
C oping w ith D em o n stra tio n
S ubop tim ality in R o b o t P ro g ram m in g by

D em o n stra tio n

J a s o n R o b e r t C h e n

B.E. (Hons), University of Sydney

July 2001

A thesis submitted for the degree of Doctor of Philosophy
of The Australian National University

Department of Engineering
Faculty of Engineering and Information Technology

The Australian National University

D eclara tion

The work contained in this thesis, except where explicitly stated, is original research,

the major portion of which has been conducted by the author. He worked under the

supervision of the members of the advisory panel, namely Professor Alex Zelinsky, Dr.

Brenan McCarragher Dr. Matt James, and Dr. Henry Gardner. This work has not been

submitted for a degree at any other university or institution.

Much of the research contained in this thesis has been published in book chapters and

conferences, as listed below.

B ook C hapters

[Bl] J. R. Chen and B. J. McCarragher, “Configuration Space Generation for Assem

bly Tasks from Demonstration”, In J.Billingsley, editor, Mechatronics and Machine

Vision, pages 349-364, Research Studies Press Ltd., 2000

C onference P apers

[C5] J. Chen and A. Zelinsky, “Programming by Demonstration: Removing Suboptimal

Actions in a Partially Known Configuration Space”, Proceedings of the 2001 IEEE

Conference on Robotics and Automation, Seoul, 21-26 May 2000.

[C4] J. Chen and A. Zelinsky, “Generating a Configuration Space Representation for

Assembly Tasks from Demonstration”, Proceedings of the 2001 IEEE Conference on

l

DECLARATION

Robotics and Automation, Seoul, 21-26 May 2000.

[C3] J. Chen and B.J. McCarragher, “Programming by Demonstration - Constructing

Task Level Plans in a Hybrid Dynamic Framework”, Proceedings of the 2000 IEEE

Conference on Robotics and Automation, pp. 1402-1407, San Francisco, 24-28 April

2000.

[C2] J. Chen and B.J. McCarragher, “Programming by Demonstration using Hybrid Dy

namic System Modeling”, Proceedings of the Australian Conference on Robotics and

Automation, pp. 138-143, Brisbane, 30 March - 1 April 1999.

[Cl] J. Chen and B.J. McCarragher, “Programming by Demonstration - Building Event

Paths in a Hybrid Dynamic Framework”, Proceedings of the 1998 IEEE Conference

on Robotics and Automation, pp. 518-523, Leuven, 16-20 May 1998.

Department of Engineering,

Faculty of Engineering and Information Technology,

The Australian National University,

Canberra, ACT 0200, Australia.

July 2001.

A cknow ledgem ents

First and foremost, thank you to my supervisors Prof.Alex Zelinsky, Dr.Brenan McCar-

ragher, and Dr.Matt James, who all provided valuable feedback and support at different

stages of the PhD. Thank you also to others at the ANU who made life easier and/or

more enjoyable: to Peter Aigner and David Austin for showing me in the early days how

the system worked, to Tomasz Celinski for the many interesting discussions we had on

topics I cannot even begin to recall, to James Macnicol for your assistance in the vagaries

of the Sun operating system, to Bruce Mascord for prompt production of experimental

apparatus, and to Sue Cameron and Josephine Farmer for your help with the wealth of

administrative matters that arose during the course of my degree. In my personal life,

thank you to my wife Ingrid. It was you who provided support when the pressures of

the degree become great. Thank you also to my Family, who sustained infrequent visits

because of my commitment to this degree.

J.R.C.

July 2001

A b stra c t

Finding a simple but powerful robot programming method for realistic tasks has been

one of the main aims of robotics researchers for over two decades. A promising approach

is robot Programming by Demonstration (PbD). Here, a demonstration of the task is

interpreted by a PbD interface so that a set of control commands to achieve the task are

produced for the robot. PbD is a promising approach to robot programming, however

a well known weakness of the method is that human demonstrations can be suboptimal.

Research has identified that demonstrations can contain inconsistencies, noise, or even

incorrect or unintended actions. In this thesis our focus is on identifying and removing

sub-optimality from the demonstration. Our aim is to ensure that control commands

formed for the robot from demonstrated actions encode efficient and reliable execution

of the task. The work we propose is divided into three distinct areas. They are: (i)

determining task-specific, geometric properties of a task from demonstration, (ii) deriving

efficient, low-level, robot control-commands from demonstration, and (iii) determining

optimal task-level strategies from demonstration.

Research area (i) is important since knowledge of task geometry can help identify

the presence of suboptimal actions in the demonstration. Our solution uses the concept of

Configuration Space (C-space) as a means to represent task geometry. We apply statistical

regression analysis to build-up a knowledge of task geometry in regions of the task that were

visited in the demonstration. Experimental results showed the validity of the approach.

The two key results were, first, that only a partial representation of C-space could be

iv

ABSTRACT

determined. That is, a representation of C-space was determined only for regions of the

task visited in the demonstration. Second, the method could determine quite accurately

the true geometric properties of the task, so long as it had sufficient information to do so.

That is, C-space was derived accurately in regions visited often in the demonstration, and

less accurately in less-visited regions.

Research area (ii) involves deriving low-level control commands for the robot from

demonstration, and has been the main focus of research into removing demonstration

sub-optimality in PbD to date. In this thesis we adopt the well known control regime

of hybrid force-position control, and so the problem divides into two sub-areas: position

control-command synthesis, and force control-command synthesis. For position control-

command synthesis we present a novel method for path planning in a partially known

C-space. The method has the advantages compared to other methods in the literature

that, it can derive paths containing undemonstrated points, it is applicable to a task

with any degree of freedom, and that it does not assume a set form of demonstration

topology. A drawback of the approach is that, theoretically, in some circumstances a valid

control command will not be derived. However, we show with experimental results for a

realistic task how with appropriate tuning, the method will produce a valid set of position

control commands. For force control-command synthesis, a well known characteristic of

force commands recorded from a demonstration are that: they include friction, and that

force sensors introduce into these forces a high frequence noise component. We use our

knowledge of C-space to determine an appropriate direction for force control. We base

the magnitude of force control commands on the forces commanded by the human in

the demonstration, however we remove friction and noise using filtering and spline fitting

techniques.

Research area (iii) has to our knowledge not been the subject of work in the PbD field

to date. In this thesis, we identify that a set of demonstrations will contain many different

task-level strategies. Some of these will result in more optimal robot performance of the

task than others. We present a method for selecting a task-level strategy for the robot.

ABSTRACT

It is based on the concept of modeling skill in a task as a Hybrid Dynamic System. The

Hybrid Dynamic System representation allows a demonstration to be represented at a

task level as a sequence of discrete events. Our method is to form an automaton from the

event sequences encoded by each demonstration. We use a set of metrics to determine a

cost for each event in the automaton. Finally, an optimal task level strategy is produced

by conducting a least cost path search in the automaton. We show with experiments how

the task-level strategies selected by our method do in fact result in more optimal robot

performance of the task.

C ontents

D eclaration i

A cknow ledgem ents iii

A bstract iv

Table o f C ontents vii

List o f F igures xi

List o f Tables xiii

N om enclature xiv

1 In troduction 1

1.1 Introduction.. 1

1.2 General Approaches to Robot Programming.. 5

1.2.1 Robot Programming Languages.. 5

1.2.2 Modular Code Libraries and T ool-sets ... 7

1.2.3 Simulation and Graphical User In te rfaces ... 9

1.2.4 Natural Language ... 11

1.2.5 Virtual R e a lity ... 13

1.3 Robot Programming by Demonstration ... 15

1.3.1 Comparison to Other Approaches... 15

vii

CONTENTS

1.3.2 Literature Review ... 16

1.3.3 Making PhD Robust to N oise... 22

1.4 Contributions.. 25

1.5 Outline of the T hesis.. 26

2 P rogram m in g by D em o n stra tio n for a S p in d le -A ssem b ly Task 28

2.1 Introduction.. 28

2.2 The Spindle-Assembly T a s k .. 29

2.3 Hybrid Dynamic System Modeling of Assembly S k i l l 31

2.4 The Configuration Space Representation for A ssem bly.................................. 39

2.5 Demonstrating the Spindle-Assembly T ask ... 41

2.6 Conclusion ..47

3 C on figuration Space D erivation from D e m o n stra tio n 48

3.1 Introduction... 48

3.2 Problem Formulation.. 49

3.3 Process Monitor Assumptions... 50

3.4 Finding a Constraint Set for each Demonstrated S t a t e ..52

3.4.1 G en era tio n ... 54

3.4.2 N um bering ... 55

3.4.3 M erging... 58

3.4.4 Results ... 60

3.5 Deriving Equations for Primitive C-surfaces.. 63

3.5.1 The Regression Model and Data S e t .. 64

3.5.2 Regression A n a ly s is .. 68

3.5.3 Results ... 69

3.6 Conclusion .. 74

vi i i

CONTENTS

4 Low-level C ontrol C om m and Synthesis from D em onstration 75

4.1 Introduction.. 75

4.2 Problem Formulation.. 76

4.3 Position Control-Command Synthesis .. 78

4.3.1 Problem Formulation ... 78

4.3.2 O verv iew .. 81

4.3.3 Creating Boundary Segm ents... 83

4.3.4 Growing Likely Free R eg io n s ... 86

4.3.5 Creating Interior S eg m en ts .. 91

4.3.6 Creating a Connectivity G ra p h .. 93

4.3.7 Setting Parameters to Appropriate V alues.. 97

4.3.8 Results ..99

4.4 Force Control-Command Synthesis.. 107

4.4.1 Force Command Synthesis based on Demonstrated Force 109

4.4.2 Force Command Synthesis without Demonstrated F o rc e I l l

4.4.3 Results ..114

4.5 Conclusion ..116

5 Selecting O ptim al Task-Level Strategies from D em onstration 118

5.1 Introduction..118

5.2 Problem Formulation...119

5.3 Selecting a Desired Event P a t h .. 122

5.3.1 Defining Optimal Robot P erfo rm ance..123

5.3.2 The Path Selection Fram ew ork.. 124

5.4 Results... 130

5.4.1 Paths Selected by Framework... 130

5.4.2 Robot Execution of Selected P a th s ..134

5.5 Conclusion 140

CONTENTS

6 C onclusions 142

6.1 Introduction..142

6.2 Major Results and Conclusions..142

6.3 Further R esearch...144

6.3.1 Regression analysis using force d a t a .. 144

6.3.2 Process monitor assum ptions... 145

6.3.3 Optimising paths across s t a t e s ..145

6.3.4 Setting parameters for position control command sy n th e s is 146

6.3.5 Discrete event sequence as task-level d e sc rip tio n146

Bibliography 148

List o f F igures

1.1 Schematic representation of the PbD robot programming m eth o d 3

2.1 The spindle-assembly task chosen for P b D ... 29

2.2 Discrete states defined on the basis of motion constraints applied by the

supports on the s p in d le .. 33

2.3 The Hybrid Dynamic System skill model for assembly ta s k s34

2.4 Part of the automaton of discrete states for the spindle-assembly task . . . 37

2.5 Apparatus used to capture human’s demonstration of the spindle assembly

t a s k .. 42

2.6 The set of state sequences demonstrated by the human in the spindle-

assembly t a s k ...45

2.7 The discrete state automaton A d , constructed as that part of A visited in

the demonstration set D\ to Dq .. 46

3.1 Results of the generation, numbering and merging phases applied to demon

stration set D\ to Dq ... 61

3.2 Regression model derivation for constraints caused by spindle body contact

with the right s u p p o r t ... 66

3.3 Regression model derivation for constraints caused by spindle head contact

with the left su p p o rt...67

xi

LIST OF FIGURES

4.1 An example of Ccon used to present five requirements on our method for

position control command synthesis.. 79

4.2 Demonstration segments identify regions on a C-surface that are likely to

be obstacle f r e e ... 83

4.3 Four examples of boundary segments for state 8, (a) in state 7, (b) in state

38, (c) in state 9, and (d) in state 5 4 ...85

4.4 Example of how demonstrated points determine a set of valid bounded sub-

regions ...87

4.5 Spindle configurations generated for a number of likely free regions in state

8. Figures (a), (b), (c) and (d) correspond to likely free regions generated

from boundary segments in state 7, 38, 9, and 54 respectively......................90

4.6 Three interior segments determined for state 8. The interior segments were

derived from paths demonstrated in state 8, ie. from demonstration 4 (7-8-

27) in (a), from demonstration 2 (27-8-38) in (b), and from demonstration

1 (38-8-54) in (c) .. 92

4.7 Example of points generated by our method for a simple, planar C-surface . 94

4.8 An example of the process showing (a) an original demonstrated path con

taining noise, and (b) the noise-free path that re su lted104

4.9 An undemonstrated P (t) derived to traverse in state 8 between states 7 and

54 ... 106

4.10 An example of how P(i) can be divided into segments of distinct types . . . 108

4.11 Force signals produced by each step of the F (t) derivation process for P (t)

number 2 0 ...113

5.1 Event paths selected by our framework.. 131

5.2 The Scorbot Eshed robot on which experiments were conducted........................134

xii

List of Tables

3.1 D\ and D2 as examples for the generation, numbering and merging phases . 56

3.2 The set of distinct constraints existing in the demonstration s e t 62

3.3 Results of regression analysis for the spindle-assembly ta sk 70

4.1 Results of our P(t) derivation method for the set of P (t) required for ex

periments in Chapter 5 ... 100

5.1 The task-level execution strategies demonstrated for the spindle-assembly

t a s k ..120

5.2 Results of implementing the paths selected by our framework on the robot . 136

xiii

N om encla tu re

Acronyms and Abbreviations

CC
C-space
C-surface
DEC
EPP
HDS
PM
RMSE
SSE

Continuous Controller
Configuration Space
Configuration Surface
Discrete Event Controller
Event Path Planner
Hybrid Dynamic System
Process Monitor
Root Mean Squared Error
Sum Squared Error

Symbols

A
A d
A*
{6, c, d, e, / }
{6, c, d, e, /}
cf
4
c*
CA

ct
Ccon

C fr ee

C o b s
Ctk
Crk
Cek
Cnk

automaton of discrete states in the task
automaton of states in the task visited in the demonstration
automaton of contact defining states visited in the demonstration
set of true parameter values for scalar equations <f>i and fa
set of estimate parameter values for scalar equations </q and (f)2

C-surface for the ith distinct state in the task
primitive C-surface defined by constraint pf-
surface in C-space defined by p*m
C-surface for the w thstate in desired state path A
PM information primitive describing constraint type
contact defining part of C-space
obstacle-free part of C-space
non-obstacle-free part of C-space
cost of event in the time performance area
cost of event in the reliability performance area
cost of event in the control effort performance area
cost of event r^4 in the number-of-demonstrations performance area

xiv

NOMENCLATURE

Ck
D
Dp
dst
eps

V

fp
fp w
prjf
f 1
*0
flxn,+1 fVJof l
J T ll + l

T p
F (t)
gi
9s
k
c
mcd_d

mcd J
md

n

Pn,+1
P (t)
Q
R
S
s
u (t))
Wt
wr
We

overall cost assigned in A d for event
the demonstration set
the pth demonstration in the demonstration set
distance from boundary segment at which point Q will be generated
minimum distance from boundary segment at which a point Q can be
generated
graph describing connectivity between points on a C-surface in interior
segments
force control vector in F(t)
demonstrated force vector at point p
projection of fp onto the force control space T v
force command derived for point
force command derived for point p^
magnitude of force vector
magnitude of force vector f^/+1
force control subspace at point p on a C-surface
force control component of Hybrid Controller Command
PM information primitive describing constraint gain or loss
equation describing the sth constraint in the task
graph describing connectivity between all generated points on a C-surface
graph describing connectivity between points on a C-surface in likely-free
regions
maximum connected distance between two points in a distinct interior
segments
maximum connected distance between two points in likely-free-regions
maximum distance from boundary segment at which a point Q can be
generated
dimension of C-space
position control vector in P (t)
time derivative of P (t) at p
start point in the P(£) derived for state 7^
end point in the P (t) derived for state 7̂ ,
generic undemonstrated point in a segment 7 of P (t)
demonstrated point in P (t) prior to segment 77
demonstrated point in P (t) following segment 77
position control component of Hybrid Controller Command
generic point in likely free region
generic point in boundary segment
basis of force control subspace T p
orthonormal basis of force control subspace T v
control input vector in the continuous-time system
weighting value in the time performance area
weighting value in the reliability performance area
weighting value in the control-effort performance area
weighting value in the number-of-demonstration performance area

NOMENCLATURE

xM
[y, 5]T

tpA
A3i t

I t
Dplr

7aIw
V
X
Pij
pf,
~DpPrs
*

Pm
Tk
T a1 w

t i t

Citp

Q.xa LW

state vector in the continuous-time system
configuration vector in spindle-assembly task
generic scalar equations for the in the spindle assembly task
equation for the j th primitive C-surface defining c f
ith possible discrete state in the task
rth discrete state visited in an assembly sequence
the r th discrete state in the demonstrated sequence Dp
wth distinct discrete state in state sequence A
generic sequence of points on a C-surface
desired state path
the j th constraint existing in the true constraint set Llf
the j th constraint existing in the constraint set estimate t i t
the sth constraint existing in the constraint set estimate f l f P
the m th constraint in Ll*
kth possible event in the task
wtfl distinct event in event sequence a
the set of motion constraints existing in itfl distinct state in
the task
estimate of the set of motion constraints existing in ith distinct
state in the task
estimate of the constraint set for the r th state in the Dp
the set of unique constraints existing in D
set of constraints defining state 7^

xvi

Chapter 1

In tro d u c tio n

1.1 In trod u ction

Early visions of robots were of household helpers: robots to clean the house, help with

the shopping, or to wash the car. In reality, today almost all robots exist in factory

environments [53]. Recently there has been a resurgence of interest in expanding robotic

application out of the factory and into domestic type environments; so called service

robotics [8]. Recent publications show robotic research in areas such as health care [83],

recreation/entertainment [71], domestic transport [18], education [70], construction [100]

and the home [50]. Robotics research in these areas is certainly a worthwhile exercise.

Schraft [94], for example, predicts enormous economic, scientific, and social payoffs if the

transition of robots out of the factory and into service environments can be successfully

made.

A major difference between service environments and the more traditional, industrial

domain of robotics, is that robots must be able to interact with non-technical users. Such

users will in general be unfamiliar with computer technology, and will almost certainly

have no experience in robotics. Then an important question is one of how should users

communicate with robots in these domains? More specifically, how should these users

specify to the robot what tasks they want done? This is an issue of robot programming.

1

CHAPTER 1. INTRODUCTION

Current methods of programming used in industry are not suitable for service environ

ments. The two main methods of robot programming in the factory today are (i) writing

code by hand, and (ii) teach pendant methods; where the robot is lead through a series

of points that are recorded and played back directly at run-time. These programming

methods are clearly not suitable for use in service environments. First, writing code is

a skill not possessed by many end users in typical service environments. Second, it is

well known that teach pendant methods, while natural for the programmer, are limited

to programming non-contact type tasks [2]. Clearly, a new approach to robot program

ming for service environments is needed. We see three required characteristics for robot

programming systems operating in service environments. They are:

1. The system requires a non-technical user interface, preferably one that is natural

and intuitive for humans. By non-technical, we mean that it is usable by end-users

not familiar with either robotics or computer-science techniques and terminologies.

2. It can program the robot to complete typical everyday service-robotic-type tasks, ie.

it copes with tasks involving contact and constrained motions between task objects.

3. It has a-priori information requirements about the task to be programmed that are

realistic for a service-robotic type environment. For example, unlike in the factory,

a full geometric model of the task (eg. a CAD model) is unlikely to be available.

A promising approach to robot programming that fulfills these three requirements is

Programming by Demonstration (PbD). Here, robot programming is based on a demon

stration of the task provided by the end user. The end user provides a demonstration of

the task, and a PbD interface lying between the robot and demonstrator interprets the

demonstration and determines the control details required by the robot . Two phases to

PbD exist. The first is the demonstration phase, where the information about how to

execute the task is extracted from the demonstration. The second phase is the execution

phase, where the PbD interface controls the robot to achieve the task. We show in Figure

1.1a schematic representation of the PbD approach.

2

CHAPTER 1. INTRODUCTION

DEMONSTRATION PHASE

demonstration

PbD INTERFACE
HUMAN

processing / and
interpretation

execution

PbD INTERFACE
ROBOT

EXECUTION PHASE

Figure 1.1: Schematic representation of the PbD robot programming method

PbD is a method that promises to fulfill our three requirements for the following

reasons. First, it provides a very natural and intuitive programming method for humans.

For example, work by Patrick [58] showed that in human-to-human interaction, instruction

by demonstration and practice is the preferred mode of skill transfer. Second, PbD can be

used to program a wide range tasks. Its only limitation is that the human can complete the

task himself. The strength of PbD in this respect is reflected by the diverse range of tasks

presented for PbD in the literature, eg. door-opening [63], metal grinding [117], peg-in

hole assembly [63, 90], balancing an inverted pendulum [7], sandwich making [123], driving

an automobile [20], etc. Third and finally, limited a-priori information about the task is

required because there is much task-specific information available in the demonstration

itself. We shall see later in this thesis how task-specific, geometric information can be

3

CHAPTER 1. INTRODUCTION

obtained from the demonstration phase in PbD.

While PbD holds much promise, there is still work to be done. A well known weakness

with the approach is that a demonstration can often contain sub-optimality. For example,

work by De Schütter et al [90, 89], Delson and West [79], and Dillmann et. al. [63, 74] has

identified that a demonstration can contain suboptimal actions by the demonstrator, eg.

actions that are non-essential, erroneous, or even unintended. Sub-optimal actions of this

type obscure the skillful set of actions required to complete the task, and can be viewed

as noise. Noise of this type is such a problem in PbD because PbD is an implicit learning

approach [45]. That is, instruction on how to complete the task is based on examples. If

the examples are corrupted by noise, then learning skillful execution of the task becomes

very difficult.

Then an important area for focus in PbD is on methods that make it robust to noise

in the demonstration. Our work in this thesis has exactly this focus. We present methods

that allow noise to be removed from a demonstration so that a noise-free, efficient set of

actions that achieve the task can be programmed into the robot. We will present details

of our work in following chapters. However, prior to that presentation, for the remainder

of this chapter we first survey work in the literature that is related to, and important for,

the work we will present.

The remainder of the chapter is set-out as follows. In Section 1.2 we review methods

of robot programming that are not PbD. We identify five distinct approaches to robot

programming, and highlight the advantages and limitations of each. In Section 1.3 we

formally introduce PbD as a robot programming method. In Section 1.3.1 we compare

PbD to the other programming approaches, and discuss why we feel it is more suitable for

robot programming in general, and for programming in service robotic environments in

particular. In Section 1.3.2 we review work in the PbD research field, discussing the virtues

and drawbacks of different approaches. In Section 1.3.3 we make some observations about

where new work is required if PbD is to become more robust to noise in the demonstration.

Finally, in Section 1.4 we present the specific contributions of this thesis to the literature,

4

CHAPTER 1. INTRODUCTION

followed in Section 1.5 by an outline of the chapters in this thesis.

1.2 G eneral A pproaches to R obot P rogram m in g

Automatic robot programming is not a new concept. Work as far back as the mid 1970’s

recognised the need to create a simpler and more powerful robot programming interface

[95, 67, 126]. A wealth of work has been published in the area since that time. In this

section our aim is to provide a review of this work. We divide the work in our review into

five sections:

1. Robot programming languages

2. Modular code libraries and tool-sets

3. Simulation and graphical user interfaces

4. Natural language

5. Virtual reality

1.2.1 R ob ot Program m ing Languages

Much of the early work focussed on the solution of creating a programming language

specifically for robotics [130, 3]. The idea was that a programming language specifically

tailored to robotics could simplify the programming process. Similar to developments

in computer science at the time, the language could be given a command set that was

abstracted away from the low-level details of underlying hardware. Programmers could be

relieved of specifying arduous, low-level details, and could work at a higher level. Quite a

number of robotic specific languages were proposed [107]. These languages can be classified

into four distinct levels, according to the degree of abstraction achieved [2]. The four levels

are:

5

CHAPTER 1. INTRODUCTION

• Joint level: motions are specified in terms of the required position of the robots’

joints. While textual input is possible, in many cases, languages at this level use a

teach pendant. The robot is moved through a sequence of desired points, with the

joint positions recorded at each point. The sequence of joint positions is then played

back at run time.

• Cartesian level: the positions of the manipulator and its movements are specified

directly in the Cartesian Space, usually in textual form. Most languages at this

level extend more traditional languages such as BASIC and PASCAL by including

robotic specific commands [15]. This level represents the current state of the art in

commercially available industrial robots, eg. VAL-II [13] (which has been used by

the robotics companies Unimation and Adept). Other languages proposed at this

level include AML [96], AL [119], and LM [31].

• Object level: a representation of objects in the workspace exists, simplifying the de

scription of operations on objects. The programmer specifies the spatial relationship

required between objects, and the system determines the required positions in the

workspace for objects so that the spatial relationships are satisfied. Note however

that, at this level, the system does not automatically determine how the assembly

should proceed. That is, obstacle avoidance and fine motion capabilities still need

to be specified manually by the programmer. RAPT [97, 6] and LEO-GM[30] are

two examples of languages proposed at this level.

• Task level: An assembly is specified only at a very high level. The programmer might

expect to specify the assembly to the robot in as much detail as if specifying it to

another human. Commands such as insert object A into object B, or align object

A with object B, are examples of commands in these languages. No details of how

the robot should achieve the insertion or alignment are required of the programmer.

The programming system should generate these details automatically.

6

CHAPTER 1. INTRODUCTION

As a natural robot programming interface in a domestic environment, languages at the

joint and manipulator level are not suitable. These languages require significant program

ming expertise and a detailed knowledge of many aspects of robotics. Languages at the

object level simplify programming compared to those at the joint and manipulator levels,

however the programmer must still specify all details of motion of objects in the work

space. Most promising as a natural programming interface are languages at the task level.

Here, the programmer is isolated from the tedious, low-level details of program generation,

providing a comfortable and relatively 1 natural programming interface. Two languages

at this level were proposed some years ago, LAMA [126] and AUTOPASS [67], however

neither were completed. The problem to be solved for creating a task level language is of

how to generate automatically the low-level control details for the robot from the high-

level commands specified by the human. This is an extremely difficult problem that for

general, real-world tasks , still remains open today.

1.2.2 M odular C ode Libraries and T ool-sets

Another approach to robot programming in the literature is via modular code libraries

and tool-sets. The idea here is that robots usually exist to carry out a variety of tasks, eg.

painting, deburring, welding, etc. Many of these tasks share common functionality. For

example, surface following is a robot functionality necessary for both welding and grinding

tasks. The purpose in this work is to create a library of reusable code modules, where each

module corresponds to a certain robot functionality. Programming is simplified because

the programmer need only call modules in the library in such a way as to achieve the

desired task.

A good example of work of this type is proposed by Borelly et. al. [25, 52]. They

present a programming architecture called ORCCAD, where the programmer creates core

robot functionalities called RTs (Real-time tasks). Each RT has an input, an output, and 3

levels of possible interrupt (weak, strong and fatal) by a central, coordinating process. The

Mhe programmer is still required to write code, albeit at a very high level of abstraction.

7

CHAPTER 1. INTRODUCTION

RTs can be nested in a recursive structure called RPs (Robotic Procedures) to represent

meaningful high level robot behaviors. The idea behind this structure is that the same

core set of RT’s can be used to encode many different RP’s. An example of an underwater

vehicle htted with an arm for manipulation is provided [24]. RP’s for both the arm and

vehicle body are built up from RT’s representing the core functionalities of each device.

In turn, a high level RP is constructed from the RP’s of the arm and body to create a

unified control framework for the entire vehicle. Work with a similar focus has also been

proposed by [92, 103].

One of the key questions with this approach is of what functionalities a module in

the library should possess. Troxell and Davis [134] propose four core functionalities for

an IBM 7565 robot and a Soma cube assembly task. They were PICKUP, REGRASP,

PUTDOWN, and PATTING. However, it is not made clear in this work how these func

tionalities were chosen. Uechi, et. al [76] propose a method for determining core robot

competencies for industrial-type tasks. They identify common elements of tasks such as

welding, sanding, polishing, etc. by focusing on the tool used in each. Three properties of

the tool were used, workpiece condition, geometry condition and inherent condition. By

using these classifications, they show how tasks such as welding and sealant ejection, or

spray painting and air blasting require the same base robot functionality. They suggest a

framework that allows such functionalities to form code modules in a reusable program

ming library. Another approach of this type is presented by Wenrui and Kamkper [26, 27].

They identify core functionalities for welding robots. They propose a number of often re

peated actions that can form reusable “macros” in a central library. These include certain

sequences of welding torch motion, TCP measurement, sensor-based calibration and search

operations, and program initialisation. Marchand [29] also investigates modular program

ming methods in robotics, however he focuses on programming visually servoed robots .

He identifies the core competency for this robot type as an elementary positioning task

with respect to some “control feature” in the environment. Possible control features were

identified as points, lines, circles, spheres, and cylinders. Experiments were shown where

8

CHAPTER 1. INTRODUCTION

the robot was programmed using the approach to track the edge of a long curved pipe (ie.

positioning w.r.t. a line - the pipe edge tangent) and a ping pong ball (ie. positioning

w.r.t. a sphere).

Programming using modules and tool-sets is closely related to the robot programming

languages approach. Each code module in the library can be viewed as a different high-level

command in a language. However, this approach attacks the problem from the opposite

direction. Instead of needing to generate control details from a high level command, the

control details are known (ie. they exist in the code modules). However, the problem

here is in finding a small enough set of modules that encode control details applicable in

a sufficiently general number of tasks. Work in the field has presented code modules that

are reusable across some tasks. However, a set of modules that (i) are small enough in

number to be workable, and (ii) are powerful enough to program a wide range of general

tasks, is still yet to be found.

1.2.3 S im ulation and G raphical User Interfaces

With the evolution of ever more powerful computer graphics, a natural approach to robot

programming is by using simulation and graphical user interface (GUI) techniques. Early

work in this field used these graphics capabilities mainly as a means for checking the

validity of programs. One of the earliest systems of this type was proposed by Arai [121].

A simple 2-D graphic simulator called EARLS-2 was constructed to check programmed

motions for a SCARA robot. Motion commands to achieve a simple palletising task were

checked by the programmer via a simulation shown on a screen. Imam and Davis [1]

proposed a similar approach, however their system supported simulation in 3-D. Program

verification was achieved by showing a tool-tip trace in a 3-D rendering of the workspace.

In addition, their system supported automatic collision checking for the robot’s tool-tip.

Systems with similar functionality were also proposed in [17, 5, 82]. More recently Zeghloul

et. al. take advantage of advances in computer graphics and processor speed [120]. They

show a full 3-D simulation of a welding robot and its workspace. Collision checking for the

9

CHAPTER 1. INTRODUCTION

entire robot arm, rather than just the tool-tip, is carried out by the system automatically.

They simulate a complex welding task in a work-cell containing 38 degrees of freedom and

over 250 distinct geometric objects. While this system facilitate program validation, it

still requires the user to program the task by writing code.

In other work, graphical methods have been proposed for task specification as well

as validation. For example, Arai and Yago [122] propose a graphical user interface for

specifying welding tasks. A 3-D perspective view of the parts to be welded are shown on

the screen. Alongside, a form-type, GUI interface allows the user to enter a step by step

welding sequence, along with the details of the weld to be completed at each step (eg.

length, direction, etc). Once completed, a simulation of the robot executing the program

is shown to ensure correct operation. The interface was used to successfully program two

welding task, one involving a collar on a shaft, and the other, a piece of corrugated sheet

material. Lees and Leifer [22] also propose robot programming via graphical methods.

They create a system for use by severely disabled persons on a standard PC in the home.

Programs are assembled using a mouse to drag a sequence of icons onto a storyboard.

Each icon represents a certain robot action, and are divided into position and force types.

Position type icons move the robot to particular poses, with fine tuning possible by the

user with the mouse. Force type icons specify more autonomous motions, eg. plane

finding, guarded moves, contour following, etc. Validation of the system was presented in

[51] where its intuitivity was proven on a microwave door opening task. Other, similar

work that propose GUI’s for robot program specification are presented in [56] and [142].

While GUI’s facilitate programming compared with programming language approaches,

we see them as suffering similar problems. Draggable icons, menus, toggle buttons, etc.

all specify at a task level an action for the robot to execute. In the end, the programming

system is required to solve the same problem as for robot programming languages: to

determine automatically from task-level commands the low-level control details for the

robot.

10

CHAPTER 1. INTRODUCTION

1.2.4 N atural Language

Another approach proposed in the literature for robot programming is by using commands

expressed in natural language. Humans communicate easily and effectively between them

selves in high-level languages like English. Then having a human specify tasks to a robot

using natural language promises an easy and natural method for humans to program

robots.

Liang et. al. [68] propose a robotic system that can be instructed by a non-expert

user in an office environment using natural language. They investigate the problem of

transforming ordinary English utterances into unambiguous task structures that can be

performed by a robot. Two requirements on a natural language programming interface

are identified. First it must support commands specified at a “robot-level” so that com

munication is efficient. Second, it must cope with the way humans refer to actions, and

to temporal and logical relationships, when communicating in a natural language. They

propose a system based on concurrent, perception-feedback-driven control to program a

simple book handling task in an office-like environment.

Michalowski et.al. [118] also investigate natural language as a robot programming

interface. They are attracted to the natural language approach because it allows real-time

commanding of the robot by the user. They report initial results for a nine degree-of-

freedom robot consisting of an arm mounted on an omnidirectional mobile base. A control

architecture is implemented so that the user can direct the motions of the mobile base in

real-time by means of commands expressed as colloquial English sentences.

Crangle [16] investigates a programming interface supporting conversation between the

robot and user. In this work, communication can also flow from the robot to the user,

eg. to clarify a command or request information. Crangle argues that conversation in

natural language is possible so long as it occurs in a fairly restricted domain. A hospital is

proposed as such a domain. Here, the set of tasks to be completed, and the set of objects

present are small enough to allows conversation to be natural for users without being

11

CHAPTER 1. INTRODUCTION

too complex for a robot system to interpret. Two examples of functional conversational

interfaces are presented, one which allows users to access online medical information, and

the other to teach medical students anatomy.

