
Tactical Problems in Vehicle
Routing Applications

Francesco Bertoli

A thesis submitted for the degree of
Doctor of Philosophy of

The Australian National University

July 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The Australian National University

https://core.ac.uk/display/160609409?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

c� Francesco Bertoli 2018

Except where otherwise indicated, this thesis is my own original work.

Francesco Bertoli
18 July 2018

To my beloved little mushroom, my chick.

Acknowledgments

I first wish to thank my primary supervisor: Phil. I guess it’s not easy to take in a
Ph.D. student half way through his time. Especially if he moves to Sydney before
starting to work with you. Thanks for the time you dedicated to me. In particular, I
want to thank you for helping me find my way in the research world. Before turning
my attention to OR, I was losing my interest in research.

A huge “thank you” goes to Tommaso. For many many reasons. First, because you
helped me in my transition. Then for all your attention and dedication, and for
being a real-time available library on programming. Last but not least, for hosting
me pretty much every time I came to Canberra and for making those visits fun. I
really enjoyed working together, and I hope we’ll have another chance.
I also wish to thank Adrian. If I came to Australia for my Ph.D., it was thanks to
you. Moreover, I appreciated you following me every day while we were working
together. I also appreciate the opportunity you gave me to visit and give seminars in
several cool places.

I must, and want to, give thanks to my family. My parents, for being my parents and
a limitless source of support. My brother, for being my brother. I cannot explain it a
different way. Thanks for coming down to the other side of the world several times.
It meant a lot and it made the distance shorter.

There are so many people that I have met during these four years that I want to
remember and acknowledge. Enrico, Sara and Alessandro, for giving me an (Italian)
place to stay in Canberra. I hope I’ll see you again back home. Antonio, Pierrick,
Hannah and their cool housemates, and Andrei and Arthur, for their hospitality,
which I appreciated very much. I had much fun staying with you guys. I really hope
to meet again somewhere in the world. Alessandro, for making me discover the OR
world. The Couchsurfing community in Canberra, you made it easy to move to a new
continent. I don’t know what I would have done without the Tuesday meetings. The
Awesome Kids, which I think is the nicest group of people I have ever met. Remy,
Laura, David, Jackie, Mark for all the fun climbing together. Nick and Tracy, I can
now say thanks for the trust. The Sydney crew, no need to say we will see each other

vii

again. Finally, thanks to the Hivery team, for making me living a great experience.

I saved the most important person that I have had during this period for last: Marghe.
I am so thankful you came here and I had you on my side. I don’t even know how
we made it through a year and a half of intercontinental relationship but I am so
grateful we did. I am so excited that you will be with me in my future, in our future.
My Ph.D. time is truly blended with my time with you. It does not make sense to
consider them as two separated things. If I had to thank a person, that’d be you. I
love you.

Abstract

The class of Vehicle Routing Problems (VRPs) is one the most studied topics in the
Operations Research community. The vast majority of the published papers focus
on single-period problems, with a few branches of the literature considering multi-
period generalisations. All of these problems though, consider a short horizon and
aim at optimising the decisions at an operational level, i.e. that will have to be taken
in the near future. One step above are tactical problems, i.e. problems concerning
a longer time horizon. Tactical problems are of a fundamental importance as they
directly influence the daily operations, and therefore a part of the incurred costs, for
a long time. The main focus of this thesis is to study tactical problems arising in
routing applications.

The first problem considered concerns the design of a fleet of vehicles. Trans-
portation providers often have to design a fleet that will be used for daily operations
across a long-time span. Trucks used for transportation are very expensive to pur-
chase, maintain or hire. On the other side, the composition of the fleet strongly
influences the daily plans, and therefore costs such as fuel or drivers’ wages. Bal-
ancing these two components is challenging, and optimisation models can lead to
substantial savings or provide a useful basis for informed decisions

The second problem presented focuses on the use of a split deliveries policy in
multi-period routing problems. It is known that the combined optimisation of deliv-
ery scheduling and routing can be very beneficial, and lead to significant reductions
in costs. However, it also adds complexity to the model. The same is true when split
deliveries are introduced. The problem studied considers the possibility of splitting
the deliveries over different days. An analysis, both theoretical and numerical, of the
impact of this approach on the overall cost is provided.

Finally, a districting problem for routing applications is considered. These types
of problems typically arise when transportation providers wish to increase their
service consistency. There are several reasons a company may wish to do so: to
strengthen the customer-driver relationship, to increase drivers’ familiarity with their
service area, or, to simplify the management of the service area. A typical approach,
considered here, is to divide the area under consideration in sectors that will be
subsequently assigned to specific drivers. This type of problem is inherently of a
multi-period and tactical nature. A new formulation is proposed, integrating stand-
ard routing models into the design of territories. This makes it possible to investigate

ix

x

how operational constraints and other requirements, such as having a fair workload
division amongst drivers, influence the effectiveness of the approach. An analysis
of the cost of districting, in terms of increased routing cost and decreased routing
flexibility, and of several operational constraints, is presented.

Glossary

TSP Travelling Salesman Problem

VRP Vehicle Routing Problem

VRPTW Vehicle Routing Problem with Time Windows

CVRP Capacitated VRP

PVRP Periodic Vehicle Routing Problem

IRP Inventory Routing Problem

SDVRP Split Deliveries VRP

MDSDVRP Multi Day Split Deliveries VRP

FSM Fleet Size and Mix

DC Distribution Centre

TS Tabu Search

SA Simulated Annealing

LNS Large Neighborhood Search

ALNS Adaptive Large Neighborhood Search

CG Column Generation

TDP Territory Design Problems

TBR Territory Based Routing

xi

Contents

Acknowledgments vii

Abstract ix

Glossary xi

1 Introduction xxi
1.1 Background and Motivation . xxi
1.2 Objectives and Contributions . xxiii
1.3 Uncertainty in Tactical Problems . xxv
1.4 Thesis Outline . xxvi
1.5 Notation . xxvii

I Mathematical Background 1

2 Routing Problems 3
2.1 The Vehicle Routing Problem . 3
2.2 Routing Problems . 4

2.2.1 Requests . 4
2.2.2 Routes . 5
2.2.3 Fleet . 6
2.2.4 Objectives . 7

2.3 Multi-Period Problems . 8
2.4 Tactical Routing Problems . 10

3 Solution Methods 11
3.1 Exact Methods . 11

3.1.1 Set Partitioning Formulations . 13
3.2 Column Generation . 14

3.2.1 Common Issues . 16
3.2.2 Dantzig-Wolfe Decomposition . 18
3.2.3 Integer Problems . 20

xiii

xiv Contents

3.2.4 Column Generation Applications in Routing Problems 21
3.3 Heuristic Methods . 22

3.3.1 Constructive Heuristic . 23
3.3.2 Improvement Heuristics . 24

3.4 Metaheuristic . 24
3.4.1 Local Search and Large Neighbourhood Search 25

3.5 Matheuristic . 29

II Tactical Routing Problems 31

4 Fleet Design 33
4.1 Introduction . 33
4.2 Motivation . 35
4.3 Problem Formulation . 36
4.4 Related Work . 38
4.5 Solution Methods . 41

4.5.1 Fleet Generation . 41
4.5.2 Route Generation . 44
4.5.3 Refinement method . 47
4.5.4 Model Extension For Rich Routing Constraints 48
4.5.5 Including other subcontracting modalities 49
4.5.6 An Extension of the Pareto Approach 49

4.6 Implementation Details . 51
4.6.1 Theoretical caveats. 51
4.6.2 Termination Criterion . 51
4.6.3 Sub-problem Selection . 52

4.7 Computational Analysis . 54
4.7.1 Approach Validation . 56
4.7.2 Methods Comparison . 60
4.7.3 Importance of Hiring Option . 61
4.7.4 Impact of Route-based Model . 62

4.8 Contributions and Conclusion . 63

5 Tactical Routing Strategy: Splitting Deliveries 65
5.1 Introduction . 65
5.2 Motivation . 67
5.3 Related Work . 68

Contents xv

5.4 Problem Formulation . 69
5.5 Theoretical Properties . 71

5.5.1 k-split cycles . 71
5.5.2 Number of splits and routes . 72
5.5.3 Bounds on the number of routes 73
5.5.4 Worst Case Analysis . 75

5.6 Mathematical Formulation and Solution Method 77
5.6.1 Indivisible goods . 79
5.6.2 Valid Cuts . 80
5.6.3 Algorithm Description . 82

5.7 Computational Analysis . 84
5.7.1 Instances . 84
5.7.2 Minimum delivery amount constraints 86
5.7.3 Frequency . 87
5.7.4 Clustering . 87
5.7.5 Longer Splitting Horizon . 88

5.8 Contributions and Conclusion . 88

6 Territory Design 98
6.1 Introduction . 98
6.2 Motivation and Previous Work . 101
6.3 Problem Formulation . 102

6.3.1 Balance Measures . 104
6.4 Related Work . 105

6.4.1 Routing- vs Cluster-based Formulations 109
6.5 Solution Method . 110
6.6 Computational Analysis . 113

6.6.1 Quality Assessment . 114
6.6.2 Test Data and Quality Measures 116
6.6.3 Instances Details . 117
6.6.4 New vs Old Approach . 118
6.6.5 Comparison with a Two-Stage TBR Approach 121
6.6.6 Analysis Methodology . 122
6.6.7 Approach Validation . 123
6.6.8 Number of Territories . 124
6.6.9 Balance Cost Influence . 125
6.6.10 Time Windows Influence . 126
6.6.11 Demand and Value Variation Influence 131

xvi Contents

6.6.12 Frequency Influence . 134
6.6.13 Daily Requests Variation Influence 135
6.6.14 A Note On Contiguity and Compactness 137

6.7 Conclusions and Future Work . 139

Conclusions 141

List of Figures

4.1 Example of different routing plans. 42
4.2 Number of requests and total demand for each day. 55

5.1 Number of splits and routes. 73
5.2 Worst Case Analysis Example. 77

6.1 Plot of two instances’ map. 119
6.2 Visual representation of the territories. 139

xvii

xviii LIST OF FIGURES

List of Tables

4.1 Comparison among all methods. 59
4.2 Comparison on problems with hiring option. 61
4.3 The effect of hiring vehicles. RM algorithm 61
4.4 The effect of the route-reuse step. 62
4.5 The effect of the route-reuse step when including hiring.. 63

5.1 Routing case (bd = 0) . 90
5.2 Fixed cost case (bd = 70) . 91
5.3 md analysis - routing case . 92
5.4 md analysis - fleet size case . 93
5.5 Frequency analysis. 94
5.6 Customers’ disposition analysis. 95
5.7 Routing case - cluster map . 96
5.8 Routing case - random map . 96
5.9 Fleet size case - cluster map . 97
5.10 Fleet size case - random map . 97

6.1 RBTA test for Duration Cost . 115
6.2 RBTA test for Value Cost . 116
6.3 Group-A instances. 118
6.4 Comparison between new and old approach. 120
6.5 Comparison with another TBR approach. 121
6.6 Approach validation. 124
6.7 Number of territories influence. 125
6.8 Balance cost influence. 126
6.9 Time Windows influence. No Balance case. 129
6.10 Time Windows influence. Duration Case 130
6.11 Time Windows influence. TBR approach using territories designed on

the noTW instances. 131
6.12 Demand variation influence. No Balance Case 132
6.13 Demand variation influence. Duration Case 133
6.14 Value variation influence. Value Case . 133

xix

xx LIST OF TABLES

6.15 Frequency influence. No Balance Case. 135
6.16 Frequency influence. Duration Case. 135
6.17 Frequency influence. Value Case. 136
6.18 Request variation influence. No Balance Case 137
6.19 Request variation influence. Duration Case 137
6.20 Request variation influence. Value Case 138

Chapter 1

Introduction

In this chapter, we briefly illustrate the domain to which the problems studied be-
long. Moreover, we outline the objectives and contributions of this thesis. Finally, we
present the structure of the following chapters.

1.1 Background and Motivation

One of the most active areas of Operations Research (OR) is certainly the family
of Vehicle Routing Problems (VRPs). In their seminal work, Dantzig and Ramser
[1959], published more than 50 years ago, Dantzig and Ramser proposed the first
mathematical programming model and the first numerical method for the VRP. Since
then a huge number of papers have been published, proposing new variants of the
original problem, new models, exact methods and heuristic algorithms. The interest
of the research community is not only motivated by the fact that the VRP constitutes
a hard and challenging combinatorial problem, but also by the applicability and
industrial relevance of the problem. The use of optimisation techniques in the routing
industry is indeed regarded as one of the success stories of OR. It is not only due
to the advent of modern computers, but also, and in particular, to the mathematical
understanding of the VRPs and to the complexity and efficient implementations of
all the optimisation techniques that have been proposed and studied in the literature.

In the past years, the focus of the research community has partially moved away
from academic extensions of the VRP and has shifted towards more realistic and in-
dustrial variants. These problems deal with multi-faceted objective functions, aimed
at modelling various sources of cost, uncertainty and dynamism. A variety of com-
plex operational constraints are studied, aiming to better represent the needs of trans-
portation providers. These problems usually go under the name of rich VRPs. There
are many papers attempting to survey new trends and models in the routing liter-
ature, two examples are Caceres-Cruz et al. [2015] and Lahyani et al. [2015]. An
interesting paper comparing the state of the art of scientific research and commercial

xxi

xxii Introduction

software used to solve real-world VRPs is Drexl [2012a]. In this work, the author also
points out the gaps that still separate the literature from real-world applications.

The VRP, as well as most of its variants, is by nature a single-period problem,
i.e. it considers only one period (usually a day) of operations. However, there are
areas of the literature focusing on problems featuring a longer planning horizon
(multi-period). Two of the most know examples are the Inventory Routing Prob-
lem (IRP, Coelho et al. [2013]; Andersson et al. [2010]; Bertazzi and Speranza [2012])
and the Periodic Vehicle Routing Problem (PVRP, Francis et al. [2008]; Irnich et al.
[2014a]). These two problems offer two common examples of reasons to consider a
multi-period horizon and integrate the routing component, i.e. how to deliver on
each period, to the scheduling component, i.e., when to deliver. On one side, the
IRP attempts to combine different phases of the supply chain, such as inventory con-
trol and delivery. On the other side, the PVRP models applications where there is
strong periodic component in the daily delivery operations. In both cases, integrat-
ing the scheduling and routing parts of the problem can lead to substantial savings
(Andersson et al. [2010]; Francis et al. [2008]). However, the research concerning
multi-period problems is under-developed when compared to single-period VRPs.
As an example, even though the IRP is probably the most studied multi-period rout-
ing problem, there is no shared abstract model (Andersson et al. [2010]). Moreover,
given the computational difficulty of the problem, only recently exact algorithms
were introduced. Although, there are only able to solve very small instances. In fact,
most methods are heuristic (Coelho et al. [2013]).

Even though there are multi-period extensions of the VRP, the vast majority of the
problems focus on optimising decisions at an operational level. According to Crainic
[2003]; Kilby and Urli [2016]; Hoff et al. [2010], in transportation systems there are
three main management levels, hierarchically ordered: strategic, tactical and opera-
tional. The main difference can be identified in the time horizon considered in each
level. The strategic is the highest level of management, and typically involves large
capital investments over long-term horizons. Strategic decisions concern develop-
ment policies and broad determination of strategies. Tactical level decisions aim at
planning, over a medium-term horizon, an efficient allocation and utilisation of re-
sources. Although in routing applications, this may include the determination of the
routes or exploit the available routing information, the main problem solved is not
the routing problem. Instead it is to decide what, and partially how, resources will
be used throughout the horizon. At the operational level only short time-horizon
decisions are considered. A key point of this classification is that decisions at each
level constrain the decisions at the following level, and inform the decisions at the
previous level.

§1.2 Objectives and Contributions xxiii

The vast majority of papers in the routing literature are dedicated to problems at
the operational level, with fewer papers studying how routing models can be exten-
ded to tackle tactical problems. However, tactical decisions have a strong influence
on daily operations. As an example, the object of a chapter in this thesis is the design
of a fleet of vehicles. This usually requires a significant investment and is not an
operation that can be done daily, but instead has to consider a long horizon. The
decisions taken will affect the future operational plans over a long term. This type of
problem has largely been overlooked in the literature.

1.2 Objectives and Contributions

This thesis focuses on tactical problems arising in routing applications. Each chapter
in Part II is dedicated to a different problem. However, there are similarities in the
main lines of research of each chapter that match the general objectives in this thesis.
Namely, they are:

• investigate how standard routing models can be extended so that operational
decisions can be integrated into models for tactical problems;

• propose efficient solution methods for the formulated model;

• analyse the impact of the considered approaches at the operational level;

• analyse and quantify the impact of different features of models and instances
on the efficiency of such approaches.

Not all objectives are pursued in equal measure in all chapters. In the following
we briefly summarise the main topics studied in each chapter of Part II, the findings
and the relative publications.

Fleet Design. Chapter 4 is dedicated to fleet design problems. The chapter de-
scribes a general model for fleet design problems over a long-time horizon. The
solution assumes the existence of an operational level (daily instance) solver, and
leverages this through the use of mathematical programming and the Dantzig-Wolfe
decomposition. The method presented is thus very general. The contributions of the
chapter are twofold: first, to present the first broad study on fleet design, along with
a general model supporting several features that make the model applicable to real-
world problems; second, to present decomposition methods that allow us to leverage
existing solution methods for the class of single-period routing problems, making
our proposed method extremely general and applicable. The chapter is based on the
following papers:

xxiv Introduction

• Francesco Bertoli, Philip Kilby and Tommaso Urli. A general and scalable
column generation approach to fleet design problems. Submitted to Journal of
Heuristics. 2017.

• Francesco Bertoli, Philip Kilby and Tommaso Urli. A Column Generation-
Based Approach to Fleet Design Problems Mixing Owned and Hired Vehicles.
Submitted to International Transactions in Operational Research. 2017.

The methods proposed in the chapter were object of a (pending) patent application
in Australia and the United States. The references are:

• Australian Patent Application No. 2017203827

• US Patent Application No. 15/615,054

Splitting Deliveries in Routing Strategy. Chapter 5 considers the possibility of
splitting deliveries in a multi-period VRP. Unlike split delivery routing as usually
considered in VRP settings, we allow deliveries to be split across vehicles and across
days. The main contribution is to analyse the benefits of this approach. A new prob-
lem is formulated, together with a mathematical programming model and some valid
inequalities to enhance it. Additionally, a simple yet effective heuristic is proposed.
Finally, a theoretical and numerical analysis is presented, aimed at quantifying the
savings introduced by allowing split deliveries over days, and studying the impact
that different features of instances have on the possible savings. The chapter is based
on the following paper:

• Francesco Bertoli, Philip Kilby and Tommaso Urli. Vehicle routing problems
with deliveries split over days. Journal on Vehicle Routing Algorithms. 2017.

Territory Design. The subject of Chapter 6 is the problem of dividing the service
area for a transportation company. This falls in the category of districting prob-
lems. The chapter describes the proposed approach to tackle such problems for rout-
ing applications. The novelty lies in the integration of the routing decisions in the
design model and solution method. This brings several advantages making it pos-
sible to consider operational constraints and balance requirements that are seldom
considered in the literature on territory design. Another contribution is the extens-
ive computational analysis presented. This aims at studying the effectiveness of the
approach and quantifying the impact that different factors have on its effectiveness.
The chapter is based on the following paper:

• Francesco Bertoli and Philip Kilby. Territory Design For Routing Problems. To
be submitted to Transportation Research: Part B. 2017.

§1.3 Uncertainty in Tactical Problems xxv

Other Contributions Here, we mention other contributions relative to a different
research project studied during the first half of my PhD. The topics of this pro-
ject were the theoretical analysis of Monte Carlo methods and their application to
Stochastic Optimal Control Problems. The two main problems considered were the
analysis of localisation operations in order to reduce the errors due to the system di-
mension in Particle Filtering methods, and the application of Monte Carlo methods
to the estimation of optimal control in stochastic systems. The following papers were
produced during the time spent on this project:

• Francesco Bertoli and Adrian N. Bishop. Reducing the Bias in Blocked Particle
Filtering for High-Dimensional Systems. Available at https://arxiv.org/abs/

1407.0220. 2014.

• Francesco Bertoli and Adrian N. Bishop. Adaptively Blocked Particle Filtering
with Spatial Smoothing in Large-Scale Dynamic Random Fields. Available at
https://arxiv.org/abs/1406.0136. 2014.

• Francesco Bertoli and Adrian N. Bishop. Nonlinear Stochastic Receding Ho-
rizon Control: Stability, Robustness and Monte Carlo Methods for Control
Approximation. International Journal of Control. 2017. Url: https://doi.org/10.

1080/00207179.2017.1349340

• Francesco Bertoli and Adrian N. Bishop. Monte Carlo methods for control-
ler approximation and stabilization in nonlinear stochastic optimal control.
Invited Paper at 17th IFAC Symposium on System Identification. 2015

• Francesco Bertoli and Adrian N. Bishop. An Error Analysis in the Limit Ap-
proximation in Path Integral Control. To be submitted.

1.3 Uncertainty in Tactical Problems

A key point in the thesis is the way uncertainty is handled. As mentioned in Sec-
tion 1.1, strategic, tactical and operational levels differ in terms of the time horizon
considered. It is clear though, that the longer the horizon is, the higher the un-
certainty of the problem will be. At the operational level, uncertainty is often not
considered. For example, in the VRP the input is completely known. However, in
the vehicle routing literature there are variants of the VRP, considering, for instance,
stochastic travelling times (Malandraki and Daskin [1992]) or stochastic demands
(Bertsimas [1992]). We refer to Gendreau et al. [2014] for a survey of the stochastic
variants of the VRP. At the strategic level, uncertainty must be considered as it plays

https://arxiv.org/abs/1407.0220
https://arxiv.org/abs/1407.0220
https://arxiv.org/abs/1406.0136
https://doi.org/10.1080/00207179.2017.1349340
https://doi.org/10.1080/00207179.2017.1349340

xxvi Introduction

an important and non-negligible role (Crainic [2003]). At the tactical level, uncer-
tainty is still present and should not be neglected (Hoff et al. [2010]). Uncertainty
is handled in different ways, depending on the problem studied. In each chapter,
while we review the relevant literature, we review some of the approaches proposed
in the literature that consider uncertainty. The approach we take in this thesis is to
use historical data, or any other set of scenarios that is able to capture day-to-day
variation in customers and demand, as the input to a deterministic model. This is
similar to a scenario approach, where different realisations of the single operational
days are considered. This choice is motivated by several reasons. First, it is a success-
ful and powerful approach. An example is given in Kilby and Urli [2016], where the
authors show how well this approach performs on a fleet design problem. Second,
but very important, it allows the design of efficient methods and algorithms. One of
the reasons tactical problems have been overlooked in the literature is the high level
of uncertainty (and the resulting huge size of a full stochastic model). Modelling
uncertainty directly can lead to a very big and challenging problem. We attempt
to use (deterministic) operational models to build models and methods for tactical
problems. This allows us to leverage the efficiency and power of that the methods for
operational problems have reached. One last reason is the availability of data. Many
stochastic approaches make use of probability distributions in order to describe the
problem. These are used directly or only for sampling purposes. If a probability
distribution is not given, it must be inferred from the available data. However, we
need a certain amount of data if we wish to extrapolate a reliable distribution and
not always we have access to that much data. As an example, in Chapter 6, we only
have a week worth of data. Attempting to fit a distribution on such a small data-set
can lead to a very unreliable input in our problem, which in turn would lead to poor
quality solutions. In these cases, using the available data set as input to our problem
is the only viable approach. On the other hand, if we do have a probability distribu-
tion available, we can use it to generate a reasonable number of scenarios as input to
our problem. In each chapter, we highlight the advantages of our approach and the
reasons to choose it over other approaches.

1.4 Thesis Outline

The thesis is organised as follows: in Part I, the necessary background material is
reviewed. In Chapter 2, we present a general overview of routing problems. We focus
specifically on the areas relevant to this thesis. An overview of the solution methods
that are used in the thesis can be found in Chapter 3. Part II is divided in three
chapters, one for each of the main problems considered in the thesis, as presented

§1.5 Notation xxvii

above. In each chapter, we present the motivation for the research carried out, a
review of the relevant literature, the contributions to the field and some conclusions.

1.5 Notation

The problems considered in Part II are all multi-period extensions of the VRP. For
the sake of clarity, we use the same notation throughout the entire thesis. Here, we
introduce the main concepts, symbols and naming conventions that are recurrent in
the following chapters.

• The number of customers considered is denoted by N and the set of customers
by C = {1, . . . , N}.

• The depot is denoted by 0, and the set of all nodes in the network is denoted
by C = {0, 1, . . . , N}.

• Generally, customers are denoted using letters i or j.

• The cost of travelling between two nodes i, j 2 C is denoted by cij.

• The time window of a customer i 2 C, is denoted by [ei, li].

• The fleet, or set of vehicles, is denoted by F = {1, . . . , |F|}.

• The capacity of a vehicle v 2 F is denoted by Qv. In case the fleet is homogen-
eous, we only write Q.

• The set of periods (single unit of operations, e.g., days) is denoted by D.

• Periods (i.e., days) are denoted using the letter d.

• The demand of a customer i 2 C on period d 2 D is denoted by qid. We write
qi for single-period problems.

• The set of routes for a routing problem is denoted with R. Super and subscripts
are used to denote dependence on other parameters, e.g., Rd is the set of routes
on day d 2 D.

Part I

Mathematical Background

1

Chapter 2

Routing Problems

The goal of this chapter is to cover some of the background for Part II. In particular,
an overview of routing problems is presented, with a particular focus on the areas
relevant to this thesis.

2.1 The Vehicle Routing Problem

The Vehicle Routing Problem (VRP) is one of the most studied problems in the Op-
erations Research community. In its simplest form the VRP is a straightforward
generalisation of the Travelling Salesman Problem (TSP) and can be stated as fol-
lows. We are given a set of customers C = {1, . . . , N}, a depot, denoted by 0, where
a fleet of identical vehicles F = {1, . . . , |F|} is located, and the cost cij of travelling
from location i to location j for all pairs of locations in C = C [{0}. The goal is
to find a set of routes, i.e., an ordered list of customers starting and ending at the
depot, so that all customers are visited by a route and the total distance travelled is
minimised. Arguably, the most known version of the VRP is the Capacitated VRP
(CVRP). In this version, each customer i 2 C has a demand qi � 0, representing the
amount of goods to be delivered, and all trucks have a limited capacity Q > 0. A
route is feasible only if the sum of the loads of customers visited by a route does
not exceed the capacity. Here and in all the following chapters, we assume that the
triangular inequality for the costs cij is valid.

The VRP was originally introduced in Dantzig and Ramser [1959], where a first
mathematical programming formulation and solution method were presented. The
VRP is known to be a NP-hard problem (Karp [1972]).

In next sections, we briefly present some of the most common extensions and
variants of the classic VRP. The presentation is by no means exhaustive. For a more
comprehensive survey we refer to the paper by Laporte (Laporte [2009]) and the book
by Toth and Vigo (Toth and Vigo [2014]).

3

4 Routing Problems

2.2 Routing Problems

The classification of routing problems is a task hard enough to have several survey
papers and books dedicated to it. In this section, we present some extensions and
characteristics of particular interest in this thesis. There are many features and exten-
sions hereby not considered, such as stochastic and dynamic extension, for which we
refer to the surveys in Laporte [2009]; Caceres-Cruz et al. [2015]; Hasle and Kloster
[2007] and the book Toth and Vigo [2014].

2.2.1 Requests

In the CVRP the requests are described as demands for goods that have to be satisfied
by a route. Here we look at some requests’ features that arise in different routing
problems.

Time Windows. Amongst the most studied and practically relevant constraints as-
sociated with requests are those related to time. In the VRP with Time Windows
(VRPTW, Cordeau and Groupe d’études et de recherche en analyse des décisions
[Montréal(2000]) the time tij needed to travel between pairs of locations i, j 2 C, a
time window [ei, li] and a service time si for each customer i 2 C are considered. Cus-
tomers can only be visited during their time windows. Usually, vehicles are allowed
to arrive early and wait at a location before the start of a time window. The service
time represents the time needed to complete service at the customer’s location. In
some problems, multiple time windows for each customer are considered (Pesant
et al. [1999]; Vidal et al. [2014]).

Time windows are not always imposed as hard constraints. In Taillard et al. [1997],
the authors introduce the VRP with Soft Time Windows (VRPSTW) where early and
late arrivals are allowed but penalised by using a convex function. The most common
penalty functions used to penalise time windows violations are piece-wise linear
functions. A mix of penalty functions and/or bounds on late service or early arrivals
is also possible.

Pairing Precedence. Request do not have to be independent from each other. An
important example is the class of Pickup and Delivery Problems (PDPs, Parragh et al.
[2008, 2007]). In these problems, goods, or passengers, have to be transported from
some origin locations to different destinations. These problems are usually classified
according to how the pickup and delivery locations relate to each other (Parragh
et al. [2008]). Arguably, most of the papers in the literature focus on problem where
each request consists in transporting a single commodity from one location (pickup)

§2.2 Routing Problems 5

to another one (delivery). If no transhipments are allowed, then the same vehicle
must visit both locations and the pickup must be performed before the delivery.

Split Deliveries. In the CVRP, requests can only be performed by a single vehicle.
However, there are many reasons to consider the possibility of splitting the service of
a customer across multiple vehicles. One simple example is if some demands exceed
the capacity of the biggest truck. In Dror and Trudeau [1989], the authors introduce
the Split Delivery VRP (SDVRP). This is a straightforward extension of the CVRP
where it is no longer assumed that a request has to be satisfied by a single vehicle.
Allowing a delivery to be split adds a considerable complexity to the problem but
can also lead to considerable savings, up to 50% (Archetti et al. [2006a]).

Profitable Routes. It is not possible to satisfy all requests in all applications, due to
capacity and time limitations. In order to select the requests to be fulfilled, one can
penalise the unassigned requests or reward the ones that are included. The literature
on routing problems with profits is vast. The academic formulations go from simple
extensions of the TSP (Tsiligirides [1984]) to extensions of the VRP (Butt and Cavalier
[1994]). A survey can be found in Archetti et al. [2014b].

Multi-Commodity Routing. One somewhat overlooked class of problems are those
where customers’ demands are made of several commodities. Some authors have
proposed academic extensions of the VRP (Archetti et al. [2014a, 2015a]) to include
more than one commodity. Multi-commodity routing applications are common in
practice: two examples, which are the problems that motivated the work presented
in Chapter 4, are: the delivery of fuel to gas stations and the delivery of grocery to
supermarkets. In the former, the different types of fuel, that may not be mixed, are
the commodities. In the latter, one has to differentiate between products that need,
or do not need, to be transported in a refrigerated truck.

2.2.2 Routes

An important aspect in the formulation of a routing problem is the definition of a
feasible route. This depends on the structure and constraints we impose. In the
CVRP, the only constraint considered is given by the capacity of the trucks. Route
related constraints can be divided into intra-route and inter-route classes. Inter-route
constraints operate between routes, one example is the synchronisation of some task,
for instance in technicians routing where more than one technician is needed to
perform a job. Here we focus mainly on intra-route constraints: constraints that

6 Routing Problems

operate within a route. A more comprehensive list of route constraints and structures
can be found in Irnich et al. [2014b]; Drexl [2012a].

Resources. Simple constraints can be imposed on a route’s length and time. These
could be due to working regulations or a need to limit the consumption of some
resources (see Laporte et al. [1984] for an example). Obviously, capacity can be con-
sidered as another limited resource.

Depot Visits. Another assumption in the CVRP is that a vehicle cannot return to
the depot while performing a route. However, this assumption is often not true in
practice, as vehicles are allowed to visit the depot to refill or unload. In Taillard et al.
[1996], the authors introduce the VRP with Multiple use of vehicles to model and
study this situation. This problem is also known as the Multi-Trip VRP (Cattaruzza
et al. [2014]; Battarra et al. [2009]). An example of a real-world problem allowing for
multiple trips is the problem studied in Chapter 4.

Balanced Routes. One example of an inter-route constraint, which has not received
much attention, is the balance of the routes with a particular measure (Drexl [2012a];
Jozefowiez et al. [2008]). For example, a company may wish to have daily routing
plans that are fair to the drivers in terms of time (Jozefowiez et al. [2007]). If a driver
is paid proportionally to the load carried (Lee and Ueng [1999]), or the number of
requests served (as in technicians routing) a fair division of the demand between the
routes is essential. This matter is explored in more detail in Chapter 6.

Geometric Properties of Routes. In the majority of routing problems, the geomet-
ric properties of the routes are ignored. However, these may be of practical relev-
ance in real-world applications. Some papers (Lu and Dessouky [2006]; Constantino
et al. [2015]) have proposed different measure to make routes visually appealing.
One other important concept is that of regionalization, as defined in Mourgaya and
Vanderbeck [2007], of the routes. This is related with the goal of having drivers that
are familiar with their service area. More references are given in Chapter 6.

2.2.3 Fleet

The available fleet and its characteristics are also of paramount importance in a rout-
ing problem. The term fleet might refer to the set of vehicles or the team of drivers.
Here we only focus on features concerning the vehicles and refer to Drexl [2012a] for
a fuller discussion on driver-related characteristics.

§2.2 Routing Problems 7

Heterogeneous Fleet. In the CVRP the vehicles are assumed to be identical. How-
ever, this is rarely the case in reality, as fleets are usually composed of different types
of vehicles. The difference in the available vehicles might be reflected, for example,
in different capacities and different travelling times and costs. Moreover, the fleet is
not always given as an input; instead its composition can be a decision variable. If
so, the cost of purchasing a vehicle can differ based on its type. A classification of
the problems considering a heterogeneous fleet is given in Baldacci et al. [2008]. A
more industrial oriented survey can be found in Hoff et al. [2010]. In Chapter 4, a
more detailed survey on this topic is presented.

Compatibilities. Heterogeneous fleets give rise to compatibility constraints. Com-
mon reasons for incompatibility are access limitations, due to size or regulations, to a
customer’s location. These compatibilities may also be due to drivers’ qualifications.

Multi-Compartment Vehicles. The counterpart of multi-commodity requests are
multi-compartment vehicles. The number of compartments can be fixed, and each
compartment can be dedicated to a single commodity (Mirzaei and Wøhlk [2017]) or
several (Urli and Kilby [2017]). If the compartments take the form of trailers, there
can be a variable number of trailers for each truck. This is the problem modelled by
Chao in the Truck and Trailer Routing Problem (Chao [2002]). In Drexl [2013], the
trailers can be exchanged between trucks during a route.

Multi-Depot. The vehicles might start and end at different depots. If the fleet is
homogeneous, the problems is known as Multi Depot VRP (Renaud et al. [1996b]).
Variation of this problems consider only the starting point of a vehicle while the end
location is left open (Vidal et al. [2014]).

External Resources. Whenever the available fleet is not sufficient to meet all re-
quests, a company might resort to hiring extra vehicles. The problem of sub-contracting
some of the requests to external transportation providers appears in the literature in
different areas. In Kopfer and Wang [2009] the authors discuss this problem, present-
ing different business options.

2.2.4 Objectives

The objective function may be composed of one or several components serving dif-
ferent goals, and can also be structured in different ways. Examples of single di-
mensional objectives are the minimisation of travelled distance or number of vehicles

8 Routing Problems

used. If an objective is multi-dimensional, a hierarchical structure may be imposed.
As an example, in the set of benchmark problems for the VRPTW presented in So-
lomon [1987], the first objective is to minimise the number of vehicles while the
second is to minimise the total distance. If no hierarchy is assumed, the objective is
a weighted sum of one dimensional objectives. Another source of cost are the con-
straints that are modelled as soft constraints. For example, a violation of the time
windows may be allowed, but penalised, as discussed in (Taillard et al. [1997]). The
survey presented in Jozefowiez et al. [2008] focuses on multi-objective optimisation
in routing problems.

2.3 Multi-Period Problems

All of the VRP extensions presented in the previous section are of a single-period
nature, i.e., the horizon considered is made up of only one period of operation. A
part of the literature is dedicated to multi-period problems. Since periods are usu-
ally days, we use these two terms interchangeably in what follows. The reasons to
introduce a multi-period horizon are several and of different nature. In some trans-
portation systems, a single day might be not enough to describe the problem due to
long distances (Savelsbergh and Song [2007]). One other reason is to integrate other
aspects in the problem formulation. Two examples are provided by the well-known
classes of problems denoted by Periodic VRPs (PVRPs) and Inventory Routing Prob-
lems (IRPs). In the former, the goal is to model a periodicity of the problem and
integrate delivery-pattern schedule and routing. In the latter, the goal is to integrate
inventory control and routing. Considering more than one period adds considerable
complexity to the problems, but, on the other hand, offers the possibility for higher
efficiency and cost savings. In this section, we consider some multi-period extensions
of the VRP.

Periodic VRPs. In the PVRP a customer may request to be served one or more times
in the planning period but the visit schedule is not fixed. The possible set of patterns
of visits may be predefined for each customer. For example, a given customer could
be visited twice: on Tuesday and Thursday, or on Monday and Wednesday. The
PVRP and its extensions model applications with periodic delivery operations. An
extensive survey on the PVRP and its extensions can be found in Francis et al. [2008].
For a recent review on exact methods and heuristic approaches we refer the reader
to Toth and Vigo [2014]. Applications of practical relevance arise in grocery delivery
(Carter et al. [1996]; Gaur and Fisher [2004]), waste collection (Angelelli et al. [2002]),

§2.3 Multi-Period Problems 9

maintenance services (Hadjiconstantinou and Baldacci [1998]) and health care (Hem-
melmayr et al. [2009]).

Inventory Routing Problems. In IRPs, there are no requests placed by customers.
Instead, a vendor must decide when to visit each customer, how much to deliver
and a routing plan for every day in the horizon (a business model called Vendor
Managed Inventory). Usually a “consumption rate” for each customer is available
and stock-outs are forbidden. The idea behind IRPs is to have a centralised control
for both inventory and routing, integrating two parts of the supply chain that are
usually controlled separately. This approach has specific applicability in real-world
problems, as it requires complete control over the customers’ inventory level, and
also some form of knowledge of the rates of consumption. However, if such a deep
integration of the inventory management and routing aspects is feasible, the possible
savings are substantial (Andersson et al. [2010]). We refer to Coelho et al. [2013];
Bertazzi and Speranza [2012] for academic oriented survey on IRPs. An industrial
point of view presented in Andersson et al. [2010].

Service Consistency. Another reason to consider a multi-period horizon is to in-
crease the level of consistency in service. In Groër et al. [2009], the authors introduce
the Consistent VRP (ConVRP) which is a multi-period routing extension of the VRP
where the goal is to design daily routing plans so that customers are always visited
by the same driver at approximately the same time. This problem was later extended
in Kovacs et al. [2014] to have an assignment of teams of drivers to customers. Other
examples of papers using multi-period routing models to improve service consist-
ency are Smilowitz et al. [2013]; Schneider et al. [2014]; Wong and Beasley [1984].
The matter of improving consistency is analysed more in depth in Chapter 6.

Other Multi-Period Problems. Not all multi-period problems fall in the classes
above. In Francis et al. [2008], the authors present the PVRP with service choice,
where the delivery frequency impacts the customers’ demand and service time. In
Archetti et al. [2015b], the Multi Period VRP with Due dates is introduced. In this
problem, one can choose the delivery date for each customer within a window of a
few days. An inventory cost for holding the products in a central depot is considered.
In Bertoli et al. [2017c], which is the base of Chapter 5, the possibility of splitting
deliveries over consecutive days is considered and analysed.

10 Routing Problems

2.4 Tactical Routing Problems

As mentioned in the Introduction, according to Crainic [2003], transportation sys-
tems management can be divided in three levels: strategical, tactical and operational.
These three levels differ in the length of the horizon considered, from the longest
(strategic level) to the shortest (operational level), and, consequently, also in the type
of decisions taken, and the uncertainty faced. Examples of the decisions involved
are: demand modelling and location of facilities for the strategic level, service net-
work design and resource acquisition for the tactical level, routing and loading of
vehicles for the operational level. In Crainic [2003], it is noted that decisions taken
at a particular level influence lower levels and provide useful information to higher
levels.

Tactical problems do not (only) focus on routing decisions, as these will likely be
re-optimised and changed in the future, but also on issues that can be placed one step
above in a decisional hierarchy. Some examples of tactical problems are considered
and analysed in this thesis: the design of a fleet for a medium to long term or the
districting of a service area for routing services such as grocery delivery or winter
gritting operations. The literature on these topics is reviewed in the chapters of
Part II. One other important example of tactical problems is the Location-Routing
Problem (LRP, Nagy and Salhi [2007]. While facility location problems are more of
a strategical nature (Crainic [2003]), the LRP can be described as follows: given a set
of potential depots, costs for opening such depots, a homogeneous fleet and a set
of customers with known demands, identify a subset of depots to be opened, assign
customers to them, and determine vehicle routes so to minimise the total cost. A
survey on LRPs is Prodhon and Prins [2014].

Both IRPs and PVRPs lie somewhere in the middle between tactical and opera-
tional levels. Most papers study these problems at an operational level. However,
there are examples of real-world applications (Gaur and Fisher [2004]) that consider
a medium to long time horizon. The integration of production and routing decisions
is a topic of increasing interest. A survey of optimisation models dedicated to the
study on this integration can be found in (Díaz-Madroñero et al. [2015]).

Clearly, tactical and operational decisions are not independent from each other.
Tactical decisions strongly influence the operational level, conditioning the opera-
tional plans for a medium to long time horizon. On the other hand, tactical decisions
should be taken considering operational models. For this reason, many solution
methods for tactical problems make use of models and techniques used in opera-
tional problems (see, amongst other examples, Kilby and Urli [2016]; Smilowitz et al.
[2013]; Schneider et al. [2014]; Gaur and Fisher [2004]).

Chapter 3

Solution Methods

In this chapter an overview of the methods used to solve VRPs is given, with a
particular focus on the techniques that are used in Part II. The first two sections
are dedicated to exact methods, and, in particular, to column generation. The last
sections present an overview of heuristic methods, focusing in particular on local
and meta-heuristic search.

3.1 Exact Methods

The research on exact methods for VRPs has been developed for over 40 years. The
work done in this area is quite detailed and a survey is out of the scope of this
section. Here, we briefly present the topic and refer to Semet et al. [2014] for a
detailed overview on early methods, and to Poggi and Uchoa [2014] for an overview
on new methods using set partitioning formulations.

The basic formulation for CVRP makes uses of binary flow variables xij to rep-
resent whether a vehicle travels on the arc connecting node i to node j for all i, j 2
C (= C [{0}). The problem can be formulated as follows:

11

12 Solution Methods

min Â
i,j2C

cijxij (3.1)

s.t. Â
j2C

xij = 1 8 i 2 C (3.2)

Â
j2C

xji = 1 8 i 2 C (3.3)

Â
j2C

x0j = |F| (3.4)

Â
i2S,j/2S

xij � r(S) 8S ✓ C, S 6= ∆ (3.5)

xij 2 {0, 1} 8 i, j 2 C (3.6)

The objective (3.1) minimises the total travelling costs. Note that, if cij = cji for all
i, j 2 C, the CVRP is said to be symmetrical, otherwise it is said to be asymmetrical.
Constraints (3.2) and (3.3) impose that each customer must be visited and must have
exactly one predecessor and one successor. Constraint (3.4) sets the number of routes
equals to the fleet size (note that a route can be empty). In constraints (3.5), r(S)
represents the minimum number of routes needed to satisfy the total demand of the
subset S. In the CVRP, this can be computed through a bin packing problem. Usually,
instead of r(S), the lower bound dÂi2S qi/Qe is used. Integrality of the solution is
imposed by constraints (3.6). Note that constraints (3.5) serve at the same time as
capacity and subtour elimination constraints. To see the former, consider S, the
set of customers in a route r. The associated constraint (3.5) can be transformed into
Âi2S qi  Q. A similar argument can be made for the subtour elimination constraints.
This model was originally introduced in Laporte et al. [1986].

It is well known that the number of constraints (3.5) grows exponentially with N.
Therefore, it is not practical, if at all possible, to include all of them in the formulation.
One possibility is to solve the problem without such constraints, check if the solution
violates some of them (a process named separation), in which case these are added
to the formulation and the process is restarted. This procedure gives rise to cutting-
plane algorithms. One other possibility is to include additional variables to represent
the load (or the time, especially if one considers time windows) of a vehicle arriving
at a customer’s location. For example, if for each node i 2 C we denote by ui the
load of the vehicle upon arrival at i, one would add the following constraints:

uj � ui  Q (1 � xij)� qj 8 i, j 2 C

§3.1 Exact Methods 13

to replace the subtour elimination constraints, and

qi  ui  Q 8 i 2 C

to replace the capacity constraints. The resulting model is known as MTZ-formulation.
as it was originally proposed by Miller, Tucker and Zemlin in Miller et al. [1960]. This
type of model is called two-index (vehicle) flow formulation. In some extensions of
the CVRP, one may need to make the vehicles explicit in the flow variables, using
therefore a three-index flow formulation.

This type of model is solved using branch-and-bound or branch-and-cut tech-
niques, or mixtures of the two. A lot of effort has been spent on studying branching
and lower bounding techniques to enhance the performance of the solution meth-
ods. Also, many different families of valid cuts have been introduced to strengthen
the mathematical programming models for the CVRP, and many methods have been
proposed for cut separation, i.e., to quickly identify violated cuts. An overview of
this work can be found in Semet et al. [2014].

