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SUMMARY

The populations of developed countries are ageing due to a decrease in fertility rates and 

mortality rates. In addition, the developed world is faced with the imminent retirement of a 

large cohort of individuals born post-WWII known as the 'baby boomers'. As the ratio of 

the dependent population to the labour force rises, pressure will increase on the solvency of 

social security and health care systems, and the dynamics of society will change. The future 

demographic structure of the elderly population will be dependent to a large degree on 

future mortality rates. Accurate forecasts require accurate models for the processes of 

ageing and death.

The thesis develops the regression approach of Heathcote and Higgins (2001a, 2001b). A 

regression model for mortality is developed that is founded on the assumptions of 

independent lives within and between cohorts, and identically distributed risk of death for 

individuals within a cohort. Under these assumptions, it can be shown that the errors for a 

regression model of a mortality surface are asymptotically normally distributed with zero 

means and a fixed variance that depends on the number of survivors. An advantage of the 

regression approach is that it is founded on the natural pattern of human mortality along 

cohorts, unlike traditional cross-sectional techniques of modelling mortality.

A comprehensive analysis of historical trends in Dutch mortality is undertaken to aid in the 

determination of appropriate regression models for the Netherlands. Four models are 

produced using weighted least squares, two for each sex; years 1890 to 1938, ages 50 to 90 

as one model; years 1946 to 1991, ages 50 to 90 as another. The covariates selected include 

a polynomial in age, a linear term in year, and interactions between age and year, among 

others.

Extra-binomial variation is identified, the source of which is speculated upon in the context 

of selection and debilitation resulting from heterogeneity within cohorts. A particular 

advantage of the formulation of the stochastic structure is that modifications to the 

assumption of identical distributions within cohorts may allow heterogeneity of hazard 

rates to be considered in the future. In this instance, however, the source of the extra-
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binomial variance cannot be ascertained due to the lack of disaggregated data, and a 

mixed model with random effects is developed to account for the unobserved covariates 

that are responsible for the extra-binomial variation. The extra variance is modelled as an 

exponential function of age and year, and maximum likelihood methods are used to 

estimate new parameters for both the mean and the additional variance component. The 

information matrix from the maximum likelihood fit allows standard errors to be produced, 

thereby enabling confidence and prediction intervals to be placed on the fitted surface.

A number of interesting features are apparent from analysis of the derivatives of the Dutch 

male and female fitted surfaces. In particular, the age at which the rate of increase in female 

mortality peaks appears to be shifting to higher ages in a linear fashion over time. 

Exploration of the residuals and the derivatives from the male model suggest that a strong 

cohort effect may be present. A disadvantage of the parsimonious regression models 

developed is that cohort effects are not explicitly modeled. For comparison with the 

regression models, fixed effects models (based on the techniques of Wilmoth (1990) and 

Lee and Carter (1992)) are developed where cohort effects are modelled explicitly.

Forecasts to 2030 are produced by extrapolation of the regression models. It is shown how 

expert opinions may be incorporated by altering the parameter values. The regression 

models are modified based on observations of historic trends and alternative projections are 

presented. Cohort life expectancies and conditional probabilities of survival are generated. 

Finally, it is shown that relatively small uncertainty in mortality projections can have a 

dramatic influence on the future structure of the population in the Netherlands, providing 

further justification for the importance of mortality modelling and forecasting.
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1 Introduction

1.1 Motivation for the Study of Mortality

In many ways, the future of humanity is determined by the demographic make-up of its 

population. Consumption of resources, the environmental impact of human actions, 

technological progress, and the general standard of living are all affected by demographic 

changes. In the developed world, fertility rates have been steadily decreasing along with 

mortality rates. This has led to an increase in the dependency ratio of most developed 

countries, being the ratio of the population aged less than 15 and greater than or equal to 65 

to the population aged between 15 and 64:

"fewer people o f productive age will increasingly have to provide for an expanding number 

o f elderly dependants" (World Health Organisation, 1997/

While this begs the question of what constitutes a "productive age" given improvements in 

general health, it is clear that an ageing population potentially implies major social change.

Due to a dramatic temporary increase in birth rates following World War II, much of the 

developed world is experiencing the ageing of a large cohort of individuals known as the 

"baby-boomers". The fact that this cohort is quickly approaching retirement age has 

implications to the short-term and long-term maintenance of social support systems, 

including the funding of social security schemes, private and state insurance schemes, 

health care insurance and provision, and the changing demand for goods and services (for a 

discussion of the financial implications of the ageing population see, for example, Denton 

and Spencer, 1996a; Manton et al., 1993; Jeanneret,1983; Rice,1983; Thorburn,1999).

More than any other demographic variable, mortality should have a significant influence on 

policy decisions for the next fifty years. Although low fertility rates need to be addressed in 

order to guarantee the existence of future generations of tax paying citizens, the baby- 

boomers will start to retire within the next ten years, causing a dramatic change in the 

dependency ratio. The extent of the change will be determined to a large degree by the state
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of elderly mortality. For example, it has been shown that reductions in mortality rates at 

ages 60 to 80, have a greater influence on reducing life expectancy at birth than at younger 

ages: "...there is considerable potential for saving years o f life and increasing life 

expectancy by reducing mortality in old age, more than is generally realized” (Vaupel, 

1986).

Implications for social security and public health care depend also on morbidity. If the 

average age to disability increases along with life expectancy, then effective costs to social 

systems may not rise substantially. Whether compression of morbidity will occur is an 

important question, though it is not discussed in this thesis (for a discussion of projections 

and analysis of morbidity see Smith, 1993; Mathers, 1990; Van Den Berg Jeths et al., 2001)

In order to assess the impact of mortality on the future demographic structure, there is a 

growing need to produce accurate forecasts of mortality rates in developed countries. It is 

logical that the most accurate forecasts require an understanding of the underlying process, 

including the factors that affect the process. Models of mortality ultimately aim to capture 

the underlying process, though in addition to this goal they have a range of important 

functions. In addition to aiding forecasts, models may allow us to better understand the 

biological basis of our own mortality, including illuminating the debate on the existence of 

a limit to the human lifespan. They may help uncover epidemiological relationships 

between risk factors thus leading to improvements in medical technology or public 

knowledge of health risks. They can facilitate comparison of mortality between countries. 

They can aid in making inferences from incomplete data and they can be used to construct 

life tables for use in insurance calculations.

The study of mortality and its processes is very much a multidisciplinary task. 

Demographers, economists, statisticians, actuaries, biologists, geneticists, physicists and 

geriatricians, have contributed to the field. For the remainder of this chapter, we review the 

general pattern of historic mortality in developed countries, theories of ageing and methods 

of modelling mortality, and finally forecasting techniques. Throughout, justification for and 

references to the regression approach taken in this thesis are given.
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1.2 Twentieth Century Mortality in the Developed World.

Mortality in developed countries during the 20th century has seen a steady and dramatic 

decrease. The microbiology revolution lead to the creation of vaccines. Pasteurisation 

reduced contagion and dairy herds were tuberculin tested (Smith, 1993). An increase in 

living standards was brought on by better education, improved food-supplies, and public 

health improvements (Gage, 1994; Lopez, 1983). These factors, coupled with the 

introduction of antibiotics, lead to a decline in infectious and parasitic diseases. As a result, 

death in the later half of the 20th century and the early 21st century has become a more 

predictable event, where the major causes of death are due to degenerative or chronic 

conditions such as cancer and heart disease (Lopez, 1983:85).

Another feature of mortality in developed countries during the 20th century has been the 

changing sex differential. Lopez (1983:86-88) shows that between 1900 and the late 1970s 

there was a continual increase in the differential between males and females for most 

developed countries, with a rapid divergence after the middle of the century (called the 

Scandinavian pattern by Lopez). Since World War II, with the emergence of the 

degenerative diseases as the leading causes of death, the longevity gains of females have 

consistently exceeded those of males, though the differential has narrowed more recently in 

many developed countries (see for example, Van Hoorn and De Beer, 2001).

A major task in demographic circles is finding the cause of the sex differential: is it due to 

genetic and biological differences affecting metabolism, ageing and susceptibility to 

particular chronic conditions; or is it due to sociological factors, such as diet and lifestyle ? 

It is generally agreed that a combination of genetic and environmental factors are 

responsible. Biology certainly plays a significant role given that in most regions of the 

world, irrespective of dietary habits, female mortality is lower than male mortality 

(Tickle, 1997; Lopez, 1983). Lopez (1983) contains a wealth of information on the pattern 

and possible causes of the mortality differential including discussions on nutrition, lifestyle, 

and biological differences.
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The incidence of mortality from cardiovascular disease, cancer and motor vehicle 

accidents has been higher in males. Degenerative respiratory diseases beyond age 65 are 

also responsible for the increasing differential post-WWII (Lopez,1983:116). It is 

speculated (see, for example, Ruzicka and Lopez, 1983:486), that the changing roles of 

women in the developed world, which sees them participating more equally to men in the 

workforce, may lead to the adoption of some of the unhealthy habits typically associated 

with men, such as poorer nutrition, and increased stress from work leading to alcohol and 

cigarette consumption. On the other hand, it is possible that lifestyle factors may continue 

to more adversely affect males than females, and that biological factors may advance 

female longevity faster than that of males.

The age pattern of mortality over the last century has varied by country, however, there are 

a number of common features: Mortality at birth is relatively high, though has dropped 

considerably over the century due to improvements in medical care; the highest probability 

of survival is around ages 8 to 12; mortality increases rapidly to age 18, where there often is 

a 'hump' associated with automobile accidents and suicide (particularly among males); and 

there is an exponential increase in mortality from age 30 associated with senescence. (For a 

comprehensive description of historic mortality patterns see Jain (1994), Lilienfeld (1976) 

and Tuljapurkar and Boe (1998)). At the top of the age range an interesting phenomenon 

has been noticed whereby the rate of increase in mortality appears to level out and then 

decrease, diverting from the exponential pattern. This has been studied in detail by Coale 

(1996), Horiuchi and Coale (1990), and Horiuchi and Wilmoth (1998). Tuljapurkar and 

Boe (1998) list the recent literature reporting decelerations in the rate of mortality increase 

at high ages, and state: " ...the nature o f mortality at ages over 80 is now moving to center 

stage in discussions o f future mortality c h a n g e ...Causes of this phenomenon have been 

speculated on, and are discussed in detail in the next section.

In Chapter 3 historic Dutch male and female data are decomposed by age, period and 

cohort, and trends are examined which follow the general pattern of decreasing mortality 

and changing sex differential that have been discussed here.
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1.3 Mortality Models and Theories of Ageing

As mortality rates have stabilised over the past century, modelling of mortality has become 

more practical. The ultimate goal of most researchers is to explain the age pattern in 

mortality, though some concentrate more on description than explanation. Demographers 

and actuaries have traditionally focussed on modelling empirical mortality using parametric 

models of the risk of mortality without incorporating biological or other assumptions. 

Evolutionary biologists have primarily attempted to explain the mechanisms underlying 

senescence in individuals without reference to empirical population data (Carnes et al., 

1996).

The approach developed in this thesis is primarily focused on development of a parametric 

model over age and time; however, the model is founded on the process of ageing from an 

individual and cohort perspective.

1.3.1 Biological Theories of Ageing

The development of any parametric models should consider current theories regarding 

senescence, particularly since the choice of function may be dictated by opinions on the 

existence of a limit to the human lifespan. Theories on the age pattern in mortality include 

the evolutionary theory of senescence and hypotheses about genetic processes that 

determine ageing. (Tuljapurkar and Boe, 1998). A critical aspect of the debate is whether or 

not a biological limit exists to human life expectancy (see for example, Manton, 1993; 

Warner, 1993).

In the evolutionary model species are assumed to have a pre-determined upper age limit. 

The argument is based on the belief that natural selection operates to maintain the ability of 

a species to reproduce, and that the integrity of the organism will naturally diminish after 

the reproductive cycle is complete. (Olshansky and Carnes, 1997). Under this hypothesis, if 

existing diseases are cured, new or infrequent diseases or disorders would emerge to restrict 

the lifespan. In other words, although current mortality may be reduced in the future, a limit 

would exist based on a biological law of diminishing returns. Despite advocating the
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evolutionary theory o f senescence, many researchers recognise that biologically based 

limits to life expectancy may be manipulated i f  medical technology, including genetic 

engineering, affect enough o f the population (see, for example Olshansky and Carnes, 1997; 

Warner, 1993; Smith, 1993).

Those who advocate the hypothesis about genetic processes believe that the primary causes 

o f senescence are due to predisposing risk factors. I f  the risk factors are reduced, whether 

this be through genetic engineering or other means, life expectancy w ill increase.

The evidence regarding a possible lim it on human life is inconclusive. Coale (1996) 

examined mortality patterns for countries with high expectation o f life, in particular, 

Sweden, Japan, Spain and Austria, and found that age patterns for females have become 

very similar. He suggests that mortality may not continue to decline once female life- 

expectancy reaches between 84 and 85 years. In contrast, Vaupel et al.(1994) review the 

trends in mortality for the oldest populations in 27 countries and they find no evidence o f 

convergence in death rates over time. They present additional evidence to suggest that 

improvements in mortality for the very old may continue.

1.3.2 Parametric Models of Mortality

The hazard function, which is expressed mathematically in Chapter 2, is the instantaneous 

probability o f death for an individual. Developing a parametric hazard model involves 

regressing the individual risk o f dying on a set o f explanatory variables. The most 

influential parametric mortality model in the literature is that proposed by Benjamin 

Gompertz. Gompertz (1825) recognised that a geometrical pattern in age captured the 

behaviour o f human mortality for large portions o f the life table. He proposed the function:

/u(x) = exp($c)

where (i(x) is the hazard rate at age jc , and 6 is an unknown parameter. The close fit o f 

the Gompertz function to empirical data suggested that a "law o f mortality" may exist to 

explain the age patterns at death for individuals and populations. (Willekins (2001) shows
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that the Gompertz function is a type of extreme value distribution, and argues that the 

application of extreme value theory may uncover new theories of ageing.)

In 1867 Makeham noticed that the Gompertz equation failed to capture the behaviour of 

mortality at higher ages and added a constant term in order correct for this deficiency. 

Makeham developed a theory of partial forces of mortality, where he argued that mortality 

schedules for specific diseases fit the Gompertz law more closely than that of aggregate 

mortality (Olshansky and Carnes, 1997).

The Gompertz curve was further modified by Perks, Beard and others. In 1932 Perks 

proposed modifications to the Gompertz to allow the curve to more closely approximate the 

slower rate of increase in mortality at older ages. In 1963 Beard developed a model based 

on the recognition that the changing slope may be due to heterogeneity in the mortality 

risks (Manton et al, 1993:24,25). The implication of heterogeneity to modelling mortality is 

discussed later in this chapter.

The parametric models discussed so far are constrained to modelling the portion of the 

mortality curve associated with senescence. A number of parametric models have been 

developed to capture the entire life-span. Since mortality varies in a non-linear fashion with 

age, particularly during childhood and adolescence, such models are necessarily more 

complex. In 1872 Thiele proposed a model of the force of mortality as a function of three 

components, one relating to childhood, middle life, and adult ages. Wittstein in 1883 

proposed a law modelling the initial rate of mortality as a function of two components, 

representing childhood and adult age (Hartmann, 1987). More recently Heligman and 

Pollard (1980) proposed an eight parameter model that captures the shape of the mortality 

curve over the entire age range. Like the Gompertz, their model falters at the old ages. 

Another model that is amenable to regression techniques is the Siler competing hazard 

model, which emphasises causes of death (Gage, 1994).

Tabeau (2001) provides a thorough review of parametric mortality models ranging from De 

Moivre in 1725 to a model proposed by Rogers and Little in 1993. Among parametric
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models are polynomial functions, which are commonly used in modelling due to their 

ability to approximate most functions.

A distinguishing feature of parametric hazard models is the assumption concerning the 

shape of the risk function and how it changes over time. Rather than modelling the hazard 

function directly, one could model a function of the hazard such as the initial or central 

rates of mortality which are easier to estimate from empirical data. Possible shapes include 

the logit or proportional odds model (see, for example, Salhi et al., 1995). A constraint in 

parametric models is the a priori specifications of the hazard function. To reduce model 

mispecifications, in Chapter 3 we explore the Dutch data in detail and show how certain 

polynomials and other parametric models, including the Perks, provide close fits to the 

empirical Dutch mortality along individual periods. In Chapter 4, we develop a parametric 

logit model for Dutch mortality that includes polynomials in age as covariates.

When a suitable parametric surface is lacking, non-parametric techniques can be used to 

model the force of mortality: "...sometimes it is more realistic to suggest something about 

the qualitative features o f the unknown function than to determine it." (Stefanyuk, 1994:54).

1.3.3 Heterogeneity and Stochastic Process Models

Although modelling the processes of mortality should be founded on biological theories, 

modelling the age-pattern of mortality using parametric models of the hazard function is 

usually undertaken without regard for biological assumptions. Most parametric models do 

not attempt to model the mechanisms of ageing and, therefore, are of little practical use 

outside of testing simple statistical hypotheses about the importance of certain covariates 

(Yashin,2001).

A common criticism of traditional parametric models is that they assume that the 

population’s risk of mortality is homogeneous, when in reality, individual risk of mortality 

will not only vary due to genetic pre-disposition, but will change over time due to the 

impact of environmental factors (Yashin et al., 1985; Yashin, 2001). It has long been 

recognised that aggregate population mortality reflects the compositional dynamics within
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cohorts, and that individual age-specific rates may differ substantially from aggregate 

rates (In 1963 Beard developed a model that accounted for heterogeneity based on this 

recognition (Manton et al, 1993:24,25)). Different aggregate patterns arise due to selection 

from varying probabilities of death for individuals within a cohort: when the more frail 

members of a cohort perish, the more robust individuals survive thus leading to a reduction 

in cohort mortality rates. In particular, even though subcohorts may follow a Gompertz 

distribution, if each subcohort possesses a different level of frailty, then the mortality 

trajectory of the whole may be substantially non-Gompertzian.

The non-Gompertzian shape at the top of the mortality curve apparent in empirical data 

from developed countries may reflect selection due to cohort heterogeneity to some extent. 

However, it may also reflect actual individual mortality patterns, where human 

interventions involving medical technology have reduced the biologically determined rates 

for the oldest parts of the mortality curve. On the other hand, perhaps mortality is 

intrinsically non-Gompertzian, and the decrease in the mortality slope at high ages has a, as 

yet, undiscovered physiological explanation ? Support for this view comes from Carey 

(1997), who examined medfly mortality with the purpose of developing insights into 

human mortality. He found that the leveling-off of mortality in medfly populations is not an 

artifact of changes in cohort composition, which implies that the reduction in the rate of 

increase in mortality at high ages may have a biological interpretation, rather than being the 

outcome of selection from cohort composition.

Manton et al. (1986), Vaupel et al.(1979) and Vaupel and Yashin (1985), explore how the 

observed rate of death for an entire cohort of individuals relates to the probability of death 

for each of the individuals within the cohort. An implication of heterogeneous mortality 

risk is that population life tables based on cohort mortality may give an inflated estimate of 

an individual's life expectancy. Ignoring variability in frailty may result in biased estimates 

(Vaupel et al. 1979; Vaupel and Yashin, 1985). Vaupel and Yashin give the additional 

warning (1985): "...becausepatterns at the individual level may be simpler than composite 

population patterns, both theoretical and empirical research may be unnecessarily 

complicated by failure to recognize the effects o f heterogeneity".
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The recognition of the impact of heterogeneity on aggregate mortality and the dynamic 

nature of human experience, has lead to a recent push to incorporate biological mechanisms 

and stochastic processes into mortality models (see Yashin et al., 1985; Yashin, 2001; 

Vaupel et al., 1988). Yashin (2001) reviews modern mortality models that are based on 

stochastic differential equations, and explains their origins in the context of empirical 

mortality patterns and the physiological theories of ageing and deterioration. He strongly 

advocates the development of complex models: " .. models of changing frailty, and in 

particular the stochastic process models of mortality, allow an explicit description of the 

physiological mechanisms of aging " (Yashin, 2001:261).

A major restriction in the development of such models is that individual differences in the 

morality process are often due to unobserved variables, and that, "...one must be 

corcerned with [the unobserved variables] effects in order to uncover the underlying 

relationship between the force of mortality and the variables of interest" (Yashin et al. 

19*5:169).

Umbserved covariates can be included in statistical models through the introduction of 

random effects (Yashin, 2001). The impact of unobserved covariates may be inferred to 

sone extent from analysis of the variance of the model under the assumption of 

honogeneity. In particular, under the assumption of homogeneity of risk within a cohort, it 

is simple to show (see Chapter 2) that the various measures of mortality, including the 

nunber of deaths, are binomially distributed. Pollard (1970) analysed Australian data and 

fomd that the estimated variance exceeded the expected binomial variance, particularly for 

olcer ages. He acknowledged that the specific causes of the excess variation cannot be 

determined unless additional covariates are available. The approach adopted for the models 

dereloped in this thesis involves inclusion of random effects for unobserved variables. In 

Chipter 2 we develop the theory behind a mixed regression model with random effects, and 

in Chapter 4 we develop the mixed regression model for the Dutch data. A deficiency with 

thi approach is that the unobserved covariates may distort the observed relationship of 

fixed effects within the model. However, in the absence of knowing the origins of extra 

vaiability, it is appropriate to include random effects rather than trying to incorporate
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alternative distributional assumptions for mortality risk which may or may not reflect 

reality.

Ideally, extra sources of variation, such as frailty, should be determined as a function of 

observable variables, be they behavioural, genetic or social (Thiltges et al., 1995:25). 

However, a basic question is whether frailty is a purely 'unobserved' characteristic, or 

whether it can be related to some observable characteristics (Tuljapurkar and Boe, 1998). 

Manton et al. (1986) focus on individual characteristics and relate mortality to individual 

risk factors. Salhi et al. (1995) consider covariates such as marital status, occupation, 

education, and place of birth, among others, and assume that an individual's risk of death is 

affected by a set of conditions acting in concert rather than individually. Dynamic 

stochastic models are ideally required to capture the complexity of causative factors and 

allow for heterogeneous risk, however, models of this sort are in their infancy and have 

been difficult to develop due to the lack of adequate longitudinal data. As stated by 

Willekins (2001), and acknowledged by many in the field (see Tabeau, 2001:27):

"Although process models are advocated as being superior [to trend models], the 

knowledge base that is required to model the causal mechanisms implicit in process models 

remains inadequate" (Willekins,2001.122).

1.3.4 Incorporating Cohort Effects

Modelling mortality is further confounded by the problem of separation of age, period and 

cohort effects. Since age is equal to period (year) minus birth cohort, the parameters for a 

model that contain all three terms cannot be uniquely determined. The importance of cohort 

effects in mortality analysis was first introduced by Andvord in an attempt to explain the 

changing pattern in deaths from tuberculosis. The methods were elaborated by Frost who 

noted a possible causative link between infection early in life and high rates of mortality in 

older life (Lilienfeld, 1976:100-104). That extraordinary events can influence the long-term 

survival pattern of a cohort is well-known (Ryder, 1980). Since individuals within a cohort 

have different frailties, an event such as an epidemic or war may result in debilitation of 

certain subpopulations, leading to selection which may cause a decline in the aggregate
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mortality rates for those surviving the event. On the other hand, a debilitating event may 

lower the constitution of survivors, thus increasing long-term mortality rates. Stochastic 

differential equations have been developed to clarify the interaction between selection, 

debilitation, ageing and recuperation. Vaupel et al. (1988) show that debilitating events 

result in selection, which alters the population heterogeneity, thereby influencing the 

impact of the debilitating event. In Chapter 6 patterns in Dutch male mortality as a 

consequence of the Spanish Influenza epidemic of 1918 are discussed in the context of the 

observations of Vaupel et al. (1988).

Cohorts are crucial in the development of mortality models. Development of models or life 

tables has often relied on period data, despite that consecutive survival experience follows 

cohorts. When selecting models for a mortality surface, it is therefore, important to consider 

the natural progression of an individual's mortality. The cohort approach has been 

impractical in the past because of the extended length of time necessary to collect data from 

a single cohort (Ryder, 1980).

A type of model called Age-Period-Cohort (APC) exists based on time series techniques 

where age, period and cohort effects are considered simultaneously. A linear APC model 

can be written as a model for log-rates in which age, period and cohort effects combine 

additively (Tabeau, 2001). Linear dependence among age, period and cohort means that the 

effects cannot be solved uniquely unless constraints are placed on the model. Wilmoth 

(1990) modifies the linear APC model by incorporating interactions between age and year. 

He overcomes the identification problem by only fitting age and year terms and then looks 

for cohort effects within the residuals. For comparison with the regression models 

developed in Chapter 4, in Chapter 6 we apply Wilmoth's approach to the Dutch data. 

Tabeau (2001) mentions another method of modelling known as the non-overlapping 

cohort approach that relies on doubly classified data; deaths are classified according to birth 

cohort as well as year of death and age. Although this approach was not pursued in this 

thesis, it could be undertaken for the Dutch data, and is a topic worthy of future 

exploration. Time series methods are applied to mortality modelling for forecasting 

purposes, and so are discussed in the next section.
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The fundamental question in all theories of mortality is: “...to what extent is mortality 

'intrinsic ’ to an individual, and to what extent is it a response to 'environmental' factors?" 

(Tuljapurkar and Boe, 1998).

Since the longevity of an individual depends on both genetics and environment, a theory 

that concentrates on only one aspect will be insufficient. Vaupel et al. (1994:805) conclude:

"The current evidence... suggests a new paradigm o f aging that recognizes diverse and 

often highly plastic aging processes that can he influenced by health interventions, 

behavioral changes, and environmental improvements and that depend on genetic 

differences both between and within species".

The confounding of cohort and period effects, coupled with cohort heterogeneity leading to 

selection, and the complex and unknown interactions between genetics and the 

environment, means that separating exogenous and endogenous causes of death is not 

practical. Dynamic stochastic models of mortality are necessary to accommodate the 

complexities but detailed longitudinal data, which are currently lacking, are required to 

formulate and test models (Tabeau et al., 2001). The best environments for such studies 

would be controlled environments, such as for certain animal populations, where the effects 

of medical intervention and extrinsic causes of death are removed.

In Chapter 4 a parametric model is chosen and fit to the Dutch male and female mortality 

data. In the absence of an established theoretical basis upon which to generate a parametric 

model, we have taken the approach of choosing a function that best fits the empirical data. 

Rather than advocating a particular law of mortality, we take the view that it is better to 

follow the data, rather than trying to fit a preconceived function. Unlike many parametric 

models of mortality, the regression model developed is founded in a clear and transparent 

way on a process of individual mortality. Although the process underlying the regression 

model is a simplified view of reality, it could be modified in future work in order to 

accommodate realistic cohort assumptions such as variable frailty among sub-groups.
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1.4 Forecasting Mortality

Despite the recognition of the need for dynamic stochastic models for explaining the 

process of ageing in human populations, most forecasting procedures are often simple 

extrapolations from parametric models that do not take biological processes or complexities 

such as heterogeneous risk into account. Quoting Manton et al. (1993:25): "The failure to 

deal with individual aging trajectories, and their cohort mix, makes it difficult to use 

epidemiological and biomedical evidence on the impact o f health changes on the organism 

in forecasts"

As stated in the previous section, this failure is due to the fact that relatively little progress 

has been made in the development of stochastic process models for mortality due to a lack 

of empirical longitudinal data. Nevertheless, the ageing population and the strains on social 

secunty systems mean that plausible forecasts are necessary, and a variety of methods have 

been developed and used that are summarised in this section. For a comprehensive review 

of forecasting models for mortality, see Tabeau (2001), Land (1986), and Tuljapurkar and 

Boe (1998).

1.4.1 Extrapolating from Fitted Curves

Obje:tions to curve fitting techniques for forecasting purpose are discussed by Alho 

( 1990:523), who notes that: "...several curves may fit the past data very well but give 

widely different forecasts."

Whei generating a model for forecasting, a balance must be reached between parsimony 

and he level of disaggregated detail to use in projections (Tuljapurkar and Boe, 1998). 

Keyftz (1982) advocates that the simpler the curve, the more realistic the forecast. When 

choosing a model, the structure should enable forecasting to proceed: "Forecasting 

supposes that there are typical directions o f movement through time, and the formulation o f 

dhe nathematical functions or the model tables must be such that the progression is readily 

idescibed and projected" (Keyfitz, 1982:350).



17

The development of regression models in Chapter 4 follows the principle of parsimony, 

and a form is chosen such that the model can be used for predictions which are developed 

in Chapter 7.

Olshansky and Carnes (1997:25), who advocate the evolutionary theory of senescence, 

believe that extrapolations from parametric models or projections from time series based 

models may produce implausible forecasts: “...some demographic models o f human 

senescence produce mortality schedules that appear to he inconsistent with predictions 

about human mortality from evolutionary theory \

Their argument only holds if the basic rate of senescence remains fixed. Altering the rate of 

senescence, however, may indeed be one of the main consequences of the genetic 

revolution. Whether or not one subscribes to the evolutionary theory of senescence, a 

general criticism of extrapolation from a parametric curve is that no matter how close the fit 

is to empirical data within a particular domain, it does not provide a guide to accuracy 

outside that domain. Therefore, determining the extent of uncertainty from a parametric 

forecast is a subjective enterprise. Criticisms like those by Olshansky and Carnes can be 

addressed by setting a particular target level for future mortality rates (or life expectancy) 

based on expert opinion, and then interpolating to fit an appropriate forecast.

Pollard (1987) gives a comprehensive summary of methods of projecting age-specific 

mortality rates, including projection by extrapolation of age-specific rates; projection with 

reference to standard tables; projection by reference to "laws of mortality" (such as the 

Gompertz or Makeham); and projection by cause of death, among others. Perhaps the most 

intuitive and easiest to follow method of projecting mortality is to extrapolate age-specific 

mortality rates from historic trends. Age-specific rates of decline, rather than an average 

rate of decline across all ages, are favoured since at the present, changes at older ages 

predominantly influence future life expectancy (Vaupel,1986), and since there is significant 

historical variability in the rates of change of mortality across ages. Extrapolations also 

suffer from the subjectivity associated with selecting an appropriate period from which to 

extrapolate. Tuljapurkar and Boe (1998) review forecasts based on extrapolations and 

conclude that the most recent patterns in mortality decline do not always provide the best
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basis for short or long term projections. Age-specific mortality rates are generated in 

Chapter 7 for Dutch males and females. Forecasts using these methods are deterministic; 

they do not assume a stochastic structure for the errors, or recognise the expected 

propagation of errors as time increases due to uncertainty in the process.

1.4.2 Time Series Methods

Lee and Carter (1992) developed a model that includes a time factor modulated by an age- 

response as well as a separate age effect. The time factor is treated as a stochastic process, 

and time series techniques are used to model the factor over time, thus allowing stochastic 

projection intervals. Although the model performs well on tests of data, and as a result, has 

been adopted by many forecasters, it doesn't take into account the natural emergence of 

mortality along cohorts, and as such is not modifiable to accommodate theories of ageing or 

heterogeneity. Like other techniques based on extrapolation, projections follow from the 

subjective decision on the length of the historic period used to fit the time series model. In 

addition, projections are dependent on the form of the time series model selected.

As stated by McNown in a comment on Lee and Carter's paper:"... forecasts o f mortality 

identical to Lee and Carter's will be produced by directly projecting each age-specific 

mortality rate at its own historical rate o f exponential decline" (McNown, 1992). This is the 

case in the particular example of Lee and Carter's projection of US mortality since the 

preferred time series model that fits the data is linear. In our view, the main advantage of 

the Lee and Carter approach is its ability to generate stochastic prediction intervals based 

on time series methods. For comparison with, and as an alternative to the regression model, 

the Lee-Carter model is briefly discussed and modifications are suggested to accommodate 

cohort effects in Chapters 6 and 7.

Another method that utilises time-series techniques is that of McNown and Rogers (1989). 

They apply Heligman-Pollard models to individual periods, and then model and forecast 

the parameters as a multivariate time series. An appeal of this approach is that by 

parameterisation, they attempt to incorporate an age theory of mortality into the forecasting 

model. Bell and Monsell (I99l) use time series methods to forecast age-specific mortality
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rates by principal components. As with the Lee and Carter method both methods do not 

take the natural cohort structure of mortality into account.

