
D a ta A nalysis Infrastructure
for

G ravitational W ave A stron om y

By
Antony Charles Searle

December 2, 2004

A thesis submitted for the degree of Doctor of Philosophy
of The Australian National University

D ecla ra tio n

I certify that the work contained in this thesis is my own original research,
produced in collaboration with my supervisor—Dr Susan M. Scott. All ma
terial taken from other references is explicitly acknowledged as such. I also
certify that the work contained in this thesis has not been submitted for any
other degree.

Antony Charles Searle

l

A cknow ledgem ents

It was the best of times, it was the worst of times, it was the age of wisdom,
it was the age of foolishness, it was the epoch of belief, it was the epoch of
incredulity, it was the season of light, it was the season of darkness, it was
the spring of hope, it was the winter of despair, we had everything before us,
we had nothing before us, we were all going direct to Heaven, we were all
going direct the other way—in short, the period was so far like the present
period. that some of its noisiest authorities insisted on its being received, for
good or for evil, in the superlative degree of comparison only.

— Charles Dickens, A Tale of Two Cities.

These last few years have been the worst of my life: watching my mother
Christine slowly consumed by cancer, my brush with history in Washington
on a sunny Tuesday in September, and the very personal war on terror that
followed. So special thanks is due to the people who also made these years
the best of times: 1

Susan Scott (‘for Gochs sake, don’t say thatV), my indefatigable one-
woman supervisor, funding body, travel agent, motivator, defender, coach
and friend.

David McClelland, for his supervision, and for keeping the whole an
tipodean gravitational-wave show on the road.

Those who shared my offices and kept the air crackling with ‘eclectricity’:
Mike Ashley (and the Bone of Contention, and Other Tales), Benedict Cusack
('do you think it’s an ostrich farm?’), Ingrid Irmer (into every generation a
Computer Slayer is born), and Andrew Moylan ('I can’t work out what this
thing on my forehead is’). They left ‘Surly’ Searle less so than they found
him.

‘All quotes severely out of context.

IV

Those at my LIGO homes-away-from-home: at Caltech, Albert Lazzarini
(‘American-Indian and Indian-American don't commute. They’re, like, ih.'),
Kent Blackburn (‘I might engage in a little biological warfare of my own’),
Ed Maros (who insisted the fault lay with Tel), Phil Ehrens (who insisted
the fault lay with C ++), Isaac Salzman (who found the fault), the faultless
Peter Shawhan, and the whole LDAS team; at PennState, Sam Finn (‘when
I get home at night I need a dog to kick, and [name withheld] can be that
dog’) and Patrick Sutton (who drove all day to collect me after September 11.
then nearly hit an eighteen-wheeler on the way back); at UT-Brownsville, Joe
Romano (simply the nicest guy... ’nuff said), Warren Anderson (‘you can’t
be that gullible’), and John Whelan (who has said so many things so quickly
that I only remember the gist of them).

Philip Charlton, Australia's ‘mole’ in LIGO data analysis, fits most of
the above categories, and is a one-man cultural beachhead.

Anna Weatherly (‘can you say that again, slowly?’) for her counsel, Dr
Alison McIntyre for an efficacious pharmacopoeia, and Coca-Cola Amatil for
putting life’s necessities in a contour bottle.

My friends at the Canberra Speculative Fiction Guild, in particular the
asvnchronous Maxine MacArthur, Michael Barry (wink-wink, nod-nod. say-
no-more), the punctual Alan Price, and the lycanthromorphilic (?) Robbie
Matthews. I’m not sure if they reciprocate: ‘The CSFG would like to ac
knowledge the efforts of the following people:... Alan [sic] Searle... for addi
tional proofing.’— Elsewhere (ed. Michael Barry), CSFG Publishing.

I don't know Fred Raab very well, but this overheard meta-quote is too
good to pass up: ‘So my quote in her thesis is going to be that LIGO looks
like a sewage plant.'

Finally, my father Robert for his financial support and airport taxi service
in the wee small hours, my brother Damon for his technical support, and both
of them for being there with me through these interesting times.

A b stra c t

Interferometric gravitational wave observatories are coming on-line around
the world, sensitive to infinitesimal ripples propagating through space-time
itself. Data analysis assumes an unusual importance in gravitational wave
astronomy; all predicted gravitational wave signals from plausible astrophys-
ical scenarios will be at the margins of detectability for current instruments,
and even as sensitivities improve, the majority of signals will remain in this
regime.

The immediate goal of current observatories is to make the first widely-
accepted direct detection of gravitational waves; to this end, I have made sig
nificant contributions to the data analysis systems of leading observatories,
spanning design, implementation, testing, and characterisation of compo
nents ranging from basic signal-processing to tailored data conditioning op
erations. These components have been employed to produce several worlds-
best direct observational upper limits on gravitational wave phenomena.

In the longer term, as gravitational wave astronomy becomes a reality,
issues of how to best combine and expand the global network of observatories
will come to the fore. I have constructed a suite of models to explore opti
mal configurations of a global network of observatories for the detection of
a variety of proposed gravitational wave source populations, placing partic
ular emphasis on the contribution a proposed Australian gravitational wave
observatory would make to the global community.

C o n ten ts

1 Introduction 1
1.1 Review... 2
1.2 Publications.. 4
1.3 Overview.. 6

1 D a t a C ond i t ion ing 7

2 The LDAS data conditioning API 9
2.1 The LIGO Data Analysis System (LDAS) 10

2.1.1 A P Is .. 11
2.1.2 Command language.. 11

2.2 Design and evolution.. 13
2.3 Universal Data Type (U D T)... 16

2.3.1 Implementation.. 16
2.3.2 S c a la r ... 18
2.3.3 Sequence.. 20
2.3.4 M atrix ... 22
2.3.5 M e tad a ta ... 24

2.4 Signal processing... 25
2.4.1 Mixer ... 26
2.4.2 L inFilt... 31
2.4.3 R esam ple... 33

2.5 Actions .. 36
2.5.1 Call c h a in ... 37
2.5.2 Call chain function.. 38
2.5.3 m ix... 38
2.5.4 Simple actions... 40

vii

CONTENTSviii

2.6 Testing.. 41
2.7 Summary .. 45

3 Line rem oval 47
3.1 Motivation.. 49
3.2 Design.. 54
3.3 Characterisation.. 57

3.3.1 Injection.. 58
3.3.2 Coherence... 71

3.4 Stochastic background SI upper lim it.. 74
3.5 Conclusion... 79

II N etw ork S im u la tio n 81

4 N etw ork sim ulation 83
4.1 Geometrical considerations.. 84

4.1.1 Interferometric gravitational wave d e tec to rs84
4.1.2 Gravitational wave sources.. 85
4.1.3 Antenna pa tte rn s... 85
4.1.4 Implementation.. 87
4.1.5 Existing and proposed detectors................................... 90

4.2 Figures of m e r it ..90
4.3 Summary ... 91

5 G eographical configuration 93
5.1 Detection of binary inspiral events.. 94

5.1.1 Waveform and response ... 94
5.1.2 Analysis s tra teg ies .. 95
5.1.3 Detection ra te ... 97
5.1.4 Implementation.. 98

5.2 Results... 100
5.3 Conclusion... 104

6 C ontinuous-w ave sources 107
6.1 Introduction.. 107
6.2 Methodology ... 107

6.2.1 Implementation... 109

CONTENTS ix

6.3 Detection ...110
6.4 Galactic d istribu tion ...112
6.5 Conclusion...115

7 Sum m ary and future directions 117
7.1 Data conditioning...117
7.2 Network simulation..119
7.3 Conclusion...120

A Line remover im plem entation 121
A.l Band selection.. 121
A.2 Output-error m odel... 124
A.3 Interface... 131

B M odel of galactic p op u la tio n .. . 151

Bibliography 157

L ist of F igures

3.1 Lines in the power spectrum of the 4 km LIGO Hanford Ob
servatory...48

3.2 LHO (a) 4 km and (b) 2 km interferometers and (c) LLO
4km interferometer output power spectra (uncalibrated), be
fore (dotted) and after (solid) line removal..................................... 51

3.3 (a) Coherence of, and (b) accumulated coherence of, HLLSC-
AS_Q and H2:LSC-AS_Q before (dotted) and after (solid) line
removal, with the accumulated coherence of H1:LSC-AS_Q
and L1:LSC-AS_Q (dashed) provided for reference........................... 52

3.4 (a) LHO and (b) LLO voltage monitor channel (uncalibrated)
power spectra.. 53

3.5 Power spectrum of H1:LSC-AS_Q and added sinusoids before
(dotted) and after (solid) application of line removal to 300 ± 8
Hz with order 8. The power spectrum of the injected sinusoids
alone is dashed. The estimation era was GPS 714974400-
714975000 and the line removal era was GPS 714975000-714975600. 60

3.6 Power spectrum of HLLSC-AS-Q and added sinusoids (dashed)
before (dotted) and after (solid) application of line removal
to 308 ± 8 Hz with order 8. The estimation era was GPS
714974400-714975000 and the line removal era was GPS 714975000-
714975600. The line lies on the edge of the removal interval,
and is only slightly attenuated. Other frequencies are unaffected. 62

3.7 Power spectrum of H1:LSC-AS_Q and added sinusoids (dashed)
before (dotted) and after (solid) application of line removal
to 309 ± 8 Hz with order 8. The estimation era was GPS
714974400-714975000 and the line removal era was GPS 714975000-
714975600. The line lies outside the removal interval. No
frequencies are significantly affected...63

xi

LIST OF FIGURES

3.8 Power spectrum of H1:LSC-AS_Q before (dotted) and after
(solid) application of line removal to 309 ± 8 Hz with order 8.
The estimation era was GPS 714974400-714975000 and the
line removal era was GPS 714975000-714975600......................... 64

3.9 Power spectrum of H1:LSC-AS_Q before (dotted) and after
(solid) application of line removal to 300 ± 64 Hz with order
8. The estimation era was GPS 714974400-714975000 and the
line removal era was GPS 714975000-714975600. The line is
partially removed; note the noise floor has been perturbed. . . 66

3.10 Power spectrum of H1:LSC-AS_Q before (dotted) and after
(solid) application of line removal to 300 ±64 Hz with order 8.
The estimation era was GPS 714974400-714975000 and the
line removal era was GPS 714975000-714975600. The algo
rithm has introduced noise across its band of operation............ 67

3.11 Power spectrum of H1:LSC-AS_Q before (dotted) and after
(solid) application of line removal to 300 ± 8 Hz with order
1. The estimation era was GPS 714974400-714975000 and
the line removal era was GPS 714975000-714975600. The line
has been removed to the noise floor; there is little evidence of
broadening of the signal.. 68

3.12 Power spectrum of H1:LSC-AS_Q before (dotted) and after
(solid) application of line removal to 300 ± 8 Hz with order
128. The estimation era was GPS 714974400-714975000 and
the line removal era was GPS 714975000-714975600. Note
perturbation of the noise floor throughout the line removal
band.. 69

3.13 Power spectrum of H1:LSC-AS_Q before (dotted) and after
(solid) application of line removal to 300 ± 8 Hz with order
8. The estimation era was GPS 714974996-7149750(00 and
the line removal era was GPS 714975000-714975600. Note
perturbation of the noise floor throughout the line removal
band.. 70

3.14 Coherence of (a) H1:LSC-AS_Q. (b) H2:LSC-AS_Q and (c)
L1:LSC-AS_Q with their respective voltage monitor channels.
H0:PEM-LVEA2_V 1 and L0:PEM-LVEA_V1. before (dotted)
and after (solid) application of the line removal technique de
scribed in §3.3 72

LIST OF FIGURES xiii

3.15 Power spectra of the prediction for (a) H1:LSC-AS_Q, (b)
H2:LSC-AS_Q and (c) L1:LSC-AS_Q (solid). Corresponding
power spectra of the channels are provided for reference (dotted). 73

3.16 H1-H2 coherence with (red) and without (blue) the line re
moval stage of the stochastic pipeline.. 75

3.17 Per-data-segment (x) and total (horizontal lines) upper limit
results with and without line removal, showing no significant
differences. The dashed lines are 90% confidence bounds on
the (solid line) limit... 76

3.18 The power spectrum of the injected line (red) compared to
that of the 4 km Hanford interferometer (blue)........................... 77

3.19 Structural comparison of the search’s optimal filter (top) and
Hi and H2 spectra (bottom), showing that deep notches in
the filter correspond to spectral lines... 78

4.1 Antenna pattern (F2 4- F 2)(0,(p) of an ideal interferometric
gravitational wave detector with arms ex = x and ey = y. . . . 86

4.2 Antenna patterns of existing detectors (a) LIGO Hanford (both
instruments), (b) LIGO Livingston, (c) VIRGO, (d) GEO, (e)
TAMA and proposed detector (f) AIGO...89

5.1 Relative merit of an additional site to augment the LIGO Liv
ingston Observatory in a coincident analysis (lighter is better,
contours every 2.5%). The minimum detection rate is 41% of
the maximum... 101

5.2 Relative merit of an additional site to augment the LIGO Liv
ingston Observatory in a coherent analysis (lighter is better,
contours every 2.5%). The minimum detection rate is 89% of
tie maximum... 102

5.3 Relative merit of an additional site to augment a network con-
s.sting of the LIGO Hanford (4km) Observatory, the LIGO
Livingston Observatory and a 4km LIGO I instrument at the
VIRGO site, in a coincident analysis (lighter is better, con
curs every 2.5%). The minimum detection rate is 69% of the
maximum 103

XIV LIST OF FIGURES

5.4 Relative merit of an additional site to augment a network con
sisting of the LIGO Hanford (4km) Observatory, the LIGO
Livingston Observatory and a 4km LIGO I instrument at the
VIRGO site, in a coherent analysis (lighter is better, contours
every 2.59c). The minimum detection rate is 94% of the max
imum.. 104

6.1 Sidereally-averaged response to a uniform distribution of pul
sars of interferometers with varying latitudes and orientations—
effectively the familiar peanut antenna pattern averaged over a
rotation. The responses are independent of longitude; the ver
tical axis of the diagram is the Earth’s axis of rotation. From
left to right, latitudes of 0°, ±30°, ±60° and ±90°. From top
to bottom, orientations of 0, | and | from north. Note that
for the equatorial detector with a y orientation, an antenna
pattern null aligns with the Earth's axis of rotation so that no
sources from that direction could be detected..............................I l l

6.2 Model for the distribution of galactic pulsars, in celestial co
ordinates... 113

6.3 Detectable fraction (vertical) of a galactic pulsar population
against relative detection (horizontal) threshold for various de
tector latitudes and orientations (lines). The latitude and ori
entation have a minimal effect on an detector’s ability to ob
serve galactic neutron stars, which is almost wholly governed
by its baseline strain sensitivity.. 114

List of L istings

2.1 Example LDAS job.. 12
2.2 Universal Data Type class definition.. 16
2.3 UDT cast definition.. 17
2.4 An impossible Scalar definition... 19
2.5 Scalar<T> definition... 19
2.6 Scalar<T> conversions.. 20
2.7 Sequence<T> definition.. 21
2.8 Sequence<double> functionality.. 22
2.9 Matrix<T> definition.. 22
2.10 Matrix arithmetic operation... 23
2.11 Matrix proxy class .. 23
2.12 Matrix functionality... 24
2.13 Matrix functionality... 24
2.14 State class d e f in itio n ... 25
2.15 MixerState class d e fin itio n ... 27
2.16 Mixer class d e fin itio n ... 27
2.17 template method Mixer::apply defin ition 28
2.18 UDT method M ixer::apply... 29
2.19 Helper template method Mixer::applyAs....................................... 29
2.20 LinFilt class definition... 32
2.21 LinFiltState class d efin ition ... 32
2.22 Resample class definition... 34
2.23 ResampleState class definition.. 35
2.24 Valid data conditioning API commands.. 36
2.25 CallChain class definition... 37
2.26 CallChain::Function definition..38
2.27 MixFunction class definition.. 38
2.28 Mix action evaluator.. 39

xv

xvi LIST OF LISTINGS

2.29 Mixer class unit test... 41
2.30 Mix action (MixFunction class) unit t e s t ...42
2.31 LDAS mixing test job..44
4.1 Compute the response matrix of a gravitational wave detector. 87
4.2 Compute the polarisation basis of a source................................... 88
4.3 Compute the response of a detector to a given strain.....................88
4.4 Compute the response of a real observatory......................................90
A.l BandSelector class definition... 121
A.2 OEModel interface..124
A.3 OEModel interface (continued)..125
A.4 OEModel interface (continued)..125
A.5 OEModel interface (continued)..126
A.6 OEModel interface (continued)..126
A.7 OEModel interface (continued)..127
A.8 OEModel interface (continued)..127
A.9 OEModel state abstraction... 127
A. 10 OEModel state implementation... 128
A. 11 OEModel state implementation (continued)....................................129
A. 12 Progressive model estimator... 129
A. 13 OEModel linear filter implementation.. 130
A. 14 LineRemover interface..131
A. 15 LineRemover implementation... 134
B. l Siderially-averaged re sp o n se ... 151

C h a p te r 1

In tro d u c tio n

I f you need to use statistics, you ought to have done a better experiment.

— Lord Rutherford

If only it was that simple. Hundreds of millions of dollars have been poured
into the construction of phenomenally sensitive laser interferometers, kilo
metres long, pushing forward the state of the art in a number of fields and
breaking a litany of world records. Yet even with some of the most sensitive
instruments ever built, the gravitational waves we expect to receive will still
be at the very margins of detectability. Though sensitivities will improve,
the vast bulk of signals will remain in this marginal regime for the foreseeable
future. We cannot merely do a better experiment.

This leaves us with a need to use statistics. With the interferometers
orders of magnitude more sensitive to things as diverse as the alternat
ing current electrical supply, the moon, artillery exercises and tree-felling,
than to the infinitesimal gravitational waves emitted by colliding black holes
in nearby galaxies, the potential for false positives is immense—and unaf
fordable for a field whose very history begins with unsupportable claims.
The leading US-based Laser Interferometer Gravitational wave Observatory
(LIGO) has gone to the extraordinary length of building two vast twin in
struments at opposite corners of the continental United States, so that each
may independently validate any detection by the other. The raw output
of the instruments must be carefully vetoed, conditioned, filtered and com
pared to efficiently detect a signal—and all with a thorough understanding
of how these many processes affect the statistics of, and our confidence in,
the detection. Even with such extraordinary precautions, it is possible that

1

2 CHAPTER 1. INTRODUCTION

there may be no single, widely agreed-upon moment of discovery—only a
growing confidence, perhaps analogous to the recent process of discovery of
extra-solar planets.

In this context, this thesis addresses several issues involved in improving
the sensitivity of, and confidence in, the results of the emerging field of grav
itational wave astronomy. The first is the author's contribution to the LIGO
Data Analysis System (LDAS), including the design, implementation, and—
most importantly—validation of primitive signal processing operations that
will condition much of LIGO’s data output. The second is the development
and—critically—characterisation of a specific data conditioning technique to
remove spectral line interference. The third consists of the development of
models of the collective sensitivity of a global collaboration of gravitational
wave detectors, to determine the sensitivities of existing and future configu
rations to a variety of possible sources, and to develop recommendations as
to the configuration and expansion of the network. In the latter, the possible
contribution of an Australian gravitational wave observatory is given special
consideration.

1.1 R ev iew

In the ‘weak-field limit’ of general relativity where only small perturbations
hßU to the metric of flat space-time rjßL, = diag(—1.1,1,1) are considered, the
Einstein equations can be linearised. If we choose to work in the transverse
traceless gauge, where the coordinate system is defined by the trajectories of
freely-falling test particles, the linearisation produces a wave equation,

(v2-?SK=°- (u)
representing a plane wave of space-time curvature propagating at the speed
of light c.

The scale of gravitational waves can be estimated by considering the field
equation T = in analogy with Hooke's law P — Eh. The ‘stiffness'

4
of space-time. ~ j . is a vast number: correspondingly, a large stress-energy
density results in only a small curvature of space-time. Plausible astrophys-
ical sources of gravitational waves produce a strain of only h % 10~21 at
the Earth; possible laboratory sources are much weaker, only h ~ 10~39.

1.1. REVIEW 3

Only a literally astronomical expenditure of energy can produce a detectable
gravitational wave.

Until relatively recently, debate raged about the physical reality of grav
itational waves, as to whether any experiment could actually detect them.
Any such experiment would be embedded in space-time, and from the def
inition of the transverse traceless gauge used to formulate the problem, the
passage of a wave will not alter the coordinates of any test particle in the
experiment. However, it is not the coordinates of test particles but rather
the measured distance j yjg^dx^dx1' between two freely falling particles
that will be changed as the space-time metric gAi£, = 4- hßU is perturbed.
Gravitational wave detection consists of making this measurement.

The first generation of gravitational wave observatories were resonant
mass detectors, or Webber bars. Webber noted that a gravitational wave
passing through a solid body would change its length, and if the body was
resonant with the gravitational wave, each cycle would coherently add until
a detectable amplitude resulted. Although Webber's claims to have observed
gravitational radiation are discredited, over the intervening decades Webber
bars have grown in size, sophistication and sensitivity—now approaching the
10-21 level in narrow frequency bands—but they have not yet made any
detections.

The current generation of gravitational wave detectors is very different:
based, in a pleasing piece of historical serendipity, on the Michelson interfer
ometer, whose disproval of an aether drift was one of the cornerstone pieces
of experimental evidence for relativity.

A Michelson interferometer consists of a light source (in modern instru
ments, a coherent laser light source), a beam-splitter and two mirrors. Light
enters the beam-splitter, and is split into two beams. Each beam travels
down an ‘arm' of the interferometer, is reflected by an end mirror back to
the beam-splitter. The beam-splitter recombines the returning coherent light,
producing interference fringes. These fringes depend sensitively on the dif
ference in the lengths of the two arms—to a fraction of a wavelength of the
light—making the Michelson interferometer a sensitive measure of distance.

To detect gravitational waves with frequencies from 30 to 1000 Hz, the
optimal arm length of a Michelson interferometer is more than 100 km, so
that the light travel time is less than, but comparable to, (half) the period
of the wave, and the relative change in length induces as large an absolute
change in arm length as possible. Such an instrument cannot reasonably
be constructed on the curved surface of the Earth. However, the arms can

4 CHAPTER 1. INTRODUCTION

be ‘folded7 by adding an additional mirror in each arm to reflect the light
back and forth in the arm for either a fixed (delay line) or statistical (optical
cavity) amount of time, reducing the current generation of interferometers
to more manageable—but still challenging—arm lengths of a few kilometres.

The limiting factors on such a large and sensitive instrument range from
the profound (numerous quantum effects such as the uncertainty in the po
sition of the mirrors) to the absurd (seismic noise from road bumps), and
every attempt is made to limit their effect.

However, once the signal from the output photodetector has been digitised
and recorded, the problem of gravitational wave detection shifts from one of
engineering and experimental physics to the nascent field of data analysis.
The hard-won output of gravitational wave detectors must be scrubbed of
any remaining identifiable noise sources, and scoured for the faintest of grav
itational wave signals. This thesis addresses the problems of how to remove a
particular class of environmentally correlated noise from the output of grav
itational wave detectors, and, looking to the future, examines how best to
combine the output of detectors around the globe as the field moves from
gravitational wave detection to gravitational wave astronomy.

1.2 P u b lic a tio n s

Much of the work in this thesis relates to previous publications of its author.
Specifically, Chapter 3 expands upon (2, 4 and 14). and Chapters 4, 5 and
6 expand upon (3). (1. 5. 6. 8 and 9) contain information on the Australian
gravitational wave effort, and in particular the local establishment of a LIGO
Data Analysis System (LDAS) as described in Chapter 2. I am honoured to
have participated in the analysis for, and to be one of the many authors of,
the first LIGO observational results (7 and 10-14).

1. D McClelland. S Scott, M Gray, D Shaddock, B Slagmolen, A Searle,
D Blair, J Lu, J Winterflood, F Benabid, M Baker, ,1 Munch, P
Veitch, M Hamilton, M Ostermeyer, D Mudge. D Ottaway, C Hollitt.
“Second-generation laser interferometry for gravitational wave detec
tion: ACIGA progress", Class. Quant Grav. 18 4121-4126 (2001).

2. S Scott, D McClelland, A Searle, P Charlton. B Whiting. “A Gaus-
sianity measure for laser interferometer data". Proc. Ninth Marcel

1.2. PUBLICATIONS 5

Grossmann Meet. Gen. Rel. (eds. V Gurzadyan, R Jantzen, R
Ruffini), World Scientific Singapore, 1919-1920 (2002).

3. A Searle, S Scott and D McClelland, “Network sensitivity to geo
graphical configuration” , Class. Quant Grav. 19 1465-1470 (2002).

4. A Searle, S Scott and D McClelland, “Spectral Line Removal in the
LIGO Data Analysis System (LDAS)” , Class. Quant Grav. 20 S721-
S730 (2003)

5. J Jacob et al, “Australia’s Role in Gravitational Wave Detection” , Pub.
Astro. Soc. Aust. 20 223-241 (2003)

6. M Gray et al, “ACIGA: Status Report” , Proc. SPIE (Gravitational-
Wave Detection; eds. M Cruise, P Saulson) 4856 258-269 (2003)

7. B Allen et al, “Upper limits on the strength of periodic gravitational
waves from PSR J 1939+2134” , Class. Quant Grav. 21 S671-S676
(2004)

8. S Scott, A Searle. B Cusack and D McClelland, “The ACIGA Data
Analysis Programme” , Class. Quant Grav. 21 S853-S856 (2004)

9. L Ju et al, “ACIGA's high optical power test facility” , Class. Quant
Grav. 21 S887-S893 (2004)

10. B Abbott et al, “Detector Description and Performance for the First
Coincidence Observations Between LIGO and GEO", Nuc. Inst. .4
517, 154-179 (2004)

11. B Abbott et al, “Setting upper limits on the strength of periodic gravi
tational waves from PSR J1939+2134 using the first science data from
the GEO 600 and LIGO detectors", Phys. Rev. D 69. 082004 (2004)

12. B Abbott et al, “First upper limits from LIGO on gravitational wave
bursts” , Phys. Rev. D 69, 102001 (2004)

13. B Abbott et al. “Analysis of LIGO data for gravitational waves from
binary neutron stars", Phys. Rev. D 69. 122001 (2004)

14. B Abbott et al, “Analysis of first LIGO science data for stochastic
gravitational waves” . Phys. Rev. D 69. 122004 (2004)

6 CHAPTER 1. INTRODUCTION

1.3 O verview

Part I deals with the software infrastructure for the analysis of LIGO data
throughout this decade. Chapter 2 gives an overview of the LIGO Data
Analysis System (LDAS) and details the implementation and validation of
the basic elements of the data conditioning A PL including its primitive signal
processing operations. Chapter 3 considers the development of a data condi
tioning tool to remove spectral line interference: its implementation within
the data conditioning API using the functionality of Chapter 2, validation of
its correctness, and characterisation of its ability to improve the recovery of
gravitational wave signals.