3.1.1 Set Partitioning Formulations

The Set Partitioning (SP), or Set Covering (SC), formulation for the CVRP was first
introduced in Balinski and Quandt [1964]. Consider the set R of all possible routes for
a CVRP instance. A binary variable xr is associated to each route r 2 R to represent
whether or not we use r. Moreover, the cost of route r is denoted by cr, and, for each
customer i 2 C, the binary parameter ari denotes whether r visits i. The SP model
follows:

min Â
r2R

crxr (3.7)

s.t. Â
r2R

ari xr = 1 8 i 2 C (3.8)

Â
r2R

xr = |F| (3.9)

xr 2 {0, 1} 8 r 2 R (3.10)

Constraints (3.8) impose that each customer is visited by exactly one route. Con-
straint (3.9) requires the number of selected routes to equal the fleet size. It is possible
to replace the sign of this constraint to  or to add |F| copies of the empty route to R
to allow for idle vehicles. Integrality of the variables is imposed by constraints (3.10).
Since a solution of this model is, in particular, a partition of C, this formulation is
named Set Partitioning formulation. By changing the sign of constraints 3.8 to �,

14 Solution Methods

one obtains a Set Covering formulation. Note that from a solution of SC we can
obtain a solution of SP by, possibly, dropping customers from routes. Moreover, if
the triangular inequality for travelling costs is satisfied, dropping customers cannot
result in an increase of the cost. Therefore, there exists an optimal solution of SC
that is also an (optimal) solution for SP. The main reasons to use SC instead of SP
are that, in the former, amongst routes with the same costs, only inclusion-maximal
feasible circuits need to be considered. Moreover, as the dual variables associated
with constraints (3.8) have to be non-negative in the SC dual problem, the dual space
is considerably reduced.

The issue with SP or SC formulations lies in the huge number of variables. The
enumeration of all possible routes is out of reach for reasonable sized problems.
Consequently, it is not possible to solve the model directly. Instead, one has to resort
to Column Generation (CG). Since CG is the topic of next section we postpone a
few remarks on the use of CG in the routing literature. To conclude this section,
we only mention that, since the seminal work of Desrosiers, Soumis and Desrochers
(Desrosiers et al. [1984]), the SC formulation, in combination with CG, has been the
dominant approach for exact methods for the VRPTW. According to Poggi and Uchoa
[2014], this type of method can consistently solve instances of 200 customers. In Pecin
et al. [2017], two instances of 200 customers each are solved with computational times
of about 1, and 11 hours. Research to improve exact methods for CVRP and VRPTW
is still ongoing (Uchoa et al. [2017]).

3.2 Column Generation

In this section, the main goal is to describe Column Generation and its relation to
Dantzig-Wolfe decomposition. At the end of the section, we briefly overview the use
of CG in the VRP literature.

Column Generation is a useful technique when a mathematical problem cannot
be directly solved due to its high number of variables. Consider the following linear
problem:

[P] min c>x (3.11)

s.t. Ax = a (3.12)

x � 0 (3.13)

where x 2 Rn, a 2 Rm and A 2 Rm⇥n. At each iteration of the simplex method, only
a few variables have non-zero value, i.e., the ones forming the basis. Moreover, many
columns (variables) never even enter the basis. Therefore, the idea behind column

§3.2 Column Generation 15

generation, is to avoid generating and considering these columns. We denote by Aj

a column of problem P, and by cj its cost coefficient. We define J = {1, . . . , n}, the
index set of all columns. The master problem is the following linear program, which
is a reformulation of problem P:

(MP) min Â
j2J

cj xj (3.14)

s.t. Â
j2J

Aj xj = a (3.15)

xj � 0 8 j 2 J (3.16)

In the simplex method, at each iteration, one looks for a non-basic variable j 2 J with
negative reduced cost to enter the basis. If no such column is found, the current basic
solution is optimal. CG mimics the simplex method, with the only difference being
that, in CG, at each iteration, only a (small) subset J of J is available. The master
problem, reformulated using only the subset J is called restricted master problem, and
is denoted by RMP in what follows. We assume that the set J contains a feasible
solution for RMP. If this cannot be guaranteed, then RMP has to be moified to
ensure feasibility. At each CG iteration, RMP is solved, and the dual variables p,
associated with constraints (3.15), are computed. Then, the goal is to identify a new
column with negative reduced cost (note this cannot be in J by linear programming
theory (Bertsimas and Tsitsiklis [1997])). In order to do this, one solves the following
minimisation problem, called the sub-problem:

c⇤(p) = min{cj � p>Aj | j 2 J} (3.17)

The objective in the sub-problem is precisely the current reduced cost of a column.
Because the dual variables are sometimes called shadow prices, the sub-problem is
also referred to as the pricing-problem. If the optimal value of the sub-problem is
non-negative, the optimal solution of RMP is also optimal for MP and therefore for
P. Otherwise, the minimising column is inserted in J and the process starts again.
The CG algorithm has to be initialised with a starting set of columns. Usually, these
are obtained using a heuristic method to “warm start” the solution. Algorithm 1
summarises the CG method.

We denote with z⇤ and z⇤RMP the optimal values of MP and RMP. At each itera-
tion, the current value zRMP of RMP is an upper bound for both quantities. Moreover,
given that the cost of a linear problem cannot be reduced by more than Âj2J xj times
the minimum reduced cost c⇤(p) (Lübbecke and Desrosiers [2005]), a lower bound is

16 Solution Methods

Algorithm 1 Column Generation

1: Fix a starting subset J ✓ J of columns
2: Solve RMP using the columns in J
3: Obtain the associated dual variables p
4: Solve the sub-problem using p
5: if c⇤(p) < 0 then
6: Identify the column j that is the minimiser of the sub-problem
7: Add j to J and go back to Step 2
8: else
9: Stop. The current solution is optimal for MP.

10: end if

derived.
zRMP + c⇤(p)Â

j2J
xj  z⇤MP  z⇤RMP  zRMP (3.18)

The lower bound can be used to compute an optimality gap. Note that, if c⇤(p) = 0,
then z⇤MP = zRMP and optimality follows.

It is clear that a key part in the CG algorithm is Step 4. Indeed, one has to find
an efficient way to generate new columns. Usually, the sub-problem has a special
structure to make it possible to efficiently solve it without enumerating all columns.
A relevant example, coming from the application of CG to VRPs, is provided later in
Section 3.2.4.

3.2.1 Common Issues

There are many potential issues and delicate questions in the implementation of CG.
In the following, we mention some of the issues that typically arise. We refer to
Lübbecke and Desrosiers [2005] for a more detailed presentation.

Managing Columns. First of all, one has to decided how to manage the set J. The
number of generated columns can become very high and consequently slows down
the solution of MP. Options range between keeping all generated columns and only
the ones in the current optimal basis (Lübbecke and Desrosiers [2005]; Bertsimas and
Tsitsiklis [1997]).

Master Problem One typical issue occurs in the solution of the master problem.
A primal solution may have several correspondent dual solutions, especially if the
problem is degenerate. This could lead to a poor choice of the dual solution, which
in turn results in the generation of useless columns. Therefore, it is common to

§3.2 Column Generation 17

solve the dual problem of MP. This also helps to overcome potential numerical is-
sues in the computation of the dual variables and facilitates numerical stabilisation
techniques, which are presented later in the section. Degeneracy is also a problem
to be considered. A typical issue is that newly generated columns do not decrease
the objective as the current solution is degenerate. This can slow down the process
considerably.

Sub-Problem Another matter is the number of columns to be generated at each
iteration and how they are generated. The generation of a column usually involves
solving an integer problem. Several solution techniques, such as dynamic program-
ming, might produce several columns with negative reduced cost. Therefore, one
has to choose whether to insert all of them in J, or choose only the one with smallest
reduced cost. Moreover, the sub-problem does not have to be solved to optimality at
each iteration, since we only need one column with negative reduced cost.

It is very common, to speed up the solution of the sub-problem, to use heuristic,
especially in the first iterations. When these heuristics fail to obtain a column with
negative reduced cost, the sub-problem is solved to optimality. Note that this is also
needed to check the optimality of the current MP solution. The efficient solution of
the sub-problem is arguably the most important step in CG. In Vanderbeck [1994],
a concept of dominance for columns is introduced. This is meant to help excluding
columns that cannot ever be optimal in the sub-problem because there will always be
another column with lower reduced cost. All of these issues are discussed in more
detail in Lübbecke and Desrosiers [2005].

Dual Variable Oscillations. In some applications, dual variables do not converge
to their optimal value smoothly. Instead, they strongly oscillate in the process. This
is regarded a major computational limitation (Lübbecke and Desrosiers [2005]). To
overcome this problem, several stabilisation techniques have been proposed. These
generally involve controlling the evolution of the dual solution, or, slightly modifying
the value of the dual variables when solving the sub-problem. In Marsten [1975], the
authors propose the “boxstep” method. The idea is to limit the variation of the dual
variables in a small box around their current value, so that oscillations are prevented.
In Madsen [1975], it is proposed to automatically adjust the size of the box based on
how well the dual restricted master problem is approximating the Lagrangian dual
problem. This method is called the proximal trust-region method. Other variations
of this type of method have been studied (Amor and Desrosiers [2006]; Du Merle
et al. [1999]).

18 Solution Methods

Tailing-off Effect. Another important issue is the tailing-off effect. In the last itera-
tions, the columns found have negative reduced costs close to zero, causing small or
possibly null improvements in the objective. This is also due to the poor convergence
properties of the simplex method. Other solution methods for the master-problem
can help closing the optimality gap faster. The matter is discussed in more detail
in Lübbecke and Desrosiers [2005]. Moreover, if CG is embedded in a branch-and-
bound algorithm, lower bounds are used to prematurely stop the execution of a node.
Typical lower bounds are lagrangian-type bounds that are based on equation (3.18).

3.2.2 Dantzig-Wolfe Decomposition

We now focus on the relation between CG and the Dantzig-Wolfe decomposition
(Dantzig and Wolfe [1960]). Consider the following linear problem:

(O) min d>x

s.t. Bx = b

Dx = d

x � 0

(3.19)

which we refer to as the original formulation. To keep the presentation concise, we
assume that the solution space of problem O is bounded. This assumption is not
necessary and easily removed (see Lübbecke and Desrosiers [2005]; Bertsimas and
Tsitsiklis [1997]). Nonetheless, it is satisfied by the problems considered in Part II.
We define the following set, X = {x 2 Rn | Dx = d, x � 0} 6= ∆ and let {xj}j2E be
the set of extreme points of X. It is well known that any x 2 X can be represented as
a convex combination of its extreme points. That is,

x = Â
j2E

lj xj where Â
j2E

lj = 1 and lj � 0, 8 j 2 E

We set cj = c>xj and Bj = B xj. By using the above equation, problem O can be
reformulated as

§3.2 Column Generation 19

(DW-O) min Â
j2E

cjlj

s.t. Â
j2E

Bjlj = b (3.20)

Â
j2E

lj = 1 (3.21)

lj � 0 8 j 2 E

This plays the role of the master problem in the previous section. Note that
only the constraints associated with matrix B are part of the new formulation. The
ones associated with D are now included in the definition of the variables. Since
the size of X is usually huge, one resorts to using CG. The columns of this new
formulation are the extreme points {xj}j2E. Therefore, it is essential for the set X
to have a special structure. We denote by a the vector of dual variables associated
with constraints (3.20) and with q the dual variable associated with constraint (3.21)
(which is called the convexity constraint). The sub-problem can be written as:

min{cj � a>Bj � q | j 2 E}

Now that the master and sub-problem are defined, CG can be applied. Note that,
thanks to the convexity constraint, the lower bound (3.18) now takes the form

zRMP + c⇤(p)  z⇤MP  zRMP.

In the literature, the constraints defined by the matrix B are called the complicat-
ing constraints, and define the master problem. On the other side, the ones defined
by the matrix D are used to define the structure of the sub-problem. Mathematic-
ally speaking, the Dantzig-Wolfe decomposition can be described as follows: given
a linear problem, one splits the set of constraints in two parts, a set of complicating
constraints and a set of constraints that are used to define a new search space. This
latter set defines a polygon P in the original search space. Note that every point in
the original search space is contained in P. Since every point in P can be expressed
as the convex combination of its extreme points, the Dantzig-Wolfe decomposition
formulates a new problem using as variables the extreme points of this polygon.
This new formulation involves the complicating constraints, which are used to en-
force feasibility of the solution, and a convexity constraint, used to enforce convex
combinations on the extreme points. Since the number of extreme points is usually
astronomical, CG is used to solve the newly formulated problem. For this whole

20 Solution Methods

process to have some benefits, P must have a special structure that one can exploit to
efficiently find extreme points.

In many applications, the matrix D has a diagonal structure

D =

0

BBBB@

D1

D2

. . .
Dk

1

CCCCA
, d =

0

BBBB@

d1

d2
...

dk

1

CCCCA

where each block Di 2 Rm⇥ni and Âk
i=1 ni = n. If one defines

Xi = {x 2 Rni | Dix = di, x � 0}, i = 1, . . . , k

the Dantzig-Wolfe decomposition can still be used, except that now we have k sets.
Geometrically, polygon P is decomposed1 into k polygons, each one associated with
matrix Di, and with its own extreme points. Therefore, we can split the sub-problem
into k separated sub-problems. The CG algorithm does not change. At each iter-
ation, we solve k sub-problems to identify new columns. Note that not all of the
sub-problems have to be solved at each iteration, as only one column with negative
reduced cost is needed. However, all of them has to be solved to optimality to prove
the master problem optimality (Step 9). Finally, if c⇤i (p) denotes the value of the i-th
sub-problem, the lower bound (3.18) can be rewritten as:

zRMP +
k

Â
i=1

c⇤i (p)  z⇤MP  zRMP.

3.2.3 Integer Problems

Because one needs the dual variables to solve the sub-problem, the master problem
(and thus the original problem P) has to be linear. If the original problem O is integer,
one has to add the integrality constraint

Â
j2E

lj xj 2 Zn

to the problem DW-O. In this case, CG has to be embedded in a branch-and-bound
scheme, obtaining what is called a branch-and-price (BAP) method. If valid cuts are
progressively added to the formulation, sometimes the method is called branch-and-
cut-and-price. One interesting remark is on the branching strategy. This must not dis-

1The polygon P is being projected on the sub-spaces of dimensions ni associated with matrixes Di.

§3.2 Column Generation 21

rupt the structure in the sub-problem, causing any difficulty in efficiently solving the
sub-problem. An example, clarifying this concept, is presented later in Section 3.2.4.

3.2.4 Column Generation Applications in Routing Problems

When applied to VRPs, CG, in combination with the SP (or SC) formulation has
proved very successful. The idea was first applied to VRPTW in Desrosiers et al.
[1984]. The SP formulation (3.7-3.10) can be obtained by applying the Dantzig-Wolfe
decomposition to the flow formulation (3.1-3.6), by moving the subtour elimination
constraints (3.5) into the sub-problems, and by dividing constraints (3.3) and (3.2))
between master and sub-problem. In the master problem, one keeps the requirement
to visit all customers, while in the sub-problem one imposes flow conservation con-
straints. The polygon P, defining the sub-problem search space, is made up by all
feasible routes. The sub-problem takes the form of a (Elementary) Shortest Path Prob-
lem with Resourced Constraints (SPPRC, Irnich and Desaulniers [2005]). SPPRCs are
usually solved by means of a forward dynamic programming labelling algorithm
(Ahuja et al. [1993]). In a nutshell, the idea is to create partial paths starting from the
depot and progressively extend them to other nodes. Paths are eliminated based on
dominance rules. A dominance rule’s job is to make sure one does not keep memory
of sub-optimal paths. More details can be found in Irnich and Desaulniers [2005];
Ahuja et al. [1993].

As mentioned before, since VRPs are integer problems, some care must be taken
when defining a branching strategy for BAP methods. For example, fixing a variable
xr = 0 in the master problem destroys the sub-problem structure, or, to be more pre-
cise, our ability to efficiently solve it. Therefore, typically, the branching is performed
on arcs, even if these are not variables in the master problem. This type of branching
rule can be included more effectively in dynamic programming methods for SPPRCs.

The research on CG for VRPs has focused on possible ways to improve BAP al-
gorithms: valid cuts, sophisticated branching rules and efficient labelling algorithms
have been proposed and studied. One notable issue is the possibility of routes with
cycles when solving the sub-problem. A route is an elementary path, i.e. it does
not contain cycles. However, in the sub-problem, some arcs might have a negative
weight, due to high values of some dual variables. This can lead to the generation
of routes with cycles, since dynamic programming methods do not naturally prevent
this from happening. Although given a path with cycles, one can easily obtain a
route by dropping customers that are visited more than once, this results in lower
performance. One possibility is obviously to modify the labelling algorithm so as to
eliminate partial paths that contain cycles. However, this considerably slows down

22 Solution Methods

the algorithm. Some authors eliminate only 2-cycles (Christofides et al. [1981]), which
has been shown to improve performance. Other authors have introduced a relaxed
concept of “route”. For example, in Christofides et al. [1981]; Fukasawa et al. [2006],
the authors introduce the concept of q-route; that is, a route that is allowed to visit
a customer twice, but only if at least another k customers are visited between the
repeated visits. In a post processing phase, q-routes can be easily transformed in
elementary routes. For a more detailed presentation we refer to Poggi and Uchoa
[2014].

In the literature concerning routing problems, several heuristic methods are based
on CG (Mourgaya and Vanderbeck [2007]; Ceselli et al. [2009]; Bertoli et al. [2017b,c];
Taillard [1999]). A classification of CG-based heuristics can be found in Joncour et al.
[2010]. In Rousseau et al. [2004], the authors propose using Constraint Programming
(Rossi et al. [2006]) to solve the pricing problems.

Finally, it is worth mentioning that CG-based algorithms have successfully been
applied into a variety of routing problems such as: fleet size and mix problems (Choi
and Tcha [2007]; Baldacci and Mingozzi [2009]), SDVRPs (Archetti et al. [2015a]),
dynamic routing (Chen and Xu [2006]), PVRPS (Mourgaya and Vanderbeck [2007]),
IRPs (Le et al. [2013]; Oppen et al. [2010]) and rich VRPs (Ceselli et al. [2009]). Many
papers do not attempt at solving a problem exactly but only propose heuristics based
on the CG algorithm.

3.3 Heuristic Methods

Despite the research effort dedicated to exact methods, these are able to solve con-
sistently only relatively small instances of simple VRPs, and need a long time to do
so. Real-world problems are often very large and characterised by several constraints
that make the problem harder to capture and solve with mathematical programming
tools. For these reasons, much effort has been dedicated to the development of heur-
istic methods. The literature on this topic is vast, and many different methods have
been proposed and studied. In this section, our goal is to give a brief presentation of
some heuristic and metaheuristic methods. We go into more detail only for methods
that are used in Part II. We refer to Gendreau and Potvin [2010] for a general review
of metaheuristics. For surveys focusing on heuristic methods for VRPs, we refer to
Laporte and Semet [2002]; Gendreau et al. [2002]; Laporte et al. [2014]. A survey
on metaheuristics for the VRPTW can be found in Bräysy and Gendreau [2005b]. In
the next sections, we present some of the main references and results for construct-
ive heuristics, improvement heuristics and metaheuristics for the class of VRPs. We
focus in particular on the methods that we use in in Part II.

§3.3 Heuristic Methods 23

3.3.1 Constructive Heuristic

Constructive heuristics are mostly used to provide a starting solution for improve-
ment heuristics. One of first methods proposed was the Clarke and Wright’s Saving
heuristic (Clarke and Wright [1964]). The idea is very simple: one first builds a
route of the form (0, i, 0) for each customer i 2 C. Successively, the algorithm merges
pairs of routes. To be precise, merging a route (0, . . . , i, 0) to (0, j, . . . , 0) results in the
route (0, . . . , i, j, . . . , 0), i.e., routes are connected end to start. The pair to be merged
is chosen, among all pairs that would yield a feasible route, based on the savings
obtained by merging the two routes.

Other constructive method are based on the route-first cluster-second algorithm,
originally proposed in Beasley [1983]. The idea is to first solve a TSP for all custom-
ers and then split the so obtained giant-tour in smaller routes. However, this type of
method is seldom used. A contrasting principle is the cluster-first route-second prin-
ciple. Algorithms of this type attempt to first create clusters of customers and then
solve a TSP for each cluster. Two well-known examples are the Fisher and Jaiku-
mar method (Fisher and Jaikumar [1981]) and the sweep heuristic (Gillett and Miller
[1974]). In the former, a partition of the customers is obtained by solving an as-
signment problem with an objective function approximating the routing cost. In the
latter, clusters are formed based on the polar coordinates of the customers’ location.

Insertion heuristics constitute another type of constructive methods. The typical
insertion heuristic is structured as follows: first it chooses a seed customer, usually
the one farthest from the depot, or the most urgent one (if time windows are con-
sidered), to initialise a route. Successively, customers are chosen and inserted in the
route, one at the time. If no more feasible insertion is found, the algorithm “opens” a
new route by choosing a new, still unrouted, seed customer and the insertion process
starts again. Candidate insertions are evaluated with metrics combining geographical
and other information, e.g., time-related. One of the most successful insertion heur-
istics for the VRPTW is the I1 method, originally proposed by Solomon (Solomon
[1987]). The method evaluates the best insertion of each customer using a metric
accounting for distance saving and time delay due to the insertion. Successively, the
insertion to be performed is chosen using a different metric, that rewards customers
far from the depot. For a more detailed presentation of the I1 heuristic and related
modifications, we refer to Bräysy and Gendreau [2005a]. These types of insertion
heuristic are called sequential, as they build one route at the time. Conversely, there
are parallel insertion heuristics, where m routes are initialised with seed customers.
The routes are then built in parallel, i.e., one can choose the route to insert a new
customer.

24 Solution Methods

3.3.2 Improvement Heuristics

Improvement heuristics attempts to improve a given solution by modifying its struc-
ture. Based on an initial solution to start the improvement process. Classical methods
perform intra-route and inter-routes moves. Most of the intra-route moves were ori-
ginally designed for the TSP. Examples are the 2-opt and l-opt moves (Bräysy and
Gendreau [2005a]; Toth and Vigo [2014]). Examples of inter-routes moves are the
relocate move, where a customer is removed from its original position and relocated
somewhere else; the swap move, where two customers are swapped; or the 2 � opt⇤

move, that is an extension of the 2-opt move involving two different routes (Toth
and Vigo [2014]). Since all of these moves are formally defined, it is possible to ex-
haustively enumerate all the solutions that can be obtained applying one particular
move. Such exploration can be computationally expensive. However, a smart im-
plementation of the exploration can considerably reduce the number of possibilities
to be evaluated. For example, in Savelsbergh [1992], the authors illustrate how to
speed-up the search of the neighbourhood defined by a 2-opt for a TSP solution.

Other types of method are not defined by specific moves but attempt to improve
a solution by alternating methods that partially destroy a solution (i.e., they remove
customers from it), and then repair the solution. A well-known example is the Large
Neighbourhood Search heuristic (Shaw [1998]), which we present in detail later in
this chapter.

3.4 Metaheuristic

Broadly speaking, metaheuristics can be described as high-level procedures that are
used to explore the solution space to find sufficiently good solutions. They often
use standard constructive and improvement heuristics to do so. Metaheuristics are
radically different from classical early approaches in that they allow for deteriorating
and sometimes infeasible solutions in order to better explore the search space and to
escape from local minima. Metaheuristics used to solve VRPs can be broadly split in
two classes: local search-based and population-based methods. The main difference
between the two classes is in the exploration of the search space: local search-based
methods move from one solution to another one, while population-based methods
evolve a set (population) of solutions, by combining or modifying them, with the
goal of progressively generating better solutions. Examples of local search-based me-
taheuristics are: iterated local search (Lourenço et al. [2010]), variable neighbourhood
search (Hansen and Mladenović [2014]), simulated annealing (Nikolaev and Jacob-
son [2010]), tabu search (Glover [1986]), large neighbourhood search (Shaw [1998]),

§3.4 Metaheuristic 25

guided local search (Voudouris and Tsang [2003]), hill climbing and late acceptance
hill climbing (Burke and Bykov [2012]). The class of population-based metaheur-
istics includes: genetic algorithms (Holland [1992]; Lin [1965]; Prins [2004]), scatter
search and path relinking (Resende et al. [2010]), swarm intelligence and ant colony
optimisation (Dorigo et al. [2006]). This division is not rigid and some metaheuristic
try to draw concepts from both classes. One example is the Adaptive Memory Pro-
gramming (Taillard et al. [2001]) approach, which combines Tabu Search (TS) and
genetic algorithms. The combination of population-based algorithms with methods
that exploit specific knowledge of the problem gives rise to memetic algorithms, see
Moscato and Cotta [2010] for more details.

The rest of this section is dedicated to the Large Neighbourhood Search (LNS)
and Adaptive LNS (ALNS) metaheuristics. These are the two metaheuristics used in
the heuristic algorithms presented in Part II.

3.4.1 Local Search and Large Neighbourhood Search

As already stated, local search-based algorithms explore the solution space by mov-
ing from one solution to another. They start from an initial solution s1, which can
be generated randomly or by a constructive heuristic. At each iteration t, the al-
gorithm move from the current solution, st, to another solution, st+1, that belongs to
its neighbourhood N(st). Note that it can happen that st+1 = st. Moreover, deteri-
orating solutions can be allowed, i.e., if we denote by f (s) the cost of a solution s, it
could be that f (st+1) > f (st). The neighbourhoods of a solution and how to move
to a new solution depend on the particular algorithm chosen. Since metaheuristics
do not know whether they have reached the optimal solution or not (unless some
lower bounds are available), there is no mathematically sound stopping criterion.
Hence, most metaheuristics impose a maximum number of iterations or a maximum
execution time.

We now focus on the Large Neighbourhood Search metaheuristic, originally pro-
posed by Shaw (Shaw [1998]). Let us introduce some notation to formally present
the algorithm. We write S to denote the solution space and f (s) to denote the cost
of a solution s 2 S. We assume S is finite. Our goal is to find the optimal solu-
tion, i.e., s⇤ 2 S such that f (s⇤)  f (s) 8 s 2 S. A neighbourhood of s 2 S is
defined as a subset N(s) ✓ S. A local optimum is defined as a solution s such that
f (s)  f (s) 8 s 2 N(s). LNS is a “destroy and repair” metaheuristic; that is, one
defines a destroy and a repair heuristic, denoted by d and r. Given a solution s, the
destroy heuristic removes some customers from s. Conversely, the repair heuristic
re-inserts the removed customers into s. Typically, the destroy method contains some

26 Solution Methods

randomness, so that different customers can be removed every time the method is
invoked. The neighbourhood N(s) is then defined as the set of solutions that can be
obtained by first applying the destroy method and then the repair method. Since the
destroy method could remove several customers, the size of N(s) can be quite large,
which explain the name of the metaheuristic. As an example, a very simple destroy
method randomly selects a fixed percentage of customers to remove while a repair
method could insert the customers using a greedy heuristic. The pseudo-code for
LNS is given in Algorithm 2.

Algorithm 2 LNS
1: Create an initial solution s
2: sbest = s
3: repeat
4: s0 = r(d(s))
5: if AcceptanceCondition(s0, s) then
6: s = s0
7: end if
8: if f (s0) < f (sbest) then
9: sbest = s0

10: end if
11: until stopping condition is met
12: return sbest

While exploring the space, LNS keeps memory of the best solution encountered,
which is returned as the output of the algorithm. The implementation of the Accept-
anceCondition in Step 5 is left open. It is up to the user to decide whether to accept
only improving moves, or to allow for deteriorating solutions. If S is the space of
all feasible solutions, the feasibility of the current solution s has to be maintained
by the operator r. However, in principle, S can contain infeasible solutions. If these
are highly penalised by the objective function the output of LNS will be feasible
(provided the initial solution is feasible). The reason for allowing infeasibility is to
make the algorithm able to escape local minima. However, one of the major advant-
age of LNS lies in the fact that by considering large neighbourhoods it is less likely
to be trapped in local minima. Moreover, as already pointed out, another mechanism
to escape from local minima is to accept deteriorating solutions. Therefore, many
implementations only consider feasible solutions. The typical stopping criteria are a
pre-fixed maximum number of iterations, or a time-out. A more detailed presenta-
tion and several applications of LNS can be found in Pisinger and Ropke [2010].

We now focus on ALNS. This was originally proposed in Ropke and Pisinger
[2006] and constitutes an extension of LNS. The main difference lies in the fact that
ALNS uses adaptive weights to choose amongst several destroy heuristics d1, . . . , dnd

§3.4 Metaheuristic 27

and several repair heuristics r1, . . . , rnr . A positive weight is assigned to each des-
troy/repair method. At each iteration, the destroy and repair methods to be used are
randomly selected according to their weights. A higher weight means a higher prob-
ability of being chosen. One key feature of ALNS is that the weights are progressively
adjusted based on how well the associated heuristics have performed in the past. Let
us denote by wdi the weight associated with destroy heuristic di and similarly for the
repair heuristics. The pseudo-code for ALNS is provided in Algorithm 3.

Algorithm 3 Basic ALNS
1: Create an initial solution s
2: sbest = s
3: wdi = 1, 8i = 1, . . . , nd, wri = 1, 8i = 1, . . . , nr
4: it = 0
5: repeat
6: for M iterations do
7: it = it + 1
8: Sample a destroy heuristic di and a repair heuristic rj
9: s0 = rj(di(s))

10: if AcceptanceCondition(s0, s, it) then
11: s = s0
12: end if
13: if f (s0) < f (sbest) then
14: sbest = s0
15: end if
16: end for
17: Update weights of destroy/repair heuristics
18: until stopping condition is met

The standard acceptance criterion used for ALNS uses the SA metaheuristic. This
means all improving solutions are accepted, whereas deteriorating solutions are ac-
cepted with probability e�D/Tt where D is the cost gap D = f (st+1) � f (st) and Tt

is the current temperature. The temperature is initialised to a value T0 and the de-
creased gradually according to a cooling schedule. One common example is to set
Tt+1 = aTt where a 2 [0, 1]. Usually the initial temperature is set to a value compar-
able with the cost of the initial solution. The idea is that, as the search progresses,
the algorithm accepts deteriorating solutions less and less frequently, converging to
a hill climbing acceptance method.

In Step 8, the destroy/repair methods are selected following a roulette wheel prin-
ciple. This can be easily described as follows: the probability p(di) of choosing

28 Solution Methods

method di is computed normalising its weight, i.e.,

p(di) =
wdi

Ând
i=1 wdi

The same can be done for the repair methods. The adaptive adjustment is done
every M iterations (what is called a segment), corresponding to the inner loop in
Algorithm 3. We illustrate how the weights are adjusted only for the destroy heur-
istics, but the same applies for the repair heuristics. Let us define a cumulative score
Y(di) for each destroy heuristic di. At the start of a segment, we set Y(di) = 0 for
all i = 1, . . . , nd. After a new solution s0 is generated using di, in Step 9, Y(di) is
increased by

• y1, if s0 is the new global best

• y2, if s0 has not been accepted before and it improves the current solution s

• y3, if s0 has not been accepted before and it does not improve the current solu-
tion s but is accepted

The adjustment of the weights has two goals: reward heuristics that improved the
current and best solutions and reward heuristics that help diversify the search. It
is well known that diversifying the search is a key concept in local search-based
algorithms. Finally, in Step 17, the weights are computed as follows:

wdi = (1 � l)wdi + l
Y(di)

tdi

8i = 1, nd

where tdi is the number of times the heuristic di has been called in the last segment.
The decay parameter l 2 [0, 1] controls the sensitivity of the weights to the perform-
ance of the associated heuristics. On one end, if l = 0, the weights are constants.
On the other end, if l = 1, the weights are completely defined by results in the last
segment.

The implementation of the destroy and repair heuristic depends on the particu-
lar problem being solved. Some of the most common destroy methods follow. In
all of them, the number of customers to be removed is randomly chosen at every
invocation.

• Random removal: it randomly selects and removes some customers.

• Worst removal: it removes the customers whose removal most decreases the
objective function.

§3.5 Matheuristic 29

• Related removal: it removes a set of customers that are related to each other.
It first selects a random customer and then ranks the remaining ones using a
relatedness metric.

• Historical node-pair removal: it exploits historical information to decide what
customers to remove. A score is associated with each edge and is updated
throughout the algorithm depending on how often the edge appears in a good
solution. The scores are used to select the customers to be removed.

All of the above operators can be modified to make use of the specific knowledge of
the problem, for example using time-related information in the case of the VRPTW.
Moreover, some randomness can be introduced in the selection of customers. For
example, in the worst removal method, a parameter can be introduced to control
the probability of always choosing the worst customer, or less expensive customers.
These and other destroy heuristics are described in detail in Pisinger and Ropke
[2007]. Repair heuristics are typically greedy or k-regret insertion heuristics. We
refer to Ropke and Pisinger [2006]; Pisinger and Ropke [2010]; Shaw [1998]; Pisinger
and Ropke [2007] for a more detailed presentation of ALNS.

Finally, we mention that in their paper (Ropke and Pisinger [2006]), the authors
added some noise to the objective function to further randomise the search. However,
this is not a recurring feature in ALNS implementations that have been proposed in
the literature.

3.5 Matheuristic

Some methods proposed in the literature hybridize metaheuristics to mathematical
programming methods. These types of methods are sometimes called matheuristics
(see Maniezzo et al. [2010]). We have already mentioned the existence of CG-based
heuristics for routing problems in Section 3.2.4. A classification of such heuristics is
proposed in Joncour et al. [2010]. In this section, we briefly touch upon the subject
of matheuristics without aiming for a detailed presentation. In Boschetti et al. [2009],
the authors define matheuristics as follows:

matheuristics are heuristic algorithms made by the interoperation of meta-
heuristics and mathematical programming techniques.

Two general surveys can be found in Puchinger and Raidl [2005]; Ball [2011].
In Archetti and Speranza [2014], a survey of matheuristics for routing problems is

30 Solution Methods

presented. In Doerner and Schmid [2010], the authors review the use of matheuristics
for rich VRPs.

In Part II, some of the proposed methods may be classified as matheuristics. In
this section, our only goal is to summarise the type of methods that are used. In each
chapter of Part II, we give relevant references. The methods proposed in Chapter 4
are based on CG. Following the nomenclature suggested in Joncour et al. [2010], they
are a restricted master heuristic and a branch-&-price heuristic. In Chapter 5, the
numerical analysis is done using exact methods. However, in order to speed-up the
process, we propose a simple matheuristic to warm-start the proposed MIP. Such
method is based on the SC model for VRPs, presented in Section 3.1.1. The idea is
the following: we run ALNS on the problem at hand and record every best solution
found. At the end of the algorithm we formulate and solve a SC-type model using
the routes that make up the solutions recorded by ALNS. The main idea behind this
algorithm is to use a heuristic method to explore the space and identify promising
regions. Successively, a MIP is used to intensify the search in the explored region.
According to Archetti and Speranza [2014], all methods we develop can be classified
as set-covering/partitioning-based approaches. Many methods proposed in the liter-
ature (Archetti et al. [2008]; Subramanian et al. [2013]; Renaud et al. [1996a]) use this
type of approach for several variants of the VRP. A more detailed presentation of the
methods is given in each chapters of Part II.

Part II

Tactical Routing Problems

31

Chapter 4

Fleet Design

4.1 Introduction

Road freight transport is a fundamental part of every country’s economy. According
to Rodrigue et al. [2006], it is not unusual for transportation costs to account for
20% of the final cost of a product. In Australia, the transportation sector employs
1.6% of all workers and, between 2014 and 2015, generated an annual revenue of $52
billion (Bankwest [2015]). However, the profit margins have not changed since 2006
(Bankwest [2015]). The growth in economy and consumption increases the need for
efficient transportation. The competition faced by transportation providers increases
the pressure for reduced costs.

Parallel to the increase in the demand and productivity is the growth in the num-
ber of freight vehicles. Companies face fleet selection and dimensioning problems at
all decision levels. A major goal both for transportation providers and goods owners
is to strike the optimal balance between costs due to the acquisition and maintenance
of a fleet, costs of daily operations and costs due to the subcontracting of the deliver-
ies. Market-related information such as transportation rates, vehicle costs, and future
expected demand play a key role in fleet sizing decisions.

Fleet design is the problem of determining the size and composition of a fleet of
vehicles to carry out the daily delivery operations of a company. The problem can be
informally stated as follows: given

• the daily demand of a set of customers over a reasonably long period of time,
i.e., the horizon,

• a “catalogue” of truck types with different characteristics, e.g., capacity, run-
ning costs, compartments, etc., and

• a model describing the constraints and costs incurred in running the daily de-
livery operations,

33

34 Fleet Design

identify the most efficient fleet to satisfy the demand across the whole horizon.

Most freight forwarding companies face strong fluctuations in the market which
result in a varying demand over time. On the one hand, they have to ensure that
enough resources will be available to cover a day’s orders. On the other hand, the
fixed costs of vehicles (e.g., insurance and amortisation costs) force them to keep their
fleet small in order to reach a high utilisation of the available vehicles. Usually, only
a part of the upcoming requests is fulfilled by owned transportation resources. All
the remaining orders are outsourced or, alternatively, processed using hired vehicles.
When designing a fleet for a long time-horizon, companies should consider these
options, as they allow them to keep the fixed costs low without diminishing the
capability of providing an efficient delivery service.

Even though most companies build their fleet slowly over a long time-horizon,
there are situations where a company needs to design an entire fleet, or a sub-part
of it, from scratch. Examples include fleet down-sizing after a merger, or fleet ac-
quisition in response to signing a new, large contract. A company may also want to
determine the ideal fleet, so as to have a “target fleet” to guide future purchases.

In the operations research literature, fleet design is mainly studied either as a
strategic or as an operational problem. In the former case, the horizon is very long
and the data is characterised by high uncertainty. In such cases it is difficult to
account for future routing costs, hence these are usually neglected, or approximated
according to delivery area size (Jabali et al. [2012]), and the focus is on the fleet
decisions only. If routing information is not available, a common approach is to
estimate, e.g. through a probability distribution, the demand over a certain horizon.
In these cases, the goal is to design a fleet able to satisfy, possibly with a certain
probability, the demand. On the other side, a large part of the literature considers
fleet design from an operational point of view, that is, as a simple extension of the
classic VRP, where the fleet is not given as input but is a decision to be made. In
this case the time horizon is rarely longer than a day, due to the complexity of the
problem. We will refer to this class of problems as Fleet Size and Mix (FSM, Golden
et al. [1984]; Toth and Vigo [2014]; Baldacci et al. [2008]). In a tactical setting, the
situation is different. More reliable data is usually available and it is desirable to
consider routing costs as these will represent a significant part of the cost of operating
the fleet. To the best of our knowledge, there is no paper attempting to study the
tactical version of fleet design on a multi-day horizon considering both the possibility
of acquisition and hiring of vehicles.

The rest of the chapter is structured as follows: in Section 4.2 we illustrate the
real-world applications that led us to focus on fleet design problems. In Section 4.3,
we give a formal description of the problem studied. Successively, in Section 4.4,

§4.2 Motivation 35

the relevant literature is reviewed. Section 4.5 is devoted to the description of the
models and the solution methods proposed. In Section 4.6 we give a detailed account
of the algorithms implementation. Experimental results and analysis are presented
in Section 4.7. We finally conclude summarising the contributions contained in this
chapter and pointing out some future research directions.

The material in this chapter has been presented in Bertoli et al. [2017b], where the
tactical fleet design problem was introduced, and in Bertoli et al. [2017a], where the
possibility of hiring vehicles was included.

4.2 Motivation

In a previous collaboration with an industrial partner, our research group faced a
real-world fleet design problem. The problem and the solution method proposed
are described in Kilby and Urli [2016]. In this paper, the authors formulate the
problem as multi-day FSM and propose an approach based on a pre-processing step
that identifies a set of Pareto dominant days. The idea is that, if a fleet can cover
a “big-demand” day, then it will also be able to cover all “smaller” days. This is
possible in the specific problem presented because a dominance rule, i.e., a partial
order between days, can be established. While the approach proved to be viable for
the problem at hand, three major issues can be identified: scalability, efficiency and,
more importantly, generality. The scalability issue arises from the fact that the whole
multi-day problem associated with the Pareto front has to be solved at once in order
to guarantee that, on each day, a subset of the same fleet of vehicles is used. Given
that the single-day problem is already NP-hard, solving a multi-day variant for a
large Pareto front can easily become intractable.

An additional inherent problem is the efficiency of the fleet. Since the fleet pro-
duced will be tailored for big days only, the authors have shown there will often be
a high number of idle vehicles per day, which is not desirable.

A more fundamental problem is generality, that is, the problem-specific pre-
processing technique cannot be extended to other routing problems. For example,
this approach does not work when compatibility constraints are considered. The fleet
for the Pareto days could, and in fact often will, be infeasible for days with smaller
demand but with more compatibility constraints. The situation is even more com-
plex when time related constraints, such as time windows, are considered. Defining
a dominance rule for rich VRPs is not trivial, if at all possible. Moreover, the method
cannot take into account the possibility of hiring extra vehicles or subcontracting.

For all these reasons, we wished to develop a different, more general approach
to fleet design. In particular, we were presented with a new real-world fleet design

36 Fleet Design

problem, which is described in Section 4.7. Even if the goal is still to design an effi-
cient fleet, the underlying routing problem, i.e. the set of operational constraints, is
different from the problem considered in Kilby and Urli [2016]. In fact, the technique
proposed in Kilby and Urli [2016] cannot be applied to such a problem. An attempt
to extend it was done, but with poor results. In Section 4.5.6, we formally describe
the technique presented in Kilby and Urli [2016], why it cannot be easily generalised
and elaborate on how the new method we proposed can be seen as an evolution of
such a technique.

The methods we developed to solve this new problem are very general and can
be applied, under some assumptions, regardless of the particular underlying routing
problem. Therefore, this chapter presents such methods from a general point of view.
We assume, however, that we are able to have a suitable solver, able to solve the FSM
problem for a single day. This is clarified when presenting the solution methods. In
Section 4.7, we describe the real-world application motivating this study.

4.3 Problem Formulation

The problem considered in this chapter is that of designing a fleet that minimises the
sum of operational costs and fixed costs over a multi-day1 planning horizon while
satisfying the demand of all customers, and meeting all the operational constraints on
each day. We allow purchase, sale, and rental of vehicles. The only subcontracting
option we consider is to hire extra vehicles. Hiring an extra vehicle can result in
a fixed price and/or a variable price that depends on the usage of the vehicles2.
Therefore, the fixed costs are the sum of purchase costs, fixed prices of vehicles’
rental, minus the profits coming from the sale of vehicles. The operational costs are
the costs related to routing the vehicles. These may be dependent on the vehicle type
and on whether the vehicle is owned or hired.

Formally, let D be the set of days, or horizon, that we are considering, and T be
the set of all available vehicle types. Each vehicle type t 2 T has a fixed cost bt, which
may aggregate, for instance, acquisition and maintenance costs. Once acquired, a
vehicle can be used every day: we pay bt if we use the vehicle once, regardless of
how many days the vehicle is used subsequently. We denote by Et the number of
vehicles of type t 2 T that we already own. We will refer to both the vehicles that we
buy and that we already own as the owned vehicles. It is also possible to sell some
of these vehicles. The revenue from selling a vehicle of type t is st. For consistency,

1As stated in Section 2.3 the term “day” should be understood to indicate a period, i.e.,“a convenient
unit of time”.

2We will see that some other subcontracting options can be easily included in our model. However,
for sake of clarity we postpone this to later sections.

§4.3 Problem Formulation 37

we assume st < bt as otherwise it would be convenient to buy and then sell vehicles.
We assume that all of the fleet changes are made at the beginning of the horizon.
Therefore, a vehicle which is sold cannot be used on any day. On the other hand, a
vehicle that is bought is considered available on every day.

We also assume that the horizon is divided into P shorter consecutive intervals (of
days) Pp, p = 1, . . . , P, that represent the minimum hiring time period, e.g. a week.
With a slight abuse of notation we also denote by P the set {1, . . . , P}. The collection
{Pp}p2P is a partition of D where each set contains consecutive days. For example,
if D represents a month, the intervals could be weeks or single days. On a given
interval Pp we can hire a vehicle of type t 2 T by paying a fixed price htp. We assume
that htp � bt

|Pp|
|D| so that the rental is in general less convenient than purchase if we

intend to use a vehicle for the whole horizon. This is a reasonable assumption, as
hiring vehicles is used as a way to accommodate extra demand on a given day, rather
than the primary option for transportation. If this is not the case, then the problem
can be reformulated by looking at the different intervals separately, and considering
only the hired vehicles. Note that, for each vehicle type t 2 T, the operation cost of
using a hired or owned vehicle for the same route could be different. This happens,
for example, if a hired vehicle has a higher cost per unit of distance or if a vehicle is
hired at a flat daily rate.

On each day d 2 D we have to satisfy the demand of a given set of customers Cd.
To keep the notation simple, we differentiate between requests of the same customer
over different days, and we consider them as different customers. In detail, given
two different days d1, d2 2 D, there might be customers i 2 Cd1 and j 2 Cd2 such that
i and j share the same location. However, they are considered as different customers.
This way, a customer is naturally associated with a unique day. We denote the set of
all customers on the horizon by C = [dCd.