There has also been work presented in the AI field on robot programming using natural

language [104, 28]. This work focuses more on learning issues. For example, Huffman and

Laird [104, 105] refer to programming through natural language as interactive tutorial in

struction. They identify that, to be useful in a general environment, an instructable agent

must be able to learn different types of knowledge from different instructional interactions

with the user. An approach is presented that uses the constraints present in different in

structional contexts to guide the learning process. The theory is implemented on an agent

called Instructo-Soar, that learns new tasks and other domain knowledge from natural

language instructions. Koenig [28] proposes parallel processing for interactive man-robot

systems when the interaction is via natural language. Commands received by a robot from

a master in a natural language are treated as incompletely stated arguments. An attempt

is made by the robot to seek out missing premises or conclusions that will produce valid

arguments on the basis of inference rules. Parallel processing is presented as a means to

cope with the substantial computational requirements of the approach.

Natural language as a secondary or tertiary mode of communication in robot pro

gramming have also been presented [54, 141, 59]. CURL is a robot programming language

presented in [54, 55, 56] which allows for voice control of an iconic interface. MUSIIC

[141, 142] is a robot programming interface that includes, among other things, a natural

language communication mode based on simple dialogue models. Merlet uses a natural

English-like language in [59] for programming a hybrid, position-force-controlled robot to

perform fine motion tasks.

Despite providing a very natural programming interface for humans, work in this field

suffers the same difficulties as for the robot programming language approach. That is,

despite being communicated verbally, high-level commands proposed in this work still

need to be converted into low-level control details for the robot.

12

CHAPTER 1. INTRODUCTION

1.2.5 V irtu al R ea lity

The previous four sections have focussed on methods of explicit robot programming. That

is, programming is achieved by explicitly specifying how the task is to be done. An

alternate approach to programming is by implicit methods. We have already seen that

PbD is a method of this type. Another implicit programming approach is by using virtual

reality techniques. Here the user shows how the task is to be done in a virtual space.

It is different to GUI methods because the task is shown rather than specified via icons,

menus, etc. It is different to PbD because the task is shown in a virtual space rather

than a real-world workspace. As we shall see, this fact makes the two methods crucially

different.

A key characteristic of work in this field regards the level of immersion into the virtual

world that it allows. Lloyd et. al. [49, 48] propose an approach that supports little

immersion. Here the human interacts with the virtual world using only a PC monitor

and mouse. These authors concentrate on programming contact tasks. A grey-scale vision

system is used to construct a model of a simple blocks-world environment. By using the

mouse, the operator can select and move different blocks around the workspace. Contact

interactions are supported, allowing the operator to bump, slide, and align the manipulated

block with others. Once the task is completed, a program for the real robot is generated.

During this step, potential-field path-planning techniques are used to remove extraneous

motion segments, and to maintain adequate distance from objects with which contact is

not desired. Impedance control is used to achieve desired contacts during task execution

in the real-world.

A system where the programmer is more immersed in the virtual environment is pro

posed by Strommer et. al. [133]. Programming is achieved on a virtual robot in a virtual

environment. The programmer senses in the virtual environment via visual (HMD: head

mounted display), audio (earphone) and tactile (sensing glove) modes. The programmer

can act on the virtual environment by simply moving his head or hand (which are tracked

13

CHAPTER 1. INTRODUCTION

by the system), or via special interface devices such as a 6D track-ball. Trajectories for

the robot are specified simply by moving the hand. Relevant computer code is generated

automatically for the real robot by using a special purpose toolkit call VR4 [46]. Special

features of the system are, first, that it can generate graphics at close to real time by

reducing the level of detail shown for distant objects. Second, collision detection between

the virtual robot end effector and virtual objects is achieved quickly by initially using a

fast bounding box check, followed by a more computationally intensive exact check only

if necessary.

Yanagihara et. al. [139] also propose robot programming using virtual reality. They

use virtual reality to program a seam welding task for a complicated car chassis. Their

system consisted of (i) a 7 dof robot with laser range finder attached to the wrist, (ii)

a human with teach pendant, HMD, and a head set (ie. microphone and earphones),

and (iii) a video tracking system using two CCD cameras to track human actions. The

operator teaches the system desired welding trajectories in the virtual space, with taught

trajectories recorded via the video tracking system. The system even supports voice

commands from the operator. Other, similar work where virtual reality is used for robot

programming is presented in [37, 100, 125, 129] and [111].

A key advantage of the virtual reality approach over explicit programming methods is

that it facilitates users in expressing their intentions to the robotic system. The user can

show how a task is achieved, rather than specify how it is achieved. However, a disadvan

tage with the approach is that dynamics in the virtual world must exactly represent those

in the real world if the programs that it generates are to be useful. The dynamics to be

modeled include those of sensors, the robot manipulator, and contact between objects in

the environment. Such real world dynamics are extremely complex and difficult to model.

From what we have seen, modeling at this level of complexity is still beyond the current

state of the art.

14

CHAPTER 1. INTRODUCTION

1.3 R ob ot P rogram m ing by D em o n stra tio n

1.3.1 C om parison to O ther A pproaches

A common difficulty we identified with the explicit programming methods of Sections 1.2.1,

1.2.2, 1.2.3, and 1.2.4 was that low-level control details needed to be determined from high-

level task specification. These methods require that task specification be at a high level

to make it natural and easy for the human. However, a consequence of this requirement

is that low-level control details to complete the task need to be generated automatically

by the programming system. We saw that an alternate approach to programming is via

implicit methods. Here the mode of task specification is by showing. This allows an

easy and natural specification method for the human. However, with this approach, the

low-level control details to complete the task are also available, ie. in the demonstration.

Two methods of implicit programming have been presented, virtual reality and PbD.

We saw that a key problem with virtual reality regards how accurately the real-world envi

ronment can be modeled. The dynamics of any real-world robot workspace are extremely

complex. If modeling in the virtual world is not appropriate to the real-world situation,

then programs generated may not be successful. PbD does not suffer this problem be

cause the demonstration is provided in the real-world workspace. That is, the dynamics

experienced by the user in the demonstration are the same as those that will exist when

the robot executes the task.

We have presented the advantages of PbD as a method for robot programming. How

ever, we note that the method is not without its difficulties. As an implicit programming

approach, the idea in PbD is to construct a perception to action mapping by using exam

ples provided in a demonstration. A mapping representing the skill in completing the task

can then be generalised from the set of examples in the demonstration. One disadvantage

of PbD is that this mapping can never be complete because only a finite set of examples

are ever given. It may then be possible that a situation encountered by the robot during

its execution of the task was not encountered by the human in the demonstration. How-

15

CHAPTER 1. INTRODUCTION

ever, while a complete mapping is desirable in an ideal world, in general a non-complete

perception to action mapping is sufficient. It is not often that we need to explore every

possible configuration of task objects in order to complete the task. In some ways this

can also be viewed as an advantage of the PbD approach. That is, we can exploit the

expertise of the human to only learn that part of the perception-to-action mapping that

corresponds to skilled execution of the task.

A second limitation of PbD is that the demonstration must indeed encode skillful task

execution. In general the level of intelligence and dexterity of the human well exceeds that

of the robot system, so task performance by the human will be beneficial as an example for

the robot. However we have already noted that human demonstrators can inadvertently

introduce noise into the demonstration. Noise is something that can badly affect the

performance of the PbD approach and methods are required to make it more robust in

this respect. We have noted already that the focus of this thesis is on exploring such

methods. We will explore the details of this question further in Section 1.3.3. However,

prior to that discussion, we first survey in the next section the substantial body of work

that exists in the PbD research field.

1.3.2 L iterature R eview

Robot Programming by Demonstration is an active research area where much work has

been presented. A popular approach has been to use neural networks to “approximate” a

skill mapping for a task. In this approach demonstration data is used to train the net so

that it approximates the skillful perception to action mapping required to complete the

task. Asada was one of the first to use this approach [39] . He proposed a multi-layered

neural network to learn non-linear compliance strategies used by a human in a chamferless

peg-in-hole task. Pomerleau also proposed a neural net approach. He transfers human

road following skills to an automated driving system using a neural network which maps

coarsely sampled video images to steering outputs [19, 20]. Using the technique, the

vehicle was able to drive on a variety of roads at speeds up to 20 miles per hour. Zhang

16

CHAPTER 1. INTRODUCTION

and Xu [140] use a neural net to capture human skill for controlling a light source. A

mobile platform is moved randomly to produce a shadow from a human held light in a

pre-specified target area. Human strategies for moving the light source to remove the

shadow are used to train the net. Koeppe and Hirzinger [98] use a neural net to map

task geometry to a control command for a compliant motion controller. They identify the

lack of richness of geometric information in force and velocity signals used in other work.

They propose instead, as input for their neural net, signals from visual and kinesthetic

sensing modes. The approach was verified on a low-tolerance, peg-in-hole task. Kaiser

and Dillman [63] also propose neural nets for PhD, however this work includes a phase of

reinforced learning in the the PbD process. These authors initially use PbD to program

the robot, but recognise that robot performance can be improved if it is allowed to learn

and adapt according to its own experience. Experiments are presented for peg-in-hole and

door-opening tasks. They show how initially poor robot performance at the first execution

attempt can be improved by repeated bouts of execution and learning. Other approaches

that use neural nets in PbD can also be found in [115, 88, 137, 135, 99]. While the neural

net approach has met with some success, there have been problems with training neural

nets directly from demonstration because of inconsistent motion typically generated by

human demonstrators. Essentially the issue is one of the neural net approximating a skill

function that includes noise in the demonstration.

An alternate function approximation method to neural nets is proposed by Myers [23]

and Dillmann et. al. [93]. They use fuzzy logic to produce a discretised description of

the skill function required to complete a task. For example, Myers programs a simple 3D

pallet insertion task where the range of demonstrated force/torques and velocities in the

demonstration were each discretised into three fuzzy groups: zero, negative, and positive.

Then, by identifying clusters of points in force-velocity space, these fuzzy groups were used

to produce conditional statements in textural programs. For example, a fuzzy group may

correspond to negative force in the y-direction and positive velocity in the x-direction. A

conditional statement of “if Fy is negative then Vx is positive” is then included as part

17

CHAPTER 1. INTRODUCTION

of the textural program. A similar approach using only velocity signals is presented by

Dillmann, Kaiser and Ude [93]. This type of work is more robust to noise than the neural

net approach because irregularities in the demonstration can be “removed”, ie. outliers

to clusters can be ignored. However, it assumes the data can always be organised into

easily distinguishable clusters. It is also difficult to know with this approach what sensory

variables should form the space in which clustering is conducted.

A different method of skill function approximation is presented by Takahashi [128].

He parameterises sensory and control variables recorded in multiple demonstrations as

functions of time. A time normalisation technique is used to make the same important

events in each function match on a common time-scale. Wavelet multi-resolution analysis

is then used to approximate each function as set of wavelets. The work focuses on using

the wavelet description to identify the essential and distinctive elements of the demonstra

tion. An assumption of the approach is that the same important events will exist in each

demonstration, ie. that a human will always demonstrate a task in exactly the same way.

The methods reviewed so far are based purely on data. That is, their approach is to

simply use function approximator methods on the demonstration data to derive a skill

mapping for the task. A different approach is to assume, a-priori, some knowledge of the

physics of the task. That is, a “model” of the skill required for a class of tasks is assumed

a-priori. The details of the skill required for a particular task in the class is then obtained

via PbD. This sort of approach can be advantageous for making PbD more robust to noise

in the demonstration, since the model provides a framework into which demonstration

data can be interpreted. Noise in the demonstration can then be more easily identified

and removed.

Atkeson and Schaal propose an approach of this type to program a pendulum-swing-

up-and-balance task [7]. A model of the task is derived based on laws of physics, resulting

in an expression relating the pendulum’s angular velocity to the acceleration of the hand

at its pivot. Task demonstration by a human is used to seed a search for appropriate values

for the robot of unknown parameters in the model. Liu and Asada also propose PbD using

18

CHAPTER 1. INTRODUCTION

a physics-based model [116, 117]. They derive a control law for a surface grinding task that

relates the tool feed-rate and holding stiffness. They note that a human expert at the task

will vary these parameters depending on such things as burr size and hardness. They use

PbD to find values for these parameters appropriate for the robot. These works propose

two task classes that can be programmed by PbD. However we note that these classes are

quite specific, and are not likely to be found in service-robotic type environments.

A more general class to which many tasks in service robotic environments do belong

is assembly, ie. contact and constrained motion tasks. A substantial amount of work

has been proposed in this area. One of the first was presented by Asada and Izumi in

[40]. Hybrid position/force control (as proposed by Raibert and Craig [73]) was assumed

as the skill model. A demonstration of a simple place-block-in-corner task is used to

determine the task-specific facets of the hybrid-control skill model, including such things

as deciding on force and velocity controlled directions, finding compliance values for the

force controller, and determining trajectories for the position controller.

Kang and Ikeutchi introduce a general skill model for grasping in assembly [106]. They

identify three phases of grasping, (i) a pregrasp phase, involving hand transportation and

hand preshape stages, (ii) a grasp phase, from where the hand makes contact with the

object to when a stable hold is achieved, and (iii) the manipulation phase, when purposeful

movement of the object relative to the environment is made. The work focuses on using

the demonstration to automatically identify when these phases occur. Their approach is

to use the volume sweep rate of the fingertip polygon area to identify when the breakpoints

between these phases occur.

A common skill model for assembly is as a sequence of discrete states. For example,

Hannaford and Lee [9], and Xu and Yang [138] propose Hidden Markov Models (HMM)

as a skill model for assembly. That is, these authors view assembly as a sequence of states

in a Markov process that are not directly observable. For example, Xu and Yang [138]

propose two HMM model types for assembly skill. The first type models assembly where

sensory feedback does not exist. It consists of a left-to-right HMM, where the Markov

19

CHAPTER 1. INTRODUCTION

states correspond to human mental states, and the observable output symbols correspond

to measurable signals such as position and force [62]. The second HMM model type is

proposed for assembly where sensory feedback does exist. It consists of a set of left-to-

right HMM’s, where each HMM encodes the mapping between a sensory data stream and

control action. This work proposes states in the hidden Markov process as the mental

states of the human operator. However it is not made clear what these mental states

might be.

Hirai et. al. propose a discrete-state skill model for assembly involving deformable

objects. The work looks at an assembly involving the insertion of a deformable tube

onto a solid plug. Three states in the assembly were proposed: the approach state, the

contact state and the insertion state. The work concentrates on detecting the transitions

between these states based on position and force data obtained from a demonstration of

the task. A skill model relevant to a more general class of deformable material tasks was

not investigated.

Wang and De Schütter [90, 91] propose a discrete-state skill model for assembly formed

by applying filtering and thresholding techniques to demonstration data. Demonstration

data is first filtered to remove noise. Qualitative and quantitative thresholding rules are

then applied to break the demonstration down into a sequence of states (subtask-segments

in their terminology). The approach is used to identify subtask segments for a challenging

peg-in-hole assembly. A disadvantage with this approach is that task states are variant.

That is, a single demonstration of the assembly can result in a different sequence of states,

depending on the values of thresholds used.

An invariant state definition for assembly skill based on geometry is proposed by

Ogato and Takahashi [42, 41]. Their discrete-state skill model is formed by decomposing

the configuration space (C-space [127]) of a task into a set of regions. These regions are

formed from the constraint equations of obstacles in C-space. Each distinct region is

defined as a task state. The skill of an assembly is then described as a sequence of discrete

states. While this approach is workable for simple 2-D tasks, more complex tasks of higher

20

CHAPTER 1. INTRODUCTION

dimension can result in a very large number of possible states.

Ikeuchi, et al [64] [61] propose a different discrete-state skill model for assembly that is

also based on geometry. They identify as states in their model, ten contact configurations

types that can exist between two bodies in contact. The ten configurations are identified as

distinct because each allows a different set of translational and rotational motion between

the bodies. This definition has the advantage that each state implies a distinct control

strategy to be adopted. However, it has the disadvantage that a state does not encode the

“state-of-completion” of the task. That is, two contact configurations allowing the same

translation and rotation between task parts will be identified as the same state, no matter

if one occurs near task commencement and the other near task completion. Having states

that encode the state-of-completion of the task can be important, since it is then possible

to plan an assembly sequence for task completion as a unique sequence of states in the

task.

An alternate discrete-state, assembly-skill model is proposed by McCarragher [11]. He

introduces the notion of modeling assembly skill in PbD as a Hybrid Dynamic System

(HDS). The approach defines as a state in the model, each unique contact configuration

that can be formed between task objects. This definition has a number of advantages over

others. First, it provides an invariant set of discrete states for a task. Second, a state

definition of this type means the state-of-completion of the task is explicitly encoded into

each state. Third, the number of states resulting from this definition is much less than for

the approach in [42]. This is the case mainly because the approach in [42] breaks down

the situation where objects in the task are not in contact into many states. In contrast,

the HDS approach recognises the no-contact situation as a single state, ie. it provides a

greater resolution of states in that part of the task where objects are in contact. Such an

approach is appropriate, since the difficult nature of assembly comes about because of the

presence of contact.

Skubic and Volz also propose a HDS modeling approach within PbD [114, 14, 75, 113].

This work looks mainly at using PbD to train a “state classifier” that can identify when

21

CHAPTER 1. INTRODUCTION

a new state in the task is reached. They train state classifiers based on both fuzzy logic,

and on neural networks, to automatically recognise states in a place-block-in-corner type

task. Sikka and McCarragher [85] and Hovland and McCarragher [36] also present work

for deriving a state classifier by demonstration. Work in [85] proposes linear discriminant

functions and clustering techniques as a means for automatically identifying from demon

stration the states in the task. Work in [35] uses a multilayer perceptron neural net to

achieve the same end. In this thesis we will adopt the Hybrid dynamic system approach

to modeling assembly task skill. Note that we will formally introduce Hybrid Dynamic

Systems, and how they model assembly skill, in Chapter 2.

1.3.3 M aking P b D R obu st to N oise

Work in the PbD research field has long recognised that a suboptimal demonstration

can detrimentally affect the approach. For example, Kaiser, Friedrich and Dillmann [74]

recognise five sources of sub-optimality that can exist in a demonstration: where the

human demonstrates unnecessary, incorrect, or unmotivated actions, where there is choice

of scenario regarding when to apply an action, and where the actions are demonstrated

with the wrong intention (ie. the user does not know enough about the task). Delson

and West [79] identify that, in a pick and place task through a field of obstacles, a human

will naturally introduce noise into the demonstration by using different paths to traverse

regions were the gap between obstacles is large. De Schütter et al [90, 89] found that

a demonstration of a peg-in-hole task could contain actions by the demonstrator that

were suboptimal, erroneous, or even unintended. Nechyba and Xu [136] identify that

skill models obtained from human-produced training sets can produce trajectories not

characteristic of the source process, or even worse, that are potentially unstable.

A number of approaches have been proposed to remove noise from a demonstration.

Tso and Liu present a method to select the most consistent demonstration from among

a number of demonstrations of the same task [112]. They identify that a human demon

strating the same task multiple times will execute varying motion, and propose that all

22

CHAPTER 1. INTRODUCTION

demonstrations will have in common a “core motion” required to complete the task . Their

idea is to use Hidden Markov model to select the most consistent demonstration in the

group, ie. the one with a trajectory closest to the core motion. While this approach can

select the most noise-free trajectory that was demonstrated, it is limited to selecting one

of the demonstrated trajectories, ie. it cannot modify trajectories.

In contrast, work by Kaiser and Dillmann, and De Schütter et. al. [63, 90] is able to

remove noise from within a trajectory. This work uses thresholding, smoothing, and loop

removal techniques to filter out noise. For example, Kaiser and Dillmann [63] propose

two types of noise removal for a peg-in-hole task. First, they remove ineffective actions,

ie. actions that changed the configuration of the peg by less than a predefined threshold.

Second, they remove actions that were later corrected, ie. those that were partly or fully

negated at following time steps. Removing actions that are negated at following time-steps

is essentially the process of removing loops from the demonstrated path. Work by these

authors has been successful in removing obvious flaws in the demonstration, however it

is limited to deriving paths that contain only demonstrated points. As such, less obvious

flaws cannot be removed, eg. corrected actions that do not form explicit loops in the path.

Delson and West [79, 77, 78] propose a different approach. They address the case where

all demonstrated paths start and end at the same point. They then identify an obstacle-

free envelope formed by the outer-most lying paths. A noise-free path is constructed

to lie completely within the demonstration envelope. This approach can derive paths

that contain points that were not demonstrated. As such, it is capable of removing sub

optimalities from demonstrated paths that work in [63, 90] cannot. However, the approach

is restricted to finding paths that lie within the envelope. This can be a limitation, for

example, where only one demonstration is provided. In addition, it has been presented for

C-space of dimension 2 or 3. The method is not easily extendable to higher dimensions.

While the methods just reviewed have gone some way towards making PbD more robust

to demonstration sub-optimality, more work of this type is still required. We identify three

areas of further research that will help allow the problem of demonstration sub-optimality

23

CHAPTER 1. INTRODUCTION

in PbD to be solved. They are:

D eterm in in g geom etr ic p rop erties o f th e task:

We have not seen any work in the literature where the demonstration is used to

determine geometric properties of the task to be programmed. Such an approach

can be beneficial with regards to noise robustness and removal because knowledge

of task object geometry provides a basis for better interpreting the demonstration,

ie. for recognising and eliminating noise in the demonstration data.

O p tim isin g low -level control com m ands:

This has been the main focus of noise removal techniques proposed in the literature to

date, ie. the methods reviewed above [112, 63, 90, 79], however useful contributions

in this area can still be made.

S elec tin g an op tim a l task -level strategy:

Until now, noise removal in PbD has focussed on optimising low-level control com

mands. This is a necessary and beneficial step. However, an important, additional

part of PbD is to choose for use by the robot an optimal task-level strategy. To

illustrate what we mean by a task-level strategy, we briefly give an example using

a classic peg-in-hole task. We note two strategies that can be used to achieve such

an assembly. First, one may move the peg down to be in contact with the surface

surrounding the hole, and then use this surface to guide the peg to the hole entrance.

Conversely, one may try to move directly towards the hole entrance from the initial

starting position. Each sequence represents a different task-level strategy to achieve

the assembly. A human may demonstrate any number of different strategies for a

task. Some of these may be better than others. A good idea then is to select the

strategies that will see the robot best perform the task.

It is in these three areas that this thesis will make a contribution to the literature.

24

CHAPTER 1. INTRODUCTION

1.4 C ontribu tions

The specific contributions of this thesis can be summarised as follows:

i. A method for deriving a configuration space representation of an assembly task from

demonstration. This is essentially the step of creating a geometric model of the task

from demonstration. Configuration space can be viewed as a type of “geometric”

model that focuses on the constraints on motion caused by one object in the task on

another, rather than on the explicit geometric properties of task objects themselves.

Although we apply the method in the context of PbD in this thesis, the concept

is general in that it can be adopted to construct a configuration space representa

tion wherever execution of a task by a skilled operator occurs; in teleoperation for

example.

ii. An approach to deriving noise-free, low-level, robot control commands from demon

stration. A contribution is made in two areas. First, a method for deriving noise-free

position control commands is presented. Our method uses the partial knowledge of

configuration space determined from (i), and knowledge of what regions in configu

ration space were visited in the demonstration. A position control command in the

form of a path traversing in configuration space is derived. Our approach can derive

paths that contain undemonstrated points and, as such, it can remove a greater range

of sub-optimalities than [63, 90]. Compared to [79] our approach has the advantages

that (a) it does not assume that all demonstrations pass between the same start and

end points, (b) it can derive paths that lie outside the demonstration envelope, and

(c) it can be applied to find paths in C-space of any dimension. However, we note

that a limitation of our approach compared to others is that caution needs to be

applied when tuning the parameters of the method to ensure that a valid path is pro

duced. The method is more widely applicable than the problem of noise removal in

PbD. It can be used to solve path planning problems in situations where (a) configu

ration space is only partially known, and (b) where some known obstacle-free points

25

CHAPTER 1. INTRODUCTION

in the space (eg. demonstrated points) exist. The second contribution of the thesis

regarding low-level command synthesis is in the area of force control. A method is

presented for deriving noise-free force control commands from demonstration. The

method uses a partial knowledge of configuration space to determine a noise-free

direction for force control. Smoothing and spline-fitting techniques are applied to

determine a noise-free magnitude for the force control command.

iii. A method for choosing the demonstrated, task-level strategy most appropriate for

the robot in its execution of the task. The human will generally demonstrate a

number of distinct task-level strategies. Our method selects the task level strategy

predicted to result in the most optimal robot performance of the task, ie. with

respect to a set of chosen metrics.

1.5 O u tline o f th e T hesis

C h ap te r 2 prepares a foundation for following chapters in the thesis. We present the

spindle-assembly task as the task chosen in this thesis for experiments. Approaches

to modeling both the task, and the skill in the task, are presented. In addition, we

introduce a set of human-provided demonstrations of the spindle-assembly task that

are used for experimentally validating work in following chapters.

C h ap te r 3 presents a method for constructing a partial representation of configuration

space from demonstration. First, a method for determining a set of motion con

straints in a task is presented. Next, regression analysis is applied to find an equation

for the surface in C-space defined by each motion constraint. We apply the method

to construct a partial configuration space representation for the spindle-assembly

task.

C h ap te r 4 focuses on deriving a set of noise-free, low-level control commands for the

robot. Two methods are presented: one for deriving a position control command,

26

CHAPTER 1. INTRODUCTION

and the other a force control command. Both methods use as their basis the partial

knowledge of C-space derived in Chapter 3.

Chapter 5 addresses the problem of selecting a task-level strategy from demonstration.

A set of metrics are presented for predicting robot performance of a task. Strategies

predicted to see the robot best perform the task are selected. Experiments are

presented to show the validity of the approach.

Chapter 6 brings the conclusion of the thesis. We state our conclusions on the work

presented, and discuss open problems and areas requiring further research.

27

Chapter 2

P ro g ra m m in g by D e m o n s tra tio n

for a S p in d le -A ssem b ly T ask

2.1 In trod u ction

In this chapter we prepare a foundation for the work that follows in this thesis. Our

aims here are fourfold. First, we introduce the spindle-assembly task that will be used

in experiments. This task provides a basis for the experimental testing and validation

of our methods in following chapters. Second, we formally introduce Hybrid Dynamic

Systems as a means for modeling assembly-task skill. We briefly introduced the concept

of Hybrid Dynamic System modeling in the literature review of the previous chapter. In

this chapter, we expand on this introduction to provide a detailed explanation on how a

Hybrid Dynamic System is an appropriate skill model for assembly. Third, configuration

space is a concept that will be used extensively in Chapters 3 and 4 of this thesis. We

provide for the reader in this chapter a brief outline of the properties of configuration

space that are central to our work in these chapters. We also explore the relationship

existing between Configuration Space and our Hybrid Dynamic System modeling approach

of assembly skill. Fourth and finally, we present a set of human-provided demonstrations

for the spindle-assembly task. These demonstrations contain sub-optimalities, and provide

28

CHAPTER 2. SPINDLE ASSEMBLY TASK

spindle
body

axml compression only (8)

□wt ffj pffgfg 4 Wmi
START POSITION (no contact) y

z

(b)

Figure 2.1: The spindle-assembly task chosen for PbD

the basis for our work in following chapters. That is, methods in following chapters will be

applied to this set of demonstrations to provide, by the end of the thesis, a set of efficient

and noise-free control commands for the robot to use in its execution of the task.

The chapter is set out as follows. In Section 2.2 we introduce the spindle-assembly task

used for experiments. In Section 2.3 we present Hybrid Dynamic Systems as a means for

modeling the skill required for such a task. Section 2.4 introduces the concept of Config

uration Space, while in Section 2.5 we present the set of human-provided demonstrations

of the spindle-assembly task. Finally, we conclude this chapter with Section 2.6.

2.2 T he Spindle-A ssem bly Task

The task chosen for PbD is shown in Figure 2.1(a). It involves inserting an axially com

pressible spindle between two fixed supports. Figure 2.1(b) shows the start and goal

spindle configurations of the task. The start position sees the spindle removed from the

supports so that no contact exists. The goal position sees the spindle lying between a

rebate in each support. Note that we define the task to be completed only when both

ends of the spindle (i) lie in these rebates, and (ii) are touching the inside front edges of

29

CHAPTER 2. SPINDLE ASSEMBLY TASK

these rebates, ie. as shown in Figure 2.1(b).

The spindle-assembly task is in essence a planar task. That is, only motion in the

horizontal plane is important for its completion. Four degrees of motion freedom exist in

the task, the position and orientation of the spindle body relative to the supports (y, z

and 6), and the compression of the spindle head relative to the spindle body (d). Figure

2.1(b) confirms with labels y, z, 0 and 6 the physical significance of each degree of freedom

in the task.

An important property of the task is that at least partial compression of the spindle

must occur before insertion can take place. Such a property is desirable so that the ability

to cope with spindle compression is a requirement for completing the task. However we

note for the reader that this property means assembly cannot take place by inserting the

spindle body into the right support first. That is, insertion must follow a sequence of

spindle head insertion into the left support, followed by compression, and then by spindle

body insertion into the right support.

In selecting this task for experiments, we had in mind that it should be a good example

of typical assembly tasks found in service-type environments. The spindle-assembly task

was deemed to be a good example for the following reasons:

• The task is based on the domestic chore of changing rolls on a paper roll holder,

ie. it is a real task that can be found in many service robotic environments, eg.

hospitals, hotels, the home, etc.

• The task is reasonably complex. It contains a reasonable number of degrees of

freedom (ie. 4), including rotational degrees of freedom.

• Assembly is about dealing with constrained motion. The spindle-assembly task

contains a good range of constrained motion scenarios, eg. from where spindle

motion is highly constrained (ie. where the spindle is, or is close to, fully inserted),

to less constrained motion (ie. where the spindle is away from the supports).

30

CHAPTER 2. SPINDLE ASSEMBLY TASK

• Finally, successful completion of the spindle-assembly task requires deformation of

the spindle. Success in many common service-environment tasks require the manip

ulated object to deformed in some way.

The task to be used in experiments has been introduced. We now describe in the next

section how the skill for achieving this task can be modeled as a hybrid dynamic system.

2.3 H y b r id D y n am ic S y s te m M o d e lin g o f A ssem b ly Skill

We introduced in Chapter 1 the idea of using a Hybrid Dynamic System to model skill

for assembly tasks. Brockett first introduced the notion of a Hybrid Dynamic System

(HDS) as a continuous-time system interacting with a discrete-event system [102]. Since

then, HDS’s have been used as models in a number of applications [4, 86], including for

modeling assembly skill in robotics [10, 72, 12]. As applied in modeling assembly skill, the

continuous-time and discrete-event systems each provide a different description of assembly

dynamics. The continuous-time system describes the dynamics of the manipulated object

(in our case, the spindle) relative to an inertially fixed environment (the supports) as (i)

a vector equation in state-space form of:

and (ii) a set of constraint equations, where each equation in the set is of the general form:

Equation (2.1) describes the free-space dynamics of the spindle, where x(t) is the continuous

time system state vector [y, z,0,5]T , and u (t) is the control input vector. As the spindle

makes contact with the supports, its motion becomes constrained. The constraint on mo

tion is described by a set of constraint equations, where each constraint equation in the

set will have the general form (2.2). Each constraint equation in the set represents the

x(t) = f{x{t),u{t)) (2 . 1)

= 0 (2 . 2)

31

CHAPTER 2. SPINDLE ASSEMBLY TASK

loss of a single degree of motion freedom for the spindle, and will in general correspond

to a single point contact between the spindle and supports. For example, Figure 2.2(a)

shows a single point contact that has been labelled b-8. l . This contact causes the loss of

one degree of motion freedom for the spindle, and will contribute one equation of the form

(2.2) to the constraint equation set. If b-8 is the only contact existing between the spin

dle and supports, then the constraint equation set will consist of only a single equation.

However, in general, more than a single point of contact will exist between the spindle

and supports during the assembly process, and so more than a single constraint equation

will exist in the constraint equation set. We reflect this fact by appending a subscript j

to g in Equation (2.2). That is, (2.2) is an equation describing the j th constraint existing

on the spindle motion at some particular point in the assembly process.

In contrast, the discrete-event system describes assembly dynamics as a sequence of

asynchronous discrete events that occur through time. We saw for the continuous-time

system how a set of constraints on spindle motion will exist during the assembly process.

Then a discrete event in the discrete-event system is defined to occur when a change

in this set of constraints occurs. For example, Figure 2.2(a) showed a situation in the

assembly where a single constraint b-8 on spindle motion existed. Then a discrete event

will occur either when (i) constraint b-8 is lost (ie. shown in Figure 2.2(b)), or (ii) if

another constraint (eg. h-3) is gained (shown in Figure 2.2(c)). Discrete events trigger

the discrete-event system to move between different discrete states. Each discrete state

corresponds to a distinct set of constraints on spindle motion that can occur in the task.

We saw how each constraint corresponds to a single point contact between the spindle and

supports. Then, each discrete state will correspond to a unique set of contacts (ie. a unique

contact formation) between the spindle and supports. For example, the spindle-support

contact formation shown in Figure 2.2(a) will correspond to one discrete state, while the

contact formations in Figure 2.2 (b) and (c) will correspond to two other, distinct discrete

^ o te how a single point contact between the spindle and supports can be referenced as a letter-number
pair when vertices are labelled with letters, and edges with numbers.

32

CHAPTER 2. SPINDLE ASSEMBLY TASK

LEFT
SUPPORT

RIGHT
SUPPORT

PINDLE

Figure 2.2: Discrete states defined on the basis of motion constraints applied by the
supports on the spindle

states. These definitions of discrete events and states, allow the discrete-event system

to provide a “high-level” description of assembly dynamics. That is, the discrete-event

system describes assembly as a sequence of events that see the assembly pass from an

initial unassembled state (eg. as shown in Figure 2.2(b)), through a sequence of partially

assembled states (eg. states shown in Figures 2.2(a) or 2.2(c), to a final fully-assembled

state.