1.4.3 Projecting by Cause of Death

Since many trends in aggregate mortality can be explained by the incidence of specific 

diseases, it follows that both descriptions of historic mortality and forecasts may be 

improved by considering cause of death. Improved forecasts are predicated, however, on 

the assumption that sufficient data and epidemiological knowledge are available that 

suggests the existence of a stable predictive relationship (Tuljapurkar and Boe, 1998). The 

task is complicated by misclassification of cause of death data, and dependence between 

causes of death (competing risks). Alho and Spencer (1990a) review the evidence and 

conclude that the major contribution of forecasting mortality by cause has been the ability 

to easily incorporate expert opinion, rather than improved data analysis or forecasts. A 

potential extension of the regression models developed in this thesis is to cause of death 

data, with the inclusion of correlations between surfaces in order to accommodate 

competing risks. In addition to cause of death there is evidence for correlations between 

mortality and sex, marital status, education and other socioeconomic variables, and racial 

and ethnic differences (Tuljapurkar and Boe, 1998).

1.4.4 Uncertainty in Mortality Forecasts

Tuljapurkar and Boe (1998) summarise the debate on uncertainty in mortality forecasts, and 

argue for an explicit probabilistic (stochastic) approach, such as in Lee and Carter (1992) 

and Alho (1990) (see also Tuljapurkar and Lee, 2000). Uncertainty is embedded in a 

stochastic model through the choice of parameters and the error structure, which propagate 

in an additive way over time. Historic analysis serves an important purpose in that it 

enables quantification of uncertainty in mortality, however, the level of uncertainty is 

subjectively determined since forecasts are based on the selection of a particular period of 

historic data. For example, Lee and Carter (1992) use an indicator variable to account for 

the Influenza epidemic of 1918. Although this reduces the uncertainty in their time series
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forecast, it can be argued that such events should be included in the generation of the 

error structure given that the outbreak of future epidemics cannot be predicted.

Formal methods of forecasting that rely heavily on an analysis of the past are often 

criticised for an over-reliance on historic patterns (Tulkjapurkar and Boe,1998), and an 

absence of expert judgement regarding the future. In all forecasts, and in particular those by 

cause of death, the impact of changing risk factors and public health practice must be 

considered. This begs the question of how does one predict these changes? Declines in 

mortality brought on by shifts in lifestyle may be predictable to some extent. For example, 

excess male mortality noted in many developed countries has been linked, to some extent, 

to consumption of cigarettes (Coale, 1996). When younger female cohorts that consist of 

heavy smokers reach old age, mortality rates may increase. Nusselder et al. (1997) attempt 

to explain the increase in Dutch mortality for the oldest old in the context of causes of death 

and suggest that a cohort effect for lung cancer among elderly men may be a factor. Van 

Den Berg Jeths et al. (2001) review epidemiological approaches to forecasting mortality. 

Van Genügten et al. (2001) analyse Dutch data and demonstrate substantial differences in 

forecasts when trend extrapolation of cause-specific mortality is compared with 

epidemiological projections based on risk factors.

In the presence of epidemiological and expert judgement regarding the future, the variance 

of stochastic forecasts based on historic data should be modified accordingly. Alho (1992) 

(see also Alho and Spencer (1985)) develops a formal model based on mixed estimation in 

linear regression that allows the incorporation of expert opinion in forecasting. For an 

example of the incorporation of expert opinion into mortality forecasts by cause of death 

using a different approach see Bulatoa and Stephens (1992). With regards to the state of 

future mortality, current expert opinion is optimistic in light of advances in biotechnology 

and the mapping of the human genome. Professor Burton of the Victorian Anti-Cancer 

Council, was recently quoted as saying:"... We will make significant inroads... early in the 

next century through the early detection, through prevention o f fatal cancers, like lung 

cancer and through an absolutely fabulous array o f new treatments which are coming to us 

from the molecular genetic revolution" (Jacobsen, 1998).
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1.4.5 Impact of Uncertainty on Future Population

Besides forecast variability due to future uncertainty, forecasts are further hindered by 

uncertainty in current mortality estimates due to the absence of reliable data, particularly at 

old ages. Bennett and Olshansky (1996) show that there is an argument for adjustments to 

US mortality rates over age 95 and possibly between ages 65 and 94. They argue that even 

small adjustments can have a dramatic consequence to the long-term aged population 

structure.

An implication of the ageing population and increasing dependency ratio is a substantial 

strain on the social security systems of developed countries. One way of reducing the long

term financing problem faced by social security is to increase the eligibility age for social 

security benefits (see, for example, Burtless,l998). In light of increasing life expectancy, 

the need for re-assessment of eligibility ages is crucial: "An increase in life spans, when the 

normal retirement age remains unchanged, is equivalent to a sizable increase in lifetime 

Social Security benefits " (Burtless,l988).

In Chapter 7 we consider what is meant by 'old age' from the standpoint of social security 

eligibility. We use a series of criteria, developed by Denton and Spencer (1996b), to 

estimate an age today that corresponds to the pension eligibility age of 65 that was 

introduced in 1957 with the establishment of the General Old Age Benefit Act in the 

Netherlands (van Oorschot,1998).

Lee and Tuljapurkar (1998) examine the impact of projected mortality decline on the US 

Social Security System. They show that mortality forecasts used by the Social Security 

Administration (SSA) have much higher long term mortality rates and a lower range of 

uncertainty than the levels suggested by an examination of past mortality trends. Australian 

population projections undertaken by the Australian Bureau of Statistics have also been 

criticised for not incorporating realistic allowance for uncertainty in forecasted mortality 

rates (Higgins, 1998).
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The fact that uncertainty in mortality projections primarily affects estimates of the older 

sections of the population is attested by a study of US forecasts. Olshansky (1988) shows 

that much of the increase between population forecasts over a ten year period was 

attributable to uncertainty in mortality assumptions for over 65 year olds. Olshansky 

(1988:482) noted that projections in the early 1960s assumed that mortality declines for 

older-aged groups would be minimal. This was based on the premise that observed period 

life-expectancy at birth, which was 70 years, was close to the upper-bound of the human 

lifespan, an assumption that turned out to be incorrect.

Conservative projections and limited allowance for uncertainty have led to the opinion that: 

' ...there is a significant likelihood that the future elderly and oldest-old populations will he 

larger than anticipated in current federal projections' (Manton et al., 1993:3).

In Chapter 7 mortality forecasts are generated from the regression models of Chapter 4. 

Following the approach of Heathcote and Higgins (2001b) it is shown how external 

opinions can be used to modify parameters of the regression models in order to generate 

alternative forecasts. We apply various mortality forecasts to the Dutch population and 

show how uncertainty in future rates can lead to dramatic structural changes in population 

composition, particularly for the elderly.
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2 Theory

2.1 Introduction

With jc denoting age, t period, and t - x  being the corresponding birth cohort (all 

measured in years) we can formulate a regression model for the Dutch mortality surface, as

^ X ,t-x  ^ x j - x  ^ x , t - x

where Yx ,t-x log
(  a } f a  \q x j - x are the observed log(odds), Sxt_x = log i  x , t - x

qx ,t~ x  j q x ,t~ x  j

is the

smooth population surface being modelled, and s xt_x are the random errors. The age 

specific rate of mortality within one year for a cohort bom at t - x  is qx,_x and it is 

estimated by qx,_x.

When the q xt_x are defined along cohorts by the life table function qxt_x -1  -  ,
I  x j - x

where lxt_x is the number of survivors aged jc at year t, it is shown that under the

assumptions of independence between errors for different cohorts, and independent but 

identically distributed lives within a cohort, the errors sxt_x over the mortality surface are,

for large populations, asymptotically independently and normally distributed with zero 

mean and variances given by:

bin (t,x) =
x , t - x x  x ,t-x (1-4V J

Since the normal distribution is uniquely defined by its mean and covariance matrix, 

weighted least squares or maximum likelihood methods can be used to estimate parameters 

for a smooth surface, where the weights are chosen as the inverse of the binomial variance.
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A common feature of real data is that of overdispersion due to the presence of random 

variables. In particular, the failure of the assumption of identically distributed lives within a 

cohort may lead to heteroscedastic error terms. A solution is to modify the model by 

including random covariates r/xt_x, thus resulting in a mixed model:

Y = S + n + c

Extra-binomial variance can then be attributed to the variance component of the random 

effects. If we assume zero mean for the random effects, and zero covariance between 

random effects, and between fixed and random effects, then the total variance for the model 

is simply the sum of the binomial variance and the extra variance component. If we model 

the extra variance as a function of the covariates of the mean model, then maximum 

likelihood techniques can be used to simultaneously estimate parameters for both the mean 

model and the variance component for the random effects. The details and assumptions 

underlying the construction and estimation of the mixed model are covered in this chapter.

Following from the assumption of asymptotic independence and normality, statistical 

methods are used to determine standard errors for the overall estimates of the fitted 

log(odds), as well as for conditional probabilities of survival and life expectancies.

2.2 The Hazard Function

We first define some notation: For an expression Ax l_x, the subscript x j  - x  refers to age

.r and cohort t -  x . An identical expression, in terms of age * and year t is given by 

A(t,x).

In order to determine the distribution of the £x l_x, it is first necessary to provide some

underlying theory on the probabilistic structure of mortality. Much of the theory below is 

well established and can be found in Chiang (1968, 1984) as well as most demographic 

texts with a statistical emphasis.
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Let X be a continuous random variable that equals the exact age at death or the exact 

lifespan of an individual. The probability that the individual will die prior to age x is given 

by the distribution function

Fx (x)= PROB(X <x)

The hazard function is defined as the probability that an individual experiences death in a 

small time interval given that the individual has survived up to the beginning of the 

interval. In other words, it is the instantaneous rate of mortality, or the probability that an 

individual alive at age x will die in the interval (x,x + £&). If we call the hazard function

Ax (x), then the probability of dying in the age interval (x,x + dx) is,

A x (x)dx = PROb (x < X < x + dx:|x < X )+ o(dx) _ Fj(x)
i - ^ w

+ o(dx)

The probability that an individual alive at age 0 will survive to age x is,

x P o ( 2 .2 . 1)

where the conditional probability of survival to age (x + a) given survival to age x is 

defined as,

ap x = Pr(r>x + a\T>x) (2.2.2)

Equation (2.2.1) assumes that our hazard varies with age in the same way for all individuals 

(ie. all cohorts). We could modify this to incorporate different hazards for different cohorts. 

This situation would give a more realistic approximation of the behaviour of human 

mortality. For an individual born in the cohort t - x ,  the probability that the individual 

survives to age x is
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(2.2.3)

where A,_x(x) is the hazard for the t - x  cohort.

We can generalise the above and write the probability that an individual from cohort t - x  

survives to x+1 given survival to age x,

Note, the subscript 1 is often left off the symbol , p x (_x. This expression implies that we

have a distinct hazard function for each cohort. In other words, the force of mortality varies 

with age for all individuals in a particular cohort, or that the individuals within a cohort 

make up a homogeneous group. The assumption of homogeneity (Assumption (ii) in the 

next section) does not take into account the possibility of differing frailties within a cohort 

due to disability or other sources of heterogeneity. The assumption of homogeneity may 

lead to overdispersion in general, and extra-binomial variation in the Dutch data in 

particular.

2.3 Mortality and the Binomial Distribution

We can think of the mortality of the Netherlands as a sample from a larger hypothetical 

population, and that observed Dutch mortality values vary randomly about unknown

population values. For example, if lxt_x is a random variable for the number of Dutch

survivors then it will vary around the unknown population quantity lxt_x with a particular

variance, which, as will shown below, is based on the binomial distribution. There is a 

strong argument, however, for assuming that the unknown population quantities are random 

variables themselves (Pollard, 1970). For example, as discussed in Chapter 1, survivors in a

(2.2.4)
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particular cohort may have a mixture of frailties, which ultimately influences the 

aggregate shape of the mortality curve. In Section 2.6 we consider the impact of population 

quantities as random variables; for the moment, however, we assume that population 

quantities are fixed, and we introduce a model for mortality based on the classical 

assumptions regarding the distribution of lives within a cohort:

Assumptions

(i) Cohorts are statistically independent with regard to mortality. In other words, errors 

from a regression model of mortality are independent for different cohorts.

(ii) individuals within a cohort have lifespans that are independent of each other, and 

are homogeneous or identically distributed. That is, they share the same hazard 

function or force of mortality;

That the number of survivors from a cohort is binomially distributed follows from 

Assumption (ii). This is shown below.

For the birth cohort c -  1 -  x

individual j  survives to age(x) 
otherwise

Here I ^ ( jc) has a bemouilli distribution with mean and variance

(2.3.1)

K avJ (2.3.2)

where xp 0t_x is the probability of survival from birth to age x for an individual in cohort 

c - t - x  and is given in equation (2.2.3).
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A non-zero covariance exists for an individual within a cohort. Ie. An individual’s 

mortality at age x + 1 in year t + 1 is dependent upon the individual’s past mortality at age 

x, year t.

covii^x+ V ^w 'h^P vJ '-iP o ,,-,) (2.3.3)

By Assumption (i), for two different individuals i and j for all values of k and m,

C O v { \^ m(x + k\l £ w ) = 0 .  (2.3.4)

Note that equations (2.3.1), (2.3.2) and (2.3.3) are the moments of \\jJx{x) conditional on a 

fixed and known xp0t_x . This assumes that the population value of xp0t_x, which is 

unknown, is constant. If the population measure xp 0t_x is a random variable with an 

unknown variance due to the failure of the assumption of identical distributions at age jc 

within a cohort, then the unconditional moments of I ^ ( jc) have to take into account the 

uncertainty in xp 0,_x (this is discussed in more detail in Section 2.6). For the moment, 

however, we assume that Assumption (ii) holds.

Define the random variable for the number of lives at exact age jc of the cohort bom at 

time t - x ,  lxt_x as

I,-, = fe w
j=i

where lot_x equals the number of births corresponding to the cohort t - x .  The observed 

number of survivors lx t_x at (t,x) is a realisation of the random variable lx l_x.

It follows from the independence of lives within a cohort, that lxt_x is binomially 

distributed with parameters lQt_x and xp 0 t_x. Therefore, the mean and variance are:
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4 0 = ' o, - X po,,-,) (2.3.5)

Po.,- J  (2.3.6)

Extending the argument for (2.3.3) shows that the covariance for lx t_x and lx+k t_x is:

COv(TXJ.J„tJ.x)= X * / \ ,  (2.3.7)

An implication of the failure of Assumption (ii) is that lx t_x may be the sum of different 

binomial random variables, meaning that r pot_x would vary within each cohort at age x.

Since lxt_x is binomially distributed, it follows that T p 0(_x is a binomial proportion with 

realisation xp0t_x and cohort life-table function:

x P o . l - x  ~  ,
0,1-x

Similarly, the cohort age-specific probability of survival to age ^ + 1 given survival to age 

x ,  pxt_x (see equation (2.2.4)) is a binomial proportion with realisation p xl_x and cohort 

life-table function:

x+ l,t-x

x ,t-x

mean

E( p . p x ,t-x

and variance
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r  \
1

VAR{px̂ ) = E  Px, J \ - PxJJ
V x , t - x  >

The Weak Law o f Large Numbers (W LLN) holds for lxt_x as l0 t_x —> go . In other words,

> <5= 0  for any S > 0, andlim Pr ^x , l -x   ̂x ,t -x

. 1
p >r i )

^  ^ x ,t-x  j ^ X ,t-X  J

as

See for example, Schervish (1995:397), and also chapter 10 o f Chiang (1968).

Therefore, the asymptotic variance o f p xl_x is

l x ,t-x

The cohort age-specific probability o f death by age x + \ given survival to age is 

defined as:

V,.,-, = 1 -  Pi.,-, = 1 -
x + \,l -x

T .  _

with the realisation o f this random variable denoted by qx ,t -x  '

2.4 The Form of the Regression Surface

We can formulate a regression model for a mortality surface, as
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Y X,t -X ^  x . t -x  £  x,t-X (2.4.1)

where the response Yx l_x and the fixed component Sxt_x are a function /z(.) of the initial 

rate of mortality qx t_x, or

Y X j t - X  =  K l x J - X  )  =  K R xJ - x )  +  £ x , i - x

The function chosen for modeling the male and female Dutch data is the logistic function:

r
log

V

g * , / - X  

1 -  V x j - x  j

Although there are other possible choices, such as the probit or complementary log-log 

function, the logistic (or logit) function is more easily interpretable, since it is simply the 

logarithm of the odds (McCullagh and Neider, 1989:109). In addition, the logarithm is a 

differentiable, monotonic function of qxt_x, and counteracts the exponential increase in

mortality as age increases. The trend in the logarithm of the odds of mortality as age 

increases appears almost linear from age 50 onwards (see Chapter 3 for a thorough analysis 

into Dutch mortality patterns). This has obvious advantages when it comes to model 

selection.

The model can then be written as,

log = log
^ i— y x j - x  j

+ s x j - x

The statistical properties of lxl_x have been determined in the previous section under 

Assumptions (i) and (ii), so we can now consider the stochastic properties of

’ x , t - x = log
( n \ ( \

x , t - x -log V x j - x

^  1 _  Q x . t - X J ^  1 Q X . t - X  J

which is a function of lx t_x and lx+lt_x.
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In Section 2.5 we present a proof showing that the regression errors sxt_x along the same

cohort are asymptotically normally distributed. In addition, the covariance structure for 

£xt_x and £x+kt_x, which is complicated for period probabilities, simplifies to zero for

probabilities along a cohort, thereby resulting in asymptotic independence.

2.5 The Asymptotic Distribution of e(t, x).

The classical assumption o f homogeneity (Assumption (ii)) leads to the binomial 

distribution for the number o f survivors l xt_x aged jc in a cohort. Recall from Chiang

(1968) that the Central L im it Theorem and the Weak Law o f Large Numbers hold for the 

binomial frequencies l x t_x.

Result

f f X
9 x j - x - lo g 9 x , l - x

b b^ X y t—X  y X , l - X  J

As V ,  H>co> = loS

normally distributed random variable Z where,

e (z ) = 0

converges in distribution to a

var(z )--
l x , t - x Q x , t - x  V  *7x j - x  )  A), t - x \ x  P o , t - x  H x , t - x  0  *7x , t - x  )

and sxt_x and £x+k t_x are asymptotically independent for all values o f (t,x) in the Lexis 

plane.
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Proof

For this proof we are referring to only one cohort, therefore, all subscripts referring to 

cohort / -  jc has been omitted. For example, p x t_x = p x

The distribution o f the errors from the regression model (2.4.1) can be found by noting the 

following:

= log
1 - q X

r
- lo g

l -

Iog ( i  - i  A - lo g
( l  - l  \* X  l x + l

V x+\ > k F + \  >

( 7 - 7
- lo g

(7  }.r+1

J x  ! X + \  J J x + \  J

Using log .r+1

V^x+1 J
= log

(  /  _ /  A 
j +  .r+1 1 x+\

V x+1 J

lx+\  lx+l+ o ( - \ = ) ,  as /0 ------ >oo,
x+\

and, log
f I  - /.r .r+1 

V l  X  ~  I .v+1 y

(x  ^.r+1 ( ! x  / , +l )  , /   ̂ \

/ - /  IFu1 x  1JC+1 y  10

as L

we find,
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£ „  -
I  - /  .

X  x+1

\ l . x  ~  lx+\ J

r j  \
ix+i

V *+1 J + 0 p ( ^ ]

L i  lx + « „ (4 = )

Now, since l x  = l0( xp 0) and l x+] = /0( x+1 /?0), this expression reduces to,

£ =  —  
l* n (,A>-«lA>) + 0P( ^

T - iX  X

1

1

_ x P o  x+ \P o O
1

o

■ +  ■

+ " ' (x >

l - I ix+\ ^ x+\ ^ x P x  ^ x+l

P o ~ x +l P o  L P o - n l P o ) P x  ( x P o - ^ l P o * o , v

i l  - l x )— 5— +(L - O
x P o  x+ \P o

— 1

(xPo~x+\Po)P> + 0P(^
(2.5.1)

Similarly, we can write

/
log <lx+k

V  x+k J

- lo g
}-<lx+k)

ifx+k lx+k )■

1

x+k P 0 x+k+\Po
(^x+A +1 ^ x+k+\ /

-1

( x + k P o  x + k + \P o )P x+k * o , v

(2.5.2)
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Therefore, the compound asymptotic distribution of sx and sx+k depends on the joint 

distributions of 7,, 7„,, 7„t and /„w -

By the multivariate Central Limit Theorem (Schervish, 1995:643; Rao, 1973:128) as

/0 ------->oo, the normed vector of these frequencies is asymtotically normally distributed.

Specifically, let

'  / X " ^ o ( x P o ) ~ l  ’

L -
/ » . /() (  x+l P o  )

A) (  x+A P o  )
1  =

/x+l

1 x+k ^x+k

J  x+k+l _ _A> (  x+A+1 P o  )_ Jx+ k+ \ _

i x ' v + o
j =i

i r / ’u + i + o
j=\

^ l ^ i x  + k + i)
j =i 

A)
^ ^ ( j c  + zt + l + ;)
j =1

We can write the four-by-four covariance matrix for each of the IID vectors as,

xA > ( K P o) 
x+i P oO - xP o) 

x+k Po 0  xPo )

x+*+l PoO -  xPo )

x+l P o O - x P o )

,+i PoC K +iPo)

x+k PoO - x+lA) ) 

x+*+i PoO -x+iPo)

x+aP oC K P o)

x+* PoO~x+lPo) 

x+k PoO ~ x+*Po) 

x+k+1 PoO —x+*Po )

x+Jt+1 PoO—xPo) 

x+k+1 P o ( K +lPo) 

x+A+1 PoO ~ x+*Po ) 

x+A+1 PoO “  Po,x+k+\ )

Since L is the sum of a sequence of /0 IID random vectors, it follows that the Multivariate 

Central Limit Theorem applies, and

In order to prove asymptotic normality for sx, and asymptotic independence between sx 

and £x+k, we can use the following condition of the Multivariate Central Limit Theorem 

(Schervish, 1995:643; Rao, 1973:128):
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If A  is a non-singular matrix with four columns, and if AL_  is a linear combination of

the L  L > L *  and Lw.then:

^ - + J V ( 0 . A C A ’) (2.5.3)

Referring back to equations (2.5.1) and (2.5.2), we can write A as:

A  =

1 -1

P o - x + i P o  ( x P o ~ x+iP o ) p > 

0 0
x+k P q x+k+\P0 i x + k P o  x+k+ \Po)P . x+k J

Then,

’x+k

log

f
\ - q x

\

Therefore,

’ e x ' _ d ( k ~ L )

ß  x+k .

-log

-log

\ - q X /
<lx+k

v' Qx+k

A
l

i  - i
X  X

h+\ ~K+\
^x+k  ̂x+k

x̂+k+1  ̂x+k+l

+ O.Q)

+ o (  1)

It follows from the Multivariate Central Limit Theorem (equation (2.5.3)) that,

jV ( 0 ,  A C A / )

All that remains is to evaluate A C  A ' :
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AC = 1 — x+A P  0 x+k+1 P  0

x+1 P  0 
0

x+1 P  0
-1

Therefore,

ACA' = 0 -1  -

0 0

x+k P  0

x+1 Po 
0

x+k+1P o

x+1 Po
-1

1

x Po x+lPo
-1

L p » -x*xPo)p

0
x+A Po x+k+\Po

— 1

(  x+k Po x+A+lPo ) p x+k y

1
r+Ar PO

( « P o - x r t P o ^

0
X+1 Po

(  1 , x+A+1 P o f  1 T
V. x+A P o  x+A+lPo y x+1 P o  ̂(  x+A P o  ~ x + A + lP o  )Px+A  y

( x+A Po x+k+\Po )Px+k

The term in the off-diagonal disappears since —— ^~=x+kp 0, resulting in zero covariances.
P x+k

Therefore,

ACÄ L P o~,+iPo)Px

0

\
0

1

( x+a P o x + A + lP o )P x+A /

L

l x R x  0-7x) 
0

0

/p
^x+A^x+a O  — ^  x+k )>
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The diagonal terms are the variances of JIq£x and ^ £ x+k

In addition, by Assumption (i), £x and £x+k are independent for different cohorts.

Therefore, s x and s x+k are asymptotically normally and independently distributed, where

1£x+i has zero mean and asymptotic variance of

This concludes the proof. A briefer account of the asymptotic independence can be found in 

Chiang (1968:228).

2.6 Model Fitting and Extra-Binomial Variation

Recapping, our model is:

x ,t-x S 4-  £U  X,t-X  ' K,t-X — log
\ - q

+ £ X ,t~x
x ,t - x  y

where,

VAR{£XJ_,)=crl,(t,x)
1

X ,t- x

1- 9,
For each observation at age x and cohort / -  * we can write log

V "  ' l x j - x  J

linear combination of p  covariates X V..X with parameters /? = (/?,.../?):

in terms of a

Y x ,t - x  ~  8 x j - x ( ß )  +  £ x ,t - x  ~  + £ x , l - x

For n observations, we can write this in vector notation, as
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Y = ö ( ß )  + £ = X ß  + s  (2-6.1)

where Y_ is a n x 1 vector of observed log(odds), X  is a n x p matrix of covariates, ß  is a 

p x 1 vector of parameters to be estimated, and £ is a n x 1 vector of errors with E(e) = 0 

and VAR(s) =V_ = diag{a2hjn).

Since the formula is linear in the unknown parameters, and since the asymptotic variance 

differs for different (/,jc), the method of weighted least squares can be used to estimate the 

parameters. The theory behind weighted least squares is well known and only the main 

results are covered here (see, for example, Ryan (1997), Weisberg (1985))

Weighted least squares involves minimising ^ w r/_x[y’r/_x ~Öxt_x{ß)^ over the entire
i ‘-x)

surface L(t,x),  where each wxt_x is the inverse of the corresponding binomial variance. 

This implies that any observation with a high variance will be discounted in determination 

of the fitted parameters ß . In matrix notation, the fitted parameters ß  are estimated from:

ß = [ x jr 'x)~' xjr'Y_

where V_ ' is the n x n matrix of weights, or the inverse of the covariance matrix which is 

given, in this instance, by

V  ̂x + \,c tf  x+l,c 9 T + l,c  )

^  ^x + m ,c + j tfx + m ,c + j^  x + m .c+ j^

where age ranges from jc to x + m,  and cohort ranges from c \o c + j .
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This is equivalent to ß  -
r ' \

X w X w
- i  r

X “ Y",  where X "  = and =

where W_ is a n x 1 vector of weights and is equal to .

In spite of the theoretical justification for the weights used, as is more common than not in 

regression modeling (see, for example, McCullagh and Neider (1989), Williams (1982), 

Moore and Tsiatis (1991)), there may be an apparent source of extra variation in the models 

generated under the Assumptions of Section 2.3.

A means of determining the extent of extra variation is to produce the sum of squares of the 

standardised residuals. It is well known that the sum of squares of standardised normal 

variables have an approximate chi-square distribution, / 2(w) (see, for example, Rao 

(1973:181)) . It follows that the standardised residuals from the regression model

(f -  X ß )  V_{y_- X^ß) should compare closely with a / 2 (« -/?) distribution if they are 

sufficiently standard normal. In particular,

P

When the standardised residuals exceed n -  p , a factor can be found to adjust the fit. An 

estimate of the factor is:

n — p
( 2.6.2)

(see, for example, Williams (1982)). Adjusting the fitted model by an aggregate factor has 

no effect on the parameter estimates; rather it inflates the standard errors of the parameters.

Parameterising a component of the variance and using maximum likelihood provides an 

alternative approach. By minimising the negative log-likelihood using the Splus function 

"ms’, we can solve for the new parameter estimates for the mean and variance.
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It is plausible that the appearance of extra-binomial variation is due to one or more 

random effects for which we have no information. In particular, it is likely that in reality the 

individuals within a cohort are not identically distributed, but vary in underlying frailty due 

to genetic pre-dispositions. In addition, it is likely that frailties change over time due to the 

interaction of lifestyle, period effects, and constitution.

We could modify the model by assuming that the population probability of survival for 

individuals within a cohort is no longer fixed at xpQt_x, but is a random variable that

modifies the underlying cohort-specific hazard. In other words, xp0l_x no longer varies

simply due to it being a binomial proportion of random variables, but also contains 

variability since it represents a mixture of distributions with differing frailties. The 

moments of x p0 t_x are then,

VAR(X) = e (vAR(x \y ))+VAR{e {x \y )) and E( X2) = VAR{X) + ( E ( X ) f , the

VAR(,Po,,-,)= gtLPo,'-*)

 ̂-E)V ( , ) £2! jc P a , t - x > x + k P o , t - x )

where g,(.) and g2(.) are unknown functions. In this situation, using the identities

unconditional moments of lx in cohort t -  x become:

Note that:
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x P O .l-x  v x P o ,l - x  )

which implies that,

VAR IIÄW =  « ]

This expression shows that the heterogeneity within a cohort arises due to the mixture 

distribution of xp 0 t_x.

The analysis above implies that one way of dealing with extra-binomial variance is to 

consider the function k ,_x(x ) , such that,

V A R V x j - x ) =  l 0 . t - x ( x P o j - x  f l ~ x P < U - x ) +  K t - x ( X )

COVV,J-xX+kJ -,)= lo(x*t P oj-,\l~,PlU-x K,-x(.X,X+ )

It is desirable to incorporate the extra variance component in such a way that the regression 

errors are still asymptotically independently and normally distributed. One way of 

achieving this is to propose a functional form for k ,_x(x) such that, asymptotically,

COV(sx,_,,,sn t ,_x)= 0,

This could be achieved by presenting s xt_x as a function of lx ,_x, as was done in Section 

2.4, and then finding the covariance as a function of fc,_x(x,x + k), Kt_x(x,x + k + \), 

Kt_x(x + \,x + k) and k,_x(x + \,x + k + \).



43

A difficulty with this approach is that of determining a functional form for *■,_*(*) that

conforms with asymptotic independence. Assuming that such a function can be found, 

random effects analysis of variance techniques could possibly be applied to estimate the 

extra variance component.

Despite its theoretical appeal, this approach was not taken here, but may be the subject of 

future work. It is apparent that such an approach would be more appealing when mortality 

data are disaggregated by additional variables such as cause of death. The approach 

assumes that the extra binomial variation is caused by a unknown mixture of survivor 

functions within each cohort, and as such the mixture distribution can be considered a 

random effect. In a similar vein, Pollard (1970) considers the variance structure of the 

number of deaths in a population under different mortality hypotheses, which includes a 

hypothesis that assumes that the population aged jc consists of sub-classes, each with a 

different random qx.

The approach used for dealing with overdispersion in this thesis is based on the existence of 

unknown random effects, however, it does not explicitly assume that these effects are 

derived from a particular source. Instead the random effects are included in a general 

manner, and it is assumed that their inclusion does not affect the asymptotic independence 

and normality of the regression errors.

The argument for inclusion of random effects is covered in more detail in Chapter 4.

If we let the regression model be written as a mixed model with fixed effects £ = X_ß (n

observations) and random effects ^  (an n x q matrix, with q levels), then in matrix 

notation,

Y — X ß  + rj_ + £_ (2.6.3)
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where the random effects have the properties £(rj_) = 0 and VARfc) = diag( ^ ). In 

addition, the covariance between different random effects and q_,, where i * h is zero, 

and cov(rj_., s[) = 0

Under these assumptions,

E(Y)=Xß

E(L\U=Tl)=Xß+rL

and, if V_ is the covariance matrix for Y_ -  E(Y_), then, 

V* = V + diag{y2) = diag(a2hin) + diag(/2) (2.6.4)

The variance components are taken into account when estimating the fixed effects ß . If we 

know diag(yA), WLS could be used to estimate a best (minimum variance), linear, 

unbiased estimator (BLUE) of ß :

Y

Unlike the standard approach, where an overall measure of dispersion y/ is calculated and 

applied to the variance of the estimates (see, for example, Williams (1982)), we assume that 

the extra variance can be expressed as an exponential function of the covariates of the mean 

model. A discussion of the selection of the function and covariates for the Dutch regression 

models is given in detail in Chapter 4.

If the extra variance VAR(rj_) is expressed as a function g(.) of x and /, with parameters a ,  

then the total variance of the residuals at (/,x) is,
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VAR<Y,,,-. ~ S ,j-Aß_j) = + g(‘,x ;a ) .

Here we make the additional assumption of zero covariance between the estimated 

parameters of g(t,x,a) and Sxl_x(ß).

Under the assumptions for the mixed model, the residuals are asymptotically normal, and 

the method of maximum likelihood estimation can be applied to estimate the parameters 

(see for example Rao, 1973:353; Schervish, 1995:307)

If the residuals follow a normal distribution, then the asymptotic probability density 

function is:

The likelihood is the product of the distributions over the entire surface. The log-likelihood 

is the sum of the log of the error distribution over all observations:

Maximising the log-likelihood involves setting to zero the derivatives with respect to each 

parameter to be estimated, and solving the resulting equations simultaneously. A function 

exists in S-plus to help with the estimation process. The form of the likelihood used in 

fitting the mixed model, and the technique used in maximisation, are given in Section 4.4 

of Chapter 4, and Appendix A.