We also are given a (possibly rich) set of constraints, e.g., time windows, pickup
and delivery constraints, compartments constraints, vehicle-commodity compatibil-
ity constraints, etc. One key aspect of our approach is that it does not depend on
the specific day-to-day constraints considered. The only limitation is that we do not
consider inter-route constraints such as synchronisation of routes3. We denote by
VRP(d) the (rich) vehicle routing problem for day d 2 D.

We also assume the existence of a solver for the FSM extension of VRP(d), that
is able to choose an efficient fleet, and efficient routes, to serve the customers in Cd

according to the operational constraints that apply.
The goal is to find a fleet that minimises the sum of the operational and fixed

costs. Note that by fixed costs we mean both the costs and revenues due to acquisition

3The reason for this requirement is given in Section 4.5

38 Fleet Design

(bt), sale (st), and hiring (htp) of vehicles.
The problem described is very realistic as it considers sale, purchase, rental of

vehicles, the existence of a prior fleet, but also, and especially, because the routing
constraints are not specified.

4.4 Related Work

Now that we have stated the problem, we review the relevant literature. In Sec-
tion 2.3, we already discussed how transportation and fleet design problems are
classified based on the three decision levels: strategic, tactical and operational. De-
tailed reviews on the literature of all three levels can be found in Hoff et al. [2010]
with particular focus on industrial applications. Since our work can be placed at the
tactical level, we focus mostly on this level.

As pointed out in Hoff et al. [2010] and Salhi and Rand [1993], there is not much
work focusing on tactical fleet design problems. We quote Hoff et al. [2010]:

A large part of the literature focuses on operational questions, along the line
of “what to do given a certain fleet mix and a given set of service request”. This
is in contrast to the more tactical, or strategic, “which vehicles should we acquire
to best solve our daily routing problem for the next half year”. There is a big
absence of papers addressing these more tactical questions, and also on how to
make robust or resilient solutions.

We refer to Hoff et al. [2010]; Baldacci et al. [2008] for a survey on fleet design
from respectively, an industrial and an academic point of view. We only focus on few
exceptions that can be considered belonging to the tactical level.

In Salhi and Rand [1993], the authors note the same lack in the literature and de-
velop an advanced heuristic. Their solution method is based on a route perturbation
procedure. The overall performance is good and the algorithm proved to be stable
and able to handle complex constraints but is not tested on problems with a long
horizon. In Yoshizaki et al. [2009], a real-world fleet design problem is considered.
The horizon is a week-long. The authors solve the problem by applying a scatter
search-based heuristic. However, they do not solve the whole horizon at once but
each day separately. The daily solutions can then be used to inform decisions for the
whole horizon.

As we noted before, a first paper attempting to solve on a year worth of data
is Kilby and Urli [2016]. We already presented the main idea of this paper and we
postpone a deeper discussion to Section 4.5.6.

§4.4 Related Work 39

Most of the existing literature considers fleet design as an extension of the classic
VRP, where the fleet composition is not an input to the problem, but rather a decision
to be made. There are several variants of this extension depending on whether the
fleet is unlimited or not and the cost are vehicle dependent or not (see Baldacci et al.
[2008]; Toth and Vigo [2014] for surveys on this class of problems).

Due to its huge search space, the FSM is much harder to solve than its VRP coun-
terpart. For this reason, the FSMs models rarely extend beyond considering a single
representative day of demand data, or model not-so-rich VRP variants. Perhaps the
maximum demand, or the 80th percentile is chosen. However, this approach cannot
adequately represent the variability in demand day to day and season to season. In
addition, rich constraints may make a good solution for one day infeasible for an-
other. For example, a good solution for a “big day” scenario may use many large
trucks. But vehicle compatibility constraints, which forbid large vehicles visiting
some customers, may make that solution expensive, or even infeasible, for a day
with more moderate demand.

Another method, typical of stochastic optimisation (M. Gendreau [2014]), is to
analyse the demand patterns of each customer, and fit a probability distribution
function. We can then use this to determine the probability of needing to visit a
customer, and the probability of exceeding capacity. However, in both cases, this
in effect imposes a “grand tour” constraint: customers, if they require service, are
visited in the same order every day. Moreover, if time windows are present, the
grand tour must observe the time windows in each scenario (or in expectation), fur-
ther constraining the routes. If such a “grand tour” constraint is not present in our
problem, enforcing it can lead us to very sub-optimal solutions. Another stochastic
optimisation approach is to choose a set of “representative” scenarios, and evaluate
the objective on these scenarios. This approach is the closest analogy for the method
described here, although we use all days as scenarios, and then use factors emer-
ging from the mathematical analysis to reduce the scenarios actually evaluated. Two
important advantages of our approach over these two approaches concern efficiency
and feasibility. On one side, the risk in choosing the representative days is to under-
represent easy and small days, this leads to big fleets, efficient on big days but having
a high number of idle vehicles on small days. On the other side, choosing a subset
of representative scenarios can become problematic when attributes other than de-
mand are considered. As we point out in this work, if compatibility constraints, time
windows or other operational constraints are included in the model, it is harder to
choose a set of good representative scenarios that guarantee the fleet will be enough
(feasible) for all scenarios. This may lead to an overuse of hired vehicles, which is
sub-optimal.

40 Fleet Design

Finally, we focus on the literature considering the problem of balancing owned
vehicles against the subcontracting of customers to external transportation providers.
This problem arises in different areas of the literature. In Loxton et al. [2012], the
authors consider the problem of designing a fleet over a multi-period horizon, con-
sidering also the option of hiring trucks. The problem is seen as a stochastic one,
where the number of vehicles needed on a period is a random variable. The goal is
to determine a fleet composition so that the expected sum of fixed costs and hiring
cost is minimised. In their model, hiring trucks can be seen as a recourse action.
This type of approach can be seen as belonging to the strategic level. We highlight
that the authors do not consider operational costs. In Chu [2005], the authors intro-
duce the so called Integrated Operational Transportation Problem (IOTP). The goal
in the IOTP is to route a fixed fleet and determine which customers will be served
by the fleet and which will be subcontracted to external carriers for a fixed price per
customer. The authors solve the problem in a hierarchical fashion by firstly splitting
the customers into two sets. The first set is composed of the customers that will be
served by the owned fleet, for which they solve a standard routing problem. The
second set is composed of the customers to be served by hired trucks, for which the
cost is easily computed. A step forward is taken in Kopfer and Wang [2009] where
the IOTP is extended to the Vehicle Routing with Forwarding Problem (VRFP). The
main difference lies in the fact that there is more than one type of subcontracting
option. The authors develop a MIP and solve rather small instances of the problems,
although these are sufficient to show the potential savings due to mixing different
subcontraction options. Moreover, they point out the importance of tactical decisions
when designing a fleet, and the importance of considering the option of subcon-
tracting customers. A survey on the IOTP and VRFP can be found in Kopfer and
Krajewska [2007].

The IOTP and VRFP can be seen as a generalisation of the FSM problem. In the
latter, there is no distinction between hired and owned vehicles, and one needs only
to determine the number and type of vehicles to include in the fleet. In the former
problems, not only does one have to decide which type of vehicles, but also which
customer to subcontract and, in the VRFP, also what type of subcontracting option
to choose. However, the problems considered in the literature are mostly limited
to one day of operations and are of rather small size. In Kopfer and Wang [2009]
the authors consider the problem on a multi-day horizon. However, the instances
are very small and they are solved considering each day separately, therefore not
tackling the problem as a whole.

§4.5 Solution Methods 41

4.5 Solution Methods

In this section, we present three solution methods for the described problem. Before
presenting the methods in detail, we try to give a brief overview of the solution
framework. The problem we are considering naturally decomposes over the days
of the horizon. What tie the different days together is the constraint to have same
fleet and the associated fixed cost. The main idea is to decompose the problems
over the days using a CG framework (see Section 3.2). The sub-problems’ role is
to generate new operational solutions for each day. On the other hand, the master
problem chooses which daily solution to use, and the best overall fleet compatible
with such daily plans. In the following, we describe in details what we mean by daily
solutions and provide mathematical models for the master and the sub-problems.

4.5.1 Fleet Generation

Given two vectors q, w 2 RT, we define FSM(d)(q, w) to be the FSM problem where

• the operational constraints and the operational costs of the vehicles are the ones
given by VRP(d);

• for each vehicle type t we have two corresponding vehicles types: one for the
owned vehicle and one for the hired vehicle;

• the fixed prices are given by the two vectors q, w 2 RT for, respectively, owned
and hired vehicles;

• we have unlimited availability of vehicles.

Briefly, FSM(d)(·, ·) is a FSM problem where we are duplicating each vehicle type
and differentiating on its status: owned or hired. We assume we have available a
solver for the FSM(d)(·, ·) problem.

Assumption 1. We have available a solver for the FSM extension of VRP(·). We
denote such solver as FSM-solver.

For now, we leave the choice of such solver open. In Section 4.7, when presenting
the real-world application we use to run our tests, we also describe the FSM-solver
that we use.

For each day d 2 D, we denote by Xd the set of all solutions of FSM(d)(·, ·). Note
that Xd does not depend on the fixed costs. We refer to the elements of Xd as routing
plans. A routing plan s for day d 2 D is identified by its operational cost (i.e., the
operational costs deriving from routing both the owned and hired vehicles), cds, and

42 Fleet Design

by the number of owned and hired vehicles of type t that we denote by, respectively,
Ft

ds and Ht
ds. We give an illustrative example of this concept in Figure 4.1.

D

3

1

5

1

2

1

5

(a) Solution 1

D

3

1

5

1

2

5

1

(b) Solution 2

D

3

1

5

1

2

5

1

(c) Solution 3

Figure 4.1: Suppose we have only two types of vehicle, with capacity 20 and 5,
respectively represented by the thick and thin lines. Continuous and dotted lines
are for owned and hired vehicles respectively. Solutions 1 and 2 have only owned

vehicles while solution 3 has one hired vehicle.

Let us introduce some notation. For each t 2 T, the integer variables F+
t and F�

t

represent, respectively, the number of vehicles of type t we buy and sell. Moreover,
for each p 2 P, the integer variable Htp represents the number of vehicles of type t
we hire in interval p.

For each day d 2 D and each s 2 Xd we introduce a binary decision variable xds

representing whether that routing plan is actuated or not. We model the problem as
follows:

(F) minimise Â
t

F+
t bt � Â

t
F�

t st + Â
t,p

Htp htp + Â
d,s

cds xds (4.1)

subject to Â
s

xds = 1 8 d 2 D (4.2)

Â
s

Ft
ds xds  F+

t � F�
t + Et 8 d 2 D, t 2 T (4.3)

Â
s

Ht
ds xds  Htp 8 p 2 P, d 2 Pp, t 2 T (4.4)

F�
t  Et 8 t 2 T (4.5)

F+
t , F�

t , Htp � 0, integer 8 t 2 T, p 2 P (4.6)

xds 2 {0, 1} 8 d 2 D, s 2 Xd (4.7)

The objective function (4.1) has two components modelling fixed and operations
costs. The fixed costs component is in turn divided into the cost for buying, revenue
from selling, and cost of hiring, vehicles.

Constraints (4.2) mean that we can only select one routing plan for each day.

§4.5 Solution Methods 43

Constraints (4.3) ensure that the overall fleet, as a result of acquisition and sale of
vehicles, has enough vehicles of type t to actuate the chosen routing plan each day.
Similarly, constraints (4.4) ensure that we hire enough vehicles over a given interval,
so that each day of that interval we can actuate the chosen routing plan. Constraints
(4.5) mean we cannot sell more vehicles than we actually have in the fleet. Constraints
(4.6) and (4.7) enforce the integrality of the solution.

Model F is a Set Partitioning formulation for the LHFSM. Note that, since we are
solving a minimisation problem, we can replace constraints (4.2) by Âs2Xd

xds � 1,
making F a Set Covering formulation. However, note that in this particular case
overcovering cannot happen, as choosing more than one routing plan per day is sub-
optimal. Moreover, we can replace constraints (4.7) with xds � 0, integer. Finally,
note that if we consider single days as intervals for hiring, constraints (4.4) can be
removed as Htp = Âs2Xd

Ht
dsxds, 8p, t. In Bertoli et al. [2017b], we studied the same

problems only considering the purchase of vehicles. The model presented in Bertoli
et al. [2017b] can obtained from F by setting Et = F�

t = Htp = 0 for all t 2 T, p 2 P.

Note that even the simple enumeration of all routing plans for a given day is
computationally challenging. Since we also need to know the operational cost cds

of a routing plan, it is clear we cannot list all possibilities for all days. This issue is
solved with the use of column generation. Let us denote by LF the linear relaxation
of F and by pd, qtd and htd the dual variables of constraints (4.2), (4.3) and (4.4). For
an interval p 2 P and a day d 2 Pp, the reduced cost of a variable xds is

cds + Â
t2T

Ft
ds qtd + Â

t2T
Ht

ds htd � pd. (4.8)

The goal of the sub-problem is to generate a column whose reduced cost is negat-
ive. The variables in the sub-problems are the cost cds and the values Ft

ds, Ht
ds, which

uniquely identify a column. The dual variables of the master are considered as input
parameters in the sub-problem.

If we exclude term pd, which is constant, the sub-problem becomes exactly prob-
lem FSM(d)([qtd | t 2 T], [htd | t 2 T]), i.e., a FSM problem where the fixed costs are
given by the dual variables of the master problem. Note that, if operating an owned
or hired vehicle of a certain type has the same cost, then we can reduce the dimen-
sion of the sub-problem by considering only one type based on whichever between
qtd and htd is smaller. However, if hired and owned vehicles have different opera-
tional costs, then they have to be considered as two completely distinct types in the
sub-problem. Note that model F is the result of a Dantzig-Wolfe decomposition ap-
plied to a standard flow formulation of the problem if we take the solutions spaces
of FSM(d)(·, ·) as the sets Xi in Section 3.2.

44 Fleet Design

The first method we propose is a simple CG-based heuristic. We initialise LF with
a column for each day by solving FSM(d)(0, 0). In other words, the first column for
a day d corresponds to the sub-problem where qtd = htd = 0 8 t. We then run column
generation until a termination criterion is met (in the tests we will use a time limit).
Once the execution of CG is over, we solve the integer version F with the columns
found so far. Following the nomenclature proposed in Joncour et al. [2010], the CG-
based heuristic we propose is a restricted master heuristic. We name this method Fleet
Generation (FG).

One weakness of the formulation F, is the fact that we are duplicating the types of
vehicles in the sub-problem. The FSM problem is known to be NP-hard and adding
vehicle types can only bring more symmetry to an already hard problem. We try to
address this in the more sophisticated methods following.

In Bertoli et al. [2017b] we proposed, in addition to the same restricted mas-
ter heuristic, a branch-&-price approach. However, the results indicated that this
requires significantly more computational time and the gain in quality over FG is
minimal. Therefore, in order to keep this presentation concise, we do not consider
the branch-&-price algorithm here.

4.5.2 Route Generation

An alternative to generating entire routing plans, as in the model F, is to first generate
routes, and then assign vehicles types (either hired or owned) to each route. This
reflects the fact that, to some extent, a route can be efficient regardless of whether
an owned or a hired vehicle is used. Indeed, the strength of the approach described
here is that it avoids exploring the search space of routes for hired vehicles, and then
exploring exactly the same space of routes with owned vehicles. This can be seen as
avoiding a kind of symmetry within the route space.

The idea is to generate potential routes as a sub-problem, and then assign vehicle
types in the master problem. Dual variables from the master problem will give the
“value” of customers, leading to a sub-problem that can be seen as an elementary
shortest path problem. As we mentioned in Section 3.2.4, applications of CG to
classical VRPs generally follow this type of approach.

In order to keep our presentation as general as possible, we make only one re-
quirement for the underlying daily problem: that it has no inter-route constraints.
In CG applications to routing problems, a variety of intra-route constraints, such as
time windows, and compatibility constraints can be easily handled while solving the
sub-problem. However, inter-route constraints, such as synchronisation constraints
(Drexl [2012b]), must be modelled at the master problem level. We therefore impose

§4.5 Solution Methods 45

this restriction in order to have a consistent master model. Later (in Section 4.7),
we will see that some inter-route constraints, such as split deliveries or delivery of
multiple commodities can be readily accommodated.

Again, for ease of presentation, let us assume, for now, that we only have one
commodity and vehicles can perform one trip per day. We introduce the following
notation.

• R represents the set of all possible routes on the horizon, a route r is associated
to only one type t 2 T and one day d 2 D;

• Rd represents the set of routes on day d 2 D;

• Rtd represents the set of routes of type t 2 T on day d 2 D;

• air is a binary parameter representing whether customer i is visited by route r;

• xb
r and xh

r are binary variables representing whether route r is performed with
an owned or a hired vehicle, respectively;

• cb
r and ch

r are the costs of route r when this is executed with an owned or hired
vehicle, respectively;

The model follows.

(R) minimise Â
t

F+
t bt � Â

t
F�

t st + Â
t,p

Htphtp + Â
r
(cb

r xb
r + ch

r xh
r) (4.9)

subject to Â
r

air(xb
r + xh

r) = 1 8i 2 C (4.10)

Et + F+
t � F�

t � Â
r2Rtd

xb
r 8 d 2 D, t 2 T (4.11)

Htp � Â
r2Rtd

xh
r 8 t 2 T, p 2 P, d 2 Pp (4.12)

xb
r , xh

r 2 {0, 1} 8 r 2 R (4.13)

F+
t , F�

t , Htp � 0, integer 8 d 2 D, t 2 T, p 2 P (4.14)

The objective (4.9) is the sum of the fixed costs and the operational costs; the
only difference with model F is in how the operational cost is computed. Constraints
(4.10) require that each customer is visited by one vehicle. Constraints (4.11) are
analogous to constraints (4.3) for model F. They ensure the overall fleet is big enough
to execute all the chosen route of a certain type in a specific day. Similarly constraints
(4.12) make sure we hire enough vehicles on each interval. Finally constraints (4.13)

46 Fleet Design

and (4.14) enforce integrality of variables. Similary to model F, the sign of constraints
(4.10) can be changed to �, making model R a covering model. It is well known that
from a solution of a covering model we can easily obtain a solution of a partitioning
model by dropping requests.

Analogously with model F, it is not practical to enumerate all the variables
(columns) of this model and, therefore, we rely on CG to solve it. We call LR the
linear version of R and p̂i, q̂td and ĥtd the dual variables of, respectively, constraints
(4.10), (4.11) and (4.12). Given a route r 2 Rtd, the reduced cost of variables xb

r and
xh

r are, respectively

cb
r � Â

i2Cd

airp̂i + q̂td and ch
r � Â

i2Cd

airp̂i + ĥtd (4.15)

If we ignore q̂td and ĥtd, which can be considered constant, the sub-problems become
elementary shortest path problems with resources constraints. As we discussed in
Section 3.2, typically, these problems are solved by means of labelling algorithms
(Ahuja et al. [1993]). However, labelling algorithms do not suit every variation of
these problems, especially the ones derived as sub-problems of rich VRP’s formula-
tions. As an example, when dealing with multiple compartments and multiple com-
modities, CG approaches have not been very successful: in Archetti et al. [2015a];
Mirzaei and Wøhlk [2016], the use of CG is limited to specific scenarios and tested
only on quite small instances. The effectiveness of the method mainly depends on
the strength of the partial path dominance rule. If this is able to eliminate many
partial paths, then a labelling algorithm is likely to be very efficient. However, if the
dominance rule is weak, the algorithm lists almost all the possible paths. Thus, CG
cannot be effectively applied, for now, to all the variants of the VRP.

One other possibility is to view the sub-problem as a generalisation of the prof-
itable tour problem (PTP, Tsiligirides [1984]; Archetti et al. [2014b]). In this problem,
one has to design a route (tour) which respects all the operational constraints but
does not have to visit all the customers. However, visiting a customer is rewarded
with a (customer dependent) revenue. The goal is to minimise the operational cost of
the route minus the total revenue. In this interpretation, the dual variables p̂i can be
seen as the profits. It can be easier to modify the available FSM-solver to account for
profits and to relax the constraint that enforces service to all customers than to design
an effective labelling algorithm. If this can be done, then, by considering only one
vehicle of a given type t on a fixed day d, we can solve the associated sub-problems.

Similarly, to what we did previously for the FSM-solver, we assume the following

Assumption 2. We assume we have available a solver able to solve the sub-problems

§4.5 Solution Methods 47

(eq 4.15). We denote such solver as R-solver.

In Section 4.7, we opt for the second choice and modify our FSM-solver since our
problem presents many complicating constraints that cannot be easily accommod-
ated with a labelling algorithm.

The restricted master problem is initialised as follows: we solve the FSM(d)(0, •)

problem for each single day d 2 D, i.e., we do not consider hired vehicles. This is
done using the FSM-solver. Then we take as starting columns all the routes com-
posing the best solution found on each day. We then run CG until optimality or a
termination criteria is reached (in the simulation it will be a time limit). Once the CG
execution is stopped we solve R with the columns obtained so far. We denote this
method as “route generation” (RG). This is another example of a restricted master
heuristic.

Note that there are still two different sub-problems for hired and owned types
if the operational costs are different. Unfortunately, we are not able to eliminate a
priori one of the two. This is due to the fact that different operational costs lead to
different cb

r and ch
r for the same route r and that q̂td and ĥtd are, in general, different.

However, this does not pose a particular difficulty. Indeed, we can solve one sub-
problem first, and we move on to the second only if the first has not produced new
variables4. Moreover, note that a route is not associated a priori with an owned or
hired vehicle but this is a decision variable in the model. Therefore, for example,
once generated for a sub-problem related to owned vehicles, the route can still be
executed by a hired vehicle.

While this approach breaks the symmetry present in the FG methods, one po-
tential problem is that it could be slow. Route generation is a successful method
in routing problems and there exist applications on problems with multi-day hori-
zon (Le et al. [2013]). However, the horizon usually considered is small (a few days
or a week) and the method has never been applied to a rich problem with a very
long horizon and multiple vehicles types. We will study this potential issue in the
experiments.

4.5.3 Refinement method

The third method combines FG and RG in a two-phase method. The intuition is that
the FG process produces a large number of routes quickly, and that these can act as
an effective pool to initialise the RG process. Furthermore, our observation that a
route is effective regardless of whether it is performed by an owned or hired vehicle

4Which problem to solve first is discussed later in Section 4.6

48 Fleet Design

means that we can ignore hiring options for the FG process. Ignoring hiring also
eliminates the “route symmetry” problem discussed in Section 4.5.2.

We therefore first solve the original problem, without consider hiring as an op-
tion, using the FG method. This can be done by setting the variables Htp to zero in
model F. Every distinct route generated during this process is saved. Once we reach
a termination criterion we move to the second phase. Here, we take all the routes
generated in the first phase and use them to initialise model R. We can then proceed
to apply the RG method. In other words, we use FG on a smaller problem to initialise
RG. We denote this method as “refinement method” (RM).

4.5.4 Model Extension For Rich Routing Constraints

In Section 4.7, we apply the described methods to a routing problem that presents
complicating constraints such as split deliveries, multiple commodities and multiple
trips for each route. In this sub-section, we show how these can be easily incorpor-
ated in model R. Note that model F does not need any modification as the constraints
are part of the underlying sub-problems, whose definition we left open. To support
split deliveries, we simply allow parameters air in model R to be continuous rather
than binary. The modification needed to accommodate multiple commodities and
multiple trips per vehicle are straightforward as well. Suppose we have U different
commodities to deliver. Instead on having only one coefficient air we consider U
coefficients airu, u = 1, . . . , U, one for each commodity. Analogously, we decouple
constraints (4.10) in Y different constraints, one for each commodity

Â
r2R

airu(xb
r + xh

r) = 1 8i 2 C, u = 1, . . . , U.

Furthermore, suppose that each vehicle can perform Y possible trips, where each
trip has to happen within a given time window, morning and afternoon in our case.
Note that by a “trip” we define a route happening in a defined time window. It is
not important whether the vehicle can return to the depot to refill, as this is seen as
part of the route. We define Rtdy, instead of Rtd, as the set of routes of vehicles of
type t, on day d, performing trip y. We only need to decouple constraints (4.11) and
(4.12) over the different trips. For example, constraints (4.11) become

Et + F+
t � F�

t � Â
r2Rtdy

xb
r 8 d 2 D, t 2 T, y 2 Y

Note that the sub-problems in method RG are not affected by any of these modifica-
tions.

§4.5 Solution Methods 49

4.5.5 Including other subcontracting modalities

We now want to briefly present how it would be possible to introduce new type of
subcontracting option into our problem. In Section 4.3, we assumed that we can
only hire extra vehicles. In Chu [2005], the authors consider what they call less-than-
truckload (LTL) requests. This means that we can “trade” a customer to an external
carrier, i.e. we pay a fixed price to an external carrier that is now responsible to
deliver the customer’s demand. Each customer may have a different price based on
distance or other factors.

This can be easily introduced in model R by introducing new variables yi for
each customer i 2 C representing whether a customer is served with a hired or
owned vehicle or by an external carrier. The only changes to make are in the objective
function, that now has to account for this new source of cost, and in constraints (4.10),
whose right hand sides would now be yi.

If it is possible to modify the FSM-solver to account for profits, it is also possible
to include LTL orders in the model F. Suppose that the LTL fee for a customer i is
denoted as fi. We can add Âi2Ci

fi to the objective in the sub-problem and set the
profit of customer i 2 Cd equals to � fi. The costs due to LTL deliveries would be
now included in the operational cost of a routing plan and would not be included in
the master problem.

Another subcontracting option introduced in Kopfer and Wang [2009] is to pay
a fixed price for a route which will be executed by an external carrier. The route
may be subject to some distance limitation. This type of constraints falls in the
definition of VRP(d), which we left open. If the underlying solver supports them,
then it is immediate to include this subcontracting option in the problem by setting
the operational cost of a hired vehicle to zero and considering only the fixed prices
htp.

4.5.6 An Extension of the Pareto Approach

In this section, we illustrate why the pre-processing technique presented in Kilby and
Urli [2016] cannot be extended to other problems with more complicated constraints.
We also elaborate on how the mathematical programming framework that we are
using allow us to gain some insights on how to extend the idea of identifying a
subset of critical days.

For sake of clarity, let us assume the underlying routing problem, VRP(·), has the
following features: 2 commodities to be delivered, 2 types of truck, one dedicated to
each commodity, and capacity constraints only. Let us denote by q1

i , q2
i the demand

of the two commodities of customer i 2 C . A day d can be associated with the

50 Fleet Design

pair (q1
d, q2

d) = (Âi2Cd1
q1

i , Âi2Cd2
q2

i). The pre-processing technique is based on the
following dominance rule: consider two days d1, d2 2 D, if q1

d1
� q1

d2
and q2

d1
�

q2
d2

, then any fleet that can be used on day d1 can also be used on day d2. This
dominance rule defines a partial order. If we identify the Pareto front, i.e., the set
of non-dominated days, we can solve the fleet design problem only using the days
in the front. Note that, to solve the problem on the Pareto front we need to solve a
multi-day FSM. The so obtained fleet is guaranteed to be feasible on every day. This
is true only because we are only considering capacity constraints. If we consider time
windows or driver-customer compatibility constraints in VRP(·), there is no easy way
to define such a dominance rule. One could hope that these constraints do not play
an important role and leave the dominance rule unchanged. Unfortunately, we tried
this approach but it led to a significant number of unfeasible days.

In order to have a clearer presentation let us reformulate model F without consid-
ering any prior fleet and without considering hired vehicles, i.e., we are only allowed
to buy vehicles. The model then becomes

minimise Â
t

F+
t bt + Â

d,s
cds xds

subject to Â
s

xds = 1 8 d 2 D

Â
s

Ft
ds xds  F+

t 8 d 2 D, t 2 T (4.16)

F+
t � 0, integer 8 t 2 T

xds 2 {0, 1} 8 d 2 D, s 2 Xd

By using the same notation for the dual variables, we can write the dual model
of the linear relaxation of the model above

maximise Â
d

pd

subject to Â
d

qtd  bt 8 t 2 T

pd � Â
t

Ft
ds qtd  cds 8 d 2 D, s 2 Xd

pd 2 R 8 d 2 D

qtd � 0 8 d 2 D, t 2 T

We recall that the dual variables qtd can be interpreted as daily fixed costs. The
dual problem “distributes” the costs bt over the days with the goal of maximising

§4.6 Implementation Details 51

the sum of the lower bounds (pd in this context) on each day’s total cost. If, for a
fixed d 2 D and t 2 T, Constraint (4.16) is not tight, the Complementary Slackness
Theorem implies that qtd = 0, and, therefore, the vehicle is “free” in the sub-problem.
Intuitively, the variables qtd tell us how much a vehicle of type t is worth on day d
if we can only use the columns generated so far. In fact, at each iteration of CG,
there will be only a few days having some of the qtd that are non-zero. Note that,
due to how we initialise the model, sub-problems with all free vehicles do not need
to be solved again. This information points us to the days that need other routing
plans (columns) in order to reduce the overall fixed costs and it is of fundamental
importance for an efficient implementation as is discussed in next section. In some
sense, the dual variables identify a subset of critical days. Notably, this set changes
at each iteration, as the insertion of new variables in the master changes the dual
problem. However, the main advantage of our decomposition is that we can solve
each day independently. Oppositely, in Kilby and Urli [2016] one has to solve a
multi-day FSM, considerably increasing the complexity of the method.

4.6 Implementation Details

In this section, we focus on a few issues and details related to the implementation of
the algorithms.

4.6.1 Theoretical caveats.

Let us only consider FG and model F. The fact that the sub-problem is solved heurist-
ically creates a theoretical issue that, however, can be easily addressed in the imple-
mentation. The heuristic might find the same column (routing plan) multiple times
with different routing costs. This is because the heuristic might find a better way
to route the same fleet. If the cost is lower than the previously found one, we just
replace the existing column with the newly found one. Otherwise we discard it.

4.6.2 Termination Criterion

In cases where optimality is too hard to obtain, it is common to prematurely stop
the CG algorithm when a termination criterion is met. A common approach is to
compute a lower bound, usually based on a Lagrangian relaxation, and stop the
execution whenever the gap between the linear objective and the lower bound is
smaller than a pre-specified threshold. In our case it is not easy to compute, in a
reasonable time, a reliable lower bound as this requires a good lower bound on the

52 Fleet Design

FSM problem on each day. For these reason, and to allow a fair comparison between
the various methods we chose to run each algorithm for a limited amount of time.

4.6.3 Sub-problem Selection

One important aspect to consider is the number of problems to be solved at each
iteration. Note that in the column generation phase, we do not need to solve all
the sub-problems, but only enough to generate a new column. The number of sub-
problem is higher for model R than for model F. However, in the latter, the sub-
problems are much harder. The number of the sub-problems to be solved is an
issue to consider, especially given that, according to our experiments, 99% of the
algorithmic time is spent solving the sub-problems. In the experiments, we solve
only a limited number of sub-problems, denoted by r, at each iteration. Therefore,
we try to solve r sub-problems. If we find a column with negative reduced cost,
we insert it in the master problem and move on to the next iteration. If no such
column is found, we solve another r sub-problems. After carrying out preliminary
parameter tuning, we decided to set the parameter to r = 10 for the algorithm FG,
and r = 20|T| for RG.

A related issue is the selection of the sub-problems to be solved. A standard
approach would be to compute a lower bound for the reduced costs. The variables
with lowest lower bounds would be the ones that are more likely to have a negative
reduced cost. Unfortunately, we do not have an efficient method to compute a reliable
lower bound for any of the models LF and LR. Instead, the selection methods we
use, which is similar for both models, exploit the information contained in the dual
variables. At each iteration, we rank the sub-problems based on the current and past
value of the dual variables, and then we chose the first r sub-problems in the rank.

Let us first illustrate the method for the FG algorithm. To keep the notation
simple, let us assume that we can only buy vehicles, i.e. model F can be rewritten
as done in Section 4.5.6. However, including the hired vehicles in the formula is
straightforward. The aim is to diversify the search by avoiding solving a sub-problem
similar to ones we have solved before. The idea is to compare the current value of
dual variables qtd with the values used in the past iterations where we solved the
sub-problem for day d, and choose the sub-problem with the greatest difference. To
achieve this, we rank the days using a weighted total variation. We fix a day d 2 D
and denote by eXd all the routing plans s 2 Xd that we have generated so far. For
each s 2 eXd, we denote by qs

td the value of the dual variables at the iteration where
we generated the routing plan s, and by |Fds| the total number of vehicles in routing

§4.6 Implementation Details 53

plan s. The score of a day is then given by the following formula

Â
s2 eXd

Â
t2T

(qtd � qs
td)

2 Ft
ds

|Fds|
1

| eXd|

Namely, we take the total variation with respect to the variables qs
td, weighted by

the importance that vehicle type t had in the routing plan s. Alternatively, one could
define the score as the minimum variation (i.e., replacing the sum over all routing
plans with a minimum) or simply consider the sub-problems whose dual prices are
the highest. However, experiments showed that taking the total variation produced
better results.

For the RG algorithm, the ranking rule is slightly more involved. In this case we
estimate the reduced costs and rank the sub-problems in ascending order. Let us
introduce some notation. Each sub-problem can be associated with a triplet (d, t, v)
with d 2 D, t 2 T and v describing if the vehicle is owned (b) or hired (h). For a given
day d and a given type t, let G(d, t) be the average number of customers per route,
taken over the routes in Rtd that we have generated so far. Similarly, we denote by
Qb(d, t) and Qh(d, t) the average of the cost of routes executed with owned and hired
vehicles, respectively. We define F(d) = Âi2Cd

pi/|Cd|, i.e., the average of the current
value of the dual variables for the customers on day d. We estimates the reduced cost
of sub-problems (d, t, b) and (d, t, h) (eq (4.15)) as follows :

gb(d, t) = Qb(d, t)� F(d) ⇤ G(d, t) + qtd

gh(d, t) = Qh(d, t)� F(d) ⇤ G(d, t) + htd

We are estimating each term in the formulas (4.15) by, respectively: the average
of previous routes’ cost, the average of previous routes’ number of customers and
the average of current dual values p. One possibility would be to select the r sub-
problems (d, t, v) with lowest gv(d, t) and solve these. However, we observed that
this leads to the selection of the same types of vehicles in all iterations. Therefore,
for each day we average over the vehicle types and obtain, for each of the pairs (d, b)
and (d, h), the scores

gb(d) = Ât2T gb(d, t)
T

gh(d) = Ât2T gh(d, t)
T

54 Fleet Design

Note these quantities are associated with pairs (d, v) and do not depend on
vehicles type. We select the r̃ pairs with lowest scores. Each pair (d, v) is associ-
ated with |T| sub-problems (one for each vehicle type). After preliminary parameter
tuning, we set r̃ = 20. Therefore, the number of sub-problems solved at each iteration
is r = 20|T|.

4.7 Computational Analysis

In this section, we aim at analysing the performance on the proposed methods. We
first present the real-world problem that motivated this work. This is the particular
instance of VRP(·) we use in all our experiments. The data was provided by a
business partner. The context is a fuel distribution problem in northern Australia.
We briefly describe the underlying (rich) VRP, the FSM-solver and R-solver we use
to solve the sub-problems in FG and RG.

Routing problem and solver The underlying routing problem can be summarised
as follow: every day we have a set of requests to be satisfied by a fleet starting at
and returning to a single depot. Each request is characterised by i) the demand,
which involves two different commodities, ii) a time window (morning, afternoon,
or the whole day), iii) a service time which depends on the quantity being delivered,
variable for each customer, and, possibly, iv) compatibilities between customers and
vehicles types . Each customer can be visited more than once, hence this is a “split
delivery” problem. There are 7 types of vehicles available. Each type is characterised
by a) a different number of compartments for which a maximum capacity for each
fuel type is given (each fuel type can have a different density and a compartment
can be filled by only one product at a time), b) a fixed annual cost, c) a variable
operation cost, comprising a per-unit time cost (representing, e.g., salary), and d) a
per-unit distance cost (representing, e.g., fuel cost). Each vehicle can perform one
or more trips which are constrained to be in a certain time windows (morning and
afternoon). During a working day, a vehicle can return to the depot to refill (i.e., the
problem also features vehicle re-use).

Available Data We have at our disposal one month of data for a distribution centre
(DC). To better analyse the algorithm, we modified the data to create two instances.
Since a lot of customers require service on several days, it is possible to perturb the
history to create more days. This results in 2 different multi-day instances, which
we denote by DC1 and DC2, each of 25 days, with the number of customers each
day varying in the range [17, 52]. Solving a single multi-day FSM across the whole

§4.7 Computational Analysis 55

Figure 4.2: On the left we plot the number of requests for each day. On the right,
the total demand for each day for the commodities (the y-scale is in hundreds of
thousands). Note that we are plotting both instances next to each other, hence the

horizon includes all the 50 days.

horizon would involve solving problems with more than 600 customers. In order not
to compromise the data, we tried to maintain the original variation of total demand
and the number of customers per day. Figure 4.2 gives a visual representation of how
the daily scenario varies across the planning horizon. We did not have available data
for hired vehicles. Therefore, we created two different scenarios for each instance,
modelling a situation where hiring is cheap and one in which it is expensive. In
the first, labelled “low”, we set ht = 3

2 bt and we retain the original per-unit distance
and time cost equal. In the second, labelled “high”, we set ht = 2bt and we set
the per-unit distance cost of the hired vehicles to 1.7 of the owned vehicles’ one. In
both scenarios the hiring periods are the single days. Summarising, we now have 4
difference instances, DC1-low, DC1-high, DC2-low, DC2-high. There is no prior fleet
in the instances.

FSM-solver A detailed description of the problem can be found in Urli and Kilby
[2017]. The authors solve it by means of a Large Neighbourhood Search (Shaw
[1998]; Ropke and Pisinger [2006]) heuristic where the “repair” phase is implemen-
ted through Constraint Programming (Rossi et al. [2006]). Their heuristic was de-
veloped to support fleet size and mix and it is the FSM-solver we use to solve the
sub-problem. Their method supports also a multi-day scenario. However, in Urli and
Kilby [2017], the authors test it on a set of much smaller instances, pointing out that
multi-day FSM scenarios are quite hard to solve. The instances considered here are
significantly larger in size. We attempted to apply the solver on a multi-day scenario,
but, already when considering few days, the solver struggles to find the first feasible
solution and the quality of the final solution is quite bad. We do not go into details
of the FSM-solver implementation; we refer the interested reader to Urli and Kilby
[2017], where a better analysis of the FSM-solver is proposed.

56 Fleet Design

R-solver In order to be able to solve the sub-problem in the RG method we modify
the FSM-solver to include profits for each customer. This is a straightforward modi-
fication since the only differences are in how the objective is computed and in the
removal of the constraint enforcing satisfying completely every customer. We de-
cided to opt for an easy modification of the FSM-solver rather than developing a
labelling algorithm for two main reasons: first, we are not trying to solve the prob-
lem to optimality. In column generation applications to routing problems heuristics
are often used in order to generate columns faster. Labelling algorithms are invoked
only when these methods fail and one needs to prove that there are no more columns
with negative reduced costs, therefore optimality of the master is reached. A second
reason, as we mentioned before, is the difficulty in defining a good dominance rule
for the extensions of paths in the labelling algorithms. Having multiple commodities,
multiple compartments which are not specifically dedicated to given commodity and
considering split deliveries makes the definition of such rule very hard and labelling
algorithms not a viable option.

Time Limit and Other Parameters In order to have a fair comparison we run FG,
RG and RM in single-threaded mode with a time limit of 4 hours. In the following,
we do not report computing times of the algorithm. This is because in all of the
experiments, the computational time is close to the time limit, and the differences
are significant. All the algorithms were coded in Python 2.7.10. The FSM-solver
described in Urli and Kilby (2017) was coded in C++ and called as an eternal execut-
able. We used the Python API of Gurobi 6.5 (Gurobi Optimization (2015)) to solve
all models. Since the FSM-solver is stochastic, in order to have a robust result, we
run each method 5 times on each instance and then take the average of the different
runs. This is done for all the experiments.

4.7.1 Approach Validation

We first aim at validating the algorithms proposed, and, more generally, the idea
of applying CG to a decomposition of the problem. In this section, we consider a
simplified version of the problem where we are only allowed to buy vehicles, i.e.
Et = Htp = 0 for all t 2 T, p 2 P. This is needed in order to compare with other
methods that were developed for this particular case. We do not expect this to affect
run times to a great extent.

Ideally, we would be able to compare the proposed approaches with other meth-
ods from the literature. We used the method proposed in Kilby and Urli [2016] to
produce a fleet based on the days in the first “Pareto front”. However, due to incom-

§4.7 Computational Analysis 57

patibility constraints, this fleet was infeasible for many days in the test data. Since
Kilby and Urli [2016] does not offer a method to overcome this limitation, we are
unable to compare its performance.

Instead, we compare the performance of the proposed methods to other two
standard approaches. The first, naive, approach, described in Urli and Kilby [2017],
consists in solving each day separately with amortised fixed costs, i.e., bt/|D| (the
overall fixed costs of the vehicles divided by the number of working days), then tak-
ing the fleet that is effectively the union of the fleets of vehicles obtained by solving
each day separately. In other words, if [Ft

d | t 2 T] is the fleet obtained for day d 2 D,
the overall fleet is defined as Ft = maxd Ft

d, 8t 2 T. The authors name it Union fleet
(UF) method. We remark that the UF approach treats every day as a separate entity
and therefore is clearly sub-optimal. However this is the approach that is used in the
literature to solve multi-day FSM problems (see for example Yoshizaki et al. [2009];
Kopfer and Wang [2009]).

The second approach, that attempts to replace the approach of Kilby and Urli
[2016], is to formulate a “big day” scenario. The logic here, often employed in prac-
tice, is to form a fleet that can meet the demand on the day with largest demand,
and hence will be able to meet the demand on all other days. The method, which we
name Subset Algorithm (SA), is illustrated in Algorithm 4. This is based on the fact
that the FSM-solver described in Urli and Kilby [2017] supports the solution of FSM
problems over several days.

Algorithm 4 Subset Algorithm
1: Fix m � 1
2: Rank the days based on the total load to be delivered on the day, in decreasing

order.
3: Consider the first m days in the rank and denote them by d1, . . . , dm.
4: Set the fixed cost of type t to bt m

|D| for all t 2 T
5: Solve the FSM problem for the first m days and name the so obtained fleet F,
6: for d 2 D such that d 62 {d1, . . . , dm} do
7: adjust F to accommodate vehicles’ compatibilities of day d
8: Solve d using F
9: if d is infeasible with F then

10: Set the routing cost of d to infinity
11: end if
12: end for
13: Return z(m) = bF + Âd2D(routing cost on d)

The SA solves a “restricted” fleet design problem on the first m biggest days using
amortised fixed costs, obtaining a fleet F. Then, it proceeds to solve the routing
problem on all the other days. Note that, for a fixed day d /2 {d1, . . . , dm}, the fleet F

58 Fleet Design

is not guaranteed to be feasible. In an attempt to try to prevent infeasibility, we adjust
F in Step 7. This is done only if vehicles’ compatibilities imply we need to add some
vehicles to F. As an example: if F has no vehicle of type t but there are customers (in
day d) which can only be served by vehicles of type t, we add the minimum number
of vehicles of type t needed by F. This might not be enough to prevent infeasibility,
as for example the placement and time windows of the customers could make a day
infeasible even for the adjusted fleet, however there is no trivial way to prevent this
possibility. If there is one infeasible day with the given fleet F we simply set the
routing cost to infinity. The fixed costs used to solve the restricted fleet design are
normalised (Step 4). However, the original vector b is used to compute the fixed costs
of the final solution (Step 13). Note that there is a trade-off in increasing the number
of considered days m. For small values of m, the produced fleet might be too sub-
optimal and probably not feasible on some other day. For higher values of m, the fleet
has a higher degree of guaranteed coverage, though Step 5 becomes computationally
challenging. We run the algorithm SA with m = 1, . . . , 5 to give SA a good chance of
finding the best possible results it can reach. This way we enable a fair comparison.
However, except for one run, the best results were found with m = 3.

For the UF method, we run the FSM-solver on each day for 20 minutes, which is
enough to reach convergence. This amounts to a total of 500 minutes. We run the SA
algorithm, for a fixed m, allowing 20m minutes to the multi-day FSM-problem solve
in Step 5 and 20 minutes to every other day. Finally, we only take the best results of
the runs with different values for m. Clearly, we are giving UF and SA an advantage
in terms of computational time. Despite this advantage, the results will show that
our methods outperform both UF and SA.

Given the computational difficulty of the problem, we do not have a lower bound
available with which to compare our results. Moreover, we do not have the current
solution adopted by the company. However, we can compute an “approximate lower
bound” that will serve as a lower bound for comparison purposes. This is calculated
assuming we can change the fleet each day. While this bound still relies on the
accuracy of the heuristic technique, it does provide a conservative bound on the
best possible solution that can be obtained using the given FSM solver. It therefore
highlights the efficacy of the different approaches in choosing a fleet for the overall
problem. We lower bound the operational and fixed costs separately. As per the
operational cost, we run the FSM-solver, with fixed costs set to zero, 5 times on each
day for 20 minutes (each run) and take the best run for each day. By summing the
best results of all days, we obtain an approximate lower bound for the operational
cost. We then compute a (formal) lower bound on the fixed costs as follows. Assume
we have only one commodity, given a day d, any routing plan s 2 Xd must satisfy

§4.7 Computational Analysis 59

the constraint

Â
t2T

QtFt
ds � TDd

where Qt is the capacity of vehicle type t and TDd is the total demand of day d.
Therefore, the fixed costs must satisfy the following inequality:

Â
t2T

F+
t bt � min

(

Â
t2T

btF+
t : Â

t2T
QtF+

t � max
d

TDd, F+
t � 0 8t 2 T

)
.

