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ABSTRACT

This thesis investigates and develops time-series models in financial markets. It 

provides new approaches to this area, and applies these approaches to various 

exchange rate contexts. The aims of this thesis are: to develop an understanding 

of modelling international financial market movements, in particular the foreign 

exchange market and the Australian equity market; to examine advances in non

linear time-series modelling using computer-intensive statistical approaches; and 

to investigate and develop non-linear time-series modelling in financial markets.

The topic of time-series modelling in financial markets has received widespread 

coverage in the literature. The issue is important because of its fundamental role 

in investment decision-making. Over the last decade, financial markets have been 

affected by significant structural changes, including the expansion of financial 

markets, the globalisation of finance, the introduction of the Euro, the increasing 

role of electronic broking, and the massive growth in the investment funds 

industry. These factors have contributed to an increased focus on financial 

market movements. Conventional linear time-series models are unlikely to 

properly explain and model significant price variations. Non-linear time-series 

models have the potential to improve the performance of modelling and are 

appealing in explaining complex price behavior.
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This thesis investigates time-series modelling in financial markets by introducing 

an innovative approach to model building. A range of new techniques for vector 

time-series modelling is used to enhance existing linear and non-linear modelling 

of exchange rate and equity market movements. These techniques include zero- 

non-zero (ZNZ) patterned vector autoregressive (VAR) modelling, ZNZ 

patterned vector error-correction (VECM) modelling, ZNZ patterned polynomial 

neural networks, the forgetting factor method and bootstrapping. Traditional full- 

order models assume all non-zero entries in their coefficient matrices. This thesis 

develops a vector time-series model, with allowance for possible zero entries in 

coefficient matrices, as a ZNZ patterned vector time-series model.

The model’s optimal order and ZNZ pattern determination can be drawn from 

procedures using artificial intelligence techniques such as structured search 

algorithms. If key linear and non-linear interactions among variables are captured 

accurately, the chosen ZNZ system can improve the modelling and simulation 

performance. While no model will ever completely capture the characteristics of 

complex modem financial systems, the combination of these approaches provides 

important insights into, and improvements in the performance of, statistical 

procedures in financial time-series analysis.
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CHAPTER 1

PURPOSE AND SCOPE OF STUDY

1.1 Aims

This thesis examines the underlying time-series forces that contribute 

significantly to price movements in international forex and financial markets. The 

aims of this thesis are: to develop an understanding of modelling price 

movements, in particular the foreign exchange market and the Australian equity 

market; to examine advances in non-linear time-series modelling using computer

intensive statistical approaches; and to investigate and develop the performance 

of non-linear time-series modelling in financial markets.

Model building is a major focus of this thesis. New technology for non-linear 

modelling is helpful in interpreting and explaining certain aspects of the price 

behaviour of financial markets.

1.2 Linear and Non-linear Modelling

While the traditional linear modelling approach used to investigate price 

movements has received widespread coverage in the literature, this thesis takes a 

new approach to modelling. The use of non-linear models in statistical and 

econometric research has increased in recent years [see Refenes et al (1995)].
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Non-linear models can improve the performance of modelling due to the 

flexibility of such models in accounting for potentially complex non-linear 

relationships not captured by linear models. At the same time they encompass 

simulation instruments which can be used for analysing market properties. For 

instance, they are important in explaining and modelling cycles characterised by 

flat bottoms and sharp peaks. These characteristics are commonly observed in 

exchange rate and equity price markets, especially when the relevant data are 

recorded at relatively high frequencies. These non-linear models can also 

subsume in their specifications, linear relationships supported by theory, such as 

long-term linear cointegrating relations.

Over the last decade financial markets have experienced many important changes. 

The expansion of financial markets, the globalisation of capital markets, the 

massive growth in the investment funds industry, the introduction of the Euro and 

the integration of foreign exchange markets are all factors that have contributed to 

an increased focus on financial market price movements. Adrangi et al (2001) 

claim that linear models are unlikely to properly capture sudden movements and 

wide fluctuations in these markets. The existence of non-linearities in financial 

market movements has been emphasized by various researchers. Frank and 

Stengos (1989) find evidence of non-linear structures in the rates of return of gold 

and silver. Brooks and Henry (2000) demonstrate linear and non-linear 

transmission of equity return volatility among the United States, Japanese and 

Australian markets. De Grauwe et al (1993) show there exists a non-linear 

mechanism that drives exchange rate series and provide evidence of these non- 

linearities.
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This thesis develops a vector time-series model, with allowance for possible zero 

entries in coefficient matrices, as a zero-non-zero (ZNZ) patterned vector time- 

series model. Commonly employed full-order vector time-series models assume 

nonzero entries in all their coefficient matrices. A range of new techniques for 

vector time-series modelling is used in the thesis to enhance existing non-linear 

modelling of exchange rate and equity markets. These techniques include ZNZ 

patterned vector autoregressive (VAR) modelling, ZNZ patterned vector error- 

correction (VECM) modelling, ZNZ patterned polynomial neural networks, the 

forgetting factor method and bootstrapping. The model’s optimal order and ZNZ 

pattern determination can be drawn from procedures using artificial intelligence 

techniques such as structured search algorithms. These new techniques bring new 

insights to understanding price behaviour in financial markets.

1.3 Major Areas of Interest

In outline, this thesis investigates both modelling issues and applications. 

Modelling issues comprise ZNZ patterned VAR modelling, ZNZ patterned 

VECM modelling, neural networks and the forgetting factor method. Two 

applications are utilised to demonstrate the power of neural networks, and two 

applications are used to show the effectiveness of the forgetting factor method. 

Major applications include the relationship between foreign exchange and stock 

markets, and purchasing power parity (PPP) tests.
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1.3.1 Modelling Issues

1.3.1.1 ZNZ Patterned VAR and VECM Modelling

VAR models are increasingly being used in the analysis of relationships within 

and between financial markets. In such models there are circumstances that 

require zero entries in the coefficient matrices. Specifically, if it is necessary to 

detect the presence or absence of indirect causality and/or Granger non-causality 

in the framework of VAR, the efficiency of the causality detection is crucially 

dependent upon finding these zero coefficient entries where the true structure 

does indeed include zero entries. Such circumstances can be particularly relevant 

in the context of markets with special characteristics, such as emerging 

economies. This thesis shows that a direct extension of the use of the Yule- 

Walker relations for fitting VAR models with ZNZ patterned coefficient matrices 

is inconsistent with statistical procedures, as the resultant estimated variance- 

covariance matrix of the white noise disturbance process becomes non- 

symmetric. This inconsistency can lead to an inability to test financial theory. 

Chapter 5 provides a consistent adjustment which fits with the theory.

In Chapter 5 the practical use of the adjustment is demonstrated in a vector 

system comprising variables from the Hong Kong stock market and foreign 

exchange markets. The results indicate that the Euro leads the Hong Kong stock 

market. Since Hong Kong is an open market, capital flows to and from Europe 

make up a key component of trading in that stock market. The findings are 

helpful in explaining linkages between the financial variables involved.
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In vector time-series analysis, VECMs have become an important means of 

detecting Granger causal relations and cointegrating relations. Commonly 

employed full-order VECM models assume nonzero entries in all their coefficient 

matrices. However, applications of VECM models to economic and financial 

time-series data have revealed that zero entries are indeed possible. The existence 

of zero entries has not been fully explored in causality and cointegration theory. 

Specifically, if indirect causality or Granger non-causality exists among the 

variables, the use of ‘overparameterised’ full-order VECM models may weaken 

the power of statistical inferences. This thesis argues that the ZNZ patterned 

VECM is a more straightforward and effective means of testing for both indirect 

causality and Granger non-causality. The same benefits will be present if the 

ZNZ patterned VECM is used to analyse cointegrating relations. Chapter 6 

presents applications that demonstrate the usefulness of the ZNZ patterned 

VECM. The chapter indicates this new methodology is useful in providing 

insights into PPP.

1.3.1.2 Neural Networks

Conventionally linear time-series approaches have been adopted in modelling 

financial time-series. As described in Section 1.2, the modelling power of linear 

approaches is weak in relation to the complexities of financial markets. This 

thesis focuses on non-linear models to improve performance in modelling and 

simulation. It is proposed that non-linear models, in particular neural networks, 

have the ability to improve the performance of modelling and simulating the
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movements of financial variables, including equity market indicators and 

exchange rates. These networks have the flexibility to account for potentially 

complex non-linear relationships which cannot be fully captured by linear 

models.

Chapter 7 presents two applications of the newly developed learning algorithm 

for multi-layer neural networks. The first concerns a causality relationship 

between the stock and futures markets. The second concerns the relationship 

between prices of an individual share and the underlying stock market.

Further, this thesis extends the relevance of multi-layered neural networks and so 

more effectively models a greater array of financial vector time-series situations. 

It thus recognises that many connections between nodes in layers are unnecessary 

and can be deleted. This thesis introduces inhibitor arcs - reflecting inhibitive 

synapses. It also allows for connections between nodes in layers which have 

variable strengths at different points of time by introducing additionally 

excitatory arcs - reflecting excitatory synapses. In summary this innovative and 

sophisticated learning algorithm is simple to use and can avoid cumbersome 

matrix inversion, and therefore results in better numerical accuracy. The findings 

reveal that both the modelling and simulation performance can be improved by 

the chosen optimal specification.
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1.3.1.3 The Forgetting Factor Method

In time-series modelling, the forgetting factor method assesses each incoming 

observation and applies appropriate weights to update the model structure and 

parameters. Although the use of the forgetting factor method in time-series 

modelling has grown, the procedure for determining its nature has not yet been 

fully investigated. This thesis provides further insight into how to characterise the 

forgetting factor in time-series analysis.

Conventional methods for determining the forgetting factor in autoregressive 

(AR) models are mostly based on arbitrary or personal choices. Chapter 8 

presents two procedures which can be used to select the forgetting factor in subset 

AR modelling. The first procedure uses the bootstrap to determine the value of a 

fixed forgetting factor. The second procedure utilises the time recursive 

maximum likelihood (TRML) method, in conjunction with the bootstrap, to 

estimate the value of a dynamic forgetting factor. In two applications using 

exchange rate and stock market data, the effect on ex ante forecasting of both the 

fixed and the dynamic forgetting factors in subset AR modelling of non

stationary time-series is demonstrated.
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1.3.2 Major Applications

ZNZ patterned modelling is introduced in Chapter 3, and developed in Chapter 4 

where it is applied to forex market movements. Two major applications are 

conducted. The first examines the relationship between foreign exchange and 

stock markets. The second investigates PPP testing.

1.3.2.1 Relationship between Foreign Exchange and Stock Markets

The interaction between foreign exchange markets and stock markets is generally 

driven by capital flows. Investors seek growth in stock markets and gains from 

movements in exchange rates. One application investigates the causal analysis 

between the money supply and the Euro. The Euro’s impact on the Hong Kong 

stock market is also assessed. The ZNZ patterned VAR modelling is utilised to 

assess whether direct Granger causal relations exist between the money supply 

and the Euro’s exchange rate with the US Dollar. Further, the ZNZ patterned 

VAR modelling is used to investigate the Euro’s impact on the Hong Kong stock 

market during 1999.

Chapter 5 reports on the causal analysis which tests whether the Euro contributes 

to the movements in the Hong Kong stock market. The search algorithm proposed 

in Penm and Terrell (1984a), in conjunction with model selection criteria, is used 

to select the optimal ZNZ patterned VAR model. The selected optimal model is 

then used as a basis for Granger causal detection. The findings are consistent with 

economic theory and prior evidence. The Euro is detected as a variable which
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produces leading information for the Hong Kong market. That is, a shock to the 

Euro causes a response in the Hong Kong market.

1.3.2.2 Purchasing Power Parity Testing

This thesis also investigates the relevance of PPP hypothesis in explaining 

bilateral exchange rates between Australian and foreign currencies. PPP theory 

states that movements in the exchange rate between two countries’ currencies are 

determined by movements in their relative prices.

PPP theory has important implications for exchange rate predictions, financial 

economic modelling and economic policy. If, for example, PPP is shown to be 

valid in the long-term, then the long-term relation between the nominal exchange 

rate and the ratio of domestic to foreign prices can be incorporated as a long-term 

restriction in a simulation model for the exchange rate. This inclusion would 

improve the accuracy of exchange rate predictions over the long-term, since any 

short-term deviation of the exchange rate from PPP can be modelled as an error- 

correction mechanism, requiring adjustments in the exchange rate for the long

term relationship to be restored.

In this thesis, PPP hypothesis is tested for a number of bilateral exchange rates, 

using ZNZ patterned VECM modelling. The ZNZ patterned VECM approach 

provides a unique functionality which can detect both Granger-causality and 

cointegrating relationship within the optimal VECM in an effective and 

straightforward manner. This approach is different from the conventional error-
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correction modelling which could result in misleading inferences and inferior 

projections. The findings indicate that ZNZ patterned VECM modelling can 

accommodate both long-term and short-term responses. In addition, the current 

assessment of the short-term movements in the exchange rate within the 

framework of patterned VECM can influence the presence or absence of the long

term PPP relationship. An algorithm for an 1(2) analysis is also developed to 

conduct PPP testing. The results support the presence of PPP.

1.4 The Structure of the Thesis

The structure of the thesis is as follows. In Chapter 2, price movements in foreign 

exchange markets are discussed. Chapter 3 contains an overview of the models in 

financial time-series analysis which will be used. Chapter 4 presents the use of 

ZNZ patterned VAR and VECM modelling to examine Granger causal 

relationships and cointegrating relationships. In Chapter 5, a causal analysis of a 

dominating factor influencing the Euro is conducted. This chapter discusses the 

implications of the Euro exchange rate for the Hong Kong forex market and the 

Hong Kong stock market using ZNZ patterned VAR modelling. In Chapter 6 the 

necessary condition, and the necessary and sufficient condition, for PPP are 

sequentially tested for the Australian and selected foreign exchange markets in a 

framework of patterned VECM for 1(1) integrated time-series. An 1(2) algorithm 

for patterned VECM modelling is also developed, and applied to PPP testing and 

stock market analysis.
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Chapter 7 grapples with the difficult but important question of non-linear 

simulations, where multi-layered neural networks are used to increase non-linear 

modelling power for ZNZ patterned financial time-series systems. To 

demonstrate the usefulness of multi-layered neural networks, the developed 

modelling algorithm is applied to the relationship between the All Ordinaries 

Index and the Share Price Index Futures Contract, and is applied to another 

illustration examining the relationship between prices of an individual share and 

the underlying stock market. Chapter 8 introduces and develops the forgetting 

factor method in subset AR modelling. It proposes two procedures to determine 

the value of the forgetting factor. The first uses the bootstrap to select the value of 

a fixed forgetting factor. The second utilises both the bootstrap and the TRML 

estimation to estimate the value of a dynamic factor. The findings show that the 

forgetting factor however determined can improve the forecasting performance. 

Chapter 9 summarises the thesis and presents major conclusions.
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1.4.1 Contributions

The major theoretical contributions and empirical findings of this thesis are as 

follows:

Theoretical contributions:

(1) Conventional Yule-Walker relations for ZNZ patterned VAR modelling lead 

to a theoretical inconsistency. An adjustment to the Yule-Walker relations, which 

removes this theoretical inconsistency, is supplied.

(2) Identical Granger-causality, Granger non-causality and indirect causality 

relations among the variables can be detected by ZNZ patterned VAR models or 

by equivalent VECM models.

(3) Both 1(1) and 1(2) identification and estimation algorithms are developed to 

conduct cointegration analysis when dealing with a ZNZ patterned VECM. A 

VECM can accommodate both long-term and dynamic responses.

(4) Incorporation of polynomial neural networks into ZNZ patterned modelling. 

Both innovative order-update and time-update identification and estimation 

algorithms are developed and explored.
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(5) Incorporation of the bootstrap and the time-update recursive maximum 

likelihood (TRML) methods into subset AR modelling to decide the value of the 

forgetting factor. The linkage between kernel estimation and the forgetting factor 

method is established.

Empirical findings:

(1) Money supply is identified as an important factor influencing the Euro.

(2) The value of the Euro contributes significantly to the movements in the Hong 

Kong stock market. A shock to the Euro foreign exchange market impacts on the 

movements of both Hong Kong stock and foreign exchange (forex) markets.

(3) The conventional single-equation unit roots tests for PPP do not achieve 

consistent results.

(4) PPP is examined for fourteen exchange rates using 1(1) analysis. Half of the 

rates support the necessary condition for PPP. Also three of the seven exchange 

rates investigated support the necessary and sufficient condition for PPP.

(5) Tests of PPP and a three-variable system concerning the stock market use 1(2) 

analysis. Support for the necessary condition for the PPP hypothesis linking the 

bilateral exchange rate between the Australian Dollar and US Dollar is confirmed.
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(6) The assessment of the short-term movements in the exchange rate within the 

framework of a patterned VECM influences the finding of the presence or 

absence of the long-term PPP relationship.

(7) The inter-relationships among the stock market, money supply and inflation 

are detected using 1(2) analysis. The results are consistent with both theory and 

prior evidence.

(8) The causal relationships between AOI and SPI are detected using an extended 

two-layered neural network. The existence of instantaneous causal and 

bidirectional feedback relationships are detected.

(9) The non-linearities in the relationship between share prices and the behaviour 

measure of the underlying stock market are examined, using a three-layered 

neural network. The resultant forecasting results outperform the conventional 

full-order VAR and naive random-walk forecasts.

(10) Three real exchange rates series and the AOI series are used to demonstrate 

the effectiveness of the forgetting factor method in forecasting performance. The 

outcome indicates that the bootstrap is a reliable procedure for selecting the value 

of a fixed forgetting factor, and the TRML method, in conjunction with the 

bootstrap, is an effective procedure for estimating the value of a dynamic 

forgetting factor.
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CHAPTER 2

PRICE MOVEMENTS IN FOREIGN EXCHANGE MARKETS

2.1 Introduction

The foreign exchange (forex) market is important because it is the largest single 

global financial market. With trading estimated to be over USD$1.41 trillion each 

day, the volume of currency trading is 40 times the level of world equities, 

including those of emerging financial markets [see White (2000)]. Nearly the 

entire amount traded is in the three major currencies of the world, the US Dollar, 

the European Euro and the Japanese Yen.1

Many of the concepts introduced in this chapter will be used later in the thesis. 

Section 2.2 provides a general review of factors which influence exchange rate 

(price) movements in forex markets. Non-linear times series models aimed at 

modelling movements in volatility with specific focus on foreign exchange price 

movements are presented in Section 2.3. These models include the 

Autoregressive Conditional Heteroscedastic (ARCH) model and its variants. 

Section 2.4 presents the hypothesis of PPP, which is one of the most conventional 

approaches to investigate exchange rate movements in the long-term. The chapter

1 McCauley (1997) estimates that, after the introduction of the Euro, 87 percent of all 

transactions would have one of these three currencies on its side.
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then moves on to review modem forex markets in Section 2.5. In Section 2.6 a

brief summary is provided to conclude the chapter.

2.2 Foreign Exchange Price Movements

The influences of exchange rate movements are widespread. For instance, the 

value of the Australian currency is a key factor affecting domestic producers and 

exporters of minerals and energy commodities. Further, when overseas demand 

for Australian primary produce and minerals is high, the Australian Dollar 

appreciates because of capital inflows.