If 9n is the (assumed unique) consistent maximum likelihood estimator of 9 , and assuming

that the probability density function has continuous second partial derivatives with respect 

to the parameters, then the asymptotic variance is the inverse of the Fisher Information 

matrix I(9) (see, for example, Schervish (1995:421)):

f( t ,  x;ä,ß)) i ( - f c , - , -<?(<.*;

V y
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Mi-4 + N
o

m j

The Fisher Information is produced as an output from S-plus when maximum likelihood 

estimation is undertaken, therefore allowing straightforward production o f standard errors 

for the parameters and fitted values o f both S(t, x; ß ) and g { t , x ,a ) .

2.7 Inference from the Fitted Model

2.7.1 Prediction Interval for qxt x

For a known vector o f predictors x , the asymptotic variance for the fitted model is

x'

* 2  2where V_ = diag(&hjn) + diag(y ). I f  we use Maximum Likelihood Estimation to extract

the parameter estimates, then X'(v ) T  is equal to the component o f the Fisher 

Information matrix corresponding to the parameters ß , I {ß ) .  Therefore, the asymptotic 

variance is:

VAr {y_ \ x ) = x l ( ß Y ' S

I f  we consider the problem o f prediction o f log(odds) for a single value at the point (t,x)  

on a mortality surface, given by the scalar wxl_x, where

then the expectation and the variance o f the predicted value is given by,
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VAR{wx, J = ^ ( ß r ' x  + v:,_x

where V*t_x = cr2hin(t,x) + y 2(t,x) is the variance for a single value at the predicted point

(/,*).

The variance for the extra variance component g(t,x,a)  can also be found from the 

Information matrix. I f  1(a) is the component o f the Information matrix relating to the 

parameters a , and i f  x y is a known vector o f predictors, then,

VAr ( / 2 I x r )= x r I ( a y l x r

Estimated standard errors are found by taking the square-root o f the estimated variance.

seiK t-x)=  =

4 '2)=V^4'2)
95% prediction intervals around the mean can be found by:

" V ,  ± 1 - 9 6 .« e ( w , W X J _ X ±1.96■Jx I (ßy 'S  + + g( t,x ;a)  (2.7.1)

For interpretation, it is more useful to express results in terms o f qxl_x rather than 

log(odds).

A prediction interval for qxt_x can be found by first recognizing that an interval for 

-7— —r can be generated by taking exponents o f the end points o f the prediction interval 

around wx,.x.
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(
0.95 = Pr -1.96je(*,J- , ) < log

 ̂ 9,,,-, A

V 1 Qx j - x  J
< « V ,  +1.965e(*w-,)

= Pr : x j - x

\ - q
< e x p f w , 96se(wxj_x))

X , t - x

After performing some algebra, we obtain the prediction interval for </,

e*p(w „-, -1  -96se(wx,__t )) exp(w^_^ +1,96se(wxj_x))
1 + exp(w,J. J, - 1 .96.ve(ww_,)) ’ 1 + e x p ^ ,, . ,  + 1 . 9 6 ) )

(2.7.2)

Note that because o f the impact o f the exponential, the distance from the lower bound to 

qx ,_x is not the same as the distance from the upper bound to qxt_x.

2.7.2 Conditional Probability of Survival Calculations

The conditional probability o f survival was defined in equation (2.2.2) as: 

aPx = ?*{x  > a  + *\X  > * )

Cross sectional conditional probabilities j  p x are calculated by the product o f the respective

survival rates along individual periods (t). When only cohort-specific probabilities o f 

survival are available such that:

x ,t - x
1 x + l ,t-x

l
1 x j - x

rather than period specific probabilities,

x+ \J—x —\
p
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the cross-sectional conditional probabilities cannot easily be estimated. Regardless, 

cross-sectional conditional probabilities of survival are of limited interest, since they do not 

capture the natural behaviour of mortality along cohorts. Cohort-specific conditional 

probabilities of survival cap x are found by multiplying the survival rates along a cohort 

rather than a particular period:

a P x . t - x  P x J - x P  x + \,t-x P x + 2 ,t-x  ’ ‘ ’P x + a - l ,l-x

a P x ,(-x
^x+ \,t-x  ^x+ 2,t-x ^ x+ 3,t-x  

^ x j - x  ^ x + lj-x  Ix+ 2 ,t-x

x+ a,t-x

1 x+a-l,t-x

The sample variance for the cohort specific conditional probability of survival can be found 

by using a Taylor expansion of a function of (see, for

example, Kendall and Stuart (1977:247)). Finding the asymptotic distribution of a function 

of a random variable in this way is called the delta method (Schervish (1995:401-402)).

Consider the function g(p]p 2P3 -Pk) which we will write as g(p), where p  has mean p . 

Then the Taylor series expansion is:

g(p) = g(p) + X Si(P)(Pi ~ Pi) + 0 (- j= )
* = i \ ' o

It follows that,

VAR\g(p)\=E Y jS'Ap Xp , -  p,
V <=' * ° ' x ’

Y jS 'A p fVAR(Pi -  Pi)+ Z X s '  (P)g'j(p)CO V (p: -  p ,,P j -

V  oi* j =1
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It was shown in Section (2.5) that £xt_x and s x+k t_x are asymptotically independent. It is 

simple to show, using a similar argument, that /?,. -  p i and p , - p ,  are asymptotically 

independent, which implies that COV(pi -  p i, /?. -  p f) = 0.

Therefore,

V M ' P , V A R [ g ( p ) } =  Y J g ' , ( P ) 2 V A R ( P , - p , )  +  » ( - ] = )

«'=1 \*0

Now, since

g w = d { P i . , - x  ) '  { p „ a - \ j - , )  a P x ,t- x

dpi ,t-x dpi , l -x P u t-

rM .P **)=  U  4 ^ ^ J2
P h ,t - x

V A ^ P ^ ß ^ a P l U t i t
VAl{phJ_AP)j

Pi,-Aß)L-J J
(2.7.3)

To find, we can apply the delta method to 174/̂
7 r Y\

< lx j-xlog
V X . t - X  J  j

as follows,

VAl{pX',_Aß))=g' iog( - r j )
V J Vxj-x J

VAR^\x-ß)+o(-y)
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2.7.3 Life Expectancy Calculations

Both the period and cohort expectation o f life for age x are calculated in Chapter 7 

following Chiang (1968:192; 1984:161) and Pollard et al. (1974:42-43):

We have made the additional assumption here that each person who dies during any year 

lives half o f the year on average.

For cohort life expectancies, Tx equals the total person years lived by the cohort from age x 

and above. Lx equals the number o f years lived by the l x survivors between ages x and 

x+1. For the cohort expectation o f life, the expected life span for a 40 year old in 1950 

depends on lx for 41 year olds in 1951, 42 year olds in 1952, and so on along the cohort.

For period expectations, Tx equals the total person years lived during the period at age x 

and above. We calculate the expectations by summing the Lx over a single period rather 

than a cohort. For example, the expected life span for a 40 year old in 1950 depends on lx 

for all other ages above 40 in 1950.

The sample variance for the cohort expectation o f life can be found by first expressing the 

life expectancy in terms o f ap x:

(2.7.4)

oo

= - Z  L p , + . * iP , )

1 l
- + \Px+2Px+lPx +~-+wP.x +~ „+ l P.
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1 00
*  ~ + Z  a P x

^  a - 1

1 °°Using the Taylor expansion, and letting g(p) - e x « — + ^  ap x
2 i

00 OO 00  ^

5Z«^«-» Z ÖU^,>-J Z - / V ,  e , - -
g ' ( p )  =  ________ =  ^f!____________ =  ------------- = ______ 2

8P ,J -X  P iJ-X  P l, ,-X

Now, since COV(pi -  p ^ p , -  p f ) = 0,

V AR (eJ= £g;(P)2VAR(p,) + o(
i= 1

)

f .  if * VAR{pu_,(ß))ik-d Z—ä—=_+0(_r)V ^ )  i=x P i , t - x  \ ' o

(2.7.5)

Chiang (1968:211) derives a variance for ex in terms of ap xt_x, which is significantly

more complicated and more difficult to extract in practice than variance estimates that are 

based on equation (2.7.5).
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3 Extracting and Exploring the Data

3.1 Introduction

Dutch deaths and end of year population numbers are provided for the years 1850 to 1991, 

ages 0 to 90, 95, 99 or 100 depending on the years1. The death data are doubly classified, 

meaning that the data are classified by age (at death), year of death, and year of birth 

(cohort). Data in this form allows generation of cohort probabilities of death. Before fitting 

a model to the data, it is necessary to explore the data for trends and significant patterns. 

The purpose of this is two-fold; firstly, it sheds light on patterns of past mortality; and 

secondly, it aids in establishing an appropriate parameterisation for model fitting.

In this chapter we group and analyse the data by sex, age, year and cohort. The data range 

from 1850 to 1991 for all ages is presented in Section 3.3, though detailed analysis is only 

conducted on ages 50 to 90, years 1890 to 1991 for the remainder of the chapter.

A range of important conclusions arises as a result of the analysis as follows.

When modelling the age-curve of mortality, traditional functions such as the Gompertz and 

Makeham fail to adequately capture the trend. Alternative functions, such as the Perks or 

high order polynomials in age, satisfactorily capture the shape of the mortality curve for 

both males and females, including the derivatives.

Both male and female mortality display periods of extreme volatility in the 19 century due 

to various epidemics, and two particularly catastrophic events in the 20 century: the 

Spanish Influenza of 1918, and the Hunger Winter of 1944-45. There is a marked 

discontinuity in mortality pre- and post-WWII that is an argument for modelling the 

surfaces separately. Mortality for both males and females displays a non-linear but smooth 

pattern post-WWII, related in part to the cardiovascular epidemic of the 1950s to 1970s.

1 Data was obtained up to and including age 100 for years 1850-1869 and 1930-1939. For years 1870-1919 
the max age was 90; for 1920-1929 and 1940-1949 the max age was 95; for 1950-1991 the max age was 99.
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For both sexes, there is a definite pattern in the estimated derivatives over time that 

highlights the excess mortality due to the cardiovascular epidemic.

Modelling the post-WWII trend in mortality with a linear trend in year is not appropriate 

due to the mortality ‘hump’ due presumably to the coronary heart disease epidemic (Poppel 

et.al, 1994:7) (not to be confused with the well-known 'accident hump' which is a feature of 

the age distribution). Although the trend in year can be modelled using a high degree 

polynomial, the parameters are difficult to interpret and projections are nonsensical. 

Including a normal density function helps to capture the behaviour of male and female 

log(odds).There is evidence that the center of the mortality hump changes with age, which 

may imply that a cohort effect is present. This is supported by graphical inspection of the 

derivatives with respect to year and age. The importance of cohort effects on adult age- 

patterns of mortality means that cohort variation, as well as age and year effects, need to be 

considered when generating a model for Dutch mortality.

3.2 Generating the log(odds) from the Data.

Dutch data for males and females was provided by the Netherlands Interdisciplinary 

Demographic Institute (NIDI), courtesy of Ewa Tabeau. The main characteristics of the 

data, and how the data was collected is discussed by Ewa Tabeau et al. (1994). The data 

consisted of files containing:

E(t,x) the realised end of year t, age x population, and

d(t,x) the realised number of deaths in year t, age x.

The data was provided for years 1850 to 1990. £(r,:r)only extended to age 90 for the years 

1860-1910.
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The realised number of survivors at the beginning of year t, age x, is / (/, jc) . As deaths 

are doubly classified according to both year and age, we can examine the Age-Period- 

Cohort (APC) structure in the data.

For the construction of life-tables, we would expect that the number of births for a 

particular cohort would equal the total number of deaths along the cohort. Here, however, 

we are dealing with empirical data, and emigration and immigration have changed cohort 

sizes from year to year. As such, the raw number of deaths along a cohort does not match 

up with the initial births /,_x(0). Unfortunately we do not have data on the number of 

Dutch migrants.

We initially derived qxt_x for the Dutch data along cohorts according to the well-known

/ ( /  +  1,.X +  1) / ( / ,J f )  —/ ( / +  1,JC +  1)
life-table derivation qxt_x =1 (see, for example,

l(t,x) /(/, jc)

Chiang (1968, 1984)) . This leads to problems since this form assumes that our population 

is exempt from migration. Since we are dealing with calculating empirical death 

probabilities from data where migration has been apparent, the following approximation 

was used,

whjch is equivalent t0 i(t2x ) - i (1 + u+ vL where 

l(t,x) l(t,x) I(t,x)

migration has not occurred. The subscripts on the deaths refer to the classification of the 

deaths according to birth cohort. A subscript of 1 means that the deaths relate to the later 

cohort; a subscript of 2 refers to the earlier cohort. For example, dx(t,x) is the number of

deaths in year /, aged x , from the birth cohort t - x , whereas d2(t,x) is the number of 

deaths in year t , aged jc, from the birth cohort / — jc — 1. Figure 3.1 illustrates the 

partitioning of the data in a Lexis diagram.

The number of survivors at time t+1, age x+1, can be expressed in terms of the number of 

deaths in the previous year, the number of migrants (E M J M ), and the number of 

survivors at time t, age x:
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/(/ + l,Jt +1) = /(/,jc) -  c) - d 2(t + 1, jc) + IM ( t ,x ) + IM(t +1,jc) — EM(t,x)  -  EM(t + 1,jc)
= [/(/,jc) + IM(l,x) + IM(t +1, jc)] -  [t/,(/,jc) + d2(l + 1,jc) + EM(t,x) + EM{t -f I,jc)]

/(/,jc)was approximated by taking the average of two calculations. Ignoring migration, the 

number of survivors at time t, age x, should be,

l( t ,x)  = E(t,x) + d] (t,x)

With migration,

l( t ,x)  = E(t,x)  + d x {t,x) + EM(t ,x)  -  IM(t,x)

Similarly, we could calculate /(/,jc)from the previous year:

l(t,x) = E ( t - \ , x - \ ) - d 2( t , x - \ ) ~  EM(t,  jc - 1) +  IM{t, jc - 1)

The number of survivors /(7, jc)was approximated by taking the average of these two 

calculations:

E( t ,x ) + d x (T-^)+ E(t - 1, jc — 1)- d 2(t,x —1) + [EM(t,x)~ E M ( t , x - 1) + I M ( t , x - 1)- IM (t ,x )]
2

When [ E M ( t , x ) ~ E M ( t , x - \ )  + I M ( t , x - \ ) - I M ( t , x ) ] =  0 (net migration is zero along 

each cohort), this reduces to :

/  ( t , x )■
E( t ,x ) + d x (/, jc) + E{t - 1, jc - 1 ) -  d2(t ,x - 1)

The above empirical form of qxt_x i s believed to be a good non-parametric estimate of the 

true conditional probability of death along a cohort in the absence of migration. The
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distribution of empirical qxt_x can be approximated by the distribution of the life-table 

function

1 -

which has been derived in Chapter 2.

Figure 3.1 Lexis diagram for the generation of / ( t , x )

d2(t,x) d2 (t+l,x)

E(t X)

/ '
y

di(t,x) di(t+l,x)

Kt.xt
/ y "

d2(t-l,X-l) dz(t,x-l)
/

E(t- “X I

di(t-l,x -l) di(t,x-l)

l(t-l,x -l) / '

t-1 t t+1

Calculation is subsequently made of numerical estimates of the time and age specific 

probabilities of death and the empirical mortality surface

y{t,x) = logit qx j - x log
f  ~ \

< lxjt-x

1 ~ q x j - x  J

=log(odds of death between (t,x) and (/ + l,x + l)

referred to as log(odds).
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3.3 Analysing log(odds)

As discussed in the previous section, the measure used to study mortality in this report is 

based on cohorts rather than periods. The main reason cohort measures are used is that they 

can be used. The Dutch data provided is rare in the sense that it is doubly classified and 

enables extraction of rates along cohorts.

Mortality for individuals naturally emerges along cohorts and so cohort measures enable 

the study of health processes from the point of view of consecutive human experience. It is 

widely acknowledged that examination of patterns in mortality using cohort probability 

measures allows a truer picture of the mortality process, uncovering complexities that may 

be concealed in the period approach (Ryder, 1980; Davies, 1987). Quoting Poppel et al:

"... cohorts and not period measures make it possible to study the mechanisms that underlie 

the regularity in age profiles o f mortality. ” (1994:2).

Life expectancy measures are usually based on periods. Although period life expectancies 

are informative about the cross-sectional state of mortality for a group, they do not provide 

an indication of years of expected life in the presence of changing mortality. Cohort life 

expectancy, although requiring future projections of mortality, provides a more realistic 

assessment of the expected years of life for an individual. Both period and cohort life 

expectancies are given in Chapter 7 for the Dutch models generated in Chapters 4 to 6.

The analysis of the data that proceeds is carried out using cohort measures of qxt_x,

log q x t_x and log(odds). Analysis of the data using period measures of mortality would lead

to different conclusions, and would fail to capture many of the cohort effects that are 

discussed in this chapter.

A perspective plot of log(odds) for Dutch females and males is given in Figure 3.2 and 

Figure 3.3 respectively.
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There are a number of features that immediately stand out in the two perspective plots: 

there is obvious volatility in log(odds) for the upper ages, particularly between 1850 and 

1860 and between 1920 and 1940; and there are apparent periods of excess mortality, 

notably around 1918/1919 and 1944/1945. Cross-sectional plots have been generated in 

order to observe patterns in the log(odds).

Figure 3.4 displays the typical features of a human mortality curve:

• high mortality at age 0 followed by a decline reaching a minimum around age 10;

• a relatively steep increase in the late teen years (typically associated with accidents and 

suicide), though this is only present in the recent past;

• a slow rise between ages 20 and 50, followed by an increasing rate at higher ages.

Mortality appears similar for males and females up to WWJI, after which there has been a 

divergence. The mortality differential between males and females is discussed in some 

detail in a later part of this chapter. A selection of the mortality curves is presented for 

comparison in Figure 3.5 and Figure 3.6.

Of note is the dramatic decrease in mortality across all ages over time. The pattern over 

time is examined in detail in a later part of this chapter.

A feature of the log odds mortality curve at all years is the apparent almost linear trend in 

age starting around age 50. The subsequent analysis of the data is restricted to ages 50 and 

above.
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Figure 3.2 Dutch Females. Log(odds). Ages 0 to 100. Years 1850 to 1991.

o

Figure 3.3 Dutch males. Log(odds). Ages 0 to 100. Years 1850 to 1991.
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Figure 3.4 Dutch Males and Females. Cross-section of log(odds) for selected years. (Solid 

line=females. Dotted line=males. AH plots are on the same vertical scale)

1850 1870 1890 1910

Figure 3.5 Dutch Females. Cross-section of log(odds) for selected years. Ages 0 to 100.

age



Figure 3.6 Dutch Males. Cross-section of log(odds) for selected years. Ages 0 to 100.

,\ \  v

age
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3.4 Male and Female log(odds). Ages 50-100.

Figure 3.7 and Figure 3.8 present the female and male log(odds) for ages 50 to 100. The 

same information is conveyed in contour plots (Figure 3.9 and Figure 3.10) which display 

the general decrease in mortality rates over time. The figures also display the volatility in 

log(odds) that is apparent prior to 1946, particularly for ages above 90. The gaps in the 

plots indicate periods where data are not available.

A feature o f both the perspective and contour plots is the periods o f excess mortality', 

particularly that corresponding to the winter o f 1944-45.

The fluctuations that are present in the mid to late 1800’s were caused by epidemics 

including cholera in 1853, 1854 and 1855 and measles and typhus also in 1855 (Poppel et 

al., 1994:5). Following 1871, variability' in mortality was reduced, though variability is still 

quite significant until post WWII.

Due to the excessive volatility' in log(odds) for 1850 to 1890, the questionable accuracy o f 

the number o f deaths and exposure populations for these years, and the absence o f data in 

the high ages, subsequent analysis o f the log(odds) has been constrained to the years 1890 

to 1991, ages 50 to 90. This time period encompasses an entire century and so allows a 

cohort to be tracked through completely.

The male and female log(odds) for 1890 to 1991, ages 50 to 90 are examined in detail in 

the remainder o f this chapter with reference to period, age and cohort. This enables 

identification o f patterns and aids in determining an appropriate parametric structure for the 

regression modelling performed in the Chapter 4.
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Figure 3.7 Dutch Females. Log(odds). Ages 50 to 100. Years 1850 to 1991.

Figure 3.8 Dutch Males. Log(odds). Ages 50 to 100. Years 1850 to 1991.
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Figure 3.9 Dutch Females. Contour plot of Log(odds). Ages 50 to 100. Years 1850 to 1991.

'  * r

Figure 3.10 Dutch Males. Contour plot of Log(odds). Ages 50 to 100. Years 1850 to 1991.
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3.5 Analysis of Age Patterns

At first glance, log odds appears linear between ages 50 and 90 over the range of years. 

Examination of the residuals following a linear fit, however, reveals that there are subtle 

curvatures at the higher ages that do not conform to linearity. Although this is not so 

noticeable for earlier periods this century, it has become very apparent in the recent past.

For the sake of consistency with other studies, log( q x l _x )  rather than log(odds) is fitted

using a Gompertz and Makeham distribution for the year 1980 to illustrate the failure of the 

traditional distributions to capture the age pattern of mortality2.

Both the Gompertz and Makeham fail to capture the age pattern of mortality (see Figure 

3.11). In particular, for Dutch females both functions tend to under-fit for the older ages, 

and over-fit between ages 60 and 70. For Dutch males the functions fail to capture the 

curvature of the mortality rates with age, with both functions and particularly the Gompertz 

under-fitting between 60 and 80, and over-fitting for the other age ranges

Although the Makeham fit is poor for both sexes, the difference in shape for the male and 

female fit raises some interesting questions. The rate of change of the male curve seems to 

be decreasing in general, whereas that of the female curve appears to be increasing. The 

extent of the difference between the male and female age pattern of mortality and the non

linearity in the data can be revealed by examining the derivatives of the mortality curve. 

This idea was developed by Floriuchi and Coale who noticed a consistent pattern in the rate 

of change of female mortality (1990). In particular, they noticed a maximum rate of change 

followed by a decrease around age 75 in the mortality rates of a number of developed 

countries. Exploration of the derivatives is taken up in Chapter 5.

2 Rather than modelling the response q, log(q) was regressed on the logarithm o f the Gompertz and Makeham 
expressions using non-linear least squares regression with a Gauss-Newton algorithm. For example, the 
Gompertz fit was log(q)=log(B)+ux
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Figure 3.11 Dutch Females and Males. Gompertz and Makeham fit to log(q(x)) and residuals 

for 1980. Ages 50 to 90.

FEMALES - Gompertz FEMALES - Makeham

MALES - Gompertz MALES - Makeham

As discussed in Chapter 1, the lack of fit of the standard distributions to aggregate mortality 

may in part be due to the discrepancy between individual and aggregate mortality in the 

presence of heterogeneity. In other words, although a particular distribution may not be 

suitable for the aggregate population, it may in fact still represent individual mortality 

(Manton et al. (1986); Vaupel et al. (1979), Vaupel and Yashin (1985)). Horiuchi and Coale 

(1990) show that the assumption of a Makeham distribution for individual mortality over 

the age range, coupled with gamma distributed frailty, leads to cohort mortality following a 

Perks distribution. The Perks distribution is:

A + Be™
u r = ------------------

x 1 + Ceux

where A,B,C  and u are parameters, jc is age, and (ix is the force of mortality at age * 

(Horiuchi and Coale, 1990).
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Although the Perks distribution is applicable to cohorts rather than periods we apply it to 

periods for illustration of its superiority over the Gompertz and Makeham distributions (see 

Figure 3.12). As illustrated later in this chapter, the Perks distribution also fits individual 

cohorts fairly well, though period effects distort the results reducing the interpretability of 

the parameters.

Figure 3.12 Dutch Females and Males. Perks fit and residuals for selected years. Ages 50 to 90.

Females- 1950 Males- 1950

The Perks model performs well with the exception of the most recent years for the females. 

The advantage of the Perks over other distributions is its ability to capture the changing 

derivative in the mortality curve at older ages. The derivatives emerging from the Perks fit 

conform closely to the smoothed derivatives, except for the most recent years for females. 

Horiuchi and Coale (1990) favour the Perks since it has a theoretical foundation based on a 

plausible mixing distribution. Despite this, there has yet to be any proof that the individual 

mortality distribution or indeed the frailty distribution that underlie the Perks model are 

correct. In the absence of justification for the Perks model, an alternative parameterisation
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can be sought that captures the age-pattern of mortality, including the curvature of the 

derivative.

A polynomial in age can be shown to capture the age pattern and derivatives closely over 

most of the range considered. Third degree or even second degree polynomials appear 

suitable for the bulk of the mortality surface, whereas inclusion of an additional degree is 

necessary to capture the fit for females for the most recent years. Modelling the log(odds) 

or log{qx) with a polynomial in age has previously been suggested in the literature. Tabeau 

(2001) provides a comprehensive review of parameterisation functions for mortality, 

including polynomial and non-polynomial parameterisations. log(qx) as a second degree 

polynomial in age may be written:

log (qx ) = D + Bx + Cx2

Modelling log(odds) or log(</v) by a higher order polynomial in age is simply an extension

of this model. Fitting with a higher degree improves the quality of the female fit in general 

more so than the males, particularly in the recent past.

The analysis undertaken in this section points to a number of conclusions:

• The age pattern of mortality along different periods differs for males and females;

• traditional functions such as the Gompertz and Makeham do not adequately capture the 

age-pattern by period, particularly for more recent periods;

• the Perks function, which has a plausible theoretical basis, captures the shape of the 

mortality curve for both males and females well, including the derivatives, with the 

exception of the most recent female periods;

• polynomials of degree 2 and 3 capture the mortality curve and derivatives for males, 

whereas polynomials of degree 4 are needed to adequately model recent female 

mortality.
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The accuracy of fit of the polynomials in age across all periods provides a starting point 

to parameterisation of the entire mortality surface. This is taken up in Chapter 4.

3.6 Analysis of Time Trends

Figure 3.13 displays the change in log(odds) for males and females between 1890 and 1991 

for selected ages. A feature of the bulk of the ages is the similarity between the sexes and 

the relatively high volatility prior to WWII, and the discontinuity that follows. In particular, 

there appears to be a sudden drop in mortality rates following 1945 and a change in slope 

for some ages, particularly for females. The post-WWII drop in mortality was likely caused 

by a variety of factors, including the introduction of antibiotics, DDT and improvements in 

public health.

Figure 3.13 Dutch Females and Males. Cross-section of log(odds) for selected ages. Years 1890 to 

1991. (Solid line=females; dotted line=males)

year year
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Males exhibit a ‘hump' in mortality between 1950 and 1980 associated with unfavorable 

trends in cardiovascular disease (Poppel et.al, 1994:7), and it is shown later in this section 

that a similar, though much smaller hump is present for females.

In addition, there are a number of individual years in the data marked by excess mortality. 

The peak at 1918 due to the Spanish Influenza is relatively small for ages 50 and above, 

though is much more apparent for the younger ages . The more noticeable peak is at 1944- 

45 from the ‘Hunger Winter’ associated with the blockading of parts of the Netherlands by 

Germany during WWII.

A clearer indication of the periods of excessive mortality can be obtained by smoothing the 

log(odds) for each period and then examining the variation along different age profiles. A 

selection of cross-sections at different ages for the smoothed log(odds) shows what was 

previously stated: that the two most apparent outliers relate to 1918 and 1944/45. Figure 

3.14 also points to excessive mortality at 1891, 1893, 1899, 1916, 1921, 1928 and 1940. In 

addition, 1947 is marked since it may indicate a period of reduced mortality. Most of these 

periods show excessive mortality across the older ages but are less apparent for ages 50 and 

60, A cross-section plot for females is not reproduced here as it exhibits similar features as 

Figure 3.14.

The reduced mortality for 1947 may be the direct result of increased death rates in 

adjoining years due to the Hunger Winter of 1944/45 leading to a selection effect, (see for 

example, Vaupel et al. (1988) for a discussion of the interaction between debilitation, 

recuperation and selection).

In addition to the high mortality rate at 1940, male log(odds) appear high for subsequent 

years leading up to 1945 for age 50 as a result of the impact of WWII. For males less than 

age 50 (particularly ages 15 to 40), WWII had a much more devastating impact. Poppel 

et.al (1994:5) discuss the crisis of mortality for the Dutch population during World War II,

3 Poppel et al. remark that the population at risk for 1913-1919 is underestimated in the Dutch data, resulting 
in a slight overestimate o f the mortality rates for these years
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and note that the mortality rates for 1941-1945 are seriously underestimated as they do 

not include deportations to Germany. Those deported to Germany and Poland were 

officially registered as ‘removed’ from the population and so did not influence the mortality 

statistics for the Netherlands.

Figure 3.14 Dutch Males. Cross-sections of period-smoothed log(odds). Years of particularly high 

or low mortality are indicated by dotted vertical lines.
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In order to build up a picture of the entire surface, natural splines were fitted to each age 

between 50 and 90 for the range 1890 to 1991. The discontinuity between pre- and post- 

WWII mortality means that there is a strong argument for analysing the pre- and post-war 

periods separately. A spline curve is fitted up to age 1945 and a separate curve is fitted post 

1945 to capture the discontinuity.

Indicators are included for those years with particularly high mortality as a consequence of 

dramatic historical incidents; namely, 1918 and 1944. In addition, it could be argued that an 

indicator should be included for 1947 due to the apparent drop in mortality and the
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plausibility of this being an explainable effect. The inclusion of an indicator for 1947 has 

an almost negligible effect on the shape of the splines for both males and females and so 

has been omitted. In the absence of linking extreme events with the periods of excess 

mortality in the other periods identified in Figure 3.14, it would seem sensible to include 

these points as part of the smoothed surface rather than giving them separate attention.

The results for males for a selection of ages for 1890 to 1945 are given in Figure 3.15. The 

effect on the spline fit of including indicators for 1891 and 1899 is displayed by the dotted 

line. For the sake of brevity, the equivalent plots for females have not been included.

Figure 3.15 Dutch Males. Cross-section of log(odds) and natural splines (df=4) for selected ages. 

Years 1890 to 1945.

When major periods of excess mortality are accounted for, the decline in mortality for 

females over the period between 1890 and 1945 has been almost linear. Indeed, a linear 

term in year appears to adequately capture the mortality decline for most ages in this range. 

Males, on the other hand, particularly between the ages of 50 and 60, have a trend in
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mortality that is non-linear. As seen in Figure 3.15, there is an increase in log(odds) from 

the mid 1930’s due to the impact of WWII. This is apparent across most ages between 50 

and 90. It is clear that a linear term in year will not sufficiently capture the pattern of male 

mortality pre-1946 unless numerous indicator variables are inserted for the periods of 

excess mortality surrounding 1918 and 1944.

Despite the linear trend for females pre-1946 and the appearance of linearity for much of 

the surface, a linear decline oversimplifies the trend in mortality post-WWIl. Although 

there is a definite decline in log(odds) for all ages between 50 and 90, the rate of decline 

varies across ages and along years. The empirical log(odds) for each age are smoothed in 

order to elucidate trends over time. Figure 3.16 displays the log(odds) from 1946 to 1991 

with natural splines fitted to a selection of ages for males and females.

Figure 3.16 Dutch Males and Females. Cross-section of log(odds) and natural splines (df=6) for 

selected ages. Years 1946 to 1991 (Males = dots; Females = crosses)

50 60 70



75

Figure 3.16 reveals some interesting trends. For females at ages 50 to 70, there appears to 

be a change of slope in log(odds) starting around 1960. Following 1970, mortality begins to 

fall for these ages, until the mid-seventies, when the rate of change appears to decrease 

once again. The pattern for the older ages is different, with log(odds) displaying an almost 

logistic trend. For males, the non-linearity is much more apparent, particularly for the 

middle ages.

Besides the obvious difference due to the magnitude of the hump in mortality, the 

differential between the log(odds) for the sexes is startling. A comprehensive analysis of 

the sex differential requires cause-specific data and knowledge of the social and cultural 

networks of the Netherlands, and is, therefore, not undertaken here. A number of 

researchers including Lopez (1983) discuss European and Worldwide trends in the sex 

differential and can be referred to for interest.