We have seen how the discrete-event and continuous-time systems each provide a dif

ferent description of the assembly dynamics. Then the HDS models the skill of assembly

as two control processes operating in tandem, one in each of these systems. Control in

the discrete system provides an abstract, task-level control regime. It has the purpose of

33

CHAPTER 2. SPINDLE ASSEMBLY TASK

DISCRETE
EVENT
SYSTEM

CONTINUOUS
TIME
SYSTEM

Process
Monitor

Event Path
Planner

Discrete Even
Controller

___L robot +
continuous controller

Figure 2.3: The Hybrid Dynamic System skill model for assembly tasks

pushing the assembly through the required sequence of discrete states so that the final,

fully-assembled state is reached. Control in the continuous system is more focussed on

controlling the assembly process within each state. It has the purpose of modifying the

configuration of the spindle (ie. x(i)) within each state so that the next desired state in

the sequence is reached. Research in manipulation suggests that humans use a hierarchi

cal structure for movement production when they execute assembly tasks. A generic plan

is formulated at an abstract, task level, and implemented at a more concrete, continu

ous level [80]. This research suggests that a HDS is an appropriate modeling approach

for assembly skill. The discrete-event system represents the abstract, task-level part of

the human thought structure, while the continuous-time system forms the lower, more

concrete, continuous level.

A general description of how a HDS models assembly skill has been provided. We will

now describe the details of this skill model. Figure 2.3 shows schematically the essential

elements of a HDS that models assembly skill. The figure divides the HDS with a dashed

34

CHAPTER 2. SPINDLE ASSEMBLY TASK

line into two parts: the discrete-event system and the continuous-time system. In the

discrete-event system we have a Discrete Event Controller (DEC), Process Monitor (PM)

and Event Path Planner (EPP). The role of the PM is to determine the state of the

discrete-event system from the continuous-time system state vector x(i). We denote in

this thesis the state of the discrete-event system generally as 7. We add a subscript r to 7

in Figure 2.3 to indicate that the current state of the discrete-event system is the r th state

visited in the assembly process so far. The DEC receives the current state yr from the PM

and must decide on a command u (t) for output to the continuous controller. Command

u(t) has the purpose of moving the assembly process closer to completion. That is, it has

the purpose of causing an event to occur that will move the discrete-event system one

state closer to the final, fully-assembled state. A sequence of events that will reach the

fully-assembled state is determined by the Event Path Planner. We call this sequence the

desired event path, and denote it as o. In the continuous-time system, the Continuous

Controller (CC) receives the command u (t) from the DEC. It applies this command via

the robot to modify the configuration x(t) of the task. The PM recognises from x(i) when

a change in the current state yr occurs. The new current state (ie. 7r+i) is output to the

DEC, and the loop continues until the discrete-event system reaches the fully-assembled

state.

Note from our discussion of HDS operation how each component in the HDS encodes

a sub-skill required for assembly. The PM encodes the skill of recognising a new state

(ie. a new contact formation) in the task. The EPP encodes the skill of deciding on an

appropriate sequence of contact formations to traverse in order to reach the fully-assembled

contact formation. The DEC encodes the skill of selecting a control command that will see

the next contact formation in the desired sequence achieved. Finally, the CC/manipulator

encodes the skill of manipulating the workpiece within each contact formation. PbD using

HDS means capturing the skill of each of these modules from the demonstration. Our

focus in this thesis is on removing noise from the demonstration so that efficient, noise-

free robot commands can be determined. That is, we focus in this thesis on encoding from

35

CHAPTER 2. SPINDLE ASSEMBLY TASK

demonstration, the skills in the DEC and EPP modules in the HDS, looking specifically

at how commands produced by these modules can be made noise-free. However, a desire

of this thesis must also be to show that a PbD system using HDS skill modeling is a viable

approach to programming in service robotic environments. That is, two other modules in

the HDS exist: the PM and the CC. How should the functionality in these components

be realised?

Monitoring of contact formations has received significant attention in the literature to

date. Most work assumes the presence of detailed geometric knowledge of the task, and so

is not suitable for PbD in a service robotics environment [109, 110]. Recall from our litera

ture review of the previous chapter work by Skubic and Volz [114], and McCarragher et al.

[36, 85]. Work by these authors focussed on deriving a functional PM from demonstration.

Skubic and Volz used demonstration and fuzzy logic to train-up a functional PM. McCar

ragher et. al. presented similar approaches using a multilayer perceptron neural network,

and a method combining linear discriminant functions and clustering techniques. Since

the methods used by these authors are demonstration based, each would be suitable for

deriving a functional PM in a service robotic environment. That is, none of these methods

require a-priori geometric knowledge of the task to be programmed. For the remainder of

this thesis we assume that a functional PM has been derived using one of these methods.

We have made the assumption that a functional PM exists. Another assumption we

make for work that follows is the presence of a functional CC and manipulator. An obvious

and valid assumption for PbD is the presence of a robot manipulator. The CC is also a

component of the HDS whose functionality must also be realised. However, unlike the PM,

the functionality of the CC need not be re-realised for each new task to be programmed.

The PM is required to recognise the different discrete states in a task, and different tasks

will have a different set of discrete states. As such, it must be retrained for each new task

to be programmed. In contrast, the CC for assembly tasks encodes a skill common across

different tasks: manipulating a workpiece within a specific contact formation. Raibert and

Craig introduced a continuous controller regime well suited to for-filling this functionality.

36

CHAPTER 2. SPINDLE ASSEMBLY TASK

e-1

no
contact

Figure 2.4: Part of the automaton of discrete states for the spindle-assembly task

They introduced the Hybrid force-position control regime [73], where in this case the

term hybrid refers to a combination of force and position control 2. We shall talk more

later about the details of hybrid force-position control when we present work in Chapter

4. For now, we wish only to state two things: that work in this thesis will assume (i)

the existence of a functional continuous controller component of the HDS prior to any

demonstration of the task, and (ii) that the continuous controller existing is a hybrid

force-position controller.

We have seen how a hybrid dynamic system models skill in assembly and how our

aim in this thesis is to derive functional DEC and EPP components of the HDS using

PbD. Before moving on, we finalise this section by introducing a representation of the

discrete-event system used extensively in this thesis. The discrete-event system can be

2 This is in contrast to our previous use of the term hybrid in hybrid dynamic system, which refers to a
combination of discrete-event and continuous-time systems.

37

CHAPTER 2. SPINDLE ASSEMBLY TASK

represented as an automaton, where each node in the automaton corresponds to a state

in the discrete-event system, and each arc represents an event in the system. Denote as A

the automaton for the spindle-assembly task. We show in Figure 2.4 a small part of the

automaton A. Each node in Figure 2.4 represents a distinct state of the discrete-event

system for the spindle assembly task. We use the notation y '3 4 to refer to the ith distinct

state in the task. For example, we have labelled the node in the bottom left hand corner

of the figure as 7^, ie. this node represents the 3rd distinct state in the task 3. Figure

2.4 also shows the nodes in A that represent states 7^ , 7 4 , 774, etc. Note the difference

between our notation 7^ here, and the notation 7r introduced earlier in this section. That

is, 7j'4 denotes the ith state in the task, while 7r denoted the r th state visited in a particular

assembly sequence of the task. For the remainder of this thesis, when we refer to a state

in the task simply as state X, we will be referring to state 7^.

To provide the reader with some idea of what states in the task are represented by

the part of A shown in Figure 2.4, we include for each state shown a constraint set. For

example, the figure shows the constraint set for state 73* as {a — 7}, and for state jgQ as

{a —7, e — 1}, etc. Recall how constraints in these constraint sets can be decoded into single

point contacts between the spindle and supports using Figure 2.2(a)). Then, it becomes

clear that the part of A shown in Figure 2.4 corresponds to contact formations around

where the spindle head and body are in contact with the front edges of each support.

Our discussion so far has focussed on the nodes in A. Figure 2.4 also shows a subset of

the arcs in A. Each arc represents an event that must occur for the discrete-event system

to move between two states in the task. Denote as r ^ the kth possible event in the task.

Note then how we have labelled arcs in Figure 2.4 with the events they represent 4. For

example, two arcs exist in the figure between the nodes representing states 7^ and 7^ .

One represents the event causing the discrete-event system to move from state 7^ into

state 7 0̂, and has been labelled The other represents the event causing the system

3Note that the numbering of states in the task was completed in an arbitrary fashion, ie. the index i
assigned to each state in the task was chosen with no particular order.

4For reasons of clarity we only label arcs on the left-hand side of the figure.

38

CHAPTER 2. SPINDLE ASSEMBLY TASK

to move from state jgg into 7^ , and has been labelled t%. Note how no relationship in

A exists between the value of the index k assigned to a particular event, and the values

of the index i assigned to the states connected by that event. Often we will need to refer

to a particular event according to the states between which it passes. For this purpose

we introduce the additional notation for an event as an ordered pair. The first element in

the pair indicates the value of index i for the state existing prior to the event occurring.

The second element in the pair indicates the value of index i for the state existing after

the event occurs. For example, with this notation we can refer to event as the pair

(3,80)A

2.4 T h e C o n fig u ra tio n S p ace R e p re s e n ta t io n for A ssem b ly

The previous section focussed on modeling the skill required in an assembly task. In this

section we present Configuration Space (C-space) as a means for modeling the task itself.

That is, we use configuration space as a method for describing in the spindle assembly task

the spatial configuration of the spindle relative to the supports. The idea of C-space is

applicable to describing the configuration of any object with freedom of motion in space.

It was first introduced by Lozano-Perez [127] in the early 1980’s. In this thesis, we use the

idea of C-space extensively in Chapters 3 and 4. Our aim in this section is to introduce

some of the basic concepts and properties of C-space that are central to our work in these

chapters 5. In addition, we will also highlight in this section how our HDS model of

assembly skill can be interpreted in the C-space representation of a task.

The idea introduced by Lozano-Perez was to represent the configuration of an object

with n degrees of freedom in a physical workspace, as a single point in an n-dimensional

configuration space. In this thesis we are interested in modeling an assembly task. Assem

bly tasks generally involve a manipulated object (the spindle), and one or more surrounding

objects that are inertially fixed in the environment (the supports). The idea of C-space

5 For an authoritative presentation of Configuration Space, see [65].

39

CHAPTER 2. SPINDLE ASSEMBLY TASK

in assembly is to represent the configuration of the manipulated object as a point in a

configuration space. For example, the spindle’s configuration can be represented as a point

in a 4-D configuration space (4-D because the spindle has 4 dof). Then each fixed object

in the task forms a region in C-space that defines an obstacle (called a C-obstacle). These

regions define obstacles because they correspond to configurations where the manipulated

object violates (ie. passes into) one or more of the fixed objects. Together, all C-obstacles

form a region in C-space. Denote this region as C0t,s. Two other regions besides C0bs exist

in C-space. The first is C free. C free contains all points in C-space that lie outside CQbs• In

the physical workspace, C jree corresponds to situations where the manipulated object is

not in contact with any fixed objects. The other region in C-space besides CQbs and C free is

Ccon• Ccon contains all points in C-space lying exactly on the boundary between C jree and

C0bs• It corresponds in the physical workspace to the manipulated object being exactly in

contact with one or more fixed objects. Ccon defines a surface (or hyper-surface) in C-space

consisting of interconnected patches of curved surface (or hyper-surface). We denote each

patch of surface making up Ccon as a C-surface. We saw in Section 2.3 how a single point

contact b-8 between the spindle and supports was described by single constraint equation

of form (2.2). Then we note that the constraint equation for b-8 will describe one of

the C-surfaces making-up Ccon. C-surfaces have dimension ranging from zero to one less

than the dimension of C-space. Contact b-8 defines the loss of one spindle dof, and so

its equation defines a C-surface of dimension 3 in the 4 dimensional spindle-assembly-task

C-space. C-surfaces of lesser dimension correspond to spindle-support contacts containing

more than a single point of contact. For example, the two-point contact formation shown

in Figure 2.2(b) corresponds to a C-surface in Ccon of dimension 2.

We have seen something of the topology of C-space. Then we note that the concept

of an assembly in C-space is straight-forward. The start and goal configurations of the

manipulated object in the task correspond to two, non-coincident points in C-space. Since

the assembly process usually begins with task objects not in contact, the start point will

lie somewhere in C free. In contrast, task objects will be in contact when fully assembled,

40

CHAPTER 2. SPINDLE ASSEMBLY TASK

ie. the end point will lie on one of the C-surfaces that makes up Ccon. The sequence of

configurations used in the assembly process form a path through C-space between these

start and end points. This path will generally pass across a number of different C-surfaces

before finally reaching the C-surface that contains the end point of the assembly.

It is interesting to note what the HDS assembly skill model means in C-space. We saw

that the no-contact state in the HDS was defined for the spindle-assembly task as state

2 (see Figure 2.4). Then state 2 corresponds to Cfree. That is, any spindle configuration

in state 2 will correspond to a point in Cfree. All other states in the HDS define contact

between the spindle and supports, and so together correspond to Ccon. Individually, each

contact-defining state in the HDS corresponds to one of the C-surfaces in C-space. This

correspondence between C-surfaces in C-space and states in the discrete-event system

means the operation of our HDS can be interpreted nicely in C-space. That is, the EPP

decides on a sequence of C-surfaces to be traversed in order to complete the assembly.

The PM identifies when we reach each new C-surface. The DEC determines the control

action to be taken on the current C-surface in order to reach the next C-surface in the

desired sequence. Finally, the CC controls our position on the current C-surface so that

the control action determined by the DEC is traversed.

2.5 D e m o n s tra t in g th e S p in d le -A sse m b ly T ask

Previous sections have focussed on the general issue of modeling. In this section we take

a first step toward specific work in later chapters by presenting a set of human provided

demonstrations of the spindle-assembly task. The demonstration set presented here will

provide the basis for testing the noise removal methods presented in later chapters.

Figure 2.5 shows the apparatus on which demonstrations of the spindle-assembly task

were provided. It shows the spindle and supports, along with the sensors used to record the

demonstrations. Two sensor types were used. A polhemus position sensor [84] was used to

record the position and orientation of the spindle body relative to the supports (y,z,6) and

41

CHAPTER 2. SPINDLE ASSEMBLY TASK

Figure 2.5: Apparatus used to capture human’s demonstration of the spindle assembly
task

the compression of the spindle head relative to the spindle body (<5). The Polhemus sensor

determines the position/orientation of a body by transmitting electro-magnetic signal from

a central transmitter to a body-attached receiver Figure 2.5 shows two receivers, one

each attached to the spindle body and head, along with the main transmitter (black cube)

at the top of the picture. The second mode of sensing used was force sensing. Two JR3

[60] force sensors were used to capture the forces and torques applied to each support. This

information was used to calculate the force and torque applied by the demonstrator to the

spindle itself. In Figure 2.5, the force sensors are obscured by the supports themselves,

however the cables used to connect each force sensor back to a central computer are

clearly visible. Two additional components of the demonstration apparatus are shown in

Figure 2.5; first the base-board - the raised section of white board sitting between, and

in front of, the supports; and second the block - the block of craftwood in which the

spindle is mounted. We have noted previously that only motion in the horizontal plane is

important for spindle-assembly task completion. The base-board and block components

6This signal can be affected by metallic objects that are in close proximity to the sensor, and was the
reason for constructing the spin die-assembly task from Craftwood.

42

CHAPTER 2. SPINDLE ASSEMBLY TASK

were introduced to make it easier for the human to demonstrate in the horizontal plane.

The base-board provided a horizontal platform at the correct height on which the spindle

could be moved, and the block promoted sliding (rather than rolling) of the spindle when

it was moved. The final component in the demonstration apparatus was a Wind River

Systems microcomputer running the real-time operating system VX-works [132]. This

component was used to capture and process the data obtained from the polhemus and

force sensors. All software used was specially written in-house for these experiments.

A total of six demonstrations of the task were provided by the human. These demon

strations saw the human move the spindle from the start position to the goal position

using assembly sequences chosen by himself. A number of features of the demonstration

process need to be explained. These are:

• Number of demonstrations provided: We saw in Chapter 1 that, as an implicit

programming method, PbD benefits when a large number of demonstrations are

provided. This is the case because more demonstrations usually mean a richer set

of examples showing how to complete the task. However, there is a limit to the

number of demonstrations a human can comfortably provide. Six demonstrations of

the task were provided in our experiments. We chose the number six because we feel

this is about the maximum number of demonstrations that users in a service robotic

environment would be willing to provide.

• Restricting human use of vision: Human vision provides a powerful sensing

medium for achieving assembly tasks. Vision allows the human to make decisions

about the relative positions between objects in the assembly so that appropriate

actions can be applied. In contrast, our robotic system does not have such infor

mation available. Position and force sensors were used to record the demonstration.

Information from the position sensor provides only the absolute position of the spin

dle, rather than its position relative to surrounding objects. Force information can

only be used to determine relative positioning of objects when contact between the

43

CHAPTER 2. SPINDLE ASSEMBLY TASK

objects exists. Hence, if allowed to use vision, the human will select actions on the

basis of information that is not available to the robot 7.

Two solutions to the dilemma exist. The first is to capture the demonstration using

vision (ie. using cameras) and then replicate human vision sensing capabilities in the

robotic system. However, replicating human vision sensing means determining the

relative positioning of objects in the workspace from a video stream of the workspace

scene, and is not at all straight-forward. The second possible solution is to restrict

the humans use of vision by blindfolding him during the demonstration. This solution

has the effect of making the human operate with the same perception information

as the robot, ie. He must use reaction forces (sensed through the fingertips), and

absolute position of the spindle (estimated based on arm pose) as the means by

which appropriate actions in the task are chosen. Blindfolding the human was the

solution we took for our experiments here.

• Previous task experience: Some authors in PbD promote the use of a task expert

to provide the demonstrations [117]. For example, in a factory environment, shop-

floor personnel may have analysed tasks in the manufacturing process in great detail.

Such experts may know exactly how the robot should perform a task, and demon

strate accordingly. In contrast, end-users in service-robotic environments would have

rarely analysed in such detail the task they wish to program. To reflect this fact

in our experiments, a person with limited experience of the task was chosen as the

demonstrator. Initially the person had no experience of the task. Prior to the

demonstration session, this person was allowed to become familiar with the task by

handling it, and by practicing a number trial executions of the task. In this way the

demonstrator was allowed to become familiar with the task without being an expert.

7Ensuring that information used by the human to make control decisions is also available to the robot
is a well known requirement in PbD. For example, Asada and Liu explore this issue in detail for PbD of a
grinding task in [116].

44

CHAPTER 2. SPINDLE ASSEMBLY TASK

PATH 1 PATH 2 PATH 3 PATH 4 PATH 5 PATH 6

Z < : 3 £<;■ 3 C 3 [<; 3 E ! 3 [<-“ 3
C 3 E 33 E' 3 C<3
[^ J t " 3 t" 3 LiJ E=̂ ?
E=y t* 3 Y 3 c<<g e< i
CJj 3 £=■’ 3 3 Ê*]
r j j §=■ 3 HHI G=‘ 3 r "3 E^3
r>n E 3 t 3 E 3 E=̂=3
E 3 E ' A t - l E ’ 3 C 3 E -3
§h?j ^ 31=2=3 E ^ E=^

3 E^=3g±3 E 3 C 3 E -’3
3 E'3 E 3 Ê =3

E" 3 Ca3
l=äj E 3
1=5=3 E 3
E 3 E 3

E---3 E=̂ 3 e
E 3 E 3
E^3 E 3

E 3
E 3

E 3

Figure 2.6: The set of state sequences demonstrated by the human in the spindle-assembly
task

45

CHAPTER 2. SPINDLE ASSEMBLY TASK

The six demonstrations provided by our demonstrator are shown in Figure 2.6. Each

demonstration is presented as a sequence of discrete states. Each state in the sequence is

labelled with a number, and is shown diagrammatically as a contact formation between

the spindle and supports. The number for a state indicates the relevant value of the index

i for that state, ie. the state labelled with “2” refers to state 72 , etc. Notice how every

demonstration commences in the no-contact state (ie. in the start state for the task - state

2) and ends in the goal state (state 1). For the remainder of this thesis, we will refer to

the demonstration sequences shown in Figure 2.6 from left to right as D 1 to D§.

GOAL

Figure 2.7: The discrete state automaton A d , constructed as that part of A visited in the
demonstration set D\ to Dq

Recall how we introduced in Section 2.3 the concept of an automaton A to represent

the discrete-event system in the HDS. We present in Figure 2.7, that part of A visited

in the demonstration set. That is, we show in Figure 2.7 the nodes of states, and the

arcs of events, visited in the demonstration. Note that the arcs and nodes in Figure 2.7

themselves form an automaton. We will refer in future to this automaton as A d - In

addition, note that state 2 in the task is a special state because it is the only state that

does not dehne contact between the spindle and supports. We will hnd it useful in later

chapters to refer to the automaton of states in the task that dehne contact. That is,

46

CHAPTER 2. SPINDLE ASSEMBLY TASK

we shall refer to the automaton in Figure 2.7 less state 2, as A*D. A*D then forms an

automaton of contact-defining states that were visited in the demonstration.

2.6 C o n c lu s io n

The purpose of this chapter was to provide a foundation for work that follows in this thesis.

Four sections were presented. First, we introduced the spindle-assembly task to be pro

grammed using PbD. Next, we showed how the skill in achieving the task could be modeled

as a Hybrid Dynamic System. Third, we presented the concept of Configuration Space as

a means for modeling the task itself. Fourth and finally, a set of human-generated demon

strations for the spindle-assembly task were introduced. With this chapter complete, we

are now in a position to present work in the thesis that is new to the literature.

47

Chapter 3

C onfiguration Space D erivation

from D em onstration

3.1 In trod u ction

Access to task-specific, geometric information is an important component of the noise

removal process in PbD. Such information allows intelligent decisions to be made about

whether demonstrated actions contain noise. While geometric information about the task

is desirable, it is not often available a-priori in the informal environments typical of service

robotics. In this chapter our aim is to obtain geometric information about a task from the

demonstration phase of PbD. We show how a partial C-space representation of the task is

obtainable from demonstration. C-space is a representation of task geometry that focuses

on motion constraints between task objects, rather than on the geometric properties of

objects themselves. We note that a partial representation is obtained because our method

derives only that part of C-space visited in the demonstration.

The remainder of this chapter is set out as follows. In Section 3.2 we formulate exactly

the problem to be solved. We break the main problem down into two sub-problems: (i) for

each state in the demonstration set, finding the constraints on spindle motion that exist,

and (ii) finding an equation for the C-surface defined by each constraint found in (i). In

48

CHAPTER 3. CONSTRUCTING CONFIGURATION SPACE

Section 3.3, the assumptions on which our work is based are presented. Specifically, we

make three assumptions about information returned by the Process Monitor component of

our PbD system. Section 3.4 presents a solution to sub-problem (i). We present a method

that derives the constraint set for each state visited in the demonstration. Section 3.5

presents a solution to sub-problem (ii). Statistical regression analysis is used to determine

a C-surface equation for the set of unique constraints identified in Section 3.4. Finally, we

end the chapter with Section 3.6, where we state our conclusions for the work.

3.2 P rob lem Form ulation

Our interest is in deriving a partial representation of C-space for the spindle-insertion

task. We introduced in the previous chapter an automaton A*D: the automaton of contact

defining states visited in the demonstration. Recall from Chapter 2 that j f denoted the

ith distinct state in task. Assume for our work in this chapter that 'yf was a demonstrated

state that defines contact between the spindle and supports, ie. that a node for j f exists

in A*d . We saw in Chapter 2 that each contact-defining state in the HDS defines a C-

surface in C-space. Let c f be the C-surface of 'yf. Then our problem in this chapter can

be stated as: find an algebraic equation that describes each c f in C-space. Denote this

equation as the C-surface equation for 'yf.

Let the dimension of C-space be n. Then the problem of deriving a C-surface equation

for j f is a complex one, because c f can be a surface ranging in dimension from zero to

“n —1”. However, the problem is simplified if we note that any c f can be specified as the

intersection of C-surfaces of dimension n—1. Denote any C-surface in C-space of dimension

n —1 as a primitive C-surface. Recall that a state is defined by a unique set of constraints

(remember, for example, how Figure 2.4 showed the constraint sets for a number of states

in the spindle-assembly task, including the constraint set for state 80 as {a — 7, e — 1}). Let

O f be the constraint set defining 7f . That is, O f = (p f , . . . , p:-j,. . . , p f .), where p f is

the j th constraint in state 7f , and n0 is the number of constraints in 7f . Each constraint

49

CHAPTER 3. CONSTRUCTING CONFIGURATION SPACE

pf- in O'4, in general, results in the loss of one spindle dof x, and hence defines a primitive

C-surface in C-space. Let c-4 be the primitive C-surface defined by q j . Then we identify

that c f can be specified as:

Tlj

3= 1

That is, to fully define the surface q4, our methods in this chapter need to:

(a) Find the constraint set Of for each state y-4 visited in the demonstration, and

(b) Once a constraint set for j f is found, derive an equation for the primitive C-surface

defined by each constraint in that, set,

Then, by applying equation 3.1, q4 can be determined, and the region of C-space visited

in the demonstration will have been derived. The remainder of this chapter is devoted

to presenting solutions to problems (a) and (b). However, prior to presenting a solution

for problem (a) in Section 3.4, and for problem (b) in Section 3.5, we first introduce in

the next section some assumptions made in this work about information returned by the

Process Monitor component of our PbD system.

3.3 P ro cess M onitor A ssu m p tions

We saw in the previous chapter that a functional PM can be obtained from a pre

demonstration training phase according to work in [114], [85], or [36]. We assume for

our work in this chapter that such a PM exists. That is, during each demonstration, we

have a functional PM that will return at each discrete state visited in the demonstration,

a state number that uniquely identifies the state from all others in the task. In addition,

we assume the PM also returns two other pieces of information at each new state: whether

That is, when each constraint in the set cannot be described as a combination of the others

50

CHAPTER 3. CONSTRUCTING CONFIGURATION SPACE

a constraint was gained or lost, and the type of that constraint. That is, at each new state

we assume the PM returns the triple:

hj*,9l,ct]T

where

• £ N denotes the state number of the new state.

• gl £ { — 1,1} denotes an increase or decrease by one in the number of constraints

present in the new state compared to the previous state, gl = 1 denotes a constraint

gain, while gl = — 1 denotes a constraint loss.

• ct denotes the type of the constraint that was gained or lost. Lozano-Perez [127]

showed for a planar task involving two objects that two types of constraint exist:

(i) constraints resulting from a contact between and edge of the first body with a

vertex of the second, and (ii) constraints resulting from a vertex of the first body

with an edge of the second. Because the spindle-insertion task involves two pairs of

objects in contact (ie. spindle head with left support, and spindle body with right

support) four contact types exist for this task 2. These are:

1. spindle head edge in contact with vertex of left support (hev)

2. spindle head vertex in contact with edge of left support (hve)

3. spindle body edge in contact with vertex of right support (bev)

4. spindle body vertex in contact with edge of right support (bve)

Note how we introduce four symbols: hev, hve, bev and bve, to reference each of

these constraint types. For now, we are content only to introduce the concept of

four constraint types for the spindle-assembly task. Later, in Section 3.5.1 we will

2Note that we do not consider constraints resulting from head/right-support or body/left-support con
tacts, since, as stated in Chapter 2, we assumed a method of task completion where these contacts do not
occur.

51

CHAPTER 3. CONSTRUCTING CONFIGURATION SPACE

explore in more detail how these constraint types come about, and why we separate

constraints into these four distinct types.

A number of significant questions exist regarding our assumptions in this section. One

relates to whether the PM could return information encoded in gl and ct. At this stage

of the work, we have not explored in detail the possible methods for determining gl or

ct. However, we have some ideas as to how this information could be derived. Take gl

for example. We have seen how there is a well defined relationship between contact gain

and loss between two objects, and the gain or loss of constraint caused by one object on

the motion of the other. Gains or losses in contact may be identifiable using reasoning

on contact forces and spindle position/velocity. An alternate approach may be to use

training coupled with “learning” methods (eg. neural networks), as used in [114] and [43]

to recognise discrete states. For this thesis, we make the assumption that gl and ct are

returned by the PM. We leave the details of possible methods to achieve this information

as future work.

Another question regarding our assumptions in this section relate to whether a PM

could be trained from demonstration to perfectly process monitor a task. For example,

Hovland [36] trained a process monitor from demonstration that achieved a 95 percent

recognition success rate. For our work in this thesis, we have assumed a process monitor

with a 100 percent recognition success rate. It is conceivable that our methods to follow

could be augmented to cope with an imperfect process monitor, however, at this stage of

the research, we leave such an augmentation as future work.

3.4 F ind ing a C onstra in t Set for each D em o n stra ted S ta te

We have stated our assumptions about information available from the PM. We are now in

a position to present a solution for the first of the two problems identified in Section 3.2:

finding a constraint set Of- for each state 7 f that was demonstrated. We note that O f

refers to the true set of constraints that exist in 7 f . The methods we now present provide

52

CHAPTER 3. CONSTRUCTING CONFIGURATION SPACE

an estimate of the true constraint set. We refer to the estimate of O f produced by our

methods as Of. Recall how we denoted the j th constraint in fi f as pf-. Then we denote

as pf- the estimate of p f produced by the methods we present.

We achieve O f by using information returned by the PM during the demonstration

phase of PhD. In Chapter 2 we introduced a set of six demonstrations D\ to Dq of the

task. Let Dp denote generally one of the demonstrations in the set. We saw that a Dp

consists of a sequence of states. Our presentation of HDS modeling in Chapter 2 showed

how the r th state in an assembly sequence was denoted as yr . Then we denote the states

in Dp as 7^ p . . . 7y>p . . . 7f f , where /y f p is the r th state in Dp, and where rn is the number

of states in the sequence. Note then the correspondence between j f and a 7f p in Dp.

State 'yf can occur in many places in the demonstration set. For example, 75* was shown

in Figure 2.4 as the 5th distinct state in the task, but it was also shown in Figure 2.6

as the 2nd state visited in demonstration D2? and as the 4th state visited in D\ , ie. for

demonstration set D\ to Dq, state 'yf corresponds to states 'yf '2 and 'y f4. Our interest

here is in deriving a constraint set for each 'yf visited in the demonstration. However, we

introduce the notation 'yfp because our methods below require a distinction to be made

between the same 'yf occurring at different stages in the demonstration set. For the same

reason, we introduce additional notation for (i f and p f . That is, we denote Or p as our

constraint set estimate for the r th state in Dp, and p?sP as the sth constraint in .

Three steps are involved in determining O f for each 7f that was demonstrated. They

are:

• Generation

• Numbering

• Merging

Sections 3.4.1, 3.4.2, and 3.4.3 describe the details of each step.

53

CHAPTER 3. CONSTRUCTING CONFIGURATION SPACE

3.4.1 G eneration

The role of the Generation Phase is to construct an initial version of £l?p that contains

only the type of each constraint in 7/^ . That is, after the generation phase, each p?sp

in fü^p references a symbol (ie. one of bev, bve, hev, or hve) that describes the type

of the true constraint p®p. In practice, the Generation Phase operates as follows. As a

demonstration proceeds, each new state 7/^ in the demonstration produces from the PM

the triple [7^ , gl, ct]r . Then we can construct, at each state change, an initial version of

Cl^p according to:

A. if a constraint was gained between and 'y^>p (ie. gl = +1) then

1. set Q^p equal to 0^>p1

2. append to the constraint type ct of the new constraint

B. if a constraint was lost between 7^ and 'yf>p (ie. gl = -1) then

1. set fVr)p equal to Cl̂ >pl

2. remove from ()?p the constraint type ct of the lost constraint

C. For the case of the first state in each demonstration (ie. 7 ^ p) , we set to be empty

since we always start in the no contact state, ie. where no constraints on spindle

motion exist.

To help clarify our presentation of the generation, numbering and merging phases, we

introduce in Table 3.1 an example of the process. Part (a) of the table shows the sequence

of constraint sets that were visited in D\, where each constraint is referenced as a letter-

number pair (recall how Figure 2.2(a) decodes these letter-number pairs into the spindle-

support contact formations that cause each constraint). Part (b) of Table 3.1 shows the

triple returned by the PM at each state change. Notice how the triple contains, a state

number (7^) , whether a constraint was gained or lost compared to the previous state (gl),

54

CHAPTER 3. CONSTRUCTING CONFIGURATION SPACE

and the type of the constraint gained or lost (ct). Part (c) of the table shows an example

of how the generation phase operated on D\. As per condition C. of our generation phase

algorithm, the constraint set estimate of the first state in D\ (ie. state 2) is set to be

empty (signified by emp. in the table). From there, each new constraint set estimate

is determined by adding or removing from the preceding constraint set estimate the ct

returned by the PM. Note that, although not shown in the table, the generation phase

was also applied to demonstrations D2 to Dq. The result was an initial version of Q?p for

each 7,Dp in the demonstration set.

3.4.2 N um b erin g

After the generation phase, each constraint estimate p^p refers to a constraint type, ie.

one of the symbols bev, bve, hev, or live. The role of the numbering phase is to make each

p?sp refer to an actual constraint, rather than only to its type. We achieve this phase by

appending an index to the symbol referenced by each p^p. Then, after numbering, each

p^s references a unique symbol-index combination that forms our first estimate of the true

constraint p?sp.

The numbering phase cannot be achieved by simply appending distinct indices to the

symbol of each p^p. Such a scheme would identify the constraints in every state as distinct.

We know from the definition of a discrete state in the HDS that sequential states in an

assembly sequence differ in their constraint sets by only one constraint. That is, sequential

states will have some constraints in common. For example, Table 3.1-part(a) shows in D\

how constraint h-3 exists in the sequentially demonstrated states of 22,21,24,21, and 27.

Then a critical aspect of the numbering phase is to ensure that h-3 is identified as the

same constraint in each of the states in this sequence, ie. it can be identified as the same

constraint by appending to the bev symbol in each of these states the same index value.