The right hand side is readily computable, thus we have obtained a lower bound
for the fixed costs. Note that, if the underlying VRP has more than one commodity,
the lower bound can be improved by adding a constraint for each commodity. This is
also the case for other constraints, such as compartments or compatibilities between
products and vehicles. The sum of the lower bounds on operational and fixed costs
is taken as the overall approximated lower bound.

instance method cost s operational fixed veh idle gap (%)
UF 785727 27030 440847 344880 30.4 18.7 43.1
SA 697739 18297 413939 283800 24.6 10.7 27

DC 1 FG 605781 9866 420141 185640 16.2 5.1 10.3
RG 615971 2756 421271 194700 17.1 5.48 12.1
RM 572783 2895 414083 158700 14.1 4.28 4.3

UF 613004 9470 364214 248790 22.2 14.0 34.2
SA 588488 9250 342458 246030 21.4 9.5 28.8

DC 2 FG 499821 5727 348892 150930 13.4 4.4 9.4
RG 505045 3212 349195 155850 14.5 4.8 10.5
RM 484004 3860 346754 137250 12.9 4.1 5.9

Table 4.1: Comparison of all methods. In these runs we do not consider the possibility
of hiring vehicles.

We ran each method on both instances DC1 and DC25. We recall that we are
not considering hired vehicles in this section. In Table 4.1, we report the average
overall cost (cost) across the 5 runs, its standard deviation (s), a breakdown of the
cost in its components (operational and fixed costs), the average number of vehicles
(veh) in the fleet and the average number of idle vehicles per day (idle). Lastly, we
report the average gap with respect to the approximated lower bound. The costs are
approximated to the nearest integer.

It is easy to see that all the three proposed methods outperform both UF and SA.

5As previously mentioned, each method is run 5 times with its associated time limit.

60 Fleet Design

Moreover, they are far more stable, as showed by the lower values of s. As expected,
the main saving is in the fixed costs since both UF and SA yield bigger fleets with a
higher average of idle vehicles per day.

A particularly good result is the fact that our methods are able to produce solu-
tions within 5% of the approximated lower bound. We stress that the lower bound is
computed by taking the best operational cost each day (i.e., each day the fleet used to
obtain such cost can be different), and a fleet satisfying only the capacity constraints.
This particularly highlights the efficacy of the approach described.

Moreover, not surprisingly, we observe that RM always produces the best result.
A further comparison among FG, RG and RM is presented in next section.

It is also interesting to see that the average number of idle vehicles is even further
reduced, in proportion, than the average number of vehicles. When designing a fleet,
a key indicator used by fleet managers is the vehicle utilisation. A rule of thumb is
to keep the utilisation rate higher than a target percentage. Our approach does not
consider this criterion explicitly in the objective. However, it is clear from Table 4.2
that the reduction of idle vehicles is a consequence of the efficiency of the method.

4.7.2 Methods Comparison

We now wish to compare the three proposed methods when hired vehicles are in-
cluded. We run FG, RG and RM on the instances including hired vehicles. In
Table 4.2, we report the results. The column labelled “hired” reports the average
number of hired vehicles per day. Note that, when computing the average number
of idle vehicles per day, only owned vehicles are considered.

A few remarks are in order. It is evident that introducing the possibility of hiring
make the problem computationally harder. The solutions obtained by FG and RG
on DC1-high, and the one obtained by FG on DC1-low, are worse, in terms of costs,
than the ones the same methods obtained for DC1, i.e., when no hiring is allowed.
However, we note that, despite the higher costs, the number of vehicles in the fleet
and the number of idle vehicles are reduced significantly. It is easy to observe that
RM outperforms the other methods consistently. The difference is made in the fixed
costs, even though the operational cost is reduced as well. All three methods obtain
fleets of similar size, but the composition and the use of hired vehicles changes,
significantly influencing the fixed costs. RG performs better than FG on the low
instances, and vice versa, FG performs better than RG on the high ones. However, by
looking at s and the average idle vehicles, RG seems more reliable than FG. Notably,
both RG and RM have a very high utilisation rate, i.e., the average of idle vehicles
per day is kept extremely low.

§4.7 Computational Analysis 61

instance method cost s operational fixed veh idle hired
FG 628786 8699 436822 191964 15 3.83 0.89

DC1-high RG 665113 1444 435942 229171 14.2 2.75 2.96
RM 581638 12403 423868 157770 13 2.1 0.4

FG 629758 3793 440281 189477 11 2.62 3.62
DC1-low RG 562835 2547 422988 139847 7.2 0.8 3.34

RM 548200 6859 417537 130663 8.2 0.57 2.1

FG 492968 9472 359067 133900 9.6 1.95 1.05
DC2-high RG 518074 581 355350 162724 10 1.93 2.1

RM 475731 3327 355225 120506 10 1.54 0.31

FG 492510 6766 357251 135259 5.8 1.64 4.02
DC2-low RG 458698 1811 347481 111218 5.4 0.38 2.94

RM 451361 1969 346481 104880 5.6 0.25 2.42

Table 4.2

4.7.3 Importance of Hiring Option

We now analyse the importance of the possibility of hiring vehicles and how this can
help reducing the costs. In order to do so we compare the results on both instances
DC1 and DC2 with and without the possibilities of hiring vehicles. Since RM is the
most performing of the algorithms we proposed, for these experiments, we use only
algorithm RM. In Table 4.3, we report the results. In the instances DC1 and DC2,
hiring is not allowed.

instance cost s operational fixed veh idle hired
DC1 572783 2895 414083 158700 14.1 4.28 -
DC1-low 548200 6859 417537 130663 8.2 0.57 2.1
DC1-high 581638 12403 423868 157770 13 2.1 0.4

DC2 484004 3860 346754 137250 12.6 4.1 -
DC2-low 451361 1969 346481 104880 5.6 0.25 2.42
DC2-high 475731 3327 355225 120506 10 1.54 0.31

Table 4.3: The effect of hiring vehicles. RM algorithm

It is evident that introducing the possibility of hiring vehicles has a tremendous
impact on the fleet composition and utilisation, regardless of the hiring being more or
less expensive (high/low scenarios). The fixed costs are reduced without significantly
changing the operational costs. Moreover, the size of fleet is reduced and the number
of idle vehicles is decreased substantially.

62 Fleet Design

4.7.4 Impact of Route-based Model

We want to analyse the advantage of introducing a second phase in RM. Let us recall
that RM is split in two phases. In the first, we use model F to generate a good set
of fleets. In the second, we initialise model R with all routes generated in the first
phase, and proceed to solve it by means of CG. Note that both model F and R are
standard Set Covering problems.

During FG, the routes are recorded, though they are not explicit in model F. In the
transition from the first to second phase, the recorded routes are used as the initial
route set. In the second phase, we generate new routes through the solution of the
sub-problems. Note that, in this second phase, we are actually solving a restricted
version of model LR. At the end of the second phase we solve the integer model
R. In this section, the focus is on the advantage of transitioning from a fleet-based
model to route-based one. Therefore, after the first phase, we initialise and solve
the integer model R, directly, and name this step route-reuse. By looking at how
much the various statistics are reduced by this single step, we obtain an insight on
how useful and efficient is the transition from fleet-based model F to route-based
model R. In Table 4.4, we report the percentage change of some statistics (the total,
operational and fixed costs, as well as fleet size, average of idle vehicles per day) due
to the route-reuse step. For example, referring to instance DC1-high, when reusing
the routes generated in the first phase of RM, the total cost decreases by 6.35% while
the operational cost increases by 2.04%.

instance D-cost D-operational D-fixed D-veh D-idle
DC1-high -6.35 2.04 -17.58 -26.88 -63.85
DC1-low -10.25 0.40 -27.37 -54.26 -92.02
DC2-high -5.6 2.5 -19.3 -27.4 -66.08
DC2-low -8.68 1.31 -26.03 -56.76 -92.822

Table 4.4: The effect of the route-reuse step. For each statistic, we report the percent-
age decrease we observe after solving the associated R model. All numbers in the

table are percentages.

We can observe a consistent behaviour. The total and fixed costs are reduced
considerably, sometimes at the expenses of the operational cost. Moreover, the fleet
size and the number of idle vehicles are dramatically reduced. Note that in the first
phase of RM we do not consider hired vehicles.

To make a stronger point, we apply the same idea to the FG method. We take all
the routes generated by the method and solve the associated R model only once, to
test the effect of reuse of the routes. The difference here is in the fact that FG considers
hired vehicles, while the first phase of RM does not. The percentage changes due to

§4.8 Contributions and Conclusion 63

the route-reuse step are reported in Table 4.5. In addition to the previous table, we
report the change of the average of hired vehicles per day. The results show the
same behaviour highlighted before. The decrease of the various statistics is lower.
For the high instances, this is due to the fact that when considering hired vehicles,
FG performs worse, and the pool of routes generated might not be as good as the
one generated when FG does not consider hired vehicles. Conversely, for the low
instances, considering hired vehicles allows FG for a better optimisation of the fixed
costs than the first phase of RM. In both cases, the route-reuse step makes a better
use of the hired vehicles. Accordingly, all statistics, including the operational cost,
are improved.

We can conclude that the transition from fleet-based model to route-based model
is very beneficial. This is also a consequence of how effective the first part is in
generating a good set of routes. The combination of the two phases proves to work
efficiently.

instance D-cost D-operational D-fixed D-veh D-idle D-hired
DC1-high -2.44 0.45 -9.02 -16 -50.39 46.59
DC1-low -3.85 -12.7 -0.04 -16.36 -65.7 -10.04
DC2-high -1.08 -4.63 0.24 -2.08 -27.69 -15.08
DC2-low -4.36 -14.86 -0.37 -10.34 -83.55 -18.74

Table 4.5: The effect of the route-reuse step when hiring is included in the first phase.

4.8 Contributions and Conclusion

Strategic and tactical-level decisions in the context of transportation can have a sig-
nificant impact on the day-to-day operations, and can make the difference between
running a profitable business or not.

In this chapter, we analysed the problem of designing a fleet of vehicles for a long
time horizon. We considered both hired and owned vehicles. The single-day version
of our problem can be seen as the Integrated Operational Transportation Problem.
In the literature fleet design over a long horizon has been widely overlooked. In
this chapter, we proposed a general approach to tackle the problem. Our approach
is independent of the particular routing problem considered on a single day and
leverages the power of a FSM-solver and, possibly, a shortest path problem solver,
each of which can be chosen by the user.

We proposed three column-generation based heuristic methods, and compare
their performance on a real-world instance. We showed how the method combin-
ing column-generation at two levels – fleet and route – outperforms the others. We

64 Fleet Design

compared the results obtained with, and without, the possibility of hiring external
vehicles. The simulations show that considering the option of hiring extra vehicles
can be beneficial, and reduce the overall costs significantly. We also discussed how
other subcontracting options can be added to the problem without major change. To
the best of our knowledge, very few papers consider fleet design at a tactical level,
and no published paper considers tactical fleet design problems with the possibility
of hiring vehicles. Moreover, papers considering FSM problems with external sub-
contracting focus on single day problems, i.e. they focus on the operation level of the
problem, and simple versions of the underlying routing problems.

We believe that the problem as formulated in this section is quite general. The
multi-day nature of the problem, the possibility of considering rich version of the
underlying VRP and the possibility of considering several subcontracting options
make our models realistic and applicable. In particular, including the possibility
of hiring extra vehicles, as proven by the computational experiments, brings great
flexibility to the fleet design process.

Future work could involve the inclusion in the model of inter-day constraints,
such as consistency in service over the horizon or scheduling decision. However,
these are problem-dependent and less general than the features already considered.
The two papers on which this chapter is based (see Chapter 1) conclude our work
on fleet design. Nevertheless, the two inter-day constraints mentioned above are the
topic of the next two chapters.

Chapter 5

Tactical Routing Strategy: Splitting
Deliveries

5.1 Introduction

In the CVRP, we wish to provide goods or a service to a set of customers using a
known fleet. The planning horizon is usually a single day. The quantities to be
delivered to the set of customers is given as input, and the goal is to find a set of
routes that minimises the routing cost. As introduced in Section 2.3, part of the
literature is dedicated to variants considering a longer planning horizon that can
comprise several days1. In practice, there are situations where a certain flexibility on
the delivery dates is possible. For example, it might be convenient for the transport
company to partially fulfil an order on the requested day (in order to ensure the
customer has sufficient stock) but return the next day to complete fulfilment. In
these cases it is of interest to investigate the possible savings that could come from
considering the delivery dates, and possibly the quantities delivered, as additional
decision variables.

Situations where there is total freedom on when and how much to deliver, within
constraints on customers’ inventory level, are usually modelled by the class of Invent-
ory Routing Problems (IRPs). On the other hand, problems where we can choose the
frequency of visits but not the quantity to be delivered (which could be fixed or
may not even be relevant) belong to the class of Periodic Vehicle Routing Problems
(PVRPs). We will show that our approach falls in some way between these two
well-studied problems.

IRPs and PVRPs are well known and have received considerable attention by
researchers in the past years. However, it is not always possible to combine the in-
ventory management and routing aspects. The responsible actors for transportation,

1As stated in Section 2.3 the term “day” should be understood to indicate a period, i.e.,“a convenient
unit of time”.

65

66 Tactical Routing Strategy: Splitting Deliveries

and for inventory management, might not coincide. Communication between the
two actors may be hard, due to difficulties in data sharing. Or it may be that the
actors would not benefit equally from an integrated system. The result is that in
practice, routing and inventory management are often optimised independently.

The real-world problems that motivate this study arise in long-haul grocery de-
livery, and fuel delivery problems. In these contexts, customers place orders up to
two weeks in advance, nominating a delivery quantity, and a desired delivery date.
A transport company fulfils these orders, but does not have access to rates of de-
mand for the product, nor the customer’s capacity to hold goods. Now consider the
following: we have customers A and B, located relatively close together. Vehicles do
not have sufficient capacity to visit both A and B together, but could partially fulfil
A after visiting B. The remainder of customer A’s demand could then be delivered
the next day. So long as the amount initially delivered to A was sufficient to avoid
a stock-out, such a solution may lead to reduced costs for the transport company
(which could then be partially returned to the customers, in order to compensate
for inconvenience). The motivation for this study was to look at how much such a
solution may be able to save.

In both our motivating problems, customers need to be visited several times in a
week, if not all days. If a customer is already accepting split deliveries on a single day,
the idea of splitting a request across consecutive days would appear viable. Indeed,
in many applications, e.g. fuel delivery, it is unlikely that the whole amount reques-
ted is consumed within a day, although it is required that a minimum percentage
is delivered on the day of request so that stock-outs are avoided. Some companies
already implement this strategy. If customers require service on consecutive days,
splitting a delivery would not even imply more visits than already scheduled, but
only an adjustment in the quantities delivered. Moreover, if the customer locations
exhibit a degree of clustering – as we observed in our problem – inserting an addi-
tional customer visit in a day plan, would not be costly, and might actually reduce
the overall routing cost. Following the idea presented in Gulczynski et al. [2010] we
implement constraints on minimum delivery amounts. Namely, both a single deliv-
ery to a customer, and the total delivery on the day of request, have to be greater
than fixed percentages of the customer’s demand. The addition of these constraints
stems from practical considerations. Given that a visit has an intrinsic cost (due to
paperwork, service time) it is not practical to visit a customer many times. Moreover,
as said before, in order to avoid stock-outs, we impose the constraint that a certain
proportion is delivered on the day the order was requested. We name this problem
Multi Day Split Deliveries VRP (MDSDVRP).

The MDSDVRP can be seen as an extension of the Split Deliveries VRP (SDVRP).

§5.2 Motivation 67

A multi-day planning horizon might be reformulated as an SDVRP with disjoint time
windows on requests (representing the different delivery days); but this would not
be able to represent the shifting of demand across days. Alternatively, one could
introduce several copies of the same vehicles and add compatibility constraints to
model the multi-day structure. However, this would again not capture the ability to
shift demand across days. The possibility of splitting a delivery over days introduces
a new degree of complexity not present in the SDVRP. In particular, this difference is
reflected in the fact that some properties proven to be valid for optimal solutions of
SDVRP do not hold for the MDSDVRP, as we show in Section 5.5.

The contribution of this chapter is fourfold: first, we propose a new problem
model that integrates inventory management and vehicle routing. We consider some
well-known theoretical properties of optimal solutions of SDVRPs and we extend
them, or show they are no longer valid, to optimal solutions of MDSDVRPs. We then
propose a mathematical programming formulation for the problem, together with a
simple heuristic that is used to warm-start the solution process. Finally, we present
an extensive experimental analysis of the proposed model aimed at quantifying the
savings introduced by allowing split deliveries over days. We also focus on the
impact that different features of an instance have on the possible savings.

The rest of the chapter is organised as follows: in Section 5.2 we briefly explain
the reason the led us to focus on this particular problem. In Section 5.3, we review
the literature related to the MDSDVRP. The problem is formally introduced in Sec-
tion 5.4. In Section 5.5, we extend the theoretical properties valid for the SDVRP.
A mathematical formulation for the problem and the solution method are proposed
in Section 5.6. In Section 5.7, we present our experimental analysis. We give some
conclusions in Section 5.8.

5.2 Motivation

In the problem presented in the previous chapter, as well as in the problem con-
sidered in Kilby and Urli [2016], customers may have several associated requests on
different days throughout the horizon. Some of these requests are already split over
days by the agents in play: transportation providers and the customers. However,
this process is not optimised. Even if a centralised control of all customers’ invent-
ory level is a viable option, the approach proposed in this chapter may be far more
applicable and easy to implement, since the splitting of requests over days already
happens. In this chapter, we propose a first, theoretical and experimental analysis of
such approach to a simple VRP.

68 Tactical Routing Strategy: Splitting Deliveries

5.3 Related Work

The problem studied in this work is closely related to the one proposed in Archetti
et al. [2015b]. Here the authors study a similar problem, that they name Multi Period
VRP with Due dates (MVRPD). Namely, they consider the possibility of choosing
the delivery date for each customer within a window of a few days. However the
delivery cannot be split between different vehicles. An inventory cost for holding
the products in a central depot is considered. They analyse the impact this flexibility
has on the routing cost, showing that it can reduce it substantially. Their work is
at a theoretical level and aims at computationally exploring the advantages such a
strategy presents.

As already mentioned, two broadly related areas of research are the IRP and the
PVRP. These two classes of problems were already introduced in Section 2.3. There-
fore, here we only highlight the differences with the MDSDVRP. The IRP is more
general, in that we have complete freedom on the choice of when and how often to
serve customers. The problem with this approach is that it might have limited ap-
plication in real world scenario, as it requires complete control over the customers’
inventory level, and also some form of knowledge of the rates of consumption. How-
ever, if such a deep integration of the inventory management and routing aspects is
feasible, the possible savings are substantial (Andersson et al. [2010]). In Andersson
et al. [2010] the authors review the status of research on problems aiming at com-
bining inventory management and routing, highlighting the gaps between industry
and research. The authors identify the conditions under which an integration can be
feasible and beneficial. However, they note that in industry, the inventory and rout-
ing aspects are still often treated separately. The IRP constitutes a very challenging
problem, even beyond the problems of application mentioned here.

The PVRP models the situation where customers request a certain frequency of
service, with the flexibility of choosing the precise days of service. Unlike the prob-
lem studied here, the customers determine the service frequency and the quantities
to be delivered. For a review of the IRP and PVRP, see Section 2.3.

In terms of flexibility, the MDSDVRP lies between the IRP and PVRP. The freedom
of scheduling decisions allowed in the MDSDVRP is not as general as in the IRP, and
clearly different from the decisions considered in the PVRP. In the IRP, the focus is
on minimising the routing and inventory cost while assuring there is no stock-out at
any customer at any time. In the MDSDVRP, the inventory costs are ignored, and
there is more flexibility in the routing: we only require that a certain percentage of
the demand be delivered by the day of the request. The situations modelled in the
MDSDVRP and the PVRP clearly differ. The clearest difference is that in the latter

§5.4 Problem Formulation 69

there is no possibility of deciding the portion of demand to be delivered.
Two other key aspects of our formulation are:

• we consider splitting deliveries on a single day;

• we include, optionally, a fleet size aspect in the problem.

We consider, in parallel to the standard case, a fleet size variant of the problem.
The literature on FSM problems in reviewed in Chapter 4. Since we consider a ho-
mogeneous fleet, our problem is a special case of the FSM. However, this is enough
to show that the strategy proposed has an impact on the fleet.

Finally, we briefly review the literature on split delivery routing. In the SDVRP, a
customer can be visited by more than one vehicle. Hence the SDVRP is a generalisa-
tion of the classical CVRP. It was first presented in Dror and Trudeau [1989] and since
then it has received a lot of attention in the research community. An extensive survey
presenting exact methods, heuristics and applications can be found in Archetti and
Speranza [2012]. We refer the reader to references therein. It has been shown that
allowing split deliveries can lead to a reduction of up to 50% of the routing cost.
This and other properties are presented and proven in Archetti et al. [2006a]. In Sec-
tion 5.5, we extend these properties, or show they no longer hold, to the MDSDVRP.
As already mentioned, the main difference between the SDVRP and the MDSDVRP is
the multi-day structure. We consider a particular version of the SDVRP named Split
Deliveries VRP with Minimum Amount constraints (SDVRP-MA), which was intro-
duced in Gulczynski et al. [2010]. This formulation adds constraints to the SDVRP
requiring that a vehicle must delivery at least a minimum percentage of the demand
if it visits a customer. This seeks to avoid excessively splitting a customer’s request,
creating visits that deliver very small amounts of demand, as this is not desirable in
real applications.

5.4 Problem Formulation

We consider a multi-day planning horizon. We denote by D the number of days and
by D = {1, . . . , D} the planning horizon. We are given N customers, each of which
requires service on a (different) subset of days of D. We denote the set of requests
by C. Hereinafter we identify customers with requests. Therefore two customers in
C might share the same location, as they are originated from two different requests
of the same original customer. We denote by qi the demand of customer i 2 C. The
depot is denoted by 0. Travelling between two customers i and j incurs in cost cij.
We assume that the distance matrix is symmetric and satisfies the triangle inequality.

70 Tactical Routing Strategy: Splitting Deliveries

The assumption on symmetry can be relaxed in a straight-forward way. We have
available an unlimited number of vehicles of capacity Q. There is a fixed cost b
for using a vehicle. That is, we pay b if we use a vehicle once. The overall fleet
is the maximum number of vehicles used in a single day. We will consider both
the case b = 0, where the focus is on the routing cost only, and b > 0, where the
goal is to strike an optimal balance between fixed and routing costs. The delivery
to a customer can be split between different vehicles on a single day. As previously
mentioned, we impose a minimum delivery quantity: if a visit is made to a customer,
then a minimum fraction ma 2 [0, 1] of its demand has to be delivered. We do not
impose granularity on the demand, i.e. any fraction of the demand can be delivered.
There are situations where the demands are composed of a number of indivisible
items (e.g. bottles), and we will see in Section 5.6 that these situations reveal another
difference between SVRP and MDSDVRP.

We allow the demand to be delivered partially on the day of request and partially
on the next a days. We refer to a as the splitting horizon. We assume 0  a < D. For
example, if a = 1, a customer’s demand can be split over the original day of request
and the next day. We chose to model the problem in a cyclical fashion, i.e. the next
day of day D is day 1. For example, if a = 1, a request due on day D can be split
and partially delivered on day 1. This is because we are trying to minimise the fleet
as well as the routing cost. Therefore, we cannot introduce a penalty for delivering
the demand of a customer on day D to the next planning horizon, as is done in
Archetti et al. [2015b]. This, in fact, would decrease the total demand delivered and
impact the necessary fleet by hiding part of the demand. Indeed, we could postpone
the delivery of part of the demand of the last day, but if the horizon is not seen as
a cycle, this demand would not be considered in the problem. On the other hand,
forbidding to move the demand on the last day goes against the idea of adjusting the
schedule and it does not reflect the fact that in real applications we have a sequence
of planning horizon and postponing part of the last day’s demand is allowed. As an
example, consider an instance of two days, with two customers, one per day, with the
same location and requesting Q+ 1. If the problem is cyclical, the size of the fleet has
to be 2. However, if we can postpone the demand of the second day without having
to serve all customers, the optimal fleet size becomes 1. Hence, in the following, a
day index d will be intended as d mod D.

Let us introduce some notation that will be used throughout the rest of the
chapter. We denote with A the set {0, . . . , a}. For all i 2 C, the original day of
request of i is denoted with di. Moreover, for s 2 A, we set ds

i = di + s and define
the set D(i) = {ds

i | s 2 A}. Therefore d0
i = di and D(i) is the set of days when i can

be visited. Given a day d 2 D, we write Cd = {i 2 C | d0
i = d}, the set of customers

§5.5 Theoretical Properties 71

whose original day of request is d. The set of all the possible customers that can be
visited on day d is denoted by Pd. This can be defined as follows

Pd =
a[

s=0
Cd�s = {i 2 C | ds

i = d for some s 2 A}.

Whenever we include the depot in a set, for example C, of customers we denote the
extended set by C.

We constrain a fixed portion md 2 [0, 1] of a customer’s request to be delivered
the day of original demand. We also require that, if a customer is visited, then at
least ma of its demand, with ma 2 [0, 1], must be delivered. We refer to these sets
of constraints as the minimum delivery amount constraints. Note that if ma = 1, we
cannot split the deliveries between vehicles. If md = 1 or ma > 1 � md, we can only
split deliveries within the same day. Therefore, from now on we will assume that
md < 1 ^ ma  1 � md. The problem described in Archetti et al. [2015b] corresponds
to the case ma = 1, md = 0 plus additional inventory costs.

The goal is to determine a number of vehicles F and a set of routes such that the
total demand of each customer across the horizon is satisfied, the minimum delivery
amount constraints are not violated, and the total cost (the sum of fixed and routing
costs) is minimised.

5.5 Theoretical Properties

In Archetti et al. [2006a], the authors review some of the properties of the optimal
solution of an SDVRP. The goal of this section is to extend those properties to the
MDSDVRP. A first simple observation is that, given an optimal solution f to the
MDSDVRP, the subset of routes of f performed on a single day d can be seen as an
optimal solution of a SDVRP on d, where the demands are defined to agree with the
quantities delivered by f on d. Therefore, if ma = 0, the subset of routes of f on
each single day d satisfies all of the properties characterising an optimal solution of
an SDVRP.

5.5.1 k-split cycles

In Dror and Trudeau [1990], the authors introduced the following definition:

Definition 1. Given k customers i1, i2, . . . , ik, and k routes such that route 1 visits
customers i1 and i2, route 2 visits customers i2 and i3, . . . , route k � 1 visits customers
ik�1 and ik and route k visits customers ik and i1. The subset of customers i1, i2, . . . , ik

is called a k-split cycle.

72 Tactical Routing Strategy: Splitting Deliveries

They also proved the following property:

Property 1 (Dror and Trudeau [1990]). Given an instance of the SDVRP, if the cost matrix
satisfies the triangle inequality, then there exists an optimal solution where there is no k-split
cycle (for any k).

Property 1 and its proof hold verbatim for the MDSDVRP if ma = md = 0. The
only difference is that now the routes can belong to different days. In Gulczynski
et al. [2010], it was shown that this property does not hold if a minimum delivery
amount for a single delivery is imposed. Therefore, if ma or md are strictly positive,
Property 1 is not valid for the MDSDVRP.

5.5.2 Number of splits and routes

Let ri be the number of routes serving a customer i. We say the number of splits
at customer i is ri � 1. The total number of splits is Âi2C(ri � 1). In Archetti et al.
[2006a], the authors proved that, if the matrix satisfies the triangle inequality, there
exists an optimal solution to the SDVRP where the number of splits is strictly less
than the number of routes. Not only does this property not hold for the MDSDVRP
– regardless whether ma is zero or not – but we also have the following result:

Property 2. If md > 1/2, the ratio between the total number of splits and number of routes
of an optimal solution of a MDSDVRP instance is unbounded.

Proof. Assume D = {1, 2}, a = 1 and md > 1/2. Set Q = 1. Fix the number of
customers N and assume that the first N � 1 customers request service on the first
day and their demand is qi =

1
(N�1)md

, i = 1, . . . , N � 1. The remaining customer,
labelled by N, requests service on the second day, with qN = e > 0, where e will
be defined later in the proof. Suppose that the distances between customers are
cij = d, c0i = M for all i, j 2 C where M � d. The minimum total delivery on the
first day equals md ÂN�1

i=1 qi = 1. Therefore, we need at least one route to deliver the
minimum necessary to each customer. We can deliver all the remaining quantities on
the second day. Indeed, a simple calculation shows (1 � md)ÂN�1

i=1 qi + e = 1�md
md

+ e,
and it is easy to see that, given that md > 1/2, this quantity is smaller than 1 if e is
small enough. Given that M is much bigger than d, and that we need at least one
route per day, an optimal solution must have only two routes, one delivering all the
minimum allowed to each customer on the first day, one delivering all the rest in
the second day. An illustration, for N = 4 on the example is given in Figure 5.1.
Therefore, an optimal solution of this instance has 2 routes and N � 1 splits. Since N
is arbitrary, we have proved the property.

§5.5 Theoretical Properties 73

Day	1	 Day	2	

Day	1	 Day	2	

Solution	

Instance	

Figure 5.1: In the illustration, the square represents the depot and the circles the
customers. In the top part, we plot the instance, in particular the original day of
requests of the customers. In the bottom part the optimal solution is illustrated. The
customers whose demand is split are in red. Note that the distances are not euclidean

in this figure.

5.5.3 Bounds on the number of routes

Let us write vd = dÂi2Cd

qi
Qe for any d 2 D. If we consider the SDVRP instance

induced by a day d, assuming delivery on the originally requested day, then vd is
the minimum number of vehicles needed to serve all customers. For the VRP the
rounded-up term is replaced by the value of a bin packing problem.

For the MDSDVRP, the computation of a lower bound is slightly more involved
as the days are not independent. Assume for now that ma = 0. For all s 2 A and
d 2 D we define the variables ms

d 2 [0, 1] to be the percentage of total demand moved
from day d to day d + s. For these numbers to make sense, we have to impose, for
every fixed d 2 D, that

a

Â
s=0

ms
d = 1 ^ m0

d � md.

Let us denote by qd the total amount of demand delivered on day d 2 D, this can be

74 Tactical Routing Strategy: Splitting Deliveries

computed as follows

qd =
a

Â
s=0

(ms
d�s Â

i2Cd�s

qi).

We define the set of all possible tuples that satisfy the minimum delivery amount
constraints,

S = {{ms
d}d2D,s2A

�� Â
s2A

ms
d = 1 ^ m0

d � md 8 d 2 D}.

The minimum number of vehicles needed for the whole horizon is computed as
follows:

min
S

max
d2D

l
Â
s2A

ms
d�s Â

i2Cd�s

qi
Q

m
= min

S
max
d2D

lqd
Q

m
. (5.1)

In other words, for a fixed tuple in S, we use the formula for the SDVRP to compute
the minimum number of vehicles for each day and then we take the maximum over
all days. We then take the minimum over all possible tuples in S.

In the case ma > 0, we cannot compute exactly the minimum number of vehicles.
The formula (5.1) can be used to compute a lower bound on the minimum number
of vehicles, if, for all d 2 D, s 2 A, we add the following condition to the definition
of set S:

ms
d Â

i2Cd

qi � ma min
i2Cd

qi _ ms
d = 0.

This means that, the total demand moved from day d to day d + s has either to be
zero or to be larger or equal to the minimum delivery on day d.

Note that, for simplicity, we are working under the assumption that customers
are identified with requests. If we removed this assumption, the computation of
the minimum number of vehicles would be a considerably more complex problem.
Indeed, the variables ms

d would not be enough to capture the fact that, splitting a
request on a day d 2 D may have an effect on the minimum delivery constraints on
the next days (for example if a customer requests service on two consecutive days).

In Archetti et al. [2011] the authors prove that, provided the distances satisfy the
triangle inequality, there exists an optimal solution to the SDVRP where the number
of vehicles is not greater than 2vd. If we define,

vd = d Â
i2Cd

qi
Q

+ (1 � md)
a

Â
s=1

Â
i2Cd�s

qi
Q
e

we have the following result for the MDSDVRP.

Property 3. If the distances satisfy the triangle inequality, then there exists an optimal solu-
tion to the MDSDVRP where the number of vehicles used on day d is not greater than 2vd

§5.5 Theoretical Properties 75

Proof. The maximum quantity delivered on day d is

Â
i2Cd

qi
Q

+ (1 � md)
a

Â
s=1

Â
i2Cd�s

qi
Q

.

By applying the aforementioned result in Archetti et al. [2006a] the property is
proven.

5.5.4 Worst Case Analysis

In Archetti et al. [2006a], the authors present a detailed worst case analysis for the
SDVRP when compared to the VRP. A worst-case analysis consists of a set of bounds
and instances aimed at comparing the performance of VRP and SDVRP. Note that,
in Archetti et al. [2006a], the authors do not consider a fixed cost for using a vehicle.
In order to compare with their result, for the rest of this section we will assume that
the fixed cost is zero (b = 0). In particular, they proved that savings generated by
allowing split deliveries can be up to 50%. Formally, consider an instance of the VRP
and let us denote by z(VRP) its cost and by z(SDVRP) the cost of the same instances
where split deliveries are allowed.

Property 4 (Archetti et al. [2006a]). It holds z(VRP)
z(SDVRP)  2 and the bound is tight.

Denoting with z(SDVRP-MDA(ma)) the optimal cost for the same instance with
minimum delivery amount constraints on single visits, in Gulczynski et al. [2010],
the authors prove that, if ma = 2/j for some integer j � 4, a tight bound for the
ratio z(VRP)

z(SDVRP-MDA(ma))
lies in the interval [2 � ma, 2], although a tight bound is not

provided.
In a similar spirit, our analysis focuses on the benefits coming from splitting the

demand over different days. We write MDSDVRP(D, a, md, ma) to explicitly repres-
ent the parameters associated with the multi-day structure of the problem: number
of days D, the splitting horizon a and minimum amount constraint parameters md

and ma. If a = 0, we assume md = 1, even if, in this case, the value of md does
not change the problem. Again, z(MDSDVRP(D, a, md, ma)) denotes the cost of an
optimal solution for MDSDVRP(D, a, md, ma).

Property 5. Assume b = 0. It holds

g(D, a, md, ma) :=
z(MDSDVRP(D, 0, 1, ma))

z(MDSDVRP(D, a, md, ma))
 min{a + 1,

⇠
1

md

⇡
}.

76 Tactical Routing Strategy: Splitting Deliveries

If ma < 1 � md, then supD>0 g(D, a, md, ma) � 2. That is, for any h > 0, there exists a
MDSDVRP instance with a sufficiently large horizon for which the benefit of splitting over
a days is greater that 2 � h.

Proof. Consider a fixed number of days D, a fixed integer a > 0 and an optimal
solution f for MDSDVRP(D, a, md, ma). We first prove that g(D, a, md, ma)  a + 1.
Consider the following operation: given a route r, operated on a day d, we can
create a + 1 new, possibly empty, routes rs as follows: for s 2 A, route rs contains
all customers i visited by r such that d = ds

i . Each route rs is then moved to day
d � s. If we apply the described operation to all the routes in the solution, we obtain
a new solution which is feasible for MDSDVRP(D, 0, 1). Since the sum of the cost of
routes originated by a route r is at most a + 1 times the cost of r (due to the triangle
inequality), the cost of the new solution increases by at most a factor of a + 1. Hence,
we have proved the bound.

We now prove g(h, a, md, ma) 
l

1
md

m
, which completes the proof of the first

statement in the property. Consider the solution f0, obtained from f by applying
the following operation: given a route r, operated on a day d, remove from r all
customers i such that di 6= d, i.e., all customers whose original day of request is not
d. Then, consider

l
1

md

m
copies of the so obtained route. It follows that f0 is a solution

to MDSDVRP(D, 0, 1, ma) and satisfies z(f0) 
l

1
md

m
z(f). This proves the bound.

We now assume ma < 1 � md and prove, by building an example, the second
claim. Note that, if D = 2, then a = 1 and the first claim of the property implies
g(D, 1, md, ma)  2. Fix D > 2. Consider D days and a single customer, located at a
distance M from the depot, requiring service every day. We denote by qd its demand
on day d 2 D. Let us assume, for now, that md � ma. Define d := 1�ma�md

D�2 . The as-
sumptions imply 1 > d > 0. Assume Q = 1. Choose 0 < e < min

� ma
1�ma

, d
1�d , md

2�md

and define qd = 1 + e for d = 1, . . . , D � 1 and qD = e. An optimal solution of
MDSDVRP(D, 0, 1) has two out-and-back trips for the first D � 1 days and only one
trip for the last day. Its cost is 4M(D � 1) + 2M.

Let us define the following numbers

sd =

8
<

:
1 � ma � (d � 1)d for d = 1, . . . , D � 1

1 for d = D

Note that 1�ma = s1 > s2 > · · · > sD�1 = md. The number sd represents the fraction
of quantity qd delivered on day d. We assume that the remaining quantity, qd(1� sd),
is delivered on the next day. An illustration of this example is given in Figure 5.2. We
now verify that this strategy yields a feasible solution with only one route a day. For

§5.6 Mathematical Formulation and Solution Method 77

all d = 1, . . . , D � 1, we have sd � sD�1 = md and 1 � sd � 1 � s1 = ma. Therefore,
the minimum delivery amount constraints are satisfied. The capacity constraints
can be stated as (1 � sd)qd + sd+1qd+1  1, 8d. A simple computation shows that
these are satisfied thanks to the definition of e, qd, sd. This solution is optimal, as
we cannot use less than one route a day, and its cost is 2MD. Therefore, we have
g(D, a, md, ma) � 4M(D�1)+2M

2MD = 2 � 1
D and the result is proven. In case ma > md, we

simply switch the roles of ma and md in the definition of d and the numbers sd. The
computations are then exactly the same.

Day	1	 Day	i	 Day	D	Day	i	+1	…	 …	 Day	1	 Day	i	 Day	D	Day	i	+1	…	 …	

=	load	associated	with	the	same	day	
=	load	associated	with	the	previous	day	

Figure 5.2: We illustrate the optimal solution with a = 0, on the left, and with a = 1,
on the right. Each vertical bar represents the load of a vehicle. The red part of the bar
is relative to the load associated with the fraction quantity qd delivered on day d, i.e.,
sdqd. The blue part is the delivery associated with the day before, i.e., (1 � sd�1)qd�1.
Note that, when splitting is allowed, whether the load equals Q or not depends on

the particular values of ma, md and d.

Property 5 says that, under very mild assumptions, the savings due to introducing
the possibility of splitting the deliveries over consecutive days, in addition to splitting
among vehicles only, can be up to 50%. Moreover, this result holds regardless of the
value ma > 0.

5.6 Mathematical Formulation and Solution Method

We now present a mathematical programming formulation for the MDSDVRP to-
gether with a few valid inequalities and a simple heuristic to construct a start solu-
tion. For modelling purposes we denote by V = {1, . . . , V} the set of available
vehicles. Since we assume unlimited available vehicles, we set V = maxd |Cd|. Note,
however, that in consideration of Property 3, we could consider a different, and pos-
sibly lower, V without losing generality.

78 Tactical Routing Strategy: Splitting Deliveries

We make use of the flow variables

xd
ijv =

8
<

:
1, if vehicle v travels from i to j on day d

0, otherwise

Similarly, we denote by ld
ijv the load of vehicle v on the arc (i, j) on day d. Let

F be an integer variable representing the number of vehicles in the fleet. Finally,
we introduce the continuous variables ys

iv representing the fraction of demand qi

delivered by vehicle v on day di + s (= ds
i). To keep the notation simple, we include

variables associated with self-pointing arcs, i.e. xd
iiv, in summations. However, we do

not include them in the implementation of the model. The model follows:

(M) minimise Â
d,i,j,v

xd
ijvcij + Fb (5.2)

subject to Â
j2Pd

xd
ijv = Â

j2Pd

xd
jiv 8 i 2 C, d 2 D(i), v 2 V (5.3)

Â
j2Pds

i

xds
i

ijv � ys
iv 8 i 2 C, s 2 A, v 2 V (5.4)

ma Â
j2Pds

i

xds
i

ijv  ys
iv 8 i 2 C, s 2 A, v 2 V (5.5)

Â
v2V

y0
iv � md 8 i 2 C (5.6)

Â
v2V

Â
s2A

ys
iv = 1 8 i 2 C (5.7)

Â
j2Pd

xd
ijv  1 8 i 2 C, v 2 V, d 2 D(i) (5.8)

Â
s2A

Â
i2Cd�s

qi ys
iv  Q 8 v 2 V, d 2 D (5.9)

ld
ijv  Q xd

ijv 8 i, j 2 C, d 2 D(i), v 2 V (5.10)

Â
v2V

Â
j2Pd

xd
0jv  F 8 d 2 D (5.11)

Â
j2Pds

i

(lds
i

jiv � lds
i

ijv) = qi ys
iv 8 i 2 C, s 2 A, v 2 V (5.12)

Â
j2Pd

ld
0jv = Â

s2A
Â

i2Cd�s

qi ys
iv 8 d 2 D, v 2 V (5.13)

F 2 [0, V], integer (5.14)

xd
ijv 2 {0, 1} 8 i, j 2 C, v 2 V, d 2 D (5.15)

§5.6 Mathematical Formulation and Solution Method 79

ld
ijv 2 [0, Q] 8 i, j 2 C, v 2 V, d 2 D (5.16)

ys
iv 2 [0, 1] 8 i 2 C, v 2 V, s 2 A (5.17)

The objective function (5.2) is the sum of two terms, representing, respectively,
the routing and fixed cost. Constraints (5.3) are the standard flow conservation con-
straints. The x and y variables are linked by constraints (5.4). Constraints (5.5) and
(5.6) are minimum amount delivery constraints, respectively, for single deliveries and
delivery on the first day. Constraints (5.7) require that the total demand must be de-
livered. Constraints (5.8) limit the visits per day per customer of each vehicle to one.
Capacity constraints are expressed in (5.9) and (5.10). Constraints (5.11) link the daily
fleets to the F variable. The load and y variables are linked in constraints (5.12) and
(5.13). Finally, constraints (5.14 - 5.17) impose bounds and integrality on all variables.

5.6.1 Indivisible goods

As previously mentioned, we are allowing a delivery to be split fractionally. Consider
the case of delivered goods being indivisible units. It is reasonable to assume the
demands qi and capacity Q are integers. Constraints (5.5) and (5.6) can be strengthen
to account for a minimum number of units. For example, constraints (5.6) can be
replaced by

Â
v2V

y0
iv � dmdqie

qi
(5.60)

We denote by M0 the model obtained by strengthening constraints (5.5) and (5.6).
We can model indivisible units by replacing constraints (5.17) with

ys
iv 2 {0, 1/qi, . . . , 1} 8 i 2 C, v 2 V, s 2 A (5.170)

By applying a similar argument to the one presented in Archetti et al. [2006b] to
prove Theorem 1 therein, it is possible to prove the following result

Theorem 1. If md = 0, and problem M0 has feasible solutions, then there exists an optimal
solution satisfying constraints (5.170).

Proof. Let ⇤s denote an optimal solution of M0, let ⇤z be its value, and let ⇤x and ⇤y be the
corresponding optimal values of the variables. If all variables ⇤y satisfy constraints
5.170, then there is nothing to prove. Otherwise, let Y denote the set {(i, v, d) ✓
C ⇥ V ⇥ D | Âj2Pd

xd
ijv � 1}. For each customer i and pair (v, d) define the sets

N(i) = {(v, d) | (i, v, d) 2 Y} and N(v, d) = {i | (i, v, d) 2 Y}. Let us introduce new
variables eys

iv = qiys
iv � bqi

⇤ys
ivc. Intuitively, we use these variables to reassign a part

80 Tactical Routing Strategy: Splitting Deliveries

of the deliveries, hence modifying the load of the vehicles, while keeping fixed the
integer part of the deliveries of ⇤s. This is described by the following set of constraints

Â
i2N(v,d)

eys
iv  Q � Â

i2N(v,d)
bqi

⇤ys
ivc 8 v 2 V, d 2 D (5.18)

Â
(v,d)2N(i)

eys
iv = qi � Â

(v,d)2N(i)
bqi

⇤ys
ivc 8 i 2 C (5.19)

eys
iv � 0 8 (i, v, d) 2 Y (5.20)

Constraints (5.18) - (5.20) are the classical ones of an assignment problem. A feas-
ible assignment is defined by the fractional parts of qi

⇤ys
iv. Since the right-hand side

is integer, it is well-known that there exists a feasible solution such that each variable
eys

iv has an integer value. If we replace the ys
iv variables in ⇤s by (eys

iv + bqi
⇤ys
ivc)/qi we

have a new solution s0 with the same routes of ⇤s. Each delivery in s0 is integer and
bigger or equal to the integer part of the associated delivery in ⇤s. Consequently, s0

satisfies constraints (5.50) and constraints (5.170). Finally, the cost of s0 is still ⇤z, since
variables ys

iv do not appear in the objective function.