By considering changes in life expectancy, Poppel et al. (1994:9) show that Dutch male and 

female mortality started to diverge as early as the 1880s, with significant changes in 

direction at 1898, 1927 and 1975. Much of the early deviation in life expectancy is due to 

widening male excess mortality in the first year of life. The change in direction in 1975, 

leading to a narrowing of the differential between ages 50 to 70, is apparent from Figure 

3.16, suggesting that the more recent changes in the life expectancy differential are due to 

changes in the older ages, rather than the younger ones. Indeed, one of Poppel et afs major 

conclusions is that:

“The recent data suggest that higher age groups participate most in male excess mortality. 

The significance o f infant mortality has completely disappeared... Effects o f age 80+ on the 

total difference between men and women increased to 13% in 1991 and the contribution o f  

this age has never been so high ” (1994:13).

The implications of the changing differential to projections of mortality are raised in 

Chapter 7. In light of the non-linearity that is present for both males and females, 

derivatives of the log(odds) with respect to year were estimated in order to scrutinise the 

trend in mortality since 1946. The derivatives were approximated by taking the first
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difference between successive smoothed log(odds) along each period, which is 

equivalent to taking the log(ratios of the odds). The log(odds) were smoothed by using 

natural splines with six degrees of freedom4 (see Figure 3.17). The turning points in the 

approximated derivatives for males and females are almost identical to each other. Both 

sexes have a maximum derivative near 1964 (corresponding to the first marker in Figure 

3.17). For males the maximum derivative for ages 50 to 70 is high and positive, reflecting a 

steep increase in mortality; for females the corresponding derivatives are close to zero, 

reflecting a leveling out, rather than a real increase in mortality. The peak mortality for 

males, corresponding to the top of the ‘hump’, and identified by the year at which the male 

derivatives reach zero, is approximately 1968-1970, though there is some evidence that this 

changes with age.

Figure 3.17 Dutch Males and Females. Approximate derivatives with respect to year of spline 

smoothed log(odds) (df=6) for selected ages. Years 1946 to 1991. (Solid !ine=ma!es-; 

dashed line=females).

4 Derivatives approximated from splines with four and eight degrees of freedom were compared to those with 
six degrees of freedom. It was felt that the derivatives estimated from the smoothed log(odds) with six 
degrees of freedom sufficiently captured the general shape of the trend.
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Both sexes undergo a minimum derivative near 1974 (corresponding to the second 

marker in Figure 3.17). For ages 50 and 60, the derivatives are almost identical for both 

sexes, meaning that mortality is decreasing at a similar rate. For ages 70 to 80, the rate of 

decrease for females is greater than that for males.

For males, following 1974, there is a slight increase in derivative over time, particularly 

between ages 50 and 60, corresponding to a leveling out in the log(odds). This is followed 

by a dramatic decrease starting in the early 1980s for 50 to 70 year olds. In contrast, in the 

decade leading up to 1991, the rate of decrease in female mortality has slowed, although the 

rate itself may be leveling out.

For 80 to 90 year olds, despite the different magnitudes of mortality, and despite the 

differing rates of change since WWII, derivatives in the last years are similar between the 

sexes. The sharp drop in log(odds) for males aged ninety around 1975 may be related to a 

cohort effect in addition to possible period effects. This is explored in the Section 3.7.

Distinguishing between period and cohort effects in the instance of explaining the ‘hump’ 

is not straightforward. The fact that the peak mortality is around 1968-1970 for ages 50 to 

75, and since the turning points in the derivatives are at similar years, the ‘hump’ appears to 

be predominantly a period effect. However, as will be discussed in Section 3.7, there is 

evidence that the derivatives also vary according to cohort. In particular, the derivatives 

appear to become positive soon after the 1885 cohort.

The analysis of the derivatives shows that a linear term in year will not suffice for post- 

WWII. A polynomial of high enough degree will capture the trend in time, but 

interpretation of the parameters becomes difficult as the degree increases and higher degree 

polynomials when projecting are not feasible beyond the range of the fitted model.

An alternative approach is to model the cardiovascular hump, which is particularly present 

in male mortality, by including a separate non-linear function. The inclusion of a separate 

function in this instance seems sensible given that the coronary epidemic essentially 

represents a period of excess mortality that should be treated like an extreme event.
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Following Heathcote and Higgins (2001a), a possible function is a normal density 

estimator with particular mean and variance.

By using an iterative procedure, an optimum mean and standard deviation were selected for 

the male mortality hump. The process involved fitting a model with linear term in year to 

the post-1945 data for different choices of mean and standard deviation in the normal 

density term. The best model used mean 1972 and standard deviation 9, and was selected 

based on the R-squared value. Using a similar approach for females, the optimum normal 

density term had mean 1959 and standard deviation of 12. Rather than being used explicitly 

for the cardiovascular hump as it had been for males, the normal density term for females 

captures the general non-linear behaviour of the observed log(odds). If a quadratic in year 

rather than a linear term in year is used in the female model, a normal density term with 

mean 1968 optimises the female fit.

As seen in Figure 3.18, the normal density is not sufficient to capture many of the non- 

linearities in mortality, however, it is a means of producing a reasonable fit without relying 

on higher-order polynomials in year.

To adequately model the trend post-WWll a more complicated function is required, such as 

a third degree polynomial in year in addition to the normal density function 3. Although this 

fits the data well, the usefulness of such a model is questionable. The inclusion of high 

degree polynomials discounts the plausibility of using the model for projections, though it 

can still be useful in producing a smooth surface for descriptive purposes and would enable 

examination of the variability of the residuals. Another way to deal with the non-linearities 

in trend is to model the surface by piecewise components.

The approach taken in the Chapter 4 for modelling the mean and variance for male and 

female log(odds) involves utilising polynomials in age and year and a normal density term 

as discussed above.

5 A second degree polynomial in year in addition to the normal density function seems adequate for females 
for most ages
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Figure 3.18 Dutch Males and Females. Cross-section of log(odds) and linear trend in year with

and without normal density function. Years 1946 to 1991. MALES (dots): mean=1972, 

standard deviation=9. FEMALES (crosses): mean=1959, standard deviation=12.
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As a result of the analysis in this section, a number of conclusions are reached:

• Both male and female mortality display periods of extreme volatility in the 19th century 

due to various epidemics, and two particularly catastrophic events in the 20lh century: 

the Spanish Influenza of 1918, and the Hunger Winter of 1944-45;

• there is a strong argument for modelling pre-and post-WWII mortality surfaces 

separately due to a dramatic discontinuity in mortality across all ages;

• since WWII, Dutch male and female mortality for 50 to 90 year olds has diverged 

considerably, though the difference in mortality rates has narrowed in the most recent 

decade studied;
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• both male and female log(odds), and male in particular, underwent an increase in the 

rate of change. For ages 50 to 70, both male and female log(odds) have a local 

maximum rate of change near 1964 and a corresponding minimum near 1974. The 

center of the mortality ‘hump’ is approximately at 1968, though this appears to change 

with age;

• Modelling the post-WWII trend in mortality with a linear trend in year is not 

appropriate due to the mortality ‘hump’. Although the trend in year can be modelled 

using a high degree polynomial in year, the parameters are difficult to interpret and 

projections are nonsensical. Including a normal density function captures the behaviour 

of male and female log(odds) to some degree, and reduces the need for a higher order 

polynomial in year;

3.7 Analysis by Cohort

The analysis to date has involved examination of trends in mortality by period and age. 

Extraction of cohort effects is confounded by period and age effects, though exploratory 

analysis can help identify plausible phenomena.

The problem with identification in models with age, period and cohort effects has been 

discussed in Chapter 1. There is substantial literature on the construction and analysis of 

Age-Period-Cohort models, and in particular, there are a number of papers that take up the 

analysis of period versus cohort effects when doubly-classified data are available (see, for 

example, Tabeau et al. (2001)). Although the Dutch data has been obtained in this form, we 

leave the comparison of period and cohort derived rates to other researchers.

We proceed in the analysis in a similar vein to the previous two sections; by extracting the 

data along cohort for males and females and examining the trends.

The Perks model is founded on the age pattern of mortality for an individual over their 

lifetime and the frailty distribution of a cohort of individuals with the same ‘base’ 

mortality. As such, the natural fit for the Perks model is along cohorts, not periods, as had
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been carried out in Section 3.6. Fitting the Perks model to cohorts is confounded by 

period effects that distort the shape of the fit unless specifically allowed for. In the case of 

extraordinary events such as the Spanish Influenza of 1918 indicator variables can be 

inserted.

In the event of more subtle period effects, it may be difficult to account for these effects 

when modelling along cohorts. An example of this is shown in Figure 3.19 which compares 

four cohorts each separated by five years. Figure 3.19 shows that the mortality for a 60 year 

old in 1950 is higher than that for a 60 year old in 1960 which in turn is superior to a 60 

year old in 1965. If mortality has decreased linearly over time, in the absence of a cohort 

effect, one would expect that mortality for a 60 year old in 1965 would be lower than the 

mortality for a 60 year old in 1950.

On first inspection, therefore, it could be argued that differences between cohorts are 

responsible. Flowever, as shown in Section 3.6 male mortality has not decreased linearly 

over time, but rather a mortality hump with a peak near 1968-1970 dominates from ages 50 

to 75. It can be shown that a period of excess mortality can account for the pattern seen in 

Figure 3.19. In other words, a period effect may get misinterpreted as a cohort effect in the 

presence of non-linear mortality trends. As a result, different methods are used to try to 

ascertain whether cohort effects are present in the Dutch data.

The strong relationship between age and mortality, and calendar year and mortality, as 

attested in Sections 3.5 and 3.6, points to the importance of these variables over cohort in 

modelling mortality. Tuljapurkar and Boe (1998), in their recent review of the state of 

affairs of mortality forecasting, state that most researchers have found that mortality is best 

represented as functions of age and calendar year, and concludes that “...cohort-effects 

have played a limited role in the analysis and forecasting o f mortality”.

The discussion to date has not meant to disprove that important cohort effects exist in the 

Dutch data, rather it has been used to illustrate the difficulties that can arise in 

distinguishing between cohort and period effects. Cohort effects can still be isolated to 

some degree and it is argued that an understanding of the patterns is critical in modelling
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and forecasting. As will be shown in the remainder of this section and in Chapters 5 and 

6, there is strong evidence that a cohort effect transects the male data and is responsible for 

many of the non-linear mortality patterns apparent in recent years.

Figure 3.19 Dutch Males. Comparison of four cohorts. Observed log(q) and Perks fit.
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Although it is difficult to distinguish period from cohort effects when mortality is 

decreasing in a non-linear fashion, patterns in the derivatives over individual years may 

suggest cohort variation. Caselli (1990) searches for cohort effects in French and Italian 

data by exploring the derivatives along periods. Caselli smoothed the derivatives by a 

weighted triangular distribution rather than using natural splines as we have done here. A 

low derivative indicates little change in mortality between subsequent ages. Conversely, a 

high derivative points to a large increase in mortality. In the event where a pattern in the 

derivatives permeates along a diagonal of the mortality surface, this may indicate a cohort 

effect. Figure 3.20 is a contour plot of estimated derivatives for Dutch males.
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Since the derivatives in this instance are estimated from subsequent ages along the same 

period, the pattern is not confounded by period effects related to the mortality hump. Figure 

3.20 shows that the change in mortality between cohorts approximately I n the range 1890 

to 1905 is relatively low, and in particular, there is a marked change in derivative 

corresponding approximately to the 1885-1890 cohorts and the 1905-1910 cohorts. This 

may suggest that the 1885-1890 cohorts have relatively favourable mortality compared to 

adjacent cohorts.

Figure 3.20 Dutch Males. Estimated derivatives along individual years based on smoothed 

log(odds). Ages 50 to 90. Year 1890 to 1991.
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The above analysis has relied on graphical inspection of the mortality rates and derivatives. 

Wilmoth (1990) distinguishes between age, period and cohort by decomposing the 

residuals of a fixed effects model. The method has an attractive simplicity to it, though like 

the graphical methods, involves a degree of judgement. Exploration of the Dutch data using 

the technique of Wilmoth, and discussion of cohort effects in the context of debilitation and 

selection is the topic of Chapter 6.
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The main conclusions from this brief analysis of Dutch cohort mortality are:

• Cohort effects are difficult to isolate due to confounding with age and period;

• the male mortality hump identified in Section 3.6 has characteristics that identify it as a 

period effect. However, contour plots of approximated derivatives along year and age 

suggest that the initial curvature prior to the hump at different ages varies with cohort.

• graphical analysis of the derivatives suggests that a male cohort effect may transect the 

Dutch data. Male mortality after the age of 60, and in between 60 and 75 in particular, 

has been more favourable for those individuals who were bom around 1885-1895, than 

for males born in previous years and subsequent years up to 1905-1910.

The importance of cohort effects on adult age-patterns of mortality means that cohort 

variation, as well as age and year effects, need to be considered when generating a model 

and projections for Dutch mortality.

Modelling a cohort effect is problematical because of confounding with age and year. 

Possible cohort effects can be incorporated into a regression model in an indirect way by 

including high order interactions between terms in age and year. Alternatively, an approach 

based on separating the year and age effects and decomposing the residuals may offer 

insight into cohort effects. Modelling the Dutch mortality surface, accounting for year, age 

and cohort, is the topic of the next three chapters.
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4 Modelling Dutch Mortality using Regression -  Generating
the Model.

4.1 Introduction

Regression techniques can be applied to the problem of modelling a mortality surface, in 

particular when polynomials in age and year and interactions are the predictors. Under the 

assumption of independence between cohorts and identical distributions of lifetimes within 

a cohort, it was shown in Chapter 2 that the residuals from an expected surface are 

asymptotically normal with a defined binomial variance that is a function of year and age.

Based on the binomial variance, weighted least squares (WLS) is undertaken on 

parsimonious models of the pre-1939 and post-1945 male and female mortality surfaces. 

The models incorporate a high degree polynomial in age, a linear term in year, and 

interactions. For the post-1945 models a normal density function is included to capture the 

mortality hump associated presumably with cardiovascular disease for the males, and the 

non-linear decrease in mortality post-WWII for females.

It is shown that extra-binomial variation is present in the residuals from the fitted models. 

The extra variance is shown to vary according to age and year, implying that there is 

variability in the mortality surface that cannot be explained by homogeneous binomial 

variation in survivor numbers. An exponential function is proposed as a model for the extra 

variance. Maximum likelihood estimation is applied and parameter estimates for the mean 

and the extra variance of the pre-1939 and post-1945 surfaces are calculated.

The fits can be improved by incorporating higher order interactions between age and year, 

though at the expense of interpretation. Despite their deficiencies, models that avoid high 

order interactions are preferred as they form the basis for plausible predictions and allow 

simple mathematical interpretations of historic mortality patterns.

Final estimates of the proposed models of Section 4.4 are given in Table 4.3, Table 4.4, 

Table 4.5 and Table 4.6.
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4.2 Selecting and Fitting the Regression Models

In Chapter 3, the patterns in log(odds) by age, year and cohort were analysed for both 

Dutch males and females, ages 50 to 90, years 1890 to 1991. The main conclusions that are 

relevant to the question of modelling are:

• there is an age-pattern in mortality that can be modelled using the Perks function or a 

third or fourth degree polynomial in age;

• there are a number of periods of extraordinary mortality that can be captured by 

indicator variables;

• the trend in log(odds) over the post-WWII years is non-linear, partly due to the 

presence of a mortality ‘hump’, and differing rates of mortality decline over time;

• there is a strong discontinuity between the mortality surface pre- and post-WWII;

• a possible cohort effect appears to transect the male mortality surface.

When the errors from a smooth surface have a distribution due to a plausible stochastic 

assumption, a parametric surface enables inferences to be made about the quality of fit and 

the distribution of the parameters. Such an approach is only useful if the mean has 

successfully been modelled. The justification for using regression techniques to model the 

mortality surface comes from the stochastic structure of the errors. The theory underlying 

the error distribution is given in Chapter 2.

Given the stochastic basis for the errors, and the resulting advantage of determining 

parameters, a descriptive parametric surface is developed in this chapter, despite the non- 

linearities in year that prevent a simple model. The purpose of this is two-fold: to provide a 

clear picture of mortality across year, age and cohort; and to enable analysis and 

decomposition of the variability in the surface.
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The large degree of non-linearity in the post-WWII mortality trends inhibits fitting a 

basic model to the surface. If a suitable parametric model can be developed that is not 

unrealistic when extrapolated beyond the range of the data, then projections may be 

generated. The topic of projecting mortality is taken up in Chapter 7.

If ordinary least squares is applied in the presence of heteroscedasticity, the estimated 

coefficients are unbiased but inefficient. The theoretical argument outlined in Chapter 2 

suggests that the regression residuals produced by OLS will not be independent and 

identically distributed. In particular, variation will exist according to the number of 

survivors and the probability of death at each age and year. In addition, extra-binomial 

variation may be present that can be modelled as a function of age and year.

The approach taken to modeling mortality in this chapter is similar to that taken by 

Heathcote and Higgins (2001a). Recapping from Chapter 2, for our mixed model:

Yx ,t-x log
/  ~  \  

*7 X,t-X

1 - q
$ x j - x  +  ' l x j - x  +  S XJ-X

X,t-X J
(4.2.1)

where, r]x,_x is N(0,y2(t,x)), s xl_x is W (0,<7^(/,jc) ) , and a \ j t , x )  = -----------7—------- r
^ x j - x t f  x ,t-x  V  x ,t - x  /

and are assumed independent.

The initial weights used are the inverse of the binomial variance. If there is evidence of 

extra-binomial variation, y 2(t,x)  can be modelled and the fitted surface re-estimated using 

weights based on the inverse of <72hin(t,x)  + y 2(tyx ) .

An earlier, slightly different and less satisfactory fit was achieved by using iteratively re

weighted least-squares (IRLS), as done by Heathcote and McDermid (1994) in their 

regression modelling of French mortality data. At each iteration, odds are estimated from 

the fitted model and used to determine new weights that are then used in re-estimation of 

the fit. Although this method is more theoretically sound, the new weights are still 

estimated based on empirical lxt_x, and so the procedure is not strictly IRLS. The large
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sample size means that the weights used in WLS differ only marginally from those 

produced by the final IRLS fit. Because of the computational simplicity of using WLS, and 

the fact that differences between the fitted models when using IRLS and WLS are 

negligible, WLS has been favoured in this analysis. An additional advantage of WLS is 

seen in Section 4.3, where extra-binomial variance is modeled. Having a fixed value for the 

explained component of variance greatly simplifies the computation.

Figure 4.land Figure 4.2 illustrate the relative weights used for males. Similar curves hold 

for females but are not plotted here. The largest weights occur near age 75 in the most 

recent years for males (and age 85 for females). These observations are weighted 

approximately 8% more than 75 year olds in 1980, 16% more than 75 year olds in 1970, 

and 62% more than 75 year olds in 1960. In comparison to 1890, the most recent 75 year 

old observations are given nearly three times the weight. In contrast, for 50 year olds, the 

weights have changed little over the century. Although the number of survivors at this age 

has risen by nearly 600%, the probability of death has dropped by over 40%, resulting in 

theoretical variances (and weights) that have relatively small differences.

The weights take into account variation in the uncertainty surrounding estimates of the 

log(odds) due to survivor numbers and probabilities of survival/death. An examination of 

the weights uncovers a general pattern of larger weights (smaller variance) for ages 

between 70 and 80 for the more recent years, where the log(odds) are high and the number 

of survivors is relatively large compared to earlier years. For the earlier years, the weights 

are more constant across the age range; the high rate of mortality for the upper ages is 

balanced out by the small number of survivors at these ages in the early years.

The pattern of weights makes sense intuitively, as we would expect that a larger number of 

survivors and a larger number of deaths (reflected in the probability of death) should enable 

more accurate estimation of the actual log(odds) and, therefore, have a smaller variance.

The relationships between log(odds) and the individual variables age, year and cohort have 

been explored in detail in Chapter 3. In this section, mixed regression models are 

constructed with polynomials in age and year as predictors.
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The general form o f the model is:

i /  /  rn

0 ( t ,x j3 )=  y?0 + Y jß ix ' 4 + X X Ä /+ i/;x ‘t j
1=1 y=l

(4 .2.2)

which models log ' X , l - X

1-<T
as a quartic in age x, a polynomial in year t, and interactions

V  * ** jc, / —jc y

between the polynomial terms in age and year. Examination o f the pattern in mortality over

age suggests the use o f a quartic or cubic rather than a quadratic in age.

The advantage o f this model is its ability to capture the trends in the data across age and 

year and the fact that linear regression techniques can be applied when fitting. A 

disadvantage is the lack o f theoretical foundation for the selection o f the polynomial in age. 

As will be shown, interactions between terms in age and year can capture non-linearities in 

the surface, and in Chapter 6 it is shown that many o f the interactions in the Dutch male 

regression model appear to capture cohort effects.

The fact that interactions can account for cohort variation can be illustrated by a simple 

example. Consider the model for log(odds) given by

log
1 - q

= a 0 + a x x  + a  2 x  + a j  + a 4tx + s  x
X , l - X  J

where x=age and t=year. Since birth cohort c = t - x ,  we can re-write the model in terms 

o f cohort and age (or cohort and year):

r
log

V

< !x j-x

1- 9*/-,,
= a„ + (a , + <2 , )x + (a, + a 4 }v2 + a ,c  + a tcx+

Interpretation o f the parameters and isolation o f  separate effects becomes very difficult 

when higher-order interactions between year and age are included.
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Figure 4.1 Dutch Males. Theoretical weights used in WLS fit. Weights = 1 /  x)

Figure 4.2 Dutch Males. Theoretical weights for a selection of years. Weights = 1 / ( j l in{ t ,x )

age
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Because of the significant discontinuity pre- and post-WWII, two separate fits were 

constructed. The first fit includes years 1890 to 1938. Years 1939 to 1945 have been 

excluded from the model since they display excessive mortality for a range of ages as a 

result of the impact of WWII. The second fit covers the years 1946 to 1991. Interactions 

between the quartic in age, the indicators, and the polynomial in year are included in the 

preliminary model.

To account for the period of extraordinary mortality at t=l 918 we introduce the indicator 

(dummy variable) 1(1918), where

Indicators for the periods of excessive mortality associated with WWII and inclusion of an 

indicator to capture the post-war change in mortality enables construction of a complete 

surface over the years 1890 to 1991. This was the approach taken by Heathcote and Higgins 

(2001a). Analysis of the observed rates indicates that excessive mortality was apparent for 

the late 1930’s as well as 1940-1945. In order to avoid bias in the fit, indicators for each of 

these years would ideally be required. However, there are few gams in modelling the years 

of excessive mortality associated with WWII. The results can provide a quantification of 

the impact of WWII, but they offer no insight into the general trend in mortality over the 

century.

For this thesis, a different approach to Heathcote and Higgins (2001a) was taken. The pre 

and post war mortality regimes have been modelled separately. This was decided for a 

number of reasons. Firstly, it may be reasonable to treat the two periods as independent for 

much of the age range due to the large discontinuity in mean mortality. Secondly, the 

volatility in mortality seems to drop off markedly following 1945 suggesting a different 

variance structure pre and post WWII. It is likely that the main factor underlying the 

discontinuity and change in variance was the changed medical regime that swept across 

Europe post WWII which included penicillin as a usable drug by 1943 and the

1 if  (/ = year) 
0 otherwise
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establishment of public health systems following WWII. Thirdly, it is more realistic to 

base projections of mortality on post-WWII patterns.

A number of models were fit to the Dutch data with various polynomials in year to compare 

the impact of higher degrees and interactions. In order to avoid collinearity between the 

terms in the polynomials, age and year were centered by subtracting the mean of the 

variables. An alternative would have been to use the S-Plus function poly(). Poly() returns a 

matrix of orthonormal polynomials, which represents a basis for polynomial regression. We 

chose to use the centered age and year variables since the resulting fit in both cases is 

identical, the fitted model based on parameter estimates for the centered variables is easier 

to replicate, and predictions based on the fitted model don’t require the normalisation 

constants that are needed when poly() is used.

The preliminary models were fit using the S-plus function Tm\

4.2.1 Fitting the Initial Models

The models fit to the Dutch male data ranged from inclusion of a linear term in year and its 

interactions to a quartic in year with its interactions.

The inclusion of high-order interactions greatly increases the number of parameters 

estimated. For the pre-1939 model with a linear term in year, 14 parameters are estimated 

whereas 10 are estimated in the absence of interactions between age and year. For the pre- 

1939 model with a fourth degree polynomial in year, the higher-order interactions increase 

the number of parameters from 13 to 29.

Increasing the power of year without including interactions has relatively little effect on 

improving the fit. Indeed, if a polynomial in year to the power of any large number is 

included, the residuals display the same basic pattern as those from a relatively simple fit. 

The pattern in the residuals indicates that a possible cohort effect runs through the surface 

that is not captured by the polynomials in age and year.
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Although cohort effects cannot be captured directly in a regression model due to 

identification problems, they can be indirectly modeled through interactions and through 

the identity c - t - x .  As interactions between polynomials in age and year are 

incorporated, the residuals become less biased. As mentioned in the previous section, a 

problem with using high-order interactions between age and year, besides that of 

interpretation of the parameters, is that they do not lead to sensible predictions. As a result, 

it is tempting to try and constrain the model only to linear terms in year, and account for the 

non-linearities in another way. One way, suggested in the previous chapter, and used by 

Heathcote and Higgins (2001a), is to include a normal density function to capture the 

cardiovascular hump.

The predictor

dnorm(t, 1972,9)=
1

9V2/r
1 f t -1972 V 
2<v 9 ,

is included in the model for post-1945 male mortality. The selection of the mean and 

variance for the predictor is discussed in Section 3.6 of Chapter 3.

The complete male models using a linear term in year for pre-1939 and post-1945 mortality 

are given below (eqns 4.2.3 and 4.2.4).

pre-1939 model:

S( l ,x -ß )=  ß 0 + f > ‘ + Ä , + 2 X ^  + I ä *M0/(1918) (4.2.3)
i=10

post-1945 model:

S( l ,x ;ß )=ß„  + X ß , x '  + ß 5l + f Jß Mx ‘‘ 972,9) (4.2.4)
1=10
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Dnorm(year, 1972,9) gives most weight to the ridge along t=l 972 with neighbouring 

years weighted according to the above normal density. As the shape of the cardiovascular 

hump varies with age, interactions between the polynomial in age and the normal density 

ordinate were included in the model.

Equations (4.2.3) and (4.2.4) offer a parsimonious fit that capture many of the major 

features of the mortality surface and, in avoiding the inclusion of high order terms in year, 

enable easy interpretation of the parameters.

The linear models in year based on equations (4.2.3) and (4.2.4) were fit to the data using 

weighted least squares. Step-wise backwards elimination was carried out on the parameter 

space, where only parameters with a p value less than approximately 5% were retained.

The post-WWII model for females incorporated a normal density term with mean 1959 and 

standard deviation 12, rather than a mean of 1972 and standard deviation of 9 as for the 

male model. The normal density term captures the non-linear behaviour in mortality decline 

post-1945, rather than being used explicitly for the cardiovascular hump as it had been for 

males. If a fourth degree polynomial in year is included in the model, the optimal normal 

density term has a mean of 1968, relating explicitly to the cardiovascular hump.

The final models given in Section 4.4, namely equations (4.4.1m), (4.4.2m), (4.4.If) and 

(4.4.2f) have the same functional form as those produced by WLS and backwards 

elimination as described here, so Section 4.4 can be referred to for the final 

parameterisation of the regression models.

The main difference between the male and female pre-1939 models is the significance of 

interactions between the polynomial in age and year.

Corresponding fits for males and females based on a fourth-degree polynomial in year and 

high order interactions between the terms in the fourth-degree polynomial in age and the 

fourth-degree polynomial in year were produced for comparison with the simpler models.
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The fourth-degree polynomial in year and the high order interactions had very little 

effect on the model R-squared (see Table 4.1).

Table 4.1 R-squared for preliminary models

Linear term in year Fourth degree polynomial 
in year

males

Pre-1939 99.44% 99.49%

Post-1945 99.80% 99.83%

females

Pre-1939 99.33% 99.39%

Post-1945 99.79% 99.83%

Although the more complex models provide a closer fit to the observed log(odds), the 

simpler models are easier to interpret due to the exclusion of higher order terms in year. A 

disadvantage of the parsimonious models is that they do not fit the data as accurately, and 

may not capture some of the features of the mortality surface, such as the apparent cohort 

effect that transects the male surface, which are more closely modelled by including high 

order interactions. An advantage of the simpler models is that they allow quantification of 

certain broad features of mortality, such as the rate of change in mortality decline at 

different ages, and the influence of the mortality hump (in the case of the males). An 

additional advantage is that suitably modified models may be used for projecting mortality, 

whereas extrapolating a model that incorporates higher-order terms in year leads to 

nonsensical projections.

As a result of the relative ease of interpretation, the potential for extrapolation of the 

parsimonious models, and the small extra explanatory power of the higher-order terms (as 

evidenced by R-squared), models incorporating higher-order polynomials in year were 

ultimately rejected. The parsimonious models are examined and developed further in the 

remainder of this chapter. Numerical results for the final models are presented in Tables 

(4.3), (4.4), (4.5) and (4.6).
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4.2.2 Assessing the Fits

The standard errors for the fitted models are accurate only if the assumptions of 

independence and identical distributions of lifetimes along cohorts hold. Rather than 

making inferences based on the parameter estimates and standard errors of the fitted models 

described in the previous section, the adequacy of the fits are examined in order to test the 

assumptions.

A reliable way to assess the adequacy of a fitted model is to examine the standardised 

residuals with respect to the response and predictors (Ryan, 1997). Clusters of residuals and 

curvilinear patterns can indicate an inappropriate fit. Certain observations may have undue 

influence on the mean curve and should be weighted down.

A plot of Cook distances for the fitted models based on the linear term in year revealed a 

number of points of potentially high influence, however all of these, with the exception of 

the male log(odds) for year 1947, age 90, have a negligible influence on the overall fit. 

Using the rough guide of a particularly high Cook value when D>4/n = 0.0021 (for the 

post-1945 surface), none of the observations were considered high. Despite this, the most 

influential point (corresponding to year 1947, age 90) has a relatively large degree of 

leverage due its position away from the mean. This point was weighted down and the male 

post-WWII model was refit. The results presented in this chapter correspond to the 

modified fit.

The residuals by year for the pre-WWII male and female models are biased for parts of the 

surface due to the extreme variability in mortality from year to year prior to 1939. Unless a 

large number of indicators is used to capture individual years (besides 1918), the bias will 

persist. Accuracy of fit is not of paramount importance for the period pre-1939; rather more 

insight can be gained by trying to quantify the variability in mortality for this period.

An immediate observation of the residuals is that there is evidence of heterogeneity with 

respect to age and year for some portions of the mortality surface even after taking the 

binomial weights into account. The weights applied to the pre-WWII male and female



97

models appear to correct for the heterogeneity between years to some extent, however, 

too much weight appears to be given to the most recent years at the expense of the period 

between 1900 and 1915.

The residuals by cohort are unbiased supporting both male and female fitted models. There 

is definite heterogeneity in the residuals by cohort; the variance decreases for the more 

recent cohorts, with a marked decrease around the 1880-1890 cohort. The weights derived 

from the theoretical variance (binomial variance) correct the heterogeneity to a large 

degree, which implies that much of the difference in variation is due to the relatively low 

number of survivors distorting the estimation of the rates for early cohorts.

The standardised residuals display a more homogeneous pattern, though there is evidence 

of under-weighting of the most recent cohorts relative to the remainder of the mortality 

surface. The remaining heterogeneity in the residuals by cohort may be explained by larger 

variation in susceptibility to disease or frailties of individuals in early cohorts relative to 

more recent cohorts. It is plausible that a dramatic increase in medical technology and 

drugs such as penicillin and antibiotics during the mid 20Lh century and public health 

measures were responsible for the drop in heterogeneity for cohorts after 1900. The effect 

of heterogeneity on population mortality and possible causes of cohort variability are 

covered in more detail at a later section of this chapter and in Chapters 6 and 7.

An assessment of the adequacy of the variance assumption underlying the structure of the 

residuals can be achieved by extracting the weighted residual sum of squares (the deviance 

divided by the residual degrees of freedom) for the fitted model. Under the assumption of 

independence and identical distribution of mortality along cohorts, this statistic ( y / )  should 

be close to unity (see equation (2.6.2) from Section 2.6, Chapter 2).