We complete the numbering phase as follows. First, four counters nc(,CT, nc^e, nchev,

and nchVe are created to keep track of the indices we post-pend during this phase. These

counters are initialized at the commencement of the numbering phase according to:

55

CHAPTER 3. CONSTRUCTING CONFIGURATION SPACE

(a) Demonstration 1

(b) PM Returns:

(c) After Generation:

(d) After Numbering:

(e) Demonstration 2

(f) PM Returns

(g) After Numbering:

(h) Set H:

(i) Demonstration 2 after Merging step 3

n.a.

emp. hve-3
bev-4 hve-5 hve-5 hve-5 hve-5 bve-6 bve-6 bve-6

bve-4 bve-4 bve-6 bve-7 bve-7
bve-5 hev-3

emp.

bev-1 hve-1 hve-2 bev-2 bve-2 bve-2 bve-2
bve-3 bve-3

hev-1

n.a.

emp. hve-3
bev-2 hve-5 hve-5 hve-5 hve-5 bve-2 bve-2 bve-2

bve-4 bve-4 bve-2 bve-3 bve-3
bve-5 hev-3

(27 bev-1 = bev-3
(27) hve-2 = hve-4
(8) hve-2 = hve-4
(38) hve-2 = hve-4
(38) bev-2 = bev-4
(54) hve-2 = hve-6
(54) bev-2 = bev-4

(i) After Merging step 1:
(47) hve-2 = hve-6
(47) bve-2 = bve-6
(47) bve-3 = bve-7
(1) hve-2 = hve-6
(1) bve-2 = bve-6
(1) bve-3 = bve-7
(1) hev-1 = hev-3

(ii) After Merging step 2:
bev-1 = bev-3
bev-2 = bev-4

hve-2 = hve-4 = hve-6
bve-2 = bve-6
bve-3 = bve-7

Table 3.1: D\ and D2 as examples for the generation, numbering and merging
phases

56

CHAPTER 3. CONSTRUCTING CONFIGURATION SPACE

A. TiCf)ev — 1, flCi)Ve — 1, 'H'Chev — 1? TlCfive —

Then, commencing with the second 3 state in a demonstration Dp, ie. 7 ^ p, we achieve

numbering for each following state 7 ,?p according to:

B. if a constraint was gained between and ^ p (ie. if = +1) then

1. set index of prSp equal to j \ px s for each p^px s in

2. identify the additional constraint in Q^p that is not in Call it *p^p

3. post-pend to *p^p an index equal to the value of the numbering counter of its

type, (eg. if it is of type bev, then the numbering counter of its type is ncbev)

4. increment the numbering counter used in step B.3 by one

C. if a constraint was lost between and 7 ,?p (ie. gl = -1) then

1. identify the constraint in 0^>pl that is not in as the lost constraint. Call it
. D p

*Pr,s

2. set index of ß?p equal to p^px s for each p^pi s in that is not *p^p

Upon completion of the numbering phase for each Dp, each counter (ie, nc^ev, etc.) is

incremented by one to reflect that constraints present in the last state of Dp are unrelated

to those in the second state of Dp+ That is:

D. n c b e y + T] n cbve+ + ; n c h e v + A ’i nC hve+ S-'i

We show in Table 3.1-part (d), an example of how the numbering phase operated in practice

on D\. The two main components in our numbering phase algorithm are conditions B.

(ie. when a constraint was gained) and C. (when a constraint was lost). Table 3.1-part(d)

shows examples of both cases. An example of a gained constraint case is state 22. Here

the gained constraint is identified as the bev constraint, and it is given an index of 1,

3The first state in a demonstration is always the no contact state and so has no constraints to number.

57

CHAPTER 3. CONSTRUCTING CONFIGURATION SPACE

equal to the value of ncbev at the time. An example of a lost constraint case is state 21.

Here the bve constraint in state 22 is determined as the lost constraint. The constraint set

estimate for state 21 is then made equal to the constraint set estimate of state 22 less the

bve-1 constraint. At the completion of numbering in Di, ribve = 3, ribev = 2, rihve — 2 and

n hev — 1- Each counter is then incremented by one, and numbering commences in Z>2-

Occasionally there are cases where step C .l of the algorithm cannot be completed.

This occurs for any 7 where there exists two or more constraints in of the same

type as the lost constraint. In order to present an example of this situation, we show in

part (g) of Table 3.1 how the numbering phase operated on demonstration D2 (note that

the sequence of constraint-sets, and PM output, for D2 are shown in parts (e) and (f) of

the table). We highlight, as an example, state 54 in D 2 . It cannot be determined if hve-4

or hve-5 was lost in the transition to this state from state 55. In such cases, we adopt the

conservative solution of numbering the “undecidable” constraint with the next available

counter value. For example, in the case of hve-4 and hve-5 in state 55, an index of 6

was post-pended to the hve constraint in state 54. This is a conservative approach that

treats the undecidable constraint as a completely new constraint. We shall see in the next

section how the merging phase can allow the true identity of an undecidable constraint to

be determined.

3.4.3 M erging

We noted in the numbering phase how sequential states in an assembly sequence con

tain many constraints in common. A key aspect of numbering was then to ensure that

constraints in sequential states were identified as the same constraint, where appropriate.

However, the numbering process has not taken into account an important, additional fact.

We know that the constraint set for the same state in different demonstrations must be

the same. For example, we know that the constraint set for state 8 in both D\ (Table

3.1-part(d)) and D 2 (Table 3.1-part(g)) must be identical. Yet after numbering, our con

straint set estimates for state 8 are {hve-2} in D\ and {hve-4} in D2 . The role of the

58

CHAPTER 3. CONSTRUCTING CONFIGURATION SPACE

merging phase is to identify and remedy this type of situation.

The merging phase involves three steps. In the first step we determine which p^p refer

to constraint estimates corresponding to the same constraint in reality. In the second step,

we construct a set H with elements hp. I E N that are sets of p^p identified in step 1. In

the third and final step, we update the produced by the numbering phase to reflect

the information in H . The first step in merging is achieved as follows. First concatenate

D\ to Dn into Dt -

A. Dt = D]_, D2, • •. ,DUd

where is the number of demonstrations in the demonstration set. Then for each state

7jr in D t 4:

B . for every other state 7^+ : q 6 N that occurs in Dt after 7,?, if 7,P = 7 ^ then

1. identify corresponding constraints in 7,P and 7/+.

2. create a set in H for each pair identified in step B.l.

Table 3.1-part(h)(i) shows the result of applying step one of the merging process to D\

and D2. Here states 27, 8, 38. 54, 47 and 1 provided the basis for building H (ie. they

were the states in D\ that were also in D2). Taking state 38 as an example, we see that

the occurrence of this state in both D\ and D2 has resulted in the identification of hve-2

and hve-4 as equal, and of bev-2 and bev-4 as equal.

The second step in the merging process removes redundant information in H. It does

this by combining any hi with common elements. It is achieved by comparing any two sets

ha and h& in H. If ha fl h& is not empty then ha and /15 are replaced with the set ha U hf,.

Table 3.1-part(h)(ii) shows the result of the second merging step. All repeat sets existing

in H after step one are removed. In addition, hve-4 and hve-6 are identified as equal via

the union of two hi with the common element of hve-2.

4Where we drop the p sub-script to D in y,Pp since we have concatenated all demonstration sequences
into one state sequence.

59

CHAPTER 3. CONSTRUCTING CONFIGURATION SPACE

The third step of merging updates the indices of every p?sp to reflect the information in

H. If p f p exists in some hi in f/, then we replace it with the element in hi with the lowest

index. Table 3.1-part(i) shows how merging step three has worked in practice. It shows

the D2 part of Dt after merging step three was completed. Note how hve-4 in state-8

has been relabeled as hve-2 to reflect that it corresponds the same constraint (ie. b-10)

as in state 8 in D\. In addition, recall from the numbering phase how an index of 6 was

assigned to the live constraint in state 54 in D2 . Remember how this occurred because we

could not determine if hve-4 or hvc-5 had been lost. Merging has determined that in fact

constraint live-5 was lost, and step three of the merging process has relabeled hve-6 to be

hve-2 (which is equal to hve-4).

Once the merging phase is complete, our overall problem of determining the fi f for

each 7A in the demonstration set is straight-forward. Our three phases of generation,

numbering, and merging have determined a constraint set estimate for each 7 .

Then, for each state 7^, we can simply read off (i f as i l f p where 7 /^ is equal to 'yf.

3.4.4 R esu lts

Figure 3.1 shows the results of applying the generation, numbering, and merging process

(grim-process) to our demonstration set D\ to Dq. It shows the automaton of states

visited in the demonstration (we presented this automaton previously in Figure 2.7). In

addition, for each state in the automaton, the figure shows the constraint set estimate

(i f derived by the gnm-process. For example, the gnm-process has determined that a

constraint bev-1 exists in state 21. It has determined that the same constraint also exists

in states 22, 24, 27, 28, 29 and 30. Recall that an important part the gnm-process was

recognising the same constraint existing in different states as being the same. It turns

out that constraint estimate bev-1 was correctly identified as the same constraint (h-3) in

every state where it existed. However, we note that the gnm-process was not always able

to correctly identify a constraint. To clarify our results in this regard, we present in Table

3.2 the set of true constraints existing in the demonstration set, along with the constraint

60

CHAPTER 3. CONSTRUCTING CONFIGURATION SPACE

7I4 n-4 &7f nAi

21 {bev-1} 74 {hev-5, hve-3}
29 {bev-1, hve-5} 75 {hve-3, hev-1}
11 {hev-8} 7 {hev-1, hve-2}
8 {hve-2} 20 {bve-1}
4 {hev-5} 22 {bve-1, bev-1}
5 {hve-3} 24 {bev-1, hve-1}
76 {hve-2, bve-12, bev-2} 33 {hve-2, bve-12}
38 {hve-2, bev-2} 43 {hve-2, bve-3}
30 {bev-1, hev-8} 28 {bev-1, hve-5, hve-2}
9 {hve-5, hve-2} 77 {hve-2, bev-2, bve-3}
6 {hev-1} 66 {hev-8, bev-9}

65 {hve-5, hve-2, bve-4} 60 {hve-5, hve-2, bve-4, bve-2}
55 {hve-5, hve-2, bve-2} 54 {hve-2, bve-2}
47 {hve-2, bve-2, bve-3} 61 {hev-8, bev-9, bve-2}
56 {hev-8, bve-2} 49 {hev-8, bve-2, bve-3}
78 {hev-8, bve-2, bve-3, hve-13} 79 {bve-2, bve-3, hve-13}
48
1

{bve-2, bve-3, hve-13, hve-14}
{hve-2, bve-2, bve-3, hev-1}

27 {hve-2, bev-1}

Figure 3.1: Results of the generation, numbering and merging phases applied to demon
stration set D\ to Dß

61

CHAPTER 3. CONSTRUCTING CONFIGURATION SPACE

E J E J t 3
-1

n - ö

(bev-1)
d-lo

(bve-1)
e-1

(hev-5)

[^ 3 C ^ E 3
r p

1 - T

(bev-2)
a-iD

(bve-2)
f-6

(hev-1)

1 F 3
J- o

(bev-9)
C - iO

(bve-3)
g-1

(hev-8)

E 3 [11 Cc 3
Ü - 1 U

hve-2
a - i i
bve-4

b-8
(hve-1, hve-3)

3 : j 1
a - i i

(hve-5, hve-13)
a - it

bve-12

Table 3.2: The set of distinct constraints existing in the demonstration set

62

CHAPTER 3. CONSTRUCTING CONFIGURATION SPACE

estimates derived for each by the gnm-process. Note how two estimates for each of the

constraints b-8, and a-11 were determined by the gnm-process. For example, constraint

b-8 was identified as both hve-1 and hve-3. In the majority of states where it existed,

b-8 was identified as hve-3 (ie. in states 4, 5 and 75). Only in state 24 was it identified

as hve-1. We refer to hve-1 and hve-3 as repeat estimates for b-8. The merging phase is

designed to prevent the occurrence of repeat estimates. However in some cases, the state

sequence visited in the demonstration can thwart the merging phase. For example, repeat

states can occur where a state is visited one-off in isolation, eg. state 24. The merging

phase may then not be able to fully ratify a constraint existing in that state with the

same constraint existing in other states in the demonstration set. However, we note two

things about the presence of repeat estimates. First, in most cases our gnm-process can

correctly identify constraints. Since only a single constraint is gained or lost at each state

change in a state sequence, a constraint will generally exist in a number of states, giving

the merging phase an opportunity to identify it correctly. For example, in our experiments

the majority of constraints were identified correctly. Table 3.2 shows that 12 out of the 14

constraints existing in the demonstration set were correctly identified in every state where

they existed. The second thing we note about repeat estimates is that, while not optimal,

we shall see later in this chapter, and in the next, how the existence of repeat estimates for

a constraint do not prevent us from achieving our desired goal of noise removal in PbD.

3.5 D e riv in g E q u a tio n s for P r im itiv e C -su rface s

In the previous section we determined a constraint set estimate O'4 for each state in the

demonstration set. In this section we solve the second part of the C-space derivation

problem. Recall from Section 3.2 the second part of the problem. That is, we have

determined for each demonstrated state 7^ a set of constraints where the j th constraint

in the set is p-4. Our problem now is to find an equation describing the primitive C-surface

defined by p-4. The problem to be solved is simplified if we note that many p-4 are common

63

CHAPTER 3. CONSTRUCTING CONFIGURATION SPACE

to a number of states in the demonstration set. For example, Figure 3.1 showed how hve-2

is a p^ common to states 8, 76, 38, etc. Obviously we need only derive a primitive C-

surface equation for the distinct set of p^ in the demonstration set. That is, denote as Q*

the distinct set of constraint estimates derived by the gnm-process in the previous section,

and observe that Q* will have the general form:

= (3-2)

where p*m is the m th distinct constraint estimate found by the gnm-process, and nm is

the number of distinct constraint estimates found. Denote as c*m the primitive C-surface

defined by p*m. Then our problem in the second half of this chapter can be stated as: find

the equation describing c*m for all m = 1. . . m = nm.

We base our approach for deriving the equation of a c*m on statistical regression anal

ysis. We described in Chapter 2 how the assembly process can be represented as a path

traced out in C-space. Recall how this path will generally traverse on different C-surfaces

in C-space. Then our idea for deriving the equation of a is to use regression analysis

on data points from demonstrated paths lying on c^. Two things are required for each

c*m before the regression analysis can take place. They are:

• A regression model: The regression model is a generic equation for c^. By generic

we mean the form of the equation is known, but that its parameters are not.

• A data set: That is, the set of points recorded from the demonstration where the

human was traversing on c*m.

3.5.1 T he R egression M odel and D ata Set

Determining the data set for c*m is straightforward. We note two things: (i) a continuous

stream of data is output by the position sensor during the demonstration. By using discrete

events identified by the PM as a trigger, this data stream can be divided into segments,

where each segment corresponds to a distinct state in the demonstration sequence. The

64

CHAPTER 3. CONSTRUCTING CONFIGURATION SPACE

second thing we note is (ii) that Figure 3.1 shows a set of constraints for each demonstrated

state in the task. Then, a data set for can be formed by simply concatenating segments

of data from (i) for any state in Figure 3.1 where constraint p*m is present.

Determining a regression model for c*m is more complex. We previously introduced

in Section 3.3 the idea of a constraint type for the spindle-assembly task. Four distinct

constraint types were introduced: bev, bve, hev and live. The reason for separating

constraints into these types can now be made clear: constraints of the same type have

the same regression model. That is, by returning the type ct of a constraint, the PM

determines which regression model should be used for each c^. Since four constraint

types for the spindle-assembly task exist, four regression models are possible for c*m. We

now present the details of how the regression model for each constraint type was derived.

At the basis of our regression model derivation are observations by Lozano-Perez. For

a planar assembly task involving two polyhedral objects, two possible constraint types can

exist in PL* [127]. If one object represents a workpiece (eg. spindle body) and the other

the environment (right support), then the first constraint type is caused by a vertex of

the manipulated workpiece in contact with an edge of the environment (ie. type bve). We

show in Figure 3.2(a) how the of this type of p*m is described by the vector equation 5:

The second constraint type is formed by an edge of the workpiece in contact with a vertex

of the environment (type bev). We show in Figure 3.2(b) how the c*m of this type of p^ is

described by the vector equation:

Equations (3.3) and (3.4) form the set of possible regression models for the c*m that exist in

5We use the notation aA to mean vector A given with respect to frame Fa, bC to mean vector C with
respect to frame Fb, etc.

(aA + bc - aB) • an = 0 (3.3)

(aA + bB - aC) • bn = 0 (3.4)

65

CHAPTER 3. CONSTRUCTING CONFIGURATION SPACE

Figure 3.2: Regression model derivation for constraints caused by spindle body contact
with the right support

a planar task involving two rigid-body objects. These vector equations form the regression

models for constraints in the spindle insertion task caused by the spindle-body in contact

with the right-support. That is, Equation (3.3) is the regression model for constraints of

type bve, and Equation (3.4) is the regression model for constraints of type bev. Both

equations (3.3) and (3.4) can be expanded to give scalar equations of the form:

01 (y, z, 6; 6, c, d, e, /) = 0 (3.5)

where y,z, and 6 are the position and orientation of the manipulated body, and 6,c,d,e and /

are the regression model’s unknown parameters. We note that the parameters in Equation

(3.5) have physical meaning. For example, pair (c, d) gives the position of the vertex in the

contact, relative to frame Ff, in Equation (3.3), and relative to frame Fa Equation (3.4).

This fact allows us to obtain the actual value of parameters by measurement; something we

use later to verify the accuracy of parameter values obtained from the regression analysis.

For any planar task with a single-manipulated object, Equations (3.3) and (3.4) form

the regression models of all constraints in the task. The spindle-assembly task is a planar

task consisting of two manipulated objects (the spindle head and spindle body) with a

single degree of freedom between them. Then a set of four regression models exists for the

spindle insertion task. We have seen how the first two models correspond to constraint

66

CHAPTER 3. CONSTRUCTING CONFIGURATION SPACE

Figure 3.3: Regression model derivation for constraints caused by spindle head contact
with the left support

types bev and bve. The second two models correspond to constraint types hev and hve.

We show in Figure 3.3(a) how the regression model for constraints of type hev are given

by the vector equation:

(aA + bF> + cC — aB) • an — 0 (3-6)

and in Figure 3.3(b) how the regression model for constraints of type hve are given by:

(aA + + CB — aC) • bn — 0 (3-7)

Both vector equations (3.6) and (3.7) can be expanded to give scalar equations of the

form:

(f)2{y,z,6,5-,b,c,d,e,f) = 0 (3.8)

where the additional variable £ in (3.8) compared to (3.5) describes the position of the

spindle head relative to the spindle body. We note that our regression models (3.5) and

(3.8) are non-linear in parameters 6, c, d, e and / . However each model can be made linear

in the set of transformed parameters B 2 . . . Bn by appropriate rearrangement of variables

67

CHAPTER 3. CONSTRUCTING CONFIGURATION SPACE

y,z,0, and S into a set of transformed variables X\ . . . X n [57] 6. That is, we can write a

linear regression model for each constraint type in the general form:

Note that we linearize each model in this way in order to simplify the regression problem

to be solved in the next section.

3.5.2 R egression A nalysis

With the model and data set determined for a c*m, the regression analysis can proceed.

We first form a system of linear equations out of the model and data set, of the form:

where X is the data set, whose ith row we denote as X \{, . . . , X Ui. Values in the data set X

will contain some level of error since they are measured values returned by the Polheinus

position sensor 7. The idea in regression is to form a system of equations (3.10) that is

over-constrained. The over-constraint is then used to minimize the effect of error in the

data set X by finding parameters B 2 , . . . , Bn that see the model best fit the points in the

data set. There are a number of ways that best fit can be defined [131]. We choose the

total least squares fitting method [44] (also known as linear orthogonal regression). Here

the best fit is defined to occur when the Sum Square Error (SSE) is minimized, where SSE

is given by:

6Recall that n denotes the dimension of C-space.
7Measurement made by any sensor will contain some level of error. For example, because measurements

made by the Polhemus sensor are transmitted as an electromagnetic signal, they can have errors introduced
by metallic objects or stray magnetic fields existing in the vicinity of the sensor.

[l,B2, . . . , B n][Xu . . . , X n]T = 0 (3.9)

x [i , b 2, . . . , b „]7' = o (3.10)

(3.11)

68

CHAPTER 3. CONSTRUCTING CONFIGURATION SPACE

where q is the number of rows in the data set. Geometrically the approach can be inter

preted as fitting to the data set, a hyper-plane which minimizes the sum of the squared

Euclidean distances between each point in the data set and the hyper-plane. To solve

equation (3.11) for the unknown parameters £?2 to Bn, we use the method based on Sin

gular Value Decomposition [21] outlined in [44]. We have chosen to use the total least

squares fitting approach because it is the most suitable method for our situation for the

following reasons. First, all variables X \ . . . X n in the model contain error. This is in

contrast to the more widely adopted fitting approach of ordinary least squares [57], where

only one variable in the model is assumed to contain error. Second, it is reasonable to

assume that the error in each variable is independent of the error in other variables, and

that the error in all variables are normally distributed with zero mean and equal variance.

3.5.3 R esu lts

Table 3.3 shows the results of using regression analysis to find primitive C-surface equations

for the spindle-assembly task. The first column in the table lists each distinct primitive

C-surface c,*m in the demonstration set, while the second and third columns show the

contact formation and constraint p*m defining each. Columns four to eight show two rows

of parameter values for each c*m: an upper row showing the parameter estimates obtained

by regression analysis (where the hat on each symbol 5,c,d,e,/ signifies that each value is

an estimate), and a lower row showing a set of parameter values obtained by measurement

(ie. the bottom row shows the true parameter values). Finally, column nine in the table

lists the states that contributed to the data set of each c*m.

The parameter estimates determined by regression can be seen to range in their ac

curacy. In some cases the estimates were excellent, eg. c^3, c4, c^4, Cg while in others

they were less accurate, eg. c2, c3, c4, Cj, c\2. Two requirements for accurate parameter

estimates exist. The first is a sufficient amount of data, ie. that the system of equations

formed by the data set in the regression analysis is sufficiently over-constrained. In our

case, the position sensor was capable of data output at a rate of 120 Hz, so sufficient

69

CHAPTER 3. CONSTRUCTING CONFIGURATION SPACE

c* Contact
Formation Pm

b c d e / States in Data Setb c d e /

Cl bev-1 0.008 0.524 0.227 0.019 -0.998 {DO 22,21,24,21,27 (D2) 27 (D3) 21,29,28
{DO 27 {DO 21,24,21,30 (D6) 21,29,280.011 0.525 0.223 0 1

C$ C bev-2 0.002 0.612 0.316 0.992 0.127 {DO 38 {D2) 38 {DO 76,38,770.011 0.540 0.223 1 0

c3 [^ bev-9 -0.023 0.523 0.310 0.730 0.634 {DO 66,610.011 0.570 0.223 0 1

< E J bve-1 0.466 0.086 0.016 -0.972 0.234 {DO 20,220.525 0.086 0.011 -1 0

C5 [3 bve-2 0.183 0.096 0.002 0.033 0.999 {DO 54,47,1 {D2/D3/D0 55,54,47,1
{DO 47,1 {DO 79,48,47,10.213 0.086 0.011 0 1

c6 [- 3 bve-3 (Di) 47,1 (D2) 47,1 (D3) 47,1 (D4) 77,43,
47,1 (Os) 49,78,79,48,47,1 (Oc) 47,1

0.581 0.078 -0.004 0.996 0.088
0.540 0.086 0.011 1 0

C7 C 4 bve-4 0.447 -0.067 -0.118 -0.997 0.079 {DO 65,60 {DO 65,60 {DO 65,600.570 0.086 0.011 -1 0

C8 C J bve-12 0.191 0.118 0.043 0.001 0.996 {DO 33,760.223 0.086 0.011 0 1

C9 k] hev-2 0.018 0.564 0.372 0.019 -0.998 (O2) 75,6,7 (Dt) 75,6,7-0.011 0.540 0.373 0 -1

C10 k ’ hev-5 0.024 0.512 0.353 -0.999 -0.105 {DO 4,740 0.525 0.373 -1 0

C11 F] hev-8 {DO 11,66,61,56,49,78-0.030 0.538 0.393 -0.985 -0.120
0 0.570 0.373 -1 0

C12 C c] hve-1 0.470 -0.097 0.157 0.157 -0.988 {DO 24 {DO 240.373 0 -0.011 0 -1

C13 £] {D\)27,8,38,8,54,47,1 {D3/D6) 28,9,65,60,
55.54.47.1 {DO 7,8,27,8,38,8,9,65,60,55,
54.47.1 {DO 7,8,27,8,33,76,38,77,43,47,1

hve-2 0.377 0.005 -0.012 0.009 -0.997
0.383 0 -0.011 0 -1

C*4 L :] hve-3
0.366 -0.007 -0.014 0.084 -0.996 {DO 5,75 {DO 74,5,750.373 0 -0.011 0 - 1

C15 ^] hve-5
0.599 -0.006 -0.014 0.084 -0.996 {DO 9,65,60,55 {DO 9,65,60,55

{D6) 9,65,60,550.560 0 0.011 - 1 0

C 16 G *] hve-12 0.764 0.015 0.101 -0.980 0.259 (Os) 79,480.560 0 0.011 - 1 0

Table 3.3: Results of regression analysis for the spindle-assembly task

70

CHAPTER 3. CONSTRUCTING CONFIGURATION SPACE

data was generally available for all c^. The second requirement for accurate parameter

estimation is a good range of data. ie. that the demonstrator traces out paths over a

wide range on the C-surface. This was the reason for less accurate estimates in our case.

For c*m with a number of paths over distinct areas of the C-surface, eg. c^3, cj, Cg, the

parameter estimates were excellent. However, for cases where the range of data was more

limited, less accurate parameter estimates resulted.

There were two reasons why paths of limited range were traced out on a in the

demonstration. The first was because the was only briefly visited, eg. c3, c\, c*2l

c\6. For example, constraint bve-1 was briefly visited; existing in only two states (20 and

22) in demonstration D\. This has resulted in the less accurate estimates for c-surface

c\ shown in the table. What is required for this type of is a larger demonstration

set so that more paths on distinct parts of the C-surface become available. That is, the

demonstration must contain sufficient information about a region in C-space if our method

is to determine an accurate representation of the region. The second reason for limited

path range on a c*m was because the geometry of the task limited the range of motion that

could be demonstrated, ie. that the only exists over a small region in C-space. For

example, column nine of Table 3.3 shows that many paths contained constraint bve-3, so

one would expect a good range of paths on Cg, and a set of precise parameter estimates.

However, the table shows a difference between the parameter estimate values and their

true values for bve-3 of up to 10 percent. In this case, the range of motion that can be

demonstrated is naturally limited by the geometry of the task, ie. the spindle cannot

move very far from an orientation aligned with the 2-axis because it is lying between the

rebates in each support. Although parameter estimates for this type of can differ by

up to 15 to 20 percent from the true values in some cases, these estimates still do in fact

provide an accurate description of the c*m over the limited range of motion allowed by the

task. That is, for noise removal purposes these parameter estimates provide an accurate

description of the c^. Noise removal means deriving noise-free paths that lie on a c*m.

Parameter estimates that describe a c*m well over the limited range allowed by the task

71

CHAPTER 3. CONSTRUCTING CONFIGURATION SPACE

are useful because our derived noise-free path will move onto a new C-surface (ie. the

assembly process will move into a new discrete state) before reaching regions on a c*m

described badly by the parameter estimates. The majority of the c*m with less accurate

parameter estimates in Table 3.3 do so for this reason, eg. c£, c£, Cg, c£, c§, c*x, c\5. So

many c*m of this type exist for the spindle-assembly task because only a very limited range

of spindle motion is possible when it is close to fully inserted. Note how the c*m just listed

correspond to constraints that occur when the spindle is lying between the rebate in each

support.

Recall that in some cases the gnm-process of Section 3.4 resulted in the presence

of repeat constraint estimates. For example, we saw how hve-1 and hve-3 were repeat

constraint estimates found for the true constraint b-8 (see Table 3.2). It was stated at the

time that repeat estimates do not prevent us from achieving noise removal in PbD. The

results in Table 3.3 show why this is the case. For regression analysis, we treat the repeat

estimates of a constraint as completely distinct constraints, ie. parameter estimates are

obtained separately for each. Since each repeat estimate has a data set containing points

generated by the same true constraint, the parameter estimates obtained for each should

all reflect the true parameter values of that constraint. However the problem with repeat

estimates, and the reason we identified them in Section 3.4 as being undesirable, is the

data set used for each will be smaller than it could have been, ie. smaller than the data

set formed by combining data sets of each repeat estimate. Smaller data sets can mean a

less diverse range of points on a 4 , and so can lead to less accurate parameter estimates.

For example, more accurate parameter estimates for both c\b and c*6 may have resulted

if they had been correctly identified as the same constraint.

Accurate Estim ates where Most Required We have seen how our method provides

a set of primitive C-surface equations useful for achieving noise removal in PbD. Prior to

concluding work in this chapter, we identify an important feature of our method regard

ing its applicability to noise removal in PbD. We note that our method has the natural

72

CHAPTER 3. CONSTRUCTING CONFIGURATION SPACE

tendency to generate an accurate description of c*m where noise removal is most in need.

We most desire noise removal for c*m in two categories. First, for c*m pivotal to completing

the task. In our spindle insertion task, c |3 is a of this type. It is visited at some point

in every demonstration, and must be visited for the task to be successfully completed.

We desire an accurate description of such c*m so that “noise-free” paths derived for the

robot on these exactly reflect the true topology of C-space. The derived paths must

be of high quality because they will be used often and are critical to the completion of

the task. Our approach tends to provide accurate estimates for this type of because

the constraints of such c*m are generally visited often in the demonstration, leading to a

large data set with good range. Constraints hve-2, bev-1, bve-3, and bve-2 are pivotal

constraints in the spindle-assembly task. Note how our method has provided accurate

parameter estimates for the c*n of these constraints.

The second category of where we desire noise removal are those on which partic

ularly noisy paths were demonstrated. Our approach will tend to produce an accurate

description of these because noisy paths by definition tend to visit diverse parts of a

C-surface. For example, we highlight the parameter estimates obtained for c |0 shown in

Table 3.3. These estimates are quite accurate given that only one path from the demon

stration set was available for the regression analysis. The reason for accurate parameter

estimates here was because a relatively noisy path was demonstrated. The human pro

duced a path that saw the spindle orientation move from between 6.5 and 39 degrees to

the z-axis, and 0 mm to 11.2 millimeters of spindle compression. In comparison we see

the parameter estimates for c\ are less accurate, even though roughly the same amount of

data was available in that case. The motion demonstrated on c\ was relatively noise free,

with the spindle moving in close to a direct line through state 20 to state 22.

73

CHAPTER 3. CONSTRUCTING CONFIGURATION SPACE

3.6 C o n c lu s io n

We have presented an approach for determining a partial knowledge of C-space for a task

from demonstration. It was presented as a means for obtaining geometric information

about a task for PbD in service robotic environments. We noted that an apriori-known,

geometric task model is not generally available in such environments. The method we pre

sented had the advantage over usual geometric-model-based approaches to constructing

C-space of being demonstration based. That is, it provides a valid, alternative method for

constructing C-space when a geometric model of the task is not available. A limitation of

the approach is that sufficient information about a region in C-space must be available in

the demonstration before an accurate description of that region can be determined. For

the spindle-assembly task we saw in the majority of cases that sufficient information in

the demonstration existed. An accurate description of C-space topology then resulted.

However, in a small number of cases, less-accurate descriptions resulted because a region

in C-space was visited only briefly in the demonstration. Our aim in this thesis is to derive

noise-free, efficient and reliable control commands for the robot. That is, we should avoid

deriving commands that traverse regions of C-space visited only briefly in the demonstra

tion, since our description of that region may not be accurate. We will present later, in

Chapter 5, a method for selecting task-level execution strategies so that control commands

with exactly this property are avoided.

74

C h a p te r 4

Low -level C o n tro l C o m m a n d

S y n th esis from D e m o n s tra tio n

4.1 In trod u ction

A core part of PbD is determining low-level control commands to be used by the robot in

its execution of the task. These control commands must be based on the skillful actions

used by the human in the demonstration. However, it is well known that humans can

include in the demonstration, actions that are sub-optimal. Then demonstrated actions

should not be used directly as control commands for the robot. Methods in PbD are

required to identify and remove any sub-optimality from demonstrated actions so that

robot control commands encode efficient and skillful execution of the task. The focus

of this chapter is on presenting such a method. We saw in the previous chapter how a

partial knowledge of C-space could be derived for a task. Our work in this chapter is based

around that knowledge of C-space. We present a method that uses C-space information

to determine from demonstration, a noise-free set of control commands that will see the

robot efficiently complete the task.

This chapter is set out as follows. In Section 4.2 we formulate more precisely the

problem to be solved. We identify that the control commands to be derived consist of

75

CHAPTER 4. LOW-LEVEL CONTROL COMMAND SYNTHESIS

two parts: a force control part, and a position control part. Section 4.3 concentrates on

synthesising the position control part of the command. A method based on the well known

road-map approach to path planning is presented. We use the method to derive position

control commands that encode efficient execution of the spindle-assembly task. In section

4.4 we synthesise the force control part of the control command. A force control command

is derived that allows the robot to manipulate task parts in contact without chattering,

losing desired contacts, or gaining undesired contacts. Finally, we end the chapter with

Section 4.5, where the conclusions for this work are stated.

4.2 P ro b le m F o rm u la tio n

Our aim is to derive a set of control commands that see the robot complete the entire

task. However, recall from Chapter 2 the details of our HDS skill model. Remember how

the Event Path Planner (EPP) component of the HDS encoded as a desired event path a

sequence of discrete events to achieve the task. It was then the role of the Discrete Event

Controller (DEC) to determine a control command to achieve each event in that sequence.

Then, in the context of HDS modeling, our problem here is to derive a functional DEC

from demonstration. That is, our problem is to determine a noise-free control command

that achieves each event in the desired event path.

Determining a desired event path that will achieve the task is the topic of chapter 5 in

this thesis. However, we note here that work in Chapter 5 determines a desired event path

using only demonstrated events. That is, to prepare for work in chapter 5, our problem

here is to synthesize a DEC that can determine a control command between any two states

in A d for which a demonstrated event exists (we showed A d in Figure 2.7). Recall from

Chapter 2 how we denoted the desired event path as o. Denote as the wth event in

the sequence of events that is a. Remember also from Chapter 2 how we denoted the

control command output by the DEC as u(t). Then our problem here is can be stated as

deriving a u(t) to achieve each in a. We note that a specifies a sequence of events that

76

CHAPTER 4. LOW-LEVEL CONTROL COMMAND SYNTHESIS

will complete the task, but that it also indirectly specifies a sequence of states, ie. the

sequence of states traversed if all events in a are achieved. Denote this state sequence as

the desired state path, and assign it the symbol A. Then each is a transition between

two states in A. Denote the states between which t° passes as 7^ and 7 *+1. Then our

problem of deriving a u{t) that triggers event corresponds to finding a u(t) that can be

applied in state 7^ in order to reach state 7* , j.