5.6.2 Valid Cuts

In what follows we present a set of valid inequalities derived from the literature and
adapted to our formulation. The last four classes of cuts aim to break the symmetry
of the vehicles.

Fractional Cycle Elimination These cuts, adapted from Dror et al. [1994], impose
that if a customer is visited by a vehicle, then the vehicle has to leave the customer.

xd
ijv  Â

p2Pd\{i}
xd

jpv, 8 d 2 D, i, j 2 Pd

Minimum Number of Visits These cuts, adapted from Dror et al. [1994], provide a
lower bound on the minimum number of times a customer has to be visited on the
day of request.

Â
j2Pti ,v2V

xdi
ijv � dqi mde 8 i 2 C

Depot Outgoing Degree These cuts are adapted from Dror et al. [1994]. Suppose
for each day d we have a lower bound vd on the number of vehicles that must be
used on that day. The following inequalities state that the first vd vehicles have to

§5.6 Mathematical Formulation and Solution Method 81

leave the depot on day d:

Â
j2Pd

xd
0jv = 1 8 d 2 D, v = 1, . . . , vd.

Additionally, we impose that the following vehicles leave only if they deliver
something. We denote with vd an upper bound on the number of vehicle for day d:

Â
j2Pd

xd
0jv � Â

i2Pd

yd
iv 8 d 2 D, v = vd, . . . , vd

Vehicle Usage This symmetry-breaking cut, inspired by Maheo et al. [2016], states
that if a vehicle v is not used on day d, then all following vehicles cannot be used:

Â
i2Pd

xd
0iv  Â

i2Pd

xd
0i(v�1) 8 d 2 D, v = vd, . . . , vd

Variable Fixing Following the idea presented in Dror et al. [1994], for each day we
assign to the first vehicle the customer i⇤d 2 Cd which is the furthest from the depot
among those whose original date of request is d:

Â
j2Pd

xd
i⇤d j0 = 1 8 d 2 D

Visits Order This cut is inspired by Maheo et al. [2016]. We impose that, on day d,
a vehicle v can visit a customer i 2 Pd only if vehicle v � 1 visits any customer in the
set [1, . . . , i] \ Pd. In order to make these cuts consistent with the Variable Fixing ones
we do not consider the first vehicle. For all d 2 D, i, j 2 Pd, v = 2, . . . , vd:

xd
ijv  Â

e2[1,...,i]\Pd
s2Pd

xd
se(v�1)

Edge Sense These cuts were proposed in Dror et al. [1994]. On each day we fix
an arc (sd, ed) with sd, ed 2 Cd and we impose that this arc can be traversed only in
one direction. We pick the arc compatible with capacity constraints that minimises
traversing cost.

Â
v2V

xd
edsdv = 0 8 d 2 D

Note that the Edge Sense cuts are not valid if the distance matrix is not symmetric.

82 Tactical Routing Strategy: Splitting Deliveries

5.6.3 Algorithm Description

The size of the model increases very quickly. Indeed, for relatively small D and N, if
customers order frequently we already have a challenging problem. Solving model
M, even when the formulation is enriched with the presented valid inequalities, can
become very slow and we struggle to solve bigger instances. Therefore, in order to
speed-up the process, we propose a simple heuristic to construct an initial solution.

The heuristic is divided in three phases. We first transform the MDSDVRP in-
stance in a CVRP with multiple time windows. The idea is to force the multi-day
structure by having disjoint time windows and the split-delivery structure by break-
ing each customer into a number of sub-customers, each supplying a ma proportion
of the total demand. We set the travelling time equals to the cost of the arcs and
assume each vehicle leaves the depot at time 0. We assume that 1/ma and md/ma

are integer, although the same idea can be applied even if this does not hold. Each
customer in i 2 C is split into 1/ma sub-customers with demand qima. We define
time windows for each sub-customer as follows: define a large enough width D, and
denote by twd, for each d 2 D, the time window [D(d � 1), Dd]. Fix an original
customer i 2 C. All the sub-customers originated by i are assigned time window
twdi . Moreover, the last (1 � md)/ma sub-customers are assigned a additional time
windows twdi+s, s = 1, . . . , a. Finally, we allow every vehicle to perform D trips, one
per time window.

The second phase consists in solving the so transformed problem by means of
an Adaptive Large Neighbourhood Search (ALNS)-based algorithm2. We use the
method described in Kilby and Verden [2011a]. However, even though that method
is capable of more specialised visit selection and ordering heuristics, it was tuned in
a manner that replicates the ALNS procedure of Ropke and Pisinger [2006]. We use
the Shaw, random, and worst destroy heuristics and the greedy and 2-, 3- and 4-regret
insertion heuristics as defined in Ropke and Pisinger [2006].

During the search process, we record every “new best” solution produced by
the algorithm. That is, as the search finds a solution with lower objective than the
previous best, it is recorded. Thus, when the algorithm ends, we have a pool of routes
that we use to create a solution using a MIP model. The idea is to use the routes’
structure, to re-assign the quantities delivered by each route to each visited customer
and to choose the best set of routes. Hence the quantities delivered by the routes
become decision variables. Let us denote by R the set of routes recorded, and by Rd

the subset of routes on day d. For each route r 2 R we denote by cr its routing cost.
Moreover, for each customer i 2 C, we introduce a binary parameter dir that indicates

2For a presentation of ALNS see Section 3.4.1.

§5.6 Mathematical Formulation and Solution Method 83

whether r visits i, a binary variable ur, representing whether or not the route is used,
and an integer variable yir, quantifying how many minimum portions maqi, does the
route r deliver to i, i.e., the amount delivered is yirmaqi. The model follows:

(RM) minimise Â
r2R

crur + Fb (5.21)

subject to Â
r2Rd

ur  F 8 d 2 D (5.22)

Â
r2R

yir dir =
1

ma
8 i 2 C (5.23)

Â
r2Rd

yir dir �
md
ma

8 i 2 C (5.24)

yir 
ur

ma
8 i 2 C, r 2 R (5.25)

Â
i2C

yir ma qi  Q 8 r 2 R (5.26)

F 2 [0, V], integer (5.27)

yir 2 [0,
1

ma
], integer 8 i 2 C, r 2 R (5.28)

ur 2 {0, 1} 8 r 2 R (5.29)

The objective (5.21) is the sum of routing and fixed costs. Constraints (5.22) force
that the overall fleet is big enough to cover the routes on all days. Constraints (5.23)
and (5.24) impose that every request is satisfied and a fixed minimum percentage
is delivered on the day of request. Constraints (5.25) link the u and y variables.
Constraints (5.26) ensure the capacity is not exceeded. Integrality and bounds on the
variables are imposed in constraints (5.27) - (5.28). Note that since yir can assume the
value zero, model RM can essentially “skip” a customer in the route.

A similar idea was proposed in Archetti et al. [2008] where the authors use the
information provided by a tabu search to locate promising area in the search space.
These areas are then better explored through the use of an integer programming
model. Our heuristic is based on the same idea even though at a very basic level. An
advanced version could use the arcs in the routes set as an input to the M model.
However, the resulting model would still be challenging even for rather small in-
stances.

In summary, the method we use to solve an instance of the MDSDVRP is de-
scribed in Algorithm 5. We use a ALNS-based algorithm to localise a promising area
of the search space, i.e., to generate a pool of routes. Subsequently, we solve model
RM to further explore the identified area. The solution so obtained is used to warm

84 Tactical Routing Strategy: Splitting Deliveries

start the enriched version of model M.

Algorithm 5
Input: An instance of MDSDVRP

1: transform the problem into a CVRP with multiple TW
2: run ALNS-based algorithm (Kilby and Verden [2011a]) and record all “new-best”

solutions found
3: solve model RM using the routes found as columns
4: initialise M with the solution of RM
5: solve model M enriched with the cuts presented in Section 5.6.

5.7 Computational Analysis

In this section, we aim at presenting an experimental analysis of the strategy pro-
posed. The first goal is to illustrate the possible benefits. We also intend to analyse
which features have the greatest impact of the effectiveness of the approach. This is
fundamental to understand when this strategy can be applied with substantial sav-
ings. We will analyse both the cases b = 0 and b > 0. The former considers an
unlimited fleet with no fixed costs, hence it focuses only on the routing part of the
problem. The latter includes a fleet size component. We think that an analysis of
the approach has to be done also considering the pure routing problem, especially
because in the literature this type of analysis has been always done (Archetti et al.
[2006a, 2015b]; Dror et al. [1994]; Gulczynski et al. [2010]) focusing on the former
case. We will refer to the two cases as routing and fleet size case.

5.7.1 Instances

There are various sets of benchmarks for multi-day problems, however, they are
tailored mainly for the IRP or PVRP. We decided to create some new instances to
study how beneficial splitting the demands over days can be in practice. In our
instances, the number N of original customers (which may place requests on different
days) ranges in the set {2, 3, 5, 7, 10, 15} and the number of days in {3, 5, 7}. We now
present the main features of the instances.

• Locations. We have two types of instances. In the first type, the locations
are chosen randomly in a square of side 80 with the depot in the centre. In the
second type the locations form two different clusters. We refer to the customers’
layout as map and write random and cluster to respectively refer to the two set
of locations.

§5.7 Computational Analysis 85

• Demand. The customers are randomly divided in two categories: “big” and
“small”. Each customer has a “reference” demand which is randomly chosen
in one of the intervals [5, 15], [25, 50], respectively, if the customer is big or
small. Whenever a customer places an order on the day the request is randomly
chosen using a Gaussian distribution N (q, 2) where q is the reference demand.

• Frequency. The number of requests per customers varies from 1 to D. Hence
the minimum number of total possible requests is N while the maximum is
nD. We introduce a parameter p 2 [0, 1]. For a given p we randomly choose
bpN(D � 1)c + N of the possible requests with the guarantee that each cus-
tomer has at least one request. We created instances with p 2 {0.3, 0.7}

• Other parameters. We set the capacity Q = 40, splitting horizon a = 1, and
minimum delivery amount parameters: ma = 0.1, md = 0.5. In the fleet size
case we set a fixed cost per day bd = 70, therefore we have b = Dbd

Later, in in the section we will provide an analysis of the effect of different features
(clustering, frequency, md, splitting horizon) on the total cost.

For each scenario (fixed tuple of parameters) we create 5 instances3 . We solved
each instance by applying Algorithm 5. The ANLS-based algorithm described in
Kilby and Verden [2011a] was coded in a C++ environment. We used the Python
API of Gurobi 6.5 (Gurobi Optimization [2015]) to solve the models RM and M. We
stopped the execution after 4 hours. In all the following experiments, we compare the
case a > 0 to the no-split case (a = 0) to analyse the effect of allowing splits over days.
In particular, we look at the percentage savings, with respect to the no-split case, in
the routing cost (D-Rout) and the total cost (D-Tot), and the difference in the fleets (D-
Fleet) between the two cases. Obviously, in the routing case, the fleet does not play
any role in the final cost and savings. In Table 5.1 and 5.2 we summarise the results
for, respectively, the routing case and fleet size case. The parameters describing the
instance are given in the first four columns. We recall that |C| represents the total
number of requests in the instance (which throughout the chapter we have identified
with customers), while N is the number of original customers that place requests
on several days. The next 5 columns represent the cluster instances, the last 5 the
random instances. For each scenario we report the average, over the 5 instances, of
the optimality gap (of model M) for the case with no split over days (a = 0) and with
split over days allowed (a = 1), the savings in routing (D-Rout) and total (D-Tot) cost,
and the difference of fleet (D-Fleet).

We first observe that the optimality gap reached by the model is always low in
the case a = 0. If we allow split deliveries over days the gap increases substantially

3The instances are available online at https://fbertoli.github.io/downloads

86 Tactical Routing Strategy: Splitting Deliveries

for the biggest instances (N = 10, 15). It is clear that, since setting a = 1 yields a
relaxation of the case a = 0, the total savings can only be positive. This is not always
the case in practice, and it is due to the fact that the optimality gap can be substan-
tially higher in the former case. A few remarks are in order: the savings appear to
be lower if the locations are clustered. The instances become more challenging for
p = 0.7 and this could hide some possible gain of the strategy. Overall, the results
are encouraging. The savings resulting from allowing deliveries split over days can
be substantial. It is clear that introducing a fleet size component in the problem can
create more possibilities for savings. This is due to the fact that the fixed cost is com-
parable with the routing cost. However, the results suggest that even in case where
the fixed cost is zero the strategy can be effective.

In next sub-sections, we examine the influence on the total savings of the cus-
tomers’ location, the frequency of ordering, the minimum amount constraints and
of the length of the splitting horizon. We decided to consider only instances with
N = 10. The reason for this choice is that these instances are amongst the biggest,
but we still can reach low optimality gap. Hence, they can provide better insights. In
each sub-section, we will vary some of the parameters. If not stated otherwise, the
remaining parameters are the ones described above.

5.7.2 Minimum delivery amount constraints

In this sub-section, we aim at studying the impact of the minimum delivery amount
constraint on the day of request. We solve each instance with different values of md.
In Tables 5.3 and 5.4, respectively for the routing and fleet size case, we report, for
each instance and value of md, the average, out of 5 instances, of the optimality gap
for the case a = 1 and the savings in the total cost (D-Tot) with respect to the case
a = 0, both expressed in percentage. We do not report the optimality gaps for the
case a = 0 as these are all negligible. If the linear relaxation of M could not be solved
within the cut-off time we do not consider it in the average.

Again, lowering md can only result in higher savings, but this is not always ob-
served in the results, due to the fact that instances with low md and high D are
computationally more challenging. However, the expected behaviour of higher sav-
ings corresponding to lower values of md is clear in the tables. In particular, it is very
pronounced in the fleet size case. In this case, lowering md can triple the savings (D)
with respect to the routing case.

§5.7 Computational Analysis 87

5.7.3 Frequency

We now focus on the frequency of service. In order to do so we vary the frequency
parameter p in the set {0.1, 0.2, . . . , 1}. In Table 5.5 we report the results. Similarly
to the previous sub-sections we report only the average optimality gap for the case
a = 1 and the average total savings for each instance.

We observe that the highest savings correspond to low-medium values of p. It
has to be noted that for high value of p the optimality gap is significantly higher and
could disturb the interpretation of the data. Although it seems intuitive that a high
value of p does not allow very high savings. This could be explained as follows: a
customer that orders every day will have to be visited every day. Therefore, splitting
the demand over days can have the effect of smoothing the peaks and reduce the
original number of splits, but it will not change the routes substantially.

5.7.4 Clustering

In this sub-section, we focus on the customers’ layout. In order to focus on the layout
only we proceed as follows: we define a smooth transformation, parametrised by
q 2 [0, 1]. This changes the cluster map into a randomised map. Then we solve
the instances, with p 2 {0.3, 0.7}, using the maps defined by q 2 {0, 0.1, 0.2, . . . , 1}.
This gives us a better idea of what happens when the customers are moved from a
clustered to a completely random structure.

The transformation is described next. Consider the cluster map. For the two
clusters identify a square, of minimum size si, i = 1, 2, centred on the cluster’s centre
di, that contains all customers belonging to that cluster. Note that the two squares
could, and in fact do, overlap. For any q 2 [0, 1] we do the following:

• move the clusters’ centres on a line joining them with the depot linearly with q;

• for each customer, consider the vector v joining it with the cluster’s centre di,
and relocate the customer in di + (q(80 � si)/si + 1)v. In other words, each
customer is translated to maintain its angle with the cluster’s centre di, while
the distance from di is progressively expanded, or shrunk.

If q = 0 we do not alter the cluster map. As q increases to 1 the cluster’s centres
collide with the depot and the squares containing the customer expand (or shrink)
to a square of side 80, which is the same length as the square’s side we used for
the random map instances. In Table 5.6 we report the results for different values
of q with the same convention we used in previous tables. The trend is clear: the
savings are higher if the customers are clustered. However, the decreasing rate is not
as drastic as one could expect, the difference between the two extremes vary between

88 Tactical Routing Strategy: Splitting Deliveries

1� 5 points in percentage. One other observation is that the optimality gap increases
with q, thus indicating that a non-clustered map is harder to solve.

5.7.5 Longer Splitting Horizon

Lastly, we consider longer splitting horizons by letting a vary in the set {0, 1, 2, 3}.
The results are reported in Table 5.7 to 5.10. Note that setting a = 3 is not applicable
(n.a.) if D = 3. Increasing the splitting horizon can only lead to higher savings
from a theoretical point of view but it also increases the computational complexity
dramatically. However, it can be seen that bigger values of a can lead to substantial
gains.

We note that most of the benefit comes from setting a = 1. That is, a small
change in the operational practice can have a large benefit on the costs, while the
problem remains computationally tractable. We believe this validates the approach,
as splitting a delivery over two consecutive days will very often not cause problems
for customers.

5.8 Contributions and Conclusion

In this chapter, we proposed a new problem, the MDSDVRP. The problem captures
the operations of a transportation agent that delivers products to many customers
from a single distribution centre. The planning horizon is made of several days and
the customers involved may place orders on more than one day. The decisions to be
made concern two competing aspects of the problem: the fleet size and the routing
schedule.

We provided a theoretical analysis of the problem. We considered some known
properties of optimal solutions of an SDVRP and show that some can be extended
while others fail to hold when splits over days are allowed.

We proposed a mathematical programming formulation for the MDSDVRP to-
gether with a simple heuristic to warm start the optimisation process. We also pro-
posed adaptation of existing valid cuts to strengthen the formulation.

We proposed a series of experiments aimed at investigating the possible benefits
of the proposed approach, and also at quantifying the influence that different fea-
tures of an instance (such as degree of clustering, frequency of service and minimum
amount constraints) have on the efficiency of the strategy.

We observed that by splitting the deliveries over consecutive days, substantial
savings can be achieved, both in terms of the routing and the fixed costs.

We noted that this strategy could be applied in practise, even when an integration

§5.8 Contributions and Conclusion 89

between the inventory management and the routing component of the problem at
hand is difficult or impractical. In support of this hypothesis, we noted that most
of the benefit comes from allowing split deliveries over only 2 consecutive days. To
the best of our knowledge, no paper has theoretically analysed the advantages of a
similar approach, and, with the partial exception of Archetti et al. [2015b], no paper
has proposed a computational analysis. Our study is based on and inspired by real
problems.

Future research could aim at strengthening Property 5 (i.e., removing the addi-
tional assumption and finding a tight bound) and extending the approach to real-
world scenarios. This would require to consider bigger instances and a fleet compos-
ition aspects, rather than only focusing on the size of the fleet.

90 Tactical Routing Strategy: Splitting Deliveries

Instance
cluster

random

D
N

p
| C|

a
=

0
gap

(%
)

a
=

1
gap

(%
)

D
-R

out(%
)

D
-Fleet

D
-Tot(%

)
a
=

0
gap

(%
)

a
=

1
gap

(%
)

D
-R

out(%
)

D
-Fleet

D
-Tot(%

)
2

3
0.3

2
0.00

0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

0.00
2

5
0.3

3
0.00

0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

0.00
2

7
0.3

4
0.00

0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

0.00
3

3
0.3

4
0.00

0.00
11.74

0.40
11.74

0.00
0.00

4.95
0.60

4.95
3

5
0.3

6
0.00

0.00
16.52

0.40
16.52

0.00
0.00

12.06
0.40

12.06
3

7
0.3

7
0.00

0.00
16.00

0.60
16.00

0.00
0.00

6.84
0.20

6.84
5

3
0.3

8
0.00

0.00
12.78

0.75
12.78

0.00
0.00

7.90
0.40

7.90
5

5
0.3

11
0.00

0.00
19.15

0.60
19.15

0.00
0.00

4.44
0.00

4.44
5

7
0.3

13
0.00

0.00
15.77

0.60
15.77

0.00
0.00

5.58
0.40

5.58
7

3
0.3

12
0.00

0.00
16.21

0.20
16.21

0.00
0.00

7.28
0.40

7.28
7

5
0.3

16
0.00

0.00
13.64

0.40
13.64

0.00
0.00

8.84
0.40

8.84
7

7
0.3

19
0.00

0.00
14.29

0.80
14.29

0.00
0.00

7.29
0.00

7.29
10

3
0.3

18
0.00

0.05
7.70

0.40
7.70

0.00
0.02

7.74
0.00

7.74
10

5
0.3

23
0.00

0.02
13.84

0.60
13.84

0.00
0.00

5.44
0.20

5.44
10

7
0.3

28
0.00

0.02
15.31

0.80
15.31

0.00
0.00

6.31
0.60

6.31
15

3
0.3

27
0.00

0.05
7.98

0.00
7.98

0.00
0.12

4.02
0.40

4.02
15

5
0.3

36
0.00

0.04
11.01

0.80
11.01

0.00
0.07

5.94
0.20

5.94
15

7
0.3

44
0.00

0.04
11.78

0.80
11.78

0.00
0.06

6.01
0.20

6.01
2

3
0.7

4
0.00

0.00
0

0
0

0.00
0.00

0.00
0.00

0.00
2

5
0.7

5
0.00

0.00
3.56

0.20
3.56

0.00
0.00

1.30
0.20

1.30
2

7
0.7

6
0.00

0.00
2.21

0.25
2.21

0.00
0.00

2.85
0.40

2.85
3

3
0.7

7
0.00

0.00
13.24

1.00
13.24

0.00
0.00

10.25
0.60

10.25
3

5
0.7

10
0.00

0.00
15.89

0.80
15.89

0.00
0.00

13.77
1.00

13.77
3

7
0.7

12
0.00

0.00
19.32

0.80
19.32

0.00
0.00

15.75
0.40

15.75
5

3
0.7

13
0.00

0.01
11.62

0.00
11.62

0.00
0.00

8.05
0.20

8.05
5

5
0.7

19
0.00

0.01
15.46

0.00
15.46

0.00
0.01

12.85
0.00

12.85
5

7
0.7

24
0.00

0.02
15.98

0.20
15.98

0.00
0.03

12.95
0.00

12.95
7

3
0.7

19
0.00

0.06
9.31

0.40
9.31

0.00
0.04

12.93
0.20

12.93
7

5
0.7

28
0.00

0.06
12.54

0.40
12.54

0.00
0.04

12.09
0.40

12.09
7

7
0.7

36
0.00

0.06
12.31

0.20
12.31

0.00
0.05

10.75
-0.20

10.75
10

3
0.7

18
0.01

0.08
10.53

0.40
24.90

0.00
0.10

9.68
0.00

9.68
10

5
0.7

41
0.00

0.09
7.29

0.20
7.29

0.00
0.18

8.53
0.00

8.53
10

7
0.7

54
0.00

0.10
11.05

-0.20
11.05

0.00
0.21

7.47
0.00

7.47
15

3
0.7

44
0.02

0.13
1.96

-0.40
1.96

0.03
0.24

0.09
-0.20

0.09
15

5
0.7

64
0.02

0.13
1.16

0.00
1.16

0.06
0.28

-3.80
0.00

-3.80
15

7
0.7

84
0.02

0.17
-0.66

-0.60
-0.66

0.04
0.30

-3.37
-0.20

-3.37

A
verage

=
10.5

0.32
10.5

6.46
0.2

6.46

Table
5.1:R

outing
case

(bd
=

0).Savings
w

ith
respectto

the
“no-split”

case.

§5.8 Contributions and Conclusion 91
Instance

cluster
random

h
n

p
| C|

a
=

0
gap

(%
)

a
=

1
gap

(%
)

D
-R

out(%
)

D
-Fleet

D
-Tot(%

)
a
=

0
gap

(%
)

a
=

1
gap

(%
)

D
-R

out(%
)

D
-Fleet

D
-Tot(%

)
2

3
0.3

2
0.00

0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

0.00
2

5
0.3

3
0.00

0.00
-0.61

0.20
9.54

0.00
0.00

0.00
0.00

0.00
2

7
0.3

4
0.00

0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

0.00
3

3
0.3

4
0.00

0.00
11.74

0.40
14.69

0.00
0.00

4.83
0.80

21.12
3

5
0.3

6
0.00

0.00
16.52

0.40
17.52

0.00
0.00

9.77
0.60

21.26
3

7
0.3

7
0.00

0.00
16.00

0.60
20.53

0.00
0.00

5.56
0.80

20.53
5

3
0.3

8
0.00

0.00
16.47

0.80
23.21

0.00
0.00

6.39
0.80

17.53
5

5
0.3

11
0.00

0.00
19.01

0.80
25.70

0.00
0.00

3.01
0.40

10.16
5

7
0.3

13
0.00

0.00
15.72

0.80
23.57

0.00
0.00

5.58
0.40

11.64
7

3
0.3

12
0.00

0.00
15.06

0.80
22.21

0.00
0.00

4.90
0.80

16.65
7

5
0.3

16
0.00

0.00
13.64

0.40
15.29

0.00
0.00

7.18
0.80

17.98
7

7
0.3

19
0.00

0.00
14.29

0.80
22.80

0.00
0.00

6.41
0.40

11.81
10

3
0.3

18
0.00

0.01
7.17

0.60
13.27

0.00
0.00

5.77
0.80

14.19
10

5
0.3

23
0.00

0.00
13.77

0.80
21.60

0.00
0.00

4.19
0.80

15.58
10

7
0.3

28
0.00

0.00
15.12

1.00
24.35

0.00
0.00

5.30
1.00

20.58
15

3
0.3

27
0.00

0.01
7.64

0.80
13.53

0.00
0.03

5.87
1.20

15.41
15

5
0.3

36
0.00

0.02
10.60

1.00
18.31

0.00
0.01

6.59
1.20

17.95
15

7
0.3

44
0.00

0.02
10.34

1.60
24.39

0.00
0.03

5.96
0.80

13.67
2

3
0.7

4
0.00

0.00
-0.71

0.20
7.96

0.00
0.00

0.00
0.00

0.00
2

5
0.7

5
0.00

0.00
3.56

0.20
10.10

0.00
0.00

1.30
0.20

8.49
2

7
0.7

6
0.00

0.00
2.47

0.20
9.46

0.00
0.00

2.85
0.40

16.03
3

3
0.7

7
0.00

0.00
13.24

1.00
24.32

0.00
0.00

8.65
1.00

21.57
3

5
0.7

10
0.00

0.00
15.82

1.00
25.49

0.00
0.00

13.77
1.00

24.02
3

7
0.7

12
0.00

0.00
19.14

1.00
27.11

0.00
0.00

14.93
1.00

24.76
5

3
0.7

13
0.00

0.00
11.62

0.00
6.20

0.00
0.00

3.81
0.80

15.01
5

5
0.7

19
0.00

0.00
15.06

0.40
14.19

0.00
0.00

10.18
0.40

11.58
5

7
0.7

24
0.00

0.01
15.93

0.40
14.57

0.00
0.00

12.66
0.20

9.86
7

3
0.7

19
0.00

0.00
9.17

0.60
13.36

0.00
0.00

12.93
0.20

10.01
7

5
0.7

28
0.00

0.02
12.39

0.80
17.52

0.00
0.01

9.74
0.60

13.98
7

7
0.7

36
0.00

0.02
12.02

0.80
18.03

0.00
0.02

10.45
0.40

11.08
10

3
0.7

28
0.00

0.03
10.15

0.60
12.54

0.00
0.02

9.61
0.60

12.17
10

5
0.7

41
0.00

0.02
8.18

0.80
14.29

0.00
0.12

3.27
0.40

6.35
10

7
0.7

54
0.00

0.04
11.60

0.40
10.81

0.00
0.14

7.08
0.40

8.48
15

3
0.7

44
0.01

0.06
3.57

0.40
5.10

0.01
0.12

1.55
0.60

5.90
15

5
0.7

64
0.01

0.12
0.57

0.40
3.76

0.03
0.19

-3.78
0.40

1.21
15

7
0.7

83
0.01

0.13
-0.22

0.40
3.46

0.02
0.25

-8.52
0.40

-0.83

A
verage

=
10.70

0.59
15.24

5.49
0.57

12.38

Table
5.2:Fixed

costcase
(bd

=
70).Savings

w
ith

respectto
the

“no-split”
case.

92 Tactical Routing Strategy: Splitting Deliveries

p
=

0.3
p
=

0.7

D
=

3
D

=
5

D
=

7
D

=
3

D
=

5
D

=
7

m
d

gap
D

-Tot
gap

D
-Tot

gap
D

-Tot
gap

D
-Tot

gap
D

-Tot
gap

D
-Tot

cluster map

0.1
0.06

8.93
0.03

15.26
0.03

16.86
0.10

8.38
0.23

-3.90
-

-
0.2

0.06
8.46

0.03
14.96

0.03
16.69

0.13
5.11

0.18
-1.05

0.10
9.58

0.3
0.05

8.13
0.03

14.41
0.02

16.45
0.08

10.29
0.11

5.33
0.14

20.26
0.4

0.05
7.96

0.02
14.16

0.02
15.70

0.08
9.83

0.09
7.70

0.21
-1.77

0.5
0.05

7.70
0.02

13.72
0.02

15.29
0.09

9.46
0.08

7.50
0.12

10.17
0.6

0.04
7.17

0.02
12.30

0.02
13.70

0.08
9.92

0.08
7.32

0.11
10.46

0.7
0.02

6.77
0.01

10.51
0.00

12.61
0.08

9.51
0.08

5.75
0.09

10.17
0.8

0.01
6.64

0.00
7.57

0.00
9.69

0.07
9.05

0.05
6.11

0.11
8.67

0.9
0.00

6.88
0.00

3.28
0.00

5.14
0.07

5.57
0.03

5.51
0.06

5.63

random map

0.1
0.02

9.71
0.01

6.34
0.00

7.90
0.17

8.22
0.26

6.29
0.21

12.75
0.2

0.01
9.75

0.01
6.13

0.01
7.66

0.16
7.59

0.33
4.65

0.25
5.17

0.3
0.02

8.79
0.01

5.97
0.01

7.25
0.13

8.56
0.27

2.75
0.22

9.61
0.4

0.03
8.15

0.01
5.66

0.01
6.88

0.13
9.10

0.20
9.08

0.21
7.75

0.5
0.02

7.63
0.00

5.44
0.00

6.31
0.11

9.05
0.19

8.27
0.20

6.83
0.6

0.02
7.40

0.00
5.41

0.01
5.38

0.13
7.36

0.18
6.53

0.20
5.20

0.7
0.03

6.21
0.00

4.25
0.00

4.91
0.15

5.81
0.12

4.55
0.18

5.83
0.8

0.03
4.46

0.00
4.19

0.00
4.38

0.08
5.90

0.08
5.96

0.10
4.59

0.9
0.00

1.61
0.00

0.25
0.00

2.07
0.06

0.84
0.05

1.68
0.08

0.80

Table
5.3:m

d
analysis

-routing
case.A

llentries
in

the
table

are
percentages.

§5.8 Contributions and Conclusion 93

p
=

0.3
p
=

0.7

D
=

3
D

=
5

D
=

7
D

=
3

D
=

5
D

=
7

m
d

gap
D

-Tot
gap

D
-Tot

gap
D

-Tot
gap

D
-Tot

gap
D

-Tot
gap

D
-Tot

cluster map
0.1

0.01
14.1

0
22.31

0
28.68

0.03
12.97

0.03
14.16

0.03
4.83

0.2
0.01

13.85
0

22.03
0

28.58
0.03

12.93
0.06

11.3
0.11

15.65
0.3

0.01
13.65

0
21.96

0
28.42

0.03
12.98

0.02
14.29

0.03
12.77

0.4
0.01

13.56
0

21.79
0

27.91
0.03

12.84
0.02

14.38
0.04

11.29
0.5

0.01
13.27

0
21.6

0
24.35

0.03
12.61

0.03
14.18

0.04
11.03

0.6
0.01

6.99
0

20.83
0

20.13
0.03

12.42
0.02

14.07
0.03

10.95
0.7

0
9.79

0
16.31

0
19.42

0.03
12.17

0.03
12.55

0.04
10.43

0.8
0

7.04
0

14.91
0

14.88
0.03

11.95
0.03

10.7
0.05

9.4
0.9

0
9.33

0
1.54

0
12.93

0.03
5.35

0.01
2.17

0.03
2.84

random map

0.1
0

18.79
0

19.64
0

21.87
0.03

12.87
0.1

7.16
0.17

11.37
0.2

0
18.54

0
19.49

0
21.59

0.03
12.61

0.12
6.68

0.12
17.08

0.3
0

17.72
0

19.13
0

21.3
0.03

12.52
0.12

7.05
0.14

9.09
0.4

0
16.91

0
18.75

0
21.05

0.03
12.45

0.06
9.39

0.1
12.84

0.5
0

14.19
0

15.58
0

20.58
0.03

11.94
0.06

11.27
0.09

13.06
0.6

0
12.9

0
14.84

0
20.03

0.03
11.42

0.05
11.04

0.08
11.41

0.7
0.01

10.95
0

11.51
0

16.44
0.05

9.99
0.05

9.45
0.09

7.93
0.8

0
9.13

0
5.29

0
14.38

0.04
6.91

0.06
2.82

0.05
6.96

0.9
0

3.49
0

3.34
0

8.21
0.02

3.15
0.03

0.84
0.02

3.2

Table
5.4:m

d
analysis

-fleetsize
case.A

llentries
in

the
table

are
percentages.

94 Tactical Routing Strategy: Splitting Deliveries

cluster
random

D
=

3
D

=
5

D
=

7
D

=
3

D
=

5
D

=
7

p
gap

D
-Tot

gap
D

-Tot
gap

D
-Tot

gap
D

-Tot
gap

D
-Tot

gap
D

-Tot
routing case

0.1
0

13.73
0

12.24
0

9.79
0

5.92
0

2.8
0

4.01
0.2

0.01
12.05

0
18.25

0
13.49

0
5.14

0
7.05

0
5.4

0.3
0.03

11.28
0.02

15.61
0.03

12.34
0

4.51
0

7.64
0.01

5.58
0.4

0.07
9.41

0.04
12.25

0.04
12.3

0.03
6.54

0.01
7.98

0.03
8.15

0.5
0.06

12.28
0.06

11.11
0.06

12.07
0.06

9.22
0.05

8.42
0.05

7.76
0.6

0.07
10.36

0.06
11.17

0.06
10.56

0.09
8.8

0.08
9.37

0.09
6.75

0.7
0.09

9.06
0.1

10.5
0.1

9.79
0.11

8.52
0.16

7.79
0.19

6.15
0.8

0.1
6.72

0.11
9.06

0.13
7

0.17
6.87

0.22
6.63

0.22
6.49

0.9
0.12

4.53
0.14

4
0.18

-0.63
0.23

6.26
0.26

1.76
0.25

3.83
1

0.13
1.36

0.16
-1.08

0.25
-11.92

0.25
3.13

0.28
1.46

0.39
-13.71

fleet size case

0.1
0

18.44
0

18.49
0

17.98
0

18.14
0

14.2
0

11.22
0.2

0
19.75

0
23.85

0
25.21

0
17.98

0
17.94

0
14.24

0.3
0

18.42
0

21.6
0

24.53
0

17.53
0

18.84
0

16.4
0.4

0.01
16.47

0.01
18.64

0.01
20.39

0
14.53

0
10.23

0.01
15.93

0.5
0.01

14.32
0.02

16.91
0.03

19.37
0

14.76
0.02

12.42
0.03

17.37
0.6

0.02
10.61

0.02
18.63

0.03
18.46

0.01
14.71

0.04
14.81

0.04
16.05

0.7
0.03

7.36
0.02

16.18
0.05

17.09
0.02

9.57
0.04

11.58
0.1

11.94
0.8

0.03
4.4

0.03
7.83

0.1
9.05

0.09
4.56

0.09
7.57

0.14
6.81

0.9
0.02

3.44
0.06

3.66
0.13

-2.82
0.07

4.76
0.12

3.92
0.16

-1.25
1

0.05
1.11

0.08
0

0.19
-13.59

0.12
2.15

0.15
-0.27

0.25
-6.82

Table
5.5:Frequency

analysis.A
llentries

in
the

table
are

percentages.

§5.8 Contributions and Conclusion 95
p
=

0.3
p
=

0.7

D
=

3
D

=
5

D
=

7
D

=
3

D
=

5
D

=
7

theta
gap

D
-Tot

gap
D

-Tot
gap

D
-Tot

gap
D

-Tot
gap

D
-Tot

gap
D

-Tot

routing case
0

0.05
7.7

0.02
13.84

0.02
15.22

0.09
9.39

0.1
6.98

0.11
10.73

0.1
0.04

7.55
0.01

13.57
0.02

14.91
0.08

9.24
0.1

6.88
0.11

10.41
0.2

0.04
6.9

0.01
11.99

0.02
14.16

0.09
8.69

0.11
5.85

0.12
9.79

0.3
0.04

7.1
0.01

11.1
0.02

13.05
0.09

7.93
0.12

6.25
0.12

9.1
0.4

0.02
6.94

0
10.56

0.02
11.91

0.09
7.53

0.13
6.7

0.14
7.81

0.5
0.02

6.88
0

9.58
0.01

10.57
0.13

6
0.14

6.67
0.15

7.65
0.6

0.01
7.18

0.01
8.16

0.01
9.52

0.09
7.55

0.15
7.42

0.17
7.53

0.7
0.01

7.21
0

7.69
0.01

8.65
0.12

7.04
0.16

5.88
0.18

7.19
0.8

0
7.03

0
6.99

0.01
8.26

0.13
7.38

0.16
5.73

0.18
8.48

0.9
0

6.63
0

6.49
0.01

7.72
0.14

7.04
0.17

6.58
0.18

8.2
1

0.01
6.88

0
6.11

0.01
7.87

0.1
7.72

0.19
5.2

0.2
8.47

fleet size case

0
0

13.27
0

21.6
0

24.35
0.03

12.61
0.03

14.21
0.03

11.05
0.1

0
13.52

0
21.79

0
24.53

0.02
12.35

0.03
14.38

0.04
10.74

0.2
0

13.43
0

21.21
0

24.53
0.02

12.2
0.03

14.17
0.04

10.15
0.3

0
13.55

0
21.13

0
24.44

0.02
11.99

0.03
14.71

0.05
9.7

0.4
0

13.45
0

20.79
0

24.06
0.02

11.88
0.03

14.92
0.05

9.46
0.5

0
13.11

0
20.17

0
23.46

0.02
11.77

0.03
14.95

0.05
9.42

0.6
0

12.83
0

19.37
0

22.77
0.04

10.59
0.05

14.45
0.06

9.57
0.7

0
12.42

0
18.76

0
22.09

0.02
11.49

0.04
14.32

0.09
8.88

0.8
0

12.01
0

17.99
0

21.41
0.02

11.37
0.07

13.45
0.06

9.17
0.9

0
11.68

0
17.42

0
20.73

0.02
11.35

0.06
13.44

0.08
8.74

1
0

11.58
0

16.65
0

20.1
0.02

11.5
0.05

12.87
0.09

9.14

Table
5.6:C

ustom
ers’disposition

analysis.A
llentries

in
the

table
are

percentages.

96 Tactical Routing Strategy: Splitting Deliveries

Instance
a
=

1
a
=

2
a
=

3

p
D

m
d

gap
(%

)
D

-R
out(%

)
D

-Fleet
D

-Tot(%
)

gap
(%

)
D

-R
out(%

)
D

-Fleet
D

-Tot(%
)

gap
(%

)
D

-R
out(%

)
D

-Fleet
D

-Tot(%
)

0.3
3

0.3
0.01

7.96
0.6

13.65
0.02

9.32
0.6

14.29
n.a.

n.a.
n.a.

n.a.
0.3

3
0.7

0
6.77

0.4
9.79

0
7.66

0.4
10.21

n.a.
n.a.

n.a.
n.a.

0.3
5

0.3
0

14.53
0.8

21.96
0.01

15.7
0.8

22.51
0.02

16.29
0.8

22.79
0.3

5
0.7

0
10.56

0.6
16.31

0
13.01

0.6
17.47

0.01
13.4

0.6
17.65

0.3
7

0.3
0

16.28
1.2

28.42
0.01

18.48
1.2

29.36
0.02

19.11
1.2

29.64
0.3

7
0.7

0
11.96

0.8
19.42

0
14.98

1
24.29

0.01
16.81

1
25.07

0.7
3

0.3
0.03

11.03
0.6

12.98
0.26

-11.8
-2

-30.58
n.a.

n.a.
n.a.

n.a.
0.7

3
0.7

0.03
9.44

0.6
12.17

0.07
8.59

0.6
11.74

n.a.
n.a.

n.a.
n.a.

0.7
5

0.3
0.02

8.18
0.8

14.29
0.17

0.56
0.5

6.73
0.1

6.05
0.67

11.54
0.7

5
0.7

0.03
5.93

0.75
12.55

0.07
6.05

0.8
13.26

0.13
3.06

0.6
9.23

0.7
7

0.3
0.03

13.03
0.5

12.77
0.26

-4.51
-1.5

-20.78
0.17

10.95
0

5.55
0.7

7
0.7

0.04
10.85

0.4
10.43

0.08
6.85

0.25
6.56

0.1
8.19

0.4
9.08

Table
5.7:R

outing
case

-cluster
m

ap

Instance
a
=

1
a
=

2
a
=

3

p
D

m
d

gap
(%

)
D

-R
out(%

)
D

-Fleet
D

-Tot(%
)

gap
(%

)
D

-R
out(%

)
D

-Fleet
D

-Tot(%
)

gap
(%

)
D

-R
out(%

)
D

-Fleet
D

-Tot(%
)

0.3
3

0.3
0

7.18
1

17.72
0.01

10.26
1

19.23
n.a.

n.a.
n.a.

n.a.
0.3

3
0.7

0.01
-0.86

0.8
10.95

0.02
5.99

0.8
14.3

n.a.
n.a.

n.a.
n.a.

0.3
5

0.3
0

4.52
1

19.13
0

9.55
1

21.61
0.05

10.14
1

21.9
0.3

5
0.7

0
2.78

0.6
11.51

0.01
6.38

0.6
13.28

0.03
7.44

0.6
13.81

0.3
7

0.3
0

6.88
1

21.3
0.01

9.26
1

22.38
0.06

8.51
1

22.04
0.3

7
0.7

0
4.19

0.8
16.44

0.01
6.06

0.8
17.29

0.02
6.65

0.8
17.56

0.7
3

0.3
0.03

10.28
0.6

12.52
0.18

1.38
0.33

4.68
n.a.

n.a.
n.a.

n.a.
0.7

3
0.7

0.05
5.47

0.6
9.99

0.15
7.12

0.4
8.49

n.a.
n.a.

n.a.
n.a.

0.7
5

0.3
0.12

4.55
0.4

7.05
0.29

4.26
-0.33

-1.52
0.3

-1.49
-0.5

-6.54
0.7

5
0.7

0.05
4.74

0.6
9.45

0.18
5.99

0.4
7.83

0.25
6.8

0
3.68

0.7
7

0.3
0.14

0.14
0.75

9.09
-

-
-

-
0.39

2.59
0

1.35
0.7

7
0.7

0.09
6.01

0.4
7.93

0.22
3.31

0.2
4.12

0.28
2.64

0
1.37

Table
5.8:R

outing
case

-random
m

ap

§5.8 Contributions and Conclusion 97

Instance
a
=

1
a
=

2
a
=

3

p
D

m
d

gap
(%

)
D

-R
out(%

)
D

-Fleet
D

-Tot(%
)

gap
(%

)
D

-R
out(%

)
D

-Fleet
D

-Tot(%
)

gap
(%

)
D

-R
out(%

)
D

-Fleet
D

-Tot(%
)

0.3
3

0.3
0.05

8.13
0.4

8.13
0.09

9.32
0.6

9.32
n.a.

n.a.
n.a.

n.a.
0.3

3
0.7

0.02
6.77

0.4
6.77

0.05
7.66

0.4
7.66

n.a.
n.a.

n.a.
n.a.

0.3
5

0.3
0.03

14.41
0.6

14.41
0.05

15.72
0.6

15.72
0.1

15.99
0

15.99
0.3

5
0.7

0.01
10.51

0.6
10.51

0.02
13.03

0.4
13.03

0.04
13.54

0.4
13.54

0.3
7

0.3
0.02

16.45
0.8

16.45
0.04

18.53
0.8

18.53
0.1

18.46
1.2

18.46
0.3

7
0.7

0
12.61

0.6
12.61

0.02
15.29

0.8
15.29

0.03
16.86

1
16.86

0.7
3

0.3
0.08

10.29
0.4

10.29
0.2

7.52
0

7.52
n.a.

n.a.
n.a.

n.a.
0.7

3
0.7

0.08
9.51

0.4
9.51

0.15
8.29

0.6
8.29

n.a.
n.a.

n.a.
n.a.

0.7
5

0.3
0.11

5.33
0

5.33
0.26

-5.63
-1

-5.63
0.32

-18.31
-2.5

-18.31
0.7

5
0.7

0.08
5.75

0.4
5.75

0.14
6.14

0
6.14

0.22
2.67

0.2
2.67

0.7
7

0.3
0.14

20.26
0

20.26
-

0.2
-0.3

-2
-0.3

0.7
7

0.7
0.09

10.17
0.2

10.17
0.16

7.84
0.2

7.84
0.2

7.64
-0.2

7.64

Table
5.9:Fleetsize

case
-cluster

m
ap

Instance
a
=

1
a
=

2
a
=

3

p
D

m
d

gap
(%

)
D

-R
out(%

)
D

-Fleet
D

-Tot(%
)

gap
(%

)
D

-R
out(%

)
D

-Fleet
D

-Tot(%
)

gap
(%

)
D

-R
out(%

)
D

-Fleet
D

-Tot(%
)

0.3
3

0.3
0.02

8.79
0.4

8.79
0.1

10.15
0.6

10.15
n.a.

n.a.
n.a.

n.a.
0.3

3
0.7

0.03
6.21

0.2
6.21

0.07
7.9

0.4
7.9

n.a.
n.a.

n.a.
n.a.