Part II deals with the simulation of global networks of gravitational wave
detectors. Chapter 4 presents a basic formalism for the analyses. Chapter 5
determines the optimal location for new observatories to supplement existing
networks, for the case of a uniform population of binary inspiral events de
tected by coincident or coherent analysis. Chapter 6 considers the effects of
observatory latitude on the detector’s sensitivity to a population of galactic
neutron stars.

P a r t I

D a ta C ond ition ing

7

C h ap te r 2

The LDAS d a ta cond ition ing
A PI

Shouldn't acronyms be expanded in titles?

— Katie Weir

The light amplification by stimulated emission of radiation interferometer
gravitational-wave observatory data analysis system data conditioning appli
cation procramming interface?

— Antony Searle

This chapter is intended to serve a dual purpose: first, to familiarise the
reader wit.r the elements of the data conditioning API utilised by the im
plementation of the line removal technique in Chapter 3; second, to provide
a guide to the 'design and evolution’ of the data conditioning API for its
future mahtainers and contributors. The elements referred to in Chapter 3
are largely among those to which the author made substantial contributions,
and, happly, are illustrative of the system as a whole.

We begin with a brief survey of LDAS, noting in particular the posi
tion and finction of the data conditioning API within it. followed by a dis
cussion of the motivating factors behind the data conditioning API itself.
The devekpment has proceeded in parallel with the commissioning of the
LIGO instillments, meeting milestones to facilitate engineering and science
'runs’, incliding 'Mock Data Challenges’ (MDCs) consisting of integration
and stress esting.

9

10 CHAPTER 2. THE LDAS DATA CONDITIONING API

The code listings presented in this chapter have been edited (often ex
tensively) for clarity. Unless otherwise noted, the original code is publicly
available from the LDAS repository [lj. Brief notes on the C + + language
have been included in the text as an aid to interpreting the listings; for an
authoritative introduction to the C ++ language, we recommend [2],

Disclaim er The author is a significant, but not the sole or even primary
contributor to the data conditioning API, which is a collaborative effort be
tween many contributors from LSC institutions, coordinated by the Califor
nia Institute of Technology.

2.1 T he LIGO D ata A nalysis System (LDAS)

To search for gravitational wave signals in noisy data optimally (in the theo
retical sense) is, in general, computationally expensive. In practice, approx
imately optimal methods are used; their sensitivity is limited by available
computational cycles, memory or network bandwidth. As the instruments
continuously acquire data, this processing must occur in real time, or an
unmanageable backlog will result.

The need for continuous real-time computation ruled out the use of gen
eral purpose supercomputing resources. Instead LIGO elected to develop a
custom system to run on its own hardware.

An LDAS implementation runs on a heterogeneous network of Sun or x86
Linux servers coupled to a Beowulf cluster of inexpensive commodity PCs.
LDAS is responsible for acquiring on the order of a terabyte of information
from the observatories daily and caching it locally, producing a reduced data
set (RDS) for transfer to an archive and other LDAS implementations, and
pre-processing the data and managing the specific parallel codes that search
the data for gravitational wave signals.

In the course of this project, an LDAS implementation has been main
tained at The Australian National University (AXU) by the author, first
on hardware loaned from the Pennsylvania State University, and currently
on the ACIGA Data Analysis Cluster (ADAC). a purpose-built local LDAS
system.

2.1. THE LIGO DATA ANALYSIS SYSTEM (LDAS)

2.1.1 A P Is

11

LDAS software is implemented as a number of Application Programming In
terface (API) libraries of compiled C++ code, which are called by interpreted
TCL (Tool Command Language [3]) script drivers. The term ‘API’ has also
come to refer to the process relying primarily on a particular API library.
Each API typically resides on a different machine; they communicate with
each other over a network.

LDAS jobs are typically configured as a ‘pipeline’. Data is read into the
system by one API, then passed along to another that processes it and passes
it along to another API.

The manager API oversees the LDAS system. It receives incoming user
commands and passes them on to the relevant API. It is responsible for start
ing and stopping the other APIs and regularly polls their state, restarting
any that have crashed or become unresponsive.

The disk cache API maintains a list of the data files available to the LDAS
system.

The frame API responds to queries for data specified by time and channel,
and queries the disk cache API for the pertinent files. It then reads the files
to extract segments of the channels, concatenates the data together, and, if
necessary, converts the data to the requested sampling rate, before passing
it on.

The data conditioning API processes data received from the frame API
before passing it on to the wrapper API (or another target). It uses a flex
ible command language to apply a broad range of built-in signal-processing
actions.

The wrapper API manages the parallel search codes, providing a 'wrap
per’ around an off-the-shelf implementation of the Message Passing Interface
(MPI) [4] standard for parallel computation. It provides assistance for the
common tasks of input, output and load-balancing.

(There are other APIs—most notably the database-wrapping metadata
API—that do not concern us at this time.)

2.1.2 C o m m an d language

Once an LDAS system has been successfully initialised by the manager API,
the manager API will listen for incoming 'jobs’, then invoke the appropriate
APIs to perform the job. Each job contains a username and password for

12 CHAPTER 2. THE LDAS DATA CONDITIONING API

authentication purposes (the manager API maintains its own structure of
user accounts and permissions), and the email address of the user, to which
a message containing (the URL to) the results of the job (or a diagnostic mes
sage) are sent. Often, the 'user' is in fact a driver program. (Jobs are often
written as TCL scripts; when executed they can substitute in values derived
from arguments or environment variables and then submit themselves.)

Listing 2.1: Example LDAS job.
IdasJob {

— name acsearle
— password *******
—email acsearle@localhost

}{
dataPipeline
—framequery {

{ R H {} 714975000-714975001 Adc(Hl:LSC-AS_Q!resample!8!) }
}
—output { ilwd ascii }
—aliases { h 1 = HI; }
—datacondtarget { datacond }
— algorithms {

x = slice(hl, 0, 1024, 1); # data, start, count, stride
output(x,_,x,x,x);

}

The type of job (in this case, dataPipeline) dictates which named options are
required.

The —framequery option lists the data that will be required by the job.
(The data type is R, Taw', and the observatory is H. Hanford.) Xo files,
{}, are specified; these will be automatically determined by the frame API.
The ‘era' requested is the 1 second interval between GPS times 714975000-
714975001. The frame API will seek the Adc (analog-to-digital) channel
named H1:LSC-AS_Q (the output of the 4 km interferometer); the postfix
!resample!8! instructs the frame API to downsample the channel by a factor
of 8 (in the case of HLLSC —AS_Q. from 16384 Hz to 2048 Hz).

The —aliases option assigns human-readable aliases to the often-long
channel names. In this case the concise alias ;hl' is associated with the
channel whose name contains the substring ‘H1‘.

2.2. DESIGN AND EVOLUTION 13

The target for the output of the data conditioning API is the data con
ditioning API itself, -datacondtarget { datacond }, which causes its output
to be written to disk. (To conduct searches the output would be sent to the
wrapper API.)

The -output format will be ilwd ascii, a human-readable (ASCII-encoded)
version of the XML-derivative Internal LightWeight Data (ILWD) format
used by LIGO.

The —algorithms option is where the data conditioning API command
language is embedded. It consists of a series of C- or MATLAB-like statements
forming a fully programmable signal-processing pipeline. (In this case, it
slices off the first 1024 elements of the input data into the variable x and
outputs it.) It is the implementation of this functionality that will concern
us for the rest of this chapter.

2.2 D esig n a n d e v o lu tio n

The original design for the data conditioning API is encapsulated in [5]. The
seeds are to be found there of the issues that would come to dominate its
development.

The data conditioning API library is written in ISO C ++ . The rationale
given in [5] mentions its C heritage, the (then recent) ANSI/ISO standardi
sation of the language, and the benefits of its object-oriented features. The
primary motivation is one of efficiency: C + + is a compiled language, with
mature optimisers, and typically runs faster and uses less memory than inter
preted languages. Moreover, it permits higher-level abstractions (and thus
has better prospects for reuse and maintenance) than C while maintaining,
bv design, ’95%! of C's performance; this is a consequence of (its designer)
Stroustrup;s “you don't pay for what you don't use” philosophy [2] and was
perhaps the leading factor in its widespread adoption. (Counter-intuitively,
the combination of C + + ’s template and inline features can produce code
that is faster than C, by shifting some computation from run-time to compile
time [6].)

Though the standardisation of C + + represented a great step forward,
the standard itself differed significantly from existing practice.1 Some use
ful and significant parts of the standard proved pathologically difficult for

1 ANSI/ISO C++ committee member Bruce Eckel later referred to the process as lan
guage design “by thought experiment".

14 CHAPTER 2. THE LDAS DATA CONDITIONING API

vendors to implement. It was not until late 2002 that a compiler was finally
released that could reasonably claim compliance to the standard; the difficul
ties experienced by its implementers have been held up as reason to amend
certain features in the next iteration of the standard (the C++-0x standard,
expected sometime in the middle of this decade). Throughout the period
of development discussed here (2000-2003 inclusive) the GNU C + + com
piler used by LDAS has improved dramatically, but much of the code base
has been impaired by this shifting foundation. (Perhaps the most obvious
sign of this is the persistence of the once-necessary evil of explicit template
instantiations.2)

Compounding the problem of a changing language implementation, the
C++-97 standard also spawned a change in the C + + programming idiom.
Meyers laments in his foreword to Alexandrescu [7] that the C + + commu
nity’s understanding of templates has been undergoing ‘'dramatic change”
for a decade. Similar changes in thinking on exception specifications and
other features have also occurred. These new features and idioms could have
been helpful in the design and implementation of LDAS. but most were not
even conceived of. let alone widely known, at that time. (Many of these
techniques appear in [7] and the useful Boost library [8], some parts of which
are proposed for inclusion in C++-0x.)

The LDAS model of an API as a compiled library driven by an inter
preted script has several benefits. The library performs specific well-defined
tasks quickly and efficiently at the cost of flexibility (in the sense of rapid
development). Complementarity, the script may be rapidly altered to make
use of that functionality in different ways.

The data conditioning API inherited this two-tiered model from the de
sign of LDAS as a whole, but in its particular case the model caused problems.
This framework is most applicable when the functionality of the library is
stable, and the interface it presents to the script is correspondingly stable,
concise, and well-defined. The requirements placed on the data conditioning
API meant that these conditions were not consistent with reality. The gen
erality of the operations required by the data conditioning API—effectively
the implementation of a numerically-oriented programming language some
what like MATLAB—caused an explosion in the number of data types3 and

2 Not, a search template!
3A data type can be thought of as a collection of bits, avd assertions about what the

bits represent. For example. 32 identical bits may represent different numbers depending
on if their type is int (integer) or float (floating point real). Much of C++'s power is

2.2. DESIGN AND EVOL UTION 15

operations that had to be implemented in C++ and exposed to and handled
by the scripting layer.

It was realised at the first Mock Data Challenge that this model of de
velopment was unsustainable. The first step in fixing the problem was the
rapid development of a ‘universal data type’, so that only one type needed
to be exposed to the scripting layer. It was followed by the adaptation of
existing signal-processing operations to a new call-chain framework that is
effectively a simple virtual machine. The involvement of the scripting layer
in the implementation of the data conditioning pipeline was reduced until it
merely parsed input (it still performs an important role in initialisation and
output).

The problem of data typing, or more specifically, the problem of how
to efficiently implement the un-typed data conditioning API command lan
guage in strongly typed C++, came to dominate the implementation, and
has not yet been adequately addressed. Development at the moment relies
at least partially on the brute-force handling of the multiplicity of combina
tions of operations and data types. This leaves the implementation with a
fundamental scalability problem.

It is not readily apparent (to the author, at least) at this time how the
original design could have been implemented in a significantly superior way.
Radical changes in the design could be supposed to fix some or all of the
problems that were encountered, but there would be no guarantee that they
would not introduce their own issues. Part of the problem is due to the well-
known issue of multiple dispatch (run-time polymorphic behaviour on more
than one type), an issue not addressed by C++ (or most modern languages).
The adoption of more modern C++ techniques would undoubtedly improve
conciseness and reduce repetition, but would not in itself address the fun
damental scalability issue. No such proposal has yet merited the large-scale
overhaul of what is, after all, a working code base.

It should be noted that the above discussion is in some sense an argument
over aesthetics (though it does affect the practicality of future expansion).
The problems are not apparent to the user, only the developer. In particular,
a stringent testing regimen ensures that the results produced by the data
conditioning API are correct.

obtained from utilising the assertions provided by type information at compile time to
avoid the expense of considering those assertions at run time.

16 CHAPTER 2. THE LDAS DATA CONDITIONING API

2.3 U n iv e rsa l D a ta T y p e (U D T)

The Frame data format of LIGO and Virgo, and the ILWD format of LDAS.
support a wide range of data types: 8-, 16-, 32- and 64-bit integers, 32- and
64-bit floating point real numbers, and 64- and 128-bit complex numbers
(composed of pairs of reals). The data conditioning API must be capable of
operating on all of them, either singly (scalars) or in (homogeneous) arrays
(vectors, matrices, and higher dimensional arrays). This means that LDAS
must support over a dozen types. When metadata is considered—for ex
ample, decorating a vector with information declaring it to be a time series
of a particular sample rate and start time—the number of types becomes
immense.

The ‘universal data type’, or UDT, is intended to hide all these types
behind a common interface. Only those operations which need to know the
exact type of a UDT will have to look beyond the interface. Much of the data
conditioning API implementation can remain oblivious to the exact nature
of the data flowing through it.

2.3.1 Im p le m e n ta tio n

The inheritance mechanism of C + + is exactly the mechanism required for the
implementation of UDT. The UDT is a base class exposing those operations
common to its derived classes (the data types). Each data type ‘is-a’ UDT,
as a sedan ‘is-a' car: they are said to inherit from it.

The interface of UDT is the intersection of the interfaces of all its pos
sible derived classes, and is necessarily ‘thin', consisting only of creation,
destruction, copying, and methods to assist in the resolution of the derived
class.

Listing 2.2: Universal Data Type class definition.
class UDT
{
public:

virtual ~UDT(); / / destroy
virtual UDT* CloneQ const = 0; / / (deep) copy
template<class T> static bool lsA(const UDT& In); / / is it really

type T?

2.3. UNIVERSAL DATA TYPE (UDT) 17

template<class T > static T& Cast(UDT& In); //a ccess it as a type
T (or throw an exception)

/ / . . . (omitted)
};

In this listing, the first line opens the definition of class UDT. circumscribed
by braces {•••}• The keyword public declares all which follows to be uni
versally accessible (the default is private, meaning that only the class imple
mentation itself has access).

The class itself (in the simplified version we present) consists only of
methods, and has no data members. A method is a function that is a member
of the class; its full name is prefixed with the class name, as in UDT::Clone,
and it can only be invoked on an instance of UDT, as in my_udt.Clone(),
in which the method receives my_udt as the implicit ‘zeroth’ argument this.
(The static keyword indicates a method that is associated with a class, but
is not invoked on an instance of that class.)

The virtual destructor virtual ~UDT() cleanly destroys the UDT instance
on which it is invoked. The virtual keyword indicates that the method may
(should) be overridden by derived classes; derived classes will replace the
UDT method with a method that can cleanly destroy the particular imple
mentation of that derived type. Even when the UDT is destroyed in a context
that knows nothing about the derived type, the correct method will be called.

The deep copy method virtual UDT* CloneQconst = 0 makes a copy of
the UDT that is aware of the particular derived type, just as is the virtual
destructor is. The method returns a pointer, UDT*, to a copy of the derived
type instance created by the new operator. The const keyword indicates that
the original is unaffected by the copying process. The = 0 syntax indicates
that the method may not be supplied by UDT; this makes the method pure
virtual and the UDT class abstract—UDT cannot be instantiated, and derived
types must override Clone. (Ideally the virtual destructor should also be
pure.)

The template<class T > methods IsA and Cast are examples of generic
code. Many data types may inherit from UDT; we cannot (and should not)
write specific code to check each case. Instead we note that the code to
check a particular case differs only in the particular type for which we wish
to check. The template keyword allows us to write a generic definition that
works for all types by writing it in terms of the template parameter ‘T \ (The
dynamic_cast keyword performs the validation and cast.)

18 CHAPTER 2. THE LDAS DATA CONDITIONING API

Listing 2.3: UDT cast definition.
template<class T > T& UDT::Cast(UDT& a) \
{

return dynamic_cast<T&>(a); \
}

The IsA cT > method allows us to check if a UDT instance is really an instance
of class T (returning a boolean true or false), and the Cast<T> method
allows us to access the class T instance itself. If we attem pt to perform a bad
cast—if the UDT is not a T —a bad_cast exception is thrown at runtime.
This can be avoided by checking first with lsA<T>.

Cri t ique

The UDT as presented above is textbook object oriented programming (OOP).
As such, it is open to the criticisms of C ++ 's implementation of OOP. Clone's
use of raw pointers is potentially dangerous: the innocuous statement ‘my_udt
.CIone();! is valid but results in a memory leak. The default and copy con
structors should be protected (so that only derived classes may call them)
and the assignment operator explicitly left undefined as their default be
haviour will make slicing (copying or assigning a more derived class to a less
derived class) possible [9]. Other implementations of OOP, for example Java,
already have a universal base class from which all classes are defined. C ++
eschews this approach as introducing unacceptable overhead; the slicing and
pointer issues arise from similar considerations.

The formulation of IsA and Cast as static methods taking a UDT argument
rather than plain methods or helper functions is bizarre; however, at one time
it was a necessary work-around for an equally bizarre compiler error.

A ’better' UDT would probably adopt the pomter-to-implementation (‘pim
ple') idiom. The current arrangement would be wrapped by a new handle
class with conventional copying semantics, eliminating the problem of the
user dealing directly with slicing and pointers. The handle could be made
smart [7, 10] to permit lazy copying, eliminating an issue we will encounter
in §2.4.

2.3.2 Scalar
To represent a scalar value, one must derive a class from UDT. There are
many kinds of scalar values—integers, reals, and complex numbers, repre-

2.3. UNIVERSAL DATA TYPE (UDT) 19

sented at various precisions—yet they all have the same basic requirements.
We can represent this commonality using generic coding, templatising Scalar
on an unknown type T.

The design of Scalar presents an interesting problem. One choice denied
to us is to inherit from the unknown type T, and thus inherit its interface, so
that an object of type Scalar<T> could be used wheresoe’er a T is expected.

Listing 2.4: An impossible Scalar definition
templatectypename T>

class Scalar : / / inherits from
public UDT, / / a n d
public T

{
/ / . . . (omitted)

};

We cannot do this because at least some of the types we will use will be
basic, such as int and float, which are not classes and cannot be inherited
from. (Making basic types full classes would impose performance overhead
in common cases. Java, for example, faces the same trade-off, but makes the
opposite decision.) Moreover, even for the types that are classes (complex
<f!oat> and complex<double>) derivation is problematic as they were not
intended to be used as base classes, do not have virtual destructors, and thus
have the potential for undefined behaviour.

Instead we must rely on implicit and explicit conversions between Scalar
< T > and the type T:

Listing 2.5: Scalar<T> definition.
template<typename T>

class Scalar :
public UDT

{
public:

explicit Scalar(T); / / explicit conversion from T
virtual ~Scalar(); / / override
virtual Scalar* CloneQ const; / / override
operator T&(); / / implicit conversion to T
operator const T&() const; / / implicit conversion to const T
const T GetValueQ const; //accessor

20 CHAPTER 2. THE LDAS DATA CONDITIONING API

void SetValue(const T&); / / mutator
/ / . . . (omitted)

private:
T m_value; / / encapsulated value

};

The constructor accepting a T defines a conversion from an instance of T to an
instance of Scalar<T>. As T matches almost any type (precisely, any copy-
constructible type) it is declared explicit to prevent its implicit application
by the compiler in situations where the programmer did not explicitly request
it. An implicit conversion such as this would allow anything to be converted
into its Scalar equivalent, which ‘is-a’ UDT; this would subvert the process
of compile-time error checking.

The implicit conversion to a reference to the encapsulated T instance
is defined by operator T& (and its const variant; which version is called
depends on the context). As it is implicit, the compiler has license to convert
a Scalar<T> to a T wherever it finds it expedient to do so; most commonly
where a Scalar<T> is passed as an argument to a function expecting a T.

Listing 2.6: Scalar<T> conversions.
Scalar<complex<double> > z(complex<double>(—1., 0.)); / / explicit

conversion from complex to scalar
sqrt(z); / / implicit conversion from scalar to complex to use complex

square root
z.realQ; / / error: ‘real’ undeclared
complex<double>(z).real(); / / conversion made explicit

Implicit conversion does not occur everywhere that we might hope; for ex
ample, complex<T> defines methods real and imag that we cannot invoke on
a Scalar<complex<T> > without explicitly invoking the conversion.

For this reason, we also provide traditional accessor and mutator methods
to get and set the wrapped value. Note that GetValue does not change the
value, and is thus const: SetValue does change the value, and is non-const.

2.3.3 Sequence
The inapplicability of implicit conversion to many cases makes the encapsu
lation model of Scalar<T> inapplicable to types that define frequently used
methods (complex<T> is itself a marginal case). Sequence types fall into
this category.

2.3. UNIVERSAL DATA TYPE (UDT) 21

The basic C++ sequence type is the array. Inherited from C, it is an
inconvenient and perilous language construct. The C++ Standard Tem
plate Library (STL) supplies a wide range of container types to replace it;
its valarray<T> [2] is targeted at numerical computation. The C++ stan
dard allows implementers unusual latitude in the valarray<T> specification
to facilitate the implementation of aggressive optimisation. It provides fast
vector arithmetic and BLAS (Basic Linear Algebra Subprograms)-like [11]
subsequences.

As valarray<T> is a class, we may inherit from it as well as UDT when
we design Sequence<T>, an option which we had to reject for Scalar<T>.
(Note that valarray<T> does not include a virtual destructor, so unfortu
nately there is the potential for undefined behaviour in the unlikely event
of a user destroying a Sequence<T> as a valarray<T>.) This way, Sequence
<T> automatically inherits most of valarray<T>’s interface, such as the
subscript operator[] ’ and the size method. (Unlike many OOP languages
C++ supports inheritance from multiple base classes.)

Listing 2.7: Sequence<T> definition.
template ctypename T>

class Sequence :
public UDT,
public valarray<T>

{
public:

Sequence(size_t n); / / construct with n (default) elements
Sequence(const T& x, size_t n); / / construct with n copies of x
Sequence(const valarray<T>&:); / / implicit conversion from valarray
virtual ~Sequence(); / / override
virtual Sequence* CloneQ const; / / override
/ / ... (omitted)

};

Constructors are not inherited, so much of the class definition is concerned
with replicating the functionality of valarray<T>’s suite of constructors. It
is not necessary to declare the implicit conversion from valarray<T> explicit
as the pattern valarray<T> only matches valarrays. The implicit conversion
the other way is provided by inheritance; every Sequence<T> instance ‘is-a:
valarray<T> by definition.

22 CHAPTER 2. THE LDAS DATA CONDITIONING API

The inherited functionality allows us to invoke all the methods of valarray
<T> on Sequence<T>:

Listing 2.8: Sequence<double> functionality.
Sequence<double> a(3); / / a sequence of 3 elements
a[a.size() — 1] = 1.0; / / set the last element

2.3.4 M a trix

There is no type in the STL representing an n x m matrix; we follow the
suggestion in Stroustrup [2] and implement a generic Matrix<T> class using
a packed valarray<T> of nm elements.

Listing 2.9: Matrix<T> definition.
template<class T>

class Matrix :
public UDT

{
public:

Matrix(size_t rows, size_t columns); / / rows— by—columns matrix
virtual “MatrixQ; / / override
virtual Matrix* CloneQ const; / / override
size_t rows() const; / / accessor
size_t columnsQ const; / / accessor
/ / . . . (omitted)

private:
valarray<T> m.data; / / representation
size_t m_rows; / / dimensions
size_t m_columns;

};

Internally the representation is straightforward: two size_ts (non-negative in
tegers) represent the dimensions n and m of the matrix; the elements are
packed into a valarray<T> (the packing is F ortran- rather than C-ordered
to facilitate the use of CLapack (12]). The dimensions are set on construc
tion and may be checked with the rows() and columnsQ accessors.

As Matrix<T> inherits only from UDT we must explicitly dehne much of
its interface by hand. Many operations can be implemented in terms of the
corresponding valarray<T> operations; others can be handled by CLapack .