A fixed exchange rate is an exchange rate between the currencies of two countries 

that is fixed at some level and adjusted only infrequently by central banks. A 

floating exchange rate is an exchange rate determined by the forces of supply and 

demand. After World War II, most nations adopted a pegged exchange rate 

system. Under this system, a government traded enough US Dollars or gold in 

exchange for its own money to keep a steady exchange rate. Since the early 1970s 

the major trading countries have generally adopted floating exchange rates which 

respond to the laws of supply and demand.

2 Australian Commodities (September quarter 1999) published by the Australian Bureau 

of Agricultural and Resource Economics, claims that increases in earnings of Australian 

commodity exporters, derived from higher world prices, would be substantially eroded 

by the expected higher value Australian Dollar.
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In general, exchange rates are influenced by a number of fundamental economic 

factors such as inflation and interest rates, balance of payments, fiscal and 

monetary policies, and government attitudes to intervention. Currency 

speculation, wars, elections and market sentiment can also influence currency 

movements. Exchange rates can move as a result of government intervention to 

smooth the market. However governments are not able to control the exchange 

rate over a long period without regard to the fundamentals.

2.2.1 Non-linearity in Forex Markets

The existence of non-linearity in forex markets has been confirmed [Adrangi et al 

(2001), De Gauwe et al (1993)]. Heterogeneity both in investors’ objectives and 

in their expectations are often considered to be the major sources of non-linearity 

in forex markets. Peters (1994) and Guillaume et al (1995) show that a non-linear 

exchange rate process could be generated by heterogeneity in investors’ 

objectives. This type of heterogeneity arises from different investment horizons, 

geographical locations, institutional constraints and various types of risk profile. 

It is one explanation why investors can respond differently to the same set of 

news.

De Gauwe et al (1993) show that chaotic and non-linear exchange rate dynamics 

can be generated by the interaction of fundamentalists and chartists. Brock and 

Hommer (1996) propose an asset pricing model in which traders move between 

different beliefs according to the profitability of expectations predictions.
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Different complex asset price dynamics can be generated from this structural non

linear model.

While the above studies emphasised heterogeneity, Gourieroux (1997) stresses 

the non-linearity in forex markets resulting from market friction, such as the 

interventions of banks in the markets, the times and size of block trading, and the 

existence of thin trading.

2.3 Volatility Studies

The volatility of a financial variable is its degree of (random) variability. In financial 

markets volatility is observed through price movements. However the very nature of 

financial markets is that gains and losses arise from price movements. In a market in 

which prices were stable, there would be little incentive to trade. On the other hand if 

the level of volatility were too high, the market may become unstable. Thus it is 

argued an appropriate level of volatility is required to maintain a liquid and viable 

market [Brailsford (1994)].

Volatility was formalised in Markowitz’s (1952) mean variance model of 

portfolio selection. It was later demonstrated to play a crucial role in option 

pricing in the Black-Scholes (1973) model. Another significant and practical role 

for volatility is in the calculation of Value at Risk (VaR). VaR has been used for 

describing capital adequacy standards for banks, and corporate risk exposures to 

derivatives by investors.
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Volatility can be measured in a variety of ways, such as deviations from moving 

averages or a standard deviation of returns. Since the measure of volatility 

depends on the theory of asset pricing under test, it is common to use the average 

of squared daily returns as a volatility measure [see Brailsford and Faff (1996)].

2.3.1 ARCH Modelling

The non-linearity in forex markets creates a need to conduct non-linear 

modelling. ARCH / Generalised ARCH (GARCH) models and their variants have 

been used to capture non-linearity. Engle (1982) introduces the ARCH models 

which follow the tradition of the conditional mean models, in particular ARMA 

models, which are time dependent. The presumption that forecasts of variance at 

some future time can be improved by using prior information through time 

dependence is used as a basis for constructing the ARCH models. Friedman and 

Vandersteel (1982) claim that ARCH modelling can explain the observed 

volatility clustering of exchange rates and can provide for normal conditional 

distributions and symmetric - but not leptokurtic - unconditional ones. Large 

volatility movements are succeeded by further large volatility movements of 

either sign.

An ARCH (1) model of returns is: 

yt =8to t and a “ = a 0 + a 1yf_1, t = l,...,T ,
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where et ~ NID(0,1), var(yt) = of ,and NID denotes a normal distribution with 

independent observations. Also the parameter a, has to be non-negative and 

a 0 > 0 to ensure that of > 0 for all t.

The GARCH modelling proposed by Bollerslev (1986) is an extension of the 

ARCH model. Bollerslev et al (1992) demonstrate that lower order GARCH 

specification tends to be more parsimonious but effective in capturing the 

temporal behaviour of volatility. A GARCH(1,1) model can be expressed as

yt = eto t and of = a 0 + a 1yf_1 + ß1a?_1, t = l,...,T .

The GARCH(1,1) model allows for a longer memory in the conditional variance 

process than the ARCH model. However the simple GARCH model requires the 

assumption of symmetric response to shocks. Nelson (1990) proposes the 

exponential GARCH (EGARCH) model which allows for negative correlation 

between returns and volatility that is often observed in empirical stock market 

studies. The EGARCH model is valuable in capturing asymmetric shocks because 

it defines conditional variance as an asymmetric function of lagged residuals and 

it does not require non-negativity constraints. The integrated GARCH (IGARCH) 

model [see Engle and Bollerslev (1986) and Nelson (1990)] is useful in cases 

when the volatility has a unit root, and a shock to the conditional variance is 

persistent in the sense that it affects future forecasts at all horizons.
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There are many other variants of ARCH models. Some of the more influential 

ones include:

• Threshold ARCH (TARCH): These models are proposed by Zakoian (1990). 

TARCH models have different parameters for yt_j >0 and yt_j <0. Glosten et al 

(1993) introduce a model of the type:

Engle and Lee (1992) also use a TARCH model. They allow asymmetry to 

impact the transitory component of volatility, but not the permanent component.

• Asymmetric power ARCH (A-PARCH): Ding et al (1993) introduce A-PARCH 

models. These models are a class of autoregressive conditional heteroskedastic 

models, and contain a large number of ARCH and GARCH models. The A- 

PARCH model has a particular power parameter which makes the conditional 

variance equation non-linear in the parameters. The A-PARCH models also 

become the logarithmic GARCH model as the power parameter approaches zero. 

Hentschel (1995) propose an extended A-PARCH model. This model becomes 

the EGARCH model as the power parameter approaches zero.

• ARCH-Mean (ARCH-M): Engle et al (1987) propose the ARCH-M models in 

which the conditional variance appeared as an explanatory variable in the

of = a 0 + < I(y t_j >0)yf_j +a,I(yH <0)y 2
t-1  ’

yt-i
y t-i > °
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conditional mean. The following equation provides an example of an ARCH-M 

model:

Yt = X t b + 8h t +e t ,

where s t satisfies a GARCH model, and variance (et /e ^ )  = ht .

The generalised ARCH-Mean (GARCH-M) model can be constructed by 

incorporating moving average parts into the ARCH-M model.

2.3.2 Applications of ARCH Modelling

The applications of ARCH modelling are versatile. In examining European 

exchange rate volatility, Friedam and Vandesteel (1982) show that ARCH 

modelling could explain the observed volatility clustenng of exchange rates. 

Diebold and Pauly (1988) use a bivariate ARCH model and detect a structural 

shift about the time of the establishment of the European Monetary System 

(EMS). Bollerslev (1990) employs a multivariate GARCH model and finds 

reduced volatility and greater coherence for the European exchange rates after 

March 1979. Vlaar and Palm (1993) support ‘jump-diffusion’ GARCH processes 

to model realignments of the Exchange Rate Mechanism (ERM). Nieuwland et al 

(1994) conclude that a combined jump-GARCH model with conditional t- 

distribution innovation is the model that most successfully fits the EMS exchange 

rate returns. Tsoukalas (1996) demonstrates a multivariate GARCH (1,1) model 

to show currency stability after the creation of the EMS.
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Further, Chionis and MacDonald (1997) employ GARCH models to test 

volatility, volume and heterogeneity of forex measures of dispersion. Their 

findings support the usefulness of market microstructure concepts in analysing 

forex markets. Nieuwland et al (1998) examine forex risk premia and find that a 

GARCH-M specification is often appropriate for the premium. Henry and 

Summers (2000) use various EARCH modelling and find this type of modelling 

outperforms the random walk models for the real exchange rates. Parikh and 

Bailey (1998) use GARCH-M modelling to examine the relationship between 

macroeconomic fundamentals and nominal exchange rates in a group of 15 

European countries and the USA. They conclude that only a small fraction of the 

conditional volatility of the exchange rates studied can explain variation in 

macroeconomic fundamentals.
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2.4 Purchasing Power Parity

The PPP theory states that exchange rates between currencies are in equilibrium 

when their purchasing power is the same in each of the two countries. Formally 

the PPP condition can be expressed as follows:

I l = E
D *  ^  ’ 
r t

where Pt denotes domestic price level,

P* denotes foreign price level, and

Et denotes units of domestic currency per unit of foreign currency.

The basis for PPP is the "law of one price", which states that homogeneous goods 

selling in different markets should sell at the same price in the absence of 

transportation costs, taxes and transaction costs.

Therefore PPP implies that the exchange rate between two countries should equal 

the ratio of the two countries' price level for a fixed basket of goods and services. 

When a country's domestic price level is increasing relatively, and inflation is 

rising relatively, that country's currency must depreciate in order to retain PPP.

There are three assumptions in the above description of PPP. First, the existence 

of competitive markets for the goods and services in both countries is essential. 

Second, only tradeable goods are influenced by the law of one price. Fixed goods
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such as land and local services are not traded between countries. Third,

transaction costs including transportation costs and barriers to trade cannot be 

significant enough to affect the purchasing power of currencies.

However PPP may not determine exchange rate movements in the short-term. 

Rather, in the short-term, exchange rate movements are driven by news and 

expectations, such as announcements about interest rate changes, changes in 

company profits, changes in capital flows and changes in money supply [see 

Argy (1992)]. In contrast, when PPP validates its existence, this helps to explain 

the long-term movements of exchange rates. The economic forces behind PPP 

should eventually equalize the purchasing power of currencies.

A plethora of theoretical and empirical models have been built around PPP. 

However empirical tests provide inconclusive evidence of its existence. The 

classical test for PPP is to regress the nominal exchange rate, ln(Et), against the

ratio of domestic to foreign prices, ln(Pt /P*). Standard Wald statistics are then

calculated to test whether the coefficient estimates are consistent with the 

restrictions embodied in the PPP hypothesis. This approach usually yields results 

that do not accept the PPP hypothesis [see Roll (1979), Frenkel (1981), and 

Cumby and Obstfeld (1984)]. A major problem with this approach is that the 

time-series properties of nominal exchange rates and prices are not specifically 

taken into consideration. If nominal exchange rates and the ratio of domestic to 

foreign prices are integrated series, and they usually are, then this test could be 

biased toward rejecting the null hypothesis of PPP.
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To overcome this problem, the theory of cointegration proposed by Engle and 

Granger (1987) has been widely utilised to test for PPP. A long-term 

cointegrating relationship between both 1(1) variables - ln(Et)and ln(Pt /P*) -

indicates that ß'Xt = ß'(ln(Et),ln(Pt / P*)) =et . In this relationship ß denotes the 

cointegrating vector and et is stationary. Thus it can be concluded that the 

necessary condition for PPP exists in the long-term. Therefore the necessary 

condition for PPP refers to the cointegration between the nominal exchange rate 

and the price ratio. The necessary and sufficient condition means that these two 

variables are cointegrated and the cointegrating vector is ß' = (l,-l). To test for 

the necessary condition for PPP, there are a number of procedures available. 

Corbae and Ouliaris (1990) and Oh (1996) apply a standard test for unit roots to 

et , or the real exchange rate series [Rogoff (1996)]. If the real exchange rate is 

found to be stationary, then the necessary condition for PPP is accepted. 

Otherwise, it can be rejected. Dutt and Ghosh (1995) adopt the Phillips-Hansen 

Fully Modified Ordinary Least Squares procedure to regress ln(Et) against 

ln(Pt /P*). The Phillips-Hansen procedure corrects for both endogeneity in the 

data and asymptotic bias in the coefficient estimates. They then apply the Phillips 

and Ouliaris (1990) test to determine the order of integration of the residuals from 

this regression for the necessary condition.

Various studies have used the panel data approach to test for PPP.3 This approach 

investigates both cross-sectional and time-series variations. While Pedroni 

(1995), Wu (1996) and Papell (1997) find evidence of PPP, Pedroni (1996) finds

3 A survey of the PPP literature is provided by Fleissig and Strauss (2000).
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additional evidence of panel cointegration, where the rejection of the unit root 

null was not uniformly strong.

Further studies have been conducted by using panel data to increase the power of 

augmented Dickey-Fuller (ADF) tests. Using a GLS method, Abuaf and Jorian 

(1990) and Jorian and Sweeney (1996) support real exchange rate stationarity. 

Adopting the Levin and Lin (1993) method, Wu (1996), Oh (1996), Papell (1997) 

and Lothian (1997) show that exchange rates follow a stationary process for 

OECD economies during the floating exchange rate period. Coakley and Fuertes

(1997) employ the IPS test proposed by Im et al (1997) and find evidence for real 

exchange rate stationarity, whereas Canzoneri et al (1999) document non- 

stationarity for real exchange rates.

Another recent approach is to investigate the effect of mean reversion in the 

context of PPP. Lothian (1998), Siddique and Sweeney (1998) and Koedijk et al

(1998) find evidence to support mean reversion using panel data. Taylor and 

Samo (1998) find that, over the post-Bretton Woods period, real exchange rates 

exhibit mean reversion. Also Taylor and Samo show that single-equation ADF 

tests have low power to reject the unit root null for a mean reverting process. 

Therefore they suggest a multivariate panel unit root, and find unequivocal 

evidence of mean reversion in all real exchange rates they examined.

In this thesis the PPP condition is tested for a number of bilateral exchange rates 

using a different approach. In this approach the necessary condition and the 

necessary and sufficient condition for PPP are sequentially tested in the
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framework of subset VECM with zero coefficients 4 This thesis utilises the 

method developed by Penm et al (1997) to select the optimal ZNZ patterned 

VECM involving the nominal exchange rate and the ratio of domestic to foreign 

prices. The VECM, so determined, then forms the basis for testing the necessary 

and the necessary and sufficient conditions for PPP.

2.5 The Status of Global Forex Markets

The US Dollar, the Euro and the Japanese Yen are three major international 

currencies. The international financial system is becoming a three-currency 

system, dominated by the Euro in Europe, the US Dollar, and the Yen in the Far 

East and Southeast Asia.

2.5.1 Three Major International Currencies

The US Dollar has historically been the main currency in global forex markets. 

The Euro has been the official currency in the Euro area after 1 January 1999. 

The Yen has also been the basis for much forex trading in East Asia.

A BIS report prepared by McCauley (1997) suggests the following estimates of 

the share of the US Dollar, Euro and Yen in global forex trading. After the 

introduction of the Euro, 46 percent of all transactions have the US Dollar 

involved on one side, 25 to 30 percent the Euro, and 13 percent the Yen. In

4See McFarland et al (1994) for the necessary and the necessary and sufficient conditions.
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comparison, the Australian Dollar has 1.4 percent. But as Australia is a regional 

financial centre, the Australian Dollar has significant weight in the East Asian 

economies.

2.5.1.1 The US Dollar

The US Dollar has historically been the main currency in global forex markets. 

The Dollar has also been an international reserve and anchor currency due to its 

well-established stability and size. In particular many countries such as Hong 

Kong, China and Argentina have adopted de facto US Dollar pegged exchange 

rate regimes to seek price stability, absence of exchange risk, and access to US 

Dollar trade financing.

As an international currency the Dollar has had a large number of competitive 

advantages over other currencies. First, it is backed by the world’s largest 

economy and central bank. Second, the US Dollar has a long history of stability. 

Third, the Dollar is supported by the government of the United States of America, 

which has a high degree of political stability.
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Figure 2.1

Quarterly real effective exchange rate indices of the US Dollar (1980-2000)
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Figure 2.1 shows the quarterly real effective exchange rate indices of the US 

Dollar relative to the currencies of all other countries in the period 1980 to 2000. 

The Dollar started from 1980Q1 on an appreciating trend, drifted downwards 

from 1985Q2, and then gradually rose from 1996Q1. The US economy has been 

strong over recent years, and this has contributed to a strong US Dollar.5

However Figure 2.1 indicates this series appears volatile and non-stationary. 

Conventional linear models are unlikely to successfully capture the features of 

this series. This brings a challenge to examine non-linear models, which are 

needed to capture all features of the series.

5 Although the US Dollar continued its upward trend from 1996 to 2000, the consensus 

was that, given the absence of an anchor for the US Dollar, its future direction is 

unpredictable [see Shapiro (1999)].
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2.5.1.2 The Euro

With the introduction on 1 January 1999 of the European single currency, the 

Euro has become the second most widely used currency at the international level, 

behind the US Dollar and ahead of the Japanese Yen (European Central Bank’s 

Monthly Bulletin -  August, 1999).

On January 1, 1999 the introduction of the Euro was a significant event in the 

globalisation of financial markets. The Euro is intended to create broader, deeper 

and more liquid financial markets in Europe. The main purpose behind the Euro 

is to improve the price stability and productivity of the European economy. 

Rather than constant fluctuations in the different exchange rates there will be a 

more consistent and predictable environment for international trade. Low 

inflation will protect the value of personal savings and make it easier for both 

businesses and individuals to plan and invest for the long-term [ECB (1999a)].

The internationalisation of the Euro is illustrated by the increasing popularity of 

the Euro as a pegging currency. Several Central European countries such as 

Bulgaria, the Czech Republic, Hungary, Poland, the Slovak Republic and 

Slovenia have adopted foreign exchange arrangements making use of a basket of 

currencies in which the Euro is the largest weighting element. Further, in the 

international corporate bond markets, according to the ECB, the stock of long

term Euro-denominated debt issued by the Euro area governments amounted to 

around $2.2 trillion Euro. This market currently stands as the second largest 

government bond market, only behind the US treasury market.
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For the short-term, the European Central Bank needs to establish the Euro’s 

credibility. Since purchasing power per person is even lower in the European 

Monetary Union (EMU) than in the USA or Japan, it implies a lower nominal 

interest rate in Europe. Consequently the international demand for the Euro is 

currently subdued. However the international status of the Euro relies on the 

expectation that, even though the US Dollar has a prevailing effect at present, 

international investors will use it.

Figure 2.2

Weekly nominal exchange rates of the Euro relative to the US Dollar (1999-

2000)
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Figure 2.2 shows the weekly nominal exchange rates of the Euro relative to the 

US Dollar in the period from 1999 to 2000. During this period the Euro 

depreciated against the Dollar. Although the Euro recovered some ground against 

the Dollar around June 2000, it weakened again from the third quarter of 2000.
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The Euro depreciation against the Dollar is consistent with the strong growth of 

the US economy compared with slower growth in Europe over the period. Figure 

2.2 also indicates fluctuations in the Euro series.

2.5.1.3 The Japanese Yen

The Japanese Yen has shown an upward trend to reflect its appreciation relative 

to the US Dollar since the onset of the Yen’s floating in 1971 [see Lothian 

(1991)]. In late 1996 the Japanese government announced its Big Bang policy. 

The aim of this policy was to make the Yen, in particular in the Asian loan 

markets, a truly attractive international currency, challenging the role of the US 

Dollar.