0.3
5

0.3
0.01

5.97
0.2

5.97
0.05

9.48
1

9.48
0.2

9.36
0.6

9.36
0.3

5
0.7

0
4.25

0.2
4.25

0.03
6.95

0.4
6.95

0.08
7.13

0
7.13

0.3
7

0.3
0.01

7.25
0.6

7.25
0.03

9.37
0.8

9.37
0.15

9.65
0.8

9.65
0.3

7
0.7

0
4.91

0.4
4.91

0.02
6.32

0.6
6.32

0.06
7.29

0.4
7.29

0.7
3

0.3
0.13

8.56
0

8.56
0.3

9.11
0

9.11
n.a.

n.a.
n.a.

n.a.
0.7

3
0.7

0.15
5.81

0.2
5.81

0.26
7.38

-0.2
7.38

n.a.
n.a.

n.a.
n.a.

0.7
5

0.3
0.27

2.75
-0.75

2.75
0.35

7.52
0

7.52
0.36

3.07
-1

3.07
0.7

5
0.7

0.12
4.55

0
4.55

0.28
6.65

0
6.65

0.35
5.78

-0.2
5.78

0.7
7

0.3
0.22

9.61
-0.25

9.61
0.36

-4
-1

-4
0.42

11.5
-0.5

11.5
0.7

7
0.7

0.18
5.83

0.2
5.83

0.31
3.11

0
3.11

0.36
5.36

-0.4
5.36

Table
5.10:Fleetsize

case
-random

m
ap

Chapter 6

Territory Design

6.1 Introduction

Transport companies often face the tactical problem of designing a strategy to ef-
fect regular deliveries in a service area over a certain horizon. In order to make
solving the daily problem easier, and to increase the drivers’ familiarity with partic-
ular areas, companies wish to pre-assign customers, or sectors of the service area, to
drivers. This way, every day, a driver visits the same customers and drives within
the same area. This is desirable to enhance both quality of service and efficiency
(Smilowitz et al. [2013]). Increasing the consistency in service is becoming more and
more important to transportation providers. In fact, due to a strong and increasing
competition, they are forced to shift their attention to customers’ satisfaction. On the
other hand, as noted in Wong and Beasley [1984], having the same driver visiting the
same customers regularly can significantly increase efficiency. Drivers become more
familiar with customers, learn shortcuts, traffic and road conditions. This can reduce
service and travel time, as well as administrative and operational costs.

One common approach (Wong [2008]; Ríos-Mercado and Fernández [2009]; Jar-
rah and Bard [2012]) is to split the service area into several sectors (or clusters of
customers) called territories (or districts), to be pre-assigned to drivers. This implicitly
achieves consistency and decreases the complexity of the routing problem in future
daily operations (Wong and Beasley [1984]). We refer to this type of approach as
Territory Based Routing (TBR).

One drawback of TBR approaches is the loss in operational and routing flexibility.
The routing plans obtained every day are indeed sub-optimal. Moreover, an import-
ant factor often overlooked in the literature, the routes might be unbalanced in terms
of workload, which might not be desirable for a company. An analysis on the trade-
off between flexibility and workforce management is presented in Smilowitz et al.
[2013].

The process of dividing the service area into sectors is referred to as districting,

98

§6.1 Introduction 99

and the class of problems studying the design of efficient territories is called District-
ing Problems (DPs) or Territory Design Problems (TDPs). These types of problem
have already been considered in the literature (Ríos-Mercado and Fernández [2009];
Jarrah and Bard [2012]; Zhong et al. [2007]). However, districting is not the only
approach considered to improve service consistency. Some authors have proposed
to use an approach based on “master plans”. In this approach, a standard VRP is
solved over all known customers. The route for a given day is then given by simply
skipping those customers that do not require service. See, for example, Groër et al.
[2009]; Sungur et al. [2010].

Even though there is not a unified approach, the standard methodology for TDPs
does not consider the routing component of the problem. The most common methods
are variation of the location-allocation algorithm (Kalcsics [2015]). This works by first
determining the territories centres (seed customers or simply geographical points)
and then assigning the basic units (geographical areas or customers) to the centres.
The focus is on how to assign the customers in such a way that some planning criteria,
such as contiguity and compactness of the territories, are met, and the territories are
balanced with respect to some measures. However, a few recent works (Schneider
et al. [2014]; Wong and Beasley [1984]; Sungur et al. [2010]; Smilowitz et al. [2013])
have proposed to integrate the routing component of the problem in the design of
the territories. We refer to this type of approach as routing-based.

However, only in Smilowitz et al. [2013] is a complete integration of the district-
ing and routing components proposed. In Schneider et al. [2014]; Wong and Beasley
[1984], the routing is used in two-stage algorithms as the base for an improved assign-
ment phase. Moreover, to the best of our knowledge, only in Schneider et al. [2014],
and partially in Sungur et al. [2010], are complex routing constraints, such as time
windows, considered. In particular, we highlight Schneider et al. [2014], where the
authors propose a numerical analysis of the impact that time windows have on the
design of territories for routing operations. As highlighted in Schneider et al. [2014],
when considering time windows, or other complex operational constraints, the rout-
ing flexibility becomes paramount in the design of territories. This is because these
constraints strongly affect the routing decisions and should not be ignored in the ter-
ritory design phase. One other key factor is the balance of the territories with respect
to a user defined measure (e.g., routes’ duration). In the vast majority of papers
dedicated to TDP, as we previously mentioned, the routing decisions are ignored.
Therefore, one can only estimate such measures. In many cases though (e.g., routes’
duration), reliable estimates are very hard to obtain. Routing-based approaches allow
for more freedom in the definition of such measures and make it possible to compute
the measure exactly. The literature on routing problems with balanced routes is not

100 Territory Design

very developed. To the best of our knowledge there is no routing-base method pro-
posed in the literature concerning TDPs that considers balanced routes. Moreover,
no previous work has analysed the effect of balance requirements in territory design.

The problem addressed in this chapter is motivated by a real-world application
from a grocery delivering company operating in Australia. We present a general
approach which we extensively analyse. The goal is not only to solve the problem at
hand, but also to investigate how much different factors affect the design of effective
territories. Our analysis is similar in spirit to the one presented in Schneider et al.
[2014]. Some of the questions we address overlap with the goals in their work.
However, the methodology adopted is substantially different.

Our goal is to investigate the following matters:

1. The impact of time windows and balance requirements on the design of effect-
ive territories.

2. The ability of a routing-based approach to balance the daily routes throughout
the whole horizon.

3. The impact of other factors, such as demand variation, on the effectiveness of a
TBR approach.

To address these questions we develop a heuristic based on the Adaptive Large
Neighbourhood Search (ALNS) scheme (Ropke and Pisinger [2006]). Our method
is simple and easily extendable to richer routing problems. The proposed method
can also be used when territories are already available. This could be seen as the
second phase of a TDP.

The contributions of this chapter are several. First, we propose a simple but ef-
fective approach that can be used to solve TDPs. Notably, this integrates routing and
districting decisions in the same model, allowing for a simultaneous optimisation.
To the best of our knowledge no other method in the literature combines these two
aspects for territory design problems. Secondly, we provide real-world based data
that we use to compare with the previous method used by our industrial partner
and test our algorithm. Finally, we provide an analysis that attempts to quantify
what factors are important when solving a TDP. In particular, we analyse how time
windows and balance requirements affect the territories effectiveness. Furthermore,
as noted in Schneider et al. [2014], it is also interesting to see how TBR approach
performs on a real-world problem which is not embedded in a Euclidean plane. To
the best of our knowledge, no previous work has proposed a routing-based approach
able to directly consider operational constraints and balance requirements.

§6.2 Motivation and Previous Work 101

This chapter is organised as follows: first, in Section 6.2, we describe the real-
world application that motivated this study. In Section 6.3, we provide a general
formulation of the problem. Then, in Section 6.4, we review the relevant literature
and illustrate the advantages of having a routing-based formulation. The solution
method is presented in Section 6.5. We present an extensive numerical analysis in
Section 6.6. Conclusions are drawn in Section 6.7.

6.2 Motivation and Previous Work

In this section we present the real-world application that motivated this work. Our
industrial partner is a grocery delivering company operating in Australia. Each dis-
tribution centre (DC or depot), every day, has to satisfy the demand of a set of cus-
tomers. Not all customers require service every day. Since customers are associated
with only one DC, an instance of the problem is defined by a DC. Each customer can
only be visited during a specific time window, which is the same every day. Waiting
at the customer location is allowed. The depot has a time window, defining the earli-
est start and latest return time allowed for the routes. Each day, a fleet of vehicles
has to satisfy the demands of the customers. The vehicles cannot visit the depot to
replenish. It is desirable to have, every day, routes of a similar duration, to reach
some fairness amongst drivers. We have at our disposal a week’s worth of data for
several distribution centres. The goal is to design a cost effective routing plan, based
on the available data, which also increase service consistency and balance between
daily routes.

In a previous collaboration, the problem was solved by using an industrial solver
(Kilby and Verden [2011b]) in a master-route fashion. The idea was to design the
master routes by solving a routing problem including all customers at once. This im-
plicitly defines a routing plan for the whole horizon and assure drivers are perman-
ently assigned to customers. However, balance requirements were not considered at
that time. We describe this approach in more details in Section 6.6.4. One goal that
motivated the work presented in this chapter is to study the benefits of adopting a
more flexible routing approach, since the master routes approach favours consistency
over routing efficiency. A second goal is to include balance requirements in the ap-
proach. In this particular case, the measure to be balanced is the routes’ duration. In
other routing applications, different measures might be considered. We elaborate on
this in Section 6.3.1.

102 Territory Design

6.3 Problem Formulation

We now present our formulation of the problem, upon which we build a general
approach to TDPs. Moreover, we look at the advantages of including the routing
decisions in the model.

Let us start with the formal description of how we model the problem and what
we define as a solution. This fits our application and also serves as the framework
we use in the computational analysis presented in Section 6.6. In the following we
assume a fixed homogeneous fleet. This assumption is not true for all DCs in the
application considered. However, in order to focus our attention to the districting
component of the problem and to facilitate future use of the provided data, we de-
cided to consider only this case.

We consider a time horizon made of D days (or, more generally, periods) of
operations. We have a set of customers C = {1, . . . , N}, a single depot, denoted by 0,
and a set F of homogeneous vehicles of capacity Q. We have available two matrices
defining the distances and travel times between any pair of locations. We do not
assume symmetry in the matrices (in fact they are not in the problem considered for
the experiments). Each customer may place some requests during the horizon. We
denote by Cd ✓ C the set of customers which require service on day d. Therefore, the
total number of requests over the horizon equals Âd |Cd|. For each customer i 2 C,
we denote by [ei, li] its time window and by si the service time needed to perform
necessary operations at the customer’s location. The time windows of the depot is
denoted by [e0, l0].

Loosely speaking, the goal is to partition the set C in |F| sets (or territories),
denoted by {Tv}v2F, so that a vehicle/driver can be assigned to a unique territory1.
Ideally, on each day d, a vehicle would only visit customers in its territory. However,
this might be impossible (due to capacity constraints for example). Hence, we take
a soft approach and try to increase consistency by penalising the “violations” of the
partition as we describe later in the section. Moreover, each day, we want to balance
the routes with respect to a given measure. For now, we leave the definition of
a measure as general as possible. Later in the section we elaborate on the actual
measures we consider.

Let us introduce some notation. We denote by Rd the set of all possible routes for
day d and define R :=

S
d Rd. We assume |F| copies of the empty route are included

in Rd with the convention that, if a vehicle is assigned an empty route then such
vehicle is idle on day d. The measure to be balanced, denoted by µ, is a function

1Note that we use the set V also to index and represent the territories. This is because the number
of vehicles/drivers and territories is assumed to be the same.

§6.3 Problem Formulation 103

µ : R ! [0, •). Given a route r 2 R, we denote by d(r) the day associated with the
route and by µ(r) its measure.

A solution is composed by:

S.1 a set of routes Sd ✓ Rd, one route for each vehicle each day (i.e., a routing plan),
satisfying capacity and time window constraints;

S.2 a map f, from
S

d Sd (the routing plan) to F, so that, for each day, the corres-
pondence from Sd to F is one-to-one.

We first want to point out that we do not impose that all requests have to be
satisfied. Therefore, a request may be unrouted, i.e., not visited by any route. In this
case, a penalty is added to the objective. Let us now focus on the second part of our
definition. A solution implicitly defines the territories, as we now explain. Assume
we have a solution. We can label and identify territories with indexes v 2 F. Using
the same notation of the route map, we define, for each i 2 C,

f(i) = arg max
v2F

���{r 2
[

d
Sd : f(r) = v}

���

where f(i) represents the territory to which a customer i 2 C is assigned. In other
words, i is assigned to the territory which is associated with the highest number of
routes that visit i. From now on, we will write f(i) to refer to the territory associated
to i by the solution under consideration2. Summarising, a solution implicitly defines
the territories, and, each day, all |F| routes are assigned to different territories. Con-
sequently, each territory has |D| routes mapped into it, one for each day. When a
driver (or vehicle) is assigned to a territory, it is also assigned to all routes associated
with that territory.

In order to formally describe the costs, we define the unbalance Dd(µ) of a solu-
tion s for a day d, with respect to the measure µ, as

Dd(µ) =
maxr2Sd µ(r)� minr2Sd µ(r)

minr2Sd µ(r)
.

Given a tolerance r � 0, we further define

Dr
d(µ) =

(
Dd(µ) if Dd(µ) > r

0 otherwise
(6.1)

Therefore, we accept an unbalance in the routes as long as it is less than r. The

2The solution will be clear in the context.

104 Territory Design

cost of a solution s is denoted by f (s) and obtained as a weighted sum of the follow-
ing components:

1. Distance Cost: the total distance travelled throughout the horizon;

2. Territory Cost: the number of violations of the partition. A violation is defined
as a route r visiting a customer i such that f(i) 6= f(r);

3. Balance Cost: the sum over the days of the quantities Dr
d(µ);

4. Outsourcing Cost: the number of unrouted requests.

We assume the Distance Cost to always have unitary weight and we denote the
weights of the Territory, Balance and Outsourcing Cost, respectively, by lterr, lbal, lout.
These are assumed to non-negative real numbers. If we want to make the weights
explicit, we write the cost of a solution s as f lterr,lbal,lout(s). The goal is to find a
solution that minimises the cost.

A strategy that has proved effective is to introduce a flex zone, i.e., to exclude
some customers from the partition and leave them accessible to all vehicles with no
penalty (Zhong et al. [2007]). Since our goal is to study the effect of several factors on
a TBR approach, to not lose generality we chose to not allow such freedom. In fact,
in the real-world problem we presented in Section 6.2 this is not allowed. However,
it is not hard to integrate this idea in our method. A simple heuristic would be to
select the customers with the highest number of violations as the ones to be placed
in the flex zone. One other idea would be to set a tolerance parameter also for the
Territory Cost.

6.3.1 Balance Measures

Our definition of the balance measure is route-based. It is not the territories that
have a measure, but, instead, the daily routes assigned to the territories. This is
consistent with our choice of basing the territory design on the routing solution. In
the computational experiments we consider two different measures: route duration
and route value. We refer to the balance cost as Duration Cost and Value Cost. We
still write Balance Cost if we do not need to specify the particular measure we are
using. The Duration Cost penalises the difference in the duration of a route, i.e., the
total time from the moment a vehicle leaves the depot to the moment the vehicle
returns to it. We stress that the balance is measured on a day to day basis, not
cumulatively throughout the horizon. This type of balance is often important in real
applications as a company might want to have routes that are fair to the drivers.
To define the Value Cost we need additional data. Assume that, associated with a

§6.4 Related Work 105

customer i and each day d, there is a value vid � 0. The value of a route is defined as
the sum of the values of the customers that are visited by the route. The Value Cost
penalises the difference in the values of daily routes. The values vid can represent
real monetary values, for example if we are dealing with routing of technicians and
each driver/technician is paid based on the amount of work done. However, values
can serve as a proxy for other quantities, for example, a simple count of customers,
or the area assigned to the customer in a Voronoi diagram.

6.4 Related Work

Our work spans across different areas of the literature. The daily routing problem we
examine belongs to the class of VRPs with Time Windows (VRPTW). The literature
on solution methods of routing problems is vast and its review requires a dedicated
survey paper. We refer to Toth and Vigo [2014] and references therein.

Instead, we focus on past work in the area concerning TDPs. The applications
of such problems vary in nature, from political and school districting (Bacao et al.
[2005]; Ferland and Guénette [1990]) to routing oriented applications such as sales
and service territory design (Zoltners and Sinha [2005]). A general review on TDPs
can be found in Kalcsics [2015]. We focus our review on routing oriented applica-
tions.

There is no standard shared approach to TDPs. Some papers make use of con-
tinuous approximation models. The underlying idea is that, by fixing the shape of
the districts, one can estimate the length of a (near) optimal route. In Newell and
Daganzo [1986]; Daganzo [1984], the authors propose to use a ring radial network.
A disk model is proposed in Ouyang and Daganzo [2006]. In Jarrah and Bard [2012],
the authors apply a similar idea to a pick-up and delivery real-world problem. They
propose to divide the service area in districts contained in rectangular regions whose
dimensions have to be determined. In Hall et al. [1994], an integrated method is
developed. This combines the continuous model proposed in Daganzo [1984] with a
discrete model, that makes use of a generalised assignment problem and a travelling
salesman problem. The paper showed that the estimate for a route’s length presented
in Daganzo [1984] is quite accurate.

An approach combining a disk model with the concept of Voronoi tessellation is
proposed in Ouyang [2007]. The authors transform the service area by means of a
conformal map so that they can use a disk model. They use a discretised dynamical
system to find a non overlapping covering of the mapped area using smaller disks.
These are mapped back in the original area to obtain the centres of the territories.
Eventually, the original service area is divided in rectangular territories by means of

106 Territory Design

a Voronoi tessellation. The approach proposed is mathematically sound and the tests
show good results.

A vast part of the literature focuses on algorithmic methods to solve discrete mod-
els. A common approach (Kalcsics [2015]) is to formulate a TDP as an assignment
problem. Typically, a p-centre, or p-median, measure is used to control the dispersion
of the territories and some constraints are added in order to have balanced territories
with respect to other measures of interest. An example studying a real-world applic-
ation can be found in Ríos-Mercado and Fernández [2009]. Here the authors consider
three different measures to be balanced and require the territories to be contiguous.
The model presented is a p-centre problem with multiple capacity constraints and
balance constraints. The problem is solved with a GRASP-based heuristic. Other
examples include Salazar-Aguilar et al. [2011]; Benzarti et al. [2013].

The authors in Haugland et al. [2007] study the problem of designing districts
for a stochastic VRP. They model the problem as a two-stage stochastic program
with recourse and propose a multi-start and a Tabu Search (TS) heuristic to create
the districts. Instead of considering routing decisions they propose to estimate the
routing cost of a district with a simpler formula. They test their methods on modified
standard VRP benchmarks.

In Zhong [2003] a two-stage method is presented. The first, strategical, stage
aims at grouping customers in small “cells”. Some of these cells are grouped, to
define what they name core areas, and assigned to specific drivers. The core areas
will always be visited by the same driver. The unassigned core areas form a flex
zone, i.e., an area that can be visited by any driver. In the second phase the routing
plan is designed using the defined core areas. They show how allowing a flex zone
significantly increases the flexibility in the routing phase. The results show how this
approach can balance the trade-off between consistency and flexibility. Moreover,
in the routing phase, the insertion cost is modified to account for a driver learning
model. This aims at modelling the increased familiarity of a driver with a certain
area resulting from several consecutive visits.

One of the first papers using the idea of constructing territories based on the rout-
ing solutions of sample days is Wong and Beasley [1984]. Here the authors solve a
number of VRPs independently. The solutions are used to compute a matrix defining
the cost of having two customers in the same area. This matrix is then used to solve
an allocation problem. Even though the consistency in service is strongly enhanced,
the inflexibility of their territories leads to infeasibility when the demands presents
significant variation. This method can be seen as a predecessor of the method pro-
posed in Schneider et al. [2014].

In Schneider et al. [2014] the authors propose a routing-based methods to ap-

§6.4 Related Work 107

proach TDPs. They also present an extensive computational analysis aimed at evalu-
ating the effect of time windows on TBR approaches. They first solve a set of sample
days using a TS algorithm. The solutions of these problems are then used in the territ-
ory design phase. This is a two-stage method. In the first stage some seed customers
are selected and then the remaining customers are assigned to the seeds to form the
territories. They use the flex zone concept presented in Zhong [2003]. The assign-
ment is not solely based on the routing history but also includes geographical or
time-windows related information. By comparing these two methods they conclude
that geographical information is more important than time-related information when
designing territories. Their analysis is based on modified VRP benchmarks. Their
method, as well as the one proposed in Wong and Beasley [1984], differs from ours in
the fact that routing problems are solved without regard to territory constraints, and
then the solutions combined to form territories. There is therefore, still a degree of
separation between routing and districting. Moreover, in Schneider et al. [2014], only
a fixed percentage (roughly 60%) of the customers is assigned to a territory, while
the remaining ones are left unassigned.

In Smilowitz et al. [2013], an analysis of the trade-off between consistency and
routing for the Periodic VRP (PVRP) is presented. The authors three different ap-
proaches to solve a variation of PVRP that include consistency measures. The first is
a two-stage approach where a standard PVRP is solved and then the obtained routes
are assigned to drivers in order to increase consistency. The other two approaches
include the workforce management in the objective. A TS heuristic is used to solve
the problems. Numerical tests show that, by simply including consistency measures
in the objective, their model is able to produce solutions that can balance routing
efficiency and service consistency. Conversely, optimising over the distance and then
later assigning the routes does not always produce good results. The methodology
presented in Smilowitz et al. [2013] is similar to ours in spirit. However, they do not
introduce the concept of territories and the problem analysed is of a different nature.
Although the cited papers also study routing in the presence of territory constraints,
the approach in the present paper differs markedly, integrating routing and territory
design in the heart of the algorithm.

In Haughton [2008], the author presents a comparison between an exclusive ter-
ritory assignment approach and a daily re-optimisation of the routing plan. An inter-
mediate option is considered, consisting in assigning teams of drivers to territories.
This aims at increasing the routing flexibility without decreasing the consistency of
service. Numerical experiments are carried out to analyse the effect of the demand
variation, the fleet size and the vehicles’ capacity on the efficacy of the territory ap-
proach.

108 Territory Design

In Groër et al. [2009], the authors introduce the Consistent VRP (ConVRP). This
is a multi-period routing problem where the objective is to have a customer visited
by the same driver at approximately the same time every day the customer requires
service. The authors develop a two-stage approach based on the record-to-record
algorithm. Their method is based on a precedence principle, i.e. it builds a set of
master routes that are used as templates for all day routes. A modified capacity and
time limit for the master routes have to be set in order to not build routes that are
infeasible when applied to the specific days or with a large slack in their capacity or
time use. These two parameters turn out to be key for the quality of the routing plan
produced. Therefore, occasionally, the daily routes are built to evaluate the slack or
violation of the true time and load limits. Based on these checks, the parameters
in the master problems are updated. The rationale behind their choice is the hope
that, by having a fixed schedule, the customer will be visited at roughly the same
time every day. The method achieves a good level of consistency with an acceptable
increment in the total time travelled. However, the number of vehicles is considerably
increased when compared to a daily optimisation.

A master-plan approach is also used in Sungur et al. [2010]. The problem studied
therein is a stochastic multi-period VRP with soft time windows. The stochasticity
comes from having uncertain service time and probabilistic customers. The master-
plan idea is modified to fit their problem by using robust optimisation to deal with
the uncertainty in the service time and by dropping customers with low frequency
of occurrence. The master-plan is then used as a starting point to re-optimise every
day’s routes once the uncertainty is revealed. Their algorithm improved the results
of Groër et al. [2009].

Districting problems are also studied in the arc routing literature. Typical ap-
plications are the design of districts for waste collection (Kim et al. [2006]) or winter
gritting operations (Perrier et al. [2007]). In Mourão et al. [2009], the Sectoring Arc
Routing Problem is defined. This is a general abstraction of the typical territory prob-
lem faced in arc routing. The seasonality in these problems is much stronger than
in the problem we are considering. In fact, such problems are usually solved for a
single day of operations. We do not focus on arc routing applications and refer the
interested reader to Mourão et al. [2009].

Lastly, we briefly focus on the literature concerning balance in routing applica-
tions without regard to territories. The measures to be balance vary from application
to application. In Jozefowiez et al. [2007], the authors consider the standard VRP in-
cluding a simple balance measure in the objective function. The balance of routes is
measured simply by taking the difference between the longest and the shortest route.
Similarly, in Mandal et al. [2015], the authors study the mixed capacitated general

§6.4 Related Work 109

routing problem including the same balancing measure. In Lee and Ueng [1999],
the measure balanced is the working time of the drivers. One other example is the
workload of the vehicles, intended as route total demand, (Ribeiro and Ramalhinho
Dias Lourenço [2001]). A similar measure is considered in a multi-period problem in
Mourgaya and Vanderbeck [2007]. Other references can be found in Jozefowiez et al.
[2008]; Matl et al. [2017]. We also highlight the paper by Drexl (Drexl [2012a]), where
the author compares the state of the art of commercial routing solvers and of the
literature on rich routing problems. The author points out how balance requirements
are important in practice, but quite overlooked in the literature.

6.4.1 Routing- vs Cluster-based Formulations

In this section, we want to compare our formulation of the problem with the typical
formulation used to solve TDPs in the literature.

The first difference is the fact we consider a time dimension, in the form of a
number of scenarios (days of operations in our case). The same choice was adopted
in Schneider et al. [2014]; Sungur et al. [2010]. It is quite standard to use historical
data, or scenarios, also when trying to improve service consistency (Groër et al.
[2009]; Smilowitz et al. [2013]) without using the concept of territories.

Conversely, the typical approach does not include a time dimension. This makes
sense, as there is no routing decision included in the models or solution methods.
The most common method (e.g. Kalcsics [2015]) is to determine some seed customers
and to assign the remaining customers to the seeds by means of an allocation method.
We refer to these approaches as cluster-based, opposed to the routing-based approach
we have taken.

The advantages of routing-based approaches are several. First, we can include
operational constraints in the underlying routing problem. The constraints are expli-
citly considered through the routes. From a balance point of view, the measures can
be computed explicitly using the routes. In a cluster-based approach, we do not have
routes available. Therefore, operational constraints cannot be taken into account and
it is not possible to compute routes’ measures. A standard alternative is to assign
a measure value to each customer, define a territory’s measure as the sum of the
measures of customers in the territory and balance the measures of the territories
in the allocation problem. This approach works well for problems such as political
districting (Kalcsics [2015]), where there is no concept of time and the measures are
geometric in nature (e.g., density of population). This has the advantage of being
computationally easy, but has several drawbacks when applied to routing applica-
tions. For example, it is not trivial to estimate the duration of a route, especially if

110 Territory Design

time windows are considered. Even in the case of route value, the demand variation
could make the estimate far from reality, resulting in very unbalanced territories.
Consider, for example, a situation where some customers order very rarely through-
out the horizon. By assigning all of these customers to one territory, the measure
estimated in a cluster-based approach might be very high. However, the real meas-
ure of a daily route is not reflected by the territory measure, as these customers might
order on different days. One advantage of including routing decisions in the model,
is that one can precisely compute the routes measure, and, if the sample days are
representative enough of the horizon, reach a better balance.

6.5 Solution Method

In defining a solution method, our goal was to design a relatively simple algorithm
that would be easy to extend to other operational constraints but nonetheless high-
performing. We refer to our algorithm as Routing Based Territory Approach (RBTA).

The method we propose is based on the Adaptive Large Neighbourhood Search
(ALNS) algorithm (Ropke and Pisinger [2006])3 . ALNS has been proved to be a
very efficient and flexible technique when applied to routing problems (Kilby and
Verden [2011b]). Our method differs from the ALNS of Ropke and Pisinger [2006] in
several aspects. We now focus on the various components of our method. Later in
the section we will provide the pseudo-code of our algorithm.

Initialisation. We need to create an initial solution to start ALNS. We use several
methods to build a solution and we take the best one produced. We use a variation4

of the I1 insertion heuristic (Solomon [1987]) described in 3.3.1. We created two
versions of the I1 heuristics, different only in term of seed selection: the first selects
the furthest customer, in terms of travel time, from the depot. The second selects
the customer with lowest li. Moreover, we create other candidate initial solutions by
using some of the repair methods described later in this section.

Destroy Heuristics. We consider the random, worst and Shaw heuristic for removing
customers as described in Ropke and Pisinger [2006]. For each of these we create a
day-by-day and a horizon version. The day-by-day version selects one day at the time
and applies the original heuristic. The horizon version considers the whole horizon.
Therefore, once a customer i is selected, it will be removed from its current route
on all days. This gives more opportunities for the insertion heuristic to decrease

3For a presentation of ALNS see Section 3.4.1.
4For this method only the Distance Cost is considered.

§6.5 Solution Method 111

the Territory Cost. In particular, for the worst heuristic, the score associated with a
customer is a simple average of the scores of all days (see Ropke and Pisinger [2006]
for more details). We also introduce one new destroy operator, that we name route-
removal. This selects and removes a random route, where the probability of a route to
be chosen is inversely proportional to its length. Moreover, it removes other random
customers, in order to create space for the removed customers in the other routes.
Both a day-by-day and a horizon version are implemented.

Repair Heuristics. The same idea is applied to the insertion heuristics. We consider
the greedy and k-regret heuristic with k = 2, 3 (see Ropke and Pisinger [2006]). Just
as we did for the destroy heuristics, we define a day-by-day and a horizon version.
The day-by-day applies the original method to each day in a random order. The
horizon version considers an insertion of a customer i in a route r over the set of
days where customer i requires service and is not already in another route. The
score of an insertion is the sum of the day scores. The horizon version is slower that
the day-by-day version, therefore we decided to use the horizon version only for the
greedy and 2-regret heuristics. However, experiments show this does not result in a
loss of efficiency.

In the day-by-day version, days are considered in a random order to give the
possibility of changing the route of a customer. Consider a customer that has a
“natural” route on day one, but on other days may be closer to other routes. If day
1 was always considered first, the customer would tend to end up on the route it
was close to on day one. By considering days in random order, the customer may
already be assigned to a different route on a number of days by the time day one is
considered. The territory penalty would then encourage it to be assigned to that new
route even on day one.

Route Mapping Operator. In order to have a faster algorithm we decided to fix
the map f (part S.2) of the current solution throughout the algorithm. We number
the routes progressively from 1 to |F|, therefore assuming that route r is assigned to
territory r. However, this creates some potential limitations. Consider the following
scenario: by swapping all visits of two routes r1 and r2 on the first day of the current
solution scurr we obtain a different solution s0 which is optimal for the problem. In
fact, even if the routing plan of s0 has not changed, swapping two routes can decrease
the Territory Cost since the map f is fixed. Unfortunately, it might be hard to reach
s0 from scurr with the described destroy and repair heuristics. This effect is more
pronounced in the initial stages of the algorithm.

To overcome this issue, we define a solution operator, which we call route-mapping.

112 Territory Design

This cannot be classified as a destroy or a repair heuristic. The idea is very simple:
given the the map f is fixed, we aim at swapping entire routes’ allocation (just like
in the above example), in order to improve the Territory Cost. The way we reorder
the routes is dictated by the solution of a MIP model and it is done in a day-by-
day fashion. Fix a day d 2 D. For each route r 2 Sd and each territory index
v 2 V we introduce a binary variable xrv representing whether r is mapped to v. We
define the wrv as the number of violations we would create if we were to assign r to v.
However, we count only the violations that occur on days we have already reordered.
This is because we do not want to account for future days that we will reorder later.
Therefore, the optimal mapping is given by the solution of the following model:

min Â
r,v

wrv xrv

s.t. Â
t

xrv = 1 8 v 2 V

Â
r

xrv = 1 8 r 2 Sd

xrv 2 {0, 1} 8 r 2 Sd, v 2 V

The model is very simple. The two sets of constraints mean the map is one-
to-one. The cost is the total number of violations created by the new map. Note
that this is an Assignment Problem. This type of problem is known to be totally
unimodular. Therefore, solving such a model is very fast and does not slow down
the algorithm. If we were to solve the mapping problem over the whole horizon at
once, the model would be more involved and would require more time to be solved,
without improving the efficiency of the operator significantly. Therefore, we opted
for a day-by-day version. Once we have a solution of the model, for all variables
xrv = 1, we move all visits of r to the route assigned to territory v. We use this
operator at the end of every segment.

Cost Computations. We chose to not consider the Territory Cost as it is, but to
increase lterr from zero to its real value during the algorithm. In other words we do
not use the real cost f lterr,lbal,lout(·) in the ALNS algorithm, but we use a modified
weight elterr for the Balance Cost. We denote the resulting cost function with ef , i.e.
ef (·) = f elterr,lbal,lout(·). Let us denote by itmax the maximum number of iterations5. At
the end of each segment, we set elterr = lterr

it
itmax

where it is the number of iterations

5Since we are using SA on top of ALNS, one can compute itmax given the initial temperature, the
cooling schedule and the maximum number of iterations imposed to ALNS.

§6.6 Computational Analysis 113

completed so far. We found this to perform better when compared to a standard
computation of the cost. However, at every iteration we have to evaluate the real cost
of the newly sample solution and keep a “real best” solution in addition to the best
solution used in standard implementations of ALNS.

A more subtle problem is how to manage the Balance Cost during the repair
phase. Consider the duration balance constraint. Since the Balance Cost penalises
the gap between routes’ duration, a bad insertion early in the repair phase might
be highly rewarded only because it brings the durations of the routes closer. This
represents a concrete issue for the repair heuristic. In fact, the destroy heuristic
often creates unbalanced solutions and we wish to avoid the repair heuristic being
driven to sub-optimal insertions by the Balance Cost. We propose three possible
ways of modifying the Balance Cost computation in order to remedy this issue. In
the first, we simply ignore the Balance Cost during the repair phase. In the second,
we multiply the Balance Cost by the fraction of customers already inserted in the
solution. Finally, in the third, we only consider the Balance Cost component during
the last insertions. A preliminary computational test showed that the second option
is the one that performs the best. In details, when a new insertion is evaluated, if
there are still m customers to be inserted, the weight of the Balance Cost in the cost
computation is set to lbal

|Cd|�m
|Cd|

. We stress that this is only done within the repair
heuristic. The cost of the repaired solution is computed using the original lbal.

The pseudo-code of our algorithm is given in Algorithm 6.

6.6 Computational Analysis

In this section we perform an extensive computation analysis with several goals in
mind: analysing the trade-off between flexibility and consistency, comparing our
approach with the previous solution method for the application described in Sec-
tion 6.2, and studying and quantifying the impact of several factors on the design
and effectiveness of our TBR approach.

In Section 6.6.1 we test RBTA on the standard set of benchmark instances pro-
posed by Solomon (Solomon [1987]) in order to validate its quality as a VRPTW
routing solver and its performance when a Balance Cost is considered.

Throughout all the experiments we use the ALNS parameter configuration used
in Ropke and Pisinger [2006] as this has already been fine tuned and is quite hard
to beat. If not otherwise stated, we set the maximum number of iterations to 50000.
Moreover, we set lout to a value that dominates the other costs, to avoid having
unrouted customers.

114 Territory Design

Algorithm 6 RBTA
1: create an initial solution s
2: apply the route-mapping operator to s
3: set sbest = s, scurr = s, srealbest = s
4: set all weights of destroy and repair heuristics to 1
5: set iteration = 0
6: repeat
7: for M iterations do
8: set iteration = iteration + 1
9: sample a destroy heuristic H� and a repair heuristic H+ according to their

weights
10: set s0 = scurr
11: use H� to remove customers from s0
12: use H+ to insert the removed customers to s0
13: if f (s0) < f (srealbest) then
14: set srealbest = s0
15: end if
16: if AcceptanceCondition(s0, scurr, iteration) then
17: set scurr = s0
18: if ef (s0) < ef (sbest) then
19: set sbest = s0
20: end if
21: end if
22: end for
23: apply the route-mapping operator to scurr

24: set elterr = lterr iteration / itmax
25: update weights of destroy and repair heuristic
26: until stopping condition is met

6.6.1 Quality Assessment

In this section, we assess the quality of RBTA. We follow the same approach taken in
Schneider et al. [2014] and run the algorithm one the well-known Solomon instances
(Solomon [1987]). Since RBTA was not designed to minimise the number of vehicles,
we start our solution with the best number of vehicles known in the literature as done
by the authors in Schneider et al. [2014]. We recall that the 56 Solomon instances are
split in 6 groups. The first distinction is on the customers disposition, which can
be random (R), clustered (C) or mixed (RC). Moreover, instances in groups R1, C1
and RC1 have low capacity vehicles and a short scheduling horizon l0 � e0. On
the other side, groups R2, C2 and RC2 have significantly longer scheduling horizon
and vehicles with higher capacity. This results in solutions for each instance in the
former groups having a higher number of vehicles performing shorter routes, when
compared with solutions of the latter groups. Since these instances do not have a

§6.6 Computational Analysis 115

multi-day structure, our algorithm reduces to the ALNS classic scheme, with the
addition of the route-removal operator we introduced and the different initialisation
process.

To measure the quality of our results we use the cumulative number of vehicles
(CNV) and cumulative travelled distances (CTD). These are widely used measures
when assessing the quality of a VRPTW solver. We obtained a CNV of 405 and a
CTD of 57673.04, which corresponds to a gap of 0.0% and 0.85%, when compared
to the best known results as reported on the Transportation Optimization Portal of
SINTEF Applied Mathematics6.

We also want to test the quality of the solutions when balance requirements are
involved. We consider all Solomon instances and set the number of vehicles to the
best-known results plus one. We first run RBTA without including any Balance Cost.
Then, for both the Duration and Value Cost, we run RBTA twice on each instance,
with a low value for lbal, so that the Duration (or Value) Cost is comparable with the
Distance Cost, with a very high value for lbal, so that the Duration (or Value) Cost
dominates the Distance Cost. In both cases we set the tolerance r = 0.15. We set
lbal = 105 in the “high” case. For the low case the value of lbal varies from group to
group. We chose values in order to make the Balance Cost lower than the Distance
Cost but not insignificant to the problem.

lbal R1 C1 RC1 R2 C2 RC2 all
Distance Cost
none 1189.57 1090.89 1363.79 903.44 825.45 1045.98 999.37
low 1223.59 1145.09 1440.17 909.36 839.91 1062.91 1028.41
high 1282.98 1263.22 1475.12 933.15 857.45 1096.88 1086.69

Route Duration Gap (%)
none 1.97 6.67 2.67 0.39 inf 0.66 inf
low 0.32 0.24 0.21 0.12 0.15 0.17 0.21
high 0.14 0.14 0.15 0.11 0.13 0.13 0.13

Table 6.1: Results due to difference level of lbal when the Duration Cost is considered.
The row labelled by “none” indicates that Duration Cost was not considered. If a

route is empty, we mark the gap in the duration as “inf”.

In Table 6.1, we summarise the results concerning the Duration Cost. For each
group of instances, we report the Distance Cost and the average gap between the
longest and shortest routes (RDG). The last column considers all instances. We can
see that RBTA is very effective in reducing the duration gap without increasing the

6https://www.sintef.no/projectweb/top/vrptw/solomon-benchmark/

116 Territory Design

lbal R1 C1 RC1 R2 C2 RC2 all
Distance Cost
none 1189.57 1090.89 1363.79 903.44 825.45 1045.98 999.37
low 1230.2 1152.84 1431.05 913.66 863.93 1059.09 1039.89
high 1263.2 1236.43 1498.01 915.69 871.27 1068.84 1074.83

Route Value Gap (%)
none 4.35 13.84 8.03 0.76 inf 0.66 inf
low 0.34 0.45 0.45 0.12 0.23 0.16 0.3
high 0.14 0.14 0.15 0.11 0.13 0.13 0.13

Table 6.2: Results due to difference level of lbal when the Value Cost is considered.

travelled distance too much. Moreover, when increasing lbal from a low to high
value, the duration gap is consistently brought below the tolerance without a dra-
matic increase in the TD. In Table 6.2, we do the same thing for the Value Cost. We
report the Distance Cost and average gap between most and least valuable routes
(RVG). Similar conclusions can be drawn in this case, with the only difference being
that the solution when no Balance Cost is considered exhibit very high gaps.

6.6.2 Test Data and Quality Measures

We have available some real data from our industrial partner. We cannot publish the
original data but, in order to allow for future comparisons, we created some instances
that we made available7. We created a set of 26 instances with various numbers of
customers that we use for most of our tests, each having a one-week horizon. We
refer to this set of instances as group-A. In Section 6.6.12, we use an additional set of 4
instances, which is denoted as group-B. More details on these instances are given in
Section 6.6.3. In some sections, we modify the instances to isolate and analyse some
factors, such as demand variation or time windows. If so, we thoroughly describe
what are the modifications and how are they done. Unless otherwise stated, we set
the “value” of a customer vid equal to the demand of a customer i on day d.

To evaluate our results, we make use of the following measures8, used also in
Smilowitz et al. [2013]; Schneider et al. [2014].

• Customer Familiarity (CF): for a customer i, this is the number of days d where
the route r ✓ Sd visiting i satisfies f(r) = f(i), i.e., the number of days when i

7https://fbertoli.github.io./downloads/
8These are not to be confused with the balance measures. They only serve the purpose of evaluating

the quality of a solution under different points of view.

§6.6 Computational Analysis 117

is visited by the assigned driver. The CF of a solution is obtained averaging the
CF of all customers.

• Driver Diversity (DD): for a customer i, this is the total number of drivers visit-
ing customer i throughout the horizon, i.e., the cardinality of the set {f(r) | r 2
S

d Sd : r visits i}. The DD of a solution is obtained averaging the DD of all
customers.

• Routes Duration Gap (RDG): for a solution this is the average daily gap in routes’
duration. It is computed as 1

|D| Âd Dd(µ), where, in this case µ represents the
duration of a route.

• Routes Value Gap (RVG): for a solution this is the average daily gap in routes’
value. It is computed just as RDG but using the value of a route as µ.

• Travelled Distances (TD): the average distance travelled per day.

• Outsourced Requests (OR): the average number of unrouted requests per day.

• Feasible Days (FD): the fraction of days with no unrouted requests.

As we can see, CF and DD quantify the consistency in service of a solution and
the effectiveness of the RBTA. The routing quality is measured by TD and OR. The
measure FD serves both objectives. Lastly, RVG and RDG evaluate the balance in the
territories.

Unless otherwise stated, we set lout = 108, lterr = 105, lbal = 103 and r = 0.1.
This way, the algorithm tries to respect the territories as much as possible, but a
violation of the territories is preferred to not visiting a customer.

6.6.3 Instances Details

In Table 6.3, we report some information about the instances in group-A. Namely:
the total number of customers (N), the number of territories (|F|), the average of
customers per day (req average), the average number of days a customer require
service (frequency), the average of the TW width divided by the scheduling horizon,
i.e. the TW of the depot, (TWW) and the fraction of customers having a time window
(TWD). Note that, even though the density of time windows is very high, the width
is quite large compared to the scheduling horizon. Note also that the frequency is
quite high, which is also reflected in the average number of customers on each day
begin close to the total number of customers.

118 Territory Design

instance N |F| req-average frequency TWW TWD
instance-A-1 65 3 48.1 5.0 0.6 1.0
instance-A-2 86 4 57.1 4.0 0.7 1.0
instance-A-3 61 2 42.9 4.0 0.6 1.0
instance-A-4 34 2 19.6 4.0 0.7 1.0
instance-A-5 110 4 83.7 5.0 0.6 0.7
instance-A-6 114 5 68.1 4.0 0.6 1.0
instance-A-7 89 3 70.1 5.0 0.6 1.0
instance-A-8 66 3 48.4 5.0 0.7 1.0
instance-A-9 82 3 63.1 5.0 0.8 1.0
instance-A-10 32 2 22.7 4.0 0.6 1.0
instance-A-11 119 5 88.1 5.0 0.7 1.0
instance-A-12 55 3 39.4 5.0 0.6 1.0
instance-A-13 62 3 44.0 4.0 0.7 1.0
instance-A-14 57 3 41.9 5.0 0.7 1.0
instance-A-15 203 10 158.4 5.0 0.7 1.0
instance-A-16 43 3 26.3 4.0 0.7 1.0
instance-A-17 42 2 31.6 5.0 0.6 1.0
instance-A-18 49 2 37.7 5.0 0.6 1.0
instance-A-19 114 7 80.1 4.0 0.6 1.0
instance-A-20 85 3 61.4 5.0 0.6 1.0
instance-A-21 125 6 91.0 5.0 0.5 1.0
instance-A-22 86 4 59.6 4.0 0.7 1.0
instance-A-23 86 4 64.4 5.0 0.6 1.0
instance-A-24 64 3 46.0 5.0 0.6 1.0
instance-A-25 42 2 36.4 6.0 0.5 1.0
instance-A-26 94 4 67.3 5.0 0.6 1.0

Table 6.3: Group-A instances.