We saw in Chapter 2 how the DEC outputs u(t) to the continuous controller component

in the HDS, and that we selected a hybrid position/force controller as our continuous con

troller. Then the DEC derived in this chapter must output a control command consisting

of both position and force control parts, ie. u(t) must be of the form:

u(t) = [P((),F(t)]r

where for our work here, we specify P(£) as a sequence of 3 x 1 position vectors p of the

form:

p = [y,z,0]T

and F(t) as a sequence of 3 x 1 1 force vectors of the form:

fp = [Fy,Fz,T]T

where Fy and Fz signify force in the y and z directions, T the torque in the direction

perpendicular to the y-z plane, and fp is the force to be commanded at configuration p in

the task.

Let pp be the time derivative of P (t) at p. Then, a well known requirement on vectors

pp and fp is that they must be orthogonal [73, 53, 69]. That is, it is not generally possible

to command force and velocity in the same direction. De Schütter et. al. [108] provide a

method for determining orthogonal vectors pp and fp. We saw how our problem involves

deriving a u(t) in state 7^. Let p be the current task configuration in 7^, and recall

that in C-space, p will specify a point on the C-surface of 7*. Denote the C-surface of

7^ as c*. Then De Schutter’s work identified that C-space is a manifold, in which exist

1 While C-space for our spindle-assembly task has dimension four, both p and f have dimension three
because the compression Ö between the spindle head and body is not directly controllable. That is, 6 must
be controlled indirectly though control in the y, z, and 9 directions.

77

CHAPTER 4. LOW-LEVEL CONTROL COMMAND SYNTHESIS

C-surfaces, which themselves are manifolds. He identified that a tangent space can be

determined at point p on our C-surface c*, and that pp must lie in the tangent space. He

identified that fp must lie in the dual space of the tangent space. Work by De Schütter

means our problem of deriving a noise-free control vector u(t) in 7 ^ can be restated as

two sub-problems:

(i) determine a noise-free position control command P(£) containing vectors p that specify

points in C-space lying close together and exactly on c*, ie. points in p lying close

together and exactly on c* mean that p;, will always lie tangent to c^. By exactly

on we mean that each p in P (t) satisfies the equation of c^. Remember that 7 ^ is

a state visited in the demonstration, and so we have an equation for c* from work

in the previous chapter.

(ii) determine a noise-free force control command F (t) containing an fp for each p in

P(t), where fp is orthogonal to at p.

We present work to achieve sub-problem (i) in Section 4.3, while work to achieve sub

problem (ii) is presented in Section 4.4.

4.3 P o s itio n C o n tro l-C o m m a n d S y n th e s is

4.3.1 P rob lem Form ulation

We have seen how one requirement on the method for determining P (t) is that all p

must specify points lying exactly on c*. We now specify five further requirements on the

method. To assist in specifying these requirements, we present in Figure 4.1 an example

of what our P (t) derivation problem means in C-space. Recall that in Chapter 2 we

denoted as Ccon the contact defining part of C-space. Figure 4.1 shows a simple example

of one possible part of Ccon for our assembly task. The non-shaded region in the figure

corresponds to a 2-D C-surface of one of the states in the task. We have labelled this

C-surface as c,4 , and the state to which it corresponds (in parentheses) as 7 a - Recall from

78

CHAPTER 4. LOW-LEVEL CONTROL COMMAND SYNTHESIS

Cc a c)

Pi__ I

demonstrated
path

a D)
Figure 4.1: An example of Ccon used to present five requirements on our method for
position control command synthesis

Chapter 2 how the boundaries of a C-surface ca are defined by the C-surfaces of states

neighboring 7 a - For our example in Figure 4.1, lines labelled c#, cc, and cp correspond to

C-surfaces of states neighboring j a , and hence define boundaries on ca• We have labelled

(again in parenthesis) the states corresponding to c#, cc, and cp as 7 b , 7 c, and 7 £>. We

know that in C-space, a demonstration is represented as a path that in general will visit

Ccon• We show in Figure 4.1 a demonstrated path that visits our example region of Ccon.

The demonstrated path shown consists of five segments, labelled 1 to 5. Note how different

segments of the path lie on distinct C-surfaces in our example region, ie. on ca to cp.

For example, segments 2 and 4 of the path exist on c a -

With an example of the problem in C-space in place, we are now in a position to state

the requirements on our P (t) derivation method. We identify that, in addition to our first

requirement that all p lie exactly on c^, five further requirements on the method exist.

They are:

79

CHAPTER 4. LOW-LEVEL CONTROL COMMAND SYNTHESIS

1. the start and end points of P (t) must lie on the boundaries of c

Denote the start and end points of the P (t) to be derived in state 7* as and

p*e. Our problem is to derive a P (t) in 7* that will reach 7*+1. Clearly then,

both p^s and p^e must lie on boundaries of c^. More specifically, our end point

p*e must lie on the boundary between c* and c*+1, where c^+1 is the C-surface of

7*+1. The position of our start point p*s will depend on the state previous to 7*

in the desired state path, ie. on state Tw-i- Denote as c^)_ 1 the C-surface of 7*_1.

Then our start point p^s must lie on the boundary between and c^_1. Clarifying

our requirement here with an example, if 7#, 7a , and 7c in Figure 4.1 correspond

respectively to 7*_1? 7^, and 7^+1, then the requirement on P (t) is that its start

point must lie on the boundary c# and its end point on boundary cc .

2. the start and end points p^s and p^f must be demonstrated points:

Many points on a boundary of exist. Our next requirement is that points p^5 and

p^,t must be demonstrated points. A demonstrated point on the boundary between

c^_x and c ,̂, and between and c^+1, is guaranteed to exist because we know

and r^ +1 were demonstrated events. In some cases, many demonstrated points on

a boundary of will exist, eg. in Figure 4.1, all points in demonstrated segment 1

exist on the boundary between c \ and Cß. To make our problem more concrete in

this thesis, we take the first and last demonstrated point in state 7^ as the start and

end points p*s and p^c of our control command P(t), eg. if our aim in Figure 4.1

is to derive a P (t) passing through 7a from 7b to 7c, then we take p 1 as its start

point and P2 as its end point. Note that the combination of requirements 1 and 2

mean that two types of P (t) need to be derived by our method. First, those derived

between demonstrated points where a demonstrated path exists, eg. in Figure 4.1,

between points p\ and P2■ Second, those derived between demonstrated points that

are not directly connected by a demonstrated path, eg. between points p\ and p3.

3. the method must be valid for c*’s of dimension ranging from 1 to n

80

CHAPTER 4. LOW-LEVEL CONTROL COMMAND SYNTHESIS

We want the method to derive paths for any state in the task. The no contact state

(ie. state 2 in A) is a special case because it does not define a C-surface as such, but

can be viewed to define a hyper-surface of dimension equal to the dimension of C-

space, (ie. of dimension n). Our first requirement is that our method can derive P (t)

on this hyper-surface. The remaining states in the task define C-surfaces ranging in

dimension from n — 1 to zero. States with C-surfaces of dimension zero correspond to

spindle configurations with zero degrees of motion freedom. For example, in Figure

4.1 a C-surface of dimension zero is formed by the intersection of single-dimensional

C-surfaces cb and cc, or by cc and C£>, etc. Zero dimensional C-surfaces correspond

to a single point in C-space. Noisy demonstrated actions cannot exist on C-surfaces

of dimension zero, hence our method need not be valid for such C-surfaces. Then,

in total, our method must be valid for surfaces ranging in dimension from 1 to n.

4. the method must generate a P (t) with p ’s lying within known boundaries to

We know that boundaries on c^ are formed by C-surfaces of neighboring states to

7 ,̂. According to requirements 1 and 2, our desired P (t) will intersect with two of

these boundaries, ie. at points p s and pe. However, a further requirement on the

method is that it generate p ’s lying within all other boundaries on c^. That is, a

P (t) intersecting with boundaries other than c^+1 at p s, and c^_1 at pe, will cause

the assembly process to move into a state that is not 7 *+1

5. the method must cope with the existence of unknown boundaries to c^

Only a partial knowledge of C-space was derived in the previous chapter. That is,

unknown boundaries to c* can exist. The method we present must derive a P (t)

that traverses regions on c^+1 where unknown boundaries are unlikely to exist.

4.3.2 O verview

Prior to presenting the details of a method that fulfills our six requirements, we first provide

the reader with an overview of the approach. We have seen that not all boundaries on c*

81

CHAPTER 4. LOW-LEVEL CONTROL COMMAND SYNTHESIS

are guaranteed to be known. We show in Figure 4.2 the same example region of Ccon that

was previously presented in Figure 4.1. Recall that cb, cc and cp were known boundaries

on ca• In Figure 4.2 we show an additional boundary on cb (labelled ce) that is unknown

(ie. it was not visited in the demonstration). Then we note that some portion of a known

boundary may exist behind an unknown boundary, eg. the segments of cb and cd labelled

B3 and D3, and hence do not really divide an “obstacle-free” region from an “obstacle

defining” region. We note that a boundary on ca is guaranteed to divide obstacle-free

and obstacle-defining regions along any demonstrated segment that exists on a boundary

of ca, eg. along segments 1, 3, 5. We call such segments, boundary segments. We observe

that if the C-surface is of finite size (as is usually the case), then a point immediately in

front of the boundary segment will be obstacle free, eg. points Q i , Q2 , and Q3 . We use

this observation as the basis for growing obstacle free regions on the C-surface. We grow

a free region in front of each boundary segment of a C-surface, and use path planning

[65] techniques to derive noise-free paths within the region. We note that if the region in

front of a boundary segment is grown very small, then we are guaranteed that it will be

obstacle free. However a small region is of limited use for path planning purposes. Hence

we grow a region of useful size and accept that the region will only likely be obstacle

free. We call such a region a likely free region. We use a road-map type approach to path

planning within each likely free region, similar to those presented in [66, 81, 124], Points

are randomly generated within the region, and a simple path planner is used to create a

connectivity graph C that records which points have an obstacle free path between them.

Apart from points in likely free regions, we also know that points in demonstrated paths

interior to the known boundaries of a C-surface are obstacle free, eg. for ca in Figure

4.2, points in segments 2 and 4. We call such segments interior segments. Again we

use a simple path planner to create a connectivity graph V that records the connectivity

between points in different interior segments. Finally we combine graphs C and V into a

graph /C that represents the connectivity of all obstacle free points on the C-surface. We

identify the nodes in /C that represent the start and end points of P (£). We search for the

82

CHAPTER 4. LOW-LEVEL CONTROL COMMAND SYNTHESIS

OBSTACLE
FREE NON

OBSTACLE
FREE

demonstrated

Figure 4.2: Demonstration segments identify regions on a C-surface that are likely to be
obstacle free

minimum cost path existing in 1C between these nodes to give the final noise-free path.

The process can be divided into four distinct steps. They are:

• Creating boundary segments

• Growing likely free regions

• Creating interior segments

• Creating a connectivity graph /C, and searching /C for our final noise-free P(t)

We present the details of each step in the following four sub-sections.

4 .3 .3 C re a tin g B o u n d a ry S egm ents

Three steps are required to create boundary segments for 7 *, (i) finding boundary states

to 7 *, (ii) identifying raw boundary segments for the boundary states found in (i), and (iii)

projecting points in raw boundary segments to create a set of clean boundary segments.

83

CHAPTER 4. LOW-LEVEL CONTROL COMMAND SYNTHESIS

To achieve (i), recall that each state in the HDS is defined by a set of constraints. Denote

as the set of constraints that define 7*. Then we choose a boundary state of 7^ as any

other demonstrated state that is defined by the set of constraints Llbndi where Obnd. 7)

That is, constraints present in 7^ will also be present in its boundary states. Step (ii) is

then straightforward. We select as a raw boundary segment, any path demonstrated in

the boundary states of 7*. Step (iii) is required because points in raw boundary segments

will not generally lie exactly on the C-surface of the boundary state. That is, the regres

sion analysis of Chapter 3 derived C-surface equations that best-fit raw demonstration

data. We create clean boundary segments by “orthogonally projecting” all points in a

raw boundary segment onto the C-surface of the boundary state (in detail, we achieve

this orthogonal projection for each point in a raw boundary segment by finding - using

standard optimisation techniques - the point on the C-surface lying a minimum distance

from the “raw” point). From now on, we will refer to clean boundary segments simply as

boundary segments.

We show as an example in Figure 4.3 the results of creating boundary segments for

state 8 of the spindle insertion task. The figure shows points in boundary segments for

four boundary states of state 8. It shows these points in state 7 in Figure 4.3(a), in state

33 in Figure 4.3(b), in state 9 in Figure 4.3(c), and in state 54 in Figure 4.3(d). Note that

we present boundary segment points in the figure as spindle configurations in the physical

workspace rather than as single points in C-space. This is necessary due to the difficulties

involved with graphically presenting points in a 4-D space. Note also that only a subset

of points in each boundary segment are presented for reasons of clarity, where the subset

was chosen to reflect the range of points existing in the boundary segment.

Two main things can be said about our examples in Figure 4.3. First, boundary states

to state 8 have been correctly identified. Set {hue — 2} is the constraint set that defines

state 8. Figure 3.1 confirms that the constraint sets of states 7, 33, 9, and 54 also contain

constraint [hue — 2}. Second, points in each boundary state result in a precise contact

between the spindle and supports. That is, configurations shown in Figure 4.3 do not

84

CHAPTER 4. LOW-LEVEL CONTROL COMMAND SYNTHESIS

(a)

(c)

(d)

Figure 4.3: Four examples of boundary segments for state 8, (a) in state 7, (b) in state
38, (c) in state 9, and (d) in state 54

85

CHAPTER 4. LOW-LEVEL CONTROL COMMAND SYNTHESIS

see the spindle lose contact with, or pass into the supports. This is a consequence of the

projection step in the process, ie. we ensured that points in the final boundary segments

lay exactly on the C-surface of the boundary state.

4.3 .4 G row ing Likely Free R egions

We grow a likely free region by generating a region of points on our C-surface immedi

ately in front of a boundary segment. Each point in the region is determined as follows.

First, a point R in the boundary segment is randomly selected. Next, a distance value

dst2 is randomly chosen using the uniform probability distribution over the interval (0, md].

Parameter md denotes a maximum distance value, and determines how big the likely free

region is grown. A point in the likely free region is then determined by generating a point

Q that (a) lies a distance dst from R, and (b) lies on our C-surface c*. We saw how, in

addition to (a) and (b), point Q must also satisfy the condition that it lie within known

C-surface boundaries. We refer to the region on c* lying within known boundaries as the

bounded region for c* . For example, we present in Figure 4.4 a 2-D C-surface with six

boundaries c\ to Cß, each described by equations 0i = 0 to (pQ = 0 respectively. Here, the

bounded region consists of the union of regions labelled 1, 2, and 3. Note how the bounded

region defines a set of points on c* that are obstacle free, ie. we wish to generate only Q

lying within the bounded region of c*. We now present the details of how we ensure that

only Q lying inside the bounded region are generated.

Let fond = 0 be the equation of the C-surface for 7 ^ , a boundary state to 7*. That

is, equation (f>bnd — 0 defines a known boundary on our C-surface c^. Then we identify

that any point Q we generate will satisfy one of the following conditions:

-eps < (f)bnd \ Q < eps (4.1)

2Note that we use symbols in plain upright text to denote parameters of our P(f) derivation method.

86

CHAPTER 4. LOW-LEVEL CONTROL COMMAND SYNTHESIS

<t) j = 0 cf) 2 — 0 <t>3 = 0
< o > o

demonstrated
• • ■ • . path point set 2

point set 1

<t>5 = o

<t>6 = °

Figure 4.4: Example of how demonstrated points determine a set of valid bounded sub-
regions

tybndlQSi 6pS (4-2)

</w |Q>eps (4.3)

where | q denotes the equation fond evaluated at point Q, and where eps is a parameter of

small value. If (4.1) is satisfied, then Q lies on, or very close to the boundary, while if (4.2)

or (4.3) are satisfied, Q lies to one side of the boundary. We are never interested in Q’s

that satisfy (4.1). A Q lying exactly on the boundary is not obstacle free, and a Q lying

very close to the boundary may not be obstacle free (recall that the equations we derived

for C-surfaces in 3 are best-estimates that contain some error). Rather, we are interested

in generating Q that satisfy either (4.2) or (4.3). Note that the choice of whether we want

87

CHAPTER 4. LOW-LEVEL CONTROL COMMAND SYNTHESIS

Q to satisfy (4.2) or (4.3) will depend on which side of the boundary is obstacle free.

In general, there will be more than a single known boundary to our C-surface c L e t

rib denote generally the number of known boundaries on c*. Denote the equations of

boundaries 1 to rib respectively as:

(fibnd-l ~ 0? 06ncL2 — O5 • • • ? 0 bnd-rib = 0 (4-4)

We note that a Q which satisfies one or more equations in (4.4) will lie on a boundary

of the bounded region. We saw that we are not interested in such Q. Rather, we want

Q that lie on the obstacle free side of all boundaries by at least a distance eps. That is,

we must form a set of inequalities by casting each equation in (4.4) to be an inequality of

the form (4.2) or (4.3). Call such a set of inequalities a boundary inequality set. Then we

note that a boundary inequality set defines a region on our C-surface c*. For example,

one boundary inequality set for the boundary equations 0i — 0 to 06 = 0 of our example

in Figure 4.4 would be:

0i > eps, 02 < -eps, 03 < -eps,

0 4 > eps, 05 < —eps, 0 6 < —eps (4-5)

Then the region on the 2-D C-surface in Figure 4.4 that is defined by the boundary

inequality set (4.5) is region 1. That is, a point Q is guaranteed to lie in region 1 if it

satisfies all inequalities in (4.5). We note that in general the bounded region on c* cannot

be specified by a single boundary inequality set. Denote as a bounded sub-region the

region defined by a single boundary inequality set, ie. region 1 in Figure 4.4 is a bounded

sub-region. Then, we identify that the bounded region of a C-surface can be specified as

a union of bounded sub-regions. For example, the bounded region in Figure 4.4 is given

by the union of bounded sub-regions 1, 2, and 3. A point Q can then be tested to see if

88

CHAPTER 4. LOW-LEVEL CONTROL COMMAND SYNTHESIS

it lies within the bounded region by testing to see if it lies within any of its component

bounded sub-regions. The question is then one of how to select the set of bounded sub-

regions that make up our bounded region. Note that not all bounded sub-regions that can

be generated for a certain set of boundary equations will be obstacle free. For example,

region 4 in Figure 4.4 is a valid bounded sub-region, however region 4 defines an obstacle.

Our solution is to use the set of demonstration points on the C-surface to determine

what bounded sub-regions are valid. Let fi be a possible bounded sub-region for c*, and T

be the boundary inequality set that defines fi. Then we say that fi is a valid bounded sub-

region if there exists a point in the demonstration set on which satisfies all inequalities

in T. For example, in Figure 4.4 the demonstrated points in point-set 1 show region 1

to be a valid bounded sub-region because they satisfy all inequalities in (4.5). Similarly,

demonstration point sets 2 and 3 show regions 2 and 3 as valid bounded sub-regions.

Region 4 is not included as a valid bounded sub-region because it does not contain any

demonstrated points. This approach is a conservative solution because we may miss some

valid bounded sub-regions in which no demonstrated points exist. However, we take this

approach because it guarantees that we do not generate Q lying in bounded sub-regions

that define obstacles.

We now present some examples of the likely free region generation process. We show

in Figure 4.5 the points in four likely free regions that were generated on the C-surface c^8

(ie. the C-surface of state 8 in A. The likely free regions shown were grown from boundary

segments in state 7 (Figure 4.5(a)), in state 38 (Figure 4.5(b)), in state 9 (Figure 4.5(c)),

and in state 54 (Figure 4.5(d)). Note that for clarity, we present only a subset of all points

generated for each likely free region.

There are five main things to note about the spindle configurations in Figure 4.5. First,

all configurations correspond to points in C-space that have been generated a distance eps

away from boundaries on c*4®. For example, in Figure 4.5(c) all configurations maintain

some distance between the base of the spindle and the lower support. Second, there exist

for all boundary segments in Figure 4.5, precise contacts between the spindle head and

89

CHAPTER 4. LOW-LEVEL CONTROL COMMAND SYNTHESIS

(d)

Figure 4.5: Spindle configurations generated for a number of likely free regions in state
8. Figures (a), (b), (c) and (d) correspond to likely free regions generated from boundary
segments in state 7, 38, 9, and 54 respectively

90

CHAPTER 4. LOW-LEVEL CONTROL COMMAND SYNTHESIS

the rebate in the top support. This results because we enforced condition that points Q

were generated lying exactly on a c*, ie. exactly on cAs. Third, all configurations lie in a

region generally close to the boundary state. Recall that configurations lying “far” from

a boundary state are undesirable because they may violate unknown boundaries on a c^.

Note in Figure 4.5 how we do not produce such configurations. This is a consequence of

limiting points generated on c^8 to lie a distance less than md from boundary segments.

Fourth, all configurations correspond to points in C-space that do not violate known

boundaries. For example, note how in Figure 4.5(c) there exists no configuration where

the bottom of the spindle passes into the lower support, even though such a configuration is

“close” to our boundary segment in state 9. This occurs because our method only generates

points on a c* on the obstacle-free side of known boundaries. Fifth and finally, note how

each of the bounded regions in Figure 4.5 define by themselves only a small obstacle-free

region on c^8, but that together they provide an obstacle free region covering most of the

area of interest on c^8.

4 .3 .5 C reating Interior Segm ents

Denote as a raw interior segment a path demonstrated in state 7^. Recall that we saw

previously in Figure 4.1, two demonstrated path segments on ca labelled 2 and 4. Then

segments 2 and 4 are raw interior segments for cA. We use the term interior because

we know that, except for their start and end points, raw interior segments lie within

known boundaries of ĉ ,. Our aim here is to derive clean interior segments. There are two

requirements on clean interior segments to which raw interior segments do not comply.

These are (i) points in raw interior segments do not lie exactly on (ie. work in 3 derived

equations that best fit data points), and (ii) the start and end points in raw interior

segments do not lie exactly on the boundaries of c We achieve (i) by orthogonally

projecting all points in the raw interior segment onto c* (ie. using the same technique as

described for raw boundary segments in Section 4.3.3). For (ii), we take the start and end

points of each raw interior segment and orthogonally project them onto their respective

91

CHAPTER 4. LOW-LEVEL CONTROL COMMAND SYNTHESIS

boundaries. A set of clean interior segments is achieved by repeating steps (i) and (ii) for

all raw interior segments on c^. Prom now on, we will refer to clean interior segments

simply as interior segments.

(c)

Figure 4.6: Three interior segments determined for state 8. The interior segments were
derived from paths demonstrated in state 8, ie. from demonstration 4 (7-8-27) in (a), from
demonstration 2 (27-8-38) in (b), and from demonstration 1 (38-8-54) in (c)

In Figure 4.6 we show an example of the interior segment generation process. The figure

shows three interior segments that were produced on c%. An interior segment in shown

that passes through state 8: between states 7 and 27 in Figure 4.6(a), between states

27 and 38 in Figure 4.6(b), and between states 38 and 54 in Figure 4.6(c). There are

three things to note about the spindle configurations in each interior segment. First, there

92

CHAPTER 4. LOW-LEVEL CONTROL COMMAND SYNTHESIS

exist precise contacts between the spindle head and the rebate in the top support. Precise

contacts result here because we orthogonally projected points in raw interior segments to lie

exactly on Cg. Second, all configurations (except the start and end configurations) in each

interior segment correspond to points on Cg that lie within known boundaries. As such,

the interior segments shown do not accidently cause spindle/support collisions that would

see the assembly move into an incorrect state. Third, the start and end configurations of

each interior segment lie exactly in boundary states to state 8. For example, the start and

end configurations in Figure 4.6(c) correspond to points lying exactly on the C-surfaces of

state 38 and 54. Start and end configurations lying in boundary states result because we

orthogonally projected start and end points of raw interior segments onto the C-surfaces

of boundary states to state 8.

4 .3 .6 C reating a C on n ectiv ity Graph

The previous two sections have been devoted to generating points on our C-surface c

Two types of points were generated, points in likely free regions, and points in interior

segments. We show in Figure 4.7 a possible outcome of the point generation process for

a simple 2-D planar c*. The unshaded region in the figure corresponds to the bounded

region of our 2-D C-surface. Three likely free regions on our bounded region have been

identified (labelled A, B, and C). In addition, two interior segments (labelled r)\ and 772)

were also generated. Our aim in this section is to create a graph JC that represents the

connectivity between all generated points on a c^. For example, in our example in Figure

4.7, we wish to create a JC that represents the connectivity between all points lying in

likely free regions A, B, and C and interior segments 771 and 772. Such a graph should

have a node to represent each point in a likely free region or interior segment. It should

have arcs existing between nodes whose points are connected by an obstacle free path. In

addition, we assign to each arc in the graph a value equal to the cost of traversing the

obstacle free path it represents. We construct this graph JC in three steps, (i) we create a

graph C representing the connectivity between points in likely free regions, (ii) we create

93

CHAPTER 4. LOW-LEVEL CONTROL COMMAND SYNTHESIS

a graph V representing the connectivity between points in interior segments, and (iii) we

combine graphs C and V into 1C.

Figure 4.7: Example of points generated by our method for a simple, planar C-surface

Creating C: We first create a point set consisting of all points in all likely free regions

on c*. Then a node in C is created for each point in the point set. To construct arcs in

C we must determine two things for each pair of points in the point set,

(a) if the points are connected

(b) the cost of traversing between connected points

We say that two points Q1 and Q2 in the point set are connected if two conditions are

satisfied. First, that the straight line path between Q: and Q2 is obstacle free, ie. that

every point on the straight line lies within the bounded region of the C-surface. For

example, points Q1 and Q2 in Figure 4.7 have a straight line path between them that lies

fully inside the bounded region. Second, that the distance between Qx and Q2 does not

94

CHAPTER 4. LOW-LEVEL CONTROL COMMAND SYNTHESIS

exceed a maximum connected distance parameter mcdJ. We apply the second condition

for the following reasons. First, note that our point set will consist of points from distinct

likely free regions. We do not want to connect points in likely free regions that lie far

apart, eg. between points in likely free regions A and C in Figure 4.7. Using this approach

we are less likely to connect points on between which an unknown boundary exists.

Second, intermediate points on the straight line between Q1 and Q2 will not in general lie

exactly on the C-surface due to its curvature. However, if Qx and Q2 do not lie too far

apart, then intermediate points will lie close enough to the C-surface for the purpose of

checking whether they are obstacle free. Third, applying such a condition is advantageous

from a computational point of view. The number of points to be tested for connection

increases rapidly as the allowed distance between the points increases. Fourth and finally,

testing for connectivity only between points lying a distance less than mcdJ apart does

not really detract from the end performance of our method. That is, points lying far apart

that really should be connected, (eg. those existing in the same, or overlapping, likely

free regions), will be connected efficiently at the final stage of the process. In general they

will be connected by a compound path passing through a sequence of intermediate points,

where intermediate points are separated by a distance of less then mcdJ.

Our second requirement for creating the arcs in C was (b) to determine their cost. We

denote as w\ and V02 the nodes in V that represent points Q1 and Q2, and as d the arc in

V that connects vo\ and V02. Then we calculate the cost of $ as the distance between

and Q2. Distance is the appropriate measure of cost here, since we desire that a minimum

cost path in the final connectivity graph /C represents the shortest distance path on our

C-surface.

C reating V: We create V in two steps:

(i) create a distinct connectivity graph for each interior segment on c* (eg. distinct

connectivity graphs for 771 and 772 in Figure 4.7)

95

CHAPTER 4. LOW-LEVEL CONTROL COMMAND SYNTHESIS

(ii) combine graphs constructed in (a) into V .

Step (i) is straight-forward because the connectivity of points in any interior segment is

known, ie. apart from the start and end points, each point is connected to two other points,

a previous point, and a following point. We create a graph for each interior segment with

nodes and arcs that reflect this connectivity. We assign as costs to the arcs in the graph

the distance between each sequential point pair in the interior segment.

In step (ii) we must combine the graphs created in step (i) into a single graph V.

The process of combining these graphs means deciding if and where interior segments on

c* intersect, That is, we should create a connecting arc between two graphs T>\ and T>2

derived in step (i) when the interior segments r]\ and 772 represented by these graphs are

found to intersect, eg. at point D in Figure 4.7. We say that 771 and 772 intersect at points

Ri (in 771) and R2 (in 772), when the distance between Ri and R2 is less than a parameter

mcd_d. If this is the case, an arc is connected between the node in V\ that represents Ri

and the node in V2 that represents R2. Then V is created by repeating this process for

every possible Ri and R2 in our set of interior segments on c^.

Creating and Searching 1C: We create /C by combining graphs C and V. The idea is

to connect points in interior segments with those in likely free regions where an interior

segment passes through a likely free region (eg. along segments labelled 1,2,3 and 4 in

Figure 4.7). We create a K, that represents such connectivity as follows. For each point

R in each interior segment 77, find- a point Q in any likely free region that lies within a

distance mcdJ away. If such Q’s exist, then for each Q found, create an arc between the

node that represents point R in X>, and the node that represents point Q in C. Set the

cost of the arc to the distance between the points R and Q.

Once JC is achieved, then the solution to our problem of deriving a noise-free position

control command P (t) is straightforward. /C represents the connectivity of obstacle free

points on c^. Two of the nodes in /C are guaranteed to represent the start and end points

and p^e of P (t). Recall that we specify P(£) as a sequence of spindle configurations

96

CHAPTER 4. LOW-LEVEL CONTROL COMMAND SYNTHESIS

p, that pass between and p^e. Then to derive P (t), we determine a sequence of p

by conducting a search in /C for the minimum cost path between the nodes that represent

Pw s a i l d P ^ e -

4.3 .7 S ettin g P aram eters to A ppropriate V alues

The method we have presented for determining P (t) is based around a number of parame

ters, ie. md, dst, eps, mcdJ and mcd_d. A key issue in ensuring good performance from the

method is of setting these parameters to appropriate values. The purpose of this section

is to provide a guide for selecting appropriate values for the parameters in our method.

Our aim here is not to provide an in-depth analysis on what are the optimal values for

parameters. We leave this for future work. Rather, our aim is to present the set of simple

metrics that we used for setting parameter values for the experiments presented later in

this chapter.

md: Parameter md is the most important parameter in our method. Recall that the value

of md determines how large a likely free region is grown. A balance must be struck

in setting md between the benefit of large likely-free regions for path generation

purposes, and the risk of generating points that lie on the non-obstacle-free side of

unknown boundaries. We note that a good gauge on the value of md can be made

by looking at the length of the boundary segment from which the likely-free region

is grown. The probability of an unknown boundary passing close to our boundary

segment, but not passing through it, decreases as the length of the boundary segment

increases. That is, the larger the boundary segment, the larger md should be made.

For our experiments in this chapter md for each boundary segment was set to a

value of the length of the boundary segment multiplied by a constant value three.

We found empirically that the value three provided conservatively sized likely-free

regions that were still large enough to be useful for path planning purposes.

97

CHAPTER 4. LOW-LEVEL CONTROL COMMAND SYNTHESIS

dst: Once md is determined, parameter dst is also determined. Recall that we set the

value of this parameter as a random value between md and zero.

eps: The purpose of parameter eps is to ensure we do not generate points in likely-free

regions close to, or exactly on, known boundaries to a C-surface. The reason for

this approach was because the regression analysis of the previous chapter provided

only an estimate of the true equation for each boundary on our C-surface. That is,

each boundary on our C-surface will be formed by one of the primitive C-surfaces

identified in the previous chapter, and our equation for that surface will contain

error. A good estimate of the amount of error that exists is provided by the Root

Mean Squared Error (RMSE), a metric often calculated in regression analysis for

determining the “goodness of fit” [57]. Essentially the RMSE is the average dis

tance between a fitted surface and the raw data points from which the surface was

regressed. A RMSE value will result from the regression analysis for each boundary

on our C-surface. Then, for our experiments in this chapter, we set eps equal to

three times the RMSE value determined for a particular boundary when growing a

likely free region from that boundary. Three times the RMSE will encompass 99.8

percent of the raw data points if the error in the data points is a normally distributed

random variable, and so provides a conservative distance away from the boundary

from which points in our likely free region can be generated.

mcdJ: Parameters mcdJ had the purpose of deciding when two points in the same, or

distinct, likely free regions should be tested for connection. Recall that we did not

want to connect points in likely free regions that lay far apart, ie. because of the

risk that an unknown boundary to the C-surface may exist between them. Our aim

was to connect points in the same likely free region, or points in distinct likely free

regions lying close together or intersecting. Then, a value for mcdJ for a C-surface

that we found worked well was 5 percent of the average size of likely free regions on

the C-surface, ie. 0.05 times the average value of md for the likely-free regions on

98

CHAPTER 4. LOW-LEVEL CONTROL COMMAND SYNTHESIS

the C-surface.

mccLd: Parameter mccLd was used to determine if two interior segments on a C-surface

intersected. The value we used for this parameter was the maximum distance be

tween any two sequential points in an interior segment on the C-surface. That is,

even if interior segments happened to intersect where sequential points in one of

them lay far apart, the method would still recognise that these interior segments did

in fact intersect.

With a method for determining a value for each parameters in our approach, we can now

present the results for deriving a set of P (t) for the spindle assembly task.

4 .3 .8 R esu lts

We saw that our method can determine a P (t) between any two demonstrated points that

exist on the boundary of a C-surface. Even for the small demonstration set D\ to Dq,

the many demonstrated points on boundaries in each state mean that many possible P(t)

could be derived. In this section we choose to derive a subset of the possible P (t) that

could be derived. We choose for this subset those P (t) required for experiments in the

next chapter. That is, Chapter 5 has the purpose of determining a set of desired event

paths a that complete the task. We present in this section the results of deriving the P(£)

required for robot execution of those paths.