Figure 2.3

Quarterly nominal exchange rates of the Japanese Yen relative to the US

Dollar (1980-2000)
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Figure 2.3 shows the quarterly nominal exchange rates of the Japanese Yen 

relative to the US Dollar in the period from 1980 to 2000. Over the last twenty 

years, the Yen has strengthened against the Dollar. It has swung substantially 

during this period, suggesting that the exchange rate series is not stationary.

The Yen has traditionally had a less important role than the US Dollar as an 

international currency. However continued capital exports by Japan have raised 

the Yen’s international importance in the currency markets. Even before the 

Asian financial crisis of 1998, many economists recommended against East Asian 

currencies being pegged to the Dollar. This was because the Dollar-pegged 

system arguably resulted in overvaluation of East Asian currencies relative to 

economic fundamentals. From an Asian perspective, Kwan (1994) conducted an 

analysis of the emerging pattern of trade and interdependence in the Asia-Pacific 

region, and focused on the implications for output stability in the Asian countries 

if they pegged their currencies to the Yen. In conclusion, Kwan suggested that the 

currencies of Hong Kong, Korea, Singapore and Taiwan should peg to the Yen.

However some may suggest there is evidence that the rise of the Yen [see Tse and 

Ng (1997)], whilst steady, has reflected speculative forces. Although the Japanese 

inflation and interest rates have been low6, the risk that the Yen might be subject 

to rapid inflation cannot be discounted. Nevertheless, the US Dollar is still in use 

as the denomination currency in US-Japan trade, and also generally for all

6 Over the period 1998 to 2000 Japan experienced constant or even declining consumer 

prices. In April 1999 the Bank of Japan announced its intention to maintain zero short

term interest rates until deflation concerns subsided, and the policy was maintained till 

the end of 2000.
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imports of petrol and raw materials into Japan. De Brouwer (2000) has assessed 

the patterns of common variability in daily changes in various financial markets 

in both crisis and non-crisis periods in East Asia. De Brouwer’s findings indicate 

that there is little evidence of a ‘Yen bloc’.

2.5.1.4 The Australian Dollar

In December 1983 Australia adopted a floating exchange rate. Since then the 

Australian Dollar has been viewed as one of most flexible exchange rates, with 

only occasional intervention in the market by the Reserve Bank of Australia 

(Reserve Bank).7 The Australian Dollar has become a popular trading currency 

and has been in demand, because of the volatile nature of trading in the 

Australian Dollar, and the relatively high nominal interest rates existing on 

Australian Dollar financial instruments. The Reserve Bank noted that from 1997 

Australia was viewed as a proxy for Asian markets and markets of other Asian 

commodity exporting countries, in which normal market activity had broken 

down. This added to volatility in the Australian Dollar (see Research Bank of 

Australia, 1999 March Report).

7 Unless conducting market testing and smoothing very large flows, the Reserve Bank 

does regularly not intervene in forex markets.
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Figure 2.4

Quarterly trade-weighted exchange rate indices of the Australian Dollar

(1980-2000)
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Figure 2.4 shows the quarterly trade-weigh ted exchange rate index of the 

Australian Dollar in the period from 1980 to 2000. The index started from 1980 

on an upward trend. However, in December 1983 the Australian Dollar was 

floated, and the indices later moved in a downward trend in response to market 

forces. In the year 2000 the Australian Dollar fell by more than 10 percent in 

trade-weighted terms. From Figure 2.4, it is clear that the series is non-stationary.

This thesis develops ZNZ patterned modelling to seek more sophisticated 

methodology for capturing the features of exchange rate series. Conducting non

linear modelling in this new framework will provide important insights into 

modelling and simulation in the analysis of exchange rate series.
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2.5.1.5 Emerging Financial Markets

Emerging markets generally include countries facing substantial political, 

economic, and/or market-specific risks. Interest in Emerging Financial Markets 

(EFMs) has grown over the past decade. Given political and economic structures 

that previously existed, often little was known about these markets and 

international investment levels were low, in part due to high costs of entry. 

However since the 1990s there have been substantial changes in political and 

economic environments in many regions such as China, Eastern Europe, Latin 

America and Russia. As a result emerging markets now represent a feasible 

investment alternative for international investors, and the last decade has 

witnessed massive capital flows in and out of EFMs.8

Although emerging markets share a potential for big gains, they still present a 

variety of risks. The broad risks comprise the possibility of government 

instability, a prolonged recession, a surge in inflation, currency devaluation, 

political risk and other economic uncertainties. In the financial market the risks 

include volatile performance, insider trading activity, thin trading activity, 

dubious investor protection, unclear accounting practices, and inadequate 

disclosure of crossholdings by majority shareholders. The adverse consequences 

of these structural distortions may help us understand some of the causes of the 

recent financial crises in Latin America and East Asia.

8 To illustrate, the International Finance Corporation (IFC, 1995) recorded the aggregate 

market value of EFMs in 1994 as US$1,930 billion, up nearly 21 per cent from 1993. 

New capital raised in 1994 for these markets was US$51.4 billion.
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Traditionally in order to achieve low inflation, many countries in emerging 

markets have adopted fixed exchange rates. This fixed exchange rate policy has 

helped many Eastern European and Latin economies to successfully deliver low 

inflation and a stable currency. This policy also played a significant role in 

reducing high inflation levels in the East Asian economies before the East Asian 

currency crisis. However this policy led to a low external competitiveness and a 

high current account deficit that eventually became untenable. The majority of 

countries are moving towards true floating exchange rates [see BIS (2001)].

2.5.2 The East Asian Currency Crisis

One of the causes of the East Asian currency crisis is that many East Asian 

economies initially adopted de facto US Dollar pegged exchange rate regimes. 

Thus, such countries experiencing recessions and sharply depreciating currencies, 

had to confront an appreciating US Dollar. Thailand has been on a currency 

basket system since 1984, which required the Bank of Thailand to stabilise the 

Baht in relation to a basket of foreign currencies in which the weight of the Dollar 

was large. Many other East Asian economies, including the other ASEAN 

countries as well as Taiwan and Korea, also adopted either a US Dollar peg 

system or a currency basket system with a large weight on the Dollar.

In the middle of 1997 the East Asian currency crisis was triggered by speculative 

attacks on the over-valued East Asian currencies, including the Korean Won,
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Indonesian Rupiah and Thai Baht [see Chang et al (1997), Edison et al (1998)]. 

According to Stanley Fischer (1988), the major factors leading to the crisis were:

“First, the failure to dampen overheating pressures that had become increasingly 

evident in Thailand and many other countries in the region and were manifested 

in large external deficits and property and stock market bubbles; second, the 

maintenance of pegged exchange rate regimes for too long, which encouraged 

external borrowing and led to excessive exposure to foreign exchange risk in both 

the financial and corporate sectors; and third, lax prudential rules and financial 

oversight, which led to a sharp deterioration in the quality of banks' loan 

portfolios.”

As a result of the crisis, in late 1997 and through 1998 the Asian crisis countries 

experienced net capital outflows close to US$100 billion. Most of the outflows 

reached both Europe and the United States [see Wincoop and Yi (2000)]. Also 

this crisis had a very substantial impact on the forex markets of the Asian crisis 

countries. By mid-July 1998 the Indonesian Rupiah had suffered the largest 

depreciation of more than 75 percent. The Korean Won, the Thai Baht, the Malay 

Ringgit and the Philippine Peso had depreciated in a range of 45 to 55 percent 

(source: DataStream™).
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2.6 Summary

This chapter has presented a discussion of price movements in forex markets with 

emphasis on the recent price movements. It has introduced factors affecting forex 

market movements and non-linearity in forex price movements, summarised 

approaches other researchers have adopted in modelling forex volatility, and 

discussed the PPP hypothesis.
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CHAPTER 3

NEW MODELLING TECHNIQUES IN FINANCIAL TIME-SERIES

ANALYSIS

3.1 Introduction

Vector time-series modelling is used in this thesis to examine the behaviour of 

international financial markets, in particular foreign exchange market movements. 

This chapter presents a range of new techniques including the ZNZ patterned 

Vector Autoregressive (VAR) modelling, ZNZ patterned Vector Error-Correction 

(VECM) modelling and ZNZ patterned polynomial neural networks. If key linear 

and non-linear interactions among variables are accurately captured, these new 

techniques can then reveal important information about the structure and 

dynamics of the markets. These techniques can also provide insights into, and 

improvements in the performance of modelling and simulation methodology for, 

price movements.

The chapter is organised as follows. Section 3.2 describes VAR modelling. 

Section 3.3 provides the detailed background to, and considers the use of, the 

Yule-Walker relations for fitting VAR models. Section 3.4 assesses the problems 

and theoretical inconsistency that arise by using a two-variable VAR example. 

Section 3.5 presents an adjustment to the Yule-Walker relations and contains the 

main theoretical contribution of this chapter. Section 3.6 introduces ZNZ
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patterned VECM modelling. Section 3.7 outlines ZNZ patterned polynomial 

neural networks. Section 3.8 concludes the chapter.

3.2 VAR Modelling

VAR models represent an advance in the analysis of vector time-series. In recent 

years the use of VAR modelling as a means of analysing financial time-series has 

become common because it is both simple and generalisable. In particular, VAR 

modelling has been increasingly employed to examine dynamic relationships in 

both exchange rate and stock markets. VAR modelling also provides a device that 

has proved to be a more computationally efficient tool, and therefore less costly, 

than conventional financial and econometric time-series techniques as a means of 

producing forecasting. Further, VAR modelling can be used for statistical 

inference such as Granger-causality, impulse response and variance 

decomposition analysis.

However VAR modelling was originally introduced to avoid the need to 

incorporate a priori highly uncertain restrictions on the structure of models. As a 

result heavy parameterisation of VAR models has become a major deficiency9 

[see Terrell (1988)]. As the number of parameters to be estimated grows very 

rapidly, the degrees of freedom will be heavily reduced. Consequently the 

model’s forecasting ability, particularly outside the sample, will be severely

9 Of note, VAR models are not equivalent to simultaneous-equation models, although 

VAR models can be considered as reduced-form equations.
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inhibited. This creates a need to develop ZNZ patterned VAR modelling, with 

allowance for zero entries in coefficient matrices.

3.2.1 VAR Applications

VAR models have been used widely in financial and economic applications. Eun 

and Shim (1989) estimate a VAR using index returns on nine stock markets to 

examine interactions among the markets. In the context of emerging stock 

markets, Bekaert et al (1999) estimate a VAR using capital flows, equity returns, 

dividend yields and interest rates to examine the extent to which lower interest 

rates contribute to increased capital flows. In a similar study, Froot et al (1998) 

employ VAR estimation to examine the relationship between capital flows and 

equity returns in emerging markets.

Kamas (1995) utilises VAR modelling to examine the sources of inflation in 

several emerging markets. In the case of Colombia, Kamas concludes that 

changes in domestic credit affect the balance of payments but not the exchange 

rate. Montiel (1989) uses VAR modelling in explaining the acceleration of 

inflation in Brazil, Argentina and Israel. His findings indicate that exchange rate 

movements are the driving force behind the most recent inflation in the first two 

countries. In the case of Israel, changes in the role of both wage rates and the 

exchange rate accounts for the surge of inflation. Reinhart and Reinhart (1991) 

employ a VAR to examine money neutrality for Colombia. The outcome shows 

that money supply has a strong effect on exchange rate variability, while the 

exchange rate influences inflation. Dornbusch et al (1990) apply VAR modelling
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to assess sources of inflation in Argentina, Brazil, Mexico and Peru. The results 

suggest that the exchange rate shocks have a significant impact on inflation.

Chadha and Hudson (1998) conduct VAR estimation of a model involving real 

exchange rates, output and prices for 14 European Union (EU) countries to 

examine the optimum currency case for the European Monetary Union. McNelis 

and Asilis (1995) utilise VAR estimation to model exchange rates, the Nikkei 

index, the Dow-Jones Industrial average and six other relevant variables to 

compare the different outcomes, from Nash and cooperative equilibria, for the 

United States and Japan. Kim et al (2000) provide VAR estimation in the relevant 

exchange rate, the US market index and the price of the underlying shares in the 

local currency, to investigate price transmission dynamics between American 

Depository Receipts and their underlying foreign securities. Neely and Weller 

(2000) carry out VAR estimation in six variables that are believed to affect stock 

prices for each of three two-country cases in order to evaluate predictability in 

international asset returns. They emphasise the importance of the stability of 

VAR modelling for out-of-sample predictability.

Further examples of financial and economic variables that have been tested for 

Granger-causal relations by using the conventional VAR modelling include 

volatility transmission [Bhattacharya et al (2000)], stock markets and foreign 

exchange [Bekaert and Hodrick (1992)], volatility of stock market returns 

[Whitelaw (1994)], monetary policy and the stock market [Bemanke and Blinder 

(1992), Thorbecke (1997)], cross-market relationships [Malliaris and Urrutia 

(1992)] and interest rates [Hassapis et al (1999)].
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3.2.2 ZNZ Patterned VAR Modelling

The use of VAR models for financial and economic research has in part been 

driven by the desire to provide users with a relatively simple modelling and 

forecasting procedure. However early researchers realised that heavy 

parameterisation of their VAR models resulted in poor ex-ante forecasting 

performance. Their proposed procedures rest on the assumption that the 

coefficient matrices of the VAR model have all non-zero entries. In practice the 

assumed specification for this full order VAR model can be quite different from 

the actual specification, as there can be zero entries in the coefficient matrices of 

the model. In effect, the assumption of non-zero entries restricts the range of 

possible model specifications. Further, if the true underlying VAR process has zero 

entries in its structure, then sub-optimal model design induced by assuming a full- 

order structure can produce misleading inferences and inferior projections. 

Consequently, models have been developed that allow for zero entries in the 

coefficient matrices such as a zero-non-zero, ZNZ, patterned structure. However, 

implementation of a ZNZ structure in a VAR is difficult given the large number 

of parameters and possibilities. That is, in the absence of an effective approach to 

find the optimal model, relaxation of the assumption of non-zero entries is 

problematic.

The issue is also relevant when investigating causality. Optimal VAR models 

with ZNZ patterned coefficient matrices can also be used as a basis for detecting 

Granger-causality and instantaneous causality among time-series variables. The
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most successful applications in ZNZ patterned VAR modelling are associated 

with Granger-causality, Granger non-causality and indirect causality detection. 

This is because both Granger non-causality and indirect causality detection are 

crucially dependent on making use of zero coefficient entries in the true structure, 

where the structure does indeed include several additional zero entries to those 

representing causal structures. Application of VARs to economic and financial 

time-series data has revealed that zero entries are indeed possible [see Caines et al 

(1981) and Penm et al (1992, 1999)]. Since the ZNZ patterned VAR modelling 

allows for zero entries, the results of simulations and applications of methodology 

[see Penm and Terrell (1984a, 1984b), Brailsford et al (2001a, 200Id)] have 

indicated that the selected optimal ZNZ patterned VAR provides a 

straightforward, certain and effective means of indicating all Granger-causality, 

Granger non-causality and indirect causality from the coefficient matrices on the 

lagged terms.

One approach to select the optimal ZNZ patterned VAR model has been advocated 

by Penm and Terrell (1984a), and it centres on their development of a search 

algorithm using the Yule-Walker relations in conjunction with model selection 

criteria. However, that approach does not examine the estimation of the residual 

variance-covariance relation, rather it focuses only on the Yule-Walker 

coefficient relations. A direct extension of the use of the Yule-Walker relations 

for fitting vector autoregressive models where ZNZ patterned coefficient matrices 

are present is inconsistent with statistical procedures as the resultant estimated 

variance-covariance matrix of the white noise disturbance process becomes non- 

symmetric. In Section 3.5, an approach is provided that considers a consistent
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adjustment to the variance-covariance relation within the Yule-Walker 

relationship and leads to an effective approach to identify the optimal ZNZ model 

within the context of a VAR system. The development of the approach in this 

chapter is a significant contribution given the extant literature that seeks to 

employ full order estimation.

3.3 Using the Yule-Walker Relations for Fitting VAR Models

In this section, the fitting of a VAR with zero coefficient restrictions is presented.

/

First, let y(t)= {yj(t), y2(t), ..., ys(t)} be a zero mean, wide-sense stationary 

time-series of dimension s. Consider the vector AR (p) model of the form:

2 > ky(t-k ) = Ap(L)y(t) = £(t), (3.1)
k=0

where Ao=I, A*, k=l,..., p are the sxs parameter matrices, and

Ap(L) = I + | > kLk.
k=l

L denotes the lag operator, and the roots of AP(L) = 0 lie outside or on the unit

circle. Also e(t) is an sxl stationary vector process with E{ e(t) }=0, and thus:

E{8(t)8'(t-k)}
as
as

k =0 
k >0*

(3.2)
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The sample lag covariance matrices,

i N -k

r . - ^ W y 'd  + k),
^  t=l

(3.3)

obey the following Yule-Walker relations.

The Yule-Walker coefficient relations are:

rj + i Ä krH =o (j=i....p) .
k=l

The Yule-Walker residual variance-covariance relation is:

(3.4)

r0 + £Ä kr_k=v, (3.5)

where Tk = T 'k ; N is the sample size, Ak and V are the estimates of A k and V

respectively, and V is described as the generalised residual sum of squares.

In a full-order VAR model, possible models with zero coefficient elements are 

neglected. For example in a bivariate VAR model when p = 5, the coefficients, Ai, 

A2, up to and including A5 are assumed non-zero. However there are 220 = 65,536 

possible models in this example. Thus a large number of possible models will be 

ignored under the assumptions of all non-zero coefficients. More important, if the 

true underlying VAR process has a ZNZ patterned structure, a sub-optimal model
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design from an imposed full-order structure can produce misleading inferences and 

inferior projections.

Penm and Terrell (1984a) propose a search algorithm, using the Yule-Walker 

relations for fitting VAR models in conjunction with model selection criteria, to 

select the optimal ZNZ patterned VAR models. Background information on the 

fitting of VAR models using the Yule-Walker relations is presented in Section 

A.l of Appendix A. In the course of using the Yule-Walker relations to conduct 

the fitting of ZNZ patterned VAR (p) models, only the following p+1 lag 

covariance matrices are required to compute the estimated coefficient matrices 

and residual variance-covariance matnx:

r r rA 0 ’ A 1 ’ • • * » A p •

However, the estimated V using the usual least squares (LS) method is as follows:

1 Nv=—  e m ;.
N - p

where £: denotes the estimate of e(i).

60



This method suffers from the need to estimate and store all individual mxl

residual vectors, et , t=l,2,...,N, and then compute V for each ZNZ patterned 

VAR model. In order to estimate individual residual vectors, all observation 

vectors y(t), t=l,2,...,N, must be held in storage to carry out 8(t)estimation. 

When using the LS method, a very large number of candidate ZNZ patterned 

VAR models must be estimated before the optimal model can be selected, which 

involves a considerable amount of computational cost in terms of execution time 

and memory storage, and these costs are important considerations.

Since the LS method requires the storage of all observation vectors and then the 

use of these vectors to estimate individual residual vectors, the need for heavy 

computing resources becomes a heavy burden for large sample cases. It is 

obvious that estimation of the residual variance-covariance matrix, which 

minimizes the need for computing resources, becomes an important issue. As 

outlined later in the chapter, there is no need to estimate individual residual 

vectors when an adjustment is made to the Yule-Walker approach. Hence this 

approach is simple and avoids considerable computational costs.