2.3. UNIVERSAL DATA TYPE (UDT) 23

Listing 2.10: Matrix arithmetic operation.
Matrix& operator+=(const Matrix& right)
{

/ / ... (check dimensions)
m.data + = right.m_data; / / use valarray +=
return *this; / / self—reference

}

/ / ... (arithmetic operators)
To support C++-style subscripting of a Matrix<T> instance, as in A[i][j],

we must implement an operator[] method. This is not a trivial undertaking,
as operator[] must return a proxy object representing a row (or column) of
the Matrix<T>, with its own operator]] that finally returns a reference to
a Matrix<T> element. The STL class slice_array<T>, a proxy object for
sub-array slices of valarray<T>, is almost ideal for our purposes, but unfor
tunately its copy-constructor is private, preventing any methods but those
of its friend valarray<T> from returning it. Instead we implement member
class Matrix<T>:: proxy .array, with essentially the same interface as slice_array
< T > , leveraging slice_array<T> internally, to access rows and columns of the
matrix. The slice class (another valarray<T> helper class) stores the start
index, stride, and number of elements of the array slice.

Listing 2.11: Matrix proxy class
1 class proxy_array

{
friend class Matrix<T>;

public:
operator const valarray<T>() const; / / conversion
proxy_array& operator=(const valarray<T>&); / / assignment
T& operator]](size_t); / / subscripting
const T operator[](size_t i) const; / / const subscripting
proxy_array& operator-h=(const valarray<T>& right); / / arithmetic
/ / ... (arithmetic operators)

private:
valarray<T>& m_data; / / reference to matrix elements
slice m_slice; / / subarray parameters

};
proxy_array row(size_t); / / reference a row
const proxy .array row(size.t) const;

24 CHAPTER 2. THE ID A S DATA CONDITIONING API

proxy .array column(size_t); / / reference a column
const proxy .array column(size.t) const;
proxy .array operator]] (size.t); / / synonym for row
const proxy .array operator]] (size.t) const

The proxy .array forwards assignment and arithmetic operations to the indi
vidual elements of the matrix. The mutators row, column and operator]] all
return proxy.arrays referencing the corresponding subset of the matrix; the
proxy.array itself behaves like a valarray<T> whose elements are embedded
in the Matrix<T>. Users will typically never see the proxy.array.

Listing 2.12: Matrix functionality.
Matrix<double> A(3, 3); / / 3x3 matrix
A[l] = 1 . ; / / centre row set to [1 1 1]
A[l][1] = 0.; / / centre element set to 0

A number of non-member operators are also supplied for Matrix<T>.

Listing 2.13: Matrix functionality.
templatectypename T> Matrix<T> operator+(const Matrix<T>&

left, const Matrix<T>& right)
{

return Matrix<T>(left) + = right; / / add to a copy and return that
}
/ / (...) arithmetic operators

Higher-dimensional arrays have not yet been required (at the interface
level) in the data conditioning API.

2.3.5 M etadata
Many of the series used in the data conditioning API are time series; meta
data about these series, like their sampling rate and start time (from which
the sample times can be computed) are useful in many contexts. In the case
of a Fourier transform, the time series metadata can be used to calibrate the
frequency resolution of the transformed series, which can then be stored as
frequency series metadata.

The design adopted for metadata was to mix in base classes containing
metadata members to existing general UDTs. For example, Sequence<double
> and TimeSeriesMetaData are combined to produce the TimeSeries<double
> template class.

2.4. SIGNAL PROCESSING 25

Unfortunately the proliferation of ‘customised’ UDTs creates problems for
those methods that have to support the metadata. In the case of operations
taking more than one argument, the addition of new relevant metadata can
cause an explosive increase in the number of special cases that have to be
handled. Metadata has proved so time-consuming to support that relatively
little of the data conditioning API uses it to its full potential.

2.4 Signal processing

Operations on UDTs are performed by a suite of classes. In the language
of Design Patterns [13], they may adopt a Memento pattern to transfer an
internal state between successive calls, or may encode their own state (the
Command pattern). If the state is to be exposed to the user, that class must
inherit from UDT.

Each class has a number of tasks to perform. Typically the class will
provide two forms of most methods, one accepting UDTs, and another (often
templatised) accepting basic (or STL) types. The former ensure that their
arguments can be cast to a valid call of the latter. When many template
arguments are supported (for example, a class might support float, double.
std::complex<float> and std::complex<double>) this can be fairly compli
cated. The non-UDT methods validate their arguments against a series of
preconditions. The final task is to perform a signal processing operation.

The data conditioning API works primarily in the time domain, to fa
cilitate the continuation of operations on successive chunks of data. Some
operations store their state in an external Memento class; other operations
store their own state (also a UDT) as a Command object.

It was thought to be helpful to give all these operation states a common
base class, to help distinguish them from more traditional UDTs. The class
State inherits from UDT, without adding any functionality.

Listing 2.14: State class definition
class State :

public UDT
{
public:

virtual State* CloneQ const = 0;
}; / / class State

26 CHAPTER 2. THE LDAS DATA CONDITIONING API

The issue of how to efficiently return UDTs from operations is a vexed
one. The return mechanism in C + + makes a copy of the returned object.
This is potentially expensive if the object is a large sequence. Furthermore,
the returned object cannot be a UDT, since the copying would slice away
the non-UDT components. If the returned object is an exactly known UDT
type, slicing will not occur, but the advantages of the UDT have been lost.
If a UDT pointer (UDT*) is returned, it can be ignored and leaked, which is
unacceptable.

The solution of many libraries, the STL among them, is to pass the output
structure, or some proxy(-ies) for it, as an argument to the operation. This
solution has one drawback: it presupposes that the output type is known,
and thus requires the output type deduction logic be performed by whatever
calls the operation. This is unacceptable.

The solution adopted by the Data Conditioning API is to give operations
a method of the form void apply(UDT*& output, const UDT& input). A ref
erence to a pointer to a UDT is passed as the output. If the pointer is 0
(null), the operation is responsible for creating a new output UDT, pointed
at and owned by the referenced pointer. If the pointer is non-null, the caller
has asserted that they know the output type and have supplied (and proba
bly reused) it: the operation attempts to write the output to that UDT, and
throws an exception if the type is incompatible. One common usage model
this supports is repeated applications of similar operations; the output can
be created on first call then over-written by successive applications.

(The smart UDT handle proposed in 2.3.1 would eliminate this return
problem by encapsulating the return type.)

2.4.1 Mixer
To “mix" (heterodyne) a time series with an oscillator is one of the most
basic signal processing operations.

For a series x^, the mixed series is This results in
an offset of — / in Fourier space. The output sequence is always complex,
whereas the input may be real or complex.

The state of a mixing operation can be represented by storing the pair
of real values / and o. The class MixerState may be constructed from fre
quency and phase represented either as basic doubles or as UDTs. or copied
from a single (presumably MixerState) UDT. Accessors are supplied for the
frequency and phase. Mutators, which validate the class invariants that

2.4. SIGNAL PROCESSING 27

— 1 < / < 1 and 0 < (f) < 27t, are private and used only by the creation
operators and the friend class Mixer, so that the only general way to change
the value of a MixerState is to assign another MixerState to it.

Listing 2.15: MixerState class definition
class MixerState :

public State

{
friend class Mixer;

public:
MixerState(const doubled phase, const doubled freq);
MixerState(const UDT& phase, const UDT& freq);
MixerState(const UDT& state);
virtual ~MixerState()
virtual MixerState* Clone() const;
double GetPhaseQ;
double GetFrequency();

private:
MixerStateQ;
void SetPhase(const doubled phase);
void SetPhase(const UDT& phase);
void SetFrequency(const doubled freq);
void SetFrequency(const UDT&. freq);
double m_phase;
double m_frequency;

}; / / class MixerState

The Mixer class stores a MixerState internally; it may be (explicitly) con
structed from one, and the state may be freely accessed and altered. Note
the twin apply methods; one templatised on explicit valarray<T>s, the other
accepting UDTs and resolving their types before calling the former.

Listing 2.16: Mixer class definition
namespace datacondAPI
{

class Mixer
{
public:

explicit Mixer(const MixerState& state);

28 CHAPTER 2. THE LDAS DATA CONDITIONING A P I

void apply(UDT*& out, const UDT& in);
template<typename out_type, typename in_type> void apply(std::

valarray<std::complex<out_type> > & out, const std::valarray<
in_type>& in)

MixerState getStateQ const throw();
void getState(MixerState& state) const throw();
void getState(State*& state) const
void setState(const MixerState^ state) throwQ;

private:
MixerState m_state;

}; / / class Mixer
} / / namespace datacondAPI

The implementation of these apply methods is instructive. The templa-
tised std::valarray method contains the actual implementation of the opera
tion, computing the new values and maintaining the internal state.

Listing 2.17: template method Mixer::apply definition
templatectypename out_type, typename in_type> void Mixer::apply(

valarray<std::complex<out_type> > & out, const valarray<in_type
>& in)

{
if (lin.sizeQ)

throw invalid_argument(" Mixer::apply: Input Sequence is empty”);
/ / check for non-empty input

if (out.sizeQ ! = in.size())
out.resize(in.size()); / / resize the output

double t = m_state.GetPhase();
const double dt = m_state.GetFrequency() * LDAS_TWOPI; / /

compute the phase difference between elements
for (int k = 0; k < in.sizeQ; k-f-+)
{ / / (actual implementation unrolls this loop ...)

out[k] = in[k] * complex<double>(cos(t), sin(t));
t + = dt;

}
m_state.SetPhase(fmod(phi,LDAS_TWOPI)); / / update the state

}

In contrast, the UDT method is concerned with resolving types. The code

2.4. SIGNAL PROCESSING 29

involved—little more than a “switch on type”—is exactly the kind of code
railed against by C++ texts. The helper template method applyAs helps
minimise odious duplication.

Listing 2.18: UDT method Mixer::apply
void Mixer::apply(UDT*& out, const UDT& in)
{

bool ok = applyAs<Sequence<complex<float> >,Sequence<float>
>(out, in);

if (!ok)
ok = applyAs<Sequence<complex<double> >, Sequence<double

> >(out, in);
if (!ok)

ok = applyAs<Sequence<complex<float> >, Sequence<std::
complex<float> > >(out, in);

if (!ok)
ok = applyAs<Sequence<complex<double> >, Sequenceccomplex

<double> > >(out, in);
if (!ok)

throw General::unimplemented_error(” Mixer::apply: apply on
unimplemented type”);

}
The Mixer.-.apply method posits all the supported types and attempts

to perform the mixing operation on them. Mixer::applyAs is responsible for
the per-type testing and casting; it firsts establishes if the input type is
appropriate, then ensures that the output type exists and is appropriate, and
finally casts input and output to Sequences so that the concrete apply method
may be used on them. In the case of an exception occurring anywhere,
applyAs is careful to catch it and delete any output UDT it created.

Listing 2.19: Helper template method Mixer::applyAs
template <class Tout, class Tin> bool Mixer::applyAs(UDT*& out,

const UDT& in)
{

bool ok = false;
bool nulLout = (out = = 0);
try
{

30 CHAPTER 2. THE LDAS DATA CONDITIONING API

if (UDT::lsA<Tin>(in)) / / ensure input is the suggested type

{
if (nulLout) / / i f output was not supplied

out = new Tout; / / create output
else if (!UDT::lsA<Tout>(*out)) / / i f supplied output is not the

suggested type
throw std::invalid_argument(” datacondAPI::Mixer::applyAs<>:

type out not compatible with type in”);
apply(UDT::Cast<Tout>(*out), UDT::Cast<Tin>(in));
ok = true;

}
}
catch(...) / / a n exception occurred

{
if(nulLout)
{

delete out; / / destroy up the output we created
out = 0;

}
throw; / / rethrow the exception

}
return ok; / / return success or failure (wrong input)

C r i t i q u e

The implementation of Mixer is ugly. Explicit casting is unsightly; mixing
exceptions and native pointers is error-prone. Numerous solutions have been
considered—virtual functions, the Visitor pattern—but the issue is funda
mentally the multiple-dispatch problem. C ++ (and the bulk of modern lan
guages) have no facility to make a function virtual on more than one type,
and workarounds [7] for this issue leave much to be desired. Fundamentally,
the design means the code has to be ugly somewhere.

The alternative, a major rethinking of the system to design around this
limitation, is superficially attractive, but it is not clear that this would pro
duce a solution, or that it would be reasonable to rewrite a body of tested,
working code on primarily aesthetic grounds.

2.4. SIGNAL PROCESSING 31

The use of smart pointers would obviously assist with issues of ownership
and error management; however, at the time of development the idiom was
relatively new and issues of thread safety were raised.

Another more fundamental problem with the design is the arbitrary—
and in hindsight unnatural—decision to separate the mixer and its state,
producing a class with methods but no non-trivial data, and a class with
data but no non-trivial methods. This is a subversion of the spirit of object-
oriented programming, and results in nothing but needless code proliferation.
The logical next revision of the design would be to move the Mixer::apply
methods to MixerState, remove Mixer altogether, and rename MixerState to
Mixer. The amount of working, if unsightly, code that would be broken by
this primarily aesthetic revision make it unfeasible.

2.4.2 L inF ilt

Another fundamental signal-processing operation is linear filtering. More
typically performed in the frequency domain (and for good reason), time-
domain linear filtering gives the Data Conditioning API the ability to seam
lessly filter consecutive time-domain sequences, but introduces some inter
esting effects.

A time-domain causal linear filter is defined by a series of coefficients,
ai . . . an and b\ . . . bm. Applying such a Biter to a discrete series u(t) produces
a series y(t) where

y(t) = - a i y (t - 1)---------any(t - n) + bxu{t - 1) H--------F bmu(t - m). (2.1)

Filters for which the a* — 0 depend only on the values of u(t) for the samples
t — m , . . . , t, and are known as Finite Impulse Response (FIR) filters, as
the response to the input for any one time will affect only a finite portion
of the sequence y{t). Nonzero a* allows the sequence y{t) to depend on its
own past state, permitting an Infinite Impulse Response (HR)- Despite their
name, the HR filters we will be concerned with have the property that their
dependance on a sample decreases rapidly (typically exponentially) as the
time since that sample increases. (Such HR filters can be thus be arbitrarily
well approximated by FIR filters.)

When the input series u(t) is finite, as is the case for all data handled in
the data conditioning API, u(t) for t < 0 is unknown, and by convention set
to zero. Yet the dependance of. for example, y(0) on u(— m) = 0, means that

32 CHAPTER 2. THE LDAS DATA CONDITIONING API

this convention affects the samples produced by the filter. The result is a
start-up transient of the same duration as the impulse response of the filter.

Listing 2.20: LinFiIt class definition
class Li n Fi It
{
public:

LinFilt(const LinFiltState& state);
LinFilt(const valarray<double>& b, const valarray<double>& a);
LinFiltState getStateQ;
void getState(LinFiltState& state);
void getState(UDT*& state)
void setState(const LinFiltState& state);
template<c!ass T> void apply(valarray<T>& x)
template<class TOut, class Tln> void apply(valarray<TOut>& out,

const valarray<Tln>& in)
void apply(UDT*& out, const UDT& in)

private:
template <class T> bool applyAs(UDT*& out, const UDT& in)
bool asSequence(UDT*& out, const UDT& in)
bool asTimeSeries(UDT*& out, const UDT& in)
LinFilt();
LinFiltState m_state;

};

One Lin Fi It constructor accepts two valarray<double>s representing a i . . . an
and b\ The others are concerned with the LinFiltState memento, in
UDT or resolved form. Like Mixer, the apply method is overloaded to accept
(untyped) UDTs or (typed) valarrays.

Listing 2.21: LinFiltState class definition
class LinFiltState :

public State
{
public:

LinFiltStatefconst Sequence<double>& b, const Sequence<double
>& a = Sequence<double>(1.0, 1));

LinFiltState(const Sequence<complex<double> >& zeroes, const
Sequence<complex<double> >& poles, const doubled gain);

2.4. SIGNAL PROCESSING 33

Sequence<double> LinFiltState(const UDT& b, const UDT&. a);
LinFiltState(const UDT& b_or_state);
void getB(Sequence<double>& b) const;
void getA(Sequence<double>& a) const;
void getSize(int& aSize, int& bSize);
virtual LinFiltState* Clone() const;
template<class T> void apply(valarray<T>& x);
template<class TOut, class Tln> void apply(valarray<TOut>& y,

const valarray<Tln>& y);
private:

void checkAB() const;
Sequence<double> m_b;
Sequence<double> m_a;
auto_ptr<Filters::LinFiltBase> mJinfilt;

}; / / class LinFiltState

The linear filter is not a trivial implementation of Equation 2.1. Instead,
the filter maintains an internal ‘stack' z; whose length is m ax(m ,n), ini
tialised to zero. When an element of u is read in, is added to the value
of Zi. The corresponding element of y is given by Z\. Then the stack is
‘shifted’ so that —* zt- 1 , and then yat is added to the value of ẑ . This
implementation has the virtue that it does not need the random-access to
previous elements of the sequence implied by the form of equation 2.1.

(The core filtering code proved so useful that it was moved to the general
library, so it could be used on data exiting the FrameAPI, and elsewhere in
LDAS.)

Most of the criticisms of the design of Mixer are equally applicable to
LinFilt. Better integration with the Filters class it spawned in the general
library could abrogate the need for its existence.

2.4.3 R esam p le

The Resample class is responsible for changing the sampling rate of a time
series provided to it—for example, downsampling a 16384 Hz channel to
2048 Hz. It is not sufficient to construct a new series yz = x &l: power from
the 1024-8192 Hz band will be aliased into the 0-1024 Hz band. Instead the
series must first be low-pass filtered to remove power from the high band, and
this low-pass filtering introduces the usual host of subtleties to the process.

34 CHAPTER 2. THE LDAS DATA CONDITIONING API

For upsampling, an interpolation filter is used.
Resampling can be performed not just to integer multiples or quotients

of the sampling rate, but to general rationals, provided by the upsampling
and downsampling ratios, p and q.

The exact results of the resample operation depend on the filter parame
ters; this is equivalent to shaping the falloff of the low-pass filter.

The implementation of Resample combines the filtering and sampling
stages to eliminate the production of an intermediate sequence and atten
dant waste of computations and memory.

Listing 2.22; Resample class definition.

class Resample
{
public:

Resample(int p, in t q, in t n = 10, double beta = 5);
Resample(const UDT& p, const UDT& q, const UDT& n = Scalar<

in t> (10), const UDT& beta — Scalar<double>(5.0));
Resample(const UDT& state);
Resample(int p, in t q, const Sequence<double>& b);
Resample(const Resampled rsmpl);
~Resample();
void operatorQ (UDT*& out, const UDT& in);
template<class T > void operator() (valarray<T>& out, const

valarray<T>& in);
void apply(UDT*& out, const UDT& in);
template<class T > void apply(valarray<T>& out, const valarray<T

> & in);
ResampleState getState();
void getState(ResampieState& state) const;
void getState(UDT*& state);
template<class T > void getState(Sequence<T>& state);
void setState(const ResampleState«^ state);
void getPQ(int& p, int&i q);
void getNBeta(int& n, doubled beta);
void getDelay(double& delay);
double getDelay(void);

private:
ResampleState m.state;

2.4. S IG N AL PROCESSING 35

Conceptually, downsampling is the application of a low-pass filter followed
by the decimation of the result (similarly upsampling is zero-padding followed
by the application of a filter). Practically, speed and memory usage can be
improved by combining the operations.

(Like LinFilt, Resample proved sufficiently useful to the rest of LDAS for
its functionality to be abstracted into the Filters library.)

Listing 2.23: ResampleState class definition.

I class ResampleState :
public State

{
public:

ResampleState(int p, in t q, in t n = 10, double beta = 5.0);
ResampleState(const UDT& p, const UDT& q, const UDT& n =

Scalar<int>(10), const UDT& beta = Scalar<double>(5.0));
ResampleState(const ResampleState^);
ResampleState(const UDT&);
ResampleState(int p, in t q, const Sequence<double>& b);
v irtua l ~ResampleState() throwQ;
ResampleState^ operator=(const ResampleState^);
in t getPQ const throwQ;
in t getQQ const throw();
in t getNQ const throw();
double getBeta() const throwQ;
in t getOrder() const throwQ;
double getDelayQ const throwQ;
void getB(Sequence<double>& b) const;
tem plate<class T >
void apply(valarray<T>& out, const valarray<T>& in);

I v irtua l ResampleState* CloneQ const;
private:

ResampleStateQ;
bool m_first;
valarray<double> m_b;
auto_ptr< Filters::ResampleBase> m.resample;

}; / / class ResampleState

36 CHAPTER 2. THE LDAS DATA CONDITIONING API

Usefully, the state of the resample action provides a method to extract
the relative delay of the resampled sequence.

The criticisms of the previous classes apply equally to Resample, but it
should be noted that Resample needlessly duplicates many of the accessors
of ResampleState. This could charitably be viewed as the first steps to the
adoption of a model removing the arbitrary division of a ‘stateful’ operation
into two classes.

2.5 A c tio n s

The simple data conditioning API command language, within the —algorithms
option of the LDAS job, is C-like. It consists of a list of statements of the
form

[identifier=] action ([character-string (, character-string) *]);

i.e. an ‘action’ taking a parenthetic tuple of zero or more comma-separated
character-strings, terminated with a semicolon, and with the result optionally
assigned to a named identifier.

Listing 2.24: Valid data conditioning API commands.
z = add(x, y);
i = length(z);

This syntax is rigidly adhered to. Much of the ‘syntactic sugar’ of common
languages is not supported, in the interests of keeping the syntax parser
simple (and bug-free).

Feature Unsupported Equivalent
Trivial assignment y = x; y — value(x);
Infix operators z = x + y; z = add(x, y);
Vested functions w — add(x, sub(y, z)); t = sub(y, z); w = add(x, t);

Unlike C (but like C-R-f-), actions may be overloaded on the number and
type of their arguments. This means that z = add(x, y) will perform one
operation if x and y are scalars, and another if they are sequences.

The data conditioning API command language is interpreted, not com
piled. and is not type safe. Any action can be called with any number arid
type of arguments, but it is a runtime error to do so for all but supported
numbers and types of arguments.

2.5. ACTIONS 37

Arguments are passed to actions as text, so it is not necessary that they
be valid identifiers. For example, the output command interprets several of
its arguments as field names for its XML-based output format.

The data conditioning API —algorithms are intended to form a pipeline.
As such, there are no control flow statements (such as i f . .. else branches or
while loops); each statement is executed exactly once, in the order given.

The command language is parsed by the interpreted TCL layer; it is re
sponsible for determining the number of arguments and the text associated
with the return, action and argument identifiers. It then passes this infor
mation to the data conditioning API's library of compiled C-h-h code.

2.5.1 Call chain

A data conditioning API pipeline is represented in the library as a CallChain
object. It stores both a series of objects corresponding to each action call,
and a ‘heap’ of named UDT instances.

Listing 2.25: CallChain class definition.
class CallChain
{
public.

void AppendCallFunction(string Function, vector<string> Params, string
Return);

void AddSymbol(string Name, UDT* Symbol); / / overwrites if the
symbol already exists

UDT* GetSymbol(string Name); / / throws exception if not found
bool ExecuteQ;
/ / . . . (omitted)

}■■

The AppendCallFunction method is called by the TCL layer to pass on the
identifiers associated with and action, its arguments and return data. Simi
larly the AddSymbol method is used to add the input data (under the names
given in —aliases) to the CallChain.

Once all data and actions have been added to the CallChain. the Execute
method runs the pipeline.

38 CHAPTER 2. THE LDAS DATA CONDITIONING API

2.5.2 Call chain function

Just as a UDT type was required to enable the TCL layer and the call chain to
store data without regard to its type, a base class CallChain::Function serves
as the common interface for all signal processing actions.

Listing 2.26: CallChain::Function definition.
class CallChain
{

/ / . . . (omitted)
class Function
{
public:

Function(string Name);
virtual ~Function();
virtual void Eval(CallChain* Chain, vector<string>& Params, string

Ret) const = 0;
/ / . . . (omitted)

};
/ / ... (omitted)

}:

The CallChain class maintains a global list of named Functions so it can
look up and invoke them from the name supplied in AppendCallFunction.
The Eval method provides a common interface to the implementation of the
action, supplying a pointer Chain to the calling environment, a vector Params
of argument identifiers, and a Return value name (which is the empty string

if no return value is given).
Specific actions are implemented by deriving a class from CallChain::

Function; they implement the Eval operation to check and resolve the ar
guments, then forward them to a signal processing class.

2.5.3 m ix

Class MixFunction inherits from CallChain::Function in a straightforward way
to implement the mix action.

Listing 2.27: MixFunction class definition,
class MixFunction :

2.5. ACTIONS 39

CallChain::Function
{
public:

virtual void Eval(CallChain* Chain, vector<string> Params, string Ret)
const; / / override

/ / . . . (omitted)
};

It is the implementation of Eval where the interesting work occurs. The num
ber of parameters is checked. Different numbers of parameters are handled
by different code blocks. Each acquires a reference to the UDTs referred to
by the symbols in the parameter list (throwing an exception if this is impos
sible). Once the references are obtained, the apply method is called on them.
State is saved back to a symbol name if supplied, and finally the output is
saved to the symbol name given as the action’s return value. An unsupported
number of parameters causes a BadArgumentCount exception to be thrown.