Table 5.2 shows the event paths that will be selected in Chapter 5 for execution by the

robot. We present here, in Table 4.1, the set of P (t) required in order to have the robot

execute these paths. In total, 33 distinct P (t) required derivation, and for the purposes of

simplified referencing, we have labelled in column 1 of the table each P (t) with a number

from 1 to 33. We know that each P(£) will be applied in some state 7 ,̂. It will be applied

in 7 * directly after the occurrence of event r^, with the aim of triggering in the assembly

process the event t£+1. We show in columns 2, 3 and 4 of Table 4.1 the 7 ^, and r ^ + 1

for each P (t). Note that 7 * will correspond to one of the states 7 ^ in A. The number

99

CHAPTER 4. LOW-LEVEL CONTROL COMMAND SYNTHESIS

P (0 lw Taw T a
U) + \ Demonstrated/

U ndemonstrated
Noise

Removed ?
Obstacle

Free ?
1 2 start “event” (2 ,5p Dem no noise Yes
2 5 (2 ,5 p (5 ,75p Dem Yes Yes
3 75 (5 ,75p (75, 6 p Dem no noise Yes
4 6 (75 ,6p (6 ,7 p Dem no noise Yes
5 7 (6 ,7 p (7 ,8p Dem No Yes
6 8 (7 ,8 p (8,54)-4 Undem n /a Yes
7 54 (8,54)'4 (54,47)^ Dem no noise Yes
8 47 (54,47)*4 (47, l p Dem no noise Yes
9 2 start “event” (2 ,21p Dem Yes Yes
10 21 (2 ,21p (21,29)^ Dem Yes Yes
11 29 (2U9)*4 (29,2s)*4 Dem no noise Yes
12 28 (29,28)^ (28,9)a Dem no noise Yes
13 9 (28,9)^ (9,6s)*4 Dem No Yes
14 65 (9,65)'4 (65,6g)-4 Dem no noise Yes
15 55 (60,55)^ (55,5 4) a Dem no noise Yes
16 54 (55,5 4) a (54,47)*4 Dem Yes Yes
17 21 (2 ,21p (21,27)^ Undem n /a Yes
18 27 (21,27)*4 (27,S)-4 Dem no noise Yes
19 8 (27, S)A (8,54)*4 Undem n /a Yes
20 8 (27,S)*4 (8,3s)*4 Dem Yes Yes
21 38 (8,38)-^ (38,77)^ Undem n /a Yes
22 77 (38,77)^ (77,43)*4 Dem No Yes
23 43 (77,43)*4 (43,47)'4 Dem no noise Yes
24 47 (43,47)*4 (47,l)-4 Dem no noise Yes
25 21 (2 ,21p (21,30)*4 Undem n /a Yes
26 30 (21,30)*4 (30, n) A Dem no noise Yes
27 11 (30, ll)*4 (11,66)^ Dem No Yes
28 66 (11,66)-^ (66,61)*4 Dem no noise Yes
29 61 (66,61)*4 (61,56)*^ Dem no noise Yes
30 56 (61,56)^ (56,49)^ Dem No Yes
31 49 (56,49)-^ (49,7s)*4 Dem no noise Yes
32 79 (78,79)*4 (79,48s*4 Dem no noise Yes
33 47 (48,47)*4 (47,l p Dem no noise Yes

Table 4.1: Results of our P (t) derivation method for the set of P (t) required for experi
ments in Chapter 5

100

CHAPTER 4. LOW-LEVEL CONTROL COMMAND SYNTHESIS

shown in column 2 is the value of the index i for this 7^. For example, P (t) number 2

is the position control command applied in state 5, ie. state 7^ in A. Similarly, and

t̂ +] will each correspond to events in A. Note how events in columns three and four of

the table are the events in A corresponding to and t£+1.

Recall from the problem formulation section of this chapter that our method needed

to derive two types of P (t): (a) between start and end points where a demonstrated path

exists (eg. between points p\ and P2 in Figure 4.1), and (b) between start and end points

where no direct demonstrated path exists (eg. between points p\ and p% in Figure 4.1).

Denote P(t) of type (a) as “demonstrated”, and those of type (b) as “undemonstrated”.

We label in column 3 of Table 4.1 each P(£) with either “dem” or “undem” according to

its type. Only five P(t) in total were undemonstrated, ie. P(£) numbers 6, 17, 19, 21,

and 25. Note that all P (t.) in Table 4.1 were derived to achieve a demonstrated event. A

demonstrated event requires an undemonstrated P (t) when it is proceeded in the desired

event path a by an event that did not precede it in the demonstration set. For example,

for P(t) number 6, both (7,8) and (8,54) were demonstrated events, but event (7,8) never

directly preceded (8,54) in the demonstration set. We know that both these events occur

at points in C-space lying on the boundary of C-surface c§ . Then, since (7,8) never

directly preceded (8,54), there will not exist a demonstrated path on Cg passing directly

between these boundary points. In the paragraphs immediately following, we shall discuss

the performance of our method for deriving demonstrated P (t). Following that, we will

turn our attention to its performance for deriving undemonstrated P (£).

Dem onstrated P (t): Two important questions exist for each demonstrated P (t) in

Table 4.1. First, how much noise removal did it achieve, and second, did it really define

an obstacle-free path? We show in column 6 of Table 4.1 whether noise removal occurred.

Noise removal means that the derived path encoded a more direct route than the original,

underlying demonstrated path. In some cases, demonstrated P (t) achieved significant

noise removal compared to the demonstrated path, eg. P(t) numbers 9, 10, 2, 20 and 16.

101

CHAPTER 4. LOW-LEVEL CONTROL COMMAND SYNTHESIS

For these cases we have entered a “Yes” in column 6 of the table. Other demonstrated

P (t) more-or-less followed exactly the demonstrated path. In some of these cases this

was sensible, since the demonstrated path was noise free. We have labelled these cases

in the table with “no noise”, eg. P(£) numbers 1, 3, 4, 7, etc. In the remainder of

cases, the demonstrated path did contain noise, however the derived P (t) still followed

the demonstrated path. We have labelled these cases in column 6 of the table with a “No”,

eg. P (t) numbers 22, 27, 30, 5 and 13. Our main interest here is with those P(t) labelled

in column 6 with a yes or a no (ie. did our method remove noise if it existed?) Notice

how noise has been removed for P(t) derived in states that, (a) were visited often in the

demonstration, and (b) have many boundary states 3. States 2, 21, 8 and 54 each have

properties (a) and (b). Notice then how the P (t) derived for noisy demonstrated paths

in these states, ie. P(t) numbers 2, 9, 10, 1G and 21, have each had noise successfully

removed. In contrast, Table 4.1 shows that noise was not generally removed for P (t)

derived in states visited only once in the demonstration set, eg. states 30, 56, 77. Neither

was it removed for states that were visited more than once, but that had oidy a small

number of boundary states, eg. states 9 and 7 (state 9 has only two boundary states:

states 28 and 65, while state 7 had no boundary states). The dependance for success by

our method on properties (a) and (b) is a sensible outcome, since the C-surface of states

with these properties will have more interior segments, and more likely free regions. Then

the likely-hood of finding a P (t) that encodes a more direct route on the C-surface than

the demonstrated path increases. That is, where our method has sufficient “information”

on a C-surface, noise will be removed when deriving P (t). Otherwise, the method will

revert to using the original demonstrated path, even if it contained noise.

The second important question regarding each demonstrated P (t) was whether it de

fined an obstacle free path. Remember that our method derives P (t) that are likely

obstacle-free. We show in column 7 of Table 4.1 whether each P(t) was obstacle free. A

key result in these experiments was that each demonstrated P(t) did in fact define an ob-

3Recall our definition of a boundary state in Section 4.3.3.

102

CHAPTER 4. LOW-LEVEL CONTROL COMMAND SYNTHESIS

stacle free path. We have seen that three distinct type of demonstrated P (t) exist in Table

4.1. First, P(£) derived where no noise existed. This type of P (t) follows a demonstrated

path, and we know that demonstrated paths are obstacle free. Second, P{t) derived in

states that were visited often in the demonstration, and had many boundary states. It is

to be expected that P (t) for this type of state are obstacle free. The presence of many

boundary states means that likely-free-regions will generally cover the C-surface well in

regions where we wish to generate P (£). For example, for state 8 we know that boundary

segments exist in states 7, 27, 33, 9, 38 and 54, and we saw in Figure 4.5 how the likely

free regions generated from these segments cover the C-surface of state 8 very well. Then

for P(£) of this type, if the demonstrated path on which a P (t) is based does contain

noise, the good coverage of points of the C-surface means that an alternate, “noise-free”

path for P(£) will most likely be found. The final P (t) type in Table 4.1 are those where

noise has not been removed. We noted how our method reverted to using the underlying

demonstrated path for this type of P(£). That is, although these P(£) contain noise, they

follow a demonstrated path, and will therefore be obstacle free.

We have seen how for demonstrated P (t) our method will remove noise if sufficient

information on a C-surface exists. If sufficient information does not exist, then it reverts

to using the underlying demonstrated path. This type of outcome is attractive since, as

we have seen, it tends to produce P(£) that are obstacle free. An important influence on

achieving this outcome was the conservative value we set for parameter md. Recall how we

chose in Section 4.3.7 a metric that resulted in conservative values for md. Conservative

values of md mean our method will only remove noise if sufficient information exists.

The alternative approach of setting md aggressively may result in an increased number of

demonstrated P (t) where noise is successfully removed, eg. noise free paths may be derived

for P (t) numbers 5, 13, 18, etc. However, the risk with such an approach is that P (t)

can then become non-obstacle-free, since points in likely free regions would be generated

far from their boundary segments. We prefer, and recommend, the approach of setting

md conservatively. In this way, the method has the tendency to produce P (t) that are

103

CHAPTER 4. LOW-LEVEL CONTROL COMMAND SYNTHESIS

(a)

(b)

Figure 4.8: An example of the process showing (a) an original demonstrated path con
taining noise, and (b) the noise-free path that resulted

obstacle free, and will only remove noise in cases where it has sufficient information to do

so.

We have talked in general about the results of our method for deriving demonstrated

P (t). To provide the reader with a more concrete idea about how our method worked in

practice, we now provide an example. P (t) number 20 was chosen as a good example of

how our method removed noise from a demonstrated path. P(t) number 20 encodes a path

in state 8 between states 27 and 38. We show in Figure 4.8(a) the demonstrated path on

which this P (t) was based. Note how the demonstrated path contains significant noise in

that it is overly long. The path resulted because the demonstrator became confused about

the position of the spindle relative to the supports. He made initial contact between the

spindle and right support in state 27, and his aim was then to reach state 65 (see Figure

2.6) by compressing the spindle and moving it around the front lip of the rebate in the

right support. However, on not successfully finding state 65, his reaction was to retract

the spindle back towards himself, resulting in state 38. The path derived for P(t) number

20 by our method is shown in Figure 4.8(b). Note how this path follows a much more

104

CHAPTER 4. LOW-LEVEL CONTROL COMMAND SYNTHESIS

efficient route than the demonstrated path shown in Figure 4.8(a). In fact, the derived

P (t) encodes a path that is 62 percent the length in C-space of the demonstrated path,

ie. by using P (t) instead of the demonstrated path, noise can be avoided and an increase

in robot task performance of 62 percent can be obtained.

Undem onstrated P (t): An important question regarding each demonstrated P (t) was:

did it remove noise? Undemonstrated P (t) define a completely new path on a C-surface

and so do not “remove noise” from a demonstrated path as such 4. Then, we enter in

column 6 of Table 4.1 for each undemonstrated P(Q a label “n /a”. The key questions

regarding undemonstrated P (t) are whether (i) a path can actually be found, and (ii) if

one can be found, if it really is obstacle free. Question (i) is an issue because there does not

exist a demonstrated path between the start and end points of the undemonstrated P (t)

we wish to derive. That is, unlike for demonstrated P (£), we cannot fail-back on using the

demonstrated path if insufficient information on the C-surface exists. Question (ii) is an

issue for undemonstrated P (t) (as it was for demonstrated P (t)) since our method derives

commands using points in likely free regions, and these points are not guaranteed to be

obstacle free.

Recall that Table 4.1 shows five undemonstrated P(f), ie. P(t) numbers 6, 17, 19, 21

and 25. It turned out that paths for each of these P (t) could be found, and that these

paths did in reality define obstacle free paths. We show this fact by entering a “yes” for

these P (t) in column 7 of Table 4.1. The main reason for this result was because these

P (t) were derived in states visited often in the demonstration. For example, P (t) numbers

6, 17, 19 and 25 were derived in states 8 and 21. We have seen previously how there exist

many likely free regions on the C-surfaces of these states. For example, we saw in Figure

4.5 some of the likely free regions for on the C-surface of state 8. We show in Figure

4.9 the path encoded by one of the undemonstrated P (t) derived in state 8. This path

4Although it will become clear in the following chapter how the derivation of undemonstrated P (t) is
an important requirement of our method for removing noise at the task-level.

105

CHAPTER 4. LOW-LEVEL CONTROL COMMAND SYNTHESIS

Figure 4.9: An undemonstrated P (t) derived to traverse in state 8 between states 7 and
54

is encoded by P (t) number 6, and passes through state 8 between states 7 and 54. This

path visits diverse parts of c£, and its derivation required the existence of all the likely

free regions shown in Figure 4.5.

Recall our conservative approach to setting the value of parameter md. Such an ap

proach risks our method not finding a path when deriving undemonstrated P (t) in states

visited infrequently in the demonstration. This is the case since such states have few likely

free regions, or interior segments on their C-surfaces. Then the start and end points of

the desired undemonstrated P (t) may not be connected by intermediate points. If this is

the case, a path for the desired undemonstrated P (t) may not be found. In such cases

the value of md must be set large so that connection can be made, however the risk then

is that P (t) encoding non-obstacle free paths result. This is limitation of our method.

It is not suitable for deriving undemonstrated P (t) in infrequently visited states in the

demonstration. For our experiments in this chapter it turned out that we did not need to

derive such undemonstrated P (t). Recall how the P (t) derived in this chapter were those

required by our method for producing a desired event path in the next chapter. We shall

see in the next chapter how our method there, in general, will only require undemonstrated

P (t) to be derivied in states visited often in the demonstration.

We have shown that our approach is a viable method for position control command

synthesis. However, prior to moving onto the second problem in this chapter of deriving

106

CHAPTER 4. LOW-LEVEL CONTROL COMMAND SYNTHESIS

a force control command F (£), we note the relatively small number of points shown in

the P (t) of Figures 4.8 and 4.9. That is, from an implementation point of view, the P(t)

derived by our method could not be used directly in a position control servo loop that will

run at a speed in the order of 100-300 Hz. What is required are intermediate points to

the ones generated by our method. We denote as via points each point in a P (t) that is

derived by our method. We note that via points can be of two types, those originating from

interior segments, and those originating from likely free regions. Then between via points

originating from the same interior segment on a C-surface, we use as intermediate points

the points recorded in the demonstration. Between via points originating from likely free

regions, or originating from distinct interior segments, we adopt the well known technique

of fitting a cubic spline for generating intermediate points (as reported in [53]). Up until

now we have referred to a sequence of via points as P(£). From now on we shall use P(t)

to denote the combined sequence of via points and intermediate points, as determined by

the methods just stated. With this part of our P(t) synthesis method clarified, we are

now in a position to move on to the second problem in this chapter: deriving force control

commands.

4.4 F o rce C o n tro l-C o m m a n d S y n th e s is

The previous section presented a method for determining the position control part P (t) of

the control command u (t). Recall from Section 4.2 how the second part of u(£) consisted

of a force control command F (t). Our aim in this section is to present a method that will

derive an F (t) for each P (t) presented in the previous section. We noted in the closing part

of the previous section that a P (t) will contain via points of two types, (i) those originating

from interior segments, and (ii) those originating from likely free regions. We note then

that, for the purposes of force command synthesis, P (t) can be divided into segments of

three types. To help make our presentation of these types clearer, we present in Figure

4.10 a simple example of a P (t) that could have been derived in the previous section.

107

CHAPTER 4. LOW-LEVEL CONTROL COMMAND SYNTHESIS

The figure shows a P (t) traversing between two boundaries on a C-surface. Via points

in the P (t) are shown in the figure with crosses, circles and asterisks. Crosses represent

via points in P (t) originating from likely free regions, Circles and asterisks represent via

points originating from interior segments, ie. circles represent via points originating from

one interior segment on our C-surface, while asterisks represent via points from another,

distinct interior segment.

Figure 4.10: An example of how P(f) can be divided into segments of distinct types

Figure 4.10 shows how a P (t) can be split into segments of three distinct types: (a)

segments containing points originating only from interior segments, eg. segments in Figure

4.10 labelled 2 and 4, (b) segments containing points originating only from likely free

regions, eg. segments labelled 1 and 5, and (c) segments existing in P (t) between two

points originating from distinct interior segments, eg. the segment in Figure 4.10 labelled

3. For segments of type (a) we have a demonstrated force sequence on which to base a

108

CHAPTER 4. LOW-LEVEL CONTROL COMMAND SYNTHESIS

force command. We note that in general it is sub-optimal to directly use the demonstrated

force as a force command for the robot, for reasons we state below. For segments in P (t)

of type (b) and (c) we do not have a demonstrated force sequence on which to base our

force command. That is, for segments of these types, we must synthesise a force command

from scratch. Hence the content of this section divides neatly into two parts. That is:

• force command synthesis by improving demonstrated force commands

• force command synthesis from scratch

4.4.1 Force C om m and Synthesis based on D em on stra ted Force

Let p be a point in a segment of type (a) in P(t). Denote as fp the force vector recorded

in the demonstration at p. Then our aim in this section is to determine a “clean” force

command fp from fp. There are two reasons why we do not use fp as fp directly. The

first is because force sensors introduce noise into fp during the demonstration recording

process. Force sensors are notorious for introducing a high frequency noise component

into recorded signals. We do not wish to include the noise component of fp in fp. Second,

fp will in general contain a friction component. Its friction component lies in the tangent

hyperplane to our C-surface c* at p. We saw in Section 4.2 that fp should lie in the dual

space of the tangent space. That is, we need to remove the friction component from fp in

order to produce fp. The details of how we produce fp from fp are now presented.

Denote as T v the dual space of the tangent space of c* at p. Then we remove the

friction component from fp by orthogonally projecting fp onto T v. Recall that in the

previous chapter we derived for every possible c* a set of primitive C-surfaces whose

intersection defines c*. Assume that 7 * in A corresponds to 'yf in A, and denote as (f)pA

the equation determined in the previous chapter for the j th primitive C-surface of 7 * 5

Then we note that a basis S of Tv is given by:

5 Recall that we used j to index distinct constraints in a state. Then we also use j to index primitive
C-surfaces because there exists one primitive C-surface for each distinct constraint present in 7*.

109

CHAPTER 4. LOW-LEVEL CONTROL COMMAND SYNTHESIS

S = {Vcf>pA (p), V ^ (p) , . . . , (p) ,...} (4.6)

where V is the gradient function [87], and where Y(ppA (p) denotes function V<j)pA evaluated

at point p. Basis S can be converted into an orthonormal basis S using the Gram-Schmidt

Process [38], where we denote the j th element of S simply as S j . That is:

S = {«l, «2, — — } (4.7)

Then a vector prHp equal to the projection of the demonstrated force fp onto the force

control space Fp is calculated as:

pr% = (fP, 5 i)si + (fp, s2)s2 + . . . + (fp, Sj)sj + . . . (4.8)

where prHp is the projected force vector, and where (fp , S j) denotes the Euclidean inner

product between vectors fp and S j . Vector prHp gives a force command at p of correct

direction, however the magnitude of prjip will still contain a noise component. That is,

prjfp determines the direction of our final force command fp, but that we must remove

noise from the magnitude of prj{p in order to produce a final fp.

Recall that in this section, point p originates from a segment in P (t) of type (a), ie. a

segment whose points all originate from a single interior segment on our C-surface. Clearly

there can be many such segments in a P (t). Denote as 77 one such segment in P (t). We

know a force sequence will have been recorded from the demonstration for 77. We have just

presented a method for converting each force in this sequence to one that is orthogonal to

our C-surface. Denote this “orthogonalised” force sequence as prjF T](t). We have noted

that the magnitude of each force in pri F v(t) will still contain a noise component after the

projection process, ie. pri F v(t) will not in general define a smooth and continuous signal

devoid of spikes and abhorrations. However, a good estimate of the noise free magnitude of

each force in pri F v(t) can be obtained by applying smoothing techniques. Many smoothing

110

CHAPTER 4. LOW-LEVEL CONTROL COMMAND SYNTHESIS

techniques exist in the literature [33], however we found that a simple window averaging

scheme with a number of repeats provided a smooth and continuous final force command

suitable for that part of P (t) that is 77.

4.4.2 Force C om m and Synthesis w ith ou t D em on strated Force

In contrast to segments of type (a), points in segments of type (b) and (c) were not

demonstrated, and therefore have no demonstrated force on which to base a force com

mand. Assume now that p is a point in P (t) that originated from a segments of type (b)

or (c). Then we know a force command fp at p must lie orthogonal to our C-surface c*

(ie. the direction of fp is known), however the magnitude of fp is unknown. We determine

an appropriate magnitude for fp as follows.

In Section 4.4.1 we denoted as 77 a segment in P (t) of type (a). For this section, let

7/ now denote a segment in P (t) of type (b) or (c). Assume 77 is a sequence containing

71/ points p, and denote a p in 7/ generally as p[6 7, ie. 77 is the sequence p^ , . . . p '/, . . . pnr

To each side of 7/ in P (t) there will exist a point originating from an interior segment G.

Denote as p[j and p ^ +1 the interior segment points existing on each side of 77 in P (t).

We derived noise-free force commands for p[j and p^;+1 in Section 4.4.1. Let the force

commands derived for p[] and p\[l+i be the vectors and f^; + 1. Then to determine an

appropriate magnitude for the force command at p]7, we interpolate between the known

magnitudes of fg and f^ +1. Let / q and +1 denote the magnitudes of fg and f^ + 1

respectively. Then, as a first step, we calculate the length L/ along 7/ between p[| and p 7/

as:

where || p]7+1 — p 7[|| denotes the distance between the two sequential points in 77, p1- and

6For segments of type (c) this will be by definition true. For segments of type (b), it will be true since
we only ever generate aP(() between demonstrated start and end points lying on the boundary of our
C-surface.

(4.9)

111

CHAPTER 4. LOW-LEVEL CONTROL COMMAND SYNTHESIS

P«+i- We determine the magnitude of the force command at p[; by using the well known

interpolation technique of fitting a cubic spline [53]. Denote the distance rate of change

of force magnitude along 77 at fg as / q and at +1 as f^+i- Then our requirements on

the spline are that its initial and final magnitudes are / q and +1, and that it has initial

and final derivatives of magnitude /g and +1. To find a cubic spline that satisfies such

requirements we must solve the set of differential equations:

f3 = «o

fnl +1 — «0 + a\L + (I2L2 + CL̂ L3

fo = ai

fn t+1 ~ 01 + 2(i2L + 3a^L2 (4-10)

for the parameters ao5 o 1, a2 and 03 of the spline, where L denotes the distance along 77

between pg and p ^ +1 (as per equation (4.9)). Solving the differential equations (4.10) for

ao, oi, 02 and a.3 gives the solution:

«0 = fS

al = fo

0-2 = p(/^,+i - f a) - f/o - \ f l , + i

a3 = ~ IS) ~ ^ (f l +i + fS) (4-ID

The magnitude of our force command at p^ in 77 is then calculated simply as:

/ / — o-o + a \L i + a2 L j + 0 3 -kf (4-12)

where recall that L/ was calculated according to equation (4.9).

112

CHAPTER, 4. LOW-LEVEL CONTROL COMMAND SYNTHESIS

Figure 4.11:
number 20

— raw data

— projected data

filtered data

vV'v 'vW

0.005 0.01 0.015 0.02
Distance along path (m)

(a)

— projected data

Distance along path (m)

(b)

— raw data

— projected data

filtered data

0.01 0.015 0.02
Distance along path (m)

(c)

Force signals produced by each step of the F (t) derivation process for P (t)

113

CHAPTER 4. LOW-LEVEL CONTROL COMMAND SYNTHESIS

4.4.3 R esu lts

Our force command derivation method was applied to produce an F (£) for each P (t)

derived in Section 4.3.8 (ie. in Table 4.1). The result was a smooth and continuous force

command for use in experiments presented in the next chapter. To provide the reader with

an idea of how the method worked in practice, we present details of the F (t) derivation

process for P (t) number 20 in Table 4.1. Recall that P (t) number 20 was a position control

command derived to traverse state 8 between states 27 and 38, and how we showed the

path traced-out in the physical workspace by this command in Figure 4.8(b). In total,

18 distinct configurations are shown in Figure 4.8(b), ie. this P (t) contained 18 distinct

points. Of interest here is the make-up of points in P (t) number 20, ie. which points

originated from interior segments, and which points originated from likely free regions.

We note that point sequences 1-2, 4-5, 9-10 and 18 originated from interior segments, ie.

these sequences define 77 of type (a) in our P (t). The remainder of points in this P (t) form

segments of type (b) and (c).

We show in Figure 4.11 the results of F (t) derivation for the P (t) number 20. Three

plots are shown, ie. (a), (b), and (c): one for each direction of control. Plots (a) and

(b) show forces in the y and z-directions respectively, while plot (c) shows torque. The

solid line in each plot shows the original demonstrated force sequence for each 77 of type

(a) in P(£). Notice how these force signals contain noise. Recall in Section 4.4.1 how

we produced a projected force signal by projecting each force in a demonstrated force

sequence onto the dual space of the tangent space. The dashed line in each plot represents

a projected force signal. One of the main aims of the projection step was to remove

the friction component from demonstration force data. Notice then how the method has

determined that all demonstrated force in the y-direction was due to friction between the

spindle head and left support. That is, the projected force signal in the y-direction for

each 77 of type (a) has been set to zero. Clearly only a force in the positive z direction,

and a torque, should be commanded for configurations in this P(t), and this is reflected

114

CHAPTER 4. LOW-LEVEL CONTROL COMMAND SYNTHESIS

in Figure 4.11. The final steps in the force command derivation process were to smooth

projected force sequences, and to interpolate between them in order to produce a final force

command F (t). The dotted line in each plot shows the force signal resulting from these

final two steps. Notice how the noise in each projected force sequence has been removed

by smoothing. For example, overlying each projected force sequence in plot (b) is a line

representing the smoothed force sequence. Compared to the projected force sequence,

notice how the smoothed force sequence forms a smooth and continuous signal devoid of

spikes and/or high frequency noise. The spline interpolation stage had the purpose of

determining a magnitude for F (t) where undemonstrated points existed in P (t) (ie. for

77 of type (b) and (c)). Figure 4.11 shows how our final F (t) is formed by fitting splines

between the smoothed force sequences of each 77 of type (a) in P (£).

One aspect of Figure 4.11 that requires further explanation regards via point 18 (ie.

the final point) in P(t). Note how this 77 contains only one via point, and so only a single

demonstrated force/torque value is available in the force command synthesis process (this

force/torque is marked as an ux” in each plot). The projection step is still possible as per

normal (the projected force for this 77 is marked as a “+ ” in each plot), however we cannot

apply the smoothing step in the process, ie. the “smoothed” value of force for this point

is set as the projected value. In addition, the spline interpolation step of the process is

complicated because a derivative of the spline at this point is not known. As can be seen

in the figure, our solution to this dilemma was to specify the derivative for the spline at

this point as zero. Such an approach is suitable when an 77 of this type occurs as the final

point in P (t). However, the approach may not be suitable for such 77 when they occur in

the middle of P (t). Our approach in these cases was simply to take as the derivative for

the spline, the average value of the derivatives calculated for the Ty’s of type (b) previous,

and following, our “single point” 7 7 . Such an approach allowed F (t) to pass through the

force value recorded for our single point 7 7 , while still resulting in an overall smooth and

continuous force trajectory.

115

CHAPTER 4. LOW-LEVEL CONTROL COMMAND SYNTHESIS

4.5 C onclusion

This chapter has been about deriving noise-free, low-level control commands for the robot

from demonstration. We presented a method that derives noise-free position and force

control commands for output to a hybrid force-position continuous controller. The first

part of the chapter addressed position control-command synthesis. We used HDS modeling

to convert the problem from finding a noise free position control command for the entire

task into finding one on the C-surface of each state in a desired state path. Our approach

identified two types of obstacle free points on any C-surface. First, points that were visited

in the demonstration, and second, points in likely free regions. We represented the connec

tivity of these points using a connectivity graph. A noise-free position control command

on the C-surface was then obtained by searching for the minimum cost path in the graph.

We noted three major advantages of this approach compared to previous approaches: (i)

that it made no base assumptions about the location or topology of demonstrated paths

(ie. the start and end points of demonstrations did not have to coincide), (ii) that paths

could contain undemonstrated points, and (iii) that it allowed paths to be derived be

tween demonstrated points that were not directly connected by a demonstrated path. A

weakness of the method was that it cannot guarantee that a non-obstacle-free path will

be derived. However, experimental results showed that the method had the tendency to

derive only obstacle-free paths if it was tuned appropriately. For demonstrated P (t), the

method would revert to using the demonstrated path when insufficient information on a

C-surface existed for it to derive a noise-free path. For undemonstrated P (£), the method

could derive a path, so long as it was on a C-surface where substantial information existed,

ie. one that was well visited in the demonstration. We noted as a feature of our method

in the next chapter, the tendency to only require undemonstrated P (t) on well visited

C-surfaces.

The second part of this chapter was about deriving noise-free force control commands.

Force commands consisted of a sequence of force vectors, one for each point in the posi-

116

CHAPTER 4. LOW-LEVEL CONTROL COMMAND SYNTHESIS

tion control command. The derivation of two types of force vector were identified: those

required for points on a C-surface that were demonstrated, and those required for un

demonstrated points. A direction for the force command in both cases was obtained using

the result by De Schütter that it must lie in the dual space of the tangent space to our

position on the C-surface. Determining a noise-free magnitude for force commands of

demonstrated points was achieved by applying a simple smoothing technique. A magni

tude for force commands of undemonstrated points was determined by fitting a cubic spline

between the known magnitude of smoothed force commands for demonstrated points. Fi

nal derived force commands were found to provide a smooth and continuous signal that

in experiments resulted in the robot achieving motion between parts in contact without

chattering, and without accidently losing the desired contact.

117

Chapter 5

S elec tin g O p tim a l T ask-L evel

S tra te g ie s from D e m o n s tra tio n

5.1 In trod u ction

Until now, work addressing the problem of demonstration sub-optimality in PbD has

focussed on optimising low-level control commands. An important, additional aspect of

this problem regards selecting an appropriate task-level strategy for use by the robot.

There will usually be a number of task-level strategies demonstrated by the human. Some

of these may be more optimal for the robot to execute than others. Then, a good idea

is to select demonstrated strategies that will see the robot best perform the task. In

this chapter we present a method to achieve exactly this end. We identify a number of

different strategies that were demonstrated by the human in the spindle-assembly task.

Robot performance of the task was found to range in its optimality, depending on what

demonstrated strategies it adopted. Further, different strategies were found to result in

task performance with optimality in different areas, eg. some resulted in reliable task

execution, others in fast execution, etc. The method we will present allows the selection

of the most optimal demonstrated strategy for use by the robot. In addition, it allows the

demonstrator to specify what aspect of optimality is most important during the selection

118

CHAPTER 5. SELECTING TASK-LEVEL STRATEGIES

process, ie. the demonstrator can choose as more important, reliable execution over fast

execution, etc.

The chapter is set-out as follows. In Section 5.2 we formulate more exactly the problem

to be solved. We show how a task-level strategy can be described as a sequence of discrete

events in our HDS skill model. This description leads us to formulate the problem to be

solved as finding a desired event path o that results in optimal performance of the task. In

Section 5.3 our solution to the problem is presented. Robot performance is broken down

into four distinct areas. A desired event path a is selected as the one predicted to result

in the best robot performance of the task in the four performance areas on average. In

addition, we show how desired event paths can be selected that have the robot perform

optimally in each of the four individual performance areas. Section 5.4 presents the results

of applying our method on the demonstration set D\ to Dß of the spindle-assembly task.

In Section 5.4.1 we present the paths selected by our method. We discuss why each path

was selected, and whether its selection was appropriate. In Section 5.4.2 we implement

selected paths on the robot. The purpose of this section is to show that selected paths

do in reality cause the robot to perform as predicted by our method. Finally, we end the

chapter with Section 5.5, where we state our conclusions for this work.

5.2 P rob lem Form ulation

We have introduced the idea of a task-level strategy, and how different task-level strategies

can be used to complete a task. However, we have not yet clarified exactly what we mean

by a task-level strategy. Much of this section is about defining this term more precisely.

As a first step in this process, we present as an example, the set of task-level strategies

demonstrated by the human in the spindle-assembly task.

The demonstration set D\ to Dß contains a number of different human-demonstrated

strategies. We note that two main phases of the spindle-assembly task exist, (i) spindle

head insertion into the left support, and (ii) spindle body insertion into the right support.

119

CHAPTER 5. SELECTING TASK-LEVEL STRATEGIES

"DIRECT-HEAD"

Co 3
"GUIDED"

Z 2 3
"DELAYED"

E>" 3
L 5 3 : ^ 3 E ^ 3
E ” 3 E - 3
E ‘ 3 K 3

3
E=8 3

E^9 3 E ' 3
E 3
E ; 3
E=^3

PUSH-FORWARD" "CREEP-OVER" "DIRECT-BODY'

E=8 3 Z " 1 E 3
E?9 3 E ’ 3 E 3
E ^ 3 E=aJ E 3
E=^=3
[3
[3

E - 3
E - 3
Z 3

E 3

Table 5.1: The task-level execution strategies demonstrated for the spindle-assembly task

120

CHAPTER 5. SELECTING TASK-LEVEL STRATEGIES

We group the strategies used by the demonstrator in each of these phases into categories

in Table 5.1. The demonstrator has used three main strategies to insert the spindle head

into the left support. First he has taken the “direct-head” approach, where the spindle

head is moved directly towards the rebate in the left support, ie. the state sequence 5-75-

6-7 more-or-less allows the spindle to move in a straight line between the spindle’s start

configuration and its inserted configuration in state 8. Second, he has demonstrated a

“guided” approach. Here the contact in state 21 is used as a guide to achieve spindle head

insertion. Since the demonstrator was blindfolded, the contact in state 21 helped him to

correctly aim the spindle head toward the rebate in the right support. Third, a “delayed”

approach was demonstrated. Here, contact between the spindle head and left support was

maintained in state 11 while the spindle body was inserted into the rebate of the right

support. That is, the final insertion of the spindle head into the rebate of the left support

was delayed until the spindle body was fully inserted into the right support.

Table 5.1 also shows the strategies used by the demonstrator to insert the spindle body

into the right support. Note that at this stage in the task the spindle head is in contact

with the left support, however the blind-folded demonstrator is not certain of spindle

head’s position relative to the right support until contact between the two is made. Table

5.1 classifies into three main types the strategies used by the demonstrator to make this

contact. First, he has used the “push-forward” approach, where contact is first made in

state 60. Using this strategy, the demonstrator pushes the spindle body forward, pivoting

about a contact between the spindle-head and left support until state 60 is achieved.