The issue in Penm and Terrell (1984a) is that their estimate of V using the Yule- 

Walker residual variance-covariance relation of (3.5) is not analyzed. Only the 

Yule-Walker coefficient relations in (3.4) are canvassed. A direct extension of the 

Yule-Walker residual variance-covariance relation to fit the ZNZ patterned VAR 

model is inappropriate as it is inconsistent with statistical theory. The problem 

arises because the resultant estimated variance-covariance matrix of the white 

noise process becomes non-symmetric, violating the condition that V must be
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symmetric. This violation has important implications. One consequence is that 

VAR cannot be converted to an equivalent vector moving average (VMA) model 

as proposed in Penm and Terrell (1986, 1994) to conduct testing for Granger- 

causality. Further, the innovation accounting proposed by Lee (1992) will not 

work under these conditions (see Section A.2 of Appendix A). Hence, this failure 

to ensure symmetry of estimates of V creates the motivation for developing an 

adjustment in this chapter to the Yule-Walker relations for fitting of ZNZ 

patterned VAR models.

An alternative solution is to use other approaches that do not rely on the Yule- 

Walker relations. However, each of these approaches is problematic, particularly 

in terms of their large computational costs. The alternative methods are briefly 

outlined below.

3.3.1 Alternative Approaches

First, consider the standard least squares (LS) approach. As described in Section 

A.l of Appendix A, for fitting a full-order VAR (p) model using the Yule-Walker 

relations, the following block Toeplitz matrix Cp+i can be constructed:

Cp+i

r r1 0 1 1

r r1 -1 1 0 (3.6)
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v„ =M /Icp|=ldp+i (3.7)

where d t , i = 1,..., p+1 are diagonal block entries of the block diagonal matrix 

resulting from a block Choleski decomposition for Cp+i. This outcome indicates 

that in the course of computing Vp for the VAR (p) model, the generalised

residual sums of squares for all the lower order VAR models fitted to the data are 

also obtained.10 However as described in Section A.l of Appendix A, this 

outcome cannot be achieved by using the conventional LS approach. Since 

R^Cp) as defined in (A.9) for each different VAR model must be reconstructed 

from the observations to conduct individual fittings, and the observations must be 

saved in storage for reconstructing R^OXi = l,...,p , a considerable amount of

computational cost in terms of execution time and data storage will be generated. 

Note that these weaknesses of the conventional LS method also exist in the 

remaining steps of selecting the optimal VAR, and become severe when the 

number of lags, or the number of variables, in the system of (3.1) is large. Thus 

the commonly employed LS approach is considerably more computationally 

costly than the Yule-Walker approach.

Second, the generalized least squares (GLS) method can be conducted by 

applying the conventional LS approach as a basis. After the symmetric and

positive definite V is estimated by the LS method, there exists an mxm non

singular matrix K, such that V-1 = KK'. The method pre-multiplies y(t) by K-1, 

and then follows the LS estimation for fitting of the VAR models to obtain the
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conventional GLS estimates. However as the LS approach to conduct the 

selection of the optimal ZNZ patterned VAR is computationally expensive when 

the number of possible candidate models could be billions, the conventional GLS 

method will similarly suffer from excessive computational costs.

Third, the maximum likelihood (ML) approach is a non-linear approach but 

becomes infeasible whenever the number of parameters is very large [Chen and 

Zadrozny (1998)]. In addition there exist innumerable candidate models in the 

ZNZ patterned VAR environment. The ML approach needs to apply to each 

individual VAR model independently, and no previous computational 

information can be utilised.

Chen and Zadrozny (1998) propose the extended Yule-W alker equation to 

estimate a VAR for mixed frequency data. The estimated V for their approach is 

as follows:* 11

V =
N -  p i=p+i

N
ZMi*

which is identical to the conventional LS approach. Thus the approach of Chen 

and Zadrozny also needs to consider each VAR model independently for 

estimation of the individual residual variance-covariance matrices. In complete 

data cases (ie. no missing values), their approach only concerns full-order models.

10 The proposed model selection criteria use the generalised residual sums of squares.

11 See Section 3 in Chen and Zadrozny (1998).
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The ZNZ patterned modelling with no missing data is not investigated in Chen 

and Zadrozny.12

Section A.l of Appendix A shows that the conventional LS method is quite 

different from the Yule-Walker approach. Thus, V using the LS method is also 

quite different from V under the Yule-Walker approach. It follows that the 

approach of Chen and Zadrozny has ignored the issue of estimating the residual 

variance-covariance matrix. Although V using the LS method is asymptotically 

equivalent to V using the Yule-Walker approach, these two estimators can be 

quite different in a finite sample. If V proposed in Chen and Zadrozny is 

estimated using the Yule-Walker approach, then in the case of complete data the 

approach in this chapter can be employed to select the optimal ZNZ patterned 

VAR. Thus, again a considerable amount of computational costs can be avoided.

The most successful applications in ZNZ patterned VAR modelling are associated 

with Granger non-causality and indirect causality detection. This is because both 

Granger non-causality and indirect causality detection are crucially dependent on 

making use of zero coefficient entries in the true structure, where the structure 

does indeed include several zero entries. Application of VARs to economic and 

financial time-series data has revealed that zero entries are indeed possible 

[Caines et al (1981), Penm et al (1992)]. Since the ZNZ patterned VAR 

modelling allows for zero entries, the selected optimal ZNZ patterned VAR

12 However the approach in Chen and Zadrozny (1998) addresses an interesting topic of 

estimation for mixed frequency data. Incorporating their approach into the ZNZ patterned 

modelling for mixed frequency data warrants further investigation.
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provides a straightforward, certain and effective means of indicating the presence 

of Granger-causality, Granger non-causality and indirect causality from the 

coefficient matrices on the lagged terms.

3.4 The Inconsistency in Using Yule-Walker Relations

This section shows the theoretical inconsistency of the use of the Yule-Walker 

relations for fitting of ZNZ patterned VAR models using a two-asset example.

In considering a ZNZ patterned VAR model, zero entries are allowed for in the 

parameter matrices Ak of (3.1). Let the returns of the assets, Ayiit, Ay2(t, be jointly 

determined by the following two equations:

Ayi,t + ai2Ay2,t-i = e ilt (3.8)

Ay2,t + a21Ay1>t-i + a22Ay2,t-i = e2lt > (3.9)

where yi)t and y2>t are the log prices of the assets. In this two-equation system the 

first equation shows that yiit is caused by y2>t, while the second equation indicates 

that y2>t is caused by yi)t. Thus a feedback relation exists between these two asset 

prices.
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The equivalent VAR model of this system can then be expressed as:

[<
1

+
' 0 a i 2 " A y £ l ,t

A y 2 ,,_ _ a 2 1 a  2 2  __A y  2 ,.-i _ 2 ,t _
(3.10)

where the white noise process comprises two components elt ande2 t , with:

E{e.,. }=  E(e2., } = ° . and

E ' l , t

8 2 ,t

as
as

k=0 
k >0.

This section now uses the Yule-Walker coefficient relations to estimate a12, a21 

and a,2. Since au = 0, and el t is uncorrelated with the asset return, Ay2t_,, the 

following relation derived from the first equation of (3.10) is apparent:

E{ A y i.,A y 2.,- i} + ä 12E{ Ay 2,._,Ay 2 } = 0 ,

T -> (1)
where ä:: are the estimates of an Thus the estimate a „ = — ——  w ill be 

’  1 *22 (0 )

achieved, where the correlation functions between asset returns,

i N - k  « N - k

t ü (k ) = — X A>'i( t + k >Ay J(t>= X  Ay j (t )Ay i ( l + k ) = x ji (~k ) •
^  t = i  ^  t= i

From (3.10), since the asset return vector [Aylt_j Ay21_, J is uncorrelated with 

[elt 62t f ,  the following arises:

67



(3.11)
"x„(0) x21(0)' ä 21 ’x2,(l)"

.1,2 (0) t22(0)_ _ä22_ _X22 (1)_

Hence,

t21(0)t22( 1 ) - t22(0)t21(1) and . = t12(Q)t21( 1 ) - t11(0)t22(1)
t„(0)t22(0) -  t21 (0)t12(0) a" xn (0)t22(0) -  x21 (0)t12(0) '

Thus the coefficient estimates in terms of the correlation functions between asset 

returns are established. Of note, the use of the above approach is identical to the 

use of equation (A. 11 a) as proposed in Appendix A for fitting of the ZNZ 

patterned VAR models.

As a result the estimate V in equation (3.5) becomes:

Tn (0 )  X12(0 ) 0  a 12 ( —1) T12 ( —!)

_t 21(0 )  t 22(0) _a 21 a  22 _ _x2,(-l) 2̂2 (-D.

Because x V] (k) = x }l (-k ), V can be expressed as:

~tu(0) x12(0)
_t12(0) t22(0)

which is non-symmetric. Intuitively, V is symmetric in the true model of (3.1) 

and there is a need for the estimate V to conform to the behaviour of V. Therefore 

the estimate V must be a symmetric matrix. As described earlier, this non- 

symmetric V violates the symmetric condition required in Lee (1992) and in

+ a i2^12 (1) a i2^22 (1)

a  21 L l  (1) ^2 2 ^1 2 (1) a 21^21 (1) a  2 2 ^ 2 2 (1)
(3.12)
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Penm and Terrell (1986). This violation indicates that, in practice, the innovation 

accounting described in Lee will not work (see Section A.2 of Appendix A), and 

a VAR model cannot be converted to its equivalent VMA model as proposed in 

Penm and Terrell to conduct testing for Granger-causality. Thus an adjustment to 

the Yule-Walker relations is required.

3.5 The Adjustment to the Yule-Walker Relations

The necessary adjustment to the Yule-Walker relations for fitting of VAR models 

with ZNZ patterned coefficient matrices follows directly from the inconsistency 

demonstrated in the previous section.

With the definition of the variance-covariance matrix in (3.2),

V = E<
2-‘.

A>\.
Ay2lt

£„ 2̂,t ]I

0 a. Ayu-i
Ay2,.-i [Ayu Ay2,.M Ayi,.-i Ay2,t-i

0 a-

Using Tij(k) = Tji(-k), the estimate V = tu(0) t12(0) 
t12(0) x22(0)

+

^ 1 2 ^ 1 2 ( 1 )  ^  12^22

ä2Ui 1 (1) + ^2 2 ^ 1 2  (1) ^21T2j (1) + a22T22 (1)
^ 1 2 ^ 1 2 ^ )  ^21^11 (1 )  ^  ^ 2 2 ^ 1 2 ( 1 )

.^12^22 (1) ^21^21 (̂ ) ^ ^22^22 0 )
+

0 a12 T,,(0) x12(0)~ 0 a21

^ 2 1   ̂22 __T12 (0) T22(°)_ J*12  ̂22 _
(3.13)

69



Since the first matrix of equation (3.13) is symmetric, the second matrix is the 

transpose of the third matrix, and the remaining product matrix is also symmetric, 

therefore the matrix V is symmetric.

An analogous approach to equation (3.13) is feasible. From equation (3.2),

Then,

p p
V = r0 + X A kr  k + £r,A'j + I Z  A kr ,.k a ' .

k=l j=l j=l k=l

(3.14)

It is obvious that this V is symmetric. Since T'. =Ti, T0 is symmetric. If k is 

redefined as j, the second matrix is the transpose of the third matrix. If j and k are

p p
redefined as k and j respectively, the fourth matrix becomes ^ ^ A jTk_JA/k,

k=l j=l

which is the transpose of the fourth matrix itself.

In addition, comparing equation (3.14) to the estimator of V using individual 

residual vectors, the structure of (3.14) is computationally efficient in terms of 

execution time and storage requirements, and provides the obvious relations to 

link the covariance matrices with different lags.
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Of note, consideration of the contemporaneous correlation in e(t) cannot be 

ignored. A ZNZ patterned VAR model can be viewed as a system of ‘seemingly 

unrelated regressions’ as originally proposed by Zellner (1962). As the regressors 

in each equation of the VAR model are no longer necessarily the same, the 

generalised least squares (GLS) coefficient estimator using the Yule-Walker 

relations for the ZNZ patterned VAR is more efficient than the estimator using 

equation (3.14). Brailsford et al (2001d) show that this GLS estimator is an 

asymptotic approximation to the ML estimator. Henceforth the notation GLS-YW 

is used for this estimator. As described earlier, V-1 =KK\ y(t) is premultiplied

by K_1. Then the proposed method of using the Yule-Walker relations for fitting 

of VAR models is followed so the GLS-YW coefficient estimates of the ZNZ 

patterned VAR model can be obtained.

71



3.6 VECM Modelling

Recent cointegration work proposed by Engle and Granger (1987) has suggested 

that if a time-series system under study includes cointegrated variables, then this 

system may be more appropriately specified as a vector error-correction model 

(VECM) rather than a VAR [see Engle and Granger (1987)]. The VECM is 

identical to the VAR model with unit roots, as the following indicates.

In VAR modelling of (3.1), the following identity emerges:

AP(L) = Ap(l) + (I -  L)(I + I  A;LT). (3.15)
T=1

In accordance with the concept of cointegrated variables introduced by Granger 

(1981), y(t) is said to be 1(1) if it contains at least one element which must be 

differenced before it becomes 1(0). Then y(t) is said to be cointegrated of order 1 

with the cointegrating vector, ß , if ß'y(t) becomes 1(0), where y(t) has to contain 

at least two 1(1) variables. Under this assumption the identical VECM for (3.1) 

can be expressed as

A * y(t -1) + Ap"' (L)Ay(t) = e(t), (3.16)

where y(t) contains both 1(0) and 1(1) variables, A=(I-L), A * = A P(1), 

A*y(t -1) is stationary, and

p-i

AP“'(L) = I + ^  A^L'.
T=1
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The first term in (3.16) [i.e. A"y(t — 1) ] is the error-correction term, which 

concerns the long-term cointegrating relationship. The second term in (3.16), 

Ap-1(L)Ay(t), is referred to as the VAR part of the VECM, describing the short

term dynamics.

Because y(t) is cointegrated of order 1, the long-term impact matrix A* must be 

singular. As a result A* = aß', where a  and ß are sxr matrices and the rank of

A* is r, r < s. The columns of ß are the cointegrating vectors, and the rows of a  

are the loading vectors.

Engle and Granger (1987) note that, for cointegrated systems, the VARs in first 

difference will be mis-specified and the VARs in levels will ignore important 

constraints on the coefficient matrices. Although these constraints may be 

satisfied asymptotically, efficiency gains and improvements in forecasts are likely 

to result by imposing them. Comparisons of forecasting performance of the 

VECMs versus VARs for cointegrated systems are reported in studies such as 

Engle and Yoo (1987) and LeSage (1990). The results of these studies 

consistently indicate that, in the short-term, there may be gains in using the 

unrestricted VAR models, but the VECMs produce long-term forecasts with 

smaller errors when the variables used in the models satisfy cointegration 

conditions. Subsequently Ahn and Reinsel (1990), and Johansen (1988, 1991) 

propose various algorithms for the estimation of cointegrating vectors in the full- 

order VECM models, which specify all non-zero entries in the coefficient 

matrices. Since the early 1990s, abundant literature has utilised the full-order
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VECM models in analysing the short-term dynamics and the long-term 

cointegrating relationships for cointegrated time-series [see Reinsel and Ahn 

(1992), and Johansen (1992, 1995)].

VECM modelling has been increasingly employed to examine relationships in 

exchange rate and stock markets. For instance, in the context of foreign exchange 

markets, Granger et al (2000) conduct a bivariate VECM estimation to detect 

Granger causal relations between exchange rates and stock prices for five Asian 

countries. Diamandis et al (2000) examine the long-term properties of the 

monetary exchange rate model. They employ a VECM estimation using data for 

the Drachma-Doilar and Drachma-Mark exchange rates. Using equity markets, 

MacDonald and Power (1995) complete a VECM estimation in investigating 

cointegrating relations among stock prices, dividends and the retention term. Lee 

(1996) estimates a VECM using three 1(1) cointegrated stock price, dividend and 

earnings series to explore the long-term relations among these financial variables. 

Barnhill et al (2000) employ a VECM to estimate cointegrating relations among 

investment grade indices, US Treasury yields, and default rates.
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3.6.1 ZNZ Patterned VECM Modelling

As described in Section 1.3.1.1, in applications of VECM models to financial 

market data it may be assumed a priori that zero entries are required. In such 

cases the use of full-order VECM models may lead to incorrect inferences. 

Specifically, in conducting causality and cointegration analysis, if the entries 

assigned a priori to be zero were ignored and full-order VECM models were 

utilised, the power of statistical inferences would be weakened. Also, if the 

underlying true VECM and the associated cointegrating and loading vectors 

contained zero entries, the resultant specifications could produce different 

conclusions concerning the cointegrating relationships among the variables.

In addition, one difficulty encountered in empirical research using cointegration 

theory is to provide satisfactory financial and economic interpretation for 

estimated cointegrating vectors. As emphasised by Penm et al (1997) it is 

important to introduce a priori information, usually to produce ZNZ patterns. To 

explicitly address this issue Penm et al have presented a search algorithm in 

conjunction with model selection criteria to identify the optimal specification of a 

ZNZ patterned VECM for an 1(1) system.13 This VECM, with allowance for 

possible zero entries in the coefficient matrices, is referred to as a ZNZ patterned 

VECM. Given the optimal ZNZ patterned VECM, the number of cointegrating 

vectors can be confirmed. Once the ZNZ patterned impact matrix has been 

determined, along with the number of cointegrating vectors in the system, a tree- 

pruning procedure is then proposed to search for all acceptable ZNZ patterns of

13 Of note, an 1(1) system does not contain any fractionally integrated variables.
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the cointegrating and loading vectors. After this, the dynamic ordinary least 

squares method suggested by Stock and Watson (1993) is utilised to estimate the 

acceptable patterned cointegrating vectors, and the regression method with linear 

restrictions as recommended in Penm et al (1997) is conducted to estimate the 

acceptable patterned loading vectors. Model selection criteria are again employed 

to determine the optimal ZNZ patterned cointegrating and loading vectors. This 

algorithm leads to a neat and effective analysis of the cointegrating relations in 

any vector time-series system and can be extended to higher order integrated 

systems [see Brailsford et al (2001c)].

This chapter indicates that full-order VECM models assume nonzero elements in 

all their coefficient matrices. As the number of elements to be estimated in these 

possibly over-parameterised models grows with the square of the number of 

variables, the degrees of freedom will be heavily reduced.

Application of VECM models to economic and financial time-series data have 

revealed that zero coefficient entries are indeed possible [see King et al (1991) 

and Penm et al (1997), (2001a)]. An optimal VECM specification with zero 

entries suggests that the cointegrating vectors and the loading vectors may also 

contain zero entries. However, the existence of zero entries has not been fully 

discussed in causality and cointegration theory. Specifically the ability to detect 

the presence or absence of indirect causality and/or Granger non-causality will be 

enhanced. Also the exact nature of the long-term cointegration relations will be 

crucially dependent upon finding those zero coefficient entries where the true 

structure does indeed include such zero entries.
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3.7 ZNZ Patterned Polynomial Neural Networks

A neural network is a mathematical model that processes information and 

generates some form of response based upon the relationship or pattern identified 

within the data. Neural networks also exist as computer-based systems containing 

many non-linear computational units or nodes interconnected by links with 

adjustable weights. Multi-layer networks with one or more hidden layers allow 

neural networks to classify functions that are not linearly separable. Historically 

neural networks were not taken seriously until they could solve non-linear 

problems. Several pruning algorithms for performance improvement have been 

proposed to eliminate non-significant connections. Can the new features of neural 

networks improve financial forecasting? This can only be addressed by 

conducting a detailed study on forecasting financial market prices.