Listing 2.28: Mix action evaluator.
void MixFunction::Eval(CallChain* Chain, vector<string> Params, string

Ret) const
{

UDT* out = 0; / / will store output
switch (Params.sizeQ) / / how many arguments?
fX
case 4: / / y = mix(p, f, x, z); / / this syntax
case 3: / / y = mix(p, f, x); / / or this syntax

{ / / use this implementation
/ / — get the arguments from the call chain-----------------------------
UDT& phase(*(Chain — >GetSymbol(Params[0]))); / / GetSymbol

throws an exception if symbol is not found
UDT& frequency(*(Chain->GetSymbol(Params[l])));
UDT& in(*(Chain — >GetSymbol(Params[2])));
/ / ---- create and apply mixer using th em ------------------------------------
Mixer mixer(MixerState(phase, frequency));
mixer.apply(out, in);
if (Params.sizeQ = = 4) / / y = mix(p, f, x, z);
{ / / there is a state to write to the chain

Chain —>AddSymbol(Params[3], new MixerState(mixer.getState()
)) ;

40 CHAPTER 2. THE LDAS DATA CONDITIONING A P I

}

}
break;

case 2: / / y = mix(x, z); / / this syntax
{ / / uses this implementation

/ / — get the arguments from the call cha in ---------------------------
UDT& in(* (Chain — >GetSymbol(Params[0])));
UDT& state(*(Chain — >GetSymbol(Params[l])));
/ / — create and apply mixer using them --------------------------------
MixerState temp(state);
Mixer mixer(temp);
mixer.apply(out, in);
/ / ----update the mixer state U D T --
Chain — >AddSymbol(Params[l], new MixerState(mixer.getState()));

}
break;

default: / / unsupported syntax
throw BadArgumentCount(/* ... * /) ;

}
/ / — write result to call chain under name given by R e t-----------------
Chain —>AddSymbol(Ret, out);

}

The implementations of linfilt and resample use similar techniques.

2 .5 .4 S im p le actions

Operations already supported by C ++ and its libraries need no programmer-
level interface, but they do need to be exposed to the user. For example, the
indispensable slice command can be simply implemented in terms of the std
::slice STL class, within the body of a CallChain::Function::Eval override.

A difficulty arises again from resolving the exact type of the UDTs in
volved to apply the simple operations, for exactly the same reasons as the
implementation of apply(UDT) is problematic. When the number of argu
ments and the number of types involved is large, the number of cases can
be very large. This is unfortunately the case for basic and very important
actions like add. Actual implementations often use generic programming and
macros to automatically to relieve the programmer of some of this burden.

2.6. TESTING 41

2.6 Testing

Testing is of such importance to the Data Conditioning API that contributors
travelled to regular Mock Data Challenges (MDCs). A suite of automated
tests mirrored the code as it was developed; an automated nightly build and
check exercised the entire system and caught problems regularly and early.

For signal processing classes like Mixer, the test exercises all code paths
through the class, and checks their self-consistency or consistency with known
data (from, for example, Matlab).

Typically comparisons are allowed to be approximate, as the precise order
of operations employed will result in different values of floating point ‘noise’,
the value of the least significant bits.

It is of course impossible to test every possible invocation of a method,
but with knowfledge of the internal structure of the method, it is possible to
identify at least some corner cases and test for them as well as random cases
hopefully representative of typical use.

A simple LDAS-wide UnitTest class is provided to help produce tests
conforming to the expectations of the make check target, which allows the
automatic testing of LDAS as part of its nightly build. The return value of
the executable indicates success or failure of the test; the UnitTest class keeps
track of this state.

Listing 2.29: Mixer class unit test,
^include ” general/unittest.h"

General::UnitTest Test;

int main(int ArgC, char** ArgV) try
{

Test.lnit(ArgC, ArgV);

try / / simple sanity check
{

valarray<float> in(1.0, 122880); / / a sequence o f 122880 copies of
1.0

mixer(MixerState(0.0, —0.1)); / / mix with —.1 Nyquist frequency
valarray<complex<float> > out; / / sequence to store output

42 CHAPTER 2. THE LDAS DATA CO NDITIO NING A P I

mixer.apply(out, in); / / apply the mixer
for (valarray<float>::size_type i = 0; i < in.sizeQ; + + i)
{ / / compare each element o f output with an independently computed

value
complex<float> expected(cos(— .1 * LDAS_PI * i), sin(— .1 *

LDAS-PI * i));
if (abs(out[i] — expected) > le —5)
{ / / difference is too great

Test.MessageQ < < "Unacceptable error at ” < < i < < endl;
throw exceptionQ; / / abort test

}
}
Test.Check(true) < < "Sanity" < < endl; / / test passed

}
catch (...)
{

Test.Check(false) < < "Sanity" < < endl; / / test failed

}
/ / more tests ...
Test.ExitQ; / / returns number o f failures

}
catch (exception^ x)
{

cout < < "Exception: " < < x.what() < < endl;
throw; / / aborts (test suite fails)

}
catch (...)
{

cout < < "Exception: (non-standard type)” < < endl;
throw; / / aborts (test suite fails)

}

In the case of testing the action wrapper for an operation, a call chain
is manually prepared and executed. The tests have a different focus—
correctness has already been ensured by the test of the implementation, so
the testing concentrates on ensuring that in all possible cases the implemen
tation is correctly invoked by the action.

2.6. TESTING 43

Listing 2.30: Mix action (MixFunction class) unit test

/ / ... (initialisation)
/ / ---- mix via call chain ---
CallChain commands;
Parameters arguments;
commands.AppendCallFunction(” double” , arguments. set(l, ” 0.0”), ’’ phase

commands.AppendCallFunction(” double” , arguments.set(l, ” —0.1”), ”
frequency”);

commands. AppendCallFunction(” double", arguments.set(l, ” 1.0”), ’’ base”)

commands.AppendCallFunction(” double” , arguments.set(l, ” 122880”), "n"

);
commands. AppendCallFunction(” dvalarray” , arguments. set(2, ’’ base” , "n ")

commands.AppendCallFunction(” mix” , arguments.set(3, ’’ phase” , ’’
frequency” , ” x”), ” y”);

commands.Execute();
/ / ---- mix d irectly ---
double phase = 0.; / /
double frequency = —.1;
valarray<double> x(1.0, 122880);
Mixer mix(MixerState(phase, carrier));
valarray<complex<double> > y;
mix.apply(y, x);
/ / ---- compare results--
UDT* y_udt = commands.GetSymbol(” y”); / / extract named result from

call chain
Test.Check(y_udt) < < ’’ Sanity (output exists)” < < endl;
Test.Check(UDT::lsA<Sequence<complex<double> >(*y_udt)) < < ”

Sanity (output is a sequence)” < < endl;
Sequence<complex<double> > & y_seq = UDT::Cast<Sequence<

complex<double> >(*y_udt);
Test.Check(y_seq.size() = = y.sizeQ) < < "Sanity (output size)” < < endl;
for (valarray<complex<double> >::size_type i = 0; i < y.sizeQ; + + i)

{
i f (abs(y[i] - y_seq[i]) > le -5)

44 CHAPTER 2. THE LDAS DATA CONDITIONING API

{ / / difference is too great
Test.MessageQ < < ’’Unacceptable error at ” < < i < < endl;
throw exception}); / / abort test

}
}
/ / ... (further tests)

The above tests are automatically performed nightly and are designed so
that any problem can be detected by machine and quickly brought to the
attention of a maintainer.

The final stage in the testing of any piece functionality is to submit an
actual LDAS job making sure the system works together as a whole:

Listing 2.31: LDAS mixing test job.
IdasJob { —name ******** —password ******** —email ******** } {

conditionData
—outputformat { ilwd ascii }
— aliases { raw=mdc_input_data:chan_01:data }
— algorithms {

xO = slice(raw,0,100,1);# Use 100 samples
frequency = value(0.125);
phase = value(O.l);
zO = mix(ph\,frequency,xO);
output(z0,_,_,z0,mixed whole);
xl = slice(x0,0,50,1);# Use first 50 samples
phase = value(O.l);# Reset phase
zl = mix(phi,frequency,xl,state); # Mix, saving state
output(zl,_,_,zl,mixed first half);
x2 = siice(x0,50,50,1); # Use second 50 samples
z2 — mix(x2,state);# Use state to continue mixing
output(z2,_,_,z2,mixed second half);
}

}
The above performs mixing on a sequence as a whole, then as two parts. A
human will inspect the output and the test will pass only if the two methods
yield identical results. These human-involving tests, and their capability to
assess the ability of LDAS as a whole to perform a particular tasks, are the
heart of MDCs.

2.7. SUMMARY 45

2.7 Sum m ary

LDAS is the core of LIGO’s gravitational wave data analysis infrastruc
ture. The data conditioning API component performs programmable signal
processing as part of the data analysis pipeline. The author is a significant
contributor to the data conditioning API. A suite of signal processing oper
ations have been implemented in the API. and exposed to the user through
a command language. Extensive testing of the components have been per
formed, both automatically and by hand. Hindsight may suggest better ways
of implementing this functionality, but LDAS is a workable and extensively
validated platform for gravitational wave data analysis.

C h a p te r 3

Line rem oval

High power in narrow frequency bands, spectral lines, are a feature of the out
put of interferometric gravitational wave detectors. Some lines are coherent
between interferometers, in particular between the co-located 2 km and 4 km
LIGO Hanford instruments. This is of particular concern to data analysis
techniques, such as the stochastic background search, that use correlations
between instruments to detect gravitational radiation. Several techniques of
'line removal' have been proposed. Where a line can be attributed to a mea
surable environmental disturbance, a simple linear model may be fitted to
predict, and subsequently subtract away, that line. This technique has been
implemented (as the command oelslr) in the LIGO Data Analysis System
(LDAS). We demonstrate its application to LIGO Si data.

We use data from a triple-coincidence epoch of the Si science run in
August-September 2002; all figures are composed of data drawn from the
GPS times 714975000-714975600, except where noted. The LIGO interfer
ometers have changed significantly since then: better shielding and equip
ment have reduced the magnitude of the lines we investigate, but the noise
floor has also been reduced. The lines we investigate still remain prominent.

We also touch upon the use of line removal in the SI stochastic back
ground analysis. Though line removal was not employed to produce the
upper limit on the strength of a cosmological stochastic background of grav
itational waves [14], it was used to prove that spectral lines did not have a
significant impact on the computed upper limit.

Some of the material in this chapter has appeared in Searle et al. [15].

47

48 CHAPTER 3. LINE REMOVAL

H1:LSC-AS_Q

Figure 3.1: Lines in the power spectrum of the 4 km LIGO Hanford Obser
vatory.

3.1. MOTIVATION 49

3.1 M otivation

The extreme sensitivity of the nascent LIGO instruments makes them par
ticularly susceptible to contamination from the environment. Seismic noise,
dictating the lower limit on the frequency of detectable astrophysical sources
is perhaps the most dramatic example. Over the rest of the observation band,
the theoretical limiting factors are thermal and shot noise. There are also,
however, a number of narrow-band noise sources: spectral lines. Resonances
of the mirror suspension wires (violin modes) are one example of these, but
among the most prominent lines in each LIGO instrument are the combs of
lines at 60 Hz and its harmonics (Figure 3.2), appearing across the entire
observation band. These lines are the largest single factor in the coherence
between the 2 km and 4km LIGO Hanford interferometers (Figure 3.3).

Spectral lines are concerning for several reasons: they add power to the
system; they increase the dynamic range of the data; they render the data
non-gaussian. Depending on the nature of the search algorithms used, any
of these effects can impair the detection rate, obscuring gravitational wave
signals at or near the frequency of the lines. When the lines are correlated
between interferometers, as is the case for some due to anthropogenic ef
fects or large-scale environmental phenomena, they impair the ability of the
interferometers to perform independent mutual verification.

A variety of approaches have been proposed to deal with spectral lines.
The simplest is to ignore them; robust search algorithms have to be able
to cope with non-gaussianity in all its forms, and we accept a potential
decrease in sensitivity. The next simplest approach discards a frequency band
containing the line, using a ‘notch' filter; any attempt to extract information
from the frequencies affected by the line is abandoned.

More sophisticated techniques attempt to construct a model of the line
that can be subtracted from the data. These are referred to as line removal
algorithms.

A Kalman filter proposes a linear model for the process producing the line,
and fits that model to the history of the line to predict its future behaviour
[16]. Where a line is one of a family of harmonics, Coherent Line Removal
(CLR) exploits the commonality between the harmonics to approximate a
shape shared by them all [17]. Once a model of the line is formed by either
method, it is subtracted out of the raw data.

Both of the above methods use only a single time-series: the gravitational
wave channel. This is undesirable, because the presence of a gravitational

50 CHAPTER 3. LINE REMOVAL

wave signal has the potential to feed back into the behaviour of the line
removal algorithm, possibly resulting in the attenuation of the gravitational
wave signal as well as the line. For example, Sintes [17] finds that an injected
sinusoid is only partially recovered by CLR: the sinusoid alters the common
line shape approximation, not only resulting in its own partial removal but
also reducing the quality of line removal at any the other harmonics where
the shape is used.

In addition to the gravitational wave ‘output’ channel, gravitational wave
observatories record thousands of channels of other data: some to control and
monitor the instrument itself, others to detect environmental disturbances
and enable the veto of candidate detections corresponding to physical anom
alies. These other channels provide an additional source of information for
line removal algorithms to use; and if a line removal algorithm can operate
solely in terms of channels not sensitive to gravitational waves, it avoids the
difficulty of altering the very signal it hopes to reveal. Allen, Hua and Ot-
tewill [16] have comprehensively studied the removal of correlations between
the gravitational wave channel and a number of environmental monitor chan
nels, over all frequencies.

The comb of prominent lines at 60 Hz and its harmonics are due to the
ubiquitous continental US power grid, which supplies alternating current at
60 Hz. The lines are strongly correlated with both the harmonics measured
in the incoming electrical supply (Figure 3.4), and those observed by mag
netometers distributed around the LIGO sites. Both of these environmental
monitors are recorded in parallel with the interferometer output.

As spectral lines have the potential to impact a wide range of astrophys-
ical searches, it is appropriate to implement line removal functionality as
one of the tools available in the common LIGO data conditioning pipeline.
We implement a time-domain spectral line removal algorithm as the data
conditioning API action oelslr (Output Error Least Square Line Removal,
pronounced 'oelestra'). It permits line removal functionality to be straight
forwardly added to the existing data conditioning API algorithms script
for an astrophvsical search, as another pre-processing stage in the analy
sis 'pipeline’. Such a line removal stage has already been added to the data
conditioning script for the stochastic background search.

Our implementation is intended as the first step in adding line removal
functionality to the data conditioning API. Similarly to Allen et al. [16], it
makes use of the additional information available in the form of a measure
ment of the disturbance to the instrument, in particular the voltage monitor

3.1. MOTIVATION 51

(a) H1:LSC-AS_Q

^ ai' ULmmii, |l„ j|
) 500 600
(b) H2:LSC-AS_Q

• 6 0 -------------------1------------------ 1------------------ 1-------------------1------------------ 1------------------ 1-------------------1------------------ 1------------------ 1------------------ L J
0 100 200 300 400 500 600 700 800 900 1000

(c) L1 :LSC-AS_Q

, 6 0 i- - - - - - - - - - - - - - - - - 1- - - - - - - - - - - - - - - - - 1- - - - - - - - - - - - - - - - - 1- - - - - - - 1 - - - - - - - - 1- - - - - - - - - - - - - - - - - 1- - - - - - - - - - - - - - - - - 1- - - - - - - - - - - - - - - - - 1- - - - - - - - - - - - - - - - - 1- - - - - - - - - - - - - - - - - ' «
0 100 200 300 400 500 600 700 800 900 1000

frequency (Hz)

Figure 3.2: LHO (a) 4 km and (b) 2 km interferometers and (c) LLO 4 km
interferometer output power spectra (uncalibrated), before (dotted) and after
(solid) line removal.

52 CHAPTER 3. LINE REMOVAL

(a)

(b)

E 50

frequency (Hz)

Figure 3.3: (a) Coherence of, and (b) accum ulated coherence of, HFLSC-
AS_Q and H2:LSC-AS_Q before (dotted) and after (solid) line removal, with
the accum ulated coherence of H1:LSC-AS_Q and L1:LSC-AS_Q (dashed) pro
vided for reference.

3.1. MOTIVATION 53

0 100 200 300 400 500 600 700 800 900 1000

(b) L0:PEM-LVEA_V1
100

cg

i I I r i i i i r

Mit .uiuL̂A,—L.,i l
j________I j ________________ I

100 200 300 400 500 600 700 800 900 1000
frequency (Hz)

Figure 3.4: (a) LHO and (b) LLO voltage monitor channel (uncalibrated)
power spectra.

54 CHAPTER 3. LINE REMOVAL

channels recorded by an observatory (Figure 3.4). Unlike Allen, we imple
ment the algorithm in the time domain, to facilitate easy continuation of
the algorithm over LDAS jobs, as for most other data conditioning API ac
tions. With a known, measured (albeit imperfectly) disturbance, we may
use system identification theory techniques [18] to construct a model of the
interferometer response to the disturbance from actual data recorded over
some epoch. At subsequent times, the model can then be used to predict
the interferometer’s response from the measured disturbance; this prediction
can then be subtracted away to remove those lines from the interferometer
output.

3.2 D esign

The line remover model proposes that a spectral line in a discrete time series
y[t] with no white noise present is due to a measurable disturbance u[t]. It
estimates a model M such that

y — M(u) (3.1)

predicts the spectral line. Any component of y[t] predictable (by this type
of model) from u[t], such as the spectral line, should thus be removed from
the time series r[t] = (y — y)[t]. Features that cannot be predicted from u\t]
should be unaltered.

The Finite Impulse Response (FIR) model is the simplest special case of
a regression model h where the (possibly complex) input u and output y of
a system are related by (following Ljung [18], where t is a discrete sample
number)

y(t) « bxu(t - 1) + b2u{t - 2) H-------(- bmn(t - m). b\ ■ ■ ■ bm G C, (3.2)

where the model for the system is 0 = [bi . .. bm]T. The model order m
controls the range of samples contributing to the model output.

If we define g?(t) = [u(t - 1) . . . u(t — m)]T , then y{t\0) = ^ T(t)6 is the
modelled output of the system. For given y and u. the best model Oy (which
minimises, over 0, the sum over N samples of the square of the prediction

Tine removal in the datacond API was originally designed to use the Output-Error
(OE) model, but the complexity of an OE model estimator has delayed its implementation.

3.2. DESIGN 55

error) is given by

N
9N = arg min V \y(t) - {t)612

u
(3.3)

and can be determined analytically (where ip(t) denotes the complex conju
gate of <p(t)):

For an FIR model with a white noise (or error) term, e(t), such that

it is important to note that 6^ is an unbiased estimate of 9, converging as

In the context of gravitational wave data analysis, we assume that the
detector output y(t) would consist of white noise e(£), but for another channel
u(t) that linearly and additively contaminates it with b\u(t — 1) +b2u(t — 2) +
. . . + bmu(t — rn). To remove the contamination, we estimate 6; and subtract
away the model prediction from the measured data:

Where the contamination is localised in frequency space, as for spectral
lines, it would be wasteful to apply the method to the raw time series. (It
would also introduce problems of the kind encountered in §3.3.1.) Using pre
existing components of the data conditioning API we can produce new time
series of fewer elements containing only the information from a particular
narrow frequency band.

If u(t) is sampled with Nyquist frequency and a line is restricted to
/ ± f ’Sy/n for some integer n, then u is first mixed down to zero frequency
with multiplication by e- l27rA//Ny> The non-trivial data conditioning API
resam ple algorithm [19] is then used to down-sample (by a factor of n) to
a new series with Nyquist frequency fsy/'n (including a filtering stage to
prevent the aliasing of high-frequency components into the result). Restrict
ing the bandwidth to an integer fraction of the Nyquist frequency allows
the time-domain resampling to be performed simply and efficiently. The

(3.4)

y(t) = biu(t - 1) + 62u(t - 2) + • • • + bmu(t - m) + e(t), (3.5)

i \ H [18].

yr(t) = y(t) - vT(t)0jv. (3-6)

56 CHAPTER 3. LINE REMOVAL

down-sampling factor n may typically be quite large—we use 128 below—to
identify a narrow band. A side-effect of the resampling algorithm is that any
sequences processed by the line remover must contain an integral multiple of
n samples, making it advantageous to make n correspond to some common
divisor of the desired sample counts—typically a power of 2. It is on this
pre-processed version of u that the model is fitted. The process is reversed
to produce y by up-sampling (again including a smoothing filter) and up-
mixing the model prediction. These operations have been abstracted into
the datacondAPI::BandSelector class, and have already seen reuse in the data
conditioning API implementation of the Kalman filter.

In the data conditioning API, line removal is performed using the oelslr
action to both estimate 6 and predict y. (Recall from §2.5 that, like its

underlying C + + implementation [2], the datacondAPI command language
allows overloading of function names, so that o e ls l r may perform different
tasks depending on the number and type of arguments supplied to it.)

f6 = oelslr(y.u.——,n,m); (3-7)
/ n y

y = oelslr(u,0); (3.8)

The general purpose sub action is used to perform the final subtraction.

yr = sub(y.y); (3.9)

The time-domain causal linear filters employed both in the band-selection
and the model implementation introduce transients and time-delays into the
prediction, which manifest in the first prediction from any model (subsequent
calls are not affected as the linear filters are preserved in the model internal
state 6). The model implementation as a causal linear filter produces start
up transients invalidating the first nm samples of the prediction. The band-
selection also truncates the prediction by an implementation-defined multiple
of n samples (128n samples for the current resample implementation). These
issues can be simply addressed by providing u for [t\ — 5t. t2 + St] where y
for [ti.t2] is required; for typical parameters, 5t = O(seconds).

A line removal LDAS 'job' is composed as follows. An estimation era is
sliced from incoming channels (aliased as u and y).

ue = slice(u, 0, 1228800, 1);
ye = slice(y, 0, 1228800, 1);

3.3. CHARACTERISATION 57

Recalling the definition of slice from 2.5, we have sliced off 1228800 samples,
starting from 0, with stride 1. For these 2048 Hz channels, this corresponds
to the first 10 minutes of each. To remove the 180 Hz line, we estimate a
model theta from ye and ue. in a region of (0.17578125 ± 128_1) / nv, with
order of 8.

theta - oelslrfye, ue, 0.17578125, 128, 8); |

The next stage is to slice a prediction era from u. We wish to predict y for
the subsequent 10 minutes, and allowing (for simplicity) a generous St of 1
minute, we use a slice of u extending for 12 minutes from 9 minutes after the
beginning of the channel.

up = slice(u, 1105920, 1474560, 1); |

To produce a prediction yp requires only the model theta and the predictor
up.

yp = oe!slr(up, theta);
yp = slicefyp, 122880, 1228800, 1);

Once the prediction has been produced, we reset it to a slice of its own middle
10 minutes (beginning 1 minute into the almost 12 minute raw prediction),
effectively discarding the start-up transients and trailing truncation.

ym = slice(y, 1228800, 1228800, 1);
yr = sub(ym, yp);

We store the measured values of y for the corresponding times in ym, in
preparation for subtracting the prediction from the measurement to produce
the line-removed sequence yr. The sequence yr can then be output to other
LDAS APIs for further processing by astrophysical searches, or, as in §3.3,
written to file for inspection.

3.3 C h a ra c te r is a t io n

The obvious figure of merit for line removal is the change it produces in the
sensitivity of the astrophysical searches whose data it pre-processes. Such
tests have been already performed by the author in the specific case of the
stochastic background search [14], conclusively demonstrating the robustness
of the search algorithm in the presence of strong spectral lines (§3.4). Here

58 CHAPTER 3. LINE REMOVAL

we demonstrate reductions in line power and line coherence, two effects can
reasonably be expected to impact many astrophysical searches.

Though line removal is conceptually simple, the quantification of line
removal quality is not a trivial matter. The obvious metric is the remain
ing power in the line. Yet by this metric the notch filter—or even a zero
multiplier—are optimal methods. The line should be removed to the noise
floor, but this requires the identification of what the noise floor is under and
around the line. The frequency band around the line should be unaltered, but
in practice some small alteration will occur, requiring some judgement of the
relative merits of alterations to the line and nearby frequencies. Gaussianity
should be improved, but Sintes [17] demonstrates inconclusive results by this
metric, as spectral lines were not the primary source of non-Gaussianity.

This introduces problems with automated testing and verification proce
dures. Ultimately, the only metric that makes sense is the ability of a line re
moval technique to improve the sensitivity of a gravitational wave search. In
this section we assess performance in recovering an injected sinusoid masked
by the line, and in reducing coherence between two observatories. The first
test is equivalent to the tests carried out in [17].

It would be desirable to be able to conduct a direct comparison with other
algorithms such as [17, 16], some of which are publicly available. Existing
publications on these codes, however, use much less modern data from proto
type interferometers. To produce a meaningful comparison would require the
author to run the codes on the same modern data segments as OELSLR. As
these codes are not part of LDAS. however, this is not a simple matter—new,
non-LDAS pipelines would have to be constructed from scratch, or alterna
tively, the codes themselves would have to be retrofitted into LDAS. The
limited success of a similar project by an earlier member of our group [20]
convinced us that the difficulty of such an undertaking was prohibitive under
present circumstances.

3.3.1 In jec tio n
Three sinusoids of equal amplitude were added to the H1:LSC-AS_Q channel,
at approximately 299.4, 300.0 and 300.6 Hz. Their amplitude was selected
to be intermediate between the line amplitude and the noise floor.

Ideally, we expect to see all traces of the 300 Hz line removed to the level
of the surrounding line, leaving the surrounding features unaltered, and the
recovery of the injected line.

3.3. CHARACTERISATION 59

We wish to determine the robustness of the system and investigate the
quality of line removal achieved by a wide variety of parameters.

Model estimation depends on four parameters: the central frequency, the
bandwidth, the model order, and the length of the estimation epoch. It is
impractical to cover this four-dimensional parameter space, so we vary each
parameter separately from a set known anecdotally to produce acceptable
results. The parameters were 300 ± 8 Hz with order 8, with estimation era
GPS 714974400-714975000 and line removal era GPS 714975000-714975600.

Note in particular the characteristics produced by this reference case (Fig
ure 3.5). The line itself is removed down to the level of the noise floor, and
the noise floor itself is unperturbed, at least by any effect of comparable
magnitude to it. The injected signals are all present at their full amplitudes;
the signals on either side of the line are in fact unperturbed. The only un
desirable feature is the broadening of the signal recovered from beneath the
line.