Second, he has used a “creep-over” approach. Here, contact between the spindle body

and right support is first made in state 33. Insertion of the spindle body into the rebate

is then achieved by “creeping-over” the front lip of the right support (ie. through states

76, 38, 77, and 43) and into the rebate. Third and finally, the demonstrator has used the

“direct-body” approach. Contact is made by moving the spindle body directly toward the

base of the rebate in the right support, ie. without touching either side of the rebate.

The preceding discussion shows how many distinct task-level strategies can be demon-

121

CHAPTER 5. SELECTING TASK-LEVEL STRATEGIES

strated by the human. Our problem in this chapter is to find a method for selecting

the most appropriate demonstrated strategy for use by the robot. A key issue in solving

this problem regards finding a precise description of a task-level strategy. An appropri

ate approach in this regard is suggested by our discussion above of strategies used in

the spindle-assembly task. Notice how we have described each strategy in Table 5.1 as a

sequence of discrete states. Each state sequence defines a sequence of events that must

occur in the task for the particular strategy to be achieved. Then, an obvious description

of a task-level strategy, and the one we shall use, is as a sequence of discrete events. For

example, the “direct-head” assembly approach shown in Table 5.1 can be described as the

sequence of events (2,5), (5,7), etc l . With a precise description of a task-level strategy in

place, our problem of finding the best demonstrated strategies for the robot can be stated

more concretely. That is, we must find a sequence of discrete events that will have the

robot perform the task in an optimal fashion. Recall from Chapter 2 that finding such

a sequence is exactly the role of the Event Path Planner (EPP) component in our HDS

model. We denoted at that time such a sequence as a, and called it the desired event

path. Then our problem in this chapter is really to synthesise a functional EPP from

demonstration. That is, given a demonstration or set of demonstrations for a task, the

EPP we derive must determine a a that results in optimal robot performance of the task.

The remainder of this chapter is devoted to presenting a solution to this problem.

5.3 Selecting a D esired Event P a th

Recall from Figure 2.3 the components besides the EPP in the robotic system, ie. the PM,

DEC, CC and manipulator. Having the EPP select a desired event path means predicting

the performance of each of these components for every event in the demonstration set.

That is, we should select for inclusion in cr, demonstrated events that will be performed

R ecall from Chapter 2 how an event t£ in A can be described as an ordered pair (zi,*2), where /yil
and 7,^ are states in A.

122

CHAPTER 5. SELECTING TASK-LEVEL STRATEGIES

most optimally by these components. Note that we must predict the performance of

demonstrated events by these components because at this stage in the PbD process we

have no experience of how the robot will actually perform the task. A demonstration has

been provided, and we are now trying to decide on a task-level strategy for use by the

robot. In Section 5.3.2, a framework for predicting robot performance of demonstrated

events is presented. However, prior to our discussion there, we first present in the next

section, a definition of exactly what we mean by optimal robot performance.

5.3.1 D efin ing O ptim al R obot Perform ance

In order to find the event path that will result in optimal robot performance of the task,

the concept of optimal performance must first be defined. To this end, we define optimal

robot performance as performance with the following characteristics:

1. low execution time

2. high reliability

3. low control effort

Our aim is to select events for a that are performed by the robot with these three char

acteristics. However in addition, we note the capability of the human to analyze his

performance of the task. A human will often identify and repeat often in the demonstra

tion any strategies for task execution that he finds works well. We assume that strategies

found to work well by the human will also work well for the robot, ie. that copying what

the demonstrator did often can lead to more optimal robot performance of the task. So,

in addition to selecting events that see the robot perform with characteristics l.,2., and

3., our aim is also to select events for a that were:

4. demonstrated often

There are also two important, additional reasons why copying the demonstrator is

a good approach when selecting task level strategies for the robot. First, recall from

123

CHAPTER 5. SELECTING TASK-LEVEL STRATEGIES

Chapter 3 how we concluded that our method for deriving C-space was more accurate

in describing regions of C-space visited often in the demonstration. That is, we would

prefer in this chapter to derive a task level strategy that traverses regions in C-space

visted more often in the demonstration. Second, recall from Chapter 4 how our DEC

method had greater possibilities for noise removal in regions of C-space that were visited

often in the demonstration, ie. again, selecting a task level strategy traversing regions of

C-space visited often in the demonstration will be beneficial. With optimal performance

defined, we can now present a method for predicting the level of robot performance of

demonstrated events in each of these performance areas.

5.3.2 T h e P a th S election Fram ework

Recall that each arc in automaton A d represents an event that was demonstrated. We

limit our method in this chapter to finding a o that contains only demonstrated events, ie.

each event in o will be represented by one of the arcs in A d - Our idea for determining a is

to assign to each arc in A d a cost, where the cost assigned reflects how well the robot will

perform the event represented by that arc. A high cost is assigned to the arcs of events

predicted to result in poor performance, while a low cost is given to the arcs of events

predicted to be performed well. We then determine o by conducting a search in A d for

the minimum cost path between the start and goal states in the task. Since a minimum

cost path is selected, only the events resulting in the best possible robot performance will

be included in a.

The obvious question with the approach regards how the cost of each arc should be

determined. Remember, the value of the cost we assign is our prediction of how the

components in the robotic system will, as a whole, perform the event represented by that

arc. Recall that denotes generally one of the events in the task. For the purposes of

our discussion in this chapter, let r£ be an event that was demonstrated, and let (21,22)

be the ordered pair denoting this event, ie. that t^ is the event triggering a transition in

the task from state 7f to state 7^. We assign a cost to the arc of as follows. First,

124

CHAPTER 5. SELECTING TASK-LEVEL STRATEGIES

a cost is assigned individually in each of the four performance areas: time, reliability,

control effort, and number of times demonstrated. Sections 5.3.2(a), 5.3.2(b), 5.3.2(c) and

5.3.2(d) describe for each performance area how this step is achieved. An overall cost for

the arc is then calculated from the costs assigned in the individual performance areas.

Section 5.3.2(e) describes the details of how the overall cost is calculated.

(a) Tim e

Strictly speaking, an event in the HDS is instantaneous and takes zero time. It is the

infinitesimal amount of time taken to pass between two distinct contact formations in the

task. For our work here, we are interested in how long an event takes to achieve. That

is, how long after the previous event in the assembly process does it take for us to have

event r ^ occur. Three components to this time exist:

1. time for discrete event control in ryf: how long for the DEC to determine a control

command u(t) for use in state 7 ^ that will cause event tjf to occur

2. time for continuous control in 7 ^: time for the CC/manipulator to traverse u(t)

3. time to process monitor rj^\ time for the PM to recognise that has occurred

We note that item 2. forms the dominant component in the time required to achieve

Tj^. That is, the majority of time required by the robotic system to achieve event will

result from having to change the physical configuration of the task. Work by Hovland and

McCarragher [36] showed that the time required for process monitoring is small. They

used a multilayer perceptron neural net as a PM, and showed that process monitoring in

real time is possible, (ie. for a reasonably complex asymmetrical insertion task, events

were recognised in the order of 1.5 milliseconds on standard computer hardware). The

time required for discrete event control using our method of Chapter 4 will be greater.

The method can be computationally intensive, especially if a large number of points in the

connectivity graph for 7 ^ were generated. However, discrete event control need not occur

125

CHAPTER 5. SELECTING TASK-LEVEL STRATEGIES

in real time. Indeed, a more sensible approach would be to do the processing between the

demonstration and execution phases of the PbD process, ie. after a desired event path a

has been determined by the EPP, but prior to task execution. An appropriate u(t) for

each event in A d would then be available for use by the robot at execution time.

The dominance of the CC in determining the time required to achieve means that

our metric for predicting performance in the time area is simplified. We identify that the

time required to achieve event will depend mainly on the amount the task configuration

is required to change for the event to occur, ie. on the “distance” in C-space along the

path traversed by the demonstrator to achieve this event. Then an obvious measure for

predicting the time required for an event is the distance in C-space along the path used

to achieve the event in the demonstration. Calculating this distance is straightforward,

ie. we saw with Equation 4.9 in the previous chapter the details of how such a calculation

can be made. Note that where more than a single path for event was demonstrated,

the average length of the paths were taken. Denote this average length as Lkav. Then, our

metric for calculating a cost in the time performance area Ct^ for rj^ in A d is:

c t k = Lkav (5.1)

(b) R eliability

The reliability of execution by the robotic system will depend on the reliability of each of

the components in the system. That is, its reliability can be separated into three separate

components:

1. The reliability of the PM in identifying r ^ correctly when it occurs

2. The reliability of the DEC in selecting an obstacle-free u(t) that will cause r ^ to occur

3. The reliability of the CC in precisely following u(t) so that an erroneous event (ie.

one that is not tĵ) does not accidently occur.

126

CHAPTER 5. SELECTING TASK-LEVEL STRATEGIES

The main source of execution failure in robotic systems stems from item 3. Regarding

item 1, Hovland and McCarragher [36] showed that a 95 percent success rate for Process

Monitoring can be achieved, even with quite small training sets for the Multi Layer Per-

ceptron. Results from our experiments (which we will present later in this chapter) using

this type of PM are consistent with their findings. Regarding item 2, the DEC is also

something that can be achieved with reliability. We saw in the previous chapter how, if

parameters to the method were set conservatively, every command produced by our DEC

was valid and obstacle-free. Failure caused by item 3 result mainly from flexibility and

backlash in the robot and workpiece (ie. the spindle). The relative positioning of the

workpiece and the environment can then not be precisely known or controlled. Failure by

this mode is well known in robotics, especially for tasks involving contact between task ob

jects [53]. A strength of the hybrid force-position control regime is that it uses constraints

provided by contact in the task to guide assembly motion. That is, if many constraints

are present, then motion can be guided, and more reliable execution of the task achieved.

Then, a good measure for predicting the reliability of event t£ is the constraint on motion

provided in state 7 ^ , ie. for the spindle assembly task, the dof of the spindle in state 7 ^.

Spindle dof provides one element in a measure of how well motion is guided. However, for

motion to be guided, movement in 7 ^ must occur. That is, from a reliability point of view,

we would like tĵ to be included in the desired event path if 7 ^ contains demonstrated

paths that also involve significant movement. The amount of movement defined by a path

is measured as the distance along the path in C-space. We defined the measure for this

distance in Section 5.3.2(a) as Lkv. Then a metric for calculating a cost in the reliability

area Crk for is calculated as:

Crk — d o f^ j x Lav x + 1 (6-2)

where do/7ii is the spindle degree of freedom in state 7 ^ , and ,S7i is the number of

neighboring states to state 7 q in A d - We multiply do/7ii x Lkav with 57ii because incorrect

127

CHAPTER 5. SELECTING TASK-LEVEL STRATEGIES

traversal of 7 n could cause any event out of 7 7 to occur, ie. we could incorrectly enter into

any states neighboring 7 ^ in Md 2 *. We add the value 1 so that a state with zero spindle

degrees of freedom is not assigned a zero cost. An arc with zero cost in the automaton

can cause problems for our search algorithm when trying to find the minimum-cost path.

(c) Control Effort

By control effort we mean the computational effort in controlling the assembly process.

Recall how the HDS modeled assembly skill as the repeated application of the same skill

“loop”, ie. recognising a contact formation, determining a command to reach the next

desired contact formation, applying that command, recognising the new contact formation,

etc, etc. For each loop, computational effort is required. The PM must process force and

position data in order to recognise the event, a control command u (t) must be selected

by the DEC, and the CC must control the robot so that u(t) is physically achieved in

the workspace. Clearly, from a computational point of view, the less times we need to

repeat this loop, the better. Then a good measure of control effort for task completion

using a certain event path is the number of events in that path. That is, a cost in the

control-effort area Cek for transition t^4 is calculated simply as:

Cek = 1 (5.3)

Then, any event path selected by our method will have a cost in the control-effort perfor

mance area equal to the length of the path itself.

(d) Num ber of Demonstrations

Determining a cost Cnk for in the number of demonstrations performance area is

straight forward. The cost should be set inversely proportional to Nk, the number of

times transition was demonstrated. It should be set inversely proportional to N k so

2 In fact we could incorrectly enter any neighboring states to 7^ in A, however we will not in general
fully know A. We will only have knowledge of that part of A that is A d -

128

CHAPTER 5. SELECTING TASK-LEVEL STRATEGIES

that with good performance in this area (ie. those demonstrated often) are assigned

a low cost in A d i while those demonstrated less often are assigned a high cost. Then a

metric for calculating a cost in the number-of-demonstrations performance area Crk for

is calculated as:

Cnk = (N max - Nk)dof + 1 (5.4)

where N max is the number of times the most demonstrated transition was demonstrated.

We raise (Nmax — Nk) to the power of dof (the dof of the task, ie. four in our case)

so that the cost assignment is not linear with respect to (Nmax — Nk). That is, more

repeated events are given a much lower cost than infrequently demonstrated events. This

cost assignment structure is necessary so that a short path with infrequently demonstrated

events is not selected over a longer path with more frequently demonstrated events. Anal

ysis suggests that the dof of the task is a good value to use in the indexation, ie. because

the length of path through A d will be proportional to dof. Note also in Equation 5.4

that we have added a value of 1. This is to ensure that Cnk can never equal zero, ie.

when tĵ is the most demonstrated event in the task. An arc with zero cost in Ad can be

problematic for a search algorithm when searching in for a minimum-cost path.

(e) D eterm ining an Overall Cost

We identified four performance areas in which we categorise robot performance. Note then

that a transition may result in good robot performance in one area and poor performance

in another. A method is required to calculate the overall performance of an event. To

determine the overall performance of an event we introduce the following measure:

Ck = WtCtk + WrCrk + WeCek + WnCnk (5.5)

where Ck is the overall cost calculated for r^ , and Wt, Wr , lTe, and Wn are a set of

weights. The role of the weights is to allow the overall cost of a transition to modified

129

CHAPTER 5. SELECTING TASK-LEVEL STRATEGIES

according to what aspect of performance is deemed important by the demonstrator. For

example, if the time weight Wt is set to a value greater than the other weights, then the

overall cost Ck will be determined more by the event’s cost in the time performance area.

If we adopt a greater Wt value for all transitions in A d , then a search through A d for the

least cost path will result in a path with low execution time. In this way, our event-path

selection framework allows robot performance to be tuned according to what is required.

Note that by increasing the value of the other weights in the set, paths can be selected that

cause the robot to perform reliably, with low in control effort, or to copy the demonstrator.

5.4 R esu lts

5.4.1 P a th s S elected by Fram ework

With the cost Ck for each arc in A d determined, it was a straight-forward matter to find

an optimal event path between the start and goal states in the task. The well known

“double-sweep” algorithm was used for this purpose (see [32] for details), and we show

in Figure 5.1 the event paths selected for the demonstration set D\ to Dß of the spindle-

assembly task. The figure shows four selected paths in total. In the first column, it shows

the path selected when the time weight was emphasised. We have labelled this path the

“time path”. In the second and third columns, the figure presents the paths selected

when the reliability weight, and the number-of-demonstrations and control-effort weights

were emphasised. We have labelled these paths the “reliability/number-of-demonstrations

path” and “control-effort path”. Finally, in the fourth column of the figure, we show the

path selected by our framework when an even emphasis was given to all weights. We have

labelled this path the “even path”. Note that we provide on the left hand side of the figure

an “event count” column to indicate the number of events existing in each path.

Recall from Table 5.1 the main execution strategies used by the demonstrator to com

plete the spindle-assembly task. Two interesting and important questions regarding the

paths selected by our framework are: what strategies were adopted in each of the paths,

130

CHAPTER 5. SELECTING TASK-LEVEL STRATEGIES

Event
Count

Time Reliability/
Num.Dems.

Control-Effort Even

0 C 3 c : E 7 3 E 7 3
1 :
2 V’l c 3
3 E=8] £ 8]
4] E^’] E 3
5 E=8] E=~l E 3 E 3
6 Z 3
7 e] E] E 3
8

9

10

z i
E 3
Z 3

E 3

Figure 5.1: Event paths selected by our framework

CHAPTER 5. SELECTING TASK-LEVEL STRATEGIES

and does the adoption of these strategies make sense given the weight that was emphasised

to produce the path?

The time-path has used the direct-body and direct-head assembly strategies. The

reason is because both these methods use an essentially “straight-line”, direct approach

to inserting both the spindle head and body. Our use of path length as the basis for the

metric in this performance area has caused these strategies to be selected. Other strategies

that were demonstrated (ie. the guided, push-forward, creep-over, and delayed strategies)

all have longer path lengths in comparison, and hence were not selected for the time path.

In contrast to the time path, the reliability path contains the guided strategy for spindle

head insertion, and the push-forward strategy for spindle-body insertion. These strategies

were selected because of the guided motion each path provides. Our assertion was that

the robot can traverse a state more reliably when its motion is more guided. Then, for

spindle-head insertion, our framework has selected the 2-21-29-28 approach, as opposed to

either the direct-head or delayed assembly approaches. It has chosen the guided approach

over the direct head approach because of the guided motion allowed by state 21 for spindle

head insertion. Much of the distance traveled occurs in state 21, where a dof of 3 exists.

This is in contrast to the direct-head approach where most of the “distance” traveled

occurs in state 2 (the no contact state), where no guiding occurs. The guided approach to

spindle head insertion was selected over the delayed approach because of the shorter path

total length it encodes.

The push-forward approach to spindle body insertion was selected for the reliability

path. It is easy to see why this approach was selected over the direct-body approach,

ie. it contains states that are on average result in a lesser degree of spindle freedom. To

see why the push-forward approach was selected over the creep-over approach, recall that

spindle-body insertion involves pivoting the spindle about a point in contact with the left

support so that it can be passed around the front lip of the rebate in the right support.

The push-forward approach was demonstrated using state 9 (spindle dof of 2) to achieve

this pivoting motion, while the creep-forward approach was demonstrated with state 8

132

CHAPTER 5. SELECTING TASK-LEVEL STRATEGIES

(spindle dof of 1) for the same motion. That is, the push-forward approach was selected

because state 9 encodes a greater constraint and guides motion more than in state 8.

The control-effort path uses the guided approach for spindle-head insertion and the

direct-body approach for spindle-body insertion. Understanding why these strategies were

selected is straightforward. Recall that our metric in this performance area was based on

the number of events in an event path. Studying the automaton A d in Figure 2.7 reveals

that the control-effort path is the path between the start and goal states in the task with

the least number of events.

The path selected in the number-of-demonstrations performance are was the same as

the reliability path. It was selected because of the frequency with which the strategies

in this path were demonstrated. The guided approach to spindle head insertion was

demonstrated two out of six times (Dß and Dß), while the push-forward approach to

spindle-body insertion was demonstrated three out of six times (TU, D3 and Dß). In

addition, many of the events in these strategies were demonstrated in isolation elsewhere

in the demonstration set. For example, (2-21) was demonstrated three times, (54-47) four

times, and (47-1) six times.

The even path uses the guided approach to spindle-head insertion, and the creep-over

approach to spindle-body insertion. This selection of strategies represents a balanced

approach to the assembly. The guided approach is not as optimal in the time area as

the direct-head method, however it is not that much longer, and is more reliable. The

creep-over approach to spindle-body insertion is also a balanced selection. It is not as fast

as the direct-body approach but is more reliable. It is not as reliable as the push-forward

approach (because , as note previously, state 8 is used for pivoting rather than state 9),

but it is shorter in distance (and therefor faster) than that method. The length of the

path is not as short as the control-effort path, but is shorter than the reliability path.

This even path also contains events that were used often by the demonstrator, eg. (2,21),

(27,8), and (47,1).

We have seen what strategies were adopted in the paths selected by our framework. Of

133

CHAPTER 5. SELECTING TASK-LEVEL STRATEGIES

interest also are strategies that weren’t selected in any path, ie. we want to be sure that

non-selected strategies were left out for the correct reasons. The delayed insertion strategy

was the only strategy not selected at some point by our method. The main reasons for

its absence from selected paths are that it is quite a long path in both time (ie. distance

to be moved) and control effort (number of transitions), and that this strategy was only

demonstrated once (in demonstration jD5).

5.4.2 R o b o t E xecu tion o f S elected P ath s

We have presented the paths predicted by our framework to be performed best by the

robot in each performance area. Our aim in this section is to validate our approach by

having the robot execute selected paths. We want to show how paths predicted to be

performed well are actually performed well in reality. However, prior to presenting the

details of the experimental results, we first outline the experimental set up that was used.

Figure 5.2: The Scorbot Eshed robot on which experiments were conducted

In order to have the robot execute selected paths, each element in the robotic system

needed to be implemented. Recall from Figure 2.3, the components in the robotic system

(ie. the manipulator, CC, DEC, EPP, and PM). A functional EPP is provided by our work

134

CHAPTER 5. SELECTING TASK-LEVEL STRATEGIES

in this chapter. We present the robot manipulator used in experiments in Figure 5.2, and

details regarding the continuous controller used in this thesis were discussed in Chapter

2. Work in the previous chapter derived a functional DEC that was used for experiments

here. The component for which we have not yet had need is the Process Monitor. A

functional PM was required to be implemented for the experiments we present in this

chapter.

Our assertion in this thesis has always been that, for PbD in service robotic environ

ments, a PM should be trained by demonstration, rather than be derived from apriori-

known, geometric, task information. Recall our discussion in Chapter 2 on the subject.

Then an appropriate method for deriving a PM for our experiments here was by using

the method presented by Hovland and McCarragher [36]. Recall that their work derived

a functional PM for a complicated, asymmetric, assembly task using a multi-layer per-

ceptron. For our experiments in this chapter we made use of the MLP process monitor

implementation coded by these authors in the Automated Systems Laboratory at the Aus

tralian National University. Details of the method can be found in [30] or [34], however

an overview of the method is as follows.

The MLP consists of nodes in three layers, with nodes in each layer being fully con

nected to nodes in neighboring layers. Into the input layer is fed position data from the

polhemus, and force data from the force sensors (but converted first into the frequency

domain). Each node in the output layer corresponds to one of the events to be process

monitored in the task. During the training phase, sample demonstrations of an event

are provided. The force and position data from these samples are input into the input

layer, while the node in the output layer corresponding to the event being demonstrated

is set to a value of 1. All other nodes in the output layer are set to a value of zero. A

back-propagation method is then used to set values of a set of weights, where each weight

in the set corresponds to one of the connections between nodes in the MLP 3. During the

operation phase, position and force data input into the input layer of the MLP result in

3For a detailed description of the training method, see for example [101].

135

CHAPTER 5. SELECTING TASK-LEVEL STRATEGIES

Path
Name

Weight
Emphasised

State
Sequence

Successful
Executions

Execution
Time (secs)

Computation
Time (secs)

Time wt 2-5-75-6-7-8-54-47-1 6/10 34.3 1.04

Reliab./N.Dems. Wr , fTn 2-21-29-28-9-65-60-55-
54-47-1

10/10 52.7 1.29

Control Effort We 2-21-27-8-54-47-1 7/10 39.1 0.81

Even equal 2-21-27-8-38-77-43-47-1 8/10 42.0 1.12

Delayed n/a 2-21-30-11-66-61-56-49-
-78-79-48-47-1

8/10 1:09.6 1.51

Table 5.2: Results of implementing the paths selected by our framework on the robot

each output node being set to a certain value. The selection of the event that occurred is

then achieved by simply identifying the output node with the highest value. Note that for

our experiments here, we constructed a MLP with output nodes only for events existing

in selected paths, ie. we did not train-up the PM to recognise every possible transition in

the spindle-assembly task.

With a PM implemented, our experiments could be conducted. Ten attempts at each

selected path were performed by the robotic system. Table 5.2 shows the results of these

experiments. In the first column it shows the name of each path, while in the second

column, it shows the weight emphasised to produce the path. The third column in the

table shows the state sequence encoded by each path, and the fourth, fifth, and sixth

columns show for each path, the time taken for execution, the proportion of successful

executions achieved, and the computation time required for control purposes. In addition

to paths selected by our framework, we also include in the last row in Table 5.2, results

for robot execution of the delayed strategy. Recall how this strategy was identified by our

framework as corresponding to less-optimal robot performance of the task. We had the

robot execute this path to confirm that it really did encode less optimal performance.

In the time performance area the time path was confirmed as the most optimum mode

of execution. Times for execution in our experiments ranged from 34.3 seconds for the

time path, to 1 minute and 9.6 seconds for the delayed path. The reason for the faster

136

CHAPTER 5. SELECTING TASK-LEVEL STRATEGIES

execution time for the time path was the more direct route taken by this path compared

to others, ie. a very direct, and therefore fast, method of insertion is enabled by using the

direct-head and direct-body insertion approaches. At the other end of the spectrum, the

delayed path and the reliability path resulted in slow execution times. The reason was

because both these paths meant the spindle had to be moved a greater distance compared

to the time path. For example, the reliability path uses the guided approach to spindle

head insertion and the push-forward approach to spindle-body insertion. Compared to the

direct-head and direct-body approaches used by the time path, these strategies required

a longer distance for the spindle to be moved, and therefore a greater execution time.

The reliability of the robot for the different paths ranged from six successful executions

in ten attempts for the time path, to ten from ten attempts for the reliability path. Failures

in experiments were caused mainly by the CC. Flexibility in the spindle and robot arm,

along with backlash in the robots joints, and the quite fine tolerances required in some

areas of the task, caused the CC to sometimes not achieve an event in a path. The time

path was the least reliability path in the experiments. For this path, three of the four

occasions where failure occurred was caused the assembly process accidently moving from

state 8 into state 9, ie. the spindle head accidently made contact with the side of the

rebate in the left support. On the other occasion where failure occurred, the process

moved into state 4 from state 2, ie. the spindle head clipped the front edge of the rebate

in the left support when on its way to state 5. The secret of the high reliability of the

reliability path turned out to be the guided motion encoded by the guided and push-

forward execution strategies. Failure in the time path was caused by incorrect positioning

of the spindle relative to the supports. The guided approach to spindle-head insertion

used in the reliability path was more reliable because of the constraint provided in state

21. This constraint reduced the possibility of flexibility and backlash in the robot from

causing incorrect positioning of the spindle relative to the supports. State 21 was not the

only state in which guided motion contributed to the reliability of the path. The presence

of state 9 (instead of state 8), and of states 60 and 65 in the path also contributed in

137

CHAPTER 5. SELECTING TASK-LEVEL STRATEGIES

this regard. Recall the need to pivot the spindle about a point in contact with the left

support when inserting the spindle body into the rebate of the right support. The use of

state 9 instead of state 8 during this pivoting motion meant that the pivot point was more

constrained, ie. the spindle head did not accidently slip into another state (as occurred

in the time path). States 65 and 60 also assisted in making the reliability path reliable

because they provided a very constrained way to insert the spindle body into the right

support. Spindle-body insertion using these states see the back-edge of the rebate in the

right support used as a guide for the insertion. In summary, our results suggest that a

valid approach to predicting the reliability of an event is the extent to which motion in

the prior state is guided.

Column six in the Table 5.2 shows the computation time required for control purposes

for each path. Processing in experiments was conducted on a Motorola 68040 based

VME board. The computation time shown for each path was calculated as the sum of

the computation times required be each of the PM, DEC and CC functionalities. Recall

that a set of valid u(t) by the DEC is achieved ahead of time, ie prior to experiments.

Computation for selecting the correct u (t) to be used for each event needed negligible

computation time. The PM and CC were the main contributors to the computation times

shown in the table. Notice the relationship between the number of events in each path and

the computation time required, ie. the longer the path, the longer generally the greater

computation required. We found that each event required about the same computation

time to process monitor, so the more events in a path, the greater computation required

by the PM. We also found that paths with more states required greater computation by

the CC. These findings suggest that the number of events in a path is a valid metric for

predicting control effort.

We have discussed the results of experiments in the time, reliability, and control-

effort performance areas. The number-of-demonstrations performance area is different to

other areas in that we do not need experimental results to validate the path selected.

That is, we saw in Section 5.4.1 how this path did copy the demonstrator. The reason

138

CHAPTER 5. SELECTING TASK-LEVEL STRATEGIES

for experiments in this performance area is to validate our assertion that copying the

demonstrator leads to more optimal robot performance of the task. Experiments suggest

that our assertion is a valid one. We have seen that the number-of-demonstrations path

included the guided approach to spindle-head insertion and the push-forward approach

to spindle-body insertion. One of the reasons identified by the human for using these

strategies was their reliability. We have noted the reasons for the reliability of these

strategies above, ie. they allow assembly motion to be “guided”. However, the human

identified another, additional reason why these paths encode reliable execution. Note

how events (2-21) and (9,65) both provide a reliable way to make contact between the

spindle and the right support. For example, event (2,21) can be reliably achieved because

the large, flat, contact area provided by the spindle’s side, ie. the required contact can

be achieved, even if some uncertainty exists about the spindle’s position relative to the

support. For the same reason, event (9,65) also encodes a reliable method for making

contact between the spindle and right support. Reliable robot execution of the number-

of-demonstrations path has resulted in part from the inclusion of events (2,21) and (9,05)

in the path. That is, in this case, copying the demonstrator has led to more optimal robot

performance of the task. Note that reliability of execution for the reason that a large

contact area exists was not modeled by our reliability metric. It would be very difficult

to achieve a set of metrics that modeled every aspect of task performance identifiable by

the intelligent human system. This fact gives strength to the inclusion of the number-of-

demonstrations performance area our framework. It can capture for the robot, aspects of

task performance identifiable by the human that are not modeled directly by metrics in

other performance areas.

The paths discussed so far have resulted in excellent performance in one area, at the

detriment to performance in the others. Recall the role of the even path as providing a

balanced mode of execution. Then experimental results suggest that a balanced mode

of execution is provided by the even path selected by our framework. This path was

performed with better than average reliability, ie. it was successfully completed on 8 out

139

CHAPTER 5. SELECTING TASK-LEVEL STRATEGIES

of ten occasions attempted. It was performed with an execution time of 42.0 seconds,

which was around the average. Finally, it required less than average control effort, with

a CPU computation time of 1.12 seconds. Such a path is appropriate if good all-round

performance of the task is desired.

Recall that the delayed strategy for spindle-assembly task execution was not one se

lected by our framework. An interesting question then is whether the sub-optimal perfor

mance predicted by our framework for this path actually results in reality. The experi

mental results for this path shown in Table 5.2 suggest that it does. This path resulted in

worse performance on average of the task compared to others. It took the longest time of

any path for the robot to execute, the control effort required to execute the path is high

due to the large number of transitions it involves, and the reliability of the path is around

the average. The fact that this path was not selected by our framework again suggests

the validity of our measures for predicting robot performance.

5.5 C o n c lu s io n

Our premise at the outset of this chapter was that a human can demonstrate a range of

task-level, execution strategies. We stated our aim was to present a method that could

select for the robot the most optimal strategies demonstrated. Then, according to our

aim, the method presented in this chapter has been successful. We saw that a number of

different strategies for the spindle-assembly task were demonstrated. Our method could

select strategies that saw the robot perform optimally in a number of different performance

areas. It could select strategies that resulted in task performance with low execution time,

high reliability, low control effort, or that copied the demonstrator. In addition, it was

able to select a strategy that saw the robot take a balanced approach to task execution.

Finally, it was able to avoid selecting demonstrated strategies that resulted in less opti

mal performance of the task. Experimental result confirmed the validity of the selected

strategies in each case. Where a strategy was selected for a particular performance area,

140

CHAPTER 5. SELECTING TASK-LEVEL STRATEGIES

experiments showed that the robot performed with the expected characteristics. Where a

balanced approach to task execution was desired, the robot performed the task well in each

performance area. Where our method predicted poor performance, experiments confirmed

that poor performance resulted. Our method in this chapter has provided an important,

new step in the process of noise removal in PbD; one not seen before in the literature to

date. That is, it has provided a method for identifying and removing sub-optimality in

the demonstration at the task level.

141

C hapter 6

C onclusions

6.1 In trod u ction

This chapter brings the conclusion of the thesis. Our presentation here divides into two

parts. First, we review in Section 6.2 the major results and conclusions of work in the

thesis. Our focus is on identifying how the work presented has helped solve the problem of

demonstration sub-optimality in PbD. The second part of this chapter identifies possible

areas for further research. We do not presume that work presented provides a complete

solution, nor one where improvements cannot be made. Section 6.3 discusses and highlights

areas where further research is required.

6.2 M ajor R esu lts and C onclusions

The content of this thesis divided nicely into three areas: (i) determining task-specific, geo

metric information, (ii) deriving noise-free, low-level, control commands, and (iii) selecting

a task-level strategy. The major results and conclusions in each area can be summarised

as follows.

(i) This work uses regression analysis on demonstration data to estimate the geometric

properties of a task. It provides a valuable step for removing demonstration sub-optimality

142

CHAPTER 6. CONCLUSIONS

in PbD, since task specific, geometric information allows sensible decisions to be made

about whether a demonstrated action contains noise. The method proposed uses con

figuration space as the means for representing the geometric properties of a task. The

method proved a valid, alternative way to the usual, geometric-model-based methods for

determining C-space. It had the advantage of requiring only a set of demonstrations of

the task, and so was well suited to applications where a geometric model was not avail

able, eg. for PbD in domestic type environments. A key finding for the method was

that the accuracy of its representation for a particular region in C-space was found to

depend on how often that region was visited in the demonstration. For frequently visited

regions, an accurate representation of the C-space topology resulted. Where a region was

less-frequently visited, a less accurate representation prevailed. We identified this fact as

a weakness of the method compared to geometric-model-based methods for determining

C-space. Our approach in this thesis was to circumvent the use of regions where a less

accurate representation existed by deriving commands for the robot that visited regions

well-visited in the demonstration.

(ii) This work divides into two parts. The first part proposed a path planning technique to

determine noise-free paths in partially known configuration spaces. The proposed method

was used to derive noise-free position control commands. The method has the advantage

over others in the literature that: (a) it can derive paths containing undemonstrated points,

so significant noise removal is possible, (b) it does not assume all demonstrated paths pass

between the same start and end points, (c) it can derive paths lying outside an envelope

formed by demonstrated paths, and (d) it can be applied to find paths in a C-space of any

dimension. A limitation of the method is that a non-valid path can be derived if parameters

in the method are not set appropriately. The second part of work in this area proposed

force control-command synthesis. The proposed method determines the direction of force

control as orthogonal to our current position on a C-surface. It determines a noise-free

magnitude for force control based on smoothing and spline fitting. The major advantages

of the method are that (a) it is able to remove the friction component from demonstrated

143

CHAPTER 6. CONCLUSIONS

force commands, (b) it is able to remove high frequency noise included by force sensors

in demonstrated force commands, and finally (c) it provides a valid way to produce force

commands for points in a position control command that were undemonstrated.