Table 4.2 gives the value of y /  for each of the four models introduced above.
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Table 4.2 y / for the preliminary fitted models

Males Females

<1939 2.18 2.88

>1945 1.93 2.19

For all models the values of ^are significantly higher than unity. This is not surprising 

since the models are biased in some regions of the surface, and since the graphical analysis 

of the residuals shows marked heterogeneity with regard to age, year and cohort. For the 

models that incorporated a fourth-degree polynomial in year and higher order interaction, 

the values of ^are lower (2.02 and 1.60 for males; 2.63 and 1.82 for females), but are still 

much greater than unity.

The extent of the difference in variability between pre and post-WWII mortality can be 

quantified to some extent by the higher y / for the pre-WWII models.

It is important to point out the impact of volatility in mortality rates in a given year and its 

sensitivity on the variance. As an example, if the indicator that captures the Spanish 

Influenza (1918) is omitted from the male pre-WWII fit, the value of y / increases from 

2.18 to 2.58. It is, therefore, important to account for periods of extraordinary mortality 

when exploring the variance of the fitted model. It is difficult to justify fitting indicators to 

other period effects, however, particularly when many of the fluctuations are not due to 

extraordinary events.

The fact that the variability is from real fluctuations rather than bias resulting from a poor 

choice of smooth surface is supported by a complex model using interactions between ten 

degree polynomials in year and age. When fit to the <1939 male data this produces a 

variance of 1.85, which is a relatively small reduction from 2.18.

It would seem, therefore, that an extra source of variance is present. Analysis of the 

residuals, in particular, graphical inspection of the heterogeneity of the residuals as
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undertaken above is critical in determining the structure of the extra variance. Further 

analysis of the heterogeneity and accounting for the extra variability in determining the 

regression parameters is taken up in the next section.

Despite the heterogeneity present in the model, the fitted models appear unbiased for much 

of the mortality surface, although there are deficiencies in both male and female fits prior to 

1939 due to the volatility in mortality by year. Curvilinearity of the residuals with year for 

post-1945 females can only be adequately corrected by including non-linear terms or high 

order polynomials in year in the female model. Although this would improve the fit and 

form a better model for descriptive purposes, such a model would be of limited use in 

practice because of its lack of predictive power.

The remainder of this chapter will attempt to quantify the extent and character of the extra 

variation, and incorporate this into the development of new models.

4.3 Accounting for Extra Binomial Variation

Overdispersion could be attributed to various factors: the presence of outliers, the mis- 

specification of the model, or variation between the response probabilities. We can deal 

with this situation in a number of ways. We could plead that the source of this extra 

variation is due to factors that we have no data for. The best solution in this case may be to 

weight by an overall dispersion factor, and thus obtain an ‘average’ estimate of the 

heterogeneity in the data (see, for example, Williams (1982); Moore and Tsiatis (1991)). 

Alternatively, we could suppose that this variation is dependent upon birth cohort, year and 

age effects, and try and model accordingly.

4.3.1 Weighting by Aggregate Dispersion Factor

We first consider weighting by overall dispersion. The theory is given in Section 2.6 of 

Chapter 2.

With regards to the two male models with the linear term in year, standard errors should be 

inflated by the square-root of ^/=2.l8 and 1.93, or approximately 1.5 and 1.4 respectively.
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For the two female models, standard errors should be inflated by the square-root of 

^=2.88 and 2.19, or approximately 1.7 and 1.5. When these factors are applied to the 

standard errors the fitted models, the significance of the parameters decreases, but most 

remain significant at the 5% level.

The alternative, and favoured method, is to model the extra-binomial variance as a function 

of the variables of the mean model. The rationale for this approach and the results are 

presented in next section.

4.3.2 Modelling the Extra-Binomial Variance

Given that there appears to be a relationship between the heterogeneity from the WLS 

model and age, year and cohort, there is a strong argument for modelling the extra variance.

The presence of over-dispersion in the Dutch mortality data may be partly caused by 

heterogeneity within individual cohorts. The assumption of independent and identically 

distributed lives within a cohort is a simplistic model of reality. Individuals have frailties 

that depend on numerous factors including genetics. The frailty of an individual changes 

over time as a result of damage to the immune system brought on by physical stress such as 

disease, psychological stress, and social habits, such as smoking and diet. Although a ‘base’ 

frailty could be thought to exist due to genetic predispositions, actual frailty could be 

decreased by the adoption of healthy habits and the advancement of medical treatments.

It is not unreasonable to assume that an individual with constant frailty will undergo 

‘failure’ at a rate proportional to the individual’s age. The assumption of fixed and identical 

frailty for individuals in a cohort leads to the presumption of a relatively smooth mortality 

schedule over the cohort, affected only by period effects. On the other hand, heterogeneous 

frailties lead to selection in cohorts (Vaupel and Yashin (1985), Vaupel et al. (1988)). As 

the structure of a cohort changes due to debilitation and selection, the shape of the 

aggregate mortality curve would be expected to change. In the presence of changing frailty, 

the volatility in the rates of mortality would be expected to increase.
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In these circumstances, one would expect that the extra variation in rates would be 

highest at the upper ages. The oldest members of a cohort will consist of a relatively small 

number of individuals, so only a small change in the composition of frailty for this group 

would have a dramatic effect on the mortality rates. As such, it is hypothesised that the 

largest extra variation (above that expected from the binomial model) should occur in the 

oldest ages of the cohorts with the fewest individuals.

In addition, we would expect greater volatility in death rates during periods of excessive 

mortality. Although the regression models to date have included an indicator to account for 

the period of excess mortality associated with the Spanish Influenza, other periods of 

volatility have been smoothed over. One would expect that the variance associated with 

these regions of the mortality surface will be relatively high.

Rather than correcting for over-dispersion by an ‘inflation factor’ as proposed in Section 

4.3.1, the presence of heterogeneity, and the theoretical justification for heterogeneity due 

to differing and changing frailties, leads to the proposition that the extra variance should be 

modeled. In the absence of information pertaining to the composition of frailty within 

cohorts, such as cause-of-death and incidence of morbidity, we are restricted to model the 

variance as a function of the covariates in the mortality surface.

The discussions above have provided some justification for expecting a relationship 

between age, year and cohort with the extra variance. A functional form for the extra 

variance may be sought by examining the patterns in the variability of the residuals from 

the mortality surface. Prior to modeling the extra variance it is important to make sure that 

the fit is unbiased. The bias of the residuals for both the male and female fits is negligible 

for the most part, with the exception of certain years prior to 1939. As discussed earlier in 

this chapter, this bias can only be corrected for by including additional indicators, but doing 

so will distort the ‘real variability’ in mortality that we are trying to model. The models 

based on a linear term in year described in Section 4.2 are, therefore, considered to be 

suitable in order to proceed with constructing a model for the extra variance.
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Maximum likelihood estimation is used to estimate the parameters for the extra 

variance function as well as new estimates for the mean. The theory behind MLE 

estimation is briefly covered in Section 2.6 of Chapter 2, and the likelihood function used is 

given in Section 4.4. Maximising the log-likelihood is equivalent to minimising the 

negative log-likelihood. This was performed by using the S-Plus function ‘ms’ which was 

used to minimise the negative log-likelihood over the set of parameters (Venables and 

Ripley, (1994); Chambers (1993); Chambers and Bates (1993)). The efficiency and 

convergence of the function was improved by including the derivatives of the negative log- 

likelihood.

In order to assess the appropriateness of different parameterisations, standard errors for the 

MLE fit were required. For large samples, MLE estimates are normally distributed with 

unbiased mean and a covariance matrix given by the inverse of the observed Fisher 

information matrix, which is equal to the negative of the matrix of second derivatives of the 

log-likelihood. Since we are minimising the negative log-likelihood, the matrix of second 

derivatives is equivalent to the observed information matrix for the fitted model.

In order for S-plus to include the information matrix in the output, the second derivatives of 

the negative log-likelihood were manually included in the algorithm for the fit. An example 

of the algorithm as applied to the Dutch mortality data is given in Appendix A.

In Section 2.6 of Chapter 2, we introduced the function g(.) of * and t , with parameters a , 

which models the extra-binomial variance: y 2 -  g(t,x;a).

An appropriate form for g(t ,x ,a ) depends on the expected shape of the extra variance 

with regard to age, year and cohort. Through inspection of the residuals from the fitted 

models, it is expected that there will be higher variance (less weight) associated with the 

years 1915-1938, and a marginally flatter variance profile associated with age (in particular, 

more variance (less weight) for the ages 65 to 80 relative to the other ages).

Examination of the pattern of absolute residuals from a spline fit to the mortality surface 

suggests that the maximum variation occurs between 1915 and 1950 above age 80, and the
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minimum occurs between ages 60 and 80 after 1960. The pattern of binomial variance 

coincides to a degree with the pattern in the absolute residuals of a spline fit to the mortality 

surface. In particular, there is more variation at old ages for early years than later years and 

variance generally drops off as year increases. In addition, there appears to be more 

variation for the younger ages across all periods. A feature not captured by the explained 

variance is the high variability between 1915 and 1938 for all ages, particularly 70 and 

above.

An exponential was used as the base function for the extra variance since this 

accommodates a wide range of shapes and restricts the extra variance to a positive number. 

In order to determine a suitable functional form for the extra variance, a range of alternative 

exponential functions were chosen and MLE was used on the fitted models to determine 

appropriate parameters for the extra variance.

The models for the extra variance were of the form exp^/?0 + ^  ß tZ j ,  where Z was varied

from model to model. The base model considered was

g(/,x;a) = exp(«0 +axx + a 2x2 +aix }' +a4t + a5t2 +a6tx) (4.3.1)

It is likely that some of the extra variance for the mortality surfaces would not be uniform 

with age. Interactions between age and year are included in the model to capture potential 

patterns of non-uniformity. Additional models were considered with interactions rx an d

x 2t but the extra parameters were found to be not significant.

The primary purpose of the model is to provide insight into the extra variance.

Another purpose of modelling the extra-binomial variance is that it allows us to perform a 

regression fit that takes into account the variability in the data, thereby producing a superior 

fit.
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4.4 The Fitted Models

MLE was used to estimate new coefficients for the fitted models as well as for the extra 

variance y 2. The process used to select the appropriate functional form for the final models 

was as follows: MLE was performed on the weighted residuals and the parametric surfaces 

where the weights are given by:

where <j2hin( /, jc)  is the binomial variance and is treated as fixed, and the parametric surfaces

are given by the equations (4.2.3) and (4.2.4) for males and equivalent models for females 

but with a different normal density ordinate. Standard errors were produced for the 

parameters o f the model. I f  a parameter for a term in g (r,jt;a ) was not significant at the 

5% level it was dropped from the model, and the process was repeated with a reduced form 

for g{t,x \q ).

The distribution function for the sx t_x o f (4.2.1) is:

_________ 1_________
(

exp

v

The likelihood is the product o f the distributions over the entire surface. The log-likelihood 

is the sum o f the log o f the error distribution over all observations:

yu J 2  /  iK \  v) ^ yu J 1 t  \  1 yu J  2

Z I > S  Ä « )) = - - lo g  In  -  -  £  X  ]°g(<7: + « ) ) - - £  £
^  £  jc=50/=J1 ^  jc=50/=./1jr=50/=Jl

(rx^ - # ( t , x j ) j
cr2(t,x) + g(t,x-a

where J1 and J2 are 1890 and 1938 for the pre-WWII mortality surface, and 1946 and 1991 

for the post-WWII surface.
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The parameter values, standard errors, and associated t and p values generated using 

MLE are given in Table 4.3, Table 4.4, Table 4.5, and Table 4.6. The values are 

untransformed, meaning that they are expressed in terms of age and year, rather than the 

centered equivalents.

For the pre-1939 surface, the equations for the final male fitted model and the extra 

variance are:

ö(t,x,ß) ~ ß Q + ß xx + ß 2x 2 + ß 3x* + ß 4x 4

+ ßß  + ß(fXt + ß-jtx + ßßx  + ßßx

+ /(1918 i ß m + ß nx), (4.4.1m)

g(l,x;a) = exp(a, +a2x + a }t)

The equivalent pre-1939 female equations are:

ö(t,x,ß) = ß Q + ß\X + ß 2r  + ß^x* + ß 4x 4 

+ ß 5t + ß(,xt

+ /(1918)(/?7 + ß tx + ßgX2 + ß t0x 3), (4.4. lf)

g(/,x;a) = exp(<7, + a 2x  + a tl + a 4t 2 + a,lx)

For the post-1945 surface, the equations for the final male fitted model and the extra 

variance are:

Ö(t,x,ß) = ß Q + ß xx+ ß 2x~ + ß 3x3 + ß 4x 4

+ ßß  + ßßXt + ß 2tx + ßßx + ßßx  

+ dnormßtß 972,9)(/?]0 + ß nx + ß nx 2 + ß nx 4), (4.4.2m)
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g(/,x;a)=exp(<la ] + a 2x + a 3t + a 4t2 + a

The equation for the final post-1945 female fitted model is :

S(t,x,ß) — ß 0 + /?, x + ß 2x2 + ß 3x + ß 4x4

+ ß 5t + ß(yXt + ß-j tX + ß?tX + ß t̂X

+ dnorm(t,1959,12)(/?10 + ß ux + ß nx2 + ß^x4), (4.4.2f)

Estimates of the standard errors involved extracting variances and covariances for the 

transformed parameters.

When the fit of the linear model based on the original weights and the new weights are 

compared, the means of the two models are almost identical. However, the models 

generated with the new weights are more accurate (lower standard errors) as they take as 

much as possible of the uncertainty in the observed log(odds) into account in determining 

the best fit.



107

Table 4.3 Dutch male model (4.4.1m) Parameter values, standard errors, t and p values.

Parameters for the mean value standard error t-value p-value
Intercept 1 04E+03 1.27E+02 8.15E+00 0.00
X -5.65E+01 7.28E+00 -7.76E+00 0.00
x 2 1.20E+00 1.56E-01 7.66E+00 0.00

x 3 -1.14E-02 1.49E-03 -7.64E+00 0.00

x 4 4.06E-05 5.31 E-06 7.64E+00 0.00

t -5.43E-01 6.63E-02 -8.18E+00 0.00
xt 2.95E-02 3.80E-03 7.74E+00 0.00

X 2t -6.23E-04 8.16E-05 -7.64E+00 0.00

x 3/ 5.93E-06 7.77E-07 7.64E+00 0.00

x At -2.12E-08 2.78E-09 -7.64 E+00 0.00

7(1918) 5.80E-01 6.48E-02 8.94E+00 0.00

7(1918)(x) -5.66E-03 9.54E-04 -5.94E+00 0.00

Parameters for the extra variance
Intercept 4.68E+01 8.08E+00 5.79E+00 0.00
X 3.67E-02 6.46E-03 5.69E+00 0.00
t -2.90E-02 4.25E-03 -6.81 E+00 0.00

Table 4.4 Dutch male model (4.4.2m) Parameter values, standard errors, t and p values.

Parameters for the mean value standard error t-value p-value
Intercept -1.09E+03 6.60E+01 -1.65E+01 0.00
X 7.08E+01 3.91 E+00 1.81E+01 0.00
x 2 -1.64E+00 8.58E-02 -1.91E+01 0.00

1 62E-02 8.27E-Ö41 1.96E+01 0.00

x 4 -5.80E-05 2.95E-06 -1-97E+01 0.00

t 5.46E-01 3.35E-02 1.63E+01 0.00
x l -3.57E-02 1.98E-03I -1.80E+01 0.00

x 2t 8.29E-04 4.35E-05 1.91E+01 0.00

x 3t -8.20E-06 4.19E-07 -1.96E+01 0.00

X 4/ 2.93E-08 1.50E-09 1 96E+01 0.00

c/norm (year,\ 972,9) -1.97E+02 4.32E+00 -4.56E+01 0.00

d n o rm (y e a r,\ 972,9)x 8.87 E+00 1.90E-01 4.66E+01 0.00

d n o rm {year,\  972,9)x2 -1.25E-01 2.76E-03 -4.52E+01 0.00

d n o rm (y e a r,1972,9 )x 3 5.61 E-04 1.32E-05 4.26E+01 0.00

Parameters for the extra variance
Intercept 2.86E+03 4.26E+02 6.73E+00 0.00
X 3.20E+00 2.79E-01 1.15E+01 0.00
/ -3.00E+00 4.31 E-01 -6.96E+00 0.00

t 2 7.84E-04 1.09E-04 7.17E+00 0.00

tx -1.61E-03 1.42 E-04 -1.13E+01 0.00
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Table 4.5 Dutch female model (4.4.11) Parameter values, standard errors, t and p values.

Parameters for the mean value standard error t-value p-value
Intercept 4.50E+01 3.30E+00 1 36E+01 0.00
X -1.06E+00 1.76E-01 -6.04 E+00 0.00
x 2 1.35E-02 3.85E-03 3.52E+00 0.00

x 3 -1 03E-04 3.73E-05 -2.75E+00 0.01

x 4 2.76E-07 1.34E-07 2.05E+00 0.04

t -2.05E-02 8 08E-04 -2.54E+01 0.00
x t 2.06E-04 1.19E-05 1.74E+01 0.00
7(1918) 5.71 E+00 1.25E+00 4.57E+00 0.00

7(1918 )(x ) -2.38E-01 5.37E-02 -4.43E+00 0.00

/ ( 1 9 1 8 X * 2) 3.40E-03 7.67E-04 4.43E+00 0.00

/ ( 1 9 1 8 X * 3) -1 62E-05 3.65E-06 -4.43E+00 0.00

Parameters for the extra variance
Intercept 5.10E+03 1.07E+03 4.76E+00 o.ool
X -1.47E+00 7.01 E-01 -2.09E+00 0.04
t -5.25E+00 1.12E+00 -4.68E+00 0.00

t 2 1.35E-03 2.93E-04 4.59E+00 0.00

tx 7.87E-04 3.68E-04 2.14E+00 0.03

Table 4.6 Dutch female model (4.4.21). Parameter values, standard errors, t and p values.

Parameters fo r the mean value standard error t-value p-value
Intercept 1.84E+03 3.45E+02 5.33E+00 0.00
X -1.11E+02 2.04E+01 -5.46E+00 o.oo'
x 2 2.51 E+00 4.47E-01 5.62E+00 0.00

x 3 -2.46E-02 4.31 E-03 -5.70E+00 0.00

x 4 8.77E-05 1.54E-05 5.70E+00 0.00

t -9.42E-01 1.75E-01 -5.39E+00 0.00
x t 5.69E-02 1.03E-02 5.50E+00 0.00

x 2t -1 28E-03 2.27 E-04 -5.66E+00 0.00

x 3t 1 26E-05 2.19E-06 5.75E+00 0.00

x 4t -4.49E-08 7.81 E-09 -5.75E+00 0.00

d n o r m ( y e a r , \  959 ,12) 2.85E+02 3.00E+01 9.48E+00 0.00

d n o r m { y e a r , \959,12 )x -1.36E+01 1.33E+00 -1.02E+01 0.00

d n o r m ( y e a r , \959,12 ) x 2 2.04E-01 1.92E-02 1.06E+01 0.00

d n o r m ( y e a r ,1959,12 ) x 3 -9.71 E-04 9.16E-05 -1.06E+01 0.00

Parameters fo r the extra variance
Intercept 4.55E+03 1.56E+03 2.92E+00 0.00
X 3.33E+00 9.74E-01 3.42E+00 0.00

x 2 1.72E-03 6.02E-04 2.85E+00 0.00

t -4.73E+00 1.58E+00 -3.00E+00 0.00

t 2 1.23E-03 4.00E-04 3.08E+00 0.00

tx -1.81E-03 4.82E-04 -3.75E+00 0.00
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Dutch males. Fitted log(odds) based on final models (4.4.1m and 4.4.2m) and 

observed log(odds) for 1939-1945.

Figure 4.4 Dutch males. Observed log(odds) for 1890-1991.
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Dutch females. Fitted log(odds) based on final models (4.4.1f and 4.4.2f) and 

observed log(odds) for 1939-1945.

Figure 4.6 Dutch females. Observed log(odds) for 1890-1991.
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Dutch males. Observed and fitted log(odds) based on final models (4.4.1m and 

4.4.2m) (length of vertical scales are identical)
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Figure 4.8 Dutch females. Observed and fitted log(odds) based on final models (4.4.1f and 4.4.2f). 

(length of vertical scales are identical)
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Of particular interest is the additional component of variance relative to the binomial 

variance, as well as the total variance emerging from the fitted models. Both sexes display 

higher mortality variation prior to World War D, with female mortality variation being 

larger than that of males across the entire age range with the exception of the oldest ages 

(see Figure 4.9). The reduction in variation following WWII is most marked for men. It is 

possible that the relatively large reduction for men may be attributed to a decline in 

infectious and parasitic diseases at the turn of the century benefiting men more rapidly than 

women (Lopez, 1983:90). There is increasing variance for fifty year old females post- 

WWII, though the sharp increase in the latest decade for this age group is more a function 

of the relative paucity of the fitted model for this comer of the mortality surface.

Figure 4.9 Dutch males and females. Total variance for a selection of ages for fitted models 

(4.4.1m), (4.4.2m), (4.4.If), (4.4.20* (Solid line=males; dotted Iine=females)

Figure 4.10 and Figure 4.11 display the explained (binomial) variance, the extra variance 

( y2), and the total variance for a selection of years for the final female and male models. 

Figure 4.12 and Figure 4.13 show the extra variance ( y 2) for females and males
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respectively. As expected, for both sexes the highest extra variance is associated with 

the upper ages of those cohorts with the fewest survivors. The highest percentage increase 

in variance due to the gamma-squared term corresponds with 70 to 80 year olds. A larger 

relative variance reduces the weights and produces a more homogenous distribution for the 

standardised residuals by age.

The excessive volatility in the rates of mortality for the upper ages may be due to 

heterogeneous frailty distributions within individual cohorts as speculated in Section 4.3.2. 

In this context, the extra-binomial variation arises from the failure of Assumption (ii) from 

Section 2.3 in Chapter 2, which assumes that the lifetimes of individuals within a cohort are 

independent and identically distributed.

The hypothesis of changing frailty may also explain the general pattern of increasing extra 

variance with age, as changing frailty would have a greater impact as the number of 

survivors decreases. For recent decades, the extra variance is relatively low. The fact that 

the variance for ages 60 to 90 is flatter than in earlier decades may be a consequence of the 

extension of the average life-span, which would lead to less volatility at the older ages. One 

possible area of further work would be examination of various mixture distributions as a 

means of attempting to explain the pattern in the extra variance.
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Figure 4.10 Dutch females. Explained variance (dotted line), extra variance (dashed line) and 

total variance (solid line) for a selection of years for fitted models (4.4.1f, 4.4.2f).

1890 1910

Figure 4.11 Dutch males. Explained variance (dotted line), extra variance (dashed line) and total 

variance (solid line) for a selection of years for fitted models (4.4.1m, 4.4.2m).

1890 1910
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Figure 4.12 Dutch females. g(t,x;q_) (extra variance) from fitted models (4.4.If) and (4.4.2f).

Figure 4.13 Dutch males. g(t,x;aj (extra variance) from fitted models (4.4.1m) and (4.4.2m).
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y/ was estimated (Section 2.6, Chapter 2,) and is given below for the final models.

¥ <1939 >1945

Males 0.999 1.019

Females 1.005 1.014

For the model of extra variance to adequately capture the dispersion, we would expect y/ to 

be close to unity. Although this is satisfied for the four models considered, in itself, this 

does not indicate whether or not the heterogeneity in the residuals has been accounted for. 

To obtain a graphical assessment of this, the standardised residuals are plotted by age, year 

and cohort. Tf the model is appropriate, the distribution of the standardised residuals should 

be homogeneous over the range of the data with respect to each predictor.

Figure 4.14 and Figure 4.15 display the standardised residuals with respect to age, year and 

cohort for both the male and female fitted models. In Figure 4.14 residuals for 1947 for 

ages 89 and 90 have been omitted.

The heterogeneity that appears in the raw residuals with respect to age is reduced when the 

new weights are incorporated. The pattern of standardized residuals by age for males and 

females is similar and appear unbiased across all ages. The standardized residuals should 

have equivalent variances across all ages if the assumption of identical distribution within 

cohorts applies. The variation at the oldest ages which is present in the unweighted 

residuals is still present, though reduced when the new weights are taken into account.

Both male and female fits exhibit curvilinearity in the residuals by year. Achieving a closer 

fit thereby reducing this problem involves including high order terms in year such as the 

fourth-degree polynomial fits performed earlier in this chapter, or by including additional 

non-linear functions such as normal density ordinates. For the sake of parsimony, and in the 

interest of maintaining a linear term in year, the models were not modified despite the 

pattern in the residuals by year.
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Figure 4.14 Dutch mules. Standardized residuals from (4.4.1m) and (4.4.2m).
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Figure 4.15 Dutch females. Standardized residuals from (4.4. If)  and (4.4.2f).
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Despite the improvement in the standard errors when MLE techniques are used and the 

extra variance is modelled, there appears to be a curvilinear pattern in the residuals with 

respect to cohort for the male model (4.4.2m) that highlights the deficiency in using a 

simple parametric surface when cohort effects may be present. Figure 4.16 shows the 10%, 

50% and 90% quantiles for the standardised residuals by cohort for the male model 

(4.4.2m). Higher order interactions between year and age are required to reduce this 

pattern, though it is implausible that such interactions can be justified. It is more plausible 

that the pattern in the residuals is due to a legitimate cohort effect, and as such, there is an 

argument for inclusion of an extra term in the model to account for this. An alternative 

means of modelling mortality that explicitly accounts for cohort variation is the topic of 

Chapter 6.

Figure 4.16 Dutch Males. 10%, 50% and 90% quantiles of the standardised residuals by cohort 

for the fitted model (4.4.2m)

cohort

It should be noted that the technique of estimating extra variance using maximum 

likelihood methods can be applied to more complicated models that would lead to fitted 

models with more stable residuals.
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4.5 Conclusions

In this chapter, the log(odds) was modeled as a function of age, year and interactions 

between age and year for both Dutch males and females, aged 50 to 90, years 1890 to 1991. 

It was shown that:

• periods of extraordinary mortality can be captured by indicator variables;

• a high order polynomial in age and year, and high order interactions are required to 

capture the non-linearities in the mortality surface;

• weights derived from the assumptions of cohort homogeneity and independence 

(Assumptions (i) and (ii) from Section 2.3, Chapter 2) can be used to fit a weighted 

regression model;

• extra-binomial variance due to the failure of the assumption of identical distributions 

within a cohort means that the standard errors from the basic model are too small, and 

require adjustment.

• the extra variance can be modelled by an exponential function in age, year and 

interactions between age and year;

• the form of the extra variance model enables the construction of hypotheses regarding 

the source of the variation in the context of selection and debilitation.

In the next chapter the fitted models are explored in detail. The fits are expressed in terms 

of qxt_x and standard errors are produced for use in prediction intervals. Various features

of the male and female fitted surfaces are examined, and comparisons are made between 

the coefficients. Finally, the derivatives from the fitted surfaces are explored with some 

interesting conclusions. Conditional probabilities of survival and life expectancies for these 

models are generated in Chapter 7.
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5 Modelling Dutch Mortality using Regression -  Interpreting
the Results

5.1 Introduction

Standard errors can be produced that allow confidence intervals to be placed on individual 

parameters, or prediction intervals to be placed on the fitted log(odds). Fitted values and 

prediction intervals for qxt_x are given for the fitted models from Chapter 4.

An advantage of the proposed models is that the estimated coefficients allow us to quantify 

certain aspects of mortality change throughout the period examined. As an example, the 

impact of the normal density ordinate on male post-WWII mortality, and rate of decline in 

mortality for the sexes are explored.

First and second differences along cohorts are extracted from the fitted surfaces. An 

important conclusion of this analysis is that attempts to reveal patterns in the age structure 

of mortality are confounded by period effects when analysis is undertaken along cohorts. 

First derivatives generated from the female fitted surface along individual periods take a 

bell-shaped pattern. Similar patterns were reported by Horiuchi and Coale (1990) for 

female mortality from a number of countries, and by Floriuchi and Wilmoth (1998) for 

Swedish and Japanese males and females. An interesting phenomenon that has not been 

previously reported, is the apparent almost linear shift in the maximum derivative to higher 

ages as year increases for Dutch females. In the context of selective survival, this may be 

seen as a slowing down in the pace of ageing, or a shift to higher ages in the boundary 

between the "old" and the "old old". The maximum derivative appears to be asymptoting 

near age 81 in recent years which may reflect a limit, or simply a temporary lull.
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5.2 Inference

A major advantage of regression techniques is that standard errors can be produced and 

used in the construction of prediction intervals and confidence intervals for the fitted 

values. Recapping the theoiy from Chapter 2, if we let the regression model be written as a 

mixed model with fixed effects S  = X_ß (n observations) and random effects 7 (with q

levels), then

L = £ ß + Z ]_ + £

where F are the observed log(odds), s  are the errors from the fixed effect component and 

are normally distributed with E(s)=0  and var(e) = diag(cr£in(/,x)), where <r2hm(/,jc) is the 

binomial variance, and the random effects have the properties E {yx)  =  0  and 

var(r]_) = diag(y2 (t ,x)\  In addition, the covariance between different random effects 

and rj_A where i * h is zero, and cov(^,^f) = 0

If we consider the problem of prediction of log(odds) for a single value at the point (t ,x) 

on a mortality surface, given by the scalar wxt_x, where

&XS- X =  * ß  +  f ? x j - x + £ x j - x >

for a known vector of predictors x (which includes age, year, and the other variables in the 

fitted models), then a 95% prediction interval can be found by:

™x,t-x ± 1.9 6 ^ (l(^ ))  *x + cr2bin(t,x) + g(t,x;a)

where \(ß) is the component of the Fisher Information matrix relating to ß  (see 

Appendix), and g(/,jc;a) is the fitted model for the extra variance component y 2(t,x) .
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For the sake of interpretation, it is instructive to consider the rate of mortality change in 

terms of qx t _ x  rather than log(odds) since qx , _ x  has a clear interpretation. Log(odds) can

be converted back to the initial rate of mortality by the transformation

exp(log(oc&&))
^XJ~X 1 + exp(log(o6/c/v))

A prediction interval for qxt_x is:

exp(w,.,-J -1.%.ve(w,,(-J ) exp(w, + 1. 9 6 ^ ^ ,_x)) J
,, 1 + e x p ^ - 1 . 9 6 ) )  ’ 1 + exp(ww_, +1 .96.ve(w„^))J ’

Prediction intervals for the fitted qxt_x are given in Figure 5.1, Figure 5.2 and Figure 5.3. 

Included in the figures are 95% confidence intervals around the fitted y 2( t , x ) .

Confidence intervals could also be constructed for the fitted qxl_x , but are of limited use

since they provide estimates of the uncertainty in the mean value rather than for an 

individual case. Since population means can be predicted with more precision than 

individual cases the confidence intervals would be much narrower than the prediction 

intervals derived above.
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Male and Female fitted q(t,x) and prediction intervals 1946-1991. Female fit is 

below male fit in each case.