Examination of the figure shows the difficulties in forming a simple test
for the effectiveness of the line remover. It should test that the line is di
minished, but this requires an automated identification of just where the line
is, and a judgement as to just where its flanks taper into insignificance. It
should test that the line is removed to the noise floor, but this requires the
identification of the noise floor, which in turn requires the identification of
any features that are not representative of the noise floor. The result should
not deviate significantly from the original, except at the location of the line.
The problems are effectively ones of pattern recognition, where the human
eye and brain excels, and algorithms do quite poorly; any algorithm would
be complicated, replete with ‘magic numbers’ and pragmatically justified
heuristics. Relying on such techniques would scarcely add confidence to the
analysis. We resort to visual inspection to detect artifacts, but employ spe
cific measures of quality where appropriate (while recognising they cannot
tell the whole story). The ultimate such measure is of course the effect on a
gravitational wave search.

C en tra l frequency

The frequency of the alternating current electrical supply—and thus the har
monics it induces in the gravitational wave detector—are allowed to wander
by some small fraction of a Hertz by the generating utilities (this assists in
load balancing across the electrical grid). Other lines may wander; many

60 CHAPTER 3. LINE REMOVAL

299.6 299.8 300.6 300.8299.2 299.4 300.2 300.4

Figure 3.5: Power spectrum of H1:LSC-AS_Q and added sinusoids before
(dotted) and after (solid) application of line removal to 300 ± 8 Hz with
order 8. The power spectrum of the injected sinusoids alone is dashed. The
estimation era was GPS 714974400-714975000 and the line removal era was
GPS 714975000-714975600.

3.3. CHARACTERISATION 61

may have no precisely known frequency. It is important to characterise the
performance of the line removal code when the line is not centrally located.
Within the majority of the interval of removal, there is no reason to expect
any effect, but at the edges of the interval, the filters employed in down- and
up-sampling should produce a fall-off in the accuracy and amplitude of the
prediction, and a corresponding decrease in effectiveness.

In the / = 300-307 Hz regime there is no change in the effectiveness of
the line removal; the results are substantially as in Figure 3.5

At f = 308 Hz, where the edge of the interval corresponds to the line
itself, the line removal algorithm has only a slight effect: the line is somewhat
diminished, as seen in Figure 3.6.

For / = 309 Hz the line lies outside the nominal affected area. No effect
from line removal is visible around the line, Figure 3.7. Note that around / ,
there is a minor perturbation to the noise floor, visible in Figure 3.8. The
model should consist of all zeros in this case, but in practise the finite data
on which the correlations are taken introduce uncertainties from random
correlations that fail to average out completely; the result is a weak transfer
of noise from the predictor channel to the line removal channel. This is
unfortunate, but turns out not to be a cause for concern. It will be addressed
in §3.3.2.

B an d w id th

The bandwidth of the line remover is another property that should ideally
have comparatively little effect. However, the bandwidth affects the number
of terms considered in the determination of the model, and if the model order
is large and the bandwidth small the model may suffer from high variance.
Correspondingly, if the model order is small and the bandwidth is large, the
line may be a relatively trivial component in the whole, and the optimal
solution will be dominated by the minimisation of chance correlations in the
noise rather than the removal of the line. Since these chance correlations will
not persist at subsequent times, what cancelled them in a previous epoch
instead becomes an additive noise source of comparable magnitude to the
noise floor itself.

As the bandwidth is decreased (by increasing the down-sampling ratio)
no effect is observed up to the maximum possible down-sampling ratio of
4096. (This is the greatest power of two by which the sequence length is
divisible.)

62 CHAPTER 3. LINE REMOVAL

300.2 300.4 300.6 300.8299.2 299.6 299.8299.4

Figure 3.6: Power spectrum of H1:LSC-AS_Q and added sinusoids (dashed)
before (dotted) and after (solid) application of line removal to 308 ± 8 Hz
with order 8. The estimation era was GPS 714974400-714975000 and the
line removal era was GPS 714975000-714975600. The line lies on the edge of
the removal interval, and is only slightly attenuated. Other frequencies are
unaffected.

3.3. CHARACTERISATION 63

300.4 300.6 300.8299.2 299.4 299.6 299.8 300.2

Figure 3.7: Power spectrum of H1:LSC-AS_Q and added sinusoids (dashed)
before (dotted) and after (solid) application of line removal to 309 ± 8 Hz
with order 8. The estimation era was GPS 714974400-714975000 and the
line removal era was GPS 714975000-714975600. The line lies outside the
removal interval. No frequencies are significantly affected.

64 CHAPTER 3. LINE REMOVAL

308.2 308.4 308.6 308.8 309.2 309.4 309.6 309.8
Hz

Figure 3.8: Power spectrum of HPLSC-AS-Q before (dotted) and after (solid)
application of line removal to 309±8 Hz with order 8. The estimation era was
GPS 714974400-714975000 and the line removal era was GPS 714975000-
714975600.

3.3. CHARACTERISATION 65

As the bandwidth is increased (by decreasing the down-sampling ratio),
the line removal becomes less effective, and broadband noise is introduced.
With a down-sampling ratio of 16, the line is partially removed (Figure 3.9)
but the model has added noise to the surrounding band (Figure 3.10).

M odel o rder

The model order is intimately bound up with the bandwidth, and the effects
posited above can also be induced by variation of the model order. The
determination of a model order able to physically model the process causing
the line is a separate issue. If the process is simple over the width of the
line, then we might expect that a trivial model—an amplitude adjustment
and phase delay, provided by multiplication by a complex scalar—would be
sufficient. If not, a higher-order model will be needed. (One possible cause
would be additional noise in the prediction channel; a higher-order model
would be able to average some of this noise out of its prediction by relying
on the contributions of multiple samples.)

As the model order decreases, there is little effect on the quality of the
prediction. The trivial model—multiplication by a single complex scalar—
produces excellent results (Figure 3.11).

On the other hand, as the model order increases the recovery of the signal
is unaffected. The method begins to perturb the noise floor, however, as seen
in Figure 3.12.

E stim a tio n e ra

As the length of the estimation epoch decreases, so does the number of data
points and hence the variance of the model estimate increases. Signs of
deterioration are evident at 60 seconds; the quality of the removal of the line
using only 4 seconds is reasonable, but the perturbation to the noise floor is
obvious (see Figure 3.13).

No improvements were witnessed at shorter times, implying that the
timescale of variation of the physical process is longer than 10 minutes. Since
the data conditioning API handles data on that timescale, all is well in this
regard.

66 CHAPTER 3. LINE REMOVAL

300.2 300.4 300.6299.8 300.8299.2 299.4 299.6

Figure 3.9: Power spectrum of H1:LSC-AS_Q before (dotted) and after
(solid) application of line removal to 300 ± 64 Hz with order 8. The es
timation era was GPS 714974400-714975000 and the line removal era was
GPS 714975000-714975600. The line is partially removed; note the noise
floor has been perturbed.

3.3. CHARACTERISATION 67

Figure 3.10: Power spectrum of H1:LSC-AS_Q before (dotted) and after
(solid) application of line removal to 300 ± 64 Hz with order 8. The estima
tion era was GPS 714974400-714975000 and the line removal era was GPS
714975000-714975600. The algorithm has introduced noise across its band
of operation.

68 CHAPTER 3. LINE REMOVAL

299.6 300.4 300.6 300.8299.2 299.4 299.8 300.2

Figure 3.11: Power spectrum of H1:LSC-AS_Q before (clotted) and after
(solid) application of line removal to 300 ± 8 Hz with order 1. The estima
tion era was GPS 714974400-714975000 and the line removal era was GPS
714975000-714975600. The line has been removed to the noise floor; there is
little evidence of broadening of the signal.

3.3. CHARACTERISATION 69

Figure 3.12: Power spectrum of H1:LSC-AS_Q before (dotted) and after
(solid) application of line removal to 300 ± 8 Hz with order 128. The estima
tion era was GPS 714974400-714975000 and the line removal era was GPS
714975000-714975600. Note perturbation of the noise floor throughout the
line removal band.

70 CHAPTER 3. LINE REMOVAL

Figure 3.13: Power spectrum of H1:LSC-AS_Q before (dotted) and after
(solid) application of line removal to 300 ± 8 Hz with order 8. The estima
tion era was GPS 714974996-714975000 and the line removal era was GPS
714975000-714975600. Note perturbation of the noise floor throughout the
line removal band.

3.3. CHARACTERISATION 71

3.3.2 C oherence

The intent of this section is to use a quantification inspired by the stochastic
background search.

Data taken during LIGO runs is formatted as frames of named chan
nels. The 4- and 2-km Hanford and 4-km Livingston observatories ‘grav
itational wave channels’ are, respectively, H1:LSC-AS_Q, H2:LSC-AS_Q and
LI :LSC-AS_Q. Here we use data from the Si Science Run, specifically from a
stretch of ‘triple-coincidence’ data from GPS 714974400-714975660, during
which time all interferometers were locked; all figures are produced using the
10 minutes of data from GPS 714975000-714975600.

The LSC-AS_Q channels of all three interferometers show lines at multiples
of 60 Hz in their power spectra (Figure 3.2), particularly for odd harmonics
(60 Hz, 180 Hz, 300 Hz, . . .) . These lines are strongly coherent between HI
and H2 (Figure 3.3), but not between HI and LI or H2 and LI (not shown).
The lines are attributed to interference from the 60 Hz alternating current
mains supply, and the coherence is attributed to the fact that a common
mains supply is shared between HI and H2 at Hanford, WA, but not by LI
at Livingston, LA, as the electrical grid is not coherent between the sites on
this short timescale [21].

The power spectra of the mains voltages at both observatories (Figure 3.4)
exhibit prominent lines at the odd harmonics of 60 Hz, and weaker lines at
the even, harmonics. At each observatory, the voltage of the incoming mains
supply is measured by several monitors and recorded to corresponding chan
nels: we use HO : PEM-LVEA2A/1 and L0 : PEM-LVEA.Vl. The LSC-AS_Q channels
are typically strongly coherent with their local voltage monitors at odd har
monics, and weakly coherent at even harmonics (Figure 3.14). This indicates
that the voltage monitor channels should be good predictors of the odd har
monics, and fair predictors of the even harmonics, given the simple linear
model used by the line remover.

Assuming that we may regress *:LSC-AS_Q against *0:PEM-LVEA*_V1,
we construct an LDAS job to separately remove lines at each of the 17
multiples of 60 Hz beneath the 1024 Hz Xvquist frequency of the 2048 Hz
*0 : PEM-LVEA*_V1 channels (the *:LSC-AS_Q channels are downsampled from
16384 Hz to 2048 Hz before this stage of the data conditioning). This pro
ceeds for each line as in Appendix A. with the exception that for each channel
we store a single prediction sequence consisting of the sum of the predictions
for each of the lines for that channel—a single unified y predicting all lines.

72 CHAPTER 3. LINE REMOVAL

(a) Coherence of H1 :LSC-AS_Q and H0:PEM-LVEA2_V1

J i u

1

ii......... l l i j i k , t

1

I „ L I l .II u i

1

ili r k
...

...
...

.
■r

-..
...

...
...

...
...

...
...

...
..

1

»A. L_l ill] k. i J

1

k „ , 1 k iU j

i i i

0 100 200 300 400 500 600 700 800 900 1000
(b) Coherence of H2:LSC-AS_Q and H0:PEM-LVEA2_V1

I

...........JI |

i

......... j k L-.-iLM. 1(lJ j

i

I , , * «

i

~ - j l . L ,1,1

1

ii ih L i j l i 11 * l ,

T I 1 i

1L X t | L L j.

0 100 200 300 400 500 600 700 800 900 1000
(c) Coherence of L1 :LSC-AS_Q and L0:PEM-LVEA_V1

i

1

. . . C i

i

1 ii 11 i l l ,1. j . , .1 J J-
j

...-
J ,2

..]

1 1 1

k. .Lkk . .'.I 1 ki 111 *1* Lilll.L w*.. L

100 200 300 400 500 600
frequency (Hz)

700 800 900 1000

Figure 3.14: Coherence of (a) H1:LSC-AS_Q, (b) H2:LSC-AS_Q and (c)
L1:LSC-AS_Q with their respective voltage monitor channels, H0:PEM-
LVEA2_V1 and L0:PEM-LVEA_V1, before (dotted) and after (solid) appli
cation of the line removal technique described in §3.3.

3.3. CHARACTERISATION 73

(a) H1:LSC-AS_Q

) 500 60(
(b) H2:LSC-AS_Q

(c) L1 :LSC-AS_Q

Frequency (Hz)

Figure 3.15: Power spectra of the prediction for (a) H1:LSC-AS_Q, (b)
H2:LSC-AS_Q and (c) L1:LSC-AS_Q (solid). Corresponding power spectra
of the channels are provided for reference (dotted).

74 CHAPTER 3. LINE REMOVAL

Several features are notable on the power spectra of the predictions (Fig
ure 3.15). First, the power of the prediction never exceeds the power of the
LSC-AS_Q channel. Outside the bands selected for line removal, the power
is 5-10 orders of magnitude below the *:LSC-AS_Q noise floor. Within the
bands selected for line removal, the power is at least 2 orders of magnitude
below the *: LSC-AS_Q noise floor. Most importantly, for the lines themselves,
the power of the prediction is comparable to the power of the lines.

When the prediction is subtracted from the measured channel, the lines,
as measured in the power spectra of Figure 3.2, are affected to varying de
grees. Many are no longer visible above the noise floor; others have been
reduced but are still present; some are unaffected. The residual coherence
(Figure 3.14) between the line removed channels and their predictors is sim
ilar. For most lines, the coherence has been reduced; for many there is no
residual coherence above the noise level of the estimate.

Similarly, the line coherence between the HI and H2 interferometers (Fig
ure 3.3) has been reduced or removed for almost all lines. (The coherence
between HI or H2 and LI, not shown, is unaffected.) This can be most
clearly seen by considering the accumulated coherence; lines appear as steps
in the accumulation. For HI and H2, those steps have been reduced or elim
inated. Furthermore, the accumulation demonstrates that there has been
no significant broadband coherence added to the interferometers. The net
effect has been a reduction in the total accumulated coherence between the
interferometers; in this case halving the non-accidental coherence between
the interferometers, with much of the remaining coherence attributable to
low frequencies.

3.4 S to c h a s t ic b a c k g ro u n d S i u p p e r l im it

The first LIGO Science run, SI, provided the data used by a number of
Upper Limits groups to produce the first astrophysical results from the
observatories—a set of upper bounds on the strength of various astrophysical
sources.

One such astrophysical source is the hypothesised cosmological stochas
tic gravitational wave background, produced in the early universe. It is the
gravitational wave analogue of the more familiar electromagnetic Cosmolog
ical Microwave Background. To detect the stochastic (gravitational wave)
background requires an analysis of correlations between more than one de-

3.4. STOCHASTIC BACKGROUND Si UPPER LIMIT 75

H1-H2 coherence before and after line removal

pipelineremoval.tclsh (DSO analysis path)

300
frequency (Hz)

Figure 3.16: Hl-H‘2 coherence with (red) and without (blue) the line removal
stage of the stochastic pipeline.

tector, and as such the search was feared to be particularly susceptible to
correlated noise sotirces. In particular, there were concerns for the reliability
of the analysis for the co-located HI and H2 interferometers. Spectral lines
were a major source of correlations, and the stochastic background search
code was an early target for line removal.

For the Si analysis, the data analysis ‘pipeline’ included the data condi
tioning API, which computed various statistical properties of the data before
passing its results onto the search kernel. (Full details of the Si analysis are
available in [14].) The optional line removal phase could condition the data
as soon as it arrived in the data conditioning API, and before any statistics
were computed.

76 CHAPTER 3. LINE REMOVAL

Segment number

Figure 3.17: Per-da.ta-segment (x) and total (horizontal lines) upper limit
results with and without line removal, showing no significant differences. The
dashed lines are 90% confidence bounds on the (solid line) limit.

Despite the seemingly substantial reduction in coherence between HI and
H2, visible in Figure 3.16, there was no significant difference between the
upper limits computed with and without line removal.

To confirm this apparent insensitivity (Figure 3.17) of the stochastic
background search to correlated spectral lines, artificial spectral lines were
injected into the data (Figure 3.18). Again, the upper limit was not signifi
cantly affected.

The upper limit’s insensitivity to spectral lines, though advantageous,
is somewhat counter-intuitive. It is not that the upper limit is insensitive
to correlations, but rather that the high power of those lines results in the
contribution of correlations at those frequencies being strongly suppressed.

3.4. STOCHASTIC BACKGROUND Si UPPER LIMIT 77

----- psd(Hl :LSC-AS_Q)
psd(line.ilwd)_______

<53 -50

300
frequency (Hz)

Figure 3.18: The power spectrum of the injected line (red) compared to that
of the 4 km Hanford interferometer (blue).

78 CHAPTER 3. LINE REMOVAL

H1-H2 optimal filter, with noise power

. ./output/dco_2048_H 1 _H2_714636431 -714637331 . i Iwd

I (f j ft i 1

ra 20

----- psd(H1)
psd(H2)
abs(optimal filter)

frequency (Hz)

Figure 3.19: Structural comparison of the search’s optimal filter (top) and HI
and H2 spectra (bottom), showing that deep notches in the filter correspond
to spectral lines.

The optimal filter employed by the search algorithm, shown in Figure 3.19,
has strong dips corresponding to the spectral lines, effectively ‘notch-filtering’
out the line frequencies. Correspondingly, the line removal stage was not
employed in the production of the major SI upper limit result [14].

The line removal and injection studies, undertaken as part of the SI
analysis, demonstrated that the upper limit was insensitive to correlated
spectral lines, and demonstrated that the lines would not impede any upper
limits analysis of HI and H2 correlations. (It was ultimately broad-band
acoustic noise which prevented an H1-H2 upper limit.)

3.5. CONCLUSION 79

3.5 C o n c lu s io n

The data conditioning API o e l s l r line removal algorithm provides a non-
intrusive way for LIGO astrophysical searches to reduce the power and inter
instrumental coherence of spectral lines attributed to interference from the
electrical supply.

Building upon the existing functionality of the data conditioning API,
the line remover provides a general framework for time-domain system iden
tification techniques, and implements a simple class of linear model. One
particular advantage of the model type chosen is that after the estimation
stage is conducted, the prediction depends only on an environmental moni
tor, and is linearly summed with the gravitational wave channel, so that the
line remover cannot interact with any incoming gravitational wave signal.

Testing of the line remover on interferometer data taken during the Si
science run have shown the method to be quite robust with respect to the
selection of its free parameters. Lines are removed to the level of background
noise: around the lines the background noise remains practically undisturbed.
Particularly gratifying is the recovery of injected signals; other line removal
methods [17] can suppress signals as wrell as the line. The good performance of
the code, and in particular the good performance in the limit of a trivial order
1 model, indicate that potential problems such as nonlinear interference do
not limit the method under realistic conditions. It had also been feared that
the lines could inject small but cumulatively significant correlations in their
bands of operation, but the accumulated coherence results again indicate
that this is not the case.

A line removal stage was added to the stochastic background search for
the Si analysis [14]. By executing the search with and without an active
line removal stage, and also with and without the injection of artificial lines,
the expected but counter-intuitive robustness of the search against spectral
lines was conclusively established. This increased confidence in the validity
of the upper limit on the strength of an astrophysical stochastic background
of gravitational waves.

P a r t II

N etw ork S im ulation

81

C h a p te r 4

N etw ork sim ulation

Even after the launch of the four NASA orbital 'great observatories’ [22], most
electromagnetic astronomy is still affected by the geometry of the Earth. The
latitude of a terrestrial optical telescope dictates how much of the northern
and southern skies are visible, and the sidereal rotation of the Earth is mir
rored in the 'hours’ of right ascension of the celestial coordinate system.

For gravitational wave observatories, the geometry and rotation of the
Earth have an analogous impact. In comparison to an optical or radio tele
scope, an interferometric gravitational wave observatory is only weakly di
rectional, but detectors have the advantage of being able to detect sources
through the Earth. This weak directionality determines the (sidereal) aver
age sensitivity of an observatory to sources at various declinations; it also
means that observatories in different locations will have different responses
to the same gravitational wave.

When multiple gravitational wave observatories are combined into a single
instrument, in a process analogous to aperture synthesis in radio astronomy,
the relative locations of the observatories become important. The baselines
between the detectors are important for triangulation of gravitational wave
sources. The relative orientations of the antenna patterns of observatories
affects their ability to detect any particular signal. As both the baselines
and antenna patterns are dictated by the siting, these properties cannot be
decoupled and independently optimised.

The detectability of a population of gravitational wave sources depends
not only on these geometric factors, but also on the data analysis strategy
employed. A single detector may be considered in an analysis, or data from
multiple detectors may be analysed cooperatively. If data from multiple

83

84 CHAPTER 4. NETW O RK SIMULATION

detectors is to be considered, the data may be combined coherently or inco
herently. An analysis may be limited by available computational power or
bandwidth.

A great deal of effort has gone into optimising the performance of these
analyses, but scant work has been done on optimising another component in
the sensitivity: the siting of the component detectors. Next-generation grav
itational wave observatories, such as the proposed Australian Interferometric
Gravitational Observatory (AIGO), should be located so as to optimise both
their capacity for individual discovery and their contribution to the global
network of gravitational wave detectors.

This chapter presents a strategy for computing figures of merit with which
to compare systems of gravitational wave detectors and analyses, and the
common constructions for the specific figures of merit and analyses intro
duced in Chapters 5 and 6.

4.1 G e o m e tr ic a l c o n s id e ra tio n s

4.1.1 In te rfe ro m e tr ic g rav ita tio n a l wave d e tec to rs
Consider a reference frame co-rotating with the Earth. Define twin carte
sian [x y z } and spherical polar [r # 0] coordinate systems with their
origins at the centre of the Earth (assumed to be a perfect sphere). Then

[x y z] = [rco s# co s0 rc o s# s in 0 rs in #], (4.1)

where # and 0 correspond to latitude North and longitude East respectively
(in radians). Along any line of constant # and 0, the orthonormal unit vectors
local North 6 and local East 0 may be defined in cartesian coordinates:

6 — f — sin#cos0 — sin#sin0 cos#], (4.2)
<0 = [— sin0 cos 0 0 j.

A horizontal interferometric gravitational wave observatory at sea level with
mutually perpendicular arms of equal length may be described by its latitude
#. longitude o and the orientation angle 0 of its arms clockwise from local
North. The unit vectors along the arms are

eT = 0 cos u + 0 sin 0,
ey = 0sin t ’ — 0 co s0 . (4-3)

4.1. GEOMETRICAL CONSIDERATIONS 85

and the ideal linear response m of such a detector [23] to incident strain H
is given by

3

RLHu (4-4)
i j = 1

where
R = eTxex - e j e y. (4.5)

4.1.2 G ravitational wave sources

Similarly to an interferometer, a source of gravitational radiation can be
instantaneously described [23] in terms of the latitude 6 and longitude 0 for
which it is overhead (i.e., it lies on the line of sight 0, 0) and an orientation
angle -0 (required to uniquely determine the polarisations) from North 6.
The x and y axes of the source are then as in Equation 4.3, producing a
polarisation basis

F — pT’p _-L'+
E x = e 7ey + e 7ex

and the time-dependent strain H (t) produced by plane gravitational waves
may be described in this basis by the two functions of time h+ and /ix, so
that

H(t) = M t) E + + M t) E x (4-7)

in the limit where t Tsidereai, i.e., when the rotation of the Earth does not
significantly change the relative orientations of the source and detector over
the duration of the signal.

When this is not the case, (i.e., for continuous gravitational wave sources),
the variation in real-time orientations must be taken into consideration. One
way to achieve this is to treat the response as a function of time, R (t). This
is the approach taken in Chapter 6.

3

Y . 7 ĵ(E+);j,
i , j = 1

4.1.3 A ntenna patterns

The antenna patterns [23]

(4.8)

86 CHAPTER 4. NETWORK SIMULATION

Figure 4.1: Antenna pattern (F+ + F%){0, (f)) of an ideal interferometric grav
itational wave detector with arms = x and ey = y.

4.1. GEOMETRICAL CONSIDERATIONS 87

3

F * = -Rij(Ex)tj, (4-9)
» J = l

are a particular detector's response to the ‘4-’ or ‘x ’ polarisations. The
detector’s response to a signal described in that basis by h+(t) and hx(t) is
thus given by

m(t) = F+h+{t) + Fxhx(t). (4.10)

The quantity
Fl + Fl (4.11)

is independent of the choice of polarisation basis; it corresponds to the rela
tive power received, from an unpolarised source in a particular direction, by
an ideal detector. It is plotted in Figure 4.1.

Peak sensitivity occurs when the source is perpendicular to the plane
of the arms; for a terrestrial detector, this corresponds to a source directly
above or below. The detector is insensitive along the ‘arm diagonal' directions
± ex ± ey, where symmetry dictates that the strain on each arm is equal.

4.1 .4 Im p lem en ta tio n
The formulation of response in terms of matrix operations facilitates its im
plementation in the matrix-based MATLAB language.

Listing 4.1: Compute the response matrix of a gravitational wave detector,
function out = detector(theta, phi, psi)
?oDETECTOR Response matrix for an ideal interferometric gravitational

wave detector
o /
/ o

% DETECTOR(THETA, PHI, PSI) returns a detector object with location
members X, Y, Z in Cartesian and THETA, PHI in spherical polar
coordinates, arm orientation PSI and a RESPONSE matrix to incident
gravitational waves.

%
°o See also SOURCE, RESPONSE.

up = [cos(theta) * cos(phi), cos(theta) * sin(phi), sin(theta)];
north = [— sin(theta) * cos(phi), — sin(theta) * sin(phi), cos(theta)];
east = [— sin(phi), cos(phi), 0];

88 CHAPTER 4. NETWORK SIMULATION

out.x = east * cos(psi) + north * sin(psi);
out.y = — east * sin(psi) + north * cos(psi);
out.z = up;

out.response = 0.5 * (out.x’*out.x — out.y’*out.y);

out.theta = theta;
out.phi = phi;
out.psi = psi;

Similarly, the polarisation basis for a gravitational wave source may be
constructed.