(iii) This work proposes a method for selecting task-level execution strategies. It is essen

tially the process of removing sub-optimality in the demonstration at the task level. No

other work of this type has been presented in the literature to date. Given this fact, the

key finding for the work is that removing demonstration sub-optimality at the task level is

a valid and important step in PbD. Results in this thesis showed that robot performance

of a task can be improved by actively selecting more optimal demonstrated strategies over

those that are less optimal. Two other major findings for the work were made. First,

that the discrete event formalism of HDS skill modeling provides a powerful and valid

description of execution strategy at the task level. Second, that by allowing the demon

strator to select as important one of four possible execution characteristics, flexibility into

the PbD programming approach can be achieved. Experiments in this thesis showed that

the demonstrator could tailor how the robot performed a task, depending on what was

desired.

6.3 Further R esearch

A number of areas of further research for work in this thesis exist. They are:

6.3.1 R egression analysis using force data

The regression analysis of Chapter 3 determined unknown parameters for a C-surface

equation based only on demonstrated position data. An augmented approach would be

to also use in the regression analysis, demonstrated force data. Force data should lie in

the sub-space orthogonal to a C-surface, however, it is well known that noise and friction

will corrupt demonstrated force data. Noise, assuming it is white, will be identified and

removed by the regression process. An estimate of the friction-free demonstrated force

144

CHAPTER 6. CONCLUSIONS

can be achieved by (i) identifying a demonstrated “velocity” using sequential position

data points on a C-surface, and (ii) removing the force component lying parallel to this

velocity. We have noted that our method for deriving C-space can provide less-accurate

estimates for regions of C-space where little demonstration data was available. Including

force data in the regression process would improve estimates for these regions.

6.3.2 P rocess m onitor assum ptions

Work in Chapter 3 made the assumption that a PM could return information about (i)

whether an event resulted in a gain or loss of constraint on the manipulated object in the

task, and (ii) the type of constraint that was gained or lost. We identified at the time some

methods for determining this type of information. For example, we noted that (i) may

be identified by using reasoning on contact forces and spindle velocities. Alternatively,

we suggested an approach based on training coupled with “learning” methods (eg. neural

networks), as adopted by [114, 35] for identifying when an event in a task occurs. The

method we presented in Chapter 3 was based around the assumption that this type of

information could be determined automatically by the PM. Research into methods for

achieving this functionality in the PM is required.

6.3.3 O ptim ising paths across states

Synthesis of a position control command in Chapter 3 took, as the start and end points

of the command, demonstrated points on the boundary of a C-surface. Noise removal

for a demonstrated path was achieved by removing noise in a piece-wise fashion from

the segments in each state in the path. The assumption made was that noise in the

demonstration will exist only within each state, and does not exist “across” states. An

extension of the approach presented in this thesis would be to allow undemonstrated start

and end points. Then, if the point used in the demonstration for a transition between

two states is inefficient, the inefficiency will be identified and removed. Of course, the

undemonstrated start and end points would have to be selected with care, ie. (i) so they

145

CHAPTER 6. CONCLUSIONS

do not lie on the non-obstacle-free side of unknown boundaries, and (ii) so they will be

connected to points in likely-free regions and/or interior segments during the connectivity-

graph construction phase of the process. Solutions for ensuring (i) and (ii) would form

the major part of further work in this area.

6 .3 .4 S e ttin g param eters for p osition control com m and synth esis

Our method for position control command synthesis of Chapter 3 was based around a set

of parameters. We identified how successful command synthesis depended on appropriate

values being selected for these parameters. We also noted that, in a fully implemented

PbD system, parameter selection must be achieved automatically. Section 4.3.7 in Chap

ter 3 presented a number of simple measures used to set parameter values for the spindle

assembly task. Experiments showed the validity of these measures, however, further re

search into this area of the work is required. The research should identify two facts:

whether the measures in Section 4.3.7 are applicable to a wider range of tasks than the

spindle assembly task, and if not, what measures are appropriate for a more general range

of tasks.

6.3 .5 D iscrete event sequence as task -level descrip tion

Work in Chapter 5 used a single discrete event as its basis for a task-level description of

execution-strategy. That is, we predicted how the robot would perform each individual

event, assigned an appropriate cost for that event in the automaton, and searched the

automaton for a minimum cost path. An alternate basis for describing execution strategy

at the task level may be as a sequence of events. For example, work presented in [47],

investigated the idea of using the complete sequence of events encoded by a demonstration

as the basis for describing execution strategy at the task level. That is, each demonstration

was taken as a separate demonstrated strategy, and, in the same way as for work in Chapter

5, a prediction of robot performance for each was made in order to select the most optimal.

Work in Chapter 5, and work in [47], represent the two extremes in the number of events

146

CHAPTER 6. CONCLUSIONS

to take in a sequence. Preliminary work in this area has identified that a different event

path will result depending on what length of sequence is adopted. Then a possible focus

for further work is to investigate (i) the relationship between the desired path selected and

the sequence length adopted, and (ii) whether there is an “optimal” sequence length, ie.

one that results in the most optimal desired event path.

147

B ib liography

[1] I.Imam abd J.E.Davis. Robot simulation and off-line programming - an integrated

cae-cad approach. In B.Ravani, editor, CAD Based Programming for Sensory Robots,

volume 50 of NATO ASI Series F: Computer and Systems Sciences, pages 189-201.

Springer-Verlag, 1988.

[2] G.Messina A.Capizzi and G.Tricorni. Robot programming languages standardiza

tion in manufacturing environment. In Proceedings of the IEEE/RSJ International

Conference on Inelligent Robots and Systems, pages 488-492, July 1993.

[3] A.Danthine and M.Geradin, editors. Advanced Software in Robotics. Elsevier Science

Publishers B.V. (North Holland), 1984.

[4] A.Gollu and P.Varaiya. Hybrid dynamic systems. In Proc. of the 28th IEEE Confer

ence on Decision and Control, pages 2708-2712, Tampla, Florida, December 1989.

[5] A.Liegeois. Simulation as a programming aid. In U.Rembold and K.Hormann,

editors, Languages for Sensor Based Control in Robotics, volume 29 of NATO ASI

Series F: Computer and Systems Sciences, pages p331-341. Springer-Verlag, 1987.

[6] A.P.Ambler and D.F.Corner. RAPT1 users manual. Department of Artificial In

telligence, University of Edinburgh, Edinburgh, Scotland, 1982.

[7] Christopher G. Atkeson and Stefan Schaal. Learning tasks from a single demonstra

tion. In Proceedings of the 1997 IEEE International Conference on Robotics and

Automation, pages 1706-1712, May 1997.

148

BIBLIOGRAPHY

[8] Australian Robot Association. Proceedings of the International Conference on Field

and Service Robotics, Canberra, Australia, December 1997.

[9] B.Hannaford and P.Lee. Hidden markov model analysis of force/torque information

in telemanipulation. The International Journal of Robotics Research, 10(5) :528—539,

October 1991.

[10] B.J.McCarragher. A discrete event dynamic systems approach to robotic assembly.

PhD thesis, MIT Department of Mechanical Engineering, July 1992.

[11] B.J.McCarragher. Force sensing from human demonstration using a hybrid dy

namical model and qualitative reasoning. In Proceedings of the IEEE International

Conference on Robotics and Automation, volume 1, pages 557-563, San Diego, CA,

USA, May 1994.

[12] B.J.McCarragher and H.Asada. The discrete event control of robotic assembly tasks.

ASME Journal of Dynamic Systems, Measurement and Control, 117(3):384—393,

September 1995.

[13] C.C.Geschke B.Shimano and C.Spalding. VAL-II: a robot programming language

and control system. In SME Robots VIII Conf., pages 20:103-20:119, Detroit, MI,

June 1984.

[14] M. Skubic S.P. Castrianni and R.A. Volz. Identifying contact formations from force

signals. In Proceedings of the 1997 International Conference on Neural Networks,

pages 1623-1628, 1997.

[15] C.Blume and W.Jacob. PASRO: PASCAL for robots. Springer Verlag, 1985.

[16] C.Crangle. Conversational interfaces to robots. Robotica, 15:117-127, 1997.

[17] J.Duffy C.D.Crane III and M.Locke. Off-line programming and path generation

for robot manipulators. In B.Ravani, editor, CAD Based Programming for Sensory

149

BIBLIOGRAPHY

Robots, volume 50 of NATO ASI Series F: Computer and Systems Sciences, pages

425-432. Springer-Verlag, 1988.

[18] C.Thorpe. Mixed traffic and automated highways. In Proceedings of the IEEE/RSJ

International Conference on Intelligent Robots and Systems, Grenoble, France,

September 1997.

[19] D.A.Pomerleau. Efficient training of artificial neural networks for autonomous nav

igation. Neural Computation, 3(l):88-97, Spring 1991.

[20] D.A.Pomerleau. Progress in neural network-based vision for autonomous robot driv

ing. In Proceedings of the Intelligent Vehicles ’92 Symposium, pages 391-396, Pitts

burgh, PA, USA, June 1992.

[21] D.C.Lay. Linear Algebra and its Applications. Addison Wesley, 1994.

[22] D.Lees and L.Leifer. A graphical programming language for robots in lightly struc

tured environments. In Proceedings of IEEE International Conference on Robotics

and Automation, pages 648-653, Atlanta, GA, USA, May 1993.

[23] D.R..Myers. An approach to automated programming of industrial robots. In Pro

ceedings of the IEEE International Conference on Robotics and Automation, pages

3109-3113, Detroit, Michigan, USA, April 1999.

[24] K.Kapellos D.Simon and B.Espiau. Control laws, tasks and proceedures with orccad:

application to the control of an underwater arm. In Proceedings of the 6th IARP

Workshop on Underwater Robotics, Toulon, France, March 1996.

[25] K.Kapellos D.Simon, B.Espiau and R.Pissard-Gibollet. Orccad: software engineer

ing for real-time robotics, a technical insight. Robotica, 15(1):111—115, January-

February 1997.

[26] D.Wenrui and M.Kampker. Pin-a pc-based robot simulation and offline program

ming system using macro programming techniques. In IECON’99. Conference Pro-

150

BIBLIOGRAPHY

ceedings. 25th Annual Conference of the IEEE Industrial Electronics Society, pages

442-446, San Jose, CA, USA, November 1999.

[27] D.Wenrni and M.Kampker. User oriented integration of sensor operations in a

offline programming system for welding robots. In Proceedings 2000 ICR A. Mil

lennium Conference. IEEE International Conference on Robotics and Automation,

pages 1563-1567, San Francisco, CA, USA, April 2000.

[28] E.C.Koenig. Parallel processing considerations for interactive man-robot systems.

Systems Analysis Modeling Simulation, 16(1): 1—8, 1994.

[29] E.Marchand. Visp: A software environment for eye-in-hand visual servoing. In Pro

ceedings of the IEEE International Conference on Robotics and Automation, pages

3224-3229, Detroit, Michigan, USA, April 1999.

[30] E.Mazer. LM-GEO: Geometric programming of assembly robots. In A.Danthine

and M.Geradin, editors, Advanced Software in Robotics, pages 99-110. Elsevier Sci

ence Publishers B.V. (North Holland), 1984.

[31] E.Mazer and J.F.Miribel. Manuel de reference lm. Technical report, Artificial Intel

ligence and Robotic Group laboratorie, IMAG, October 1982.

[32] E.Minieka. Optimization Algorithms for Networks and Graphs. Marcel Dekker Inc.

[33] A.W.M.Van Den Enden and N.A.M Verhoeckx. Discrete-Time Signal Processing,

An Introduction. Prentice Hall International, 1989.

[34] G.E.Hovland. Control of sensory perception for discrete event systems. PhD thesis,

Australian National University, 1997.

[35] P.Sikka G.E.Hovland and B.J.McCarragher. Skill aquisition from human demon

stration using a hidden markov model. In Proceedings of the IEEE International

Conference on Robotics and Automation, pages 2706-2711, Minneapolis, Minnesota,

USA, April 1996.

151

BIBLIOGRAPHY

[36] Geir.E.Hovland and B.J.McCarragher. Combining force and position measurements

for the modeling of robotic assembly. In Proceedings of the IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS’97), Grenoble, France, pages

655-660, September 1997.

[37] Hanqiu Sun. Xiaobu Yuan. Baciu G. Yunqing Gu. Direct virtual-hand interface in

robot assembly programming. Journal of Visual Languages & Computing, 10(1):55—

68, February 1999.

[38] H.Anton. Elementary Linear Algebra 5e. Wiley, 1987.

[39] H.Asada. Teaching and learning of compliance using neural nets: Representation

and generalization to nonlinear compliance. In Proceedings of the 1990 IEEE Inter

national Conference on Robotics and Automation, pages 1237-1244, May 1990.

[40] H.Asada and H.Izumi. Automatic program generation from teaching data for the

hybrid control of robots. In IEEE Transactions on Robotics and Automation, pages

163-173, 1989.

[41] H.Ogata and T.Takahashi. A geometric approach to task understanding for assembly

operations. In Proceedings of the IEEE International Conference on Robotics and

Automation, pages 695-700, Atlanta, GA, USA, May 1993.

[42] H.Ogata and T.Takahashi. A geometric approach to task understanding and play

back: compact and robust task description for complex environments. In Proceedings

of the IEEE International Conference on Robotics and Automation, volume 1, pages

848-854, San Diego, CA, USA, May 1994.

[43] Geir E. Hovland and Brenan J. McCarragher. Hidden markov models as a pro

cess monitor in robotic assembly. International Journal of Robotics Research,

146(17) :266—267, October 1997.

152

BIBLIOGRAPHY

[44] S.Van Huffel and J.Vandewalle. The Total Least Squares Problem: Computational

Aspects and Analysis. Frontiers in Applied Mathematics. Society for Industrial and

Applied Mathematics, Philadelphia, 1991.

[45] I.H.Witten. Pbd systems: when will they ever learn? In Workshop: Programming

by Demonstration vs Learning from Examples; International Conference on Machine

Learning, California, USA, July 1995.

[46] Fraunhofer IPA. Vr4 - software tool for dynamic and real-time oriented virtual

environments. Company Brochure, Stuttgart, Germany, 1996.

[47] J.Chen and B.J.McCarragher. Robot programming by demonstration, selecting op

timal event paths. In Proceedings of the 1998 IEEE International Conference on

Robotics and Automation, pages 518-523, April 1998.

[48] J.E.Lloyd and D.K.Pai. Extracting robotic part-mating programs from operator

interaction with a simulated environment. In A.Casals and A.T.de Almeida, edi

tors, Experimental Robotics V. The Fifth International Symposium, pages 675-686.

Springer-Verlag, Berlin, Germany, 1998.

[49] D.K.Pai J.E.Lloyd, J.S.Beis and D.G.Lowe. Programming contact tasks using a

reality-based virtual environment integrated with vision. IEEE Transactions on

Robotics and Automation, 15(3):423-434, June 1999.

[50] J.F.Engelberger. Robotics in Service. Mit Press, Cambridge, Massachusetts, 1989.

[51] D.Lees L.Leifer H.F.M.Van der Loos I.Perkash J.Hammel, K.Hall and R.Crigler.

Clinical evaluation of a desktop robotic assistant. Journal of Rehabilitation Research

and Development, 26(3): 1—16, Summer 1989.

[52] B.Espiau K.Kapellos R.Pissard-Gibollet D.Simon J.J.Borrelly, E.Coste-Manire and

N.Turro. The orccad architecture. International Journal of Robotics Research, Spe-

153

BIBLIOGRAPHY

cial Issue on Integrated Architecture for Robot Control and Programming, 17(4):338—

359, April 1998.

[53] J.J.Craig. Introduction to robotics: mechanics and control. Addison-Wesley, second

edition edition, 1989.

[54] J.L.Dallaway. Human-computer interaction with robotic workstations. In Proceed

ings of the RESNA Annual Conference, pages 339-341, 1986.

[55] R.D.Jackson J.L.Dallaway and R.M.Mahoney. The user interface for interactive

robotic workstations. In Proceedings of the IEEE/RSJ International Conference on

Intelligent Robots and Systems, pages 1682-1686, 1994.

[56] R.D. Jackson J.L.Dallaway, R.M.Mahoney and R.G.Gosine. An interactive robot con

trol environment for rehabilitation applications. Robotica, 11 (6):541—552, November

1993.

[57] C.J.Nachtsheim J.Neter. M.H.Kutner and W.Wasserman. Applied Linear Regression

Models. IRWIN, 3rd edition, 1996.

[58] J.Patrick. Training: Research and Practice. Academic Press, San Diego, CA, 1992.

[59] J.P.Merlet. Programming tools for force-feedback command of robots. In U.Rembold

and K.Hormann, editors, Languages for Sensor Based Control in Robotics, volume 29

of NATO A SI Series F: Computer and Systems Sciences, pages 69-81. Springer-

Verlag, 1987.

[60] JR3 Inc, 22 Harter Ave, Woodland, CA, 95776. JR3: DSP-based force sensor re-

cievers, software and installation manual, April 1994.

[61] H.Kimura J.Takamatsu and K.Ikeuchi. Classifying contact states for recognizing

human assembly tasks. In Proceedings of the IEEE International Conference on

Multisensor Fusion and Integration for Intelligent Systems, pages 177-182, August

1999.

154

BIBLIOGRAPHY

[62] Y.Xu J.Yang and C.S.Chen. Hidden markov model to skill learning and its applica

tions to telerobotics. IEEE Transactions on Robotics and Automation, 10(5): 1248-

1255, October 1994.

[63] M. Kaiser and R. Dillman. Building elementary skills from human demonstration. In

Proceedings of the 1996 IEEE International Conference on Robotics and Automation,

pages 2700-2705, April 1996.

[64] K.Ikeuchi, M.Kawade, and T.Suehiro. Toward assembly plan from observation, task

recognition with planar, curved and mechanical contacts. In Proceedings of the

1993 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages

2294-2301, 1993.

[65] Jean-Claude Latombe. Robot Motion Planning. Kluwer Academic Publishers, 1991.

[66] J.Latombe L.E.Kavraki, P.Svestka and M.H.Overmars. Probabilistic roadmaps for

path planning in high-dimensional configuration spaces. IEEE Transactions on

Robotics and Automation, 12(4):566—580, August 1996.

[67] L.I. Lieberman and M.A. Wesley. Autopass: an automatic programming system for

computer controlled mechanical assembly. IBM Journal of Research and Develop

ment,, 21(4):321-333, 1977.

[68] C.Crangle L.Liang and L.Leifer. A computational model for a robotic arm instructed

by natural language. In Proceedings of the IEEE International Conference on Sys

tems, Man and Cybernetics, pages 451-456, Los Angeles. CA, USA, Nov 1990.

[69] L.Sciavicco and B.Siciliano. Modeling and control of robot manipulators. McGraw-

Hill, 1996.

[70] A.Birk H.Kitano M.Asada, R.D’Andrea and M.Veloso. Robotics in edutainment.

In Proceedings of the IEEE International Conference on Robotics and Automation,

pages 795-800, San Francisco, California, USA, May 2000.

155

BIBLIOGRAPHY

[71] M.Carter. Using telerobots for recreation. In Proceedings of the International Con

ference on Field and Service Robotics, pages 173-178, Canberra, Australia, Decem

ber 1997.

[72] Brenan J. McCarragher and Haruhiko Asada. The discrete event modeling and

trajectory planning of robotic assembly tasks. Journal of Dynamic Systems, Mea

surements and Control, 117(3):394-400, October 1995.

[73] M.H.Raibert and J.J.Craig. Hybrid position/force control of manipulators. Journal

of Dynamic Systems, Measurement, and Control, 102/127:126-133, June 1981.

[74] H.Friedrich M.Kaiser and R.Dillmann. Obtaining good performance from a bad

teacher. In Workshop: Programming by Demonstration vs Learning from Examples;

International Conference on Machine Learning, California, USA, July 1995.

[75] S.P.Castrianni M.Skubic and R.A.Volz. Indentifying contact formations from force

signals: A comparison of fuzzy and neural network classifiers. In ”Proceedings of

the IEEE International Conference on Neural Networks, volume 3, pages 1623-1628,

June 1997.

[76] Y.Nakamura M.Uechi, H.Ogata and M.Mizukawa. A component achitecture for

customizing robot-teaching systems. In Proceedings of the IEEE International Con

ference on Robotics and Automation, San Francisco, California, USA, May 2000.

[77] N.Delson and H. West. Robot programming by human demonstration: The use of hu

man inconsistency in improving 3d robot trajectories. In Proceedings IEEE/RSJ In

ternational Conference on Intelligent Robots and Systems, pages 1248-1255, Septem

ber 1994.

[78] N.Delson and H.West. Robot programming by human demonstration: the use of

human variation in identifying obstacle free trajectories. In Proceedings of the IEEE

International Conference on Robotics and Automation, pages 564-570, May 1994.

156

BIBLIOGRAPHY

[79] N.Delson and H.West. Robot programming by human demonstration: Adaptation

and inconsistency in constrained motion. In Proceedings of the 1996 IEEE Interna

tional Conference on Robotics and Automation, 1996.

[80] N.Hogan. How humans adapt to kinematic constraints. In Proceedings of the 7th

Yale Workshop on Adaptive Learning Systems, May 1992.

[81] N.M.Amato and Y.Wu. A randomized roadmap method for path and manipulation

planning. In Proceedings of the IEEE International Conference on Robotics and

Automation, pages 113-120, 1996.

[82] L.Priolo P.Bison, E.Pagello and S.Ziviani. Simulation tools as a programming aid for

robot programming. In U.Rembold and K.Hormann, editors, Languages for Sensor

Based Control in Robotics, volume 29 of NATO ASI Series F: Computer and Systems

Sciences, pages p343-357. Springer-Verlag, 1987.

[83] K.Ali P.Fiorini and H.Seraji. Health care robotics: A progress report. In Proceedings

of the IEEE International Confenmce on Robotics and Automation, pages 1271—

1276, Albuquerque, New Mexico, USA, April 1997.

[84] Polhemus Inc. 3SPACE FASTRAK Users Manual Revision F, 1993.

[85] P.Sikka and B.J.McCarragher. Learning to recognize discrete state transitions in

assembly. In Proceedings of the Australian Robot Association’s National Conference

on Robots for Australian Industries, Melbourne, July 1995.

[86] P.Varaiya. Smart cars on smart roads: Problems of control. IEEE Transactions on

Automatic Control, 38(2): 195-207, 1993.

[87] P.V.O’Neil. Advanced Engineering Mathematics. Wadsworth Publishing Company,

second edition, 1987.

157

BIBLIOGRAPHY

[88] P.V.Whalen. Teaching accomodation task skills: from human demonstration to robot

control via artificial neural networks. PhD thesis, Air Force Insitute of Technology,

Wright-Patterson Air Force Base, 1995.

[89] Joris De Schntter Qi Wang. Towards real-time robot programming by human demon

stration for 6d force controlled actions. In Proceedings of the 1998 IEEE Interna

tional Conference on Robotics and Automation, pages 2256-2261, April 1998.

[90] Wim Witvrouw Qi Wang, Joris De Schütter and Sean Graves. Derivation of compli

ant motion programs based on human demonstration. In Proceedings of the IEEE

International Conference on Robotics and Automation, pages 2616-2621, April 1996.

[91] Q.Wang and J.De Schütter. Force controlled robot programming by human demon

stration. Technical Report 95R64, Katholieke Universiteit Leuven, Belgium, August

1995.

[92] S.Fleury M.Ghallab R.Alami, R.Chatila and F.Ingrand. An achitecture for auton

omy. The International Journal of Robotics Reseach, 1T(4):315—337, April 1998.

[93] M.Kaiser R.Dillmann and A.Ude. Aquisition of elementary robot skills from human

demonstration. In Proceedings of the International Symposium on Intelligent Robotic

Systems, Pisa, Italy, 1995.

[94] R.D.Schraft. Mechatronics and robotics for service applications. IEEE Robotics and

Automation Magazine, 1 (4) :31—35, December 1994.

[95] R.H.Taylor. Synthesis of manipulator control programs from task-level specifications.

Memo AIM 228, AI Lab, Stanford, July 1976.

[96] P.D.Summers R.H.Taylor and J.M.Meyer. Ami: A manufacturing language. Inter

national Journal of Robotics Research, 1 (3): 19—41, 1982.

158

BIBLIOGRAPHY

[97] R.J.Popplestone and A.P.Ambler. A language for specifying robot manipulations.

In A.Pugh, editor, Robotic Technology, pages 125-141. Peter Peregrinus, London,

England, 1983.

[98] R.Koeppe and G.Hirzinger. Sensorimotor compliant motion from geometric percep

tion. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots

and Systems, volume 2, pages 805-811, Kyongju, South Korea, October 1999.

[99] A.Breidenbach R.Koeppe and G.Hirzinger. Skill representation and aquisition of

compliant motions using a teach device. In Proceedings of the 1996 IEEE/RSJ

International Conference on Intelligent Robots and Systems, volume 2, pages 897-

904, Osaka, Japan, November 1996.

[100] R.Navon and A.Retik. Programming construction robots using virtual reality tech

niques. Automation in Construction, 5(5):393-406, February 1997.

[101] R.P.Lippmann. An introduction to computing with neural nets. IEEE ASSP Mag

azine, pages 4-22, April 1987.

[102] R.W.Brockett. Hybrid models for motion control systems. In H.L.Trentelman and

J.C.Willems, editors, Essays on Control: Perspectives in the Theory and Its Appli

cations, chapter 2, pages 29-5. Birkhauser, Boston, MA, 1993.

[103] G.Pardo-Castellote S.A.Schneider, V.W.Chen and H.W.Wang. Controlshell: a soft

ware architecture for complex electromachanical systems. The International Journal

of Robotics Reseach, 17(4):315-337, April 1998.

[104] S.B.Huffman and J.E.Laird. Learning from highly flexible tutorial instruction. In

Proceeding of the Twelfth National Conference on Artificial Intelligence, Seattle,

WA, USA, July 1994.

[105] S.B.Huffman and J.E.Laird. Flexibly instructable agents. Journal of Artificial In

telligence Research, 3:271-324, Jun-Dec 1995.

159

BIBLIOGRAPHY

[106] S.B.Kang and K.Ikeuchi. Determination of motion breakpoints in a task sequence

from human hand motion. In Proceedings of the IEEE International Conference

on Robotics and Automation, volume 1, pages 551-556, San Diego, CA, USA, May

1994.

[107] S.Bonner and K.G.Shin. A comparative study of robot languages. IEEE Computer,

15(12) :82—96, 1982.

[108] J.De Schütter and P.Simkens. Cad-based verification and refinement of high level

compliant motion primitives. In B.Ravani, editor, CAD Based Programming for

Sensory Robots, volume 50 of NATO AS I Series F: Computer and Systems Sciences,

pages 203-222. Springer-Verlag, 1988.

[109] H.Bruyninckx S.Dutre and J.De Schütter. Indentification and monitoring based on

energy. In Proceedings of the 1996 IEEE International Conference on Robotics and

Automation, pages 1333-1338, Minneapolis, Minnesota, USA, April 1996.

[110] S.Hirai. Identification of contact states based on a geometric model for manipulative

operations. Advanced Robotics: The International Journal of the Robotics Society

of Japan, 8(2): 139—155, 1994.

[111] H.I.Connacher S.Jayaram and K.W.Lyons. Virtual assembly using virtual reality

techniques. Computer Aided Design, 29(8):575—584, 1997.

[112] S.K.Tso and K.P.Liu. Demonstrated trajectory selection by hidden markov model.

In Proceedings of the International Conference on Robotics and Automation, pages

2713-2718, Albuquerque, New Mexico, April 1997.

[113] Marjorie Skubic and Richard A. Volz. Identifying contact formations from sensory

patterns and its applicability to robot programming by demonstration. In Pro

ceedings of the 1996 IEEE/RSJ International Conference on Intelligent Robots and

Systems, pages 458-464, 1996.

160

BIBLIOGRAPHY

[114] Marjorie Skubic and Richard A. Volz. Learning force based assembly skills from

human demonstration for execution in unstructured enviroments. In Proceedings of

the IEEE International Conference on Robotics and Automation, pages 1281-1288,

May 1998.

[115] S.Lee and S.Shimoji. Machine acquisition of skills by neural networks. In Proceedings

of the International Joint Conference on Neural Networks, volume 2, pages 781-788,

New York, NY, USA, July 1991.

[116] S.Liu and H.Asada. Transfer of human skills to robots: Learning from human

demonstrations for building an adaptive control system. In Proceedings of the 1992

American Control Conference, pages 2607-2612, 1992.

[117] S.Liu and H.Asada. Teaching and learning of deburring robots using neural networks.

In Proceedings of the IEEE Conference on Robotics and Automation, pages 339-345,

Los Alamitos, CA, USA, May 1993.

[118] C.Crangle S.Michalowski and L.Liang. Experimental study of a natural-language

interface to an instructable robotic aid for the severely disabled. In Proceedings of

the 10th Annual Conference on Rehabilitation Technology, pages 19-23, San Jose,

CA, USA, Jun 1987.

[119] S.Mujtaba and R.Goldman. A1 user’s manual. Technical Report STAN-CS-81-889,

Stanford Artificial Intelligence Laboratory, 1982.

[120] B.Blanchard S.Zegloul and M.Ayrault. Smar: A robot modeling and simulation

system. Robotica, 15(1) :63—73, Jan-Feb 1997.

[121] T.Arai. A robot language system with a colour graphic simulator. In A.Danthine and

M.Geradin, editors, Advanced Software in Robotics, pages 215-226. Elsevier Science

Publishers B.V. (North Holland), 1984.

161

BIBLIOGRAPHY

[122] T.Arai and H.Yago. A graphical robot language developed in japan. Robotica,

15(1):99—103, Jan-Feb 1997.

[123] M.H.Lee T.G.Williams, J.J.Rowland and M.J.Neal. Teaching by example in food

assembly by robot. In Proceedings of the IEEE International Conference on Robotics

and Automation, San Francisco, California, USA, May 2000.

[124] F.Schwarz T.Horsch and H.Tolle. Motion planning for many degrees of freedom:

Random reflections at c-space obstacles. In Proceedings of the IEEE International

Conference on Robotics and Automation, pages 3318-3323, May 1994.

[125] T.Kesavadas and H.Subramanium. Flexible virtual tools for programming robotic

finishing operations. The Industrial Robot, 25(4):268-275, 1998.

[126] T.Lozano-Perez. The design of a mechanical assembly system. Unpublished M.Sc.

thesis, Department of Electrical Engineering, Massachusetts Institute of Technology,

Cambridge, MA , 1976.

[127] T.Lozano-Perez. Spatial planning: A configuration space approach. IEEE Transac

tions on Computing, C32:108-120, February 1983.

[128] T.Takahashi. Time normalisation and analysis method in robot programming from

human demonstration data. In Proceedings of the 1996 IEEE International Con

ference on Robotics and Automation, pages 37-42, Minneapolis, Minnesota, USA,

April 1996.

[129] T.Takahashi and H.Ogata. Robotic assembly operation based on task-level teaching

in virtual reality. In Proceedings of the IEEE International Conference on Robotics

and Automation, pages 1083-1088, 1992.

[130] U.Rembold and K.Hormann, editors. Languages for Sensor-Based Control in

Robotics, volume 29 of NATO ASI Series F: Computer and Systems Sciences.

Springer-Verlag, 1986.

162

BIBLIOGRAPHY

[131] W.A.Fuller. Measurement Error Models. Probability and Mathematical Statistics.

Wiley, 1987.

[132] Wind River Systems, 1010 Atlantic Ave, Alameda, CA 94501-1147. VxWorks refer

ence manual 5.1, 1993.

[133] J.G.Neugebauer W.M.Strommer and T.Flaig. Transputer-based virtual reality work

station as implemented for industrial robot control. In Informatique ’93. 2nd In

ternational Conference on Interface to Real and Virtual Worlds. Proceedings and

Exhibition Catalogue, pages 137-146, Montpellier, France, March 1993.

[134] W.O.Troxell and J.A.Davis. Task-achieving modules in robot programming. In

Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and

Systems, pages 1259-1261, July 1992.

[135] M.C.Nechyba Yangsheng Xu. Human skill transfer: neural networks as learners and

teachers. In Proceedings of the IEEE/RSJ International Conference on Intelligent

Robots and Systems, volume 3, pages 314-319, Pittsburgh, PA, USA, August 1995.

[136] M.C.Nechyba Yangsheng Xu. On the fidelity of skill models. In Proceedings of

the IEEE International Conference on Robotics and Automation, Minneapolis, Min

nesota, USA, April 1996.

[137] M.C.Nechyba Yangsheng Xu. Human control strategy: abstraction, verification, and

replication. IEEE Control Systems Magazine, 17(5):48—61, October 1997.

[138] Y.Xu and J.Yang. Towards human-robot coordination: skill modeling and transfer

ring via hidden markov model. In Proceedings of the IEEE International Conference

on Robotics and Automation, pages 1906-1911, Nagoya, Aichi, Japan, May 1995.

[139] K.Arakawa Y.Yanagihara, T.Kakizaki and A.Umeno. Task world reality for human

and robot system- a multimodal teaching advisor and its implementation. In Pro-

163

BIBLIOGRAPHY

ceedings of IEEE International Workshop on Robot and Human Communication,

pages 38-43, Tsukuba, Japan, Nov 1996.

[140] Jiong Zhang and Yangsheng Xu. Modeling human strategy in controlling light

source. In Proceedings 1999 IEEE International Conference on Robotics and Au

tomation, volume 4, pages 3140-3145, Detroit, MI, USA, May 1999.

[141] M.Beitler-S.Chen D.Chester Z.Kazi, M.Salganicoff and R.Foulds. Multimodal user

supervised interface and intelligent control for a rehabilitation robot. In Proceedings

of IJCAI Workshop on Developing AI Applications for the Disabled, pages 46-58,

Montreal, Canada, 1995.

[142] M.Salganicoff-S.Chen D.Chester Z.Kazi, M.Beitler and R.Foulds. Multimodally con

trolled intelligent assistive robot. In Proceedings of 16th annual RESNA Conference,

pages 348-350, Salt Lake City, Utah, 1996.

164