Neural nets can be used as a tool for the study of time-series systems. A two

layered neural network proposed by Watanabe et al (1992) provides a typical 

example. It is simple, user-friendly and powerful. However, this net has 

difficulty in practical modelling of subset time-series systems. In this thesis the 

net is extended to increase its modelling power in the field of financial time-series 

analysis. Constraints on the connection strength (synaptic weights) are imposed 

on the network structure. Two types of connection (synapse), namely inhibitor 

arc and switchable connection, are incorporated into the neural net structure. 

Figure 3.1 shows both types of connection considered in the extended two

layered neural network for a specified illustrative subset VRDL model.

77



Figure 3.1

An extended two-layered neural network3

z(t -  2) output layer

y(t-4) input layer

aThis linear neural network computes the following 3rd order system: 

z(t) = —h j y(t) -  h3y(t -  2),

where r=l, g=l and h2 = 0. A switchable connection has an arrowhead and an inhibitor 

arc has a small solid black circle at the output node.

In Figure 3.1, the higher layer is the output layer, and the lower one is the input 

layer. All nodes in each layer express artificial neural units. Each unit in the 

output layer represents a neural output vector, z (t) or its lagged vector. The z (t) 

receives inputs from the input units represented by the current and the second 

lagged neural input-vectors. A switchable connection from an input node to the 

output node has an arrowhead at the output node, and the associated connection 

strength is switchable between zero and non-zero at any time. An inhibitor arc 

from an input node to the output node has a small solid black circle rather than an 

arrowhead at the output node. This circle means 'not connected' and the 

associated connection strength is constrained to zero at all times. Each
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connection to z (t) performs a linear transformation determined by the 

connection strength hk, so that the total input for the output unit z (t) is 

—h1y(t) — h2y(t — 1)— h y(t + l -p) .  If hk =0 att=Ti, the associated connection is

inhibitive; if hk ^ 0 at t=Tj+dT, the associated connection is excitatory. It is 

noteworthy that dT is sufficiently large to ensure that the underlying relationships 

between z(t) and y(t) change smoothly and gradually. If, however, hk = 0 at all 

times, the associated connection becomes an inhibitor arc.

The extended network has a dynamic setting, that is, the 'presence and absence' 

restrictions on the coefficients of the optimal VRDL model may update each time 

a new observation becomes available. This 'presence and absence' pattern update 

indicates that some synapses interacting between neurons in the input layer and 

neurons in the output layer switch between the excitatory and inhibitive states. 

This specification is superior to the conventional static one in which no 'absence' 

restrictions are imposed on the coefficients and consequently all synapses are 

excitatory.

If the neural input-vector y(t) includes the first-order and second-order terms 

yi(t), y2(t), yi(t)y2(t), yf (t) and y \ (t), the VRDL model can be used to construct a 

three-layered polynomial neural network. The hidden-node transfer function in 

this network consists of a quadratic regression polynomial of two variables used 

by the group method of data handling (GMDH) algorithm of Ivakhnenko [see 

Farlow (1984)]. General connection between the mean-corrected input and 

output vectors can be expressed as
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fh(yi(t), y2(t)) = hn yi(t)+hi2 y2(t)+hi3 yi(t) y2(t)-hhi4yf (t) +hi5y ^ t ) ,

where yj(t), i = 1, 2, are the input variables and hn, i = 1,2,...,5 are coefficients. 

The proposed construction method is simple to use and can be applied to an M- 

layered polynomial neural network with hidden layer nodes in layer m £ [1, M-2]. 

Figure 3.2 illustrates the structure of a polynomial network with a single hidden- 

layer for the predictor of a VRDL model:14

i= l,2  and 3.

If y(t-l) in (3.17) is missing, (3.17) becomes a subset VRDL model. In this case, 

the hidden unit operating fh(yi(t-1 ),y2(t-1)) becomes inoperative and the 

corresponding incoming and outgoing arcs become inhibitive.

’Conventionally h0,h ,,... denote the coefficients of y(t),y(t-1),... respectively. 

However in engineering literature, in order to enhance the presentation of recursive 

formulas, h ,,h 2,... are chosen to denote the coefficients of y(t),y(t-1),... 

respectively. The “engineering” approach is adopted when describing neural networks.

z (t) = -hjy(t) -  h 'y(t -  1) -  h'3y(t -  2), (3.17)

where and
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Figure 3.2

A polynomial neural network with a single hidden-layer for a VRDL model

output layer

hidden layer

y2(t-2) input layer

Analogously, Figure 3.3 illustrates the structure of a three-layered polynomial 

neural network for the predictor of a VAR model

y (t) = - a 1y ( t - l ) - a 2y (t-2 ), 

where a; =[aj(i) a 2(i) a5(i)] , i=l and 2.

(3.18)

81



Figure 3.3

A three-layered polynomial neural network for a VAR model

output layer

input layeryi(t-i) y2(t-i) yi(t-2) y2(t-2)

Neural nets with inhibitor arcs and switchable connections are intuitively the 

most direct approach to increasing the modelling power of neural nets. These 

extensions provide neural nets with an ability to model sequentially changing 

time-series systems with a subset structure. In Chapter 7 this thesis provides 

algorithms for both time and order updating which leads to the optimal synaptic 

weight updating and allows for the extended neural network which include the 

optimal dynamic node creation/deletion.
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3.8 Summary and Linkage

Conventional full-order time-series models have become common in financial 

time-series analysis [Eun and Shim (1989), Bekaert et al (1999), Froot et al 

(1998), Granger et al (2000), Lee (1996), Barnhill et al (2000)]. However these 

models are typically constrained through problems of over-parameterisation.

In this chapter, a new ZNZ patterned time-series modelling approach comprising 

ZNZ patterned VAR modelling, ZNZ patterned VECM modelling and ZNZ 

patterned polynomial neural networks has been introduced. This approach is a 

more straightforward, certain and effective means of testing for causality and 

cointegrating relations, and conducting modelling and simulations. It can provide 

important insights into, and strengthen the modelling power of, financial time- 

series analysis. It also forms the basis of model building in the thesis. The 

modelling techniques developed are then applied to various tests and/or 

circumstances in exchange rate and equity markets.

The following chapter presents extensions and specific techniques of the models 

described in this chapter. It will demonstrate that the identified Granger causal 

relations among the variables from the use of the ZNZ patterned VAR models 

with unit roots are identical to the causal relations identified from the use of the 

equivalent ZNZ patterned VECM. It will also present an effective and efficient 

algorithm to select the optimal ZNZ patterned cointegrating and loading vectors 

in a ZNZ patterned VECM framework for an 1(1) system. The algorithm can be
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applied to a higher order integrated system. It is simple to use and leads to an 

efficient analysis of the cointegrating relationships in vector financial time-series.
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CHAPTER 4

CAUSALITY DETECTION AND COINTEGRATION INVESTIGATION

4.1 Introduction

In this chapter the necessary and sufficient condition to test for ‘overall 

causality’, that is the presence of Granger-causality, Granger non-causality and 

indirect causality in a ZNZ patterned VAR model, is discussed. It is argued in the 

next section that the coefficient patterns of the ZNZ patterned VAR model are a 

more straightforward and effective basis for detecting overall causality.

Causality detection in ZNZ patterned VECM models is also discussed in Section 

4.3. It is shown that the identified Granger causal relations among the variables 

can be detected from the use of the ZNZ patterned VAR model with unit roots 

and from the use of the equivalent ZNZ patterned VECM.

Section 4.4 demonstrates an effective and efficient search algorithm to select 

from an 1(1) system ZNZ patterned cointegrating and loading vectors in a ZNZ 

patterned VECM, when the long-term impact matrix contains zero entries. The 

algorithm can be applied to higher order integrated systems. Some concluding 

remarks are provided in Section 4.5.
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4.2 Causality Patterns in ZNZ Patterned VAR Modelling

In VAR modelling of (3.1), consider a bivariate system where y(t) = 

/
[y i (t) y 2 (t)] . Causal ordering can be defined using the work of Kang (1981).

Consider aj-(L) = Z a jLT , where aJ’(L) is the (i,j)-th entry of AP(L).
T —\

Definition (a): y^t) Granger non-causes y2( t) , and y2(t) Granger causes y,(t) if 

and only if a21(L) = Oand at least onea[2 ,t = l , . . . ,p , is nonzero.

That means

AP(L) = a p (L) ap (L)

■52 (L )
, and the coefficients, a]2, x = l,...,p  in af2(L) can

be either zero or nonzero, but at least oneaZ is nonzero.

Further, there exist 2P 1 different patterns of ap2(L) in this bivariate system, 

indicating that y,(t) Granger non-causes y2(t) , and y2(t) Granger causes y ,(t).

Definition (b): y2(t) Granger non-causes y ^ t) , andyj(t) Granger causesy2(t)if 

and only if ap2(L) = 0 and at least onea21 ,T =  l , . . . , p , is nonzero.

That means
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a 2i (L) a p22(L)
, and the coefficients, a 21, T =  l , . . . , p  in a 21(L) can

be either zero or nonzero, but at least one a 21 is nonzero.

Definition (c): y 2(t) Granger causes y,(t), and y l (t) Granger causes y 2(t) if 

and only if ap2 (L) ^ 0 and a 21 (L) ^ 0 .

Definition (d): y 2(t) Granger non-causes y^t), and y^ t) Granger non-causes 

y 2(t) if and only if ap2(L) = 0and a21(L) = 0.

The above causality patterns can be detected from the optimal selected ZNZ 

patterned VAR proposed in Penm and Terrell (1984a).

More general causal patterns can be treated using definitions suggested by Hsiao 

(1982). Consider the following trivariate system:

which describes yj (t) causing y3(t) but only through y 2(t).  In this trivariate 

system the above indirect causality implies a p,(L) = 0 ,a 21(L)  ̂o and 

a32(L) ^ 0. Also { a]2 = 0 or ^ 0 }, { a f3 = 0 or ^ 0 } and { a 23 = 0 or ^ 0 }, 

x = l, . . . ,p.  From (4.1), Hsiao (1982) indicates that the greater the number of

a n(L) af2(L) aj^L ) Ty,(t)~

a  21 ( L ) a 22 ( L ) a 2 3 (L ) y 2( 0  =e(t ) ,  
0 a ?2(L) a ?3(L) _y3(t)_

(4.1)
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components, y.(t), i = 1,2,..., the more complicated are the causal patterns that 

may be detected.

4.2.1 Empirical Causality Detection using VAR Modelling

VAR modelling has been widely utilised in conducting causality detection tests. 

Caines et al (1981) propose procedures to test sales and advertising for Granger- 

causality in a class of VAR models. In an application to supermarket sales 

analysis, Caines et al use likelihood ratio tests to discriminate between various 

VAR models held as the null and alternative hypotheses respectively. A 

supermarket sales model is then constructed to aid supermarket managers in their 

decision-making.

Hsiao (1981) suggests a stepwise VAR modelling method of testing the supply of 

money and aggregate nominal income for Granger-causality. The variance- 

covariance matrices of various VAR models are estimated to calculate the log- 

likelihood values. Likelihood ratio tests are then carried out to select the optimal 

VAR model which is used as a basis for detecting Granger-causality.

Bar-Yosef et al (1987) use Hsiao’s method to examine the linkage between 

corporate earnings and corporate investment. The various bi-variate AR models 

are constructed and their associated variance-covariance matrices are estimated to
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test Granger-causality. The empirical results show that corporate earnings are a 

determinant of corporate investment.

In an investigation of measurement of Granger-causality, Geweke (1982) derives 

an interesting means of measuring the linear dependence and feedback present in 

multiple time series. Geweke also shows how the notions of causality relate to 

exogenity in the context of a complete dynamic simultaneous equation model.

Bhattacharya et al (2000) utilise a sequential hypothesis testing procedure using 

standard likelihood ratio tests to analyse the causal direction of volatility 

transmission between two different classes of shares in the framework of a VAR. 

Lee (1992) uses a VAR approach to investigate causal relations and dynamic 

interactions among asset returns, real activity, and inflation in postwar USA. 

Bekaert and Hodrick (1992) examine the predictability of excess returns on 

equity and foreign exchange markets by using a six-variable VAR model. 

Whitelaw(1994) investigates a VAR for assessing the time series properties of the 

expected volatility of stock market returns. Thorbecke (1997) takes impulse- 

response functions from a VAR to analyse the relationship between monetary 

policy and stock returns. Bemanke and Blinder (1992) employ a VAR in which 

the federal funds rate is used to measure monetary policy.
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4.3 Zero Entries in a ZNZ Patterned VAR and Its Equivalent VECM for an 

1(d) System

Full-order VAR models specify nonzero elements in all their coefficient matrices. 

As the number of elements to be estimated in these models grows with the square 

of the number of variables, the degrees of freedom will be heavily reduced. 

M oreover the statistical and numerical accuracy of coefficient estimates in these 

full-order models will be diminished, where the true structure does indeed include 

zero entries. As indicated in Penm and Terrell (1984a), the ZNZ patterned VAR 

model is a more straightforward and effective means of testing for Granger causal 

relations including Granger-causality, Granger non-causality and indirect 

causality.

However recent cointegration work [see Penm et al (1997)] suggests that, if 

cointegrating relations exist between the variables, then the use of the VECM 

model which is equivalent to a VAR model with unit roots, may be more 

effective for testing Granger-causality.

The equivalent VECM derived from (3.1) in an 1(d) system can be presented as 

follows:

A p (l)y(t -1 ) + A p_1 (l)Ay(t -1) + ... + Ap_d+1 (l)Ad_1 y(t -1 ) + Ap~d (L)Ady(t) = e(t), (4.2) 

where A p~‘(l)A‘y(t -1) are stationary, i= 0 ,...,d -l. The first d terms are the error- 

correction terms, while A p-d(L)Ady(t) is said to be the autoregressive part of the 

model.

90



Further, the following relations can be achieved:

Ak(L) = Ak(l)L  + Ak l(L)(I-L), k = p, p-1, p-d+1. (4.3)

Since Granger-causality detection is crucially dependent on the positions of off- 

diagonal zero entries in the coefficient matrices, this discussion therefore focuses 

on the positions where i ^  j .

If the (i,j)-th entries of Ak(L), Ak(l), and Ak l(L) are ajj(L), aij(l), and cy(L) 

respectively, then the following relation is established:

ajj(L) = aij(l)L + Cjj(L)(l-L), i *  j. (4.4)

Now Cij(L) is defined as a scalar polynomial with coefficients Ci, ..., ck_i by

Cij(L) — C iL  +  . . .  +  Ck-lL ,

and thus

cij(L)(l-L) -  Ci L + (c2 - Ci)L2 + ... + (Ck-i - ck.2)Lk 1 - ck_]Lk. (4.5)

If ajj(L) = 0, then ay(l) will also be zero. At (4.4) it was established that cy(L)(l- 

L) = 0, and (4.5) produces ci = 0, c2 -  Ci = 0, ... , ck-i - ck.2 = 0, ck_i = 0, which 

lead to cj = 0, i = 1, ..., k-1, and therefore Cy(L) = 0.
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At this point, if the (i,j)-th entry of Ak(L) is zero, then the (i,j)-th elements of both 

Ak (1) and A k l(L) are zeros. Therefore, if it is shown that if every (i,j)-th entry is 

zero for all coefficient matrices in a VAR then all (i,j)-th coefficient elements in 

the error-correction terms and in the vector autoregressive part of the VECM, will 

also be zeros.

Analogously it is evident that if the (i,j)-th elements of all Ak(l), k = p, p-1, ..., 

p-d+1 and Ak l(L) in (4.2) are zeros then the (i,j)-th entry of AP(L) in the 

equivalent VAR will be zero. Therefore this thesis can conclude that if all (i,j)-th 

coefficient elements in the error-correction terms and all (i,j)-th coefficient 

elements in the vector autoregressive part of the VECM are zeros, then every (i,j)- 

th entry is zero for all coefficient matrices in a VAR.

The implications of the above proof are obvious. If yj does not Granger-cause y\ 

then every (i,j)-th entry must be zero for all coefficient matrices in the VAR. Also 

all (i,j)-th coefficient elements in the equivalent VECM are zeros.

Further, (4.3) can be expressed as follows:

A P(L) = A p(l) + A p_1 (L) -  A p_1 (L)L (4.6.1)

A P_1 (L) = A p_1 (1) + A p“2 (L) -  A p“2 (L)L (4.6.2)

A p_d+1 (L) = A p_d+1 (1) + A p~d (L) -  A p_d (L )L . (4.6.3)
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From (4.6.3) it is obvious that if the (i,j)-th element of Ap d+1(l) is nonzero, then 

the (i,j)-th element of Ap d+1(L) is nonzero. Also if the (i,j)-th element of Ap d (L) 

is nonzero, then a zero (i,j)-th element of Ap d+1(l)  leads to a nonzero (i,j) element 

of Ap d+1(L). Thus, it has been proved that if there exists a nonzero (i,j)-th 

element in either Ak(l) or Ak l(L), k=p, p-1, ..., p-d+1 in (4.3), then the (i,j)-th 

element of Ak(L) is nonzero. This outcome shows that if any single (i,j)-th 

element is nonzero in any one of the d matrices, Ak(l)  , k= p, p-1,..., p-d+1, or 

Ap‘d(L) in the VECM in (4.2) is nonzero, then the (i,j)-th element of AP(L) in the 

equivalent VAR is nonzero.

Analogously from (4.6.1) if the (i,j)-th element of AP(L) is nonzero, then at least 

the (i,j)-th element is nonzero in one of the following d coefficient matrices, or 

Am (L):

Ap(l), Ap_1(l), ..., Ap‘d+1(l).

Therefore if yj does Granger-cause yi, then the (i,j)-th element of AP(L) in the 

VAR is nonzero. In addition at least a single (i,j)-th coefficient element is 

nonzero in Ap(l), AH (1), ..., Ap'd+1(l), or Ap'd(L) in the equivalent VECM.

An indirect causality from yj to y, through ym indicates yj causing yj but only 

through ym. Hence, yj Granger-causes ym, ym Granger-causes y-u and yj does not 

Granger-cause y\ directly. It can easily be demonstrated that the VAR in (3.1) has 

nonzero (m,j)-th and (i,m)-th elements and a zero (i,j)-th element of AP(L). The 

equivalent indirect causality can also be shown in the equivalent VECM.
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It is noteworthy that Johansen (1988) proposed the following VECM equivalent 

to the VAR model of (3.1) in an 1(1) system:

Hp_l (L)Ay(t) + A*y(t -  p) = £(t), . (4.7)

p-1

where Hp_1(L) = I + ^ ]H iLi.
i=l

The error-correction term of this VECM is A*y(t -  p ), while the error-correction 

term in (3.16) is A*y(t -1).

Thus

Hk =Ip +A1+ —f A k, k = l,...,p  — 1, (4.8)

and A* = I p + Aj +••■ + Ap. (4.9)

It is recalled that ajj denotes the (i,j)-th entry of Ak, gjj and a* can denote the 

(i, j)-th entry of Hk and A* respectively. From (4.8) it is obvious that all p 

entries, { ajj,k = l,...,p  } are zeros; then a* is zero and all {gjj,k = l , . . . , p - l }

are also zeros. Similarly if a* and all {g*,k = 1, ,p — 1} are zeros, then

{ ajj,k = l,...,p  } are zeros.