Listing 4.2: Compute the polarisation basis of a source.
function [plus, cross] = source(theta, phi, psi)
%SOURCE Polarisation basis strains for a gravitational wave source
%
% SOURCE(THETA, PHI, PSI) returns polarisation basis strains [PLUS,

CROSS] for a source on the ray (THETA, PHI) with orientation PSI
%
% See also DETECTOR, RESPONSE.

north = [— sin(theta) * cos(phi), — sin(theta) * sin(phi), cos(theta)];

east = [— sin(phi), cos(phi), 0];

x = east * cos(psi) 4- north * sin(psi);
y = — east * sin(psi) + north * cos(psi);

plus = (x’*x — y’*y);
cross = (x'*y + y’*x);

To determine the amplitude of an ideal detector response to an incident
polarisation we sum over the elements of the response matrix.

Listing 4.3: Compute the response of a detector to a given strain.
function out = response(d, strain)
%RESPONSE The response o f an ideal detector to incident strain

4.1. GEOMETRICAL CONSIDERATIONS 89

Figure 4.2: Antenna patterns of existing detectors (a) LIGO Hanford (both
instruments), (b) LIGO Livingston, (c) VIRGO, (d) GEO, (e) TAMA and
proposed detector (f) AIGO.

%

% RESPONSEfD, STRAIN) returns the response of detector D to strain S.
%
% See also DETECTOR, SOURCE

out = sum(sum(d.response .* strain)); % Note that performs
componentwise (not matrix) multiplication

90 CHAPTER 4. N ETW O RK SIMULATION

4.1.5 E x isting and p roposed d e te c to rs

The geometrical properties of existing interferometric gravitational wave de
tectors have been collated by Allen [24]1. Scripts were created to facilitate
the inclusion of detectors with the properties of real observatories in the
simulations.

Listing 4.4: Compute the response of a real observatory.
function out = Iho
%oLHO returns a detector object corresponding to LIGO Hanford

Observatory
%
% Latitude 46.45 north, longitude 119.41 west, and arm orientation 36.8

degrees counter-clockwise from north
%
% See also DETECTOR, LLO, VIRGO, GEO, TAMA, AIGO.

out = detector(radians(46.45), radians(—119.41), radians(36.8));

The antenna patterns of the different detectors may be compared in Fig
ure 4.2.

4 .2 F ig u r e s o f m e r it

We will call a system of interferometric gravitational wave observatories and
their co-operative data analysis technique a network, and present a simple
formalism providing a general basis for the comparison of networks under
certain criteria. Computationally-amenable figures of merit approximating
signihcant properties of the network—such as the rate of detections produced
by a network for a given source population under a given co-operative data
analysis technique—are used to rank the relative performance of different
networks.

Consider the set Af of all networks. A figure of merit f is defined as a
real function on some subset S of networks, / : S C Af —>► R, for which
/ (a) > f (ß) (where a £ S and ß G S) is interpreted as the statement that
network a is better than network ß. An example of a figure of merit is the

lrTo maintain compatibility with [24] the scripts 44-4 use slightly different conventions
to those presented in subsections 4.1.1-3.

4.3. SUMMARY 91

inverse of the cost of the construction of a network. There are many possible
figures of merit and, in general, they will not produce the same rankings;
assessment of the significance of the results of different figures of merit must
be done by assessing the significance of the figures of merit themselves.

It is important, also, that figures of merit be computationally tractable
as well as significant. The restriction of the domain of the figure of merit
to a particular subset S C J\f of networks may simplify computation of the
figure of merit while still permitting the examination of problems of interest.
Frequently, this involves finding the optimal network or networks d in a set
T C S which is determined by the constraints on the problem.

a = {ß : 3 G T, f (ß) = max/}. (4.12)

Here we restrict ourselves to considering subsets S C J\[of networks of
fixed numbers of interferometric gravitational wave detectors, where all de
tectors in S are assumed to be identical. A subset S is completely described
by the number n of detectors in a network, the ‘design’ Ö of the identical
detectors and the co-operative analysis method E used. Any particular net
work a E S is then completely described by, for each detector, the latitudes
9, and longitudes (pl of the beam-splitters, and the orientation angles ipi of
the x-arms counter-clockwise from North (under the assumption of horizon
tal detectors on a perfectly spherical Earth). Each network is then a point
in the 3-n-dimensional parameter space [(9\, F q) , . . . , (9n, f>n. Un)\-

We will consider families of figures of merit /(n,e,E); these permit compar
isons of different geographical configurations of networks in a subset S, but
not comparisons of networks with different numbers of detectors n, designs
0 or analysis algorithms E.

4.3 S u m m a r y

An interferometric gravitational wave detector's sensitivity to incoming grav
itational radiation is dependent upon the relative orientation of detector and
source. When a detector is restricted to lie on the Earth’s surface, this an
tenna pattern is dictated by the siting of the instrument. The response of
an ideal detector to a strain polarisation can be modelled with some simple
vector algebra.

To answer questions about the relative merits of different sites or parame
ters of detectors or networks of detectors, a simple figure of merit formalism

92 CHAPTER 4. NETWORK SIMULATION

can be used as a basis. In Chapter 5 we consider the merit of different config
urations of observatories around the Earth for the purpose of detecting binary
inspiral events by either coincident or coherent data analysis strategies. In
Chapter 6, we examine how the latitude of detectors impacts upon their
ability to detect a galactic population of sources of continuous gravitational
waves.

C h a p te r 5

G eographical configuration

The theoretically-known waveforms of the inspiral phase of merging binary
compact stellar systems is one of the most promising sources for first-generation
terrestrial interferometric observatories. The events are rare, brief and pre
dominantly faint. Distinguishing between real signals and instrumental arti
facts is the limiting factor. Combining data from multiple observatories can
improve both sensitivity and confidence, by weeding out such artifacts. In
fact, the dual-detector LIGO design embodies the opinion that detection of
an event by at least two independent instruments is required for the wide
spread acceptance of a claim. Network analysis is the generalisation of this
concept.

The coincident network analysis technique [25, 26], in its simplest form,
allows independent searches to be performed by each detector in the network;
a signal is only detected by the network when the signal is detected by each
member detector. A more recently proposed technique is coherent network
analysis [27, 28], whereby the output of all detectors is collected and then
a single search is performed on the combined data. The coherent network
analysis has a theoretical advantage over the coincident network analysis,
but the practical merits of each are still under debate.

The twin LIGO sites were chosen to facilitate a coincidence analysis—
they are distant enough to reduce common environmental disturbances and
produce a measurable arrival time difference, but close enough to have similar
antenna patterns [23] and so produce similar responses to an incident gravita
tional wave. Likewise, the location of the proposed Australian-International
Gravitational Observatory (AIGO) [29] has been selected to be near-antipodal
to the LIGO sites and thus share their antenna patterns, whilst introducing

93

94 CHAPTER 5. GEOGRAPHICAL CONFIGURATION

a significant arrival time delay [30]. The site of VIRGO, however, and the
proposed Laser Cryogenic Gravitational Telescope (LCGT) were not selected
[31, 32] to facilitate a global network analysis. This implies that any realistic
global' network will likely be, in this sense, sub-optimal and we will determine
how significantly this will impact the ability of the network to do science.

Questions of how to optimally configure the global network arise in this
context. We describe a formalism for comparing different geographical con
figurations of a global network of interferometric gravitational wave observa
tories, using both the coincident network analysis method and the coherent
network analysis method. We have constructed a network model to compute
a figure of merit based on the relative detection rate for the particular case
of a uniform population of standard-candle binary inspirals.

The increasing viability of the new coherent network analysis technique
[27, 28] encourages us to reconsider existing results about the global network;
in particular, the influence of instrument siting on the quality of the network
as a whole [26].

5.1 D e te c t io n o f b in a ry in sp ira l e v en ts

We define a particular figure of merit corresponding to the detection rate for
a population of standard-candle binary inspiral events.

Consider a particular class of binary inspiral systems, producing a particu
lar deterministic gravitational waveform. Distribute these systems uniformly
in flat space and randomly orient them. Let the distribution be unchanging
in time so that any volume of space produces a constant rate of events. The
property on which we will base the figure of merit f(n,Q.z) is the rate at which
events from this population may be confidently detected by the application
of some network analysis algorithm E to any given network of n gravitational
wave detectors of design 0 .

5.1.1 W aveform and resp o n se

A simple binary inspiral [23] produces a quadrupole strain of the form

H = v{t) (E+h+{t) + E xhx(t)).r (5.1)

•5.1. DETECTION OF BINARY INSPIRAL EVENTS 95

where

h+(t) = (1 + cos2 i) cos £(£)
hx(t) = 2 cos i sin £(£),

(5.2)
(5.3)

and r is the distance traversed by the gravitational radiation, i is the in
clination angle of the source to the line of sight, and 77 and £ depend on
other properties of the emitting system (and are unaffected by the system’s
distance and orientation with respect to the component detectors). Note
that r](t) is the envelope of the more-rapid sin£(f) and cos £(£) oscillations;
the structure of rj(t) and £(£) beyond this is not relevant to the rest of our
analysis [23].

The response of any single detector in the network to this strain is

where the antenna patterns and source inclination F+, Fx, and i encode the
relative orientations of the emitting system and detector.

5.1.2 A nalysis s tra teg ie s

The output g(t) of the detector also consists of noise n(t), assumed to be
additive with the signal response and stationary on the timescale of the
signal.

The noise component of the detector output can be made Gaussian by the
application of a linear whitening filter ('), also stationary on the timescale of
the signal,

The application of the filter also alters the response.
Following Finn [27]. to determine with confidence if a particular signal

response m(t) is present in the filtered output g'(t) of a single detector,
consider the mutually exclusive hypotheses H0, that the detector output
consists solely of Gaussian noise g'(t) = n'(t), and Hm, that the detector
output consists of the sum of Gaussian noise and the filtered signal response,

g(t) = m(t) + n(t). (5.5)

g'(t) = m'(t) + n'(f). (5.6)

96 CHAPTER 5. GEOGRAPHICAL CONFIGURATION

g'(t) = n'(t) + m'(t). The likelihood ratio A is then the ratio of the probabil
ities of the observed output g'(t) arising under each hypothesis.

A (g',m') = P(9'\Hm)
P(9'\Ho)
P (g ' - m ' \ H 0)

P(g'\Ho) ‘

The likelihood may be readily computed by matched filtering [27],

In A(g'\m') = 2(g ,rri) -

(5.7)

(5.8)

(5.9)

where (,) denotes the inner product of the two time series. This allows
us to determine the ‘plausibility’ that the detector output arose from any
particular signal response.

The maximum likelihood

Amaxtel-A'Q = max A(flf'|m') (5.10)
m £ M

is the likelihood of the most plausible signal response rh in some set of re
sponses A4. A confident detection of a candidate signal rh G A4 is said to
have occurred when

Amaxfp'IAd) = A{g\rh!) > A0 (5.11)

where Aq is a threshold value that is set sufficiently high to ensure that when
no signal is present it is exceeded only at an acceptable false alarm rate. A
false dismissal occurs when the likelihood for a weak but real signal fails to
exceed the threshold.

A simple coincident network analysis can be performed using only the
above algorithm on each detector: a detection occurs only when each ob
servatory detects a signal rh,. This requirement allows the thresholds A, to
be lower than for a single detector, as more frequent false alarms are ‘ve
toed- by other detectors. For a network of identical detectors, the thresholds
themselves are identical, so that a detection occurs when

min Amax(g-|Ad) > ACOjnCjdent;. (5.12)

Alternatively, coherent network analysis vectorises the maximum likeli
hood test to treat the network as a whole, a confident detection occurring
when

A max (g \M) > A coherenti (5.13)

5.1. DETECTION OF BINARY INSPIRAL EVENTS 97

where g7 = [g0 ... gn\. No single detector is required to meet any threshold.
This technique is theoretically optimal in the same sense as the maximum
likelihood test is optimal for a single detector. When the noise is uncorrelated
between detectors in the network, the likelihood is separable, so that

n

A(g7|m) = Yl A (^ K)> (5-14)

but as the maximisation occurs for the system as a whole, the individual
signal responses m* typically do not correspond to maximum likelihoods for
the individual detectors [27],

n

max I I A(g.■| U l{) > A coherent- (5.15)
rm£M -*■ i=l

5.1.3 D e te c tio n ra te

We are concerned only with the case where a physical signal is present, as
false alarms have been limited to an acceptably low rate.

Consider the gravitational wave signal from a particular binary inspiral
event, with all parameters fixed except its distance to the detectors (cor
responding to the inverse amplitude of the wave-. Equation 5.4). We may
establish an effective maximum distance rmax beyond which the probability
of detecting such a source falls below some threshold. This value could be
computed from the definitions of the tests above, for example, by Monte
Carlo simulation.

Consider a population of otherwise identical binary inspiral systems uni
formly distributed in (flat) space and randomly oriented. The effective vol
ume V of space in which the events can be detected can be computed from
r ma.x by integrating over the sky and averaging over source orientation and
inclination,

r^ax cos#sinzdfh (5.16)

For a constant event rate per unit volume p, the rate of confident detections
from the network is pV.

This constitutes a valid figure of merit / = pV. A network with a higher
rate of detections (for the same level of confidence) is clearly better than a

98 CHAPTER 5. GEOGRAPHICAL CONFIGURATION

network with a lower rate of detections, at least so far as detection of this
particular class of binary inspirals is concerned.

This figure of merit is, however, prohibitively expensive to compute naively.
Instead, we simplify it and introduce approximations to implement a new,
computable, figure of merit.

5.1.4 Im p lem en ta tio n

From Equation 5.4,
1 -4- rn s 2 ?

m'(t) = fo(t)cosC M l — -r
, , 2 cosi ^

+ 7?(£)sinC(0 ------- Fx .r
Noting that

((77 cos £)', (77 cos C)') % ((77 sin ()'. fasinC)'),
((77cos £)', (77sin £)') « 0,

then when a signal nn! is present

In A(g'\m') = 2(m + n ,m') — (m ',m f)
— (m \ m) + 2 (77/, m)
% ((77 cos C)7, fa cos O')

x - i [(l + cos2 i)2F l + 4 cos2 iF\]

+ 2 (n , m r). (5-21)

We assume that for confident detections

In Amax{g') ~ In A{g'\m') « In A(g'\m'), (5.22)

in other words, that the most plausible signal approximates the real signal,
and that the contribution of noise to the likelihood is negligible.

Under this assumption, the coincident test in Equation 5.12 becomes

In Acoincident < min In A^'lm*)i
(f a COS O h (77 COS C X)

r 2
x min[(l + cos2 i)2(F+)?i
+ 4 cos2 i(F x)"],

(5.17)

(5.18)
(5.19)

(5.20)

(5.23)

5.1. DETECTION OF BINARY INSPIRAL EVENTS 99

and the coherent test in Equation 5.15 becomes

In Acoherent 1^ A (^ 17Tij)

i
(P COS C);, p c o s O')

r 2

x E [(1 + cos2*)2(F +)
i

+ 4 cos 2i{Fx)f], (5.24)

The two tests differ only in their use of min or to combine the likelihoods.
The maximum detectable distance r max is the distance at which the

threshold is reached; for a coincident analysis

2 = (p c o s p y p c o s p ')
P nax 1 a

1114 ‘■coincident

x min[(l + cos2 i)2(F+)2

and for a coherent analysis

Then,

+ 4cos2'i(Fx)2],

((7? COSpy (77 cos C)7)
In A d h e r e n t

x Y f t l + cos2 i)2{F+)
i

4- 4 cos2 f(F x)2].

^coincident, CC f n .Q , coincident

oc [{min[(l + cos2 z)2(F+)2
J n 1

+ 4 cos2 f(Fx)2]}^ cos^sin idQ,

^coherent CC fn .Q . coherent

°< [{ ^ K 1 + cos22')2(F+)2
Jp. i

+ 4 cos2 i(F x)“]} ̂ cos#sin idQ,

(5.25)

(5.26)

(5.27)

(5.28)

100 CHAPTER 5. GEOGRAPHICAL CONFIGURATION

where the neglected term ((7 7 cos Q', (rj cos £)') depends only on the source
class, and the thresholds A coincident and A coherent are assumed to depend only
on the detector design. We neglect the dependance of the thresholds on the
geographical configuration of the network1.

The figures of merit coincident and coherent are (granted approxima
tions) linearly proportional to the actual rate pV. To evaluate these figures
of merit, the response matrices R (are first computed for each detector using
Equation 4.5. Numerical Monte Carlo integration is implemented, randomly
selecting source parameters from the population and evaluating the interior
of the integral many times (using Equations 4.8 and 4.9 to compute the
antenna patterns), and averaging the result.

The 3n-dimensional parameter space is too large to be computationally
amenable, and so we consider only proper subsets of particular interest. For
example, the best site (under our figure of merit) to augment an existing
network of n detectors can be found by fixing the first n detectors of a n 4 - 1
detector network, and varying only (0n+i,0n+i ,^ n+i). Furthermore, noting
that the figure of merit depends only weakly on the orientation2, ipn+1 , we can
fix it to an arbitrary value, and vary only the latitude and longitude. The
figure of merit over this two-dimensional section of parameter space then
corresponds to a map of the relative merit of different sites on the Earth for
augmenting an existing network.

5.2 R e s u lts

We may use our figures of merit, Equations 5.27 and 5.28, to answer a variety
of questions about the network; we choose to determine the optimal detector
to augment an existing network of identical detectors.

Formally, consider a network of n detectors. Detectors 1 to n — 1 represent
the existing detectors with fixed latitude 6n longitude <A and orientation W
Detector n represents the augmenting detector with variable latitude <9n.
longitude (f>n and orientation v n. Effectively we wish to compute the merit
/ over the subset T C S n Q_-= C A/”, where T represents the 3-dimensional
surface of constant (90 <pl, 1y for i < n.

1 Thanks to Peter Shawhan for pointing this out.
2See Figures 5.1, 5.2. 5.3. 5.4: at the upper and lower edges, corresponding to the north

and south geographic poles, the detectors rotate in place as the longitude varies: despite
this the figure of merit remains constant to a good approximation.

5.2. RESULTS 101

Figure 5.1: Relative merit of an additional site to augment the LIGO Liv
ingston Observatory in a coincident analysis (lighter is better, contours every
2.5%). The minimum detection rate is 41% of the maximum.

We can further reduce T by noting that /coincident and /coherent vary only
weakly with ?/>n. We may then additionally fix the orientation ijjn at an ar
bitrary value, and consider only the 2-dimensional slice produced by varying
0n and <f)n.

This 2-dimensional set has a straightforward interpretation as the geo
graphical map of the merit of any site on the surface of the Earth to augment
an existing network of n — 1 identical detectors with another such detector.

Consider first a single interferometer, at the site [24] of the LIGO Liv
ingston Observatory (LLO). For a coincident network analysis, the merit of
an additional site to augment LLO is given in Figure 5.1. It demonstrates,
as expected, that sites near or near-antipodal to LLO are best to augment
it. This is the rationale behind the siting of the LIGO detectors, and the
proposed AIGO detector. The worst configurations produce a substantially
reduced detection rate; approximately 40% that of the optimal configuration.
Unfortunately, the locations of VIRGO and the proposed LCGT fall into this
category.

It is interesting to note that for this simple case the map bears some
resemblance to the “peanut” antenna pattern of the fixed single detector;

102 CHAPTER 5. GEOGRAPHICAL CONFIGURATION

longitude (degrees, east)

Figure 5.2: Relative merit of an additional site to augment the LIGO Liv
ingston Observatory in a coherent analysis (lighter is better, contours every
2.5%). The minimum detection rate is 89% of the maximum.

the weak directionality of the varying detector, and the superiority of a co-
aligned network [33] are responsible for this effect. This resemblance breaks
down for more complicated networks.

Considering the same configuration of a fixed LLO detector and a vary
ing detector with a coherent network analysis in Figure 5.2, the qualitative
structure of the map is similar, but quantitatively it is quite different. For a
coherent analysis, the worst configurations produce a detection rate that is
still 90% of optimal; site merit does not vary substantially with location.

We now move on to consider an approximation to the existing global net
work of the larger interferometric gravitational wave detectors. We model
the LIGO-VIRGO network as three identical interferometers at the sites
of LIGO Hanford Observatory (LHO), LIGO Livingston Observatory and
VIRGO [24], Note that this model neglects the 2 kilometre LHO instrument,
and the differences between the LIGO and VIRGO instruments. Similarly,
we augment this three-detector network with a fourth (identical) detector at
different locations and compare the relative detection rates of the resulting
network.

Using a coincident network analysis in Figure 5.3, we see that the merit of

5.2. RESULTS 103

Figure 5.3: Relative merit of an additional site to augment a network con
sisting of the LIGO Hanford (4km) Observatory, the LIGO Livingston Ob
servatory and a 4km LIGO I instrument at the VIRGO site, in a coincident
analysis (lighter is better, contours every 2.5%). The minimum detection
rate is 69% of the maximum.

104 CHAPTER 5. GEOGRAPHICAL CONFIGURATION

-150 -100 -50 0 50 100 150
longitude (degrees east)

Figure 5.4: Relative merit of an additional site to augment a network con
sisting of the LIGO Hanford (4km) Observatory, the LIGO Livingston Ob
servatory and a 4km LIGO I instrument at the VIRGO site, in a coherent
analysis (lighter is better, contours every 2.5%). The minimum detection
rate is 94% of the maximum.

the network varies moderately with location, with multiple minima of about
70% of the best achievable detection rates.

Under a coherent network analysis in Figure 5.4, we once again see a
qualitative similarity to Figure 5.3 in the locations of maxima and minima,
but quantitatively much less variation than in the coincident case, with only
6% separating the best and worst sites. As expected, this indicates that
AIGO is an optimal site to augment the existing global network; however,
the weak dependance of event rate on geographical location for a coherent
analysis means that its advantage over other sites is slight.

5.3 C o n c lu sio n

We have proposed a formalism for conducting studies of the relative mer
its of differently configured systems of gravitational wave observatories and
different collaborative analysis techniques.

We have demonstrated that, given certain assumptions, simple imple-

5.3. CONCLUSION 105

mentations of the coincident and coherent analysis techniques exhibit very
different dependencies on the geographical locations of their component de
tectors.

Under our model, it is clear that the (binary inspiral) detection rate
for a global network is insensitive to the geographical configuration of its
component detectors when a coherent analysis is used, in contrast to when
a simple coincident analysis is used. Whilst the LIGO detectors and the
proposed AIGO detector are well sited to complement one another under
a coincident analysis, the sites of the VIRGO detector and the proposed
LCGT detector are far from optimal; our results demonstrate that under a
coherent analysis the cost of this sub-optimal siting is substantially reduced,
on at least one figure of merit. In this sense, the global network is closer to
optimal for a coherent analysis than for a coincident analysis. Our results also
indicate that since, under a coherent analysis, detection rate is insensitive to
detector siting, the location of an augmenting detector could be optimised
for other network properties (for example, directional resolution) without
compromising the event rate.

It is important to note that the model does not compare the absolute de
tection rates for the two analysis techniques; we cannot say that one method
would produce a higher detection rate than the other for a given false alarm
rate. Though we have considered only one class of source and one figure of
merit, our formalism is general enough to extend to more general problems.

C h a p te r 6

C ontinuous-w ave sources

6.1 In tro d u c tio n

The most optimistic estimates place the strain produced by continuous wave
sources at least three orders of magnitude below those of inspiral and other
burst events [34], Hopes of their detection are due to the fact that the signal
can be integrated over months, or potentially even years of observation.

The motions of the Earth serve to modulate the incoming continuous
gravitational wave signal. Daily rotation varies the angle of the source, and
hence the sensitivity of the detector, leading to variations in amplitude. Or
bital motions provide a seasonally-varying Doppler shift to the frequency.

Currently, it is computationally unfeasible to cover all the possible para
meters governing the waveform (as is done with template banks for inspirals).
Optimal searches are restricted to match the parameters of nearby pulsars
known from their electromagnetic emissions [34]. Hierarchical searches, com
putationally feasible but with less-than-optimal sensitivity, will be used to
search for continuous wave sources not associated with electromagnetically
identified pulsars.

6.2 M ethodology
Consider a neutron star and an interferometric gravitational wave detector.
The neutron star has principal axes C, I2 and / 3, and rotates about / 3 with
angular frequency uJp. The neutron star is a distance r from the detector,
and / 3 is inclined at an angle i to the line of sight is oriented at an angle v p

107

108 CHAPTER 6. CONTINUOUS-WAVE SOURCES

from geographic north. The strains produced for the two polarisations along
the line of sight are

h+{t) =

hx(t) =

“V £ (l + COS l
COS UJgt

u 2Ie
cos i sin ujgt

where

I =

E =

h + h
~2

h - h

LJ g 2 lJp,

(6 . 1)

(6 .2)

(6.3)

(6.4)

(6.5)

noting that the frequency of the gravitational waves ug is twice that of the
pulsar. The strain measured by the observatory will be

h(t) = F+h+(t) + (6 .6)

where the antenna-pattern factors F+ and Fx are functions of the (time-
varying) relative orientation of the neutron star and the detector.

(N i e
h(t) = F4 1 + cos“i cos ujat + Fx cos i sin ujnt

This is a sinusoid of some amplitude A and phase ß

h(t) = Acos(ujgt + ß)

where

A2 =
2 T ' 2cczls

F 2 (1 + COS2 Z)2

4
4- F2 cos2 i

(6.7)

(6 .8)

(6.9)

We neglect motions of the Earth (and indeed the neutron star) other than
their rotation.

As the Earth, and any ground-based interferometer, rotates once each
sidereal day, the value of A2 will vary with this period, T. Moreover, this

6.2. METHODOLOGY 109

value will not depend on the right ascension 0P of the neutron star. The
average over one sidereal day is equal to the average over right ascension.