In order to give an idea of the customers’ disposition we plot the map9 of two
distribution centres in Figure 6.1. It is possible to see that there are clusters of cus-
tomers as well as some far isolated customers that make the balancing of territories
not trivial.

6.6.4 New vs Old Approach

We now want to compare RBTA with the previous approach described in Section 6.2.
We refer to it as Master Route Approach (MRA). As previously mentioned, using a
master schedule has already been used in order to improve consistency (Groër et al.
[2009]; Sungur et al. [2010]). Moreover, it has been extensively used in the stochastic

9Since we had to modify the original coordinates, the map is not precisely identical to the original
instance but the variation is minimal.

§6.6 Computational Analysis 119

Figure 6.1: The red dot indicates the depot. Blue dots are customers location. Note
that the distances and travel time between the customers are not euclidean but based

on a real road network.

routing literature (Gendreau et al. [2014]). The idea is to define a single day VRPTW,
called the master problem, considering all customers at once. The routes obtained
by solving such problem are the master routes. From these, one creates routes for
each day of the original problem by dropping customers that do not require service
on the chosen day. One distinctive feature of MRA is that it considers the demands
relative to each day as different commodities. Hence the master problem is a multi-
commodity VRPTW with |D| different types of commodities. Moreover, vehicles
have |D| separated compartments, one dedicated to each day, with capacity equals
the original capacity of the vehicle. This eliminates the complexity of choosing and
adjusting a capacity for the master problem vehicles. We have available the industrial
solver that was used to implement MRA. This is an extremely flexible and efficient
implementation of ALNS based on the work presented in Kilby and Verden [2011b].

We run MRA and RBTA on the instances of group-A. These are particularly suit-
able for a master route approach given that the time windows are wide and many
customers place requests almost every day. We run both algorithms 5 times on each
instance to have a fair comparison. Since MRA does not support balancing of routes
we do not consider any Balance Cost in this section. We set the number of iterations
of ALNS in both algorithms to 50000. In Table 6.4, for each instance, we report the
average over the 5 runs of some statistics. For RBTA we report the average gap of
TD when compared to MRA (D-TD). Hence a negative gap means RBTA improves
the MRA results. It is possible to see that almost in every case the TD is improved.
This is the results of the extra flexibility afforded by not enforcing a “master-route”
approach. As one might expect, the improvement is more significant for bigger in-
stances. Clearly, MRA will always produce solutions with unitary CF and DD. This

120 Territory Design

MRA RBTA

instance TD OR FD CF DD D-TD OR FD CF DD

A-1 250.4 0.0 1.0 1.0 1.0 -0.15 0.0 1.0 1.0 1.0
A-2 429.3 0.0 1.0 1.0 1.0 -2.8 0.0 1.0 1.0 1.0
A-3 170.7 0.0 1.0 1.0 1.0 -0.25 0.0 1.0 1.0 1.0
A-4 134.7 0.0 1.0 1.0 1.0 -2.44 0.0 1.0 1.0 1.0
A-5 880.6 0.0 1.0 1.0 1.0 -0.4 0.0 1.0 1.0 1.0
A-6 834.4 0.0 1.0 1.0 1.0 -0.49 0.0 1.0 1.0 1.0
A-7 459.4 0.0 1.0 1.0 1.0 -7.44 0.0 1.0 1.0 1.0
A-8 722.5 0.0 1.0 1.0 1.0 -0.06 0.0 1.0 1.0 1.0
A-9 633.3 0.0 1.0 1.0 1.0 -1.04 0.0 1.0 1.0 1.0
A-10 168.5 0.0 1.0 1.0 1.0 -0.17 0.0 1.0 1.0 1.0
A-11 570.5 0.0 1.0 1.0 1.0 -0.79 0.0 1.0 1.0 1.0
A-12 1164.4 0.0 1.0 1.0 1.0 -2.44 0.0 1.0 1.0 1.0
A-13 166.3 1.0 0.0 1.0 1.0 -0.14 0.0 1.0 1.0 1.0
A-14 695.4 0.0 1.0 1.0 1.0 -0.17 0.0 1.0 1.0 1.0
A-15 938.5 0.0 1.0 1.0 1.0 0.51 0.0 1.0 1.0 1.0
A-16 834.6 0.0 1.0 1.0 1.0 -3.69 0.0 1.0 1.0 1.0
A-17 46.4 0.0 1.0 1.0 1.0 -0.37 0.0 1.0 1.0 1.0
A-18 126.0 0.0 1.0 1.0 1.0 -7.07 0.0 1.0 1.0 1.0
A-19 1659.5 0.0 1.0 1.0 1.0 -12.01 0.0 1.0 1.0 1.0
A-20 322.5 0.0 1.0 1.0 1.0 -0.81 0.0 1.0 1.0 1.0
A-21 1351.2 0.0 1.0 1.0 1.0 -17.05 0.0 1.0 1.0 1.0
A-22 520.5 0.0 1.0 1.0 1.0 -2.93 0.0 1.0 1.0 1.0
A-23 828.9 0.0 1.0 1.0 1.0 0.77 0.0 1.0 1.0 1.0
A-24 483.7 0.0 1.0 1.0 1.0 -0.2 0.0 1.0 1.0 1.0
A-25 859.4 0.0 1.0 1.0 1.0 -0.06 0.0 1.0 1.0 1.0
A-26 714.9 0.0 1.0 1.0 1.0 -0.18 0.0 1.0 1.0 1.0

average 606.3 0.04 0.96 1.0 1.0 -2.38 0.0 1.0 1.0 1.0

Table 6.4 Comparison between new and old approach.

is not necessarily true for RBTA since these constraints are “soft” in RBTA. However,
RBTA produced all best solutions with unitary DD and CF, showing its ability to
improve consistency. Note also that in one case, instance-A-13, MRA was not able to
insert all visits in the routing plan, while RBTA always has OR equals to 0. We point
out that the solver used to implement MRA is the result of a long term project that
led to the development of an industrial solver which is very efficient and versatile.
However, overall, RBTA proves to perform better, as the consistency is kept to the
maximum possible and the routing is improved.

§6.6 Computational Analysis 121

6.6.5 Comparison with a Two-Stage TBR Approach

As mentioned in the introduction, the closest work to ours in the literature is Schneider
et al. [2014]. In this section, we compare the method presented in Schneider et al.
[2014] with the one proposed in this paper. The instances used in Schneider et al.
[2014] are obtained from the Gehring and Homberger benchmarks with 1000 cus-
tomers. For each instance, the authors create a number (t1) of sample days and 50
evaluation days. The territories are created using the sample days, and their quality
is evaluated using the evaluation days. The evaluation phase consists in solving each
evaluation day separately, using the territories as input. That is, once the territories
are fixed, we do not need to solve one big problem composed of 50 days, but we can
solve 50 independent problems.

In this section, we use the same approach, i.e., we use RBTA to design territories
using a set of sample days, and then we test such territories on the same set of
evaluation days. Note that, in the evaluation phase, customers are already assigned
to territories and therefore some shortcuts can be taken in RBTA.

In Schneider et al. [2014], the authors run experiments using t1 = 10, 50, 100
sample days. They conclude that setting t1 = 50 produces the best results. There-
fore, we compare only with this case. However, we only use 15 sample days. The
reason is that, in our method, the set of sample days is considered as a whole in-
stance. Hence, we do not want or need many sample days. Conversely, the method
presented in Schneider et al. [2014] solves each sample day separately, and therefore
the number of sample days has to be quite high. Since our algorithm assumes a fixed
number of territories, we first solve each of the sample days individually adding a
new component to the cost function that penalises the number of vehicles used. suc-
cessively, we set |F| to the maximum over all sample days. Once we have determined
|F|, we apply RBTA to the set of sample days.

In Table 6.5, we compare the results obtain by our method with the ones obtained
in Schneider et al. [2014]. The table reports the average over all instance proposed
in Schneider et al. [2014]. The column denoted by |F| reports the average number of
territories.

method TD |F| OR FD CF DD

Schneider et al. [2014] 10490 11.37 8.78 0.89 0.78 2.11
RBTA 12302 12.83 0.02 0.99 0.84 1.86

Table 6.5 Comparison with the TBR approach presented in Schneider et al. [2014].

The average number of territories, |F|, and TD are slightly higher for RBTA. This

122 Territory Design

is due to the fact that RBTA takes a number of territories as an input while the
method presented in Schneider et al. [2014] minimises such number while designing
the territories. However, all the other measures are improved by RBTA. Both OR and
FD are close to their optimal value. Notably, the consistency measures are improved
drastically. We point out that, oppositely to Schneider et al. [2014], we do not consider
a flex zone.

6.6.6 Analysis Methodology

Before going into the numerical analysis, we summarise the methodology used and
the naming convention to make the understanding of the following sections easier.
We use the terminology No Balance case, Duration case or Value case to differentiate
between different experiments that include, or not, balance requirements, and, if
needed, to specify what particular balance measure µ we are using. Moreover, in
order to avoid confusion, we do not report RDG for experiments including Value
Cost and, vice versa, we do not report RVG for experiments including Duration
Cost. However, we might report both measure for the No Balance case, so that it is
possible to compare the two cases (with and without balance requirements).

In the following sections, we use the same methodology to analyse the impact of
several factors. First of all, we modify the instances to isolate the factor of interest.
Then we solve the instances, using RBTA, first without and then with Territory Cost.
In the former case we are simply solving each day separately, an approach we refer
to as daily routing re-optimisation (DRR). This approach gives us a lower bound on
the routing cost that completely ignores the influence of the territory constraints. In
the latter case, we are using a TBR approach. We then compare the quality measures
presented in Section 6.6.2 for both approaches. For an easier comparison, for all
quality measures, we report the percentage increase of TBR with respect to DRR,
and the actual value10 of TBR. This way one can easily see the losses and gains of
a TBR approach with respect to DRR; that is, how the TBR is affected by the factor
being considered. The percentage increases are denoted with a D. As an example,
D-TD indicates the increase in TD of TBR with respect to DRR. In some cases, the
percentage increase for OR and FD can be infinity. In this case we consider the
average of the increases without the infinity value. However, we mark the table
entry with the superscript ⇤ to make clear this happened. In the following tables,
each entry represents the average taken over all instances solved with the same cost
configuration. Whenever we modify the instances we make clear how the average is
taken.

10Note that for space reasons we round TD to the nearest integer.

§6.6 Computational Analysis 123

6.6.7 Approach Validation

We now want to test the efficacy of our approach. We use an approach similar to the
one proposed in Schneider et al. [2014] and used in Section 6.5 and test the obtained
territories on new sample days. In more detail, given an instance, we solve the
problem, as we defined it, on the available days to obtain a partition of C, denoted
by T, in |F| territories. We then create eD evaluation days and test our territories on
these new days to see if the territories are effective. The difference with Section 6.5 is
that now we compare the DRR and TBR approaches by solving the evaluation days
with both approaches, as explained in Section 6.6.6.

Next, we describe how we create new days from the available instances. Unlike
Schneider et al. [2014], and like many real-world applications, we do not have explicit
distributions describing the probability that a customer requires service on a given
day and the demand variation. However, we use the information contained in the
available instances to create new sensible days. For each customer i 2 C, let us denote
by qid the demand of i on day d 2 D. We define the probability that i requires service
on a day as

Probi =
|{d 2 D : qid > 0}|

|D| .

Furthermore, consider the set {qid | d 2 D : qid > 0} and let µi and si be its mean
and standard deviation. We assume that the demand of i is distributed according to a
Gaussian random variable N (µi, s2

i). Moreover, we assume all demand variations are
independent. This is a standard assumption across the literature when using sample
days (see Haugland et al. [2007]; Smilowitz et al. [2013]; Schneider et al. [2014]).
Using these two distributions we can create a set of new days for each instance in
group-A.

We consider all three cases, No Balance, Duration and Value. In order to apply
the TBR approach, we need to solve the original instances, to obtain the territories
partition T. Then we proceed to solve the new eD days using T as input. The results
are reported in Table 6.6.

It is possible to appreciate that the territory approach, TBR, increases the con-
sistency level almost to the maximum possible, improving the CF and DD measure
by more than 50 %. Moreover, the routing quality of the solution is not significantly
decreased. Notably, the fraction of days with requests routed is close to 1 and the
number of unrouted requests per (infeasible) day is very low. As expected, the in-
crease in TD is higher if balance requirements are considered. Note that both RDG
and RVG are kept below the accepted threshold. Therefore, the high percentage
increase is misleading in this case. Overall, the proposed approach is very effect-

124 Territory Design

No Balance Duration Value

D (%) TBR D (%) TBR D (%) TBR

TD 4.1 570.55 12.79 727.34 10.08 703.95
OR 0.0 0.0 2.08⇤ 0.05 0.0⇤ 0.02
FD 0.0 1.0 -2.51 0.97 -0.57 0.98
CF 40.52 1.0 54.61 1.0 45.8 0.99
DD -51.76 1.01 -57.03 1.0 -66.78 1.01
RDG - - 65.04 0.09 - -
RVG - - - - 135.97 0.1

Table 6.6 Approach validation.

ive. The territories designed guarantee an almost optimal level of consistency and
good balance over the new sample days without significantly decreasing the routing
quality.

6.6.8 Number of Territories

In this section, we analyse how the number of zones affects the efficiency of TBR.
In order to do so, we solve each instance of group-A with its original number of
territories |F|, then reducing and increasing |F| by one. We do this for all three
cases: No Balance, Duration and Value. In Table 6.7 we report the results. The
headers �1, 0,+1 represent whether the number of territories is reduced, original or
increased.

The results show that changes in |F| do not affect TD and RDG. Instead, increas-
ing the number of territories improves the gaps under all other measures. The gaps
in the feasibility measures, D-OR and D-FD, are reduced as so is the balance gap
for the Value Cost. Moreover, the gain in consistency increases proportionally to
|F|, showing that a higher number of drivers offers more opportunity for improving
consistency over DRR. However, this does not mean that increasing the number of
drivers is good for TBR and DRR, but only that the gaps are higher. In fact, increasing
|F|, together with the presence of balance requirements, lead to an increased TD for
both approaches. Moreover, we observe that for the original number of territories we
already have a satisfactory result for the TBR approach. Indeed, OR is close to zero,
all FD, CF and DD are close to 1 and both RVG and RDG are under the tolerance r.
By looking at the actual value of all measures for TBR, one realises that increasing
the number of territories over the necessary value lead only to a higher TD.

§6.6 Computational Analysis 125

No Balance Duration Value

-1 0 +1 -1 0 +1 -1 0 +1

TD D (%) 7.3 2.8 4.1 14.9 13.8 13.1 9.6 9.4 13.9
TBR 690.14 672.14 708.57 750.57 832.43 957.71 765.71 825.57 897.29

OR D (%) 42.4 0.0 0.0 58.2⇤ 2.8⇤ 0.0 76.4 23.7 -10.5
TBR 1.4 0.0 0.0 1.7 0.03 0.0 1.9 0.1 0.0

FD D (%) -19.5 0.0 0.0 -22.5 -1.8 0.0 -23.6 -2.8 1.7
TBR 0.5 1.0 1.0 0.44 1.0 1.0 0.44 0.9 1.0

CF D (%) 44.1 48.4 60.8 43.4 64.5 79.0 41.5 54.1 67.1
TBR 1.0 1.0 1.0 0.99 1.0 1.0 1.0 1.0 1.0

DD D (%) -46.5 -53.3 -57.7 -47.3 -58.4 -65.2 -48.3 -55.3 -62.6
TBR 1.01 1.0 1.0 1.02 1.0 1.0 1.01 1.0 1.0

RDG D (%) 55.9 16.05 39.8
TBR 0.07 0.05 0.08

RVG D (%) 210.7 175.5 34.2
TBR 0.2 0.1 0.03

Table 6.7 Number of territories influence.

6.6.9 Balance Cost Influence

We now focus on the impact of balance requirements. In order to do so we run
RBTA on all instances in group-A several times, varying the coefficient lbal for both
Duration and Value Costs. The idea is to look at how the quality of the solutions
change as the balance requirements becomes more and more important. We use
three different cost configurations for both Duration and Value Cost:

• low: r = 0.15 and lbal = 10;

• medium (med): r = 0.1 and lbal = 103;

• high: r = 0.05 and lbal = 107;

We solve all instances with all cost configurations applying both DRR and TBR
approaches. In Table 6.8, we report the results.

There are a few remarks to be made. Not surprisingly, as the importance given to
the balance requirements increases, the routing quality obtained by the TBR approach
decreases. This is particularly clear when looking at D-TD. Secondly, introducing a
Balance Cost increases the gain in consistency, i.e., the consistency measure deteri-
orates for the DRR approach, while TBR is able to keep them at the optimal value

126 Territory Design

No Bal. Duration Value

low med high low med high

TD D (%) 4.1 4.45 16.03 47.53 3.73 7.77 37.68
TBR 570.57 599.1 700.9 1037.7 598.4 692.0 950.9

OR D (%) 0.0 0.0⇤ 2.08⇤ 0.0⇤ 0.0 18.0 30.68⇤
TBR 0.0 0.02 0.02 0.11 0.01 0.05 0.14

FD D (%) 0.0 -0.57 -1.37 -6.29 0.0 -2.13 1.14
TBR 1.0 0.98 0.98 0.93 0.99 0.97 0.89

CF D (%) 40.52 50.89 55.09 49.47 41.99 45.73 42.29
TBR 1.0 1.0 1.0 0.96 1.0 1.0 0.96

DD D (%) -47.74 -52.59 -52.93 -48.91 -46.39 -50.23 -43.52
TBR 1.0 1.0 1.0 1.16 1.0 1.0 1.17

RDG D (%) -35.7⇤ 93.32 14.01 28.52
TBR 0.42⇤ 0.19 0.05 0.05

RVG D (%) -38.67⇤ 62.02 145.35 133.53
TBR 0.77⇤ 0.29 0.11 0.05

Table 6.8 Balance cost influence.

of 1. It is interesting that, even with the strict balance requirements (r = 0.05), TBR
is able to find solutions with only a few unassigned requests. Lastly, we point out
that the TBR approach suffers a deterioration in consistency and a significant loss in
routing quality only in the high case. Therefore, we can conclude that, introducing
balance requirements offers more opportunities for improving consistency. However,
if a very low unbalance is accepted and the weight of the Balance Cost component
is very high, the TBR approach produces solutions with lower routing quality and a
slightly lower consistency.

6.6.10 Time Windows Influence

We now analyse the impact of time windows. As already pointed out, a similar
analysis is presented in Schneider et al. [2014]. However, the methodology adopted is
different. In Schneider et al. [2014], the authors develop a constructive routing-based
heuristic. They consider a set of sample days that are solved separately. In a second
phase, the territories are built, using a mixture of information extrapolated from
the solutions and information given by the features of the instance. They propose

§6.6 Computational Analysis 127

several methods which exploit different types of information, such as: geographical,
historical or time-window related. They draw their conclusions by comparing the
results obtained with the different methods. Conversely, our model considers both
the routing and districting aspects at the same time. It is therefore impossible for us
to not include time windows information in the algorithm. As already explained, our
methodology is to isolate the factor in the instances and then to compare all solution
quality measures obtained by the DRR and TBR approaches.

We now describe how we modify the instances in group-A in order to better study
the role played by time windows. We isolate two factors: time windows density
(TWD): the percentage of customers having a time windows; and time windows
width (TWW): the average width li � ei. From each instance in group-A we create 13
different instances. First, we group them by TWD. The groups are:

• noTW: none of the customers has a time window;

• few: 25% of customers have a time window;

• half: 50% of customers have a time window;

• many: 75% of customers have a time window;

For each of the last 3 groups we further divide the instances in 4 groups, different
in terms of TWW. These are:

• w-0: time windows have width w =' 0.15 ⇤ (l0 � e0);

• w-1: time windows have width w =' 0.1 ⇤ (l0 � e0);

• w-2: time windows have width w =' 0.05 ⇤ (l0 � e0);

• w-3: time windows have width w =' 0.01 ⇤ (l0 � e0).

Not all the widths in each group are exactly the same. There is a minor variation
due to the fact that we increase the width of customers which are further away from
the depot. The reason to do so is we make sure the time windows do not make a
customer nearly impossible to be visited.

When increasing the time windows density, we do not assign all the time win-
dows again, but we keep all those customers which already have a time window and
select more customers to be assigned one. Therefore, each time we increase density,
we only have to select 25% additional customers to which we assign a new time win-
dow. Analogously, when tightening the width, the customers having a time windows
are the same. We believe this make our analysis more solid, as we are isolating the

128 Territory Design

time windows factors, while the randomness in assigning time windows is factored
away.

Since we are analysing a time related constraint, in this section we only consider
two cases: no Balance Cost and Duration Cost. The results are reported, respectively,
in Table 6.9 and 6.10. For each value of TWW and TWD, the average is taken over
all the instances associated with these fixed values; that is, one modified instance for
each original instance. Note that, since varying the width does not change instances
in the “none” group, there is only one element in the related columns.

The results in both tables are similar and might not be easy to read at a first look.
We first focus on the routing component. The actual value of OR and FD show that,
as the time windows get tighter or more dense, the instances become harder to solve.
The fact that TD does not increase substantially is partly due to the fact that more
and more customers cannot be inserted in any routes (i.e., OR increases). Obviously,
time windows have an impact on the routing quality of the TBR. However, this is not
as high as one might expect and is not proportional to the width or density. For tight
or dense time windows, the percentage change of OR and FD is very small (< 2%).
On the other hand, for loose or few time windows, percentage changes are higher,
but the actual values of OR and FD are low.

A high level of consistency is reach by TBR regardless of the time windows with
the balance requirements having a slight deteriorating effect on both consistency
measures CF and DD. Moreover, we observe that introducing time windows in the
problem offers more opportunities to improve consistency. On the other hand, mak-
ing the time windows harder to achieve has opposite effects for the No Balance and
the Duration Case. In the former, the gain in consistency increases, in the latter it de-
creases. Finally, even though, not surprisingly, time windows have a clear impact on
the value of RDG, this is not worse nor better for TBR. In other words, time windows
do not affect the ability of TBR to balance the territories.

In conclusion, the impact of time windows on TBR can be summarised in the
following points:

• the introduction of time windows in the problems offers more opportunities to
improve consistency;

• introducing time windows and increasing their complexity affects the routing
quality of the solution, though the impact is dramatic only in extreme cases;

• time windows do not affect the ability of TBR to balance the territories and
reach a good consistency level.

§6.6 Computational Analysis 129

D (%) TBR

noTW few half many noTW few half many
TD

w-0 2.8 5.6 6.66 4.43 568 638 757 794
w-1 3.45 6.14 6.24 645 775 811
w-2 2.82 6.97 10.56 661 756 794
w-3 8.14 9.88 9.92 685 711 662

O
R

w-0 0.0 10.93 17.42⇤ 28.53 0.0 0.09 0.37 1.41
w-1 -0.93⇤ 54.96⇤ 18.93⇤ 0.13 0.8 2.55
w-2 10.42⇤ 15.5⇤ 4.43 0.31 1.89 4.47
w-3 1.07⇤ 1.34 1.11 0.98 4.66 10.03

FD

w-0 0.0 -2.0 -16.43 -11.0 1.0 0.94 0.74 0.53
w-1 -4.57 -16.7 -14.9 0.9 0.61 0.38
w-2 -2.51 -0.57 0.0 0.78 0.41 0.19
w-3 -1.71 0.0 0.0 0.45 0.1 0.04

C
F

w-0 32.55 38.78 43.53 48.14 1.0 1.0 1.0 1.0
w-1 37.88 43.75 47.67 1.0 1.0 1.0
w-2 43.1 43.03 44.94 1.0 1.0 1.0
w-3 41.09 43.87 46.34 1.0 1.0 1.0

D
D

w-0 -41.85 -46.66 -49.55 -50.42 1.0 1.0 1.0 1.0
w-1 -44.37 -49.68 -51.09 1.0 1.01 1.01
w-2 -45.85 -47.34 -49.25 1.0 1.01 1.02
w-3 -46.34 -49.49 -49.19 1.0 1.01 1.01

Table 6.9 Time Windows influence. No Balance case.

One of the major limitations of not considering routing decision is the inability
to integrate the effect of operational constraints in the design of territories. We have
already commented on this in Section 6.4.1. To further demonstrate our point, we
ran an additional set of experiments. For each original instance, we consider the
territories obtained from the solution of the instance with no time windows. We then
use this partition to solve all other versions, with time window, of the same instance.
This second phase is done in a day-by-day fashion, similar to Section 6.6.7. In other
words, we design the territories without considering time windows, and then we test
these on the same instance with time windows. For the sake of brevity we do this
only for the No Balance case. This is enough to show how important is to include
operational constraints in the algorithm. In Table 6.11, we report the resulting CF and
DD. As done for the other sections, we compare TBR and DRR. It is apparent that,
regardless of the complexity of the time windows configuration, the territories fail to

130 Territory Design

D (%) TBR

noTW few half many noTW few half many

TD

w-0 8.95 19.15 21.9 12.66 737 765 881 879
w-1 17.14 14.98 12.05 782 868 885
w-2 20.98 21.39 18.38 795 882 877
w-3 18.05 19.86 18.09 763 807 747

O
R

w-0 -8.0 0.0⇤ 32.5⇤ 75.67⇤ 0.0 0.18 0.49 1.85
w-1 0.0⇤ 167.1⇤ 20.01 0.0 0.18 1.21 2.67
w-2 22.73⇤ 23.0⇤ 11.85 0.0 0.39 2.02 4.66
w-3 6.39⇤ 2.95 1.51 0.0 1.03 4.73 9.98

FD

w-0 2.27 -3.43 -21.14 -17.9 1.0 0.91 0.73 0.52
w-1 -3.43 -25.84 -13.33 0.91 0.54 0.4
w-2 -8.91 -1.14 0.0 0.73 0.4 0.19
w-3 -5.71 0.0 0.0 0.44 0.1 0.04

C
F

w-0 48.25 53.29 53.21 52.02 1.0 1.0 0.99 0.99
w-1 56.36 51.8 48.99 1.0 0.99 0.99
w-2 55.51 52.24 49.27 1.0 0.98 0.98
w-3 56.76 50.84 48.29 1.0 0.99 0.99

D
D

w-0 -48.85 -54.19 -52.21 -52.58 1.0 1.01 1.03 1.03
w-1 -54.13 -51.68 -50.02 1.0 1.04 1.02
w-2 -54.13 -50.39 -48.31 1.01 1.07 1.07
w-3 -53.41 -51.45 -49.49 1.0 1.03 1.03

R
D

G

w-0 1.96 18.47 -9.03 38.51 0.18 0.48 0.21 0.19
w-1 -21.71 1.16 7.89 0.35 0.21 0.22
w-2 11.75 9.63 -13.15 0.32 0.21 0.19
w-3 -16.02 5.3 6.15 0.34 0.28 0.22

Table 6.10 Time Windows influence. Duration Case

improve consistency, proving that time windows play a major role in the efficiency
of the territories.

In Schneider et al. [2014], the authors conclude that the geographical information
is paramount to the design of efficient territories. They do not observe a substantial
improvement when integrating time windows related information in the construction
phase. However, in the first phase of their algorithm, the sample days are solved with
time windows. The solution of the sample days partially defines the pairing costs for
the second phase. Therefore, even if not directly, time windows are included in the

§6.6 Computational Analysis 131

territories design.

D (%) TBR

few half many few half many
C

F
w-0 -0.23 3.26 6.32 0.73 0.74 0.74
w-1 2.13 6.31 6.99 0.76 0.75 0.73
w-2 3.76 5.92 5.08 0.75 0.75 0.73
w-3 0.99 3.92 1.86 0.73 0.73 0.71

D
D

w-0 2.7 -2.21 -6.91 2.07 2.06 2.04
w-1 -1.21 -7.86 -8.2 1.95 1.97 2.0
w-2 1.67 -4.03 -2.78 2.07 1.98 2.03
w-3 4.39 -3.39 -0.05 2.1 2.02 2.11

Table 6.11 Time Windows influence. TBR approach using territories designed on the
noTW instances.

6.6.11 Demand and Value Variation Influence

This section examines the impact of the variation in demand over the horizon. We
proceed as in the previous sections and modify instances of group-A to isolate the
factor of interest. Consider one of the original instances, e.g., A-1. For each cus-
tomer i 2 C we denote by qi the average demand over the horizon, computed by
considering only the days where i requires service. Consider a parameter l > 0.
We create a new instance Al-1 by setting the demand of a customer i 2 C on day
d 2 D equals to max(0, qi + l(qid � qi)). Therefore, for l = 0, if a customer places
a request, the demand is always the same. Instead, for l = 1, the instance Al-1 is
the same as A-1. Increasing l increases the variation in the demand distribution.
For each original instance, we create 7 new instances, by varying lambda in the set
{0, 0.3, 0.6, 1, 1.5, 2, 3, 4}. We solve all instances with all cost configuration applying
both DRR and TBR approaches. The results are reported in Table 6.12. For each l,
the average is taken over all instances Al-a for a = 1, . . . , 26.

Let us first look at the case where no balance requirements are considered.
Clearly, the approach is able to reach an optimal consistency service regardless of

the variation. As l increases, the difference between the two approaches is uniform
for all quality measures. It can be observed that increasing the variation decreases the
effectiveness of TBR very slightly. However, the effect is contained and not compar-
able with the effect of other factors considered. In conclusion, if no balance require-
ments are considered, the variation in the demand of customers does not impact the
approach’s effectiveness.

132 Territory Design

l = 0 0.3 0.6 1 1.5 2 3 4

TD D (%) 3.34 3.19 3.12 3.03 3.5 3.54 4.72 6.27
TBR 588 587 586 587 588 590 600 610

OR D (%) 0.0 0.0 0.0 0.0 0.0⇤ 0.0⇤ 0.0⇤ 2.08⇤
TBR 0.01 0.01 0.01 0.01 0.02 0.02 0.03 0.1

FD D (%) 0.0 0.0 0.0 0.0 -0.57 -0.57 -0.57 -1.94
TBR 0.99 0.99 0.99 0.99 0.98 0.98 0.98 0.93

CF D (%) 39.06 42.91 38.83 41.04 37.71 42.22 42.45 43.69
TBR 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

DD D (%) -42.46 -45.79 -45.37 -46.0 -44.94 -46.37 -46.64 -48.9
TBR 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table 6.12 Demand variation influence. No Balance Case

We now turn our attention to the Duration Case. The results are reported in
Table 6.13. Even in this case, the effect of increasing the variation in demand is
limited. The same behaviour as the No Balance Case can be observed. The measures
vary slightly more due to the fact that introducing the Duration Cost adds complexity
to the model and introduces one more cost component to be optimised. Note that,
even if D-OR and D-RDF increase with l, the actual values of OR and RDG are very
low, with RDG being always below the tolerance r. Therefore, we can conclude that,
even in the Duration Case, variation in demand does not impact the effectiveness of
TBR.

Finally, we look at the case with considering the Value Cost. Before presenting
the results, we recall that in our data we set value equal to demand, i.e., qid = vid.
Therefore, when varying the demand of customers and considering the Value Cost,
we are looking at the influence that variation in value has on TBR. The results are
presented in Table 6.14. For the two highest values of l, the variation in TD and
RVG are not negligible. In these two cases RVG is not under the tolerance threshold
anymore and D-TD is considerably higher. We can therefore conclude that, when
including the Value Cost, a high variation in value impacts the routing quality and
balancing ability of TBR. However, we point out that, for l 2 {3, 4}, the variations
are quite extreme and not likely to happen in real-world instances.

§6.6 Computational Analysis 133

l = 0 0.3 0.6 1 1.5 2 3 4

TD D (%) 17.66 16.01 19.21 18.85 19.54 20.4 22.63 25.67
TBR 716 715 726 726 721 737 761 762

OR D (%) -1.39⇤ 2.08⇤ 2.17⇤ 0.0⇤ 2.08⇤ -1.39⇤ 1.39⇤ 28.26⇤
TBR 0.03 0.02 0.05 0.06 0.03 0.11 0.09 0.15

FD D (%) -0.71 -1.37 -3.66 -2.29 -1.94 -0.71 -3.09 -3.85
TBR 0.97 0.98 0.95 0.97 0.97 0.97 0.95 0.9

CF D (%) 52.98 56.79 50.6 54.75 56.69 52.91 53.69 53.79
TBR 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

DD D (%) -53.15 -52.62 -52.67 -54.08 -53.83 -53.32 -53.93 -54.01
TBR 1.0 1.0 1.0 1.0 1.0 1.0 1.01 1.0

RDG D (%) 29.26 71.05 122.3 48.27 4.48 79.05 42.36 51.74
TBR 0.06 0.07 0.07 0.06 0.05 0.05 0.06 0.06

Table 6.13 Demand variation influence. Duration Case

l = 0 0.3 0.6 1 1.5 2 3 4

TD D (%) 6.12 7.22 7.0 6.77 6.72 10.52 15.68 20.32
TBR 675 689 681 678 681 699 739 755

OR D (%) 2.08⇤ 0.0⇤ 2.17⇤ 0.0⇤ 0.0⇤ 4.17⇤ 0.0⇤ 0.0⇤
TBR 0.02 0.02 0.19 0.02 0.02 0.03 0.03 0.1

FD D (%) -1.37 -0.57 -5.94 -0.57 -0.57 -2.17 -1.14 -1.71
TBR 0.98 0.98 0.93 0.98 0.98 0.97 0.97 0.93

CF D (%) 45.09 51.43 45.07 46.69 46.97 48.15 47.94 45.24
TBR 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

DD D (%) -48.97 -51.99 -49.62 -50.84 -51.63 -52.73 -51.05 -51.26
TBR 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

RVG D (%) 15.12 33.21 48.07 59.85 131.43 96.23 434.23 244.87
TBR 0.07 0.07 0.07 0.07 0.1 0.1 0.15 0.17

Table 6.14 Value variation influence. Value Case

134 Territory Design

6.6.12 Frequency Influence

In this section, we focus on the role played by the frequency of customer demand, i.e.
the percentage of days customers require service. In this section, we use instances
of group-B. The size of these instances is considerably bigger, with more than a
1000 customers each. For each instance B-b, with b = 1, . . . , 4, we create 10 new
instances, denoted by B-b-j, j = 1, . . . , 10. This is done using the following procedure.
Fix an instance B-b. First, we sample a requests’ pattern; that is, the set {rd}d2D

where rd represents the number of requests on day d. In order to mimic the original
request patterns, we sample rd accordingly to a Gaussian distribution N (µd, s2

d) with
µd = 100 and sd = 4 for all days except the last one (which is a Sunday). For the last
day we sample µd randomly in the interval [60, 75]11. All 10 new instances B-b-j have
the same requests pattern, i.e. they all have rd requests on day d. What changes is the
set of customers C. For each new instance j = 1, . . . , 10 we sample j ⇤ 100 customers
from the original set. Once we have sampled the set of customers C, on each day
d we sample rd requests from C. Therefore, low values of j mean customers place
requests almost every day, while high value of j mean several customers have only
one request, and very few have a high number of requests.

For each of the original set of instances we have 10 new instances with decreasing
frequency. Note that the size of the newly produced instances is the same, and, for
sets of instances created from the same original instance, the geographical distribu-
tion cannot radically change. This way we isolate the frequency factor. As we have
done so far, we run both DRR and TBR approaches on all instances. We consider all
three cases: No balance, Duration and Value. The results are reported, respectively,
in Tables (6.15-6.17). In this case, for a fixed j, we average the results over the 4
instances, B-b-j, b = 1, . . . , 4.

Note that, by decreasing the frequency, one has instances with customers placing
few requests over the whole horizon. These customer cannot increase CF and DD
by much. For this reason, the DRR approach is able to reach a good level of con-
sistency for high values of j. However, for low values of j, that is, instances with
customers placing requests almost every day, the TBR approach has a tremendous
effect on the consistency. This is true in all three cases: No balance, Duration and
Value. Besides this, we observe that frequency does not affect TBR efficiency at all.
If balance requirements are considered, the routing quality of TBR is clearly worse
but D-TD does not change proportionally or inversely to the frequency. Moreover,
the unbalance gaps are always below the tolerance value. Summarising, a higher

11We choose the intervals for the mean to respect the original proportion of requests for a Sunday,
with respect to all other days of the week.

§6.6 Computational Analysis 135

frequency offers more opportunity to improve consistency, but does not impact the
efficiency of TBR.

TD OR FD CF DD

j D (%) TBR D (%) TBR D (%) TBR D (%) TBR D (%) TBR

1 5.13 492 0.0 0.0 0.0 1.0 74.11 1.0 -64.7 1.0
2 5.57 570 0.0 0.0 0.0 1.0 51.76 1.0 -51.33 1.0
3 5.43 569 0.0 0.0 0.0 1.0 38.25 1.0 -41.76 1.0
4 5.53 592 0.0 0.0 0.0 1.0 29.46 1.0 -36.23 1.0
5 5.25 583 0.0 0.0 0.0 1.0 24.53 1.0 -32.31 1.0
6 4.76 591 0.0 0.0 0.0 1.0 17.41 1.0 -25.74 1.0
7 4.25 592 0.0 0.0 0.0 1.0 15.73 1.0 -23.81 1.0
8 5.15 603 0.0 0.0 0.0 1.0 15.04 1.0 -22.98 1.0
9 5.72 618 0.0 0.0 0.0 1.0 12.13 1.0 -19.32 1.0
10 5.1 592 0.0 0.0 0.0 1.0 10.1 1.0 -16.87 1.0

Table 6.15 Frequency influence. No Balance Case.

TD OR FD CF DD RDG

j D (%) TBR D (%) TBR D (%) TBR D (%) TBR D (%) TBR D (%) TBR

1 25.03 718 0.0 0.0 0.0 1.0 117.22 1.0 -69.99 1.0 -6.1 0.02
2 34.79 881 0.0⇤ 0.14 -7.14 0.93 70.43 1.0 -56.96 1.0 86.74 0.03
3 45.57 961 0.0 0.0 0.0 1.0 43.31 0.98 -44.47 1.04 106.03 0.04
4 39.66 952 0.0⇤ 0.07 -7.14 0.93 32.27 0.99 -37.54 1.02 202.79 0.04
5 44.95 936 0.0⇤ 0.21 -17.86 0.82 24.91 0.99 -32.33 1.02 26.27 0.03
6 36.46 921 0.0⇤ 0.43 -28.57 0.71 20.34 1.0 -28.2 1.01 3.29 0.03
7 42.25 965 0.0⇤ 0.14 -7.14 0.93 16.18 0.99 -23.97 1.01 23.87 0.02
8 38.12 954 0.0⇤ 0.04 -3.57 0.96 14.21 1.0 -21.82 1.01 23.34 0.03
9 36.83 966 0.0⇤ 0.43 -21.43 0.79 12.47 0.99 -19.26 1.03 63.89 0.02
10 41.85 963 0.0⇤ 0.04 -3.57 0.96 8.36 0.97 -13.48 1.06 61.51 0.05

Table 6.16 Frequency influence. Duration Case.

6.6.13 Daily Requests Variation Influence

We now focus on the impact of the variation in the number of daily requests. We
modify the instances of group-A as now described. We fix an instance A-a, and
denote by rd the number of requests on day d 2 D. Moreover, let us denote by r(A-a)
and s(A-a) the average and standard deviation of the set {rd}d2D. We create 5 new
instances, denoted by A-a-v, v = 1, . . . , 5, by modifying the request set {rd}d2D, so
that:

• the average number of requests per day does not change, i.e., for all v it holds
r(A-a-v) = r(A-a) ,

136 Territory Design

TD OR FD CF DD RVG

j D (%) TBR D (%) TBR D (%) TBR D (%) TBR D (%) TBR D (%) TBR

1 8.57 567 0.0 0.0 0.0 1.0 100.73 1.0 -68.39 1.0 117.26 0.04
2 22.51 716 0.0⇤ 0.04 -3.57 0.96 59.82 1.0 -54.95 1.0 45.34 0.03
3 18.0 691 0.0 0.0 0.0 1.0 42.18 1.0 -44.95 1.0 -15.48 0.02
4 15.11 698 0.0 0.0 0.0 1.0 31.02 1.0 -37.43 1.0 10.31 0.03
5 14.85 696 0.0 0.0 0.0 1.0 24.68 1.0 -32.78 1.0 -12.87 0.02
6 20.88 738 0.0⇤ 0.07 -7.14 0.93 18.96 1.0 -27.33 1.0 5.05 0.03
7 17.28 720 0.0 0.0 0.0 1.0 16.4 1.0 -24.59 1.0 37.33 0.03
8 18.09 737 0.0 0.0 0.0 1.0 14.48 1.0 -22.45 1.0 -45.36 0.01
9 19.46 754 0.0⇤ 0.04 -3.57 0.96 13.12 1.0 -20.44 1.0 -11.63 0.02
10 23.07 750 0.0 0.0 0.0 1.0 10.38 1.0 -17.25 1.0 6.09 0.02

Table 6.17 Frequency influence. Value Case.

• the standard deviation is close to some pre-fixed values. In more detail, we
have s(A-a-v) ⇡ av ⇤ r(A-a), where av = 0, 0.05, 0.1, 0.2, 0.3, for, respectively,
v = 1, . . . , 5.

• The values {rd}d2D vary (approximately12) linearly and the median day has
exactly r(A-a-v) requests, i.e., since |D| = 7, r3 = r(A-a-v).

We solve all of the instances using both DRR and TBR approaches and all three
cost configurations: No Balance, Duration and Value cases. We then average the res-
ults over all instances A-a-v for a = 1, . . . , 26. The results are reported in Tables 6.18,
6.19 and 6.20

For the No Balance and Duration case the results clearly show that the variation
in the number of daily requests has no impact on the efficiency of TBR. As usual
TD increases more when balance requirements are considered, but there is also sig-
nificant fluctuation of D-TD which is correlated with the variation of the number of
daily requests. In the Value Case the situation is different. Indeed we can observe an
increase of D-TD proportional to the increase in variation. Moreover, the unbalance
gap, RVG, is not always under the tolerance and the gap with DRR is significant.
This leads us to conclude that, when the Value Cost is considered, the variation in
daily requests has an impact on the efficiency as the balancing of territories become
harder.

12We use a linear function of d and then round to the nearest integer to determine the values of the
rd’s. Therefore, their variation might be not exactly linear. For the same reason, the standard deviation
might not equal av ⇤ r(A-a), but we choose the linear function so that s(A-a-v) is the closest possible to
the desired value.

§6.6 Computational Analysis 137

v = 1 2 3 4 5

TD D (%) 3.61 3.32 3.49 4.44 4.12
TBR 609 606 610 611 606

OR D (%) 0.0 0.0 0.0 0.0 0.0
TBR 0.01 0.01 0.01 0.01 0.01

FD D (%) 0.0 0.0 0.0 0.0 0.0
TBR 0.99 0.99 0.99 0.99 0.99

CF D (%) 39.58 41.78 46.14 44.92 44.64
TBR 1.0 1.0 1.0 1.0 1.0

DD D (%) -43.41 -43.53 -48.14 -47.23 -46.68
TBR 1.0 1.0 1.0 1.0 1.0

Table 6.18 Request variation influence. No Balance Case

v = 1 2 3 4 5

TD D (%) 26.6 22.53 22.21 22.36 24.11
TBR 820 777 785 791 791

OR D (%) 4.0⇤ 2.0⇤ 2.0⇤ 2.0⇤ 4.17⇤
TBR 0.05 0.02 0.03 0.03 0.07

FD D (%) -2.09 -1.32 -1.32 -1.32 -4.84
TBR 0.97 0.98 0.98 0.98 0.95

CF D (%) 65.64 65.2 63.36 65.18 64.88
TBR 1.0 1.0 1.0 1.0 1.0

DD D (%) -55.67 -56.06 -55.45 -54.31 -54.93
TBR 1.02 1.0 1.0 1.01 1.02

RDG D (%) 102.25 70.41 182.0 89.32 64.93
TBR 0.08 0.07 0.12 0.06 0.05

Table 6.19 Request variation influence. Duration Case

6.6.14 A Note On Contiguity and Compactness

As we previously mention, many authors impose some geometrical requirements
when solving a territory design problem. The most two common are contiguity and
compactness. Even if there is no formal geometrical definition of these properties, the

138 Territory Design

v = 1 2 3 4 5

TD D (%) 8.79 11.58 10.22 15.06 13.63
TBR 694 708 715 752 723

OR D (%) -3.85 -4.0⇤ -4.0⇤ -3.85 -4.0⇤
TBR 0.02 0.02 0.02 0.02 0.02

FD D (%) 0.64 0.09 0.09 0.64 0.09
TBR 0.98 0.98 0.98 0.98 0.98

CF D (%) 50.57 54.84 55.78 52.97 55.72
TBR 1.0 1.0 1.0 1.0 1.0

DD D (%) -53.87 -52.81 -53.08 -50.65 -52.27
TBR 1.0 1.0 1.0 1.0 1.0

RVG D (%) 71.8 120.17 160.92 153.26 78.22
TBR 0.1 0.1 0.12 0.15 0.08

Table 6.20 Request variation influence. Value Case

underlying idea is intuitive. Contiguity means the territories have to be connected,
non-nested regions. Compactness means a territory is somewhat round shaped and
undistorted. These concepts may vary in the different applications (see Kalcsics et al.
[2005] for more details). In the literature, there are several methods used to enforce
these properties. Most models try to achieve compactness by adding a p-centre, or
p-median, measure in the objective. Although this does not necessarily produce com-
pact territories, the results are usually satisfactory. Moreover, it has the advantage of
being computationally tractable. Given that most methods are heuristic, contiguity is
usually imposed while constructing a solution. Other approaches involve designing
territories of pre-defined shape (Newell and Daganzo [1986]).