Therefore if yj does not Granger-cause yj, then every (i,j)-th entry is zero for all 

coefficient matrices in the VAR. Also all (i,j)-th coefficient elements in the 

equivalent VECM are zeros.
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If any single ajj,k = 1,_,p in the VAR is nonzero, then the (i,j)-entry is nonzero

in either A* or HP_1(L).

Expression (4.8) can be rewritten as

H ^ I p + A , ,

H 2 —H, + A2,

H k = H k_j + Ak, k = 2 ,...,p  —1. (4.10)

From (4.10) if ajj is nonzero, then gjj is nonzero. However if a\- is zero, then gfj 

will be zero. Similarly, if a? is nonzero, then g? is nonzero. In addition, it is 

obvious that if a p is nonzero and all aJj, k = l , . . . ,p - l  are zeros, then a* is 

nonzero, although all gjj,k = l , . . . ,p - l  are zeroes.

Analogously it can be proved that if any single (i,j)-entry is nonzero in either A* 

or Hp l(L),then the (i,j)-th entry of A P(L) in the equivalent VAR is nonzero.

Therefore if yj does Granger-cause yj in (4.7), then the (i,j)-th element of A P(L) 

in the VAR is nonzero. In addition the (i,j)-entry is also nonzero in either A* or 

Hp_1 (L) in the equivalent VECM.
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4.4 Selection of ZNZ Patterned Cointegrating Vectors and Loading Vectors 

in ZNZ Patterned VECM Modelling

As noted in Section 3.3, the VAR model is described as:

y(t) + 2 > ty(t-T)=e(t), (4.11)
T=1

where s(t) is a sxl 1(0) vector process with E{ e(t) }=0 and

E {s(t)e'(t-T )} = G, t = 0,

0, T > 0,

AT, t = 1,2,..., q are sxs parameter matrices, and 

A‘l(L) = I + ^ A ,L '.
T=1

L denotes the lag operator and the roots of |Aq (L)| = 0 lie outside or on the unit 

circle.

Further, y(t) is said to be 1(1), if it contains at least one element which must be 

differenced before it becomes 1(0). Then y(t) is said to be cointegrated of order 1 

with the cointegrating vector, ß , if ß'y(t) becomes 1(0), where y(t) has to contain 

at least two 1(1) variables. Under this assumption the associated VECM for (4.11) 

can be expressed as follows:

96



A*y(t -1) + Aq_1(L)Ay(t) = E(t), (4.12)

where y(t) contains both 1(0) and 1(1) variables, A=(I-L), A*=Aq(l), 

Aq (l)y(t -1) is stationary, and

a <-'(L)=i + | > ; l\
T=1

The first term in (4.12) is the error-correction term. Aq !(L)Ay(t) is referred as the 

VAR part of the VECM.

Because y(t) is cointegrated of order 1, the long-term impact matrix, A*, must be 

singular. As a result, A* = aß', where a  and ß are sxr matrices and the rank of 

A* is r. The columns of ß are the cointegrating vectors, and the rows of a are 

the loading vectors.

One problem encountered in empirical research using cointegration theory is to 

provide satisfactory financial and economic interpretation of estimated 

cointegrating vectors. As demonstrated by Wickens (1996) this is often difficult 

without introducing a priori information particularly where this a priori 

information determines the presence or absence of certain coefficients. To 

explicitly address this issue Section 3.6.1 presents a search algorithm to identify 

the specification of a VECM with ZNZ patterned cointegrating and loading 

vectors. This algorithm allows zero coefficients in the VECM including the 

cointegrating vectors, the loading vectors and the VAR part of the VECM. The
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specification so determined provides a useful basis for financial and economic 

interpretation of the long-term equilibrium relationships as well as the short-term 

dynamics.

4.4.1 Search Algorithm

In the proposed algorithm for an 1(1) system, the identification of ZNZ patterned A* 

and the determination of ZNZ patterned a  and ß are carried out in the following 

way. First, model selection criteria are used to select the optimal subset VECM with 

zero entries to determine the ZNZ patterned A*.

Second, after the ZNZ patterned A" is determined, the rank of the matrix A* is then 

computed using the singular value decomposition (SVD) method, and the number of 

cointegrating vectors in the system will be known.

Third, given that the ZNZ patterned A* has been determined and the rank of A* 

has been computed, it is then possible to proceed with the tree-pruning algorithm as 

adapted for an 1(1) system to obtain all acceptable ZNZ patterned as and ßs which 

are consistent with the ZNZ patterned A*. Let a p and ßp denote a ZNZ pattem of

a  and ß respectively and Ap the ZNZ pattern of A*. If the (i,j)-th entry of the 

product, otpßp is zero, and the corresponding (i,j)-th entry of Ap is also zero, then 

both a p and ßp are acceptable. This tree-pruning algorithm, which avoids the need 

to evaluate all possible ZNZ patterned as and ßs, is discussed in Appendix B.
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The ZNZ patterns of acceptable as and ßs depend on the pattern of A* determined 

earlier by model selection criteria. Of note, the imposition of zero entries on ß does

not preclude a similar restriction on a. One example is that if the determined A* 

contains a zero row, such as:

*  0 0 0 0 
A =

i 1 0 1

where 1 denotes a non-zero entry. In this case zero restrictions will have to be 

imposed on the first row of a. This is because the pattem of A* implies that the 

cointegrating relations in the system have no influence on the first variable in the 

system. Noting that the number of zeros in a  and ß are not fixed even with a given 

ZNZ patterned A*, many differently patterned ots and ßs can be obtained using the 

tree-pruning algorithm. A simple example can be used for demonstration.

Let A =

1 1 0 0 0 0
1 1 0 0 0 0 ,

1 1 1 0  0 0

where the rank of A* is 2.

At least three candidate sets of a  and ß can be obtained, which are:

'o r "0 1 1 0 0 0
a  = 0 1 and ß = 1 1 0 0 0 0

i i

'o r
T 0 1 0 0 0

a  = 0 1 and ß = 1 1 0 0 0 0
i i

(I)

(II)
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"0 f
"0 0 1 0 0 0 "

a  = 0 1 and p = 1 1 0 0 0 0
1 1

(Ill)

The cointegrating relationships implied by (I), (II) and (III) are different. While (I) 

and (II) imply that yi, y i and y3 are cointegrated, (HI) indicates that yi and y2 are 

cointegrated and y3 is an 1(0) series. It is obvious that this thesis cannot take the 

zero-maximising approach of choosing the ß with the maximum number of zero 

entries to determine the ZNZ patterns of a  and ß. If it did, then (III) would be 

selected, not (I) nor (II), while the true model could be either (I) or (II). As a result it 

again utilises model selection criteria to assess (I), (II) and (III), and then select the 

optimal ZNZ patterns for a  and ß. Although (I) and (II), in theory, both indicate that 

yi, y2 and y3 are cointegrated, in practice different forecasting performance will 

result from (I) and (II). Using model selection criteria in this situation will aid in the 

selection between (I) and (II) in terms of forecasting performance.

To obtain the correct specification for a  and ß, it is necessary to determine whether 

a  and ß can be uniquely obtained by factorising A*. If it is possible, the 

factorisation can be carried out. If not, the efficient estimation of 1(1) cointegrated 

systems based on a triangular ECM representation [see Stock and Watson (1993)] 

can be employed to estimate ß. Since any non-zero entry in ß could be normalised 

as unity, it can repeat the estimation procedure with all possible normalisations. The 

normalisation, which produces the smallest value for the model selection criteria, is 

then selected as the candidate ß. After the optimal normalisation is determined for 

every candidate ß, it is possible to estimate the associated acceptable ZNZ patterned
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as. Consequently the optimal a  and ß are the ones which result in the minimum 

value for model selection in the VECM framework.

4.5 Summary and Linkage

This chapter has established that both conventional full-order VAR and VECM 

models contain all non-zero entries in their coefficient matrices, As the number of 

parameters to be estimated in these full-order models grows with the square of the 

number of variables, the degrees of freedom will be heavily reduced. Moreover 

the statistical and numerical accuracy of the parameters estimated will be 

diminished, where the true structure does indeed include zero parameters. 

Therefore the modelling power of the full-order approach for causality detection 

and cointegration investigation is weakened.

This chapter has also demonstrated that the optimal ZNZ patterned VAR model 

can be used as a basis for detecting causality for stationary vector financial time- 

series. However if cointegrating relations exist between the variables, then the use 

of the equivalent patterned VECM model may be more effective for testing 

Granger-causality. An effective and efficient algorithm is also shown to select the 

optimal patterned VECM for an 1(1) system.

The following chapter presents applications of the ZNZ patterned VAR modelling 

described in this chapter. Two issues are investigated concerning causality 

detection, using the modelling techniques developed in this chapter. The first
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issue analyses the dominant factors influencing the Euro’s exchange rate 

movements through the development of ZNZ patterned VAR models. The second 

study utilises ZNZ VAR modelling of the Hong Kong stock market, including the 

impact of the Euro on the market.
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CHAPTER 5

CAUSAL ANALYSIS OF THE MONEY SUPPLY AND THE EURO AND 

ITS IMPACT ON THE HONG KONG STOCK MARKET

5.1 Introduction

With the introduction on 1 January 1999 of the single European currency, the 

Euro became the official currency in the eleven participating countries of the 

European Union (EU). The increasing popularity of the Euro as a pegging 

currency reflects the internationalisation of the Euro. Also the Euro has been used 

as the largest weighting element in a basket of currencies for foreign exchange 

arrangements adopted by several Central European countries. The Euro has 

become the second most widely traded currency at the international level, behind 

the US Dollar and ahead of the Japanese Yen. In this chapter the ZNZ patterned 

VAR modelling is utilised to investigate direct Granger causal relations between 

the money supply of the Euro area, which comprises all participating countries of 

the EU and the Euro exchange rate. In addition, the hypothesis that the Euro 

exchange rate is a major influence on international stock markets is tested. The 

hypothesis is tested by examining the cause and effect relationship between the 

Hong Kong stock market and foreign exchange markets using the ZNZ patterned 

VAR modelling.
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The remainder of this chapter is organised as follows. Section 5.2 reviews the 

background information on money supply in the Euro area and the Euro’s 

potential influence on stock markets. Section 5.3 describes the data. Section 5.4 

investigates the causal relationships between the movements in the Euro’s 

exchange rate and the money supply. Section 5.5 examines the Euro’s impact on 

the Hong Kong stock market. A summary is provided in Section 5.6.

5.2 Money Supply in the Euro Area and the Euro’s Implications for the 

Hong Kong Stock Market

5.2.1 Introduction to the Euro

The introduction of the Euro has been a significant recent event in global financial 

markets. The Euro is intended to create broader, deeper and more liquid financial 

markets in Europe, and thus its main purpose is to improve the price stability and 

productivity of the European economy. Rather than experiencing constant 

fluctuations in the member exchange rates there will be a more consistent and 

predictable environment for international trade. Another reason why the European 

Central Bank introduced the Euro is based on its belief that the new currency will 

foster low inflation.

The Euro has already established itself as a credible and important currency in the 

world. To date the Euro/Dollar trading has been very active in the world’s foreign
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exchange markets through a wide range of instruments, offering significant 

hedging possibilities.

Over the period January 1999 to December 2000 the relative weakness of the 

Euro was a significant feature in international foreign exchange markets. During 

this period the value of the Euro relative to the US Dollar, in general, fell. The 

Euro’s weakness throughout this period confounded earlier general expectations 

that it would trend upwards relative to the US Dollar [see ECB (2001a)].

5.2.2 European Money Supply

Money supply in the Euro area is measured by the standard stock of money (M3). 

It consists of short-term deposits, shorter deposits of up to 2 years, and 

marketable instruments. Figure 5.1 shows that over the period 1999 to 2000 the 

monthly measures of M3 have always been higher than the reference value of 4.5 

percent set by the Governing Council of the European Central Bank (source: 

DataStream™). That is the growth rate of M3 has exceeded the 4.5 percent 

benchmark for the entire period.15 The Governing Council adopts a price 

stability-oriented monetary policy strategy for the Eurosystem. That is the rate of 

monetary expansion is set to achieve the objective of price stability.

15 The growth rate of M3 is measured relative to the previous month. It fell back in 

January 2000. This fall may have been cause by the general rises in interest rates during 

1999 [ECB (2000)].
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Figure 5.1

Growth of M3 in the Euro area
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Source: ECB

Money supply is linked to forex price movements. In the gold standard era, since 

the gold reserves of a country were limited, the growth rate of money supply was 

managed with close attention to the country’s reserves. Unmanaged growth of 

money supply would lead to a depreciation of the country’s currency.

In a floating exchange rate system, currencies fluctuate according to supply and 

demand. One tool that has been used to manage the exchange rate is through the 

money supply. However, such action can only be successful in the short-term. 

Governments are not able to control the exchange rate over a long period without 

regard to economic fundamentals.

The most widely held view is that, ceteris paribus, an expansion in money supply 

leads to a decrease in domestic interest rates. For a given expected inflation rate
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this leads to a depreciation in the domestic currency. In the overshooting 

hypothesis, the immediate depreciation of the spot exchange rate will temporarily 

exceed, or overshoot, that of the long-term equilibrium exchange rate. Conversely, 

a tightening of monetary policy can lead to an appreciation of the domestic 

currency.

Lewis (1993) utilises VAR modelling to investigate the impact of US monetary 

shocks on the US Dollar exchange rate. The findings indicate that a loosening of 

monetary policy is associated with a depreciating currency. Evans (1994) assesses 

the impact of monetary shocks on exchange rate movements in the US, Germany 

and Japan. His conclusions are that a shock to the Federal fund rate has a stronger 

effect on the exchange rate than a shock to the interest differential. Eichenbaum 

and Evans (1995) investigate the effects of money shocks on the US dollar 

exchange rate. Their results show that monetary policy is important in explaining 

exchange rate movements, but they do not explain the majority of these 

movements. Cushman and Zha (1997) examine the effects of monetary shocks on 

the Canadian Dollar exchange rate movements. They conclude that a contraction in 

US monetary supply leads to an appreciation of the US Dollar against the 

Canadian Dollar. The four above-mentioned studies do not give any evidence to 

support the overshooting hypothesis. However the findings of Bonser-Neal et al 

(1998) support the overshooting hypothesis. They use event study methodology to 

investigate the impact of monetary shocks on exchange rates. Their findings 

suggest that the immediate response of the exchange rate to US monetary policy is
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statistically and economically significant in most cases, and the overshooting 

hypothesis is acceptable in seven of the eight cases they examine [Bonser-Neal et 

al (1998)].

There is already literature examining the causal relationships between the money 

supply and economic activity in the Euro area [see BIS (2000)]. However an 

investigation into the direct causal relationships between the money supply and the 

Euro exchange rate has so far not been attempted. Thus the first major area of 

interest in this chapter is to investigate whether there is a direct causal relationship 

between the movements of the Euro’s exchange rate and the money supply.

5.2.3 Forex and Stock Markets

This section examines the linkage between the forex and stock markets. It seeks 

to explain why the Euro could impact on world stock markets. It uses Hong Kong 

as an example to examine the Euro’s influence.

First, previous evidence has shown that exchange rate changes have a significant 

impact on stock prices, implying the former do contain relevant information about 

stock prices. For instance, Froot et al (1998) demonstrate that flows of capital 

influence exchange rate movements and such flows have been shown to be related 

to equity returns.16 The and Shanmugaratnam(1992) and Yip (1996) have studied

16 Also the relationship between exchange rates and stock prices is more complex than 

implied here and involves consideration of parity conditions and inflationary 

expectations. Nevertheless while exchange rate risk should not be separately priced if 

purchasing power parity holds, in the short-to-medium term, deviations from PPP have 

been reported [see Adler and Lehman (1983); Frenkel (1981)]. Under these conditions
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the Singapore stock market and find that, in the small and open economy of 

Singapore, a strong Singapore Dollar is related to positive returns in the Singapore 

stock market. They emphasise that a strong Singapore Dollar lowers input costs, 

and thus limits imported inflation. Consequently productivity of Singapore based 

firms is improved, which is associated with a rise in the stock prices. Of note, 

Hong Kong and Singapore share many similar economic features in East Asia. 

Therefore we hypothesise a positive relationship between the Hong Kong Dollar 

and the Hong Kong stock market.

Second, as described in Section 5.2.1, during the test period 1 January 1999 to 31 

December 1999 the weakness of the Euro has been a significant feature in 

international foreign exchange markets. The Annual Report of BIS in (2000) 

observed: “The Eurosystem had indicated that it would not react automatically to 

deviations of money growth from the reference value”.

During the test period, interest rates on the marginal lending facilities were 

maintained by the ECB at 3.5 percent [see ECB (1999b)], while the interest rate in 

the US was about 6 percent during the same period, thereby creating a flow of 

capital from the Euro area to other markets, including Hong Kong. During this 

period the best lending rate in Hong Kong was above 8 percent [see Hong Kong 

Monetary Authority (2001)].

deviations from purchasing power parity will be priced to the extent that they represent 

exchange rate risk that must be borne by investors [see Jorion (1991); Dumas and Solnik 

(1995)]. In any event the purpose here is to illustrate how this analysis can provide 

insights into Granger-causal relationships among financial variables.
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Third, Hong Kong is an important Asian banking and financial centre and 

generally allows free entry and exit of international funds. The Hong Kong stock 

market is the second largest in Asia after Tokyo. Also the Hong Kong government 

was the largest player in the Hong Kong stock market in 1999.17 Further 

international investors are willing to place their money in Hong Kong stocks while 

assessing other investment opportunities, in particular those of investing in China. 

Hence it is hypothesised that the decline in the Euro had implications for Hong 

Kong’s stock market in 1999.

The Hong Kong Monetary Authority used, as it still does, the linked exchange rate 

of HK7.8 Dollars to one US Dollar to encourage stability and investor confidence 

during and after the unification of Hong Kong with China. However in Hong Kong 

only the Hong Kong Monetary Authority uses this linked exchange rate, so this 

rate does not apply to other dealers in Hong Kong, who are subject to fluctuations 

in the Hong Kong and US Dollar exchange rate.

5.2 Data

To investigate the causal relationships between movements in the Euro’s 

exchange rate and the money supply, monthly average data on the Euro’s 

exchange rate (Ee) and seasonally adjusted M3 are collected from DataStream™

17 During this year the Hong Kong government set up a fund to purchase shares valued at 

118 billion Hong Kong Dollars from the local stock market [see Hong Kong Monetary 

Authority (2000)].
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over the period September 1996 to December 2000. To examine stationarity for 

each series Microfit 4.0 is used to carry out the augmented Dickey-Fuller (ADF) 

unit root test. The results indicate that both log Ee and log M3 are non-stationary.

To examine the Euro’s impact on the Hong Kong stock market, all data are 

sampled daily between 1 January and 31 December 1999 from DataStream™. 

The Hang Seng Index (HSI) is used to proxy the Hong Kong stock market. It is 

the main stock market indicator in Hong Kong. This index comprises 33 

constituent stocks which are the largest in the market. The aggregate market 

capitalisation of these stocks accounts for about 70 percent of the total market 

capitalisation on Hong Kong’s stock exchange. At the beginning of 1999 the HSI 

was 9,000. However it climbed to about 17,000 by the end of 1999, closing with 

an 89 percent gain over the year.