A 2 =
1

2n
F:

(1 + cos2 i)2
~~4

+ F 2 cos2 i d0P (6 . 10)

where the parameters of the observatory (most importantly, its latitude and
orientation) are implicit in the antenna patterns.

6.2.1 Im plem entation
The solution of the integral in 6.10 is a simple but arduous process. Noting
that

ex
— sin 9 cos 0 cos 0 — sin 0 sin 0
— sin 6 sin 0 cos 0 T cos 0 sin 0

cos 0 cos 0
— sin 0 cos 0 sin 0 + sin 0 cos 0
— sin 9 sin 0 sin 0 — cos 0 cos 0

cos 9 sin 0

and from Equation 4.5,

R = exe£ - e ye^,

we may expand the dependance of R on 0 as follows:

(6 . 11)

(6 . 12)

(6.13)

R(0) = R a cos2 0TRasin'2 0 + R r cos0 s in 0 + R dco s0 -fR g sin 0 + R /, (6.14)

where

R a

R&

R c

sin2 9 cos 20 — sin 9 sin 20 0
— sin 9 sin 20 — cos 20 0

0 0 0 _

— cos 20 0 sin 9 sin 20
sin 9 sin 20 sin2 9 cos 20 0

0 0 0
2 sin 9 sin 20 (sin2 9 T 1) cos 2u 0

(sin2 9 + 1) cos 20 — 2 sin 9 sin 20 0
0 0 0

(6.15)

(6.16)

(6.17)

110 CHAPTER 6. CONTINUOUS-WAVE SOURCES

R e

cos 9

cos 9

0 0 sin 9 cos 20
0 0 sin 20

sin 6 cos 20 sin 20 0
0 0 — sin 20
0 0 — sin 0 cos 20

— sin 20 — sin 9 cos 20 0

R f =
0 0 0
0 0 0
0 0 cos2 6 cos 20

(6.18)

(6.19)

(6.20)

The sidereally averaged squared response—the incident power—is given by

R (zUi r,M)h,,)2 W
— S-TT cos2 0 + Sb sin2 0 + Sc cos 0 sin 0 + Sj cos 0 4- 5e sin 0 + S/) “ d0
— f (351" + 35g- -f- «S'2 + 45^ + dS'2 + ßS*2 + 2SaSb + SSaSf + 8S^Sj^j ,

(6 .21)

where
3

S „ = (6.22)
* J = 1

and similarly for Sb et cetera.
The sidereally-averaged squared response of a detector to a strain is read

ily computed in Matlab; see Appendix B.
The sidereally-averaged antenna patterns are depicted in Figure 6.1. No

tably, those of observatories at latitudes ± | retain their characteristic ‘‘peanut"
shape, but their dimpled minima are averaged out. In contrast, at near-0
(equatorial) latitudes, the primary lobes have been swept by the average into
a torus-like structure whose exact shape depends on the orientation of the
detector. Note that an equatorial detector with a | orientation is completely
insensitive to sources at the celestial poles. Existing detectors in the | to |
latitudes have intermediate forms.

6.3 D e te c tio n

For a single detector and a particular neutron star, the neutron star is de
tectable if the mean square amplitude exceeds a certain threshold A2. For

6.3. DETECTION 111

Figure 6.1: Sidereally-averaged response to a uniform distribution of pulsars
of interferometers with varying latitudes and orientations—effectively the
familiar peanut antenna pattern averaged over a rotation. The responses are
independent of longitude; the vertical axis of the diagram is the Earth’s axis
of rotation. From left to right, latitudes of 0°, ±30°, ±60° and ±90°. From
top to bottom, orientations of 0, | and j from north. Note that for the
equatorial detector with a | orientation, an antenna pattern null aligns with
the Earth’s axis of rotation so that no sources from that direction could be
detected.

112 CHAPTER 6. CONTINUOUS-WAVE SOURCES

a given declination, orientation and inclination, the maximum distance r max
that such a neutron star can be detected is

A2

r2
m ax

A 2

O

1 [n n2(l + cos2z)2
t o L F+ 4

1 r
O'rr / /I

+ F 2 cos2 i d<SP

+ F 2 cos2 1 d(f)p

(6.23)

(6.24)

(6.25)

Under the simplification that this threshold is the same for all observable
neutron star parameters, we would like to equate this seeing distance r max
with an observable volume of space. To do this we must, however, form not
an average seeing distance, but rather the average cubed seeing distance r;^ax
over the different seeing distances for different orientations and inclina
tions ip of the population of neutron stars along the line of sight.

i r n / 2 i /*7r

^3 - 1 / 1 / ̂3
2 ^ J - t t / 2 2

so that the total observable volume is

r n / 2

rmax cos i dipdipT (6.26)

V = 2tt
-tt/2

r m ax C O S 0 p d 0 p , (6.27)

noting that r max is independent of right ascension.

6.4 G a la c tic d is tr ib u tio n

A simple model of neutron star distribution in the galaxy (Figure 6.2) is
provided by [35]. For a population of neutron stars with a particular set of
intrinsic parameters, we can determine what proportion of the total galac
tic population may be detected by a particular observatory for a particular
threshold.

The result for any given threshold may be computed as a Monte-Carlo
integration, but the same computation can be used to simultaneously com
pute the fraction for any threshold. We store all the thresholds computed in
the Monte-Carlo sum, and sort it into a monotonically-decreasing list (A2)*.

6.4. GALACTIC DISTRIBUTION 113

Galactic neutron star population

Figure 6.2: Model for the distribution of galactic pulsars, in celestial coordi
nates.

114 CHAPTER 6. CONTINUOUS-WAVE SOURCES

Figure 6.3: Detectable fraction (vertical) of a galactic pulsar population
against relative detection (horizontal) threshold for various detector latitudes
and orientations (lines). The latitude and orientation have a minimal effect
on an detector's ability to observe galactic neutron stars, which is almost
wholly governed by its baseline strain sensitivity.

6.5. CONCLUSION 115

For a particular threshold (A2)*, its normalised position in the list i /N is the
detectable population fraction.

Figure 6.3 shows this relation for a variety of detector latitudes and ori
entations. As we would expect, in the regimes of very high and very low
sensitivity, the position of the detectors is irrelevant. However, even at inter
mediate sensitivities, the siting of an observatory has only a minimal impact.
Strain sensitivity, not geometry, dominates.

6.5 C o n c lu s io n

Despite the large differences in the sidereally-averaged antenna-patterns of
terrestrial gravitational wave observatories at different latitudes, the fraction
of a galactic population of neutron stars they can detect is almost indepen
dent of latitude. (Of course, their ability to detect any particular neutron
star is highly dependent on latitude.)

C h a p te r 7

S um m ary and fu tu re d irections

The practical scientist is trying to solve tomorrow’s problems with yesterday’s
computer

— Numerical Recipes

7.1 D a ta c o n d itio n in g

... and perhaps tomorrow’s as-yet-unfinished C++ compiler.
LDAS is quite an achievement, engineered by only a handful of hardy

souls and now entrenched at the very heart of LIGO science (Chapter 2).
As with any complicated project, hindsight suggests alternative routes and
useful lessons, but the most important fact to note is that LDAS delivered
the extensive, and extensively tested, functionality that the Si analyses [14,
34, 36, 37] required.

The data conditioning API is the bridge between LDAS’s roles as LIGO's
data librarian and search coordinator, taking raw data and converting it into
the input expected by each particular search code. The author participated
in the development and implementation of the Universal Data Type frame
work that underpins the current data conditioning API, allowing the uniform
support of the API's many different types of data—scalars, vectors, and ma
trices of integer, real or complex values represented at various precisions.
He also participated in the design, implementation and testing of the basic
signal processing operations—heterodyning, linear filtering and resampling—
and their integration into the data conditioning API command language, as
well as in the extensive testing including Mock Data Challenges.

117

118 CHAPTER 7. SUMMARY AND FUTURE DIRECTIONS

The line removal algorithm built using that functionality promises to be a
useful tool for removing environmental disturbances [15]. It has been exten
sively characterised, leading to its inclusion in the first stochastic background
upper limits analysis. Rather than conditioning data for the analysis, it was
used to prove that the then level of correlations introduced by spectral lines
did not have a significant impact on the analysis. W ithout this result there
may have been less confidence in the stochastic background upper limit re
sults [14].

OELSLR compares favourably with earlier line removal techniques, in
terms of its ability to recover signals from beneath lines without attenua
tion and because of its ready availability—it can be deployed for any search
code merely by pasting a few lines of text into the search's Idas Job. Though
currently only applied to the anthropogenic 60 Hz lines, the model itself is
exceedingly general and could be applied to any measurable environmental
disturbance over narrow or broad frequency bands. Obvious candidates are
low-frequency seismic noise, vibrational and acoustic couplings, and magnetic
effects other than the 60 Hz lines—in fact most of the physical environment
monitor channels. Further work will identify the optimal parameters for these
new operating regimes, and perhaps a way of automatically identifying the
parameters. Application to searches beyond the stochastic background will
either improve their sensitivity or prove their resilience against environmen
tally induced correlations.

Generalisation of the underlying system identification model could only
improve the performance of the line remover. Allowing multiple input chan
nels could permit the system to remove many kinds of environmental noise
simultaneously. The system identification model could be improved from an
auto-regression to an output error or even more advanced system, though this
would be a major undertaking. Finally, the model could be made adaptive,
so that it ‘automagically’ refines its model as it processes data.

The future of LDAS itself is ultimately in the hands of its users. So far it
has seen great use as a data distribution technology throughout LIGO. and as
one of a variety of analysis tools employed by science searches. In the future
it is likely to migrate to data grid and even computation grid technologies,
linking together clusters across the US (and Australia) into coherent virtual
machines.

7.2. NETWORK SIMULATION 119

7.2 N etw ork sim ulation

The interplay between a gravitational wave observatory’s location, orienta
tion and sensitivity is intriguing. Most sensitive to gravitational wave sources
directly above or below the plane of the two (perpendicular) arms, there is
lesser interferometer sensitivity to sources from almost all other directions, so
phase and timing information must be used to reconstruct the direction and
polarisation of sources from the output of multiple interferometers. Useful
time delays between interferometers correspond to many hundreds of kilo
metres of separation, and as the interferometers are constrained to lie on the
curved surface of the Earth, this produces a misalignment of the instruments.
The exception is when detectors are situated on opposite sides of the Earth,
as would be the case for an Australian complement to the North American
detectors.

We first considered the detection of known short waveforms—the classic
inspiral source, though our model is slightly more widely applicable—by two
different techniques: the simple coincidence test (currently implemented by
the global network of bar detectors), and a fully coherent search (analogous
to aperture synthesis in radio astronomy). By varying the configuration
of one interferometer while keeping the others—corresponding to existing
observatories—fixed, and performing a Monte-Carlo estimate of the sensitiv
ity of the whole network, we were able to plot out the relative merit of new
observatory locations. Western Australia, by virtue of its antipodean loca
tion, was always an optimal location. The difference between the best and
worst configurations for a coherent search was only a few percent suggesting
that a coherent search is more robust against misalignment and thus more
likely to suit a real global network. When considering the detection of contin
uous wave sources—specifically a galactic population of neutron stars—only
the faintest of dependencies on detector configuration was observed. These
results are good news for global gravitational wave astronomy: the geograph
ical arrangement of existing gravitational wave interferometers will not sig
nificantly impair their ability to work together as a single global instrument.

The models used are plausible, but for computational tractability a large
number of simplifications had to be made—most importantly the assump
tions of identical interferometers and neglecting issues of frequency response
and the impact of environmental noise. The LDAS implementation on the
growing AC’IGA Data Analysis Cluster gives us the computing horsepower
and framework to perform much more in-depth and realistic studies, even

120 CHAPTER 7. SUMMARY AND FUTURE DIRECTIONS

up to testing the recovery of injected signals by mocked-up network search
codes based on their real single-detector equivalents. Using the ACIGA phys
ical environment monitoring station at The Australian National University
and data from our overseas partners, we will be able to simulate a southern
hemisphere detector with the characteristics of a LIGO instrument, yet with
southern hemisphere environmental disturbances and a southern hemisphere
response time and matrix to simulated signals.

Perhaps the most promising role of an Australian detector is not so much
to add to the detection capability of a network, but rather by providing a
long baseline to the mid-latitudes of the northern hemisphere, and improving
the angular resolution of the whole network—a study which is a priority of
ACIGA. W ith an application made for funds in 2005 to model an Australian
detector, including angular resolution and global noise correlations, we may
soon have definitive answers.

7.3 C o n c lu s io n

My development of aspects of the LDAS Data Conditioning API comprised
part of the infrastructure for the LIGO upper limits papers, [14, 34, 36. 37],
some of the first ‘big science’ results of the 21st century. I also considered
how to optimally develop the astronomical discovery capacity of a global
network of gravitational wave observatories, particularly focussing on the
role Australia might play.

I am proud to continue to play my small part in this great scientific
adventure.

— Antony Charles Searle, Canberra, 2004

A ppend ix A

Line rem over im p lem en ta tio n

Implementation is naturally broken into two pieces of functionality: an output-
error model, and a band-selector. They are tied together by a line-remover
class.

Disclaimer The code presented here is substantially, but not entirely, the
work of the author. Contributions of others are limited to stylistic issues and
minor compatibility issues.

A .l B a n d se le c tio n

Though seemingly trivial, the combination of heterodyning, resampling, and
the introduced transients and delays made band selection a difficult task to
get right. Eventually, it was abstracted into a class.

To select a band centred around / of width /]\jy/n , and then to reverse
that selection, it is necessary to create two Mixer objects, mixing by ± / / f y y,
and two Reasample objects, up- and down-sampling by n.

Listing A.l: BandSelector class definition,
class BandSelector
{

public:

BandSelector(const doubled frequency, const std::size_t factor)

121

122 APPENDIX A. LINE REMOVER IMPLEMENTATION

: m_downmixer(MixerState(0.0, —frequency))
, m_downsampler(l, factor)
, m_downshifter(0)
, m_upsampler(factor, 1)
, m_upshifter(0)
, m_upmixer(MixerState(0.0, +frequency))

{
}

BandSelector(const BandSelector& bs)
: m_downmixer(bs.m_downmixer)
, m_downsampler(bs.m_downsampler)
, m_downshifter(bs.m_downshifter ? bs.m_downshifter—>Clone

0 : o)
, m_upsampler(bs.m_upsampler)
, m_upshifter(bs.m_upshifter ? bs.m_upshifter—>Clone() : 0)
, m_upmixer(bs.m_upmixer)

{
}

~BandSelector()
{

delete m.downshifter;
delete m_upshifter;

}

BandSelector& operator=(const BandSelector& bs)

{
if (&bs ! = this)
{

m_downmixer — bs.m_downmixer;
m_downsampler = bs.m_downsampler;
delete m_downshifter;
m_downshifter = bs.m_downshifter ? bs.m_downshifter—>

Clone() : 0;
m_upsampler = bs.m_upsampler;
delete m_upshifter;
m_upshifter = bs.m_upshifter ? bs.m.upshifter—>Clone()

A.l. BAND SELECTION 123

: 0 ;
m_upmixer — bs.m_upmixer;

}
return *this;

}

BandSelector* clone() const
{

return new BandSelector(*this);
}

templatectypename out_, typename in_>
void apply(std::valarraycout_>& out, const std::valarray<in_

> & in)
{

std::valarray<out_> downmixed;
m_down mixer, apply (down mixed, in);
Sequence<out_> downsampled;
m_downsampler.apply(downsampled, downmixed);
if (!m_downshifter) m_downshifter = new ShiftState<out_>(

m_downsampler.getDelay(), 1);
dynamic_castcShiftStatecout_>&>(*m_downshifter).apply(

downsampled);
out.resize(downsampled.size());
out = downsampled;

}

templatectypename out_, typename in_>
void ylppa(std::valarrayCout_>& out, const std::valarray<in_

> & in)
{

Sequence<in_> upsampled;
m_upsampler.apply(upsampled, in);
if (!m_upshifter) m_upshifter = new ShiftState<in_>(

m_upsampler.getDelay(), 1);
dynamic_castcShiftStatecin_>&>(*m_upshifter).apply(

upsampled);
m_upmixer.apply(out, upsampled);

124 APPENDIX A. LINE REMOVER IMPLEMENTATION

}

private:

BandSelectorQ;

Mixer m_downmixer;
Resample m_downsampler;
State* m_downshifter;
Resample m_upsampler;
State* m_upshifter;
Mixer m_upmixer;

};

A .2 O u tp u t-e rro r m odel

The development of components for the line remover occurred when the
Data Conditioning API was comparatively complete and stable. Knowledge
of the issues encountered in the development of earlier components allowed
a different approach to be taken in their implementation.

The output-error model exposes only one class to the user, which both
stores internal state and applies the action. As such, the OEModel class
inherits from State.

The type of the internal data is determined by the type of the series the
model is required to estimate; all subsequent methods must be invoked with
compatible types. Methods that invalidate the estimated model can be used
to reset the instance to an uninitialised state.

Listing A.2: OEModel interface.
class OEModel :

public State
{

public:
virtual "OEModelQ;
OEModel* CloneQ const;

A.2. OUTPUT-ERROR MODEL 125

A broad range of constructors are supplied, supporting initialisation from
another OEModel, from the model orders nb and rif, from a raw model
state 6. or to automatically model a given system. Where appropriate, the
constructors are templatised and given UDT parallels.

Listing A.3: OEModel interface (continued).
OEModelQ; / / blank model
OEModel(const OEModel&);
OEModel(const int& order_b);
OEModel(const int& order_b, const int& order_f);
template<typename type> explicit OEModel(const std::valarray<

type>& theta, const int& order.b);
explicit OEModel(const UDT& order_b);
OEModel(const UDT& order_b_or_theta, const UDT&

order_f_or_order_b);
template<typename type>

OEModel(const std::valarray<type>& y, const std::valarray<type
>& u, const int& order.b);

template<typename type>
OEModel(const std::valarray<type>& y, const std::valarray<type

>& u, const int& order_b, const int& order_f);

OEModel(const UDT& y, const UDT& u, const UDT& order.b);
OEModel(const UDT&: y, const UDT& u, const UDT&i order_b,

const UDTÄ' order_f);

A large number of accessors are provided for the data stored by the model.
Those which write to a provided argument require the correct types be pro
vided, or an exception will be thrown.

A model is created in an undefined state. The model order is then pro
vided. Finally the series u and y are provided and a model for y in terms of u
is estimated. The model may be applied to different epochs of u to produce
predictions of the corresponding y. or if u and y are provided for a different
epoch, the model may be further refined.

Listing A.4: OEModel interface (continued).
/ / accessors
int getOrderB() const;
int getOrderFQ const;

126 APPENDIX A. LINE REMOVER IMPLEMENTATION

void getOrderB(UDT*& order.b) const;
void getOrderF(UDT*& order_f) const;
tem plate<typenam e type>

void getTheta(std::valarray<type>& theta) const;
void getTheta(UDT*& theta) const;
void getFilterB(UDT*& filter_b) const;
void getFilterF(UDT*& filter_f) const;
tem plate<typenam e type>

void getFilterB(std::valarray<type>&) const;
tem plate<typenam e type>

void getFilterF(std::va!array<type>&) const;
Mutators are also provided. They typically reset the internal state.

Listing A.5: OEModel interface (continued).
OEModel& operator=:(const OEModel&);
void setOrderB(const int& order_b);
void setOrderF(const int& order_f);
void setOrderB(const UDT& order_b);
void setOrderF(const UDT& order.f);
tem plate<typenam e type>

void setTheta(const std::valarray<type>& theta, const int&
order_b);

void setTheta(const UDT& theta, const UDT& order_b);
As well as apply methods that accept a series u and return an estimate of y.
the refine methods can use additional u and y series to improve the model.

Listing A.6: OEModel interface (continued).
tem pla tec typenam e type>

void apply(std::valarray<type>& w,
const std::valarray<type>& u) const;

void apply(UDT*& w,
const UDT& u) const;

tem pla tec typenam e type>
void refine(const std::valarray<type>& y, const std::va!array<type

>&. u);
void refine(const UDT& y, const UDT< ̂ u);

A figure of merit for the model's performance can be computed, and may be
used to automatically estimate a good model order for the system.

A.2. OUTPUT-ERROR MODEL 127

Listing A.7: OEModel interface (continued).
te m p la te c ty p e n a m e type>

type m erit(const std::valarray<type>& y, const std::valarray<type
>&l u) const;

vo id merit(UDT*&. m, const UDT& y, const UDT& u) const;

The way OEModel stores its internal state is instructive.

Listing A.8: OEModel interface (continued).
private:

in t m_order_b;
in t m_order_f;
class Abstraction;
te m p la te c typ e n a m e type> class Implementation;
m u tab le Abstraction* m_data;

}:

While data common to all input data precisions— the model orders— is stored
trivially, the rest of the state can be real or complex, single or double pre
cision, depending on the nature of the input. OEModel stores a pointer to
an implementation of the state, accessed through as the abstract base class
of the implementations for various precisions. This model has the benefit of
allowing v irtu a l functions to perform some of the odious type-checking tasks
caused by the UDT.

Listing A.9: OEModel state abstraction.
class OEModel::Abstraction

{
public:
v irtu a l ~Abstraction() = 0; / / abstract base class
v ir tu a l Abstraction* cloneQ const = 0; / / enable copy without

knowledge o f exact type, like a UDT
v ir tu a l void getTheta(UD T*&) const = 0; / / accessors
v ir tu a l void getF ilterB (U D T*&) const = 0;
v irtu a l vo id getF ilterF(UDT*&) const = 0;
v ir tu a l vo id apply(UDT*& w, const UDT& u) const = 0;
v ir tu a l vo id refine(const UDT& y, const UDT& u) = 0;
v ir tu a l vo id m erit(U D T*& m, const UDT& y, const UDT& u) const

= 0 ;

128 APPENDIX A. LINE REMOVER IMPLEMENTATION

protected: / / only derived classes can perform the following
AbstractionQ;
Abstraction(const Abstraction«^);
Abstraction«^ operator=(const Abstraction«^);

};

Abstraction passes on all the accessors and mutators involving UDTs and
hence type resolution via virtual functions; their overrides in types derived
from Abstraction will support exactly one U D T type and can avoid switch-
on-type blocks.

Abstraction does not support methods that are statically typed; these are
only valid for a single Implementation type. This means that Implementation
has a larger interface than Abstraction. It also stores the actual model data.
Implementation in fact resembles OEModel— except that the class itself is
templatised, not its methods, and the methods accept the model orders as
arguments, passed to them from OEModel.

Listing A. 10: OEModel state implementation.
template<typename type> class OEModel::lmplementation :

public OEModel::Abstraction
{
public:

ImplementationQ;
Implementation (const Implementation«^);
virtual ~lmplementation();
Implementation«^ operator=(const Implementation«^);
virtual Implementation* cloneQ const;
explicit lmplementation(const int& order_b, const int& order_f =

order.b);
explicit lmplementation(const std::valarray<type>& theta, const int&

order_b);
lmplementation(const std::valarray<type>& y, const std::valarray<type

>& u, const int& order_b, const int& order_f);
virtual void getTheta(UDT*&) const;
virtual void getFilterB(UDT*«S«i) const;
virtual void getFilterF(UDT*&) const;
void getTheta(valarray<type>&) const;
void getFilterB(valarray<type>«^) const;
void getFilterF(valarray<type>&) const;

A .2. OUTPUT-ERROR MODEL 129

void apply(valarray<type>& w, const valarray<type>& u) const;
void apply(UDT*& w, const UDT& u) const;
void refine(const valarray<type>& y, const valarray<type>& u);
void refine(const UDT& y, const UDT& u);
type merit(const valarray<type>& y, const valarray<type>& u) const;
void merit(UDT*& m, const UDT& y, const UDT& u) const;

The data stored by the implementation serves several purposes. The model
itself is stored in m_theta. m_matrix and m_vector are the raw products of
the estimation method, allowing an estimate to be continued and refined.
m_state is the state of the custom linear filter invoked by OEModel. (LinFilt
supported only real coefficients at the time of development.)

Listing A .ll: OEModel state implementation (continued).
private:

valarray<type> m.theta;
mutable valarray<type> m_state;
/ / /// ARX estimator *not* OE estimator !!
Matrix<type> rrumatrix;
Matrix<type> m_vector;
std::valarray<type> m_history_y;
std::valarray<type> m_history_u;

};

Several of the implementations of OEModeLs methods are instructive.

