

m.data —>apply(w, u);

}
else
{

throw std::logic_error(” LineRemover::apply: must estimate 
models before applying” );

}
}
catch (const std::exception& x)
{

throw std::logic_error(std::string(” LineRemover::apply: intercepted 
exception \ ” ” ) -f x.what() +  std::string(” \ ” ” ));

}

Li neRemover:: Abstraction:: Abstraction ()
{
}

LineRemover::Abstraction::Abstraction(const Abstraction^ a)
{
}

Li neRemover:: Abstraction:Abstraction ()
{
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}

LineRemover::Abstraction«^ LineRemover:: Abstraction ::operator=( 
const Abstraction«^ a)

{
if (this != & a)

{
}
return *this;

templatectypename type>
LineRemover::lmplementation<type>::lmplementation()
: m_model(0)
, m_refine_y(0)
, m_refine_u(0)
, m_apply_y(0)
, m_apply_u(0)

{
}

template<typename type>
LineRemover::lmplementation<type>::lmplementation (const 

lmplementation<type>& Iri)
: m_model(lri.m_model ? new OEModel(*lri.m_model) : 0)
, m_refine_y(lri.m_refine_y ? Iri.m_refine_y— >clone() : 0)
, m_refine_u(lri.m_refine_u ? Iri.m_refine_u —>clone() : 0)
, m_apply_y(lri.m_apply_y ? lri.m_apply_y->clone() : 0)
, m_apply_u(lri.m_apply_u ? Iri.m_apply_u —>clone() : 0)

{
}

templatectypename type>
LineRemover:: Implementation <type>::~lmplementation()

{
delete m_model; 
delete m_refine_y; 
delete m_refine_u;



144 APPENDIX A. LINE REMOVER IMPLEMENTATION

delete m_apply_y; 
delete m_apply_u;

}

templatectypename type>
LineRemover::lmplementation<type><^ LineRemover::

lmplementationctype>::operator=(const lmplementation< 
type>& Iri)

{
if (this !=  &lri)

{
m_model =  lri.m_model ? new OEModel(*lri.m_model) : 0; 
m_refine_y =  lri.m_refine_y ? Iri.m_refine_y—>clone() : 0; 
m_refine_u =  lri.m_refine_u ? Iri.m_refine_u — >clone() : 0; 
m_apply_y =  lri.m_apply_y ? Iri.m_apply_y — >clone() : 0; 
m_apply_u =  lri.m_apply_u ? Iri.m_apply_u — >clone() : 0;

}
return *this;

template<typename type>
LineRemover ■.:lmplementationctype>* LineRemover::lmplementation< 

type>::clone() const
{

return new lmplementationctype>(*this);
}

templatectypename type>
void LineRemover::lmplementationctype>::getFilter(UDT*&: b)

const
{

if (m_model)
{

m_model — >get Filter B(b);
}
else
{

throw std::inva!id_argument(" LineRemover::lmplementation<
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type>::getFilter: no filter yet” );
}

}

templatectypename type> void
LineRemover::lmplementation<type>::refine(const std::valarray<type

> &  y,
const std::valarray<type>& u, 
const doubled frequency, 
const std::size_t& factor, 
const std::size_t& order)

{

/ /  check input sanity

if fy.sizeQ !=  u.sizeQ)

{
throw  std::invalid_argument(" LineRemover::lmplementation< 

type>::refine: model input and output must be the same 
size” );

}

/ /  construct buffers (will be sized on first call)

std::valarray<typename complex_traits<type>::complex_type> 
banded_y;

std::valarray<typename complex_traits<type>::complex_type> 
banded_u;

if (!m_refine_y) / /  first call
{

m_refine_y =  new BandSelector(frequency, factor); 
m_refine_u — new BandSelector(frequency, factor); 
m_apply_y =  new BandSelector(frequency, factor); 
m_apply_u =  new BandSelector(frequency, factor);

}

m_refine_y—>apply(banded_y, y);
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m_refine_u — >apply(banded_u, u);

if  (m_model)
{

m_model — > refine(banded_y, banded_u);

}
else
{

m_model — new OEModel(banded_y, banded_u, order, 0);

}

tem plate<typenam e T, typename U> 
struct aggregator

{
void operatorQ(std::valarray<T>&, const std::valarray<U>&)

const;
};

te m p la te o  void aggregator<float, std::complex<float> >::
operatorQ(std::valarray<float>& out, const std::valarray<std:: 
complex<float> >&. in) const

{
for (std::size_t i =  0; i < out.sizeQ; -t-+i)
{

out[i] 4-= (in[i].real() * 2);
}

}

te m p la te o  void aggregator<double, std::complex<double> >:: 
operatorQ(std::valarray<double>& out, const std::valarray<std 
::complex<double> > &  in) const

{
for (std::size_t i =  0; i <  out.sizeQ; + -f i)
{

out[i] 4-= (in[i].real() * 2);
}

}
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t e m p l a t e o  void aggregator<std::complex<float>, std::complex< 
float> >::operator()(std::valarray<std::complex<float> >& out 
, const std::valarray<std::complex<float> >& in) const