Within this context, the following three variables are studied contemporaneously 

in a stochastic vector system using the ZNZ patterned vector AR modelling 

proposed above:

(i) Euro to US Dollar - exchange rate (EUFX)

(ii) Hong Kong’s Hang Seng - stock price index (HSI)

(iii) Hong Kong Dollar to US Dollar - exchange rate (HKFX).

Graphs of EUFX, HSI and HKFX are shown in Figures 5.2 to 5.4 respectively. 

The variables are log transformed such that yi(t)=log(EUFX), y2(t)=log(HSI) and 

y3(t)=log(HKFX). Following Penm and Terrell (1984a), Forsythe’s (1957)
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method is initially used for generating orthogonal polynomials to assess the data 

for suitable detrending to produce stationarity. The results show that detrending 

using a first-order polynomial is required before fitting the VAR models. The 

standard errors of estimates of coefficients are reported in Table 5.1. Thus all 

three variables are mean-corrected and detrended to achieve stationarity.

Figure 5.2

Euro to US Dollar - exchange rate (EUFX), daily: 1 January 1999 to 31

December 1999
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Figure 5.3

Hang Seng stock price index (HSI), daily: 1 January 1999 to 31 December 1999
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Figure 5.4

Hong Kong Dollar to US Dollar - exchange rate (HKFX), daily: 1 January

1999 to 31 December 1999

7 .7 8 -

/  HKFX

7 1 A r ~ ^ ~  1 26 51 76 101 126 151 176 201 226 251

113



Table 5.1

Orthogonal polynomial regression3

Intercept Orthogonal 
polynomial Pi

log(EUFX) -0.11 3.98E-04
(2.83E-03) (1.87E-05)

log(HSI) 9.20 1.75E-03
(9.32E-03) (6.14E-05)

log(HSFX) 2.04 1.50E-05
(3.17E-05) (2.09E-07)

aThe values in parentheses are standard errors of the coefficient estimates

5.4 The Causal Relationship between the Movements of the Euro’s 

Exchange Rate and the Money Supply

In detecting the causal relationships between the movements of the Euro’s 

exchange rate and the money supply, the identification algorithms for ZNZ 

patterned VAR modeling as proposed in Chapter 3 are utilised to select the 

optimal VAR models for both mean-corrected and detrended log(M3) and log(Ee) 

at T=48, 49, 50, 51 and 52. The five cases correspond to August, September, 

October, November and December 2000 respectively. To demonstrate the 

usefulness of the proposed algorithms in a small sample environment, a maximum 

order of 12 is selected to cope with this small sample environment. Following the 

proposed algorithms, the optimal ZNZ patterned VAR models from T=48 to T=52
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are chosen by using both the Hannan-Quinn Criterion (HQC) and the Schwarz 

Criterion (SC). The optimal models selected are estimated using the GLS 

techniques and are shown in Table 5.2. These models are then used as the 

benchmark models for analysing the causal relationships.

The patterned VAR selected by both criteria at all times shows Granger- causality 

from M3 to Ee, and Granger no-causality from Ee to M3.18 This outcome confirms 

that M3 is an independent source of financial and economic disturbance and is 

influential over movements of the Euro’s exchange rate during the test period. A 

change in M3 causes changes in the value of the Euro. These results are 

consistent with both theory and prior evidence.

18 For comparison purposes VECM modelling to both log Ee and log M3 without 

detrending is also conducted. The outcome indicates the selected optimal VECM 

comprises a lag one term in the autoregressive part. The lag coefficient matrix has a 

nonzero (l,2)-entry and a zero (2,l)-entry. Thus the one-way causality from M3 to Ee at T 

= 48, 49, 50, 51 and 52 is confirmed.
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Table 5.2

The VARs a’b selected by both HQC and SC for detecting the causal

relationships between Ee and M3

Sample size 

(T)

Non-zero lag coefficient structure 

for y(t)= [log Ee,log M3]’

Pattern of Granger 

causalityc

48
lag 1

- 0.825 0 .178“
(0.073)

(0.090)

0 -0.806
(0.086)

log Ee ^  log M3

49
lag 1

-0.790 0.200 “
(0.077) (0.087)

0 -0.823
(0.081)

log Ee A -------- log M3

50
lag 1

-0.795 0.191
(0.076) (0.086)

0 -0.821
(0.081)

log Ee ◄-------- log M3

51
lag 1

-0.801 0.205'
(0.072) (0.085)

0 -0.831
(0.078)

log Eg «4-------- log M3

52
lag 1

-0.810 0 .218“ 
(0.068) (0.084)

0 -0.836
(0.076)_

log Eg ◄---------  log M3

d Using the GLS estimation procedure. 

b Standard errors in parentheses.

c In the pattern w ----- ^  z: w Granger causes z.
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5.5 Detecting Granger-causality in the Hong Kong Stock Market

In this section, causality between the Euro and the Hong Kong stock market is 

examined. The identification approach of ZNZ patterned VAR modelling as 

proposed in Chapter 3 is utilised to conduct the selection of the optimal ZNZ 

patterned model. Since there is a huge number of candidate ZNZ patterned 

models, the search algorithm proposed in Penm and Terrell (1984a) is carried out. 

This search algorithm employs a block Choleski decomposition in conjunction 

with model selection criteria to select the optimal patterned VAR without 

evaluating all possible candidate models. The optimal model is then used as a 

basis for detecting causal relations among the variables.

To assess the Euro’s implications for the Hong Kong stock market, a maximum 

order of 36 is assigned to the vector system described in Section 5.3, and the 

search algorithm is undertaken to obtain the optimal ZNZ patterned VAR model. 

Each of three order selection criteria - Akaike, Schwarz and Hannan - is used to 

determine the best specification. The ability of these order selection criteria to 

determine the true specification of a stationary VAR has been examined using a 

simulation approach suggested by Penm and Terrell (1984b). Their results suggest 

that SC is superior in order-identification to the other two alternatives in ZNZ 

patterned VAR modelling for causality studies. Therefore only the specification 

determined by SC is emphasised and used as the benchmark model for analysing 

lead-lag relations.

117



The coefficient estimates of the chosen specification using the adjusted Yule- 

Walker relations are presented in Table 5.3. To check the adequacy of the model 

fit, the strategy suggested in Tiao and Tsay (1989) is used, with the proposed 

algorithm applied to test the residual vector series, using the SC criterion.19 The 

results in Table 5.3 support the residual vector being a white noise process. The 

procedures outlined in Section 3.4 to obtain the GLS-YW estimator are then 

carried out, with the resultant comparative output also presented in Table 5.3. 

The detected causal pattern and relationships are presented in Tables 5.4 and 5.5 

respectively.

19 Tiao and Tsay (1989) proposed an algorithm using the crit(m,j) criterion to select the 

vector autoregressive moving average process with zero entries. After the final model is 

selected, their algorithm was then applied to the residual series to test whether this series 

is a vector white noise process.
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Table 5.3

The optimal ZNZ patterned VAR selected by SCa,b

y(t)=  {log EUFX, log HSI, log HKFX}

Maximum order 
assigned for search

36

Order of the 1
optimal VAR
selected
Coefficient LS GLS
estimator
Type of coefficient '-0 .963  0 0 -0.963 0 0
matrices selected (0.017) (0.017)

-0.168 -0.942 0 -0.006 -0.941 0
A, (0.059) (0.018) (0.002) (0.017)

0.001 0 -0.870 0.005 0 -0.870
(0.0004) (0.031) (0.002) (0.030)

Estimate of 
residual variance- 
covariance matrix 
(x 10-4)

0.3783 0.1239 -0.0007
0.1239 2.732 0.0006

-0.0007 0.0006 0.00009

aSC is also applied to the residual vector. The results support the hypothesis that the 
residual vector is a white noise process.
bThe values in parentheses are standard errors of the non-zero coefficient estimates.

Table 5.4

Causal pattern detected in the three variable system selected by SCa

EUFX

HSI ------- •------  HKFX

a x —> y denotes that x Granger-causes y only and not instantaneously; 
x y denotes that no causal relation between x and y.
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Table 5.5

Causal relationships in the three variable system selected by SC

Caused by the 
following 
variables

EUFX HSI HKFX

EUFX - one-day causal 
effect

one-day causal 
effect

HSI nil - nil
HKFX nil nil -

The relationships identified by the three selection criteria are markedly similar. 

All the determined specifications consistently indicate that Euro exchange rate is 

a significant variable that provides leading information for other components of 

the system. The lagged Euro exchange rate enters not only its own equation but 

also those of HSI and HKFX, which indicate respectively the Hang Seng stock 

index and the Hong Kong Dollar relative to the US Dollar in Section 5.3. In all 

the determined specifications, the lagged level of HSI does not enter any of the 

exchange rate equations, indicating that variations in the Hong Kong stock market 

index provide little leading information for the Euro. Also no lagged HKFX 

components enter the equation of the HSI and EUFX, indicating local forex 

contains little leading information for either the stock market or the Euro. These 

results are consistent with economic intuition.
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However, it is feasible that the Euro could lead the Hong Kong market. Recall 

that Hong Kong is an open market and capital flows to and from Europe 

constitute a component of trading in the Hong Kong stock market. Over the 

sample period, the Hong Kong stock market rose almost 90 percent while the 

Euro depreciated. It is reasonable to suspect that these conditions have 

contributed to a flow of capital between the European and Hong Kong markets.

The situation is undoubtfully far more complex than the above. For instance it 

may be that the overnight Euro market provides a signal, or reflects, global 

influences that in turn manifest themselves in the next day’s performance of the 

Hong Kong market. A more complete analysis would include other economic and 

financial variables such as net capital flows, interest rates and money supply, 

which could all play a significant role in these markets. Indeed, the model could 

be extended to incorporate the recent work of Bekaert et al (1999) who propose a 

larger system.

5.6 Summary

This chapter examines two issues in the context of ZNZ patterned VAR 

modelling. The first issue concerns the causal relationships between movements 

of the Euro’s exchange rate and the money supply, while the second examines the 

relationship between the Hong Kong stock market and foreign exchange markets.
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First, the results show that money supply shocks contribute to movements of the 

Euro exchange rate, but no causal relationship is detected from the Euro to money 

supply. These findings are consistent with the standard theory which proposes 

that an expansion /contraction in monetary policy is associated with a 

decrease/increase in domestic interest rates for a given expected inflation rate, 

thus leading to a depreciation/appreciation of the domestic currency.

Second, the findings indicate that movements in the Euro are related to 

movements in the Hong Kong market, particularly the Hong Kong Dollar. A 

shock to the Euro foreign exchange market impacts on the movements of both 

local Hong Kong stock and forex markets. However a shock to either the local 

stock market or the local forex yields no response from other components of the 

system. These findings confirm that Hong Kong is susceptible to external shocks.
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CHAPTER 6

PURCHASING POWER PARITY TESTS IN FOREIGN EXCHANGE

MARKETS

6.1 Introduction

The PPP hypothesis implies that, in the long run, changes in the exchange rate 

between the currencies of two countries reflect changes in the ratio of those 

countries’ price levels. While empirical testing of the PPP hypothesis has 

received significant attention, the introduction of unit root tests and cointegration 

theory has renewed interest in this topic. As described in Chapter 2, a wide range 

of theoretical and empirical models have been built around PPP. However 

empirical tests have provided inconclusive evidence of its validity.

A major criticism of the classical tests for non-stationarity, such as the augmented 

Dickey-Fuller test [see Dickey and Fuller (1979)], the Phillips Z test [see Phillips 

(1987)] and the Phillips-Perron test [see Phillips and Perron (1988)], is that they 

lack power to distinguish between unit root processes and near-unit root 

stationary processes [see Enders (1995) and Harris (1995)]. Therefore, they have a 

tendency to accept the null hypothesis of non-stationarity [see Hakkio (1986) and 

DeJong et al (1989)]. This feature has prompted the use of tests which employ the 

null hypothesis of stationarity [see Fisher and Park (1991) and Kwiatkowski et al 

(1992)].
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International experience has demonstrated that the tests for PPP are sensitive to 

the null hypothesis employed. For instance, PPP can be rejected under a null 

hypothesis embodying the presence of a unit root, but accepted in a test with a 

null hypothesis of stationarity. This chapter demonstrates the sensitivity of PPP 

testing to the nature of the unit root tests. Three unit root tests are applied to 

fourteen real bilateral exchange rates. The first two, the augmented Dickey- 

Fuller test and the Phillips-Perron test, are procedures using the null hypothesis of 

a unit root. The third, the Kwiatkowski et al test, is a procedure which employs 

the null hypothesis of stationarity. In future analysis the necessary condition and 

the necessary and sufficient condition for PPP are sequentially tested for fourteen 

bilateral exchange rates. This test is undertaken in the framework of subset vector 

error-correction modelling (VECM) with zero coefficients. Since VECM 

modelling can accommodate both long-term and dynamic responses, this 

approach is different from scalar unit root based methods. Of the fourteen 

exchange rates tested, support for the necessary condition for PPP is found in half 

of them. The necessary and sufficient condition for PPP is then tested using both 

a bootstrap procedure and an F test. This condition is consistently accepted for 

three of the seven exchange rates.

The remainder of this chapter is organised as follows. Section 6.2 describes the 

data. Section 6.3 examines bilateral exchange rates using unit root tests. Section 

6.4 investigates PPP by using subset VECMs with zero coefficients. Section 6.5 

tests for the necessary and sufficient condition for PPP. Section 6.6 examines the 

PPP conditions in the Australian foreign exchange market using an 1(2) analysis

124



in a three-variable ZNZ patterned VECM framework. Section 6.7 presents a brief 

summary to conclude the chapter.

6.2 Data Description

Data are obtained from the International Monetary Fund through the Statistical 

Analysis and Retrieval Service (STARS), maintained by the Australian-Japan 

Research Centre at the Australian National University. The sample covers 

quarterly data from 1975(1) to 1994(4). The exchange rate series is the quarterly 

average of the domestic currency per unit of the US Dollar. In the cases of Japan, 

Germany, Australia, Spain, Korea, Indonesia, Singapore, the Philippines and 

Thailand, the wholesale price index (WPI) was used to approximate domestic and 

foreign price levels. In the cases of France, the United Kingdom, Italy, Hong 

Kong and Malaysia, the consumer price index (CPI) was used (as a result of data 

availability). The US WPI was used to approximate the foreign price level.

Theoretically, the WPI is preferred in the test for PPP as the proportion of non- 

traded goods is lower in the WPI than that in the CPI. In essence, if WPI is used, 

the relationship being tested is closer to the 'law of one price' for traded goods. 

However, with many non-traded goods and services included in the CPI, the test 

results using CPI would be dependent on whether the relative price of traded to 

non-traded goods has changed more in one country than in the other over the 

sample period. Kim (1990) has examined the use of CPI and WPI in the test for 

PPP for a number of industrial countries including Canada, France, Italy, Japan
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and the United States. His results indicate that, in some cases, the hypothesis of 

PPP is found to be acceptable using the WPI, but not using the CPI.

Table 6.1 shows the exchange rate regimes for these countries. There have been 

some changes to the regimes of the Asian exchange rate (excluding Japan) over 

the sample period. These changes are also presented in Table 6.1. The Australian 

Dollar switched from a fixed exchange rate regime to a flexible one in December 

1983.
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Table 6.1

Fixed and flexible exchange rate regimes, and the Exchange Rate Mechanism

Country Period Exchange rate regime

South Korea 1980 to 1994 Flexible

prior to 1980 Fixed

Thailand prior to 1984 Fixed

1984 to1995 Fixed

Singapore 1987 to 1994 Flexible

prior to 1987 Fixed

Hong Kong 1983 to 1994 Fixed

Malaysia 1978 to 1994 Fixed

Indonesia 1978 to 1994 Flexible

prior to 1978 Fixed

Philippines 1975 to 1994 Flexible

United States 1975 to 1994 Flexible

France 1979 to 1994 Exchange Rate Mechanism

Germany 1979 to 1994 Exchange Rate Mechanism

Japan 1975 to 1994 Flexible

Spain 1979 to 1994 Exchange Rate Mechanism

United Kingdom 1992 to 1994 Flexible

1990 to 1992 Exchange Rate Mechanism

prior to 1990 Flexible

Italy 1979 to 1994 Exchange Rate Mechanism

Australia 1983 to 1994 Flexible

prior to 1983 Fixed

Source: International Monetary Fund
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6.3 Purchasing Power Parity and Unit Root Tests

As described in Section 2.4, there is an extensive literature that traverses the 

methods of unit root tests and cointegration tests for PPP. A general outcome of 

these studies is that long-term PPP appears not to hold, when tests based on short- 

or medium-length time-series are used [see Roll (1979), Mishkin (1984), and 

Piggot and Sweeney (1985)], but appears to hold in longer time samples [see 

Abuaf and Jorion (1990), Froot and Rogoff (1994), and Lothian and Taylor 

(1996)]. This is because statistical tests become less powerful in small samples. 

Another consensus result is that higher-frequency data (for example monthly 

data) may not yield evidence of PPP in the long-term [see McNown and Wallace 

(1989), Taylor (1985), and Corbae and Ouliaris (1988)]. However when 

researchers [see Edison (1987) and Kim (1990)] shift to low-frequency data and 

use cointegration techniques to test the PPP, the evidence usually supports the 

long-term convergence of real exchange rates toward PPP.

More recently, VECM models have given an opportunity to develop a more 

complex process in financial markets. These models can accommodate both long

term and dynamic responses. Balancing these arguments can be achieved through 

the use of a larger time-series. Given the availability of data, we use quarterly 

data in the following tests.

To demonstrate the sensitivity of PPP to the test procedure used three unit root 

tests are employed. The first two, the augmented Dickey-Fuller test [Dickey and 

Fuller (1979)] and the Phillips-Perron test [Phillips and Perron (1988)], are
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procedures using the null hypothesis of a unit root. The third, the Kwiatkowski et 

al (1992) test, is a procedure which employs the null hypothesis of stationarity. 

Each test was applied to the generated real bilateral exchange rates between the 

United States and fourteen other major OECD and Asian economies. The test 

results are presented in Table 6.2.

Of the fourteen real exchange rates, the PPP hypothesis is consistently rejected by 

all three unit root tests for the Japanese Yen, the Spanish Peseta and the Thai 

Baht. The PPP hypothesis is consistently accepted by all three unit root tests for 

the Philippine Peso. For the remaining ten exchange rates, the PPP hypothesis is 

consistently rejected by both the Dickey-Fuller test and the Phillips-Perron test 

with the null hypothesis of a unit root, but consistently accepted by the 

Kwiatkowski et al test under the null hypothesis of stationarity.