50 60

year year

70

Figure 5.2 Male observed and fitted q(t,x) and prediction intervals 1890-1991.

year year
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Figure 5.3 Female observed and fitted q(t,x) and prediction intervals 1890-1991.

q(t,x) from the fitted models for a selection of ages and years are given in Table 5.1 and 

Table 5.2. In general, the standard error used in forming the upper bound of a prediction 

interval around q{t,x) will be larger than the corresponding standard error used in the 

lower bound. This follows from conversion of the lower and upper bounds of the prediction 

interval surrounding the fitted log(odds) due to exponentiating the end points.
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Table 5.1 Male fitted q(t,x) x 100% (approximate standard errors for use in prediction

intervals are given in brackets)

year

age

1890 1900 1910 1920 1930 1950 1960 1970 1980 1990

50 1.54 1.28 1.07 0.89 0.74 0.59 0.58 0.60 0.52 0.44

( 0 . 12) ( 0 . 10) ( 0 .0 7 ) ( 0 .0 6 ) (0 .0 5 ) ( 0 .04 ) ( 0 .0 3 ) (0 .03 ) ( 0 .0 3 ) ( 0 .03 )

60 2.89 2.57 2.29 2.04 1.82 1.45 1.57 1.79 1.60 1.34

( 0 .2 2 ) ( 0 . 18) ( 0 . 14) ( 0 . 12) ( 0 . 10) ( 0 .07 ) ( 0 .07 ) ( 0 .07 ) ( 0 .06 ) ( 0 .0 5 )

70 6.42 5.96 5.54 5.14 4.77 3.71 3.96 4.38 4.18 3.83

(0 .50 ) ( 0 .4 1 ) ( 0 .34 ) ( 0 .29 ) ( 0 .24 ) ( 0 . 19) (0 . 17) ( 0 . 15) ( 0 . 14) (0 . 12)

80 14.40 13.88 13.37 12.88 12.41 10.38 10.21 10.05 9.84 9.62

( 1. 18) ( 1.03 ) ( 0 .89 ) ( 0 .79 ) (0 .68 ) ( 0 .59 ) (0 .44 ) (0 .36 ) ( 0 .31 ) (0 .28 )

90 30.14 29.37 28.62 27.87 27 .14 25.85 24.03 22 .04 21.25 20 .78

( 3 .36 ) ( 3 .36 ) ( 2 .77 ) ( 2 .58 ) (2 . 19) ( 2 .0 0 ) ( 1 .39 ) ( 1 .0 0 ) ( 0 .83 ) (0 .75 )

Table 5.2 Female fitted q(t,x) x 100% (approximate standard errors for use in prediction

intervals are given in brackets)

year

age

1890 1900 1910 1920 1930 1950 1960 1970 1980 1990

50 1.15 1.04 0.94 0.85 0.77 0.46 0.37 0.33 0.31 0.27

(0 . 12) ( 0 .08 ) (0 .07 ) ( 0 .06 ) ( 0 .05 ) ( 0 .04 ) ( 0 .03 ) ( 0 .0 2 ) ( 0 .03 ) ( 0 .0 3 )

60 2.31 2.14 1.97 1.82 1.68 1.11 0.88 0.79 0.72 0 .62

(0 .25 ) ( 0 . 17) ( 0 . 13) ( 0 . 11) ( 0 .0 9 ) ( 0 .06 ) ( 0 .0 5 ) ( 0 .0 4 ) ( 0 .04 ) ( 0 .0 4 )

70 5.64 5.32 5.03 4.74 4.48 3.37 2.80 2.33 1.95 1.62

( 0 .61 ) ( 0 .41 ) ( 0 .32 ) ( 0 .27 ) (0 .25 ) (0 . 17) ( 0 . 12) (0 . 10) ( 0 .0 8 ) (0 .07 )

80 13.43 12.97 12.53 12.10 11.68 9.86 9.08 7.57 6.18 5.27

( 1.4 9 ) ( 1.06 ) (0 .84 ) ( 0 .74 ) (0 .72 ) ( 0 .57 ) ( 0 .4 0 ) (0 .2 9 ) ( 0 .22 ) (0 . 19)

90 26.92 26.54 26 .17 25.80 25.43 22.84 22.33 20 .00 17.59 16.06

( 3 .4 5 ) (2 .86 ) (2 .4 6 ) ( 2 .2 0 ) (2 .0 5 ) ( 1.99 ) ( 1.4 0 ) ( 0 .97 ) ( 0 . 74 ) ( 0 .6 1 )

As expected from examination o f the variance structure o f the residuals o f the fitted models 

in the previous chapter, q(t,x)  for the upper ages and the earliest years have the maximum 

standard errors, and the lowest standard errors are associated with the most recent years.
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The higher variance (and standard errors), in general, for the pre-WWII mortality 

regime is seen in the figures and tables above. Besides the fall in variance from pre- to post- 

WWII, there is a fairly steady decline in standard error throughout the 100 years from 1890 

to 1990, reflecting a gradual and steady decline in the heterogeneity of mortality over the 

century.

The parameter estimates for the fitted models can help quantify the extent of mortality 

change. In order to examine the impact of the mortality hump on the apparent linear decline 

in male mortality, we can fix age and examine the change in year. For example, for a man 

aged 60, the model (4.4.2m) reduces to:

£(/T;/,60)=0.951-0.00266/ + 6A4dnorm(t,1972,9)

In 1972, dnorm(\972,1972,9) = 0.04433, so,

£(/T;l 972,60) =-4.00

For a seventy-five year old in 1972,

£(/T; /,75) = -  2.43 -  0.000152/ + 2.06dnorm{t,\ 972,9) = -2.64

The normal ordinate has a much greater impact for 60 year olds than 75 year olds. For male 

60 year olds in 1972, the log(odds) has increased by 0.286 above the mortality level that 

would have persisted if the hump was not present. In terms of the rate of mortality q{t,x) 

this equates to a fitted rate of 0.0179 with the mortality hump as opposed to 0.0135 without, 

which is equivalent to a 32.5% increase. In comparison, the percentage increase for a 75 

year old man as a result of the normal density ordinate in 1972 is only 9%.

Figure 5.4 displays the percentage change in the fitted mortality rate as a result of the 

normal ordinate. The percentage increases represent the change due to inclusion of the 

normal density ordinate in the male mortality model. An unexpected result of the fit is that 

the normal ordinate decreases the log(odds) (and, therefore, decreases the mortality rate) at
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ages above 80. Figure 5.4 should not be seen to explicitly represent the effect on 

mortality as a result of CHD, however, in the absence of CHD it is likely that the normal 

ordinate would not have been required in the model.

Figure 5.4 Dutch Males. Percentage change in q(t,x) for a selection of years due to inclusion of

normal density ordinate

1972
1967/1977
1962/1982
1957/1987

age

To illustrate the descriptive advantage of using linear models over non-linear in year, 

equations (4.4.1m) and (4.4.If) (pre-WWH) are written out with their parameter values. 

The indicator capturing excess mortality due to the Spanish Influenza is omitted in the 

following examples.

Males

S(ß\ t ,x)  =  1035.3 -  56.50jc +1 ,20jc2 -  0.01 lx3 - 4 e -  06*4 +

((-0.543 + 0.029x -0.00062jc2 + 5.93e-06*3 -2 .12e-08x4)
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Females

S ( ß \  I, x) = 45.0 +1,06x + 0.0135x2 -  0.0001O.r3 + 2.76e -  07x4 +

/(-0.0205+ 2.06<?-04x)

When age is substituted into the equations, the slope of change in log(odds) with year is 

revealed. For males aged 50, the coefficient for year reduces to -0.019. For 70, it becomes 

-0.008, and for 90 it is close to 0. This implies that the rate of decline in log(odds) for 50 

year olds was over twice as great as for 70 year olds (on average) between 1890 and 1938. 

For females aged 50, the coefficient for year reduces to -0.010 and for age 70, it becomes 

-0.006. Figure 5.5 displays the intercept and coefficient for year for ages 50 to 90 for the 

models (4.4.1m) and (4.4.If). Although the rate of decline is much higher for younger 

women than for older women, the relative difference in mortality decline between the ages 

and the absolute rate of improvement was greater for males than females pre-WWII. The 

rate of change in log(odds) from one age to the next can be determined by taking the 

derivative with respect to age. Exploring the derivatives is the topic of Section 5.3.

Figure 5.5 Dutch males and females. Intercept and effective coefficient for year for (4.4.Ini) and

(4.4.10

age
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5.3 Exploring the Derivatives

An advantage of modelling the mortality surface as opposed to individual years is that a 

surface allows exploration of trends that may only become apparent when a large number 

of years is considered. In addition to providing checks on the adequacy of the fitted models, 

patterns in the derivatives raise interesting questions regarding the changing pattern of 

mortality over time, including the presence of cohort effects (see Section 3.7, Chapter 3).

As mentioned in Section 3.5, Chapter 3, Horiuchi and Coale (1990) proposed the statistic 

k(x), being the proportional increase or decrease with age in the risk of death at a given age 

x. Since log(odds) is the statistic of interest in the models proposed in this chapter, the 

exploration of the derivatives involves log(odds) rather than log(m(x)) used by Horiuchi 

and Coale. We would expect higher rates of change working with log(odds) than with m(x) 

since at high ages, increases in m(x) have a proportionately higher impact on odds.

Horiuchi and Coale are restricted in their analysis of derivatives due to the lack of complete 

data. As a result, they approximate k(x) by the difference in the natural logarithm of the 

central death rate along individual periods. We do not have this restriction, so we proceed 

to estimate derivatives along cohorts. Due to volatility in the rates, Horiuchi and Coale 

(1990) first smooth the data by using moving averages before estimating the derivatives. 

Since we have a smooth surface in the form of the fitted models (4.4.2m) and (4.4.2f), exact 

derivatives can be extracted by differentiating the fitted model, or they can be approximated 

by taking first differences between successive log(odds).

A shortcoming of this approach is that the first differences extracted are dependent on the 

shape of the smooth surface. Patterns may be revealed that are an artifact of the 

parameterised surface rather than the real data, and similarly, patterns that may exist in the 

derivatives of the observed data may be obscured by the smooth surface. A solution is to fit 

smooth curves to the first differences of the observed data along cohorts. This method was 

attempted but abandoned due to extreme volatility in the observed differenced log(odds) 

which restricted the objective fitting of a smooth curve to the differences.
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We follow Horiuchi and Coale (1990) and approximate the derivative by the first 

difference along cohorts of the smooth surface. We define the rate of change of log(odds) 

for cohort c and age x as:

j(c ,x) =
d log [odds(c, x))

dx

j(c ,x ) is estimated by the first difference:

J(c,x) = \og(ddds(c,x))- log(pdds{c,x - 1))

Figure 5.6 Dutch females. First and second differences of log(odds) between ages by cohort for 

female model (4.4.2f).

1892 cohort 
1896 cohort 
1900 cohort 
1904 cohort 
1908 cohort

age age
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Figure 5.7 Dutch males. First and second differences of log(odds) over cohorts for male

model (4.4.2m).

/ /  V
\  \

1692 cohort 
1896 cohort 
1900 cohort 
1904 cohort 
1908 cohort

age

60 70 80

age

The first and second differences were estimated for five cohorts (1892 to 1908) for both the 

male and female post-1945 fitted models. The results are displayed in Figure 5.6 and Figure 

5.7. Both have three sets of turning points (corresponding to where the second differences 

are zero) for the majority of cohorts examined.

For females, the first turning point in the first differences relates to the part of the mortality 

curve where the rate of increase in mortality has temporarily peaked. Although the cohorts 

span sixteen years, the range of the maximum is only seven years. In Section 3.6 of Chapter 

3 it was shown that a local maximum derivative with respect to year appears in the mid 

1960’s, presumably due to the CHD epidemic. The closeness of the maxima in Figure 5.6 

above, suggests that the CHD period effect is at least partly responsible for the first turning 

point in this instance. Table 5.3 lists the age and year at which the turning point in the first 

differences lies for the female cohorts.



132

Table 5.3 Dutch females. Age and year corresponding to turning points in the first

differences for log(odds) for a selection of cohorts.

Cohort Age at first 
turning point

Corresponding
year

Age at second 
turning point

Corresponding
year

1892 71 1963 - -

1896 69 1965 76 1972

1900 66 1966 72 1972

1904 64 1968 69 1973

1908 62 1970 66 1974

The second turning point in the first differences relates to the part of the curve where the 

rate of increase in mortality has leveled off before starting to accelerate yet again (with the 

exception of the 1892 cohort in this example). For all the female cohorts examined here, 

this minimum appears to correspond with the period 1972-1974. In Section 3.6 of Chapter 

3 it was shown that both males and females undergo a minimum derivative with respect to 

age near 1974.

The trend in the male differences appears similar to that observed for the females, though 

the correspondence between the turning points of the first differences and the mortality 

hump is much stronger, which is to be expected given the extent of the male mortality 

hump. Table 5.4 lists the age and year at which the turning point lies for each cohort 

examined. All of the cohorts reveal a maximum derivative corresponding with the late 

1950s and early 1960s (when mortality was rising at its quickest rate); and a minimum 

derivative in the mid 1970s (when the rate of decline in mortality reached a temporary lull 

following the rapid fall in rates after the mortality hump).
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Dutch males. Age and year corresponding to turning points for log(odds) for a 

selection of cohorts.

Cohort Age at first 
turning point

Corresponding
year

Age at second 
turning point

Corresponding
year

1892 67 1959 80 1972

1896 64 1960 78 1974

1900 61 1961 75 1975

1904 58 1962 71 1975

1908 55 1963 68 1976

Of note is the negative relationship between age and year at which the first turning point 

appears for both males and females. The relationship for the male model is quite weak 

however: the year corresponding to the first turning point varies only four years (from 1959 

to 1963) while age varies by twelve years (67 to 55). For females, the negative relationship 

is stronger, with the year varying by seven years while age varies by nine (see Table 5.3). 

This is further support for the location and shape of the mortality hump varying with age 

(first raised in Chapter 3). For the male model this is also confirmed by the significance of 

the interaction terms between age and the normal density ordinate.

Analysis of Figure 5.6 and Figure 5.7 suggests that the shifting in the estimated derivative 

as cohort changes is the result of the mortality hump. When effects such as this 

predominate, they inhibit comparisons between the cohorts through analysis of the 

derivatives.

The major conclusion of the analysis undertaken in this section to date is that 

attempts to reveal patterns in the age structure of mortality are confounded by period 

effects when analysis is undertaken along cohorts.

Due to the presence of strong period effects, we follow FJoriuchi and Coale (1990) by 

exploring derivatives along individual periods. Since the only non-linear component of the 

mortality surfaces is a function of year, we can express the derivatives with respect to age
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for each year as a simple expression by differentiating the parametric surface as below. 

Here we use the fitted smooth surface. It is monotone and hence the turning points of the 

derivatives and the differences should have similar properties.

For the female model (4.4.2f),

dS(ß\t,x)
dx

— ß\ + 2 /?2 + 3ß',x2 + 4 /?>3

+ ß ’ß  +2ß'1tx + 2ßßx2 + 4ß!llx>

+ dnorm(t,1959,12)(/?,', +2ß'nx +3 ß'nx 2)

d 2S (frt,x )
dx2

= 2ß'2+6ß'tx +\2ß'ix 2

+ 2ßU + 6ßßx +12

+ dnorm(t,\959,12)(2ß\2 + 6ß'lsx)

Setting the second derivative to zero and solving for x with different values of t identifies 

the turning point for each year. The results of this analysis for females are given in Figure 

5.8, which displays the first derivatives for selected years and Figure 5.9, which gives the 

age corresponding to the maximum of the derivative for each year from 1946 to 1990. As 

shown here, a polynomial in age also satisfactorily captures the bell-shaped pattern.

The analysis shows that not only does the female derivative display a definite pattern over 

the age range, but since 1950 the location of the maximum of the derivative appears to be 

increasing over time (see Figure 5.9). Horiuchi and Coale (1990) note a peak in the female 

estimated derivatives at around age 75 for different countries, mostly in the late 1960s to 

the mid 1970s, and a similar pattern is observed by Horiuchi and Wilmoth (1998). The 

results presented in this section show that the peak for Dutch females appears to increase, 

almost linearly, from 70 in 1950 to over 80 in 1991. It is worth pointing out that the peak at 

age 75 corresponds with the late 1960s and early 1970s for the Dutch female data, as it does 

for most of the years studied by Horiuchi and Coale (1990).
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Horiuchi and Coale (1990), and Horiuchi and Wilmoth (1998) speculate on the reasons 

behind the bell-shaped pattern in the context of individual and aggregate mortality 

distributions. In particular, if the individual risk of death follows the Makeham equation 

and if individual frailty is gamma distributed, then the aggregate mortality rates follow the 

Perks distribution. They show that the bell-shaped derivatives are consistent with the Perks 

distribution.

Figure 5.8 Dutch Females. Contour plot of first derivatives of log(odds) along periods from

(4.4.2f). Ages 50 to 90. Year 1946 to 1991.

<D
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(0

1950 1960 1970 1980 1990

year

As shown here, a polynomial in age also satisfactorily captures the bell-shaped pattern. 

Horiuchi and Coale (1990), and Horiuchi and Wilmoth's (1998) explanation, that large 

individual variations in mortality are responsible for the shape of the derivatives, is 

impossible to test with the Dutch data, since cause-of-death and data disaggregated by other 

variables would ideally be required to test frailty distribution assumptions.

It is, however, worth reflecting on the changing maxima in the context of the ideas of 

Horiuchi and Coale and Horiuchi and Wilmoth. The combination of individual Makeham
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distributions and the Perks distribution can explain the bell-shaped curve as follows 

(Horiuchi and Coale (1990), and Horiuchi and Wilmoth (1998)): the proportion of mortality 

risk that is chance-related decreases as a person becomes older, and degeneration-related 

risk increases proportionately. The increase in the rate of mortality due to degeneration- 

related risk is countered by a slowing down in the rate of mortality increase due to selection 

reducing the overall frailty of the surviving population.

In this context, the changing age at which the maximum occurs for the Dutch females could 

be seen as a reweighting of the ratio of chance-related to degeneration-related risks over 

time. In particular, the proportion of mortality risk that is chance-related is increasing over 

time for the same age, meaning that the dominance of degeneration-related risk is being 

pushed forward to older ages. Therefore, in the context of selective survival, the Dutch 

female results point to a slowing down in the pace of ageing.

Figure 5.9 Dutch Females.

First derivatives of log(odds) along periods 
based on female model (4.4.2f).

Maximum of the derivative by 
age and year.

: / /

age year



137

Does the maximum of the derivative mark the boundary between the "old" and the "old 

old" ? As seen in Figure 5.9, the maximum derivative appears to be flattening near age 81. 

Whether this is a real effect reflecting the approach of a limit or a temporary lull that will 

be reversed by subsequent mortality data can only be speculated. However, mortality 

studies based on more recent data provide considerable evidence of a deceleration in the 

rate of increase of mortality at ages over 85 (Tuljapurkar and Boe,1998). The changing 

position of the maximum of the derivative over time is further support that simple functions 

that have constant derivatives over all ages, such as the Gompertz, are not suitable for 

modelling aggregate Dutch mortality.

In order to ascertain whether the patterns in the first differences and derivatives were an 

artifact of the function chosen for the mortality surface, high order splines were used to 

smooth the observed data and first differences were extracted for comparison. The method 

undertaken in producing the differences in this instance was to fit natural splines through 

the S-plus function ‘ns’ with various degrees of freedom, and to calculate:

The patterns in the estimated derivatives were similar to those produced along cohort and 

period for the most part, thus providing additional support for the fitted models and 

confirming the validity of the patterns in the derivatives.

The male first derivatives display a dramatically different pattern to the females (see Figure 

5.10). Of note is a general decrease in slope for males over recent years, as opposed to a 

general increase for females. The fluctuating pattern in the derivatives seen for the Dutch 

males is consistent with the findings of Horiuchi and Coale (1990). However, Horiuchi and 

Wilmoth (1998) report a similar bell-shaped pattern for Japanese and Swedish male 

mortality as for females.

for the differences along cohort

log\oddsx log(oddsx_} t_x+l) for the differences along periodx —l , /—.x+1
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Although not apparent from Figure 5.10, as shown in Chapter 3 and Figure 4.16 from 

the previous chapter, the diagonal pattern in the male derivatives may suggest the presence 

of a cohort effect. Figure 5.11 displays the first derivatives of the male fit (4.4.2m) and the 

estimated derivatives (first differences) based on a spline fit to the 1946-1991 surface 

(reduced version of Figure 3.21). The two dotted lines transecting the plots are the 1890 

and 1905 cohorts.

Figure 5.10 Dutch Males and Females. First derivatives for selected years based on (4.4.20 and 

(4.4.2m). Ages 50 to 90. (solid line=females; dotted line=males)

1950 1960

The spline surface contour plot suggests the strong presence of a cohort effect, which is 

captured to some extent by the fitted male model (4.4.2m) through interactions between 

polynomials in age and year, and the interactions between the polynomial in age and the 

normal ordinate centered at 1972. As discussed previously, higher order polynomials in 

year and interactions between these terms and the polynomial in age would be required to 

more adequately capture the diagonal pattern observed in the first derivatives. Although 

modelling by higher order interactions is possible, it is more likely that the true cause of 

these patterns is due to variation between cohorts.
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If we take the view that the diagonal pattem in the derivatives is indeed cohort related, 

then we can generate a new variable 0C by examination of the residuals by cohort that

could be added to the fitted surface. The next chapter takes a similar approach to 

identification of cohort effects: age and year effects are modelled and the residuals are 

decomposed. As will be shown in the next chapter, there is a strong argument that the 

diagonal pattern in the derivatives is indeed due to a cohort effect.

Figure 5.11 Dutch Mules.

First derivatives of log(odds) along periods 

based on male model (4.4.2m). Ages 50 to 90.
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year

5.4 Conclusions

Estimated first derivatives along 

Periods based on spline surface.

0.07 0.09 0.11
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The regression models explored in this chapter using polynomials and interactions result in 

estimates of parameters with standard errors, thus providing confidence bounds for the 

mean or prediction intervals for individual values. Extra-binomial weights are incorporated 

in order to generate realistic standard errors for the rates of mortality. Rates of mortality,
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conditional probabilities of survival and period and cohort life expectancies are 

generated and projected in Chapter 7.

Exploration of the coefficients from the fitted models provide a means of quantifying the 

change over time in mortality, the coronary epidemic of the 1970s, and other features. 

Studying the derivatives from the fitted surfaces leads to the identification of some 

interesting features and raises a number of questions. In particular, a shift in the location of 

the maximum of the derivative in females along individual periods from 1950 to 1990 has 

been observed. Is this increase evidence of a slowing down in the pace of ageing, in other 

words, evidence of increase in lifetime with year? Exploration of derivatives along cohorts 

offers no additional support to this hypothesis, as changes appear to be masked by period 

effects.

Despite the advantages of the regression models discussed, a disadvantage of the male 

model is that it does not explicitly take into account the potential cohort effect running 

through the surface; rather the effect is implicitly accounted for by interactions between a 

polynomial in age and year. An alternative means of modelling Dutch male mortality 

explicitly accounting for cohort effects by using a fixed effects model based on the 

techniques of Wilmoth (1990) and Lee and Carter (1992) is the topic of the next chapter.
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6 Modelling Dutch Mortality using a Fixed Effects Model-
Ages 50-90.

6.1 Introduction

In this chapter the approach of Wilmoth (1990) is taken, whereby a cohort effect, if it 

exists, is assigned the parameter 6C, where the form of the parameter is determined after

fitting any additive terms and the main multiplicative components of the mortality surface. 

The determination of the number of multiplicative components to fit depends on the results 

of a singular value decomposition of the residuals after fitting effects for year and age. Lee 

and Carter (1992) generate a similar model of mortality but do not consider the presence of 

cohort effects. The model generated by Lee and Carter can be modified along the lines of 

Wilmoth to include a cohort effect 0C. An immediate criticism of Wilmoth’s approach,

which he himself raises, is that the choice of separation of cohort effects from year by age 

interactions may not be clear. The justification for imposing a cohort effect on the residuals 

in the case of the Dutch males comes from a visual inspection after fitting the additive 

components. It is, therefore, a subjective choice by the researcher on whether the pattern 

observed is indeed cohort related. In essence, Wilmoth’s technique contains the same 

deficiencies as other methods that rely on subjective graphical inspection. It does, however, 

offer a means of modeling the cohort effect if and when the evidence for such an effect is 

plausible.

The resulting 6C for males is given in Figure 6.4, the shape of which points to a strong 

cohort effect. The shape of 6C suggests that survivors bom between 1885-1895 are

relatively more robust than males bom in the subsequent cohorts. It is speculated that the 

Spanish Influenza may have had a long-term debilitating impact on the future mortality of 

adolescents exposed during 1918, thereby increasing the frailty of these cohorts relative to 

adjacent cohorts. In contrast, it is plausible that the same outbreak may have lead to a 

decrease in average frailty for the 1885-1895 cohorts due to removal of the weaker 

members. Lending weight to the legitimacy of the cohort effect is the closeness of fit that 

follows when 6C is applied to the simple additive fit (see equation (6.5.1) and (6.6.2)).
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The assumptions from Chapter 2 that underlie the construction of the regression model 

in Chapter 4 are not applied to the generation of the models in this chapter. Future work 

could include modelling the variance for the additive models by using REML, where the 

binomial weights proposed in Chapter 2 are incorporated.

6.2 Motivation

Despite the theoretical advantage of fitting a regression model to the mortality surface, high 

order interactions that are required to capture the non-linearities are difficult to interpret, 

prevent sensible predictions, and may mask legitimate cohort effects. The male fitted model 

(4.4.2m) produces a close fit to the observed data, but fails to capture the diagonal pattern 

in the derivatives (see Figure 5.11) which is suggestive of a strong cohort effect.

The models examined in this chapter do not enable standard errors to be generated in an 

easy way as they are for the regression model. In addition, the statistical assumptions 

underlying the regression model are not incorporated during the fitting procedure. 

However, the approach of this chapter enables close examination of the effects of age, 

period and cohort on mortality. Separation and quantification of a cohort effect not only 

enables decomposition of historical patterns, but can raise questions of an epidemiological 

nature regarding the long-term health impacts of periods of debilitation, and can lead to 

projections that incorporate cohort as well as age and year as predictors.

The models generated in this chapter are based on techniques proposed by Wilmoth (1990) 

and Lee and Carter (1992). Due to the identification problem associated with age-period- 

cohort models, a model cannot be estimated that takes age, period and cohort effects into 

account simultaneously. Wilmoth (1990) approaches the problem by fitting a model in age 

and year, including interactions between age and year, and then decomposing the residuals 

of the fit to search for cohort effects.
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6.3 Fitting the Additive Models

For this chapter we use a different notation: the subscript x,t refers to age jc and year t , 

rather than age and cohort as it had done in previous chapters.

The first step in this procedure is to generate an additive model as below:

(6.3.1)

Wilmoth uses f xl -  log where, although it is not explicitly stated in his paper,

it is believed that qxt is the rate o f mortality estimated along periods. For consistency with

the analysis performed in Chapters 1-5 o f this thesis, we use f  t -  log , where

qxt is estimated along cohorts as previously. The use o f cohort rates o f death is more

appropriate than period rates when examining patterns in mortality, particularly with regard 

to uncovering cohort effects. This is argued in Section 6.7. A unique solution can not be 

found to equation (6.3.1) unless constraints are placed on the model. The method outlined 

in the appendix o f Wilmoth (1990) is followed, whereby örr is determined as the average o f

the log(odds) over the period 1946 to 1991, and at, is then estimated — ^ \ f xA - a x), where
^  jr=50

I is 41, being the number o f ages 50 to 90.

The results for males and females are presented in Figure 6.1. It shows that female 

mortality is lower than male mortality, and that the rate o f decline post-1945 has been much 

more dramatic for females than males. The cardiovascular hump for males is apparent in 

the plot o f kappa.
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Figure 6.1 Dutch Males and Female. Alpha and Kappa from additive fit.

age

Males
Females

year

6.3.1 Accounting for Variation in Age over Time

An alternative approach to that o f Wilmoth is to assume a basic level o f interaction to 

account for the fact that the change in age over time varies from age to age. The basic 

model proposed by Lee and Carter (1992) introduces a new variable ‘beta’ that takes into 

account the variation at different ages over time:

L , , = « x + ß ^ , + e Xt, (6.3.2)

The three effects were estimated using the procedure o f Lee and Carter, which, like that o f 

Wilmoth, imposes constraints in order to produce unique estimates; a rand k , were

estimated as in Section 6.3. /?vwas estimated by regressing /r,on f xt - a x for each t over 

all ages x.

The results for ß x for males and females are presented in Figure 6.2.
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Figure 6.2 Dutch Males and Female. Beta from Lee-Carter fit.

Males
Females

age

Figure 6.2 shows that the most dramatic change in mortality for males has occurred at age 

50, whereas for females, the largest changes have occurred around age 75.

The ßx improves the fit for a number of ages in particular years, however, both fits do not

adequately capture the trends in mortality over time. An inadequacy o f model (6.3.2) is that 

it assumes a linear interaction between age and year, whereas the interaction between age 

and year is highly non-linear (as supported by the significance o f the interaction terms 

between year and the polynomial in age in the regression models o f Chapter 4).

The ßxKt represents an interaction between age and time, and as such, may reflect a cohort

effect to some extent. Although there is no clear way to ascertain this, some insight may be 

achieved by proceeding with a decomposition and examination o f the residuals following 

the fits to date.



146

6.4 Incorporating Interactions and Determining a Cohort Effect

Wilmoth searches for a cohort effect by decomposing the residuals from the additive fit, 

and searches for a pattern in the residuals that appears to relate to cohort. This is achieved 

by carrying out singular value decomposition on the residuals, and examining the pattern in 

terms associated with the significant singular values.

When applying the technique to French male mortality data for ages 0 to 89, Wilmoth 

(1990) finds that the first two singular values are the most significant, but that when these 

values are presented as a contour plot they display an irregular pattern of interactions 

between age and year, rather than some definite cohort effect. To accommodate this pattern, 

the additive fit is supplemented by a multiplicative component of the first two singular 

values that accounts for the main interactions between age and year. The residuals from the 

new fit contained a pattern that appeared to correlate strongly with cohort. Based on the 

graphical evidence, Wilmoth derives a new term 0c, that is calculated as the mean of the 

residuals along each cohort c. The final model is given below:

p

/„  = a ,  + k , + 2^„r»A. + 0 C+ £, ,  (6.4.1)
m=\

Rather than finding a pattern of non-linearity like that for the French male data by Wilmoth, 

there appears to be a definite correlation with cohort in the Dutch male residuals from the 

simple additive model given by equation (6.3.1). In contrast, on inspection there is no 

definite cohort effect apparent in the female residuals. The residuals for the Dutch male and 

female additive fits are given in Figure 6.3.

For the sake of comparison, the residuals from the Lee-Carter model (6.3.2) for males and 

females were decomposed. The male residuals display a similar pattern for both models, 

whereas there appears to be more evidence of a cohort effect for females though the 

relationship is still questionable.
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After decomposing the male residuals, the first two singular values showed the same 

diagonal effect for both equations (6.3.1) and (6.3.2). The diagonal pattern observed is 

consistent with the pattern in the derivatives seen in Figure 5.13 from the previous chapter.

Both Figure 6.3 and Figure 6.4 point to males being subject to a cohort effect. Given the 

pattern that has emerged from the residuals, rather than fitting a multiplicative term
p

y'j(ßmYxm̂ tm as done by Wilmoth (1990), we proceed by estimating the term 9C for each
m=l

cohort c directly from the residuals of the additive fit. Given the lack of a definite pattern in 

the female residuals, 6C is only estimated from the residuals for both fits for males. When

9c\s below zero this implies that the additive fit has overestimated mortality. Conversely, 

when 0c\s above zero, the additive fit has underestimated mortality.

The features that are immediately noticeable from Figure 6.4 are the strong periodic 

relationship between 0C and cohort and the similarities in 0C for the two models. 

Discussion of this pattern is aided through examination of the fitted models after allowing 

for 0C (see Section 6.5).

Incorporating an interaction term for females improves the additive fit, but there is 

insufficient evidence to suggest that a cohort effect 6C should be included in the model. As

a result, the remainder of this chapter involves exploration of Dutch male mortality 

exclusively.
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Figure 6.3 Dutch Males and Female. Residuals from the additive fit.

Males Females

Additive fit 
Lee-Carter fit

cohort
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6.5 Assessing the Fits

Given that no interaction terms have been included, the additive model is determined 

entirely by the formula:

f , , ,= a ,+ K ,+ O c +eXJ (6.5.1)

whereas the modified Lee-Carter model is:

/,., = « , + ß S ,  + 0C + eXJ (6.5.2)

The quality of the fitted models can be determined by examining how the estimated 

log(odds) follow the observed log(odds) Figure 6.5 shows that inclusion of 0C has a

dramatic effect in improving the additive fit. 0C has the effect of raising the mortality for

cohorts between 1860 and 1875 and between 1900 and 1920 and lowering it for cohorts 

outside these ranges.

The vast improvements of fit for ages 50 to 90 after incorporating Gc suggests that the trend

over time since World War II can be explained, to a large extent, by differences in mortality 

due to birth cohort. Figure 6.5 shows that the suspected cardiovascular hump is greatly 

exaggerated across many ages due to the impact of cohort variation. This raises an 

interesting question, namely: to what extent are unfavourable conditions in adolescence 

responsible for the cardiovascular epidemic. Is it due to the impact of psychological stress 

on the immune system, or physical stress caused by exposure to disease? These questions 

are better answered by virologists, epidemiologist and researchers in the medical 

profession, than being taken up here.

The closeness of fit following the incorporation of 6C suggests that the non-linearities in

the trend in mortality over time at ages 50 to 90 can be explained by cohort variation. 

However, as illustrated by the alternative model based on the Lee-Carter parameterisation,



if a simple interaction is included between age and year, a new theta can be produced 

that can also be justified.
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Figure 6.5 Dutch Males. Log(odds), additive fits with and without 0 C. (Bold= Additive fit with 

0 C (equation 6.5.1); Dotted= Additive fit without 0 c (equation 6.3.1))

Both the additive model and modified Lee-Carter model with 6C fit the data closely. The

two different, yet both plausible fits, serve as a reminder that any model is simply an 

approximation of reality. Many different models can adequately capture the patterns in a 

system and yet not represent the workings of the system. Although both the additive model 

with cohort effect, and the Lee-Carter model with cohort effect provide adequate fits (for 

the most part) to the male data, determining whether the theta provided by either model is 

correct is not possible.