Listing A. 12: Progressive model estimator.
templatectypename type> void lmplementation<type>::refine(const

valarray<type><^ y, const valarray<type>& u)
{

/ / Solve Ax = b for x where
/ / A = \s u m - { t= l } ~N \ps i(t) \ps i' 'T (t)
/ / b = \sum _ {t= l} "A/ \overline{\psi(t)}y(t)
/ / and
/ / \psi(t) — [u(t— 1) \ldots u (t-n -b) y (t—l) \ldots y(t — n_f)]~T
valarray<type> intermediate(m_theta.size());
valarray<type> temporary(m_theta.size());
for (unsigned int t = 0; t < u.size(); + + t)
{

130 APPENDIX A. LINE REMOVER IMPLEMENTATION

intermediate[std::slice(0, m_history_u.size(), 1)] = m_history_u;
intermediate[std::slice(m_history_u.size(), m_history_y.size(), 1)] =

m_history_y;
temporary = conj(intermediate);
/ / accumulate A
for (unsigned int i = 0; i < m_theta.size(); + + i)

m_matrix.column(i) + = (temporary * intermediate^]);

m_vector.column(0) + = (temporary * y [t]);

/ / rotate psi

if (m_history_u.size() > 0)
{

m_history_u = m_history_u.shift(—1);
m_history_u[0] = u [t];

}
if (m_history_y.size() > 0)
{

m_history_y — m_history_y.shift(—1);
m_history_y[0] = y[t];

}
}

Matrix<type> buffer;
TheCLAPACKSoHandle.SV(m_matrix, buffer, m.vector);
m_theta = buffer. column(O);

}

Listing A. 13: OEModel linear filter implementation.
templatectypename type> void lmplementation<type>::apply(valarray

< type>& w, const valarray<type><^ u) const
{
w.resize(u.size());
if (m_theta.size() > 0)
{

for (unsigned int t = 0; t < u.sizeQ; + + t)
{

A .3. INTERFACE 131

w[t] = m_state[0];
m_state = m_state.shift(l);
m_state[std::slice(0, m_history_u.size(), 1)]

+ = m_theta[std::slice(0, m_history_u.size(), 1)] * u[t];
m_state[std::slice(Or m_history_y.size(), 1)]

+ = m_theta[std::slice(m_history_u.size(),
m_history_y.size(), 1)] * w[t];

}
}
}

A .3 In terface

Listing A. 14: LineRemover interface.
ifn def LINE_REMOVER_HH
#define LINE_REMOVER_HH

^include <complex>
^include <valarray>
^include <vector>

^include " StateUDT.hh”

namespace datacondAPI

{

class LineRemover : public State

{

public:

/ / override defaults

/ / : Construct a line remover
LineRemover(const doubled frequency,

const std: :size_t<Sz factor,

132 APPENDIX A. LINE REMOVER IMPLEMENTATION

const std::size_t& order);

//: Constructs a line remover
LineRemover(const UDT& frequency, const UDT& factor, const

UDT& order);

//: Copy a line remover
//Iparam : a — line remover to be copied
LineRemover(const LineRemover& a);

/ / : Destructor
~LineRemover();

/ / : Assignment
//Iparam : a — line remover to be copied
LineRemover& operator=(const LineRemover& a);

/ / UDT functionality

/ / : Deep copy
//Ire tu rn : Pointer to a deep copy o f the line remover
virtual LineRemover* CloneQ const;

virtual ILwd::LdasElement*
ConvertTollwd(const CallChainÄ: Chain,

UDT::target_type Target = UDT::TARGET_GENERIC)
const;

/ / accessors
void getFilter(UDT*& b) const;

/ / fit model

/ / : (Re)Fit the line remover to system input and output
//Iparam : y — system output
//Iparam : u — system input
template<typename type>
void refine(const std::valarray<type>& y,

A.3. INTERFACE 133

const std::valarray<type>& u);

/ / : (Re)Fit the line remover to system input and output
//Iparam : y — system output
//Iparam : u — system input
void refine(const UDT& y,

const UDT& u);

/ / predict

/ / : Apply the line remover to system input to produce a prediction
//Iparam : w — prediction
//Iparam : u — system input
template<typename type>
void apply(std: :valarray<type>&i w,

const std::valarray<type>& u);

/ / : Apply the line remover to system input to produce a prediction
//Iparam : w — prediction
//Iparam : u — system input
void apply(UDT*& w,

const UDT& u);

private:

LineRemoverQ;

class Abstraction;

templatectypename type> / / scalar only
class Implementation;

double m_frequency;
std::size_t m.factor;

std::size_t m_order;

Abstraction* m_data;

134 APPENDIX A. LINE REMOVER IMPLEMENTATION

};

}

#endif / / LINE-REMOVER_HH

Listing A. 15: LineRemover implementation.
^include <algorithm>
^include <clim its> //:todo: <limits>

^include <genera!/unimplemented_error.hh>

^include ’’fft.hh”
^include ’’ ifft.hh”
^include ’’ LineRemover.hh"
#include "OEModel.hh"
^include ” ScalarUDT.hh”
^include ” SequenceUDT.hh"
^include " Mixer.hh”
#include ” Resample.hh"
^include ” ShiftState.hh”

namespace datacondAPI

{
template<typename T > struct complex-traits
{

typedef std::complex<T> complex_type;
typedef T real-type;

};

template<typename T > struct complex_traits<std::complex<T> >

{
typedef typename complex_traits<T>::complex_type

complex-type;
typedef typename complex_traits<T>::real_type real-type;

A.3. INTERFACE 135

class LineRemover::Abstraction
{

public:

/ / override defaults

virtual ~Abstraction();

/ / interface

virtual Abstraction* cloneQ const = 0;

virtual void apply(UDT*& w, const UDT& u) = 0;

virtual void getFilter(UDT*& b) const = 0;

protected:

AbstractionQ;
Abstraction(const Abstraction^);

Abstraction^ operator=(const Abstraction^);

private:

I };
template<typename type>

class LineRemover::lmplementation : public Abstraction
{

public:

/ / override defaults

lmplementation();
Implementation (const Implementation^);

136 APPENDIX A. LINE REMOVER IMPLEMENTATION

virtual ~lmplementation();

Implementation«^ operator=(const Implementation«^);

/ / interface

virtual Implementation* clone() const;

void refine(const std::valarray<type>& y,
const std::valarray<type><^ u,
const doubled frequency,
const std::size_t& factor,
const std::size_t& order);

virtual void apply(UDT*& w,
const UDT& u);

void apply(std::valarray<type>& w,
const std::valarray<type>& u);

virtual void getFilter(UDT*& b) const;

private:

OEModel* m_model;

BandSelector* m_refine_y;
BandSelector* m_refine_u;

BandSelector* m_apply_y;
BandSelector* m_apply_u;

} :

LineRemover::LineRemover(const doubled frequency, const std::
sizejt& factor, const std::size_t& order)
: m_frequency(frequency)

A.3. INTERFACE 137

, mJactor(factor)
, m_order(order)
, m_data(0)

{
}

LineRemover::LineRemover(const UDT& frequency, const UDT&
factor, const UDT& order)

try : m_frequency(dynamic_cast<const Scalar<double>&>(
frequency).GetValue())
, m _factor(dynamic_cast<const Scalar<int>&>(factor).

GetValue())
, m_order(dynamic_cast<const Scalar<int>&>(order).GetValue

0)

, m_data(0)
{
}
catch (const std::exception& x)
{

throw std::logic_error(std::string(” LineRemover::LineRemover:
intercepted exception \ ”") + x.what() -f std::string(”\ ””));

}

LineRemover::LineRemover(const LineRemover& Ir)
: m_frequency(lr.m_frequency)
, m_factor(lr.m_factor)
, m_order(lr.m_order)
, m_data(lr.m_data ? Ir.m_data —>clone() : 0)

{
}

LineRemover::~LineRemover()
{

delete m_data;
}

LineRemover& LineRemover::operator=(const LineRemover& Ir)
{

138 APPENDIX A. LINE REMOVER IMPLEMENTATION

if (this != &lr)
{

m_frequency = lr.m_frequency;
m .factor = I r.m .factor;
m.order = Ir.m.order;
delete m.data;
m.data = Ir.m.data ? Ir.m.data —>clone() : 0;

}
return *this;

LineRemover* LineRemover::Clone() const
{

return new LineRemover(*this);
}

ILwd::LdasElement* LineRemover::ConvertTollwd(const CallChain&
Chain, UDT::target_type Target) const

{
throw General::unimplemented_error(” LineRemover::

ConvertTollwd is unimplemented”);
}

void LineRemover::getFilter(UDT*& b) const
try
{

if (m.data)
{

m.data — >getFilter(b);
}
else
{

throw std::logic_error(" LineRemover::getFilter: no filter
estimated ye t\n ");

}
}
catch (const std::exception& x)
{

A.3. INTERFACE 139

throw std::logic_error(std::string(” LineRemover::getFilter:
intercepted exception \ ” ”) + x.whatQ + std::string(” \ ” ”));

}

template<typename type>
void LineRemover::refine(const std::valarray<type>& y, const

std::valarray<type>& u)
try
{

if (!m_data)
{

m_data = new lmplementation<type>;

}
dynamic_cast<Implementation<type>&>(*m_data).refine(y, u,

m_frequency, m jactor, m_order);
}
catch (const std::exception& x)

{
throw std::logic_error(std::string(” LineRemover::refine: intercepted

exception \ " ") + x.what() + std::string(” \ " "));

}

void LineRemover::refine(const UDT& y, const UDT& u)
try
{

if (const std::valarray<float>* p = dynamic_cast<const std::
va larray<floa t>*>(&y))

{
if (const std::valarray<float>* q = dynamic_cast<const

std::valarray<float>*>(&u))
{

refine(*p, *q);

}
else
{

throw std::invalid_argument(” LineRemover::refine: input
types mismatch”);

140 APPENDIX A. LINE REMOVER IMPLEMENTATION

}
}
else if (const std::valarray<double>* p = dynamic_cast<const

std::valarray<double>*>(&y))
{

if (const std::valarray<double>* q = dynamic_cast<const
std::valarray<double>*>(&u))

{
refine(*p, *q);

}
else
{

throw std::invalid_argument(” LineRemover::refine: input
types mismatch");

}
}
else if (const std::valarray<std::complex<float> > * p =

dynamic_cast<const std::valarray<std::complex<float>
> *> (& y))

{
i f (const std::valarray<std::complex<float> > * q =

dynamic_cast<const std::valarray<std::complex<float>
> *> (& u))

{
refine(*p, *q);
}
else
{
throw std::invalid_argument(” LineRemover::refine: input types

mismatch");
}

}
else if (const std::valarray<std::complex<double> > * p =

dynamic_cast<const std::valarray<std::complex<double>
> *> (& y))

{
if (const std::valarray<std::complex<double> > * q =

dynamic_cast<const std::valarray<std::complex<double

A.3. INTERFACE 141

> > *> (& u))
{
refine(*p, *q);
}
else
{
throw std::invalid_argument(" LineRemover::refine: input types

mismatch”);

}
}
else
{

throw std::invalid_argument(" LineRemover::refine:
unsupported types”);

}
/
catch (const std::exception& x)

{
throw std::logic_error(std::string(” LineRemover::refine: intercepted

exception \ ” ”) + x.what() 4- std::string(” \ " "));
}

template<typename type>
void LineRemover::apply(std::valarray<type>& w, const std::

valarray<type>& u)
try
{

if (lmplementation<type>* p = dynamic_cast<lmplementation<
type>*>(m_data))

{
p — >apply(w, u);

}
else
{

throw std::logic_error(” LineRemover::apply: no model yet or
type mismatch”);

}

142 APPENDIX A. LINE REMOVER IMPLEMENTATION

}
catch (const std::exception^ x)

{

}

throw std::logic_error(std::string(” LineRemover::apply: intercepted
exception \ ” ”) + x.whatQ + std::string(” \ ” "));

void LineRemover::apply(UDT*& w, const UDT& u)
try
{

if (m_data)
{

m.data —>apply(w, u);

}
else
{

throw std::logic_error(” LineRemover::apply: must estimate
models before applying”);

}
}
catch (const std::exception& x)
{

throw std::logic_error(std::string(” LineRemover::apply: intercepted
exception \ ” ”) -f x.what() + std::string(” \ ” ”));

}

Li neRemover:: Abstraction:: Abstraction ()
{
}

LineRemover::Abstraction::Abstraction(const Abstraction^ a)
{
}

Li neRemover:: Abstraction:Abstraction ()
{

A.3. INTERFACE 143

}

LineRemover::Abstraction«^ LineRemover:: Abstraction ::operator=(
const Abstraction«^ a)

{
if (this != & a)

{
}
return *this;

templatectypename type>
LineRemover::lmplementation<type>::lmplementation()
: m_model(0)
, m_refine_y(0)
, m_refine_u(0)
, m_apply_y(0)
, m_apply_u(0)

{
}

template<typename type>
LineRemover::lmplementation<type>::lmplementation (const

lmplementation<type>& Iri)
: m_model(lri.m_model ? new OEModel(*lri.m_model) : 0)
, m_refine_y(lri.m_refine_y ? Iri.m_refine_y— >clone() : 0)
, m_refine_u(lri.m_refine_u ? Iri.m_refine_u —>clone() : 0)
, m_apply_y(lri.m_apply_y ? lri.m_apply_y->clone() : 0)
, m_apply_u(lri.m_apply_u ? Iri.m_apply_u —>clone() : 0)

{
}

templatectypename type>
LineRemover:: Implementation <type>::~lmplementation()

{
delete m_model;
delete m_refine_y;
delete m_refine_u;

144 APPENDIX A. LINE REMOVER IMPLEMENTATION

delete m_apply_y;
delete m_apply_u;

}

templatectypename type>
LineRemover::lmplementation<type><^ LineRemover::

lmplementationctype>::operator=(const lmplementation<
type>& Iri)

{
if (this != &lri)

{
m_model = lri.m_model ? new OEModel(*lri.m_model) : 0;
m_refine_y = lri.m_refine_y ? Iri.m_refine_y—>clone() : 0;
m_refine_u = lri.m_refine_u ? Iri.m_refine_u — >clone() : 0;
m_apply_y = lri.m_apply_y ? Iri.m_apply_y — >clone() : 0;
m_apply_u = lri.m_apply_u ? Iri.m_apply_u — >clone() : 0;

}
return *this;

template<typename type>
LineRemover ■.:lmplementationctype>* LineRemover::lmplementation<

type>::clone() const
{

return new lmplementationctype>(*this);
}

templatectypename type>
void LineRemover::lmplementationctype>::getFilter(UDT*&: b)

const
{

if (m_model)
{

m_model — >get Filter B(b);
}
else
{

throw std::inva!id_argument(" LineRemover::lmplementation<

A .3. INTERFACE 145

type>::getFilter: no filter yet”);
}

}

templatectypename type> void
LineRemover::lmplementation<type>::refine(const std::valarray<type

> & y,
const std::valarray<type>& u,
const doubled frequency,
const std::size_t& factor,
const std::size_t& order)

{

/ / check input sanity

if fy.sizeQ != u.sizeQ)

{
throw std::invalid_argument(" LineRemover::lmplementation<

type>::refine: model input and output must be the same
size”);

}

/ / construct buffers (will be sized on first call)

std::valarray<typename complex_traits<type>::complex_type>
banded_y;

std::valarray<typename complex_traits<type>::complex_type>
banded_u;

if (!m_refine_y) / / first call
{

m_refine_y = new BandSelector(frequency, factor);
m_refine_u — new BandSelector(frequency, factor);
m_apply_y = new BandSelector(frequency, factor);
m_apply_u = new BandSelector(frequency, factor);

}

m_refine_y—>apply(banded_y, y);

146 APPENDIX A. LINE REMOVER IMPLEMENTATION

m_refine_u — >apply(banded_u, u);

if (m_model)
{

m_model — > refine(banded_y, banded_u);

}
else
{

m_model — new OEModel(banded_y, banded_u, order, 0);

}

tem plate<typenam e T, typename U>
struct aggregator

{
void operatorQ(std::valarray<T>&, const std::valarray<U>&)

const;
};

te m p la te o void aggregator<float, std::complex<float> >::
operatorQ(std::valarray<float>& out, const std::valarray<std::
complex<float> >&. in) const

{
for (std::size_t i = 0; i < out.sizeQ; -t-+i)
{

out[i] 4-= (in[i].real() * 2);
}

}

te m p la te o void aggregator<double, std::complex<double> >::
operatorQ(std::valarray<double>& out, const std::valarray<std
::complex<double> > & in) const

{
for (std::size_t i = 0; i < out.sizeQ; + -f i)
{

out[i] 4-= (in[i].real() * 2);
}

}

A.3. INTERFACE 147

t e m p l a t e o void aggregator<std::complex<float>, std::complex<
float> >::operator()(std::valarray<std::complex<float> >& out
, const std::valarray<std::complex<float> >& in) const

{
out + = in;

t e m p l a t e o void aggregator<std::complex<double>, std::complex<
double> >::operator()(std::valarray<std::complex<double> >&
out, const std::valarray<std::complex<double> >& in) const

{
out + = in;

template<typename type> void
LineRemover::lmplementation<type>::apply(
std::valarray<type>& w,
const std::valarray<type>& u)

{

if ('.m_apply_u || Im.model ||)m_app)y_y)
{

throw std::logic_error(” LineRemover::lmplementation::apply
Attempted to apply before estimating(refine)”);

}

std::valarray<typename complex_traits<type>::complex_type>
banded_u;

std::valarray<typename complex_traits<type>::complex_type>
banded_y;

std::valarray<typename complex_traits<type>::complex_type> y;

aggregator<type, typename complex_traits<type>::complex_type
> aggregate;

m_apply_u —>apply(banded_u, u);

148 APPENDIX A. LINE REMOVER IMPLEMENTATION

m.model — >apply(bandecLy, banded_u);
m_apply_y—>ylppa(y, banded_y);
if (w.size() != y.size()) w.resize(y.size(), type());
aggregate(w, y);

}

template<typename type>
void LineRemover::lmplementation<type>::apply(UDT*& w,

const UDT& u)
{

if (const std::valarray<type>* p = dynamic_cast<const std::
valarray<type>*>(&u))

{
if (w = = 0)
{

w — new Sequence<type>();

}
if (std::valarray<type>* q = dynamic_cast<std::valarray<

type>*>(w))
{

apply(*q, *p);
}
else
{

throw std::invalid_argument(” LineRemover::
lmplementation<type>::apply: input type mismatch”)

}
}
else
{

throw std::invalid_argument(" LineRemover::lmplementation<
type>::apply: input type mismatch”);

}

#define INSTANTIATE(type) \
\

A.3. INTERFACE 149

tem plate void LineRemover::refine(const std::valarray<type>&,
const std::valarray<type>&);\

tem plate void LineRemover::apply(std::valarray<type>&, const std::
valarray<type>&);\

tem plate class LineRemover::lmplementation<type>;

INSTANTIATE(float);
INSTANTIATE(double);
INSTANTIATE(std::complex<float>)
INSTANTIATE(std::complex<double>)

u n d e f INSTANTIATE

}

UDT_CLASSJNSTANTIATION(LineRemover,)

A ppend ix B

M odel of a galactic p o p u la tio n
of continuous wave sources

The validity of the relatively complicated derivation and implementation was
tested against a much simpler (but slower and less accurate) Monte-Carlo
implementation for an ensemble of detectors and strains.

Listing B.l: Siderially-averaged response
function result = sidereal(detector, strain);
% SIDEREAL returns the average (over one sidereal day) of the square of

the response of a detector to the strain. Note that its value is
independent of detector longitude.

theta = detector.theta;
psi = detector.psi;

A = zeros(3,3);

A (l , l) = sin(theta)C2.*(cos(psi)T2—sin(psi)T2);
A(l,2) — — 2.*sin(theta).*cos(psi).*sin(psi);
A(2,l) - A(1,2);
A(2,2) = sin(psi)T2—cos(psi)T2;

B = zeros(3,3);

B (1,1) = sir»(psi). ^2—cos(psi) M2

151

152 APPENDIX B. MODEL OF GALACTIC POPULATION...

B(l,2) = 2.*sin(theta).*cos(psi).*sin(psi);
B(2,l) = B (1,2);
B(2,2) = sin(theta)./'2*(cos(psi)."2—sin(psi)."2);

C = zeros(3,3);

C(1,1) = 4.*sin(theta).*cos(psi).*sin(psi);
%C(1,2) = cos(psi)./'2 - sin(psi)./'2;
C(l,2) = (sin(theta).~2 + l).*(cos(psi).Ä2 — sin(psi).~2);
C(2,l) = C(l,2);
C(2,2) = — 4.*sin(theta).*cos(psi).*sin(psi);

D = zeros(3,3);

D(l,3) = cos(theta).*sin(theta).*(sin(psi)."2—cos(psi)./'2);
D(2,3) = 2.*cos(theta).*cos(psi).*sin(psi);
D(3,l) = D(l,3);
D(3,2) = D(2,3);

E — zeros(3, 3);

E(1,3) = — 2.*cos(theta).*sin(psi).*cos(psi);
E(2,3) = sm(theta).*cos(theta).*(stn(psi)."2 — cos(ps\)./'2);
E(3,1) = E(l,3);
E(3,2) = E(2,3);

F = zeros(3,3);

F(3,3) = cos(theta).Ä2.*(cos(psi).''2—sin(psi).Ä2);

A = sum(sum(A.*strain));
B = sum(sum(B.*strain));
C = sum(sum(C.*strain));
D = sum(sum(D.*strain));
E = sum(sum(E.*strain));
F — sum(sum(F.*strain));

153

result = (.75*A*A+.75*B*B+.25*C*C+D*D+E*E+2*F*F+.5*A*B+2
* A*F+2*B*F)*.125;

B ibliography

[1] http://www.ldas-sw.ligo.caltech.edu/cgi-bin/cvsweb.cgi/ldas/api/datacondAPI/so/src/.

[2] B Stroustrup. The C+ + Programming Language. Addison-Wesley, 3rd
edition, 1997.

[3] TCL (Tool Command Language), http://www.tcl.tk.

[4] http://www-unix.mcs.anl.gov/mpi/.

[5] J K Blackburn. The Data Conditioning A P I’s baseline requirements.
Technical Note T990002-00. LIGO. 1999.
http://www.ligo.caltech.edu/docs/T/T990002-00.pdf.

6] Scott Meyers. Effective STL. Addison-Wesley, 2001.

7] Andrei Alexandrescu. Modern C++ Design. (C ++ In-Depth). Addison-
Wesley, 2001.

S] Boost C + + Library, http://boost.org.

9] Scott Meyers. Effective C++. Addison-Wesley, 2nd edition, 1997.

[10] Scott Meyers. More Effective C++. Addison-Wesley, 1996.

[11] BLAS (Basic Linear Algebra Subprograms).
http://www. netlib.org/blas/.

[12] CLapack (C Linear Algebra Package), http://www.netlib.org/clapack/.

[13] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De
sign Patterns: Elements of Resusable Object-Oriented Software. (Pro
fessional Computing). Addison-Wesley, 1995.

155

http://www.ldas-sw.ligo.caltech.edu/cgi-bin/cvsweb.cgi/ldas/api/datacondAPI/so/src/
http://www.tcl.tk
http://www-unix.mcs.anl.gov/mpi/
http://www.ligo.caltech.edu/docs/T/T990002-00.pdf
http://boost.org
http://www
http://www.netlib.org/clapack/

156 BIBLIOGRAPHY

[14] B Abbott et al. Analysis of first LIGO science data for stochastic grav
itational waves. Phys. Rev. D, 69(122004), 2004.

[15] A C Searle, S M Scott, and D E McClelland. Spectral line removal in
the LIGO Data Analysis System. Class. Quant. Grav., 20:S721-S730,
2003.

[16] B Allen, W Hua, and A C Ottewill. Automatic cross-talk removal
from multi-channel data. Formal Note P990002-00-E, LIGO, 1999. gr-
qc/9909083.

[17] A M Sintes and B F Schutz. Removing line interference from gravita
tional wave interferometer data. In S. Kawamura and N. Mio, editors,
Gravitational Wave Detection //, number 32 in Frontiers Science. Uni
versal Academy Press, 2000. gr-qc/0005071.

[18] L Ljung. System identification: theory for the user. Information and
system sciences. Prentice Hall, 2nd edition, 1999.

[19] http:/ / www.ldas-dev.ligo.caltech.edu/doc/userAPI/html/actions.htmI#resample.

[20] G Deane. Honours thesis. The Australian National University, 200.

[21] A Lazzarini, R Schofield, and A Vicere. 60 Hz mains correlations for
the US power grids. Presentation G020245-00-E, LIGO, 2002.

[22] http://www.nasa.gov.

[23] Lee Samuel Finn and David F. Chernoff. Observing binary inspiral in
gravitational radiation: One interferometer. Phys. Rev. D, 47(6):2198—
2219, March 1993.

[24] B Allen. Gravitational wave detector sites, gr-qc/9607075, 1996.

[25] P Jaranowski and A Krolak. Optimal solution to the inverse problem
for the gravitational wave signal of a coalescing compact binary. Phys.
Rev. D. 49:2198. 1993.

[26] P Jaranowski. K D Kokkotas. A Krolak. and G Tsegas. On the esti
mation of parameters of the gravitational-wave signal from a coalescing
binary by a network of detectors. Class. Quantum Grav., 13:1279. 1996.

http://www.ldas-dev.ligo.caltech.edu/doc/userAPI/html/actions.htmI%23resample
http://www.nasa.gov

BIBLIO GRAPHY 157

[27] Lee Samuel Finn. Aperture synthesis for gravitational-wave data analy
sis: Deterministic sources. Phys. Rev. D, 63(102001), April 2001.

[28] A Pai, S Dhurandhar, and S Bose. Data-analysis strategy for detecting
gravitational-wave signals from inspiraling compact binaries with a net
work of laser-interferometric detectors. Phys. Rev. D , 64:042004, 2001.

[29] D E McClelland, S M Scott, M B Grey, D A Shaddock, B J Slagmolen,
A C Searle, D G Blair, L Ju, J Winterflood, F Benabid, M Baker,
J Munch, P J Veitch, M W Hamilton, M Ostermeyer, D Mudge, D Ott-
away, and C Hollitt. Second generation laser interferometry for gravita
tional wave detection: ACIGA progress. Class. Quant. Grav., 18:4121—
4126, 2001.

[30] David E. McClelland, (private communication), 2001.

[31] A Brillet. (private communication), 2001.

[32] M Ando, (private communication), 2001.

[33] N Arnaud et a/, 2001. gr-qc/0107081.

[34] B Abbott et al. Setting upper limits on the strength of periodic gravi
tational waves from PSR J1939 2134 using the first science data from
the GEO 600 and LIGO detectors. Phys. Rev. D, 69(082004), April
2004.

[35] Steve J. Curran and Lorimer Dune. R. Pulsar statistics — III. Neutron
star binaries. Mon. Not. R. Astron. 5oc., 276(347-352), 1995.

[36] B. Abbott et al. Analysis of LIGO data for gravitational waves from
binary neutron stars. Phys. Rev. D. 69(122001), 2004.

[37] B. Abbott et al. First upper limits from LIGO on gravitational wave
bursts. Phys. Rev. D. 69(102001), 2004.