{
out + =  in;

t e m p l a t e o  void aggregator<std::complex<double>, std::complex< 
double> >::operator()(std::valarray<std::complex<double> >& 
out, const std::valarray<std::complex<double> >& in) const

{
out + =  in;

template<typename type> void
LineRemover::lmplementation<type>::apply( 
std::valarray<type>& w, 
const std::valarray<type>& u)

{

if ('.m_apply_u || Im.model || )m_app)y_y)
{

throw std::logic_error(” LineRemover::lmplementation::apply 
Attempted to apply before estimating(refine)” );

}

std::valarray<typename complex_traits<type>::complex_type> 
banded_u;

std::valarray<typename complex_traits<type>::complex_type> 
banded_y;

std::valarray<typename complex_traits<type>::complex_type> y;

aggregator<type, typename complex_traits<type>::complex_type 
> aggregate;

m_apply_u —>apply(banded_u, u);
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m.model — >apply(bandecLy, banded_u); 
m_apply_y—>ylppa(y, banded_y); 
if (w.size() !=  y.size()) w.resize(y.size(), type()); 
aggregate(w, y);

}

template<typename type>
void LineRemover::lmplementation<type>::apply(UDT*& w, 

const UDT& u)
{

if (const std::valarray<type>* p =  dynamic_cast<const std:: 
valarray<type>*>(&u))

{
if (w = =  0)
{

w — new Sequence<type>();

}
if  (std::valarray<type>* q =  dynamic_cast<std::valarray< 

type>*>(w ))
{

apply(*q, *p);
}
else
{

throw std::invalid_argument(” LineRemover::
lmplementation<type>::apply: input type mismatch” )

}
}
else
{

throw std::invalid_argument(" LineRemover::lmplementation< 
type>::apply: input type mismatch” );

}

#define INSTANTIATE(type) \
\
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tem plate void LineRemover::refine(const std::valarray<type>&, 
const std::valarray<type>&);\

tem plate void LineRemover::apply(std::valarray<type>&, const std:: 
valarray<type>&);\

tem plate class LineRemover::lmplementation<type>;

INSTANTIATE(float);
INSTANTIATE(double);
INSTANTIATE(std::complex<float> ) 
INSTANTIATE(std::complex<double> )

# u n d e f INSTANTIATE

}

UDT_CLASSJNSTANTIATION(LineRemover,)



A ppend ix  B

M odel of a galactic  p o p u la tio n  
of continuous wave sources

The validity of the relatively complicated derivation and implementation was 
tested against a much simpler (but slower and less accurate) Monte-Carlo 
implementation for an ensemble of detectors and strains.

Listing B.l: Siderially-averaged response 
function result =  sidereal(detector, strain);
% SIDEREAL returns the average (over one sidereal day) of the square of 

the response of a detector to the strain. Note that its value is 
independent of detector longitude.

theta =  detector.theta; 
psi =  detector.psi;

A =  zeros(3,3);

A ( l , l )  =  sin(theta)C2.*(cos(psi)T2—sin(psi)T2);
A(l,2) — — 2.*sin(theta).*cos(psi).*sin(psi);
A(2,l) -  A( 1,2);
A(2,2) =  sin(psi)T2—cos(psi)T2;

B =  zeros(3,3);

B (1,1) =  sir»( psi). ^2—cos( psi) M2

151
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B(l,2) =  2.*sin(theta).*cos(psi).*sin(psi);
B(2,l) =  B (1,2);
B(2,2) =  sin(theta)./'2*(cos(psi)."2—sin(psi)."2);

C =  zeros(3,3);

C( 1,1) =  4.*sin(theta).*cos(psi).*sin(psi);
%C( 1,2) =  cos(psi)./'2 -  sin(psi)./'2;
C(l,2) =  (sin(theta).~2 +  l).*(cos(psi).Ä2 — sin(psi).~2); 
C(2,l) =  C(l,2);
C(2,2) =  — 4.*sin(theta).*cos(psi).*sin(psi);

D = zeros(3,3);

D(l,3) =  cos(theta).*sin(theta).*(sin(psi)."2—cos(psi)./'2); 
D(2,3) =  2.*cos(theta).*cos(psi).*sin(psi);
D(3,l) =  D(l,3);
D(3,2) =  D(2,3);

E — zeros(3, 3);

E( 1,3) =  — 2.*cos(theta).*sin(psi).*cos(psi);
E(2,3) =  sm(theta).*cos(theta).*(stn(psi)."2 — cos(ps\)./'2); 
E(3,1) =  E(l,3);
E(3,2) =  E(2,3);

F =  zeros(3,3);

F(3,3) =  cos(theta).Ä2.*(cos(psi).''2—sin(psi).Ä2);

A =  sum(sum(A.*strain));
B =  sum(sum(B.*strain));
C =  sum(sum(C.*strain));
D = sum(sum(D.*strain));
E =  sum(sum(E.*strain));
F — sum(sum(F.*strain));
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result =  (.75*A*A+.75*B*B+.25*C*C+D*D+E*E+2*F*F+.5*A*B+2
* A*F+2*B*F)*.125;
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