The quality of the fits can also be assessed by examining the residuals f x t -  (a x + K t +  6 C) 

and -(<*, + ß,K, + °c) for bias.
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Despite the closeness of the fitted model, there are a number of regions of the mortality 

surface where the fit is poor. The fixed effects models can be improved by including 

interaction terms to accommodate the deficiencies in the additive fit not captured by the 

cohort component. The purpose of the fixed effects models in this chapter, however, has 

been predominantly to explore the impact of cohorts on the observed log(odds), rather than 

an attempt to produce as close a fit as possible.

The results for the Dutch males support the conclusions that were reached through 

inspection of the derivatives in Chapter 3 and Chapter 5, and the bias in the residuals by 

cohort in Chapter 4; that survivors born in 1880-1895 and adjacent cohorts are relatively 

more robust than males born near 1905-1915. A possible cohort effect, though less 

apparent, is found when a similar analysis was performed on mortality data for females 

aged 50 to 90. The cohort effect noted for males is consistent with the findings of Caselli 

(1990) who noted a cohort effect for French and Italian males serving in World War I and 

also found evidence of hardship on adolescents born between 1900 and 1905, but found no 

such effect for females. Since Holland was neutral during WWI, it is likely that any cohort 

effect is due to the impact of the Spanish Influenza of 1918 rather than from war-time 

service.

The effect that an extraordinary event has on cohort mortality has been studied in detail by 

Vaupel et al. (1988). They simulate a number of situations where a debilitating event has 

varying impact on a cohort’s mortality and composition depending on the heterogeneity of 

the cohort prior to and following the event. Vaupel et al (1988) show that when a 

heterogeneous cohort experiences an adverse event that affects the cohort in a non-uniform 

way, but rather has a debilitating effect on the more frail individuals in the cohort, the 

survivors will subsequently experience lower mortality rates than otherwise due to the 

selection that occurred. Poppel et al (1994:7) show that for Dutch males, there is evidence 

of reduced mortality for the 1850 cohort following the 1918 influenza epidemic. It is 

plausible that the pattern in Dutch mortality for the 1880-1895 cohorts can be explained in 

this context, since the weakest individuals aged between approximately 25 and 40 would 

have died during the Influenza epidemic, thereby reducing the average frailty of the 

surviving population. A question can be raised as a consequence of this proposition: will
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the mortality of a cohort stay at a relatively low level or will it rise as if selection had 

not occurred ? In other words, does a catastrophe affect the survivors so as to eventually 

increase their mortality ? (see Henry and Ulijaszek (1996) for a discussion of the impact of 

early environment on long term mortality/ It is plausible that this is the case for the later 

cohorts (1905-1915), who were aged between 3 and 13 during the Influenza epidemic. The 

extra mortality for these cohorts may be evidence that they have suffered lasting 

debilitation, rather than the selection effect of the earlier cohorts. We could speculate that 

age is responsible for the differences in this instance; where a virus outbreak such as the 

Spanish Influenza has a lasting influence on the health of young children, but less so on 

young adults who survive the virus. A similar effect may emerge in the mortality data for 

cohorts exposed to poor nutrition due to the Hunger-Winter of 1944-1945.

It is important to stress that these conclusions are very speculative, and are based on the 

subjective decisions that year and age are additive effects, that#t represents a cohort effect,

and that the general shape of 0C is due to mortality variation brought on by the Spanish 

Influenza.

Although it is not undertaken here, the variance of the models could be extracted for use in 

determining confidence and prediction intervals. Following the findings of the previous 

chapters, there is an argument for decomposing the variance of the error into two 

components: one based on the theoretical binomial variance, and another based on a 

random effect. In essence we could replace the fixed effects models (6.5.1) and (6.5.2) with 

a mixed model with a 3-way classification. REML (restricted maximum likelihood) could 

then be used to find the variance structure (see, for example, Searle et al. (1992) for a 

discussion of REML as applied to mixed models).

6.6 Reducing the Dimensionality

A criticism of the fitted model f x t -  a x + Kt + Gc + sx t is the large number of degrees of

freedom taken up by the additive components. The dimensionality of the model can be 

reduced by modeling each of the effects as a function of their respective variables. For 

example, the additive model can be re-written,
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= g(x)+h(t)+l(c) + £„

where the functions g(.), /?(.) and /(.) are polynomial or non-linear functions.

As discussed in Chapters 3 and 4, age can be modeled by a high order polynomial, or a 

non-linear function such as the Perks model. The Perks has the advantage of having a 

theoretical foundation, though it is more appropriate along cohorts rather than periods.

To capture the pattern in k , a 4 degree polynomial can be shown to provide a close fit.

Modeling 6C is more difficult due to the large number of turning points.

If we take the approach of using polynomials exclusively, models 6.3.1 and 6.5.1 can be 

written, respectively,

4

f XJ = s(x)+h(t)+Ex, = + sx, (6.6.1)
1=0 1=1

3 4 9

/ ,., =g(x) + h(f)+l(c)+£,,, = Z ai * ' + Z < w ' + X ai+7 <6-6-2)
j=0 i=l i=l

Alternatively, the polynomial in age could be replaced by a Perks model,

A + B exp(ux)
1 + C exp(wLx)

Alternative parameterisations for /*(.) and /(.) could involve combinations of logistic and/ 

or sinusoidal components.

Ultimately, the purpose of reduction of dimensionality could be for comparison with the 

mortality schedules of other countries, for smoothing in the construction of cohort-life- 

tables, or for descriptive purposes.
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Comparison of the fitted models using these method with those of Chapter 4 shows the 

superiority of the regression model (4.4.2m) over the additive model for certain sections, 

and the closer fit of the additive model for others (see Figure 6.7). In particular, the 

regression model outperforms the fixed effects models for ages 50, 60 and 90, whereas the 

fixed effects model seems to capture the log(odds) for 70 and 80 year olds more accurately.

Figure 6.6 Dutch Males. Log(odds), additive Tits with and without 0 C based on smoothed effects

model. (Bold= Smoothed additive fit with 6 C (equation 6.6.2); Dotted= Smoothed 

Additive fit without 0 C (equation 6.6.1))
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year

The superior fit of the regression model over some of the age range is due to the inclusion 

of interactions between age and the year and the normal density term. A regression model 

that includes numerous higher order interactions between age and year performs better than 

both the models in Figure 6.7, particularly for the oldest ages. As suggested by the additive 

model, many of the interactions in the male regression models of Chapter 4 would seem to
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pertain to cohort effects. Others, however, relate to non-linearities between age and year 

that have not been explained by inclusion of 0 C.

Figure 6.7 Dutch Males. Log(odds), additive with 6 C based on smoothed effects and regression

model (4.4.2m). (Bold= Smoothed additive fit with 0 C (equation 6.6.2) ; Dotted= 

4.4.2m)
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6.7 Modelling using Period Rates

As stated in Section 6.4, the magnitude of the cohort effects found in the analysis above are 

much stronger than those uncovered by Wilmoth in his examination of French male data. It 

is hypothesised that the difference between the magnitude of the cohort effects is to a large 

degree due to the use of cohort rather than period-derived mortality rates in construction of

The analyses above use rates derived along cohorts, whereas the majority of demographic 

analysis performed uses rates derived along periods.
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A simple illustration of the potential differences between period and cohort rates is 

provided in Table 6.1 and Table 6.2. Table 6.1 contains the number of survivors at each 

year (t) and age (x) for a hypothetical population.

Table 6.1 Number of survivors for a hypothetical population

t t+1 >t+2 t+3

x+3 932 913

x+2 960 941

x+1 990 970

X 1000

Along the cohort t-x, the calculated period and cohort mortality rates based on survivor 

numbers from Table 6.1 are :

Table 6.2 Approximate mortality rates by period and cohort for cohort t-x

period
rates

cohort
rates

< \x . l 1% 3%

4 T + U + 1
1% 3%

x + 2 , t + 2
1% 3%

The period rates of Table 6.2 are estimated from survivor numbers within an individual 

year, whereas the cohort rates are estimated from survivor numbers along the cohort. For

example, for period rates, whereas for cohort rates
9 -  fC X ,1 c  x+l,f+l

Although there is a large increase in mortality along the cohort, the period rates 

underestimate mortality significantly at each age in this example.
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To test this hypothesis, male period mortality rates could be extracted from the doubly-

classified Dutch data, where, f xt = logr qx,, A
1 - q

and qx, are the initial rates of mortality
x,t

estimated along periods. The generation of an additive model following the techniques 

discussed above could be undertaken and, in particular, the residuals could be analysed for 

possible cohort effects. In the interest of brevity, this was not undertaken here, but is 

worthy of future work.

6.8 Conclusions

Through the fitting and exploration of the models in this chapter a number of interesting 

conclusions have emerged:

• there exists a strong cohort effect in Dutch male mortality that explains many of the 

non-linearities observed in the trend of mortality with time between 1946 and 1991. 

This is not the case for females, however, who require a complex interaction term 

independent of cohort to capture the interaction between age and year over time;

• the suspected cohort effects can be explained in the context of debilitation and 

selection, and changed public health circumstances. A catastrophe can cause a dramatic 

instantaneous increase in mortality. In the realistic instance where the cohort is 

heterogeneous, those individuals who survived the event are generally more robust and 

have a lower mortality. In the long-term, however, the mortality of the survivors may 

increase as a result of health consequences of the event.

• a conclusion from this analysis is that survivors bom between 1885-1895 are relatively 

more robust than males bom in the subsequent cohorts. The Spanish Influenza may 

have had a long-term debilitating impact on the future mortality of adolescents exposed 

during 1918, thereby increasing the frailty of these cohorts relative to adjacent cohorts, 

whereas the same outbreak may have led to a decrease in average frailty for the 1885- 

1895 cohorts due to removal of the frail members;
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• the dimensionality of the fixed effects models can be reduced by using polynomial 

or non-linear functions to capture the age, year and/or cohort components;

• the fitted models compare closely to the fitted regression models of Chapter 4. Many of 

the interactions in the male regression model (4.4.2m) can be interpreted as relating to 

cohort patterns in light of the findings of this chapter, though there are other non- 

linearities captured by the regression model that have not been linked to cohorts.

The next chapter takes the regression models of Chapter 4, and the models of this chapter, 

and modifies them so as to enable feasible projections of mortality. Period and cohort life 

expectancies are generated, as are cohort specific conditional probabilities of survival based 

on projections from the regression models. In addition, the implications of uncertainty in 

mortality projections on the future population structure are considered.



159

7 Projections and Conclusions.

7.1 Introduction

Mortality is forecast using the fitted regression models of Chapter 4. It is shown that simple 

extrapolations of the regression surfaces from 1946 to 1991 produce questionable forecasts 

for some ages, and alternative projections are produced based on differing lengths of 

historical time. Following the method of Heathcote and Higgins (2001b), it is shown how 

qualitative opinions can be incorporated into projections by altering the parameters of the 

regression models. Period and cohort life expectancies are generated, as are cohort-specific 

conditional probabilities of survival from the projected regression models. An important 

conclusion is that a series of alternative, yet plausible, assumptions lead to dramatically 

different mortality forecasts. The modified Lee-Carter model introduced in Chapter 6 is 

projected to illustrate how cohort effects can alter forecasts.

Population projections are undertaken (under the assumption of zero migration) based on a 

series of plausible mortality projections from the regression models. It is shown that 

differing projections have a dramatic impact on future elderly population numbers, which 

has ramifications for policy planning of health care, social security and retirement policy. 

The results add weight to the need for developing stochastic models of mortality in order to 

quantify the uncertainty in future projections. Finally, a summary of the main conclusions 

of the thesis is presented.

7.2 Projecting mortality

7.2.1 Extrapolations from the Regression Models.

As stated in earlier chapters, an advantage of the parsimonious models of Chapter 4 is that 

they involve a linear term in year. In the simplest instance, estimation of future mortality 

can be found by extrapolating from the fitted models (see Figure 7.1).
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Manton (1993) discusses the restrictions of forecasting by extrapolation. Extrapolation 

does not account for future interventions such as sudden improvement in medical 

technology, or the possibility of reduced risk from genetic manipulation.

Prediction intervals for forecasts can be calculated in a number of ways. One way is to use 

the variance of the residuals and the parameter estimates that are extracted from the MLE 

fit. This is the approach taken for the projections of the regression model given in this 

section (see Figure 7.1). Forecasted intervals based on this method would be accurate if we 

could predict future interventions, be they social, environmental or medical, or if we could 

predict divergence from the historical rates of change. Since this is not plausible, including 

prediction intervals in this way may be misleading if those interpreting the forecasts are not 

aware of the methodological constraints. Another method of generating prediction intervals 

would be to estimate the variance for a model developed without indicators or non-linear 

terms, since long-term prediction of extraordinary events and non-linearities is not possible. 

For example, it could be argued that to determine more realistic intervals, the normal 

density ordinate that is used to model the mortality hump in post-WWII Dutch males 

should be omitted. The variance of the model would then be significantly greater than 

before6, yet it would provide us with a less misleading measurement of uncertainty.

A feature of the regression models is that the boundaries of the fitted surface are a poorer fit 

to the observed data than the parts of the surface close to the mean of the predictors. Since 

it is reasonable to suppose that the most recent observed mortality rates are the most 

accurate indicators of future mortality, this raises an immediate criticism of projecting by 

extrapolating from fitted regression surfaces.

To illustrate the limitations of extrapolative methods and the prediction intervals from 

Figure 7.1, similar models to those of Chapter 4 could be fit to a reduced surface, say from 

1960 to 1990, and projections could then proceed by extrapolation from the new models.

6 Lee and Carter (1992) include a dummy for the flu epidemic o f 1918 in their time-series model o f  U S. 
mortality and note that including the epidemic in error estimation o f mortality index would increase the 
predicted interval in the year 2065 by 57%.
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Figure 7.1 Dutch males. Observed, Fitted and extrapolated qx to 2030, with 95% prediction 
intervals.

age 50 age 60

I960 2000

year

age 80 age 90

The results from this approach are presented below with comparisons of simple 

extrapolations of the fitted models. It is clear from Figure 7.2 that the variability in historic 

mortality trends leads to extrapolative forecasts that are highly uncertain. The range of 

variability of forecasts for Dutch females (see Figure 7.3) is lower than that for males due 

to less variability in the slope of female mortality decline since WWII.

As consequence of the empirical data and the male mortality model (4.4.2m), mortality for 

male 70 year olds rises in the long-term when the model is extrapolated. In addition, long

term projected male and female mortality rates (see Figure 7.4) and life-expectancies (see 

Section 7.3) are implausible when compared in light of historical patterns and future 

expectations. In particular, as shown in Figure 7.4, male and female rates for most ages are 

projected to diverge according to extrapolations of the regression models, whereas recent 

empirical data may suggest a narrowing of the mortality differential.



Figure 7.2
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Dutch males. Observed, fitted and extrapolated q x to 2030, with alternative 
extrapolations.

age 50
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year
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-------  prediction based on 1960-1991 fit
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Figure 7.3 Dutch females. Observed, fitted and extrapolated q x to 2030, with alternative
extrapolations,

age 50 age 60 age 70

age 80 age 90

fitted model
prediction based on fitted model 
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prediction based on 1970-1991 fit

year year
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Figure 7.4 Dutch male and female observed and projected mortality based on extrapolations 
from (4.4.2m) and (4.4.2f).

age 50 age 60 age 70

C4

age 80 age 90

O

K .
......... d

” ; V -  .

900

b -  R .
o

ID

O
d

I960 2000 1960 2000

year year

year

From these observations, it is clear that a purely extrapolative method is fraught with 

danger. Further support for this conclusion is provided in Section 7.2.2 where age-specific 

rates o f mortality for a range o f historical periods are extracted and compared.

Despite the subjectivity inherent in the process, when faced with unknown covariates and a 

dynamic non-stationary process, plausible forecasts require human judgement. Van Hoorn 

and De Beer (2001) argue that for long-term forecasts, qualitative arguments about life 

expectancy levels based on expert opinion should carry more weight than historical 

extrapolations. They use a mixture o f trend extrapolation o f age-specific mortality rates and 

expert judgement, whereby assumptions are made regarding mortality in 2050 from time 

series analysis, an examination o f the literature and expert opinion.

Projections incorporating a numerical 'target' level o f mortality for a specified date in the 

future can be obtained by generating a regression surface using constrained weighted least 

squares. An alternative means o f incorporating expert opinion based on regression surfaces
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can be achieved by altering the parameters of the fitted model. This was the approach 

taken by Heathcote and Higgins (2001b), where an assessment of the future rate of decline 

in mortality for the two sexes was made in the context of their historical pre and post-WWII 

mortality trends and the coronary epidemic of the late 20th century. In particular, it is 

plausible that the pre-WWII parallelism (see Figure 3.13) of male and female mortality was 

destroyed by the presumed coronary hump, and that the long-term divergent mortality 

suggested by extrapolation of the fitted surfaces for some ages is implausible. A return to 

parallelism is supported by Figure 7.4, which shows that for some ages, in particular for 

ages 50 and 90, the projected rate of decline in mortality for both sexes is almost identical. 

For the other ages, it is plausible that the divergent projections are the result of distortions 

caused by the mortality hump. There is an argument, therefore, for a possible realignment 

of decline in male and female mortality, or even a narrowing of the differential. Van Hoorn 

and De Beer (2001) argue for a reduced long term sex differential in the Netherlands based 

on observations and predictions of male and female smoking habits (2001:220).

The approach taken by Heathcote and Higgins (2001b) was to generate a predictive model 

identical to the descriptive models, with the constraint that the coefficient of year is the 

average of those for the two sexes. Support for this approach also comes from empirical 

female data. For females the decrease in mortality has recently slowed for some ages. Since 

data for the late 1980s and early 1990s is at the edge of the regression surface, the trend has 

not been adequately captured by the regression model (4.4.2f) (see Figure 4.8 and the 

residuals by year in Figure 4.15). If this recent trend is a real effect, then there is an 

argument to modify the female fit for projections in addition to the males.

Heathcote and Higgins (2001b) modified the coefficient of year, but left the year-age 

interaction unchanged. The regression models (4.4.2m) and (4.4.2f) are more complex in 

that they involve high-order interactions between age and year, and extrapolations of the 

unmodified fitted surfaces are more plausible than those in Heathcote and Higgins (2001b). 

Therefore, rather than taking the average of the coefficient in year, the male coefficient was 

only slightly reduced, and the female coefficient slightly increased. The intercepts were 

also changed to ensure continuity with the fitted surfaces. In this example, the coefficient of 

year was modified by taking:
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ßmod

for males, and,

^  \ß 7 les +  -  \ß;
females

6 ^
A-  =1 -  +1 -  Äi  males

(7.2.1)

(7.2.2)

for females. The ratios chosen were purely subjective, and were selected in preference to 

other ratios from visual inspection of the resulting extrapolations. Although not pursued 

here, a formal approach in selecting a parameter modification could be based on a Bayesian 

argument whereby a particular prior distribution is assumed for the slope of future mortality 

decline.

Results are presented in Table 7.1 and projections in terms of qx are given in Figure 7.5.

Because of the higher-order interactions between age and year, modifying the regression 

model in this way results in changes in the slope of mortality that vary by age. In particular, 

from Figure 7.5 it can be seen that the modifications have a larger impact on age 90 than on 

other ages.

Table 7.1 Modified parameters for models (4.4.2m) and (4.4.2Q.

M od ified  Param eters V alue

Intercept (m ales) -6 6 9 .7

Intercept (fem a les) -1 4 1 2

c o e f f o r  t (m ales) 0 .3 3 4

c o e f f o r  t (fem a les) -0 .7 2 9

It is worth reiterating that the modifications to the coefficients, and in particular, the 

magnitude of the modifications are based on achieving changes to the projected mortality 

slopes that appear plausible and consistent with approximate parallelism between the sexes. 

Alternative modifications could include varying the interaction terms between age and year. 

However, complications may arise when trying to achieve continuity.
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Extrapolations from both the original models from Chapter 4 and the modified models 

are used in construction o f unconditional probabilities o f survival and period and cohort life 

expectancies in Section 7.3.

Figure 7.5 Dutch male and female observed and projected mortality to 2030 based on
extrapolations from (4.4.2m) and (4.4.2Q and extrapolations from models with 
modified parameters.
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7.2.2 Projections from Age-Specific Rates of Improvement

As stated in Chapter 1, a standard method o f projecting mortality is to determine age- 

specific rates o f mortality change from historical trends and extrapolate these into the 

future. As with all methods reliant on extrapolation, the forecasts w ill depend on the length 

o f the historical period from which the rates o f change have been deduced.

Annual rates o f change in q x were generated from the fitted male and female regression 

models (4.4.1 m, 4.4.2m, 4.4.1 f  and 4.4.2f) for five different periods: the five sets were
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based on the change in mortality between 1991 and 1890, 1946, 1960, 1970 and 1980.

Since the regression model performs most poorly at the edges of the surface, and 

particularly for 1991, the rates of improvement estimated from the regression models are 

not consistent with estimates that would arise from, say, a spline-smoothed surface. The 

main purpose of this exercise, however, is to provide insight into the inherent uncertainty in 

extrapolating mortality from historic data, rather than to produce accurate forecasts.

Table 7.2 and Table 7.3 contain the improvement factors for a selection of ages. As an 

illustration of the meaning of the factors, the first cell in Table 7.2 means that there is, on 

average, a 1.26% decrease in mortality per annum for 50 year old men over the 101 years 

between 1890 and 1991.

Table 7.2 Dutch males. Percentage mortality improvement factors for a selection of ages and
years.

Years 1890-1991 1946-1991 1960-1991 1970-1991 1980-1991

Age

50 -1.26 -0.76 -0.97 -1.53 -1.71

60 -0.77 -0.20 -0.54 -1.41 -1.69

70 -0.51 +0.08 -0.12 -0.66 -0.83

SO -0.40 -0.19 -0.20 -0.22 -0.23

90 -0.37 -0.54 -0.48 -0.30 -0.24

Table 7.3 Dutch females. Percentage mortality improvement factors for a selection of ages and
years.

Years

Age

1890-1991 1946-1991 1960-1991 1970-1991 1980-1991

50 -1.43 -1.43 -1.03 -1.06 -1.32

60 -1.30 -1.56 -1.17 -1.19 -1.45

70 -1.25 -1.82 -1.81 -1.81 -1.83

80 -0.94 -1.45 -1.79 -1.78 -1.57

90 -0.52 -0.78 -1.08 -1.08 -0.89
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It is apparent that the average annual rates o f change o f mortality vary considerably 

depending on the period used for derivation. Mortality projections based on these rates o f 

change closely resemble those o f Figure 7.2 and Figure 7.3, and so have not been included 

here.

7.2.3 Projections from the Modified Lee-Carter Model.

Rather than projecting from the fixed effects models o f Chapter 6 for comparison with the 

regression models, this section is included to illustrate the impact that cohort effects may 

have on mortality projections.

The steep declines in mortality for males aged 90 in the late 1970s is related to the fall in 

the mortality hump, and possibly due to the relatively favourable mortality experience o f 

the 1885-1890 cohorts as discussed in Chapter 6. The subsequent flattening and even slight 

rise o f mortality in the late 1980s may reflect the poorer mortality o f the 1900-1905 cohorts 

that is suggested from the analysis undertaken in Chapter 6. In light o f the cohort variation 

suggested from the previous chapter, it is conceivable that, for the 1900-1905 cohorts, the 

mortality in the late 1990s and the first decade o f the 21st century w ill continue to reflect 

poorer than average mortality.

Projections o f Dutch male mortality were generated using the modified Lee-Carter model 

(6.5.2) from Chapter 6, where a cohort effect denoted by 6C is incorporated into the model 

(following Wilmoth (1990)) after decomposing the residuals from the standard Lee-Carter 

fit. In order to achieve continuity between the last data and the forecasts, a x is taken to be 

the log o f the odds o f death for the year 1991.

Projections o f the mortality surface involve making judgements regarding the shape o f the 

parameters in the future. I f  we ignore expert judgement in this example, a continuation o f 

the pattern with respect to age is assumed (ie. a x and ß x are left unchanged). Future levels

o f k , have the largest impact on mortality projections. Following the approach o f Lee and 

Carter, time-series techniques were employed on K t to determine an appropriate fit, and an
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ARIMA(0,1,0) model (autoregressive integrated moving average) was found most 

appropriate for the range 1946 to 1991 as well as most shorter ranges such as 1970 to 1991. 

As with all models that rely on historical trends, judgement is required to determine the 

range of the historic Kt to use in projections. Since the time-series models chosen in this

instance are linear, the projections are the same as those generated from simple age-specific 

cross-sectional projections, and are very similar to those of the regression models. In 

particular, as a consequence of extrapolation, the variability in the time-series projections is 

comparable with the variability in projections based on the regression approach when 

different historical periods are used in formulating the fit.

The implication of including 6C in projections is illustrated in Figure 7.6 where the 

observed, fitted and projected log(odds) for males are given for ages 60 and 80. The 

projections are based on a Kt derived from historical data from 1970 to 1991. For age 80,

inclusion of Qc increases the log(odds) between 1991 and 2000, corresponding to the 1910

to 1920 birth cohorts. As discussed in Chapter 6, the increased log(odds) for these cohorts 

may be the result of long-term debilitation brought on by the Spanish Influenza epidemic of 

1918. A similar bump is apparent between 1990 and 2010 in the projections for age 90. For 

cohorts following the 1920 birth cohort, 9C is assumed to be zero and, therefore, does not 

influence projections for ages 70 and below.

It is plausible that the regression models developed in Chapter 4 could be modified in a 

similar way to the models of Chapter 6 in order to isolate cohort effects. Any potential 

cohort effects could then be added to predictions as was done in the modified Lee-Carter 

model above. It is, however, questionable whether inclusion of a cohort effect adds useful 

information to projections; the shift in predicted curve due to the cohort effect is likely to 

be overwhelmed by uncertainty associated with determination of the legitimacy of the 

cohort effect and the variance of the fixed effects.
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Figure 7.6 Dutch males. Observed, fitted and projected log(odds) based on the modified Lee- 
Carter model
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7.3 Expectation of Life

A common misconception is that period life tables provide an estimate o f expected future 

lifetime. Period life tables are calculated with cross-sectional data; they only take into 

account the mortality pattern for the year in question, and do not consider any possible 

changes in future mortality. Cohort life expectancies are calculated from mortality levels 

along each incomplete cohort, and so may incorporate the possibility o f future changes. 

Forming cohort life expectancies, therefore, involves projecting mortality.

Male and female period life-expectancies are generated based on models (4.4.1m),

(4.4.2m), (4.4.1 f) and (4.4.2f) for ages 50, 60, 70, 80 and 90, for years ranging from 1890 to 

2030, and additional life expectancies are generated from the modified regression models 

based on equations (7.2.1) and (7.2.2). Section 2.7.3 o f Chapter 2 contains the theory 

underlying the life expectancy calculations including standard errors.
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Period life expectancies are generated using mortality rates up to age 95 for most of the 

surface. Since the fitted models only cover ages 50 to 90, they are extrapolated from in 

order to generate rates for ages 91 to 95. Therefore, the precision of life expectancies for 

the very oldest ages is questionable and dependent on the accuracy of our model for ages 

above 90. For completion, period life expectancies based on observed rates are included in 

the figures that follow.

Table 7.4 Male PERIOD life expectancies (standard errors in brackets). (1) is projection based

on fitted model (4.4.2m). (2) is projection based on modified model.

Year
Age

1890 1910 1930 1950 1970 1990 2010
(1) (2)

2030
(1) (2)

50 20.41 22.18 23.86 25.76 24.85 26.39 26.92 27.38 27.27 28.24
(0.12) (0.10) (0.08) (0.08) (0.06) (0.05) (0.05) (0.05) (0.05) (0.05)

60 13.84 14.94 16.07 17.72 16.98 18.02 18.36 18.78 18.58 19.47
(0.12) (0.09) (0.08) (0.07) (0.06) (0.05) (0. 05) (0.05) (0. 05) (0.05)

70 8.44 9.01 9.68 10.86 10.74 11.21 11.47 11.81 11.70 12.43
(0.11) (0.09) (0.08) (0.08) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05)

80 4.57 4.78 5.21 5.74 6.20 6.42 6.77 7.00 7.17 7.68
(0.10) (0.08) (0.08) (0.08) (0.05) (0.04) (0.04) (0.04) (0.05) (0.05)

90 NA NA 2.65 2.73 3.25 3.44 3.79 3.92 4.15 4.44
NA NA (0.09) (0.08) (0.05) (0.04) (0.05) (0.05) (0.06) (0.06)

Note: Life expectancies for age 90 prior to 1930 were not calculated due to lack of empirical data.

Table 7.5 Female PERIOD life expectancies (standard errors in brackets). (1) is projection based

on fitted model (4.4.2f). (2) is projection based on modified model.

Year
Age

1890 1910 1930 1950 1970 1990 2010
(1) (2)

2030
(1) (2)

50 22.03 23.19 24.40 27.03 29.67 32.32 34.67 34.26 36.74 35.94
(0.17) (0.10) (0.09) (0.08) (0.06) (0.06) (0.06) (0.06) (0.06) (0.06)

60 14.86 15.68 16.58 18.55 20.90 23.44 25.53 24.16 27.39 26.65
(0.16) (0.10) (0.08) (0.08) (0.06) (0.06) (0.05) (0.05) (0.06) (0.06)

70 8.96 9.44 10.05 11.28 13.06 15.27 16.92 16.59 18.41 17.76
(0.16) (0.09) (0.09) (0.08) (0.05) (0.05) (0.05) (0.05) (0.06) (0.06)

80 4.81 5.00 5.48 6.08 7.06 8.50 9.50 9.25 10.46 9.93
(0.14) (0.08) (0.09) (0.09) (0.06) (0.05) (0.05) (0. 05) (0.06) (0.06)

90 NA NA 2.78 3.02 3.58 4.17 4.70 4.55 5.17 4.86
NA NA (0.09) (0.09) (0.06) (0.04) (0. 06) (0.06) (0.08) (0.08)
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Male expectation of life increases only slightly for all ages between 1990 and 2030 (by 

approximately half of one year) according to extrapolations from model (4.4.2m). In 

contrast, the dramatic drop in log(odds) following 1945 for females results in a steady 

increase (by between one and four years depending on age) in expectation of life between 

1946 and 2030 when model (4.4.2f) is extrapolated. Under the modified models, male life 

expectancies increase more rapidly, and females more slowly than under the extrapolated 

fitted surfaces.

Figure 7.7 Dutch males. Complete PERIOD expectation of life. Observed, fitted and projected 

from models (4.4.1m) and (4.4.2m), and projected from modified model to 2030.
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Figure 7.8 Dutch females. Complete PERIOD expectation of life. Observed, fitted and
projected from models (4.4.If) and (4.4.2f), and projected from modified model.
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Figure 7.9 Dutch males and females. Complete PERIOD expectation of life. Observed, fitted and 
projected from fitted models, and projected from modified models.
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Projections based on cohort life expectancies are calculated and the results are 

presented in Table 7.6, Table 7.7, Figure 7.10 and Figure 7.11. The male cohort life- 

expectancies are similar to the corresponding period life-expectancies since male mortality 

extrapolated from the fitted model (4.4.2m) is fairly unchanging. The female cohort life- 

expectancies are much higher than the corresponding period life-expectancies due to 

extrapolation of the steep decline in female mortality captured by the fitted model (4.4.2f).

Table 7.6 Dutch males. COHORT life expectancies (standard errors in brackets). (1) is
projection based on fitted model (4.4.2m). (2) is projection based on modified model.

Y ear
A ge

1890 1910 1930 1950 1970 1990
(1) (2)

2010

(1) (2)

2030

(1) (2)

50 21 .44
(0 .11)

23.08
(0 .09)

25.13
(0 .07)

25.33
(0 .06)

25.82
(0 .05)

26.89
(0 .05)

27.39
(0 .05)

27.29
(0.06)

28.34
(0.06)

27.67
(0 .06)

29.29
(0.06)

60 15.36
(0 .09)

16.51
(0 .06)

17.70
(0 .06)

17.31
(0 .05)

18.34
(0. 05)

18.62
(0. 05)

18.61
(0. 05)

19.37
(0. 05)

18.85
(0. 06)

20.13
(0. 06)

70 9.67
(0 .06)

11.03
(0 .07)

10.85
(0 .05)

11.40
(0.05)

11.53
(0.05)

11.66
(0. 05)

12.17
(0.05)

11.91
(0. 05)

12.83
(0.05)

80 5.87
(0 .07)

6.28
(0 .05)

6.52
(0.04)

6.56
(0.04)

6.89
(0.05)

7.20
(0.05)

7.30
(0.05)

7.90
(0.05)

90 3.28
(0 .05)

3.50
(0. 05)

3.51
(0.05)

3.83
(0. 05)

3.98
(0 .05)

4.20
(0.06)

4.50
(0. 06)

Table 7.7 Dutch females. COHORT life expectancies (standard errors in brackets). (1) is
projection based on fitted model (4.4.2f). (2) is projection based on modified model.