In fact, compactness in routing applications may be counter-productive, for ex-
ample if there are some isolated far customers to be served, just like we have in
our problem (see Section 6.6.3). As a side remark, we note that a related concept
that could replace compactness is that of visual appeal of routes (Constantino et al.
[2015]). Using visual appeal has two advantages: it is straightforward to include in
our approach and it measures a route property, instead of a territory property. Here
we only focus on contiguity. We decided to not enforce contiguity in our method.
The ultimate goal is to enhance service consistency and having partial overlap in
territories is not necessarily disadvantageous: given that violations of the territor-
ies may occur, it might be even more robust to have more than one driver who is

§6.7 Conclusions and Future Work 139

(a) No Balance Cost (b) Duration Cost (c) Value Cost

Figure 6.2: Visual representation of the territories.

familiar with an area (or customer) as is also suggested in Haughton [2008]. In Fig-
ure 6.2, for the same instance, we plot the territories associated with three different
runs of RBTA, with no Balance Cost, with Duration Cost and with Value Cost. It is
possible to appreciate that, when no balance requirement is imposed, the partition
(Figure 6.2(a)) is the most visually appealing. When a balance measure is considered
(Figure 6.2(b) and 6.2(c)) the partition’s contiguity slightly deteriorates. This is ne-
cessary, in order to increase the balance. However, even though the areas covered
by the territories overlap, these are visually clear and a good degree of contiguity
is preserved. Moreover, the areas are similar, with respect to size, to the no balance
case. Therefore, we still reach our ultimate objectives of enhanced consistency and
increased familiarity of drivers with their area.

6.7 Conclusions and Future Work

In this chapter, we proposed an approach to solve territory design problems. Our
method is routing-based. The design of the territories is modelled and solved to-
gether with the routing part of the problem. We proposed a simple ALNS-based
heuristic that proves to be efficient and able to find good solutions to our problem.
We extensively analysed our approach using some real-world inspired instances.

We summarise here our main findings:

• The proposed method is very successful in increasing the consistency of service.
This is done without worsening the balance of the routes. Only the routing
quality is slightly decreased.

• Increasing the number of territories is not necessarily beneficial if we have also
balance requirements. After a certain threshold, this deteriorates the routing
quality. However, before the threshold, increasing the number of territories
improves the feasibility.

140 Territory Design

• Balance requirements add considerable complexity to the problem. However,
they can be met, without decreasing consistency and routing quality, if some
unbalance is tolerated. Conversely, striving for an almost perfect balance and a
good consistency level significantly worsens the routing quality of the solution.

• The introduction of time windows in the problems offers more opportunities
to improve consistency but affects the routing quality of the solution, although
the impact is not as dramatic as might be expected;

• Time windows do not affect the ability of TBR to balance the territories and
reach a good consistency level.

• It is important to include the time window constraints in the design of the
territories in order to make the approach effective.

• The variation in the demand of customers or in the number of daily requests
affect the approach only if the Value Cost is considered and if such variation is
high.

• Instances with customers ordering frequently offer more opportunities to im-
prove consistency.

• The territories obtained by the approach are visually appealing. Balance re-
quirements impact the contiguity of the territories, but the magnitude of the
effect is low.

It would be interesting to extend our analysis to other operational constraints, such
as compatibility constraints or precedence constraints for pick-up and delivery prob-
lems, or to other variants of the underlying routing problem, such as the case of
heterogeneous fleet. Another potential topic of future work is the sample days selec-
tion. Here we assumed the sample days were given, but in reality, one might face a
much bigger set of sample days. In those cases, one would have to create a represent-
ative subset of days and solve the problem only for those days. However, questions
arise on what is the most representative, or the best, subset.

Chapter 6

Conclusions

This thesis investigates several tactical problems that arise in routing applications.
Each chapter in Part II focuses on a different problem. During our presentation,
we tried to highlight the motivation that led us to consider each of the presented
problems. These usually stem from, or are inspired by, real-world problems our
research group faced.

Even if the tools used in the solution methods proposed are different, and of a
different nature, the methodology of research we followed and the goals we pursued
throughout the thesis are similar. As we mention in Chapter 1, our main interests
were to extend standard models and solution techniques for VRPs in order to propose
new models able to capture the multi-period nature of tactical routing problems and
to propose efficient solution methods to such problems; to analyse the impact of the
considered approaches at the operational level; to analyse the impact that different
features of models and instances have on the efficiency of such approaches.

We believe that the findings presented in this thesis represent a step forward in
the area of tactical routing problems. As we already stated, the literature in this area
is not quite as developed as that for operational problems. However, tactical prob-
lems are of paramount importance for transportation companies, as they influence
the daily operations for a medium-to-long horizon. They constitute an area where
the use of an optimisation model could lead to significant savings.

The contributions of this thesis were already highlighted in each chapter. Here,
we focus on the new questions and possibilities for future work that were generated
by the results and findings presented in Part II. We identify and elaborate on new
research directions that look worthy of investigation.

Fleet Design with Inter-Day Constraints. In Chapter 4, we pointed out that it could
be interesting to introduce inter-day constraints in our approach for fleet design. This
is not a straight-forward extension. Indeed, the approach presented in Chapter 4 is
based on the ability to treat days independently, using a master problem (in partic-

141

142 Conclusions

ular the dual variables of such problem) as the only form of communication. On
the other hand, we showed in Chapter 5, how introducing the possibility of splitting
the deliveries over consecutive days could lead to significant reduction in the opera-
tional costs and fixed size. Combining the two approaches, in a fleet design problem
that consider scheduling decisions, could lead to further reduction and augmented
efficiency of the fleet, without requiring a complex control policy on the customers’
inventory. In particular, the real-world problem presented in Chapter 4 would be
suitable for such an extension.

Real-World Application of the Split Deliveries Policy. The work presented in
Chapter 5 is at a theoretical level. The chapter served as a first study of the pro-
posed policy and mathematically justifies the approach. However, it would be of
interest to implement such approach in a real-world problem. We already elaborated
on how the implementation of such a policy should not be hard, and the splitting
of some requests may already happen on a non-optimised and non-formalised basis.
However, the problem would much more challenging if a rich VRP is considered
as the underlying routing problem. Therefore, it is likely that some decomposition
methods would be needed. In our view, applying such approach to a real-world
problem would constitute a complementary study to the analysis proposed in this
thesis.

Territory Design with Heterogeneous Fleet. In Chapter 6, when considering the
routing territory design problem, we assumed a fixed homogenous fleet. However,
this is not always the case in real problems. While extending our algorithm in order
to consider the size of the fleet as a decision variable might not be too hard, con-
sidering the case of a heterogeneous fleet might be more challenging. First of all,
the problem of balancing the routes would not be as trivial, and one would need to
re-define such a concept, for example is different drivers are paid differently. If a
fleet design aspect is added on top of the problem, this would fall in the area of fleet
design with inter-day constraints, that we mentioned above.

Scenario Selection in Multi-Period Problems. Throughout the thesis we have al-
ways assumed the days making up the horizon are given as an input. One point
we made, was the fact that considering all types of scenarios, and not only a part of
them, is important in tactical problems. As an example, in fleet design, considering
big days only leads to big fleets, efficient on big days but having a high number of
idle vehicles on small days. However, it is not practical to select all possible days.
Imagine we have at available several years worth of data. It is clear we cannot con-

143

sider all of them in our problem. Statistical methods can be used to identify patterns
or a set of representative days. However, optimisation methods could be sensitive
to the particular set chosen. Moreover, the question of what “representative” exactly
means would be raised. It would be of interest to investigate how to choose, or
create, a set of days, so to satisfy certain planning criteria. A concrete example is
the following: in the territory design problem presented in Chapter 6, one could be
more interested in having territories that are very robust to daily changes, or that are
not violated, e.g., 70% of the times. Intuitively, the first criterion could lead to the
selection of a set of complicating days, which are different between them, so to make
the territories as robust as possible. Instead, for the second criteria, it could be better
to select of a set of days that well represents the real pattern of requests.

Bibliography

Ahuja, R. K.; Magnanti, T. L.; and Orlin, J. B., 1993. Network flows: theory,
algorithms, and applications. (1993).

Amor, H. B. and Desrosiers, J., 2006. A proximal trust-region algorithm for column
generation stabilization. Computers & Operations Research, 33, 4 (2006), 910–927.

Andersson, H.; Hoff, A.; Christiansen, M.; Hasle, G.; and Løkketangen, A.,
2010. Industrial aspects and literature survey: Combined inventory management
and routing. Computers & Operations Research, 37, 9 (2010), 1515–1536.

Angelelli, E.; Speranza, M. G.; et al., 2002. The application of a vehicle routing
model to a waste-collection problem: two case studies. Journal of the Operational
Research Society, 53, 9 (2002), 944–952.

Archetti, C.; Bianchessi, N.; and Speranza, M. G., 2011. A column generation
approach for the split delivery vehicle routing problem. Networks, 58, 4 (2011),
241–254.

Archetti, C.; Bianchessi, N.; and Speranza, M. G., 2015a. A branch-price-and-cut
algorithm for the commodity constrained split delivery vehicle routing problem.
Computers & Operations Research, 64 (2015), 1–10.

Archetti, C.; Campbell, A. M.; and Speranza, M. G., 2014a. Multicommodity vs.
single-commodity routing. Transportation Science, 50, 2 (2014), 461–472.

Archetti, C.; Jabali, O.; and Speranza, M. G., 2015b. Multi-period vehicle routing
problem with due dates. Computers & Operations Research, 61 (2015), 122–134.

Archetti, C.; Savelsbergh, M. W.; and Speranza, M. G., 2006a. Worst-case analysis
for split delivery vehicle routing problems. Transportation Science, 40, 2 (2006), 226–
234.

Archetti, C. and Speranza, M. G., 2012. Vehicle routing problems with split deliv-
eries. International Transactions in Operational Research, 19, 1-2 (2012), 3–22.

Archetti, C. and Speranza, M. G., 2014. A survey on matheuristics for routing
problems. EURO Journal on Computational Optimization, 2, 4 (2014), 223–246.

144

BIBLIOGRAPHY 145

Archetti, C.; Speranza, M. G.; and Hertz, A., 2006b. A tabu search algorithm
for the split delivery vehicle routing problem. Transportation Science, 40, 1 (2006),
64–73.

Archetti, C.; Speranza, M. G.; and Savelsbergh, M. W., 2008. An optimization-
based heuristic for the split delivery vehicle routing problem. Transportation Science,
42, 1 (2008), 22–31.

Archetti, C.; Speranza, M. G.; and Vigo, D., 2014b. Vehicle routing problems with
profits. Vehicle Routing: Problems, Methods, and Applications, 18 (2014), 273.

Bacao, F.; Lobo, V.; and Painho, M., 2005. Applying genetic algorithms to zone
design. Soft Computing-A Fusion of Foundations, Methodologies and Applications, 9, 5
(2005), 341–348.

Baldacci, R.; Battarra, M.; and Vigo, D., 2008. Routing a heterogeneous fleet of
vehicles. In The Vehicle Routing Problem: Latest Advances and New Challenges, 3–27.
Springer.

Baldacci, R. and Mingozzi, A., 2009. A unified exact method for solving different
classes of vehicle routing problems. Mathematical Programming, 120, 2 (2009), 347.

Balinski, M. L. and Quandt, R. E., 1964. On an integer program for a delivery
problem. Operations Research, 12, 2 (1964), 300–304.

Ball, M. O., 2011. Heuristics based on mathematical programming. Surveys in Oper-
ations Research and Management Science, 16, 1 (2011), 21–38.

Bankwest, 2015. Road freight transport industry report. Connect, Insight for Business,
(2015). https://www.bankwest.com.au/cs/ContentServer?pagename=Foundation/

CS/Blob/Document&id=1292539773382&ext=.pdf.

Battarra, M.; Monaci, M.; and Vigo, D., 2009. An adaptive guidance approach
for the heuristic solution of a minimum multiple trip vehicle routing problem.
Computers & Operations Research, 36, 11 (2009), 3041–3050.

Beasley, J. E., 1983. Route first—cluster second methods for vehicle routing. Omega,
11, 4 (1983), 403–408.

Benzarti, E.; Sahin, E.; and Dallery, Y., 2013. Operations management applied to
home care services: Analysis of the districting problem. Decision Support Systems,
55, 2 (2013), 587–598.

https://www.bankwest.com.au/cs/ContentServer?pagename=Foundation/CS/Blob/Document&id=1292539773382&ext=.pdf.
https://www.bankwest.com.au/cs/ContentServer?pagename=Foundation/CS/Blob/Document&id=1292539773382&ext=.pdf.

146 BIBLIOGRAPHY

Bertazzi, L. and Speranza, M. G., 2012. Inventory routing problems: an introduc-
tion. EURO Journal on Transportation and Logistics, 1, 4 (2012), 307–326.

Bertoli, F.; Kilby, P.; and Urli, T., 2017a. A column generation-based approach to
fleet design problems mixing owned and hired vehicles. Submitted to International
Transactions in Operational Research, (2017).

Bertoli, F.; Kilby, P.; and Urli, T., 2017b. A general and scalable column generation
approach to fleet design problems. Submitted to Journal of Heuristics, available at
arXiv, (2017). http://arxiv.org/.

Bertoli, F.; Kilby, P.; and Urli, T., 2017c. Vehicle routing problems with deliveries
split over days. Journal on Vehicle Routing Algorithms, (9 2017), 1–17. doi:10.1007/

s41604-017-0002-1.

Bertsimas, D. and Tsitsiklis, J. N., 1997. Introduction to Linear Optimization, vol. 6.
Athena Scientific Belmont, MA.

Bertsimas, D. J., 1992. A vehicle routing problem with stochastic demand. Operations
Research, 40, 3 (1992), 574–585.

Boschetti, M. A.; Maniezzo, V.; Roffilli, M.; and Röhler, A. B., 2009. Matheur-
istics: Optimization, simulation and control. In International Workshop on Hybrid
Metaheuristics, 171–177. Springer.

Bräysy, O. and Gendreau, M., 2005a. Vehicle routing problem with time windows,
part i: Route construction and local search algorithms. Transportation Science, 39, 1
(2005), 104–118.

Bräysy, O. and Gendreau, M., 2005b. Vehicle routing problem with time windows,
part ii: Metaheuristics. Transportation Science, 39, 1 (2005), 119–139.

Burke, E. K. and Bykov, Y., 2012. The late acceptance hill-climbing heuristic. Depart-
ment of Computing Science and Mathematics University of Stirling—Technical Report
CSM-192. ISSN, (2012), 1460–9673.

Butt, S. E. and Cavalier, T. M., 1994. A heuristic for the multiple tour maximum
collection problem. Computers & Operations Research, 21, 1 (1994), 101–111.

Caceres-Cruz, J.; Arias, P.; Guimarans, D.; Riera, D.; and Juan, A. A., 2015. Rich
vehicle routing problem: Survey. ACM Computing Surveys (CSUR), 47, 2 (2015), 32.

http://arxiv.org/
http://dx.doi.org/10.1007/s41604-017-0002-1
http://dx.doi.org/10.1007/s41604-017-0002-1

BIBLIOGRAPHY 147

Carter, M. W.; Farvolden, J. M.; Laporte, G.; and Xu, J., 1996. Solving an integ-
rated logistics problem arising in grocery distribution. INFOR: Information Systems
and Operational Research, 34, 4 (1996), 290–306.

Cattaruzza, D.; Absi, N.; Feillet, D.; and Vidal, T., 2014. A memetic algorithm
for the multi trip vehicle routing problem. European Journal of Operational Research,
236, 3 (2014), 833–848.

Ceselli, A.; Righini, G.; and Salani, M., 2009. A column generation algorithm for
a rich vehicle-routing problem. Transportation Science, 43, 1 (2009), 56–69.

Chao, I.-M., 2002. A tabu search method for the truck and trailer routing problem.
Computers & Operations Research, 29, 1 (2002), 33–51.

Chen, Z.-L. and Xu, H., 2006. Dynamic column generation for dynamic vehicle
routing with time windows. Transportation Science, 40, 1 (2006), 74–88.

Choi, E. and Tcha, D.-W., 2007. A column generation approach to the heterogeneous
fleet vehicle routing problem. Computers & Operations Research, 34, 7 (2007), 2080–
2095.

Christofides, N.; Mingozzi, A.; and Toth, P., 1981. State-space relaxation proced-
ures for the computation of bounds to routing problems. Networks, 11, 2 (1981),
145–164.

Chu, C.-W., 2005. A heuristic algorithm for the truckload and less-than-truckload
problem. European Journal of Operational Research, 165, 3 (2005), 657–667.

Clarke, G. and Wright, J. W., 1964. Scheduling of vehicles from a central depot to
a number of delivery points. Operations Research, 12, 4 (1964), 568–581.

Coelho, L. C.; Cordeau, J.-F.; and Laporte, G., 2013. Thirty years of inventory
routing. Transportation Science, 48, 1 (2013), 1–19.

Constantino, M.; Gouveia, L.; Mourão, M. C.; and Nunes, A. C., 2015. The mixed
capacitated arc routing problem with non-overlapping routes. European Journal of
Operational Research, 244, 2 (2015), 445–456.

Cordeau, J.-F. and Groupe d’études et de recherche en analyse des décisions

(Montréal, Q., 2000. The VRP with Time Windows. Montréal: Groupe d’études et
de recherche en analyse des décisions.

Crainic, T. G., 2003. Long-haul freight transportation. In Handbook of Transportation
Science, 451–516. Springer.

148 BIBLIOGRAPHY

Daganzo, C. F., 1984. The distance traveled to visit n points with a maximum of c
stops per vehicle: An analytic model and an application. Transportation Science, 18,
4 (1984), 331–350.

Dantzig, G. B. and Ramser, J. H., 1959. The truck dispatching problem. Management
Science, 6, 1 (1959), 80–91.

Dantzig, G. B. and Wolfe, P., 1960. Decomposition principle for linear programs.
Operations Research, 8, 1 (1960), 101–111.

Desrosiers, J.; Soumis, F.; and Desrochers, M., 1984. Routing with time windows
by column generation. Networks, 14, 4 (1984), 545–565.

Doerner, K. F. and Schmid, V., 2010. Survey: Matheuristics for rich vehicle routing
problems. Hybrid Metaheuristics, 6373 (2010), 206–221.

Dorigo, M.; Birattari, M.; and Stutzle, T., 2006. Ant colony optimization. IEEE
Computational Intelligence Magazine, 1, 4 (2006), 28–39.

Drexl, M., 2012a. Rich vehicle routing in theory and practice. Logistics Research, 5,
1-2 (2012), 47–63.

Drexl, M., 2012b. Synchronization in vehicle routing—a survey of vrps with multiple
synchronization constraints. Transportation Science, 46, 3 (2012), 297–316.

Drexl, M., 2013. Applications of the vehicle routing problem with trailers and trans-
shipments. European Journal of Operational Research, 227, 2 (2013), 275–283.

Dror, M.; Laporte, G.; and Trudeau, P., 1994. Vehicle routing with split deliveries.
Discrete Applied Mathematics, 50, 3 (1994), 239–254.

Dror, M. and Trudeau, P., 1989. Savings by split delivery routing. Transportation
Science, 23, 2 (1989), 141–145.

Dror, M. and Trudeau, P., 1990. Split delivery routing. Naval Research Logistics
(NRL), 37, 3 (1990), 383–402.

Du Merle, O.; Villeneuve, D.; Desrosiers, J.; and Hansen, P., 1999. Stabilized
column generation. Discrete Mathematics, 194, 1-3 (1999), 229–237.

Díaz-Madroñero, M.; Peidro, D.; and Mula, J., 2015. A review of tactical
optimization models for integrated production and transport routing planning
decisions. Computers & Industrial Engineering, 88, Supplement C (2015), 518 –
535. doi:https://doi.org/10.1016/j.cie.2015.06.010. "http://www.sciencedirect.com/

science/article/pii/S0360835215002697".

http://dx.doi.org/https://doi.org/10.1016/j.cie.2015.06.010

BIBLIOGRAPHY 149

Ferland, J. A. and Guénette, G., 1990. Decision support system for the school
districting problem. Operations Research, 38, 1 (1990), 15–21.

Fisher, M. L. and Jaikumar, R., 1981. A generalized assignment heuristic for vehicle
routing. Networks, 11, 2 (1981), 109–124.

Francis, P. M.; Smilowitz, K. R.; and Tzur, M., 2008. The period vehicle routing
problem and its extensions. In The Vehicle Routing Problem: Latest Advances and New
Challenges, 73–102. Springer.

Fukasawa, R.; Longo, H.; Lysgaard, J.; de Aragão, M. P.; Reis, M.; Uchoa, E.; and

Werneck, R. F., 2006. Robust branch-and-cut-and-price for the capacitated vehicle
routing problem. Mathematical programming, 106, 3 (2006), 491–511.

Gaur, V. and Fisher, M. L., 2004. A periodic inventory routing problem at a super-
market chain. Operations Research, 52, 6 (2004), 813–822.

Gendreau, M.; Jabali, O.; and Rei, W., 2014. Stochastic vehicle routing problems.
Vehicle Routing: Problems, Methods, and Applications, 2nd edn, Society for Industrial and
Applied Mathematics, (2014), 213–239.

Gendreau, M.; Laporte, G.; and Potvin, J.-Y., 2002. Metaheuristics for the capacit-
ated vrp. In The Vehicle Routing Problem, 129–154. SIAM.

Gendreau, M. and Potvin, J.-Y., 2010. Handbook of Metaheuristics, vol. 2. Springer.

Gillett, B. E. and Miller, L. R., 1974. A heuristic algorithm for the vehicle-dispatch
problem. Operations Research, 22, 2 (1974), 340–349.

Glover, F., 1986. Future paths for integer programming and links to artificial intelli-
gence. Computers & Operations Research, 13, 5 (1986), 533–549.

Golden, B.; Assad, A.; Levy, L.; and Gheysens, F., 1984. The fleet size and mix
vehicle routing problem. Computers & Operations Research, 11, 1 (1984), 49–66.

Groër, C.; Golden, B.; and Wasil, E., 2009. The consistent vehicle routing problem.
Manufacturing & Service Operations Sanagement, 11, 4 (2009), 630–643.

Gulczynski, D.; Golden, B.; and Wasil, E., 2010. The split delivery vehicle routing
problem with minimum delivery amounts. Transportation Research Part E: Logistics
and Transportation Review, 46, 5 (2010), 612–626.

Gurobi Optimization, I., 2015. Gurobi optimizer reference manual. "http://www.

gurobi.com".

150 BIBLIOGRAPHY

Hadjiconstantinou, E. and Baldacci, R., 1998. A multi-depot period vehicle rout-
ing problem arising in the utilities sector. Journal of the Operational Research Society,
49, 12 (1998), 1239–1248.

Hall, R. W.; Du, Y.; and Lin, J., 1994. Use of continuous approximations within
discrete algorithms for routing vehicles: Experimental results and interpretation.
Networks, 24, 1 (1994), 43–56.

Hansen, P. and Mladenovi

´

c, N., 2014. Variable neighborhood search. In Search
Methodologies, 313–337. Springer.

Hasle, G. and Kloster, O., 2007. Industrial vehicle routing. Geometric Modelling,
Numerical Simulation, and Optimization, (2007), 397–435.

Haughton, M. A., 2008. The efficacy of exclusive territory assignments to delivery
vehicle drivers. European Journal of Operational Research, 184, 1 (2008), 24–38.

Haugland, D.; Ho, S. C.; and Laporte, G., 2007. Designing delivery districts for the
vehicle routing problem with stochastic demands. European Journal of Operational
Research, 180, 3 (2007), 997–1010.

Hemmelmayr, V.; Doerner, K. F.; Hartl, R. F.; and Savelsbergh, M. W., 2009.
Delivery strategies for blood products supplies. OR Spectrum, 31, 4 (2009), 707–
725.

Hoff, A.; Andersson, H.; Christiansen, M.; Hasle, G.; and Løkketangen, A.,
2010. Industrial aspects and literature survey: Fleet composition and routing. Com-
puters & Operations Research, 37, 12 (2010), 2041–2061.

Holland, J. H., 1992. Adaptation in Natural and Artificial Systems: an Introductory
Analysis with Applications to Biology, Control, and Artificial Intelligence. MIT press.

Irnich, S. and Desaulniers, G., 2005. Shortest path problems with resource con-
straints. In Column generation, 33–65. Springer.

Irnich, S.; Schneider, M.; and Vigo, D., 2014a. Four variants of the vehicle routing
problem. Vehicle Routing: Problems, Methods, and Applications, 18 (2014), 241–271.

Irnich, S.; Toth, P.; and Vigo, D., 2014b. The family of vehicle routing problems.
Vehicle Routing: Problems, Methods, and Applications, 18 (2014), 1–36.

Jabali, O.; Gendreau, M.; and Laporte, G., 2012. A continuous approximation
model for the fleet composition problem. Transportation Research Part B: Methodolo-
gical, 46, 10 (2012), 1591–1606.

BIBLIOGRAPHY 151

Jarrah, A. I. and Bard, J. F., 2012. Large-scale pickup and delivery work area design.
Computers & Operations Research, 39, 12 (2012), 3102–3118.

Joncour, C.; Michel, S.; Sadykov, R.; Sverdlov, D.; and Vanderbeck, F., 2010.
Column generation based primal heuristics. Electronic Notes in Discrete Mathematics,
36 (2010), 695–702.

Jozefowiez, N.; Semet, F.; and Talbi, E.-G., 2007. Target aiming pareto search and
its application to the vehicle routing problem with route balancing. Journal of
Heuristics, 13, 5 (2007), 455–469.

Jozefowiez, N.; Semet, F.; and Talbi, E.-G., 2008. Multi-objective vehicle routing
problems. European Journal of Operational Research, 189, 2 (2008), 293–309.

Kalcsics, J., 2015. Districting problems. In Location Science, 595–622. Springer.

Kalcsics, J.; Nickel, S.; and Schröder, M., 2005. Towards a unified territorial
design approach—applications, algorithms and gis integration. Top, 13, 1 (2005),
1–56.

Karp, R. M., 1972. Reducibility among combinatorial problems. In Complexity of
Computer Computations, 85–103. Springer.

Kilby, P. and Urli, T., 2016. Fleet design optimisation from historical data using
constraint programming and large neighbourhood search. Constraints, (2016), 1–
20.

Kilby, P. and Verden, A., 2011a. Flexible routing combing constraint programming,
large neighbourhood search, and feature-based insertion. In Proceedings 2nd Work-
shop on Artificial Intelligence and Logistics (AILOG’11), 43–49.

Kilby, P. and Verden, A., 2011b. Flexible routing combing constraint programming,
large neighbourhood search, and feature-based insertion. In Proceedings 2nd Work-
shop on Artificial Intelligence and Logistics (AILOG-2011), 43–48.

Kim, B.-I.; Kim, S.; and Sahoo, S., 2006. Waste collection vehicle routing problem
with time windows. Computers & Operations Research, 33, 12 (2006), 3624–3642.

Kopfer, H. and Krajewska, M. A., 2007. Approaches for modelling and solving the
integrated transportation and forwarding problem. Produktions-und Logistikman-
agement, Springer, Berlin Heidelberg New York, (2007), 439–458.

152 BIBLIOGRAPHY

Kopfer, H. and Wang, X., 2009. Combining vehicle routing with forwarding: exten-
sion of the vehicle routing problem by different types of sub-contraction. Journal of
Korean Institute of Industrial Engineers, 35, 1 (2009), 1–14.

Kovacs, A. A.; Golden, B. L.; Hartl, R. F.; and Parragh, S. N., 2014. The gen-
eralized consistent vehicle routing problem. Transportation Science, 49, 4 (2014),
796–816.

Lahyani, R.; Khemakhem, M.; and Semet, F., 2015. Rich vehicle routing problems:
From a taxonomy to a definition. European Journal of Operational Research, 241, 1
(2015), 1–14.

Laporte, G., 2009. Fifty years of vehicle routing. Transportation Science, 43, 4 (2009),
408–416.

Laporte, G.; Desrochers, M.; and Nobert, Y., 1984. Two exact algorithms for the
distance-constrained vehicle routing problem. Networks, 14, 1 (1984), 161–172.

Laporte, G.; Mercure, H.; and Nobert, Y., 1986. An exact algorithm for the asym-
metrical capacitated vehicle routing problem. Networks, 16, 1 (1986), 33–46.

Laporte, G.; Ropke, S.; and Vidal, T., 2014. Heuristics for the vehicle routing
problem. Vehicle Routing: Problems, Methods, and Applications, 18 (2014), 87.

Laporte, G. and Semet, F., 2002. Classical heuristics for the capacitated vrp. In The
Vehicle Routing Problem, 109–128. SIAM.

Le, T.; Diabat, A.; Richard, J.-P.; and Yih, Y., 2013. A column generation-based
heuristic algorithm for an inventory routing problem with perishable goods. Op-
timization Letters, 7, 7 (2013), 1481–1502.

Lee, T.-R. and Ueng, J.-H., 1999. A study of vehicle routing problems with load-
balancing. International Journal of Physical Distribution & Logistics Management, 29,
10 (1999), 646–657.

Lin, S., 1965. Computer solutions of the traveling salesman problem. The Bell System
Technical Journal, 44, 10 (1965), 2245–2269.

Lourenço, H. R.; Martin, O. C.; and Stützle, T., 2010. Iterated local search: Frame-
work and applications. In Handbook of Metaheuristics, 363–397. Springer.

Loxton, R.; Lin, Q.; and Teo, K. L., 2012. A stochastic fleet composition problem.
Computers & Operations Research, 39, 12 (2012), 3177–3184.

BIBLIOGRAPHY 153

Lu, Q. and Dessouky, M. M., 2006. A new insertion-based construction heuristic for
solving the pickup and delivery problem with time windows. European Journal of
Operational Research, 175, 2 (2006), 672–687.

Lübbecke, M. E. and Desrosiers, J., 2005. Selected topics in column generation.
Operations Research, 53, 6 (2005), 1007–1023.

M. Gendreau, W. R., O. Jabali, 2014. Stochastic Vehicle Routing Problems, chap. 8.
MOS-SIAM Series on Optimzation. SIAM.

Madsen, K., 1975. An algorithm for minimax solution of overdetermined systems of
non-linear equations. IMA Journal of Applied Mathematics, 16, 3 (1975), 321–328.

Maheo, A.; Kilby, P.; and Urli, T., 2016. Fleet size and mix split-delivery vehicle
routing. Submitted., (2016).

Malandraki, C. and Daskin, M. S., 1992. Time dependent vehicle routing prob-
lems: formulations, properties and heuristic algorithms. Transportation science, 26,
3 (1992), 185–200.

Mandal, S. K.; Pacciarelli, D.; Løkketangen, A.; and Hasle, G., 2015. A memetic
nsga-ii for the bi-objective mixed capacitated general routing problem. Journal of
Heuristics, 21, 3 (2015), 359–390.

Maniezzo, V.; Stützle, T.; and Voß, S., 2010. Matheuristics: Hybridizing Metaheurist-
ics and Mathematical Programming, vol. 10. Springer.

Marsten, R. E., 1975. The Use of the Boxstep Method in Discrete Optimization. Springer.

Matl, P.; Hartl, R.; and Vidal, T., 2017. Workload equity in vehicle routing prob-
lems: A survey and analysis. Transportation Science, (2017).

Miller, C. E.; Tucker, A. W.; and Zemlin, R. A., 1960. Integer programming for-
mulation of traveling salesman problems. Journal of the ACM (JACM), 7, 4 (1960),
326–329.

Mirzaei, S. and Wøhlk, S., 2016. A branch-and-price algorithm for two multi-
compartment vehicle routing problems. EURO Journal on Transportation and Logist-
ics, (2016), 1–33.

Mirzaei, S. and Wøhlk, S., 2017. A branch-and-price algorithm for two multi-
compartment vehicle routing problems. EURO Journal on Transportation and Logist-
ics, (2017), 1–33.

154 BIBLIOGRAPHY

Moscato, P. and Cotta, C., 2010. A modern introduction to memetic algorithms. In
Handbook of Metaheuristics, 141–183. Springer.

Mourão, M. C.; Nunes, A. C.; and Prins, C., 2009. Heuristic methods for the
sectoring arc routing problem. European Journal of Operational Research, 196, 3 (2009),
856–868.

Mourgaya, M. and Vanderbeck, F., 2007. Column generation based heuristic for
tactical planning in multi-period vehicle routing. European Journal of Operational
Research, 183, 3 (2007), 1028–1041.

Nagy, G. and Salhi, S., 2007. Location-routing: Issues, models and methods.
European Journal of Operational Research, 177, 2 (2007), 649–672.

Newell, G. F. and Daganzo, C. F., 1986. Design of multiple-vehicle delivery tours—i
a ring-radial network. Transportation Research Part B: Methodological, 20, 5 (1986),
345–363.

Nikolaev, A. G. and Jacobson, S. H., 2010. Simulated annealing. In Handbook of
Metaheuristics, 1–39. Springer.

Oppen, J.; Løkketangen, A.; and Desrosiers, J., 2010. Solving a rich vehicle routing
and inventory problem using column generation. Computers & Operations Research,
37, 7 (2010), 1308–1317.

Ouyang, Y., 2007. Design of vehicle routing zones for large-scale distribution sys-
tems. Transportation Research Part B: Methodological, 41, 10 (2007), 1079–1093.

Ouyang, Y. and Daganzo, C. F., 2006. Discretization and validation of the continuum
approximation scheme for terminal system design. Transportation Science, 40, 1
(2006), 89–98.

Parragh, S. N.; Doerner, K. F.; and Hartl, R. F., 2007. A survey on pickup and
delivery problems. Part II: Transportation between pickup and delivery locations, to
appear: Journal für Betriebswirtschaft, (2007).

Parragh, S. N.; Doerner, K. F.; and Hartl, R. F., 2008. A survey on pickup and
delivery problems. Journal für Betriebswirtschaft, 58, 1 (2008), 21–51.

Pecin, D.; Pessoa, A.; Poggi, M.; and Uchoa, E., 2017. Improved branch-cut-and-
price for capacitated vehicle routing. Mathematical Programming Computation, 9, 1
(2017), 61–100.

BIBLIOGRAPHY 155

Perrier, N.; Langevin, A.; and Campbell, J. F., 2007. A survey of models and al-
gorithms for winter road maintenance. part iii: Vehicle routing and depot location
for spreading. Computers & Operations Research, 34, 1 (2007), 211–257.

Pesant, G.; Gendreau, M.; Potvin, J.-Y.; and Rousseau, J.-M., 1999. On the flex-
ibility of constraint programming models: From single to multiple time windows
for the traveling salesman problem. European Journal of Operational Research, 117, 2
(1999), 253–263.

Pisinger, D. and Ropke, S., 2007. A general heuristic for vehicle routing problems.
Computers & Operations Research, 34, 8 (2007), 2403–2435.

Pisinger, D. and Ropke, S., 2010. Large neighborhood search. In Handbook of Meta-
heuristics, 399–419. Springer.

Poggi, M. and Uchoa, E., 2014. New exact algorithms for the capacitated vehicle
routing problem. Vehicle Routing: Problems, Methods, and Applications, 18 (2014), 59.

Prins, C., 2004. A simple and effective evolutionary algorithm for the vehicle routing
problem. Computers & Operations Research, 31, 12 (2004), 1985–2002.

Prodhon, C. and Prins, C., 2014. A survey of recent research on location-routing
problems. European Journal of Operational Research, 238, 1 (2014), 1–17.

Puchinger, J. and Raidl, G. R., 2005. Combining metaheuristics and exact al-
gorithms in combinatorial optimization: A survey and classification. In Interna-
tional Work-Conference on the Interplay Between Natural and Artificial Computation,
41–53. Springer.

Renaud, J.; Boctor, F. F.; and Laporte, G., 1996a. An improved petal heuristic for
the vehicle routeing problem. Journal of the operational Research Society, 47, 2 (1996),
329–336.

Renaud, J.; Laporte, G.; and Boctor, F. F., 1996b. A tabu search heuristic for the
multi-depot vehicle routing problem. Computers & Operations Research, 23, 3 (1996),
229–235.

Resende, M. G.; Ribeiro, C. C.; Glover, F.; and Martí, R., 2010. Scatter search
and path-relinking: Fundamentals, advances, and applications. In Handbook of
Metaheuristics, 87–107. Springer.

Ribeiro, R. and Ramalhinho Dias Lourenço, H., 2001. A multi-objective model
for a multi-period distribution management problem. (2001).

156 BIBLIOGRAPHY

Ríos-Mercado, R. Z. and Fernández, E., 2009. A reactive grasp for a commer-
cial territory design problem with multiple balancing requirements. Computers &
Operations Research, 36, 3 (2009), 755–776.

Rodrigue, J.; Comtois, C.; and Slack, B., 2006. Chapter 7, Concept 3.1—Transport
Costs and Rates. The Geography of Transport Systems. Routledge, New York.

Ropke, S. and Pisinger, D., 2006. An adaptive large neighborhood search heuristic
for the pickup and delivery problem with time windows. Transportation Science, 40,
4 (2006), 455–472.

Rossi, F.; Van Beek, P.; and Walsh, T., 2006. Handbook of Constraint Programming.
Elsevier.

Rousseau, L.-M.; Gendreau, M.; Pesant, G.; and Focacci, F., 2004. Solving vrptws
with constraint programming based column generation. Annals of Operations Re-
search, 130, 1-4 (2004), 199–216.

Salazar-Aguilar, M. A.; Ríos-Mercado, R. Z.; and Cabrera-Ríos, M., 2011. New
models for commercial territory design. Networks and Spatial Economics, 11, 3 (2011),
487–507.

Salhi, S. and Rand, G. K., 1993. Incorporating vehicle routing into the vehicle fleet
composition problem. European Journal of Operational Research, 66, 3 (1993), 313–330.

Savelsbergh, M. and Song, J.-H., 2007. Inventory routing with continuous moves.
Computers & Operations Research, 34, 6 (2007), 1744–1763.

Savelsbergh, M. W., 1992. The vehicle routing problem with time windows: Minim-
izing route duration. ORSA Journal on Computing, 4, 2 (1992), 146–154.

Schneider, M.; Stenger, A.; Schwahn, F.; and Vigo, D., 2014. Territory-based
vehicle routing in the presence of time-window constraints. Transportation Science,
49, 4 (2014), 732–751.

Semet, F.; Toth, P.; and Vigo, D., 2014. Classical exact algorithms for the capacitated
vehicle routing problem. Vehicle Routing: Problems, Methods, and Applications, 18
(2014), 37.

Shaw, P., 1998. Using constraint programming and local search methods to solve
vehicle routing problems. In International Conference on Principles and Practice of
Constraint Programming, 417–431. Springer.

BIBLIOGRAPHY 157

Smilowitz, K.; Nowak, M.; and Jiang, T., 2013. Workforce management in periodic
delivery operations. Transportation Science, 47, 2 (2013), 214–230.

Solomon, M. M., 1987. Algorithms for the vehicle routing and scheduling problems
with time window constraints. Operations Research, 35, 2 (1987), 254–265.

Subramanian, A.; Uchoa, E.; and Ochi, L. S., 2013. A hybrid algorithm for a
class of vehicle routing problems. Computers & Operations Research, 40, 10 (2013),
2519–2531.

Sungur, I.; Ren, Y.; Ordóñez, F.; Dessouky, M.; and Zhong, H., 2010. A model and
algorithm for the courier delivery problem with uncertainty. Transportation Science,
44, 2 (2010), 193–205.

Taillard, É.; Badeau, P.; Gendreau, M.; Guertin, F.; and Potvin, J.-Y., 1997. A tabu
search heuristic for the vehicle routing problem with soft time windows. Transport-
ation Science, 31, 2 (1997), 170–186.

Taillard, É. D., 1999. A heuristic column generation method for the heterogeneous
fleet vrp. Revue française d’automatique, d’informatique et de recherche opérationnelle.
Recherche opérationnelle, 33, 1 (1999), 1–14.

Taillard, É. D.; Gambardella, L. M.; Gendreau, M.; and Potvin, J.-Y., 2001. Ad-
aptive memory programming: A unified view of metaheuristics. European Journal
of Operational Research, 135, 1 (2001), 1–16.

Taillard, É. D.; Laporte, G.; and Gendreau, M., 1996. Vehicle routeing with mul-
tiple use of vehicles. Journal of the Operational Research Society, (1996), 1065–1070.

Toth, P. and Vigo, D., 2014. Vehicle Routing: Problems, Methods, and Applications,
vol. 18. Siam.

Tsiligirides, T., 1984. Heuristic methods applied to orienteering. Journal of the Oper-
ational Research Society, (1984), 797–809.

Uchoa, E.; Pecin, D.; Pessoa, A.; Poggi, M.; Vidal, T.; and Subramanian, A., 2017.
New benchmark instances for the capacitated vehicle routing problem. European
Journal of Operational Research, 257, 3 (2017), 845–858.

Urli, T. and Kilby, P., 2017. Constraint-based fleet design optimisation for multi-
compartment split-delivery rich vehicle routing. In International Conference on Prin-
ciples and Practice of Constraint Programming, 414–430. Springer.

158 BIBLIOGRAPHY

Vanderbeck, F., 1994. Decomposition and column generation for integer programs. Ph.D.
thesis, Université catholique de Louvain.

Vidal, T.; Crainic, T. G.; Gendreau, M.; and Prins, C., 2014. A unified solution
framework for multi-attribute vehicle routing problems. European Journal of Opera-
tional Research, 234, 3 (2014), 658–673.

Voudouris, C. and Tsang, E., 2003. Guided local search. Handbook of Metaheuristics,
(2003), 185–218.

Wong, K. and Beasley, J. E., 1984. Vehicle routing using fixed delivery areas. Omega,
12, 6 (1984), 591–600.

Wong, R. T., 2008. Vehicle routing for small package delivery and pickup services.
The Vehicle Routing Problem: Latest Advances and New Challenges, 43 (2008), 475–485.

Yoshizaki, H. T. Y. et al., 2009. Scatter search for a real-life heterogeneous fleet
vehicle routing problem with time windows and split deliveries in brazil. European
Journal of Operational Research, 199, 3 (2009), 750–758.

Zhong, H., 2003. Territory planning and vehicle dispatching with stochastic custom-
ers and demand. (2003).

Zhong, H.; Hall, R. W.; and Dessouky, M., 2007. Territory planning and vehicle
dispatching with driver learning. Transportation Science, 41, 1 (2007), 74–89.

Zoltners, A. A. and Sinha, P., 2005. The 2004 isms practice prize winner—sales
territory design: Thirty years of modeling and implementation. Marketing Science,
24, 3 (2005), 313–331.

	Acknowledgments
	Abstract
	Glossary
	Contents
	Introduction
	Background and Motivation
	Objectives and Contributions
	Uncertainty in Tactical Problems
	Thesis Outline
	Notation

	I Mathematical Background
	Routing Problems
	The Vehicle Routing Problem
	Routing Problems
	Requests
	Routes
	Fleet
	Objectives

	Multi-Period Problems
	Tactical Routing Problems

	Solution Methods
	Exact Methods
	Set Partitioning Formulations

	Column Generation
	Common Issues
	Dantzig-Wolfe Decomposition
	Integer Problems
	Column Generation Applications in Routing Problems

	Heuristic Methods
	Constructive Heuristic
	Improvement Heuristics

	Metaheuristic
	Local Search and Large Neighbourhood Search

	Matheuristic

	II Tactical Routing Problems
	Fleet Design
	Introduction
	Motivation
	Problem Formulation
	Related Work
	Solution Methods
	Fleet Generation
	Route Generation
	Refinement method
	Model Extension For Rich Routing Constraints
	Including other subcontracting modalities
	An Extension of the Pareto Approach

	Implementation Details
	Theoretical caveats.
	Termination Criterion
	Sub-problem Selection

	Computational Analysis
	Approach Validation
	Methods Comparison
	Importance of Hiring Option
	Impact of Route-based Model

	Contributions and Conclusion

	Tactical Routing Strategy: Splitting Deliveries
	Introduction
	Motivation
	Related Work
	Problem Formulation
	Theoretical Properties
	k-split cycles
	Number of splits and routes
	Bounds on the number of routes
	Worst Case Analysis

	Mathematical Formulation and Solution Method
	Indivisible goods
	Valid Cuts
	Algorithm Description

	Computational Analysis
	Instances
	Minimum delivery amount constraints
	Frequency
	Clustering
	Longer Splitting Horizon

	Contributions and Conclusion

	Territory Design
	Introduction
	Motivation and Previous Work
	Problem Formulation
	Balance Measures

	Related Work
	Routing- vs Cluster-based Formulations

	Solution Method
	Computational Analysis
	Quality Assessment
	Test Data and Quality Measures
	Instances Details
	New vs Old Approach
	Comparison with a Two-Stage TBR Approach
	Analysis Methodology
	Approach Validation
	Number of Territories
	Balance Cost Influence
	Time Windows Influence
	Demand and Value Variation Influence
	Frequency Influence
	Daily Requests Variation Influence
	A Note On Contiguity and Compactness

	Conclusions and Future Work

	Conclusions