Y ear
A ge

1890 1910 1930 1950 1970 1990
( 0  (2)

2010
(1) (2)

2030
(1) (2)

50 22.85
(0 .11)

23.94
(0 .09)

26.14
(0 .07)

30.18
(0 .06)

32.68
(0 .05)

35.02
(0 .05)

34.46
(0 .05)

37.22
(0 .06)

36.23
(0.06)

39.15
(0.06)

37.79
(0.06)

60 16.08
(0 .09)

17.10
(0 .06)

20.20
(0 .06)

22.93
(0 .05)

25.10
(0. 05)

24.74
(0. 05)

27.15
(0. 05)

26.37
(0. 05)

28.97
(0. 06)

27.83
(0. 06)

70 10.07
(0 .06)

11.77
(0 .07)

14.17
(0 .05)

16.08
(0. 05)

15.90
(0.05)

17.73
(0.05)

17.17
(0.05)

19.25
(0.05)

18.35
(0. 05)

80 6.17
(0 .07)

7.46
(0 .05)

8.80
(0. 04)

8.73
(0. 04)

9.79
(0.05)

9.44
(0. 05)

10.77
(0.05)

10.13
(0.05)

90 3.70
(0 .05)

4.31
(0. 05)

4.29
(0. 05)

4.77
(0.05)

4.60
(0.05)

5.25
(0. 06)

4.91
(0.06)

The cohort life expectancies for some ages depend on projections into the distant future and 

should be treated with caution. For example, cohort life expectancies for 50 year olds in 

2030 require mortality projections to the year 2075.
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Figure 7.10 Dutch males. Complete CO HO RT expectation of life. Fitted and projected from 
model (4.4.2m), and projected from modified model to 2030.

------------  fitted model and projection based on fitted model
------------ projection based on modified model
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Figure 7.11 Dutch females. Complete C O H O R T expectation of life. Fitted and projected from 
model (4.4.20, and projected from modified model to 2030.

------------  fitted model and projection based on fitted model
------------projection based on modified model
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As discussed in Chapters 1 and 6, there are two schools o f thought on the long-term 

effects o f catastrophic events on a cohort. One theory is that the event w ill not only result in 

the immediate death o f those experiencing it, it w ill also adversely affect the cohort’ s future 

mortality. A conflicting argument is that o f selection, whereby the frail members o f a 

cohort die, leaving behind a relatively healthy, more robust population with a lower average 

mortality rate and an increased expectation o f life. Selection mortality may play a 

significant role amongst Dutch men and women, i f  our cohort expectation o f life plots have 

been interpreted correctly. Figure 7.10 and Figure 7.11 show a jump in life-expectancy 

coinciding with the Hunger Winter o f 1944/45. This may be explained in terms o f selection 

in that survivors o f the Hunger Winter would be the more robust o f the cohort, and so 

would have a higher chance o f survival and thus a higher expectation o f life. A selection 

effect is supported further by the low level o f mortality in 1947 identified in Chapter 3.

Figure 7.12 Dutch males and females. Complete C O H O R T expectations of life. Fitted and 
projected from fitted models, and projected from modified models to 2030.

males

female;

malesage 70

fitted model and projection based on fitted model 

projection based on modified model

As seen in Figure 7.9 and Figure 7.12, for period and cohort life expectancies the sex 

differential changes substantially when projections are based on the modified models.
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The life expectancy trends have been presented here primarily to illustrate the 

capabilities o f the regression model in forecasting. For analysis and decomposition o f 

Dutch life expectancy and mortality patterns see Nusselder and Mackenbach (1997, 2000).

7.4 Conditional Probabilities of Survival

Cohort-specific conditional probabilities o f death are presented for males and females 

based on extrapolations o f the fitted regression models and the modified models. The 

theory behind estimation o f the probabilities and their standard errors is given in Section 

2.7.2. Table 7.8 and Table 7.9 contain the probabilities o f surviving to ages 60,70,80 and 

90, given survival to age 50 for a range o f years.

The probabilities are calculated along cohorts rather than periods. For example, referring to 

Table 7.8, the probability that a 50 year old man alive in 1890 would live to at least the age 

o f 90 in 1930 is 5%. In contrast, assuming that mortality rates w ill change in the future 

according to extrapolations from model (4.4.2m), a 50 year old alive in 2030 would have a 

17.9% chance o f being alive in 2070. For the oldest ages in particular, the female 

probabilities o f survival are extremely high, reflecting their favourable mortality and the 

projected improvements from the regression models. The implication to population 

projections is briefly discussed in Section 7.5. The same warning that followed the cohort 

life expectancies in Section 7.3 applies; namely, that certain conditional probabilities o f 

survival rely on very long term projections and are less reliable than other estimates.

Table 7.8 Dutch males. Conditional COHORT-specific probabilities of survival from age 50 to
age y (standard errors in brackets). (1) is projection based on fitted model (4.4.2m). (2) 
is projection based on modified model, (values in %).

Year

y

1890 1910 1930 1950 1970 1990

0 )  (2 )

2010

(1 ) (2 )

2030

(1 ) (2 )

60 85.2
(0 .3 )

89.0
(0 .3 )

91.8
(0 .2 )

92.9
(0 .1)

92.4
(0 .1)

94.6
(0.1)

94.6
(0.1)

95.2
(0.1)

95.5
(0.1)

95.8
(0.1)

96.2
(0.1)

70 61.8
(0 .5)

68.2
(0.4)

72.9
(0 .2)

74.8
(0 .3)

75.3
(0-2)

79.2
(0.2)

79.7
(0.2)

80.1
(0.2)

81.5
(0.2)

80.9
(0.2)

83.1
(0.2)

80 29.7
(0 .6 )

35.8
(0.5)

43.5
(0 .4)

42.2
(0 3 )

44.9
(0 3 )

47.5
(0.3)

49.3
(0.3)

48.1
(0.3)

51 .7
(0.3)

48.5
(0.3)

54.0
(0.3)

90 5.0
(0 .2)

6.1
(0 2 )

10.9
(0 .3)

11.4
(0 .2)

13.1
(0.2)

15.1
(0 .2 )

17.1
( 0 2 )

16.5
(0-2)

20.3
(0 2 )

17.9
( 0 3 )

23.6
(0.3)
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Table 7.9 Dutch females. Conditional COHORT-specific probabilities of survival from age
50 to age y (standard errors in brackets). (1) is projection based on fitted model 
(4.4.21). (2) is projection based on modified model, (values in %).

Y ea r

y

1890 1910 1930 1950 1970 1990

(1 )  (2 )

2 0 1 0

0 )  (2 )

2 0 3 0

0 )  (2 )

60 8 8 .4
(0 .4 )

9 0 .2
(0 .2 )

9 1 .9
(0 .2 )

9 5 .2
(0 .1 )

9 6 .2
(0 .1 )

9 7 .0
(0 . 1)

9 6 .9
(0. 1)

9 7 .8
(0 . 1)

9 7 .7
(0 . 1)

9 8 .4
(0 . 1)

9 8 .2
(0 . 1)

70 6 7 .2
(0 .5 )

7 1 .0
(0 .4 )

7 5 .5
(0 .2 )

8 4 .7
(0 .2 )

8 7 .9
(0 .2 )

9 1 .0
(0 . 1)

9 0 .8
(0 . 1)

9 3 .6
(0 . 1)

9 3 .1
(0 . 1)

9 5 .5
(0 . 1)

9 4 .9
(0 . 1)

80 3 4 .3
(0 .6 )

3 8 .7
(0 .6 )

4 7 .6
( 0 4 )

6 1 .8
(0 .3 )

7 0 .7
(0 .3 )

7 8 .0
(0 .2)

77.1
(0 .2)

8 4 .0
(0 .2)

8 2 .4
(0 .2)

8 8 .4
(0 . 1)

8 6 .6
(0 . 1)

90 6 .5
(0 .3 )

7 .7
(0 .3 )

13.8
(0 .3 )

26.1
(0 .3 )

3 5 .9
(0 .4 )

4 5 .1
(0 .4 )

4 2 .3
(0 .5 )

5 3 .9
(0 .5 )

4 9 .4
(0 .5 )

6 1 .8
(0 .5 )

5 5 .9
(0 .5)

Figure 7.13 is a survival curve for the 1980 cohort (corresponding to age 50 in 2030). It 

shows the projected conditional probabilities of survival for males and females based on 

extrapolations from the fitted regression models and the modified models. Although the 

curves for the different models are similar, the areas under these curves can be calculated to 

form life expectancies, so differences accumulate in life expectancy. Probabilities for ages 

above 90 were formulated from extrapolations of the regression models, and are highly 

uncertain.

The debate on whether or not a biological limit exists to human life expectancy is well- 

known (see for example, Manton (1993); Warner (1993)) and is discussed in Chapter 1. 

Rectangularization of survival curves is often used as evidence that a limit is being 

approached. Rectangularization of survival curves is associated with decreasing variability 

in the distribution of ages at death. For interest, Wilmoth and Horiuchi (1999) present ten 

measures of rectangularity of the survival curve.



179

Figure 7.13 Conditional COHORT-specific probabilities of survival from age 50 for 1980
cohort. Projections from fitted models (4.4.21) and (4.4.2m), and projections from 
modified models.

females

males

projection based on fitted models 
projection based on modified models

Nusselder and Mackenbach (1997) noticed rectangularization of period-specific survival 

curves in the Netherlands during the 1980s as opposed to the 1970s. They analysed 

mortality patterns by cause of death and concluded that the rectangularization was due to 

decreases in heart disease, cerebrovascular diseases, and lung cancer in men, coupled with 

an increase in mortality from certain diseases at old ages (such as emphysema). This is 

supported by our analysis of mortality patterns in Chapter 3 where it was noticed that there 

had been little change in mortality at the upper ages, but dramatic improvements at middle 

ages during the 1980s.

Figure 7.14 presents the conditional cohort-specific probabilities of survival from age 50 

for a number of cohorts. According to the projections based on the fitted regression models, 

the probabilities at the upper ages continue to rise, suggesting no evidence of 

rectangularization. However, as stated earlier, there is considerable uncertainty surrounding 

estimates above age 90. A proper assessment of evidence for rectangularization requires
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accurate data and models for the oldest ages and so is not pursued here.

Figure 7.14 Conditional COHORT-specific probabilities of survival from age 50. Projected from 
models (4.4.1f), (4.4.2f), (4.4.1m) and (4.4.2m). The curves are descending with cohort: 
eg. 1980 cohort is highest; 1840 cohort is lowest.

MALES FEMALES

---------  1840,1880 and 1920 cohorts
--------- 1940 and 1980 cohorts

1840 cohQrt 1840 cohr

age age

7.5 Impact of Uncertainty on Population Projections

An important conclusion of the above analysis is that a great deal of subjectivity, and hence 

uncertainty, exists in mortality projections. This feeds into uncertain population projections. 

The ageing of the population is a phenomenon that has been identified throughout the 

developed world that will persist well into the middle of the next century with no prospect 

of reversing or halting in the meantime. Due to increased birth rates following World War 

II much of the developed world is experiencing the ageing of a significant cohort of 

individuals. The 'baby-boomers' as they are known, are approaching retirement, and how 

this will affect Government social security funding, health care and investment markets is 

an issue of great importance. The size of the Dutch population for different ages and years 

is plotted in Figure 7.15 for males and females. The noticeable bumps and curves in these
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charts point to a large difference in population numbers pre and post age 45 in 1990, 

corresponding with births after World War II.

Figure 7.15 Dutch Males and Females. Population by age at 1950,1970, 1990 and 2030 (projected 
from empirical rates at 1991 assuming no change in mortality)

Females Males

age age

If we project the population forward in time, and ignore migration, the curve will shift to 

the right as shown in Figure 7.15 for year 2030. The estimate for 2030 was constructed by 

projecting survivors assuming that the empirical mortality rates for 1991 will remain 

constant in the future. It is immediately obvious, that even if mortality rates cease 

improving, which is unlikely given historic trends, the number of elderly in the population 

will increase substantially.

Of particular interest is the variation in future population projections due to different 

mortality assumptions. We project Dutch population numbers for 50 to 90 year olds from 

1991 to 2030 under three scenarios for future mortality rates: constant at 1991 levels (as 

above); based on extrapolations of the fitted models (4.4.2m) and (4.4.2f); and, based on 

extrapolations of the modified models introduced in Section 7.2.1. Results are presented in
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Table 7.10 and Table 7.11. These forecasts are included for illustration of the effect of 

uncertainty in mortality, and are not considered to be reliable estimates of the Dutch 

population. Migration would need to be accounted for in an accurate population projection.

The analysis shows that a relatively small change in forecast assumptions can lead to 

significant differences in population composition at the oldest ages. The longer the 

projection period, the larger the influence of alternative projections.

Table 7.10 Dutch Females. Population forecasts for specific ages under 3 scenarios. Percentage 
increase in 1991 figures is given in brackets underneath population number.

A ge 60 A ge 70 A ge 80 A ge 90

1991 population 72,630 66 ,540 40 ,470 11,820

2030 (no im provem ent) 115,780

(59 .4% )

103,910

(56 .2% )

69 ,780

(72 .4% )

19,480

(64 .8% )

2030  (fitted  m odel) 117,940 

(62 .4% )

111,440

(67 .5% )

84,430

(108 .6% )

30 ,150

(155 .1% )

2030 (m odified  m odel) 117,680

(62 .0% )

110,680

(66 .3% )

82,610

(104 .1% )

27 ,680

(134 .2% )

Table 7.11 Dutch Males. Population forecasts for specific ages under 3 scenarios. Percentage 
increase in 1991 figures is given in brackets underneath population number.

A ge 60 A ge 70 A ge 80 A ge 90

1991 population 69 ,390 52,180 22,030 4 ,160

2030 (no im provem ent) 115,010

(65 .7% )

93 ,820

(79 .8% )

46 ,320

(110 .3% )

7,460

(79 .3% )

2030  (fitted  m odel) 116,200

(67 .5% )

94 ,230

(80 .6% )

46 ,140

(109 .4% )

9 ,460

(127 .4% )

2030 (m odified  m odel) 116,850

(68 .4% )

96 ,520

(85 .0% )

49 ,520

(124 .8% )

11,100

(166 .8% )
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7.6 A Measurement of 'Old Age' ?

Following World War II, the Netherlands introduced a universal social security system that 

included an act enabling the payment o f benefits to men who had reached age 65 (General 

Old Age Benefit Act 1957 or AOW) (van Oorschot,1998). As mortality rates have 

decreased, the average Dutch lifespan has increased, yet, although particulars o f the AOW 

have changed substantially (for example, women are also entitled to benefits, and means 

testing has been introduced), the entitlement age o f 65 that was valid in 1957 remains the 

same today.

A paper recently published titled "How Old is Old ? Revising the Definition Based on Life 

Table Criteria", examined methods o f comparing statistics between life tables with respect 

to a definition o f "old". In particular, they posed the question 'I f  65 was considered 

appropriate (as the point o f entry into "old age") four decades ago, what is the 

corresponding age today ?' (Denton and Spencer, 1996b).

Higgins and Thorbum (1999) utilised the methodology developed by Denton and Spencer 

to pose a similar question for Australia. We follow this tradition, and apply the 

methodology to the Netherlands to answer the question. 'I f  65 was considered as the point 

o f entry into old age in 1957 (corresponding to social security eligibility), what is the 

corresponding age today ?'. In particular, we calculate a male and female equivalent age 

based on the fitted regression models for 1991.

Denton and Spencer conduct nineteen tests based on criteria ranging from common 

statistics such as the mean, median and mode, to modem mathematical tests involving 

'fuzzy' distributions. They found that, despite the differences in the tests conducted, the 

results achieved were quite similar.

Following Higgins and Thorburn (1999), for the Dutch data we have conducted 6 tests: 

mean years o f life remaining; mean as a proportion o f years already lived; median years o f 

life remaining; and k-year survival rate comparisons for k=5,10 and 20. The results are 

presented in Table 7.12.
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Table 7.12 Results of tests to determine equivalent age in 1991 given age 65 in 1957.

Male equivalent age in 1991 given 

age 65 in 1957

Female equivalent age in 1991 

given age 65 in 1957

Mean years o f life  remaining 65.60 70.12

Mean as a proportion o f years 

already lived

65.44 68.93

Median years o f life remaining 65.21 70.51

5 year survival rate 65.28 70.34

10 year survival rate 65.15 70.35

15 year survival rate 65.27 70.23

Average 65.3 70.1

I f  eligibility for age related benefits in the Netherlands was to change solely based on a 

reflection o f life expectancy increases, then the male age should remain constant at 65 

years, whereas the female age should increase to 70. In practice, other considerations would 

need to be addressed, including quality o f health and evidence for compression o f 

morbidity, changes in the level o f age benefits provided, and entitlements to supplementary 

benefits. Regardless, the analysis provides an interesting summary o f the changes in Dutch 

mortality since the late 1950s. In particular, the relatively small increase in equivalent age 

for males relative to females is reflects the almost steady mortality for males and the steep 

decline for females since 1957.

7.7 Conclusions and Future Work

The regression models proposed in Chapter 4 and explored in Chapter 5 have the advantage 

o f being founded on plausible statistical assumptions involving the distribution o f survivors 

within and between cohorts.
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Under the classical assumptions of independence and homogeneity, the variance of the 

errors from a smooth regression model can be determined. Divergence from the expected 

variance allows us to determine the magnitude of the extra-variability, though the source 

cannot be identified in detail due to the absence of disaggregated data. It is speculated, 

however, that the failure of the assumption of homogeneity within cohorts is responsible 

for the extra variance, and the effect on aggregate mortality of a mixture of distributions at 

each age within cohorts is discussed in the context of selection and debilitation. Traditional 

approaches correct for extra-binomial variance by inclusion of a fixed inflation factor.

Since there is evidence that the extra variance is not constant over the mortality surface, the 

preferred approach is to model the extra variance using a suitably flexible parametric 

surface.

An advantage of asymptotically normal errors is that maximum likelihood methods can be 

used to produce consistent estimators for the parameters of both the mean model and the 

model for the extra variance component. The information matrix from the MLE fit allows 

us to easily extract standard errors which enable estimation of confidence and prediction 

intervals for individual parameters, the fitted surface, or predictions.

A particularly interesting feature that is identified in Chapter 5 for Dutch females is an 

increase in the age at which the rate of change in mortality reaches a maximum between the 

1950s and the present.

The fitted models developed in Chapter 4 are parsimonious in order to provide sensible 

bases for projections. A consequence of a parsimonious approach is that complex trends 

within the data are not modelled. Inclusion of high order interactions improves the quality 

of the fits, though at the expense of interpretation and predictability. In particular, perfect 

collinearity between age, period and cohort means that it is impossible to uniquely 

determine the separate effects. A potential cohort effect is identified in Chapter 4 and 

Chapter 5 by exploring the residuals and derivatives of the male model (4.4.2m). 

Incorporating cohort effects within a mortality model is covered in Chapter 6, where the 

technique of Wilmoth (1990) is applied to Dutch males, and it is shown how a Lee-Carter 

model (1992) can be modified to incorporate allowance for cohort effects.
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Projections from the regression models are undertaken in Chapter 6. It is shown that the 

choice of historic period used in formulation of the models greatly affects the direction of 

forecasts. Projections from extrapolation of the regression models of Chapter 4 are 

questionable for some ages, and alternative extrapolations are generated by modifying the 

parameters of the fitted models to incorporate human judgement. Life expectancies and 

conditional probabilities of survival are generated to illustrate the different scenarios.

Finally it is shown that uncertainty in mortality has a large influence on population 

projections for the oldest sections of the community.

It would be possible in theory to extend the regression model developed in this thesis to the 

entire age surface. A parameterisation such as that proposed by Heligman and Pollard could 

be modified to allow variation with year. Explorations of extra-binomial variance over the 

entire age surface may provide some insight into the nature and causes of the extra 

variability. An analysis of the entire age-pattern of mortality utilising the techniques 

described in Chapter 6 may provide useful information that could influence forecasts. In 

particular, it would be informative to assess whether the Hunger Winter of WWII has had a 

long-term debilitating consequence on any cohorts, or, indeed whether selection effects 

have produced a more robust population of survivors.

Large sample approximation for the distribution of the errors enables the regression 

technique to be applied in a wide variety of areas. An extension of the model to disability 

states was carried out by Davis et al. (2001), where health expectancies were estimated 

from cross-sectional data by weighted least squares using log(odds). The main issue 

restricting progress with the development of mortality models is the lack of detailed data. If 

sufficient longitudinal data were available, regression surfaces could be applied to 

individual causes of death or individual states of health, where cohorts consist of multiple 

hazard functions, each representing a different state. With the appropriate disaggregated 

data, developing regression methods like those advocated here would lead to an improved 

understanding of sources of variation, and ultimately a deeper understanding of the 

processes of ageing and dying.
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APPENDICES

Appendix A

The following code was used to generate the negative log-likelihood for the post-WWII 

male model (4.4.2m). Similar code was used for the female data and the pre-WWII male 

data. The log-likelihood was given in Chapter 4 and is reproduced here:

91) J  2 /  ä \  1 90 J 2  . . 1 90 J 2

£  £  l o g / f  jc; ß,ä))= - -  log In  -  -  £  £  log{a2(t,x) + g(t,x;a) ) - -  £  £
^  ^  x=50/= JI ^x=50l=J\ x=50l=J\

i __________
a 2(l,x) + g(l,x\c
YXJ_„-d(t,x-ß)

Since the first term in the log-likelihood is independent of the parameters to be estimated 

we can remove it from the equation. Maximising the log-likelihood is equivalent to 

minimising the negative log-likelihood:

9 i) J  2 (  \  1 90 J 2  . . 1 90 J 2

-  £  £ 1 og /  ('. Ä « )) « -  £  £  I°g(o-2 (', X) + g((, x; a ))+ -  £  £
r= s n /= 7 1x=50f=./l x=50i=J\

{rXJ.x - S ( t , x J ) ) 2 
cr2(t,x) + g(t,x-a)

The data objects used in the log-likelihood code are defined below.

al-al3 = the parameters to be estimated corresponding to the mean (log(odds)). 

The subscript c refers to centred variables.

S(t,x;b) = bx + b2xc+b3x 2c + b4x] + b5x4 +

+ b6tc + b1xctc + b%tcx) + b9tcx 4 +

+ dnorm(t ,\912,9)(bw +bnxc + bnx] +bl3x3c)

bl-b5 = the parameters to be estimated corresponding to the extra variance, 

g(t,x-,a)=QXv(a{ + a 2xc + a3tc + a4t2c+ a 5tcxc)
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Maledata = data set containing the observed data for males for 1945-1991, 

ages 50-90.

Weights = the binomial weights used in the model (equivalent to \/cr2( t , x ) ) 

logitq = the observed log(odds)

agec = the centred variable for age. This was equal to the age minus 70 (being 

the mean age).

Yearc = the centred variable for year. This is equal to year minus 1968.5 (being 

the mean year for the post-WWII data)

dnorm = the normal density ordinate used to model the cardiovascular 

epidemic.

The S-plus code for the function includes the first derivatives of the non-linear model and 

the hessian, which is the sum of the second derivatives array over the observations.

Lprobg_function(b 1 ,b2,b3,b4,b5,b6,b7,b8,b9,b 10,b 11 ,b 12,b 13,a 1 ,a2,a3,a4,a5)

{
. expr 1 <-( 1 /weight s+exp(a 1 +a2 * agec+a3 * y earc+a4 * y earcA2+a5 * yearc* agec)) 

expr2 <- (logitq-
(b 1 +b2 * agec+b3 * agec A2+b4 * agecA3+b5 * agecA4+b6 * yearc+b7 * agec * y earc+b8 * yearc * agecA2+b9* 
yearc*agecA4+dnorm(year, 1972,9)*(bl0+bl 1 *agec+bl2*agecA2+bl3*agecA3)))

,expr3 <- 0.5/.expr 1

expr4 <- -0.5*(.expr2A2)/(.exprlA2)

,expr5 <- - expr2/.exprl

exprö <- exp(al+a2*agec+a3*yearc+a4*yearcA2+a5*yearc*agec)

expr7 <- 0.5*(l/weights)*.expr6/(.exprlA2)+ expr4*.expr6*(l-2*.expr6/.exprl)

expr8 <- (,expr2/(.exprlA2))*.expr6

.value <- 0.5*log(.exprl)+0.5*((.expr2)A2)/.exprl

grad <- array(0, c(length(.value), 18),
list(NULL,c(“b 1 ”,”b2”,”b3”,”b4”,”b5”,”b6”,”b7”,”b8,,,”b9”,”b 10”,”b 11 ”,”b 12”,”b 13”,”a 1 ”,”a2”,”a3 
”,”a4”,”a5”)))

grad[, "bl"] <- expr5; grad[, "b2"] <- expr5*agec;
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grad[, "b3"] <- expr5*agecA2; grad[, "b4"] <- ,expr5*agecA3;

grad[, "b5"] <- expr5*agecA4; grad[, "b6"] <- expr5*yearc

grad[, "b7"] <- ,expr5*yearc*agec; grad[, "b8"] <- ,expr5*yearc*agecA2

grad[, "b9"] <- expr5*yearc*agecA4; grad[, "blO"] <- ,expr5*dnorm(year, 1972,9)

grad[, "bl 1"] <- ,expr5* dnorm(year,1972,9)*agec; 

grad[, "bl2"] <- expr5* dnorm(year,1972,9)*agecA2; 

grad[, "bl3"] <- expr5* dnorm(year,1972,9)*agecA3; 

grad[, "al"] <- ( expr3 + expr4)*.expr6; 

grad[, "a2"] <- ( expr3 + ,expr4)*.expr6*agec 

grad[, "a3"] <- ( expr3 + ,expr4)*.expr6*yearc 

grad[, "a4"] <- ( expr3 + expr4)*.expr6*yearcA2 

grad[, "a5"] <- ( expr3 + expr4)*.expr6*yearc*agec 

attr(.value, "gradient") <- grad

hess<-array(0,c(length(. value), 18,18)) 

dimnames(.hess)<-list(NULL,
c(“b 1 ”,”b2”,’’b3”,”b4,V’b5”,”b6”,”b7”,”b8”,”b9”,’,b 10”,”b 11 ”,”b 12”,”b 13”,”a 1 ”,”a2”,,,a3”,,,a4”,”a5

c(“b 1 ”,”b2”,”b3”,”b4,y ,b5”,”b6”,”b7’7 ’b8”,”b9”,”b ] 0”,”b 11 ”,”b 12”,”b 13,,,”a r ,,”a2”,”a3”,,,a4”,”a5 
”))

hess[, "b 1 ","b 1 ”]< -(l/.expr 1);

hess[, "bl","b3”]<-(l/.exprl)*(agecA2);

hess[, "bl","b5”]<-(l/.exprl)*(agecA4);

hess[, "b 1 ","b7”]<-( 1 /.expr 1 )*(yearc*agec);

hess[, "bl","b9”]<-(l/.exprl)*(yearc*agecA4); 
(1 /.expr 1 )*dnorm(year, 1972,9)

hess[, "b 1 ","b2”]<-(l/.expr 1 )*(agec); 

hess[, "b 1 ","b4”]<-(l/.expr 1 )*(agecA3)

,hess[, "bl","b6”]<-(l/.expr 1 )*(yearc)

,hess[, "bl","b8”]<-(l/.exprl)*(yearc*agecA2) 

,hess[, "bl","blO”]<-

hess[, "bl","bl l ”]<-(l/.exprl)*(dnorm(year, 1972,9)*agec) 

hess[, "b 1 ","b 12”]<-(l/.expr 1 )*(dnorm(year, 1972,9)*agecA2) 

hess[, "b 1 ","bl3”]<-(l/.expr 1 )*(dnorm(year, 1972,9)*agecA3) 

,hess[, "bl",”a l”]<- ,expr8 

hess[, "bl",”a2”]<- expr8*(agec) 

hess[, "bl",”a3”]<- expr8*(yearc)

,hess[, "bl",”a4”]<- expr8*(yearcA2) 

hess[, "bl",”a5”]<- expr8*(yearc*agec)

for(I in 1:18){

,hess[, "b2",I]<- hess[, "bl",I]*agec 

hess[, "b3",I]<- hess[, "bl",I]*agecA2
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hess[, "b4",I]<- hess[, "bl",I]*agecA3

hess[, "b5",I]<- hess[, "bl ",I]*agecA4

hess[, "b6",I]<- hess[, "bl",I]*yearc

hess[, "b7",I]<- hess[, "bl ",I]*yearc*agec

hess[, "b8",I]<- hess[, "bl",I]*yearc*agecA2

hess[, "b9",I]<- hess[, "bl",I]*yearc*agecA4

hess[, "blO",I]<- hess[, "bl",I]*dnorm(year, 1972,9)

hess[, "bll",I]<- hess[, "bl",I]*dnorm(year,1972,9)*agec

hess[, "bl2",I]<- hess[, "bl",I]*dnorm(year,1972,9)*agecA2

hess[, "bl3",I]<- hess[, "bl",I]*dnorm(year,1972,9)*agecA3}

for(l in 1:13){

hess[,"al”,I]<- .expr8*.hess[,”a l”,I]*.exprl 

hess[,"a2”,I]<- .expr8*.hess[,”a l”,I]*.expii *agec 

. hess[, "a3”,I]< -. expr8*.hess[,”a 1 ”,I]*.expr 1 *yearc 

hess[,"a4’,,I]<- expr8*.hess[,”a l”,I]*.exprl*yearcA2 

hess[,"a5”,I]<- .expr8*.hess[,”ar\I]*.exprl *yearc*agec}

hess[, "al”,"al”]<-.expr7; 

hess[, "a2","ar’]<-.expr7*agec; 

hess[, "a3","al”]<-.expr7*yearc; 

bess[," a4” a l”]<-.expr7#yearc^l,

,hess[, "a5”," a r’]<-.expr7*yearc*agec;

for(I in 14; 18){

hess[, I,"a2”]<- hess[, I,"al”]*agec; 

hess[, I,"a3”]<- hess[, I,"a r’]*yearc; 

hess[, I,"a4”]<- hess[, l ," a r’]*yearcA2; 

hess[, I,"a5”]<- hess[, I,"a r’]*yearc*agec}

attr(.value, "hessian") <- hess 

value}

The parameters are estimated by minimising the negative log-likelihood function through 

the S-plus function 'ms' which minimizes the sum of nonlinear functions over parameters in 

a data frame. If we define an object 'fM' to store the results of the minimisation, then:
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fM _ms(~lprobg(b 1 ,b2,b3,b4,b5,b6,b7,b8,b9,b 10,b 11 ,b 12,b 13,a 1 ,a2,a3,a4,a5),Maledata,trace=T)

Following minimisation of the negative log-likelihood, the fitted mean (fitM) can be found, 

in this instance, by:

fitM (fM$parameter[l] + fM$parameter[2] *agec+ fM$parameter[3]*agecA2+

fM$parameter[4] *agecA3+ fM$parameter[5] *agecA4+ fM$parameter[6] *yearc+ 

fM Sparamet er [ 7] * agec * yearc+fM $parameter[8 ] * yearc * agec A2+ 

fM$parameter[9]*yearc*agecA4+dnorm(year,1972,9)*(fM$parameter[10] + 

fM$parameter[l l]*agec+ fM$parameter[12] *agecA2+ fM$parameter[13] *agecA3))

The fitted extra variance component y 2(t,x) = g( t ,x;a)  (gamM) can be found, in this 

instance, by:

gamM_exp(fM$parameter[ 14]+fM$parameter[ 15]*agec+fM$paramcter[ 16]*ycarc+ 

fM$parameter[ 17]*yearcA2+ fM$parameter[ 18]*yearc*agec)

Despite its incorrect label, the code below gives the inverse of the information matrix 

(Venables and Ripley, 1994:244). This is used in determining the variance of the individual 

parameter estimates and the variance of the fitted model (see Chapter 2 for the theory 

underlying the derivation of the variance).

summary(fitM)$Information
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