PPP is consistently accepted or rejected for only four exchange rates by all three 

tests, and is inconsistent across the other ten exchange rates. This inconsistency is 

a major problem in interpreting and making conclusions. As these tests only 

examine stationarity or non-stationarity in the residuals, these tests impose 

restrictions before testing the necessary condition for PPP. In the remainder of 

the chapter, a new test procedure is introduced for PPP. The procedure is tested in 

the framework of subset VECM with zero coefficients. Since this approach can 

accommodate both long-term and dynamic responses, it is different from those 

based on unit root tests.
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Table 6.2

Test results for purchasing power parity of bilateral exchange rates from 

1975(1) to 1994(4) using unit root tests

Country Dickey-Fuller
test

Phillips- 
Perron test

Kwiatkowski et al 
test

OECD exchange rates

Japan -1.28* -1.98* 0.741*

Germany -1.82 -1.80 0.313

France -2.13 -1.68 0.188

The -2.22 -2.15 0.165

United

Kingdom

Italy -2.16 -2.08 0.362

Spain -1.65* -1.88* 0.812*

Australia -1.61 -1.96 0.119

Asian exchange rates

Singapore -1.33 -1.85 0.134

Hong -0.62 -0.98 0.330

Kong

Korea -2.16 -2.14 0.273

Indonesia -2.46 -2.55 0.134

Thailand -1.92* -1.44* 0.508*

Malaysia -0.93 -1.47 0.128

Philippines -4.03** -3.58** 0.099**

The results of both the augmented Dickey-Fuller test and the Phillips-Perron test are based 

on four lag terms, while the results of the Kwiatkowski et al (1992) test are based on the 

inclusion of six lag truncation parameters. Lag choice appears to have little impact on the 

reported results. The symbol * denotes that all three unit root tests consistently reject the 

PPP hypothesis tested at the 5 percent level of significance, and ** denotes that all three 

unit root tests consistently accept the PPP hypothesis tested at the 5 percent level.
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6.4 Test for PPP Using Subset VECMs with Zero Coefficients

In this section the Penm et al (1997) approach is applied to the individual VECMs 

formed by nominal exchange rates and the price ratios. The approach provides an 

effective search algorithm, in conjunction with a model selection criterion, to 

determine the optimal subset specification with zero coefficients for a VECM. To 

implement this procedure, AIC20 is used for model selection.

Consider a generalised VECM expressed as follows.

Ap(l)yt-, +Ap“'(L)Ay, =£,, (6.1)

where yt contain 1(1) variables, A denotes first difference and

Ap-1(L) = I + X a ;lt , L is the lag operator and the roots of |a p(L) = o| lie outside
T=1

or on the unit circle.

If yt is cointegrated, then the long-term impact matrix, Ap(l), must be singular. 

As a result, Ap (1) = aß , where the columns of ßare the cointegrating vectors and 

the rows of a  are the loading vectors. Ap-1(L)Ayt is called the VAR part of the 

VECM.

20 The general approach of this thesis is to carefully examine different characteristics of 

criteria, and normally HQC or SC is chosen. However in comparing work conducted in 

this area [Cheung and Lai (1993), Cheng (1999)1, the AIC criterion has been commonly 

used in testing the PPP hypothesis. Therefore for comparison purposes, the AIC is used 

in this case.

131



The strength of the Penm et al procedure is that it allows a subset structure with 

zero coefficients to be incorporated in error-correction modelling. If the long

term impact matrix, Ap(l), contains zero coefficients, then the cointegrating and 

loading vectors may also contain zero coefficients. This inclusion enhances the 

modelling power of ZNZ patterned VECMs, especially for finite samples.

The Penm et al procedure is applied to the VECMs formed by individual bilateral 

nominal exchange rates and the relevant price ratios. The necessary condition for 

each case is examined through the determined ZNZ pattern for the long-term 

impact matrix, Ap(l). If the determined Ap(l) is a singular matrix, then the 

nominal exchange rate and the price ratio are cointegrated. Consequently the 

necessary condition for PPP is accepted.

Compared to OECD countries, most Asian economies have been subject to major 

structural changes due to trade restrictions, resource controls and government 

intervention, or even government instability. Therefore these changes cause 

increased political risks21 [see Mahoney et al (2001)]. Given this level of change,

21 Political risks arise from changes in the political environment that may adversely affect 

the value of a firm’s business activities. Political risk is an important component in the 

capital budgeting process for foreign direct investment. It can affect asset prices, and thus 

the movements of exchange rates. Bekaert and Harvey (1998) examine the impact of 

capital market liberalisations on various emerging markets. They find a reduction in the 

cost of capital after market liberalisation. Cherian and Perotti (2001) investigate asset 

prices in a context of uncertainty about future government policy. They reveal that, as 

current policy is maintained, perceived risk falls. This will lead to a gradual appreciation 

of asset prices and a gradual decrease in their conditional variance.
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this thesis has an a priori reason to believe that there may be larger deviations 

from their long-term PPP level.

Previous work [see Cheung and Lai (1993)] suggests that the lack of support for 

the necessary condition for PPP could be driven by the existence of non-traded 

goods and services, and by measurement problems of consumer price series. As 

pointed out by Cheung and Lai, the price-level measurement problems associated 

with index construction and aggregation can result in the rejection of PPP. Other 

measurement problems such as international differences and variations in product 

qualities and consumption patterns, and between transaction and listed prices, can 

also weaken the relationship between the ratios of price levels and exchange 

rates.

Of the seven OECD exchange rates tested, the necessary condition for PPP is 

accepted for the German Mark, the French Franc, the Italian Lira and the 

Australian Dollar. This condition, however, is rejected for the Japanese Yen, the 

UK Pound and the Spanish Peseta. The determined VECMs for those OECD 

exchange rates which satisfy the necessary condition are presented in Table 6.3.
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Table 6.3

Estimated VECMs which support the necessary condition for PPP of OECD exchange

rates

Country Model

Germany
' 0.293 0 0 0

d In E t (2.75) d l n E t_!
+

l n E t_i

_dln(PG/Pus)t_ 0 0.305 _d in(Pc^Pus ) t - l
0.022 - 0.060 _ln(PG/Pus )t-i

- (2.96)_ (3.37) (3.92)

France
'0.325 0 0 0

d InE, (3.07) d l n E t_!
+

l n E t_,

_d ln(Pp/Pus ) t  _ 0 0.184 _dln(PF/Pus) t_j_ 0.073 - 0.026 _ln(P F/Pus ) t - i  _

-
(1.94) J .(5.49) (5.04) _

Italy
' 0.364 0 0 0.785"

d l n E t (3.45) d l n E t_j
_1_

(1.63) d l n E t_2

_dln(PI/ P us) t 0 0.290 [ d l n ^ / P ^ ) ^
T

0.047 0 d ln(P I/ P us) t-2
(2.95)_ (2.45)

0.224 0
(2.06)

0 0.188 
( 2 .01)

d lnE t_3
+

d lnE t_4
_d ln(Pi/ Pus )t_3 0 0.242 _dln(P1/P us)t_4_

(2.24)_

0.103
(2.55)

0

- 0.101
(2.18)

0
l n E t-i

ln(P i / Pus) t_!

Australia

d In Et
d ln(P A/Pus )t 0.029 - 0.079 

(2.86) (3.69)

In Et_i
ln(PA/Pus)us 't-1

t-statistics in brackets, d denotes first difference. Et denotes the units of domestic

currency per unit of the US Dollar, Pus the US price level and Pj the price level for 

country i, i = Germany, France, Italy and Australia. The estimation was undertaken using 

the GLS method.
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Of the seven Asian exchange rates, this condition is found accepted for the 

Indonesian Rupiah, the Singapore Dollar and the Philippine Peso. The determined 

subset VECMs, which allow for possible zero coefficients are presented in Table 

6.4. The procedure developed by Penm and Terrell (1984a) is applied to the 

vector autoregressive process formed by the residuals of each estimation. The 

results indicate that autocorrelation in the residuals is not a problem.
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Table 6.4

Estimated VECMs which support the necessary condition for PPP of Asian

exchange rates

Country Model

Indonesia

d In E t
'0.472 0
(4.89) d In E t_j i

ioo
lnE t_,

d ln(P,/Pus )t _ 0 0.761
(11.45)

_dln(P,/Pus)t_1_ 0.009 -0.023 
(2.54) (2.49)

_ln(P i/Pus )t-i

Singapore

i
0 1 p O

N

i—o01 _

d lnE t (1.69) d ln E t_j
i

dln(Ps/Pus)t_ 0 0.384 d ln(Ps/Pus )t_j
“T

0 -0.304
(3.44) _ (2.75) J

d ln E t_2 
d ln(Ps/Pus )t_2

+

"0 -0.220” 
(2.40) d In E t_4

“0.047
(2.35)

-0.051“
(2.11)

0 0 _d ln(Ps/Pus )t-4. 0 0
lnE t_i

ln(Ps/Pus )t-i

Philippines

d In E t
“0.420 0
(4.00) d In E t_j

+

“0.232 0“ 
(2.18) d In E t_3

d ln(Pp/Pus )t 0.237 0.247
(2.32) (2.56)

_d ln(Pp/Pus)t-i _ 0.218 0 
(2.63)

_d ln(PP/Pus )t-3_

0 0

0.171
(2.72)

-0.158
(2.75)

In Et_i
ln(PP/Pus )t-i

t-statistics in brackets, d denotes first difference. Et denotes the units of domestic

currency per unit of the US Dollar, Pus the US price level and Pj the price level for 

country i, i = Indonesia, Singapore and The Philippines. The estimation was undertaken

using the GLS method.
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The VECMs presented in Tables 6.3 and 6.4 exhibit some interesting features on 

the interrelationship between the nominal exchange rate and the price ratio. First, 

in each case, the ZNZ pattern determined for the long-term impact matrix, Aq(l), 

can be used to obtain the ZNZ patterns for a  and ß . For example, in the case of

the Italian Lira, the ZNZ pattern of Aq(l) is
ro.103 -0.1011 

0 0
. From this pattern,

both a  =
0.103

0
and ß' = [l -0.98] are obtained. The determined ZNZ patterns

of a  and ß indicate that, in this case, the nominal exchange rate and the price 

ratio are cointegrated, and the VAR part of the VECM is useful in explaining the 

short-term variations in the nominal exchange rate. Similar conclusions can be 

drawn for the Singapore Dollar. In other cases presented in Tables 6.3 and 6.4, 

the determined VECMs are found useful in explaining the short-term variations in 

the ratio of domestic to foreign prices. Specifically, these cases are the German 

Mark, the French Franc, the Australian Dollar, the Indonesian Rupiah and the 

Philippine Peso.

Second, a simple lag structure is determined for the VAR part of the VECM for 

the German Mark, the French Franc, the Australian Dollar and the Indonesian 

Rupiah. This indicates that, for these exchange rates, the determined VECMs 

provide little information about the short-term variations between the nominal 

exchange rate and relative prices. However, it is a different case for the remaining 

exchange rates, namely the Italian Lira, the Singapore Dollar and the Philippine 

Peso. The VECMs determined for these exchange rates present a more complex 

structure for the short-term interaction between the nominal exchange rate and the 

ratio of domestic to foreign prices.
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The above outcomes provide sound evidence in favour of long-term PPP, in 

contrast to previous studies [see Hakkio (1984)].

6.5 Test for the Necessary and Sufficient Condition

To test for the necessary and sufficient condition, that is ß' = (l,-l), two 

approaches are utilised. One is an F test and the other is a bootstrap procedure 

[see Hall (1992)]. These procedures are both undertaken in the framework of 

VECMs. Because the VECMs presented in Tables 6.3 and 6.4 are stationary, 

standard asymptotic results for hypothesis testing apply. Under the null 

hypothesis, H0:ß' = (1,-1), the corresponding coefficients of the long-term impact

matrix, Aq(l), must have the same value but opposite signs. For example, in the

case of the Italian Lira, if ß '= (1,-1), then Aq(l) y
o

- y
o . Therefore, the

necessary and sufficient condition for PPP can be examined through hypothesis 

testing of the associated coefficient estimates of the long-term impact matrix.

The F test is undertaken under the null hypothesis that the coefficient estimates of 

the long-term impact matrix have the same value but opposite signs. The test 

results are presented in Table 6.5. Of the seven exchange rates for which the 

necessary condition is found acceptable, the necessary and sufficient condition 

cannot be rejected for the Italian Lira, the Singapore Dollar and the Philippine 

Peso.
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Table 6.5

Test of the necessary and sufficient condition for PPP

Country Bootstrap Probability F-test

Germany 11% 9.84*

France 12% 24.77*

Italy 82% 0.02

Australia 15% 14.41*

Indonesia 29% 5.45*

Singapore 85% 0.06

Philippines 90% 3.45

The bootstrap results are based on 1000 replications. The critical value for the F test at 

the 5 percent level is 3.84. The symbol * denotes that the necessary and sufficient 

condition for PPP is rejected at the 5 percent level.

In an attempt to establish some consistency for these test results, a bootstrap 

procedure is also utilised to examine the necessary and sufficient condition for 

PPP. In this procedure, confidence intervals for the coefficient estimates of the 

VECM are first developed using the bootstrap method. The procedure can then 

calculate the probability of the associated coefficient estimates of the long-term 

impact matrix having the same value but opposite signs as implied by the PPP 

hypothesis. The bootstrap results are consistent with those of the F test. Of the 

seven exchange rates examined, the Italian Lira, the Singapore Dollar and the 

Philippine Peso again exhibit the highest probability of accepting the necessary 

and sufficient condition for PPP.
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One further finding is potentially noteworthy. The VECMs for the three exchange 

rates that accept the necessary and sufficient condition are found to exhibit a 

more complex lag structure than those for which this condition is rejected. Since 

the test for the necessary and sufficient condition depends upon hypothesis testing 

of the coefficient estimates of the long-term impact matrix, these results suggests 

that the test for the necessary and sufficient condition could be influenced by the 

short-term lag structure in the system.

6.6. An 1(2) Analysis of PPP

p
In Section 6.4 the ratio log(—E) is treated as one variable, which does not

necessarily have the same integration order as log(Pt) and log(Pt*) [see Corbae 

and Ouliaris (1990) and Oh (1996)]. If the three variables are specified as logEt , 

logPt and logP*, the order of integration of each variable may not be same, that is 

logEt is 1(1), but both logPt and log P* are often found to be 1(2). Therefore this 

could suggest a need for an 1(2) model, rather than an 1(1) model.

In cointegration theory Granger and Lee (1989) have suggested multi

cointegration to improve short- and long-term forecasts. Engle and Yoo (1991) 

have proposed an 1(2) cointegration system which coincides with Granger’s multi

cointegration. Diamandis et al (2000) have conducted an 1(2) analysis to examine 

the long-term properties of the monetary exchange rate model, under the 

hypothesis that the system contains 1(2) variables.
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An 1(2) algorithm for selecting cointegrating and loading vectors in a ZNZ 

patterned VECM for PPP testing is developed in this section. Section 6.6.1 proposes 

procedures for identifying the optimal specification for a ZNZ patterned VECM for 

an 1(2) system. After the optimal ZNZ VECM is identified, the rank of the long-term 

impact matrix is then computed using the singular value decomposition method, 

such that the number of cointegrating vectors in the system is known. Section 6.6.2 

introduces a tree-pruning algorithm for the search of all acceptable ZNZ patterns of 

the cointegrating and loading vectors. The estimation of the associated candidates 

for the ZNZ patterned loading vectors in the VECM framework is then carried out 

by the regression method with linear restrictions as proposed in Penm et al (1997). 

Section 6.6.3 examines the PPP conditions for the Australian foreign exchange 

markets in a three-variable ZNZ VECM for an 1(2) system. Section 6.6.4 deals 

with a three-variable system concerning the stock market.

6.6.1 VECM Modelling for an 1(2) System

As described in Section 4.3, y(t) is integrated of order d, 1(d), if it contains at least 

one element which must be differenced d times before it becomes 1(0). This thesis 

also calls y(t) cointegrated with the cointegrating vector, ß , of order g, if ß'y(t) is 

integrated of order (d-g), where y(t) has to contain at least two 1(d) variables.22

22 In this section only the case d=2 is considered, although the procedure can be generally 

applied to models with d>2.
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The following decompositions are always valid mathematically:

AP(L) = Ap (1)L + (I -  L)AP_1 (L)

= Ap (1)L + Ap_1 (1)L -  Ap_1 (1)L2 + (I -  L)2 Ap_2(L)

Under the assumption of an 1(2) system we use the decomposition:

AP(L) = Ap (1)L + Ap_1 (l)L(l -  L) + Ap~2 (L)(I -  L)2.

Following Engle and Yoo (1991), the equivalent VECM for an 1(2) system can be 

expressed as:

[a p(1) , Ap-‘( l ) [ y(t p 
1_Ay(t -1)

+ Ap-2(L)A2y(t) = £(t), (6 .2)

where y(t) contains variables of three types, namely 1(0), 1(1) and 1(2) and

A = (I -  L ) . (6.2) can be rewritten as:

y ( t - i )
A y(t-l)

+ Ap-2(L)A2y(t) = e(t), (6.3)

where A* = [a p(1) , Ap_1(l)], A* y ( t- i )
A y(t-l)

is stationary and the error correction

term. The term Ap 2(L)A2y(t) is the vector autoregressive part of the VECM.
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Further, it is necessary to consider a hypothesis where every (i,j)-th element, for 

specified i and j, is zero in all coefficient matrices in a VAR. If this hypothesis is 

framed in the VAR, it can be described as:

^ A ky ( t-k )  = Ap(L)y(t) = e(t), (6.3.a)
k=0

which is equation (3.1) in Chapter 3. These zero entries will also hold in the error- 

correction terms and in the vector autoregressive part of the equivalent VECM for an 

1(2) system, say (6.2).

Analogously this thesis can achieve a result that if all (i,j)-th coefficient elements in 

the error-correction terms and all (i,j)-th coefficient elements in the vector 

autoregressive part of this VECM are zeros, then every (i,j)-th entry is zero for all 

coefficient matrices in a VAR.

The implications of the above outcome are straightforward. If yj does not Granger- 

cause yi, then any (i,j)-th entry must be zero for all coefficient matrices in the VAR. 

Also all (i,j)-th coefficient elements in the equivalent VECM for an 1(2) system are 

zeros.

In a similar way, it can be demonstrated that if yj does Granger-cause y i, then the 

(i,j)-th element of AP(L) in (6.3.a) is nonzero. Also, at least a single (i,j)-the 

coefficient element is nonzero in Ap(l), Ap~'(l) or AP-2(L) in the equivalent 

VECM. Of note, an indirect causality from ŷ  to through ym indicates y = 

causing y. but only through ym. Hence, yj Granger-causes ym, ym Granger-
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causes , and y . does not Granger-cause y i directly. It can be easily demonstrated 

that the VAR in (3.1) has nonzero (m,j)-th and (i,m)-th elements and a zero (i,j)-th 

element in AP(L). This indirect causality can also be shown in the equivalent 

VECM, which has at least a single nonzero (m,j)-th element and a single nonzero 

(i,m)-th elements in Ap(l), Ap_1(l) andAp-2(L). Also all the (i,j)-the elements in 

the equivalent VECM are zeros.

Thus Granger causality, Granger non-causality and indirect causality can be detected 

from both the ZNZ patterned VECM and its equivalent ZNZ patterned VAR are 

identical. Hence the ZNZ patterned VECM is a more straightforward and effective 

means of testing for the Granger causal relations. The same benefits will be present 

if the ZNZ patterned VECM is used to analyse cointegrating relations.

6.6.2 Search Algorithm for an 1(2) System

In the proposed algorithm for an 1(2) system, the identification of ZNZ patterned A* 

and the determination of ZNZ patterned a  and ß are carried out in the following 

way. First, model selection criteria are used to select the optimal subset VECM with 

zero entries to determine the ZNZ patterned A*. Penm and Terrell (1984a) have 

proposed a search method in conjunction with model selection criteria to select the 

optimal subset VAR with zero entries. This method is now extended to select the 

optimal subset VECM with zero entries for an 1(2) system.
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Second, after the ZNZ patterned A* is determined, the rank of the matrix A* is then 

computed using the singular value decomposition (SVD) method, and the number of 

cointegrating vectors in the system will be known.

Third, given the ZNZ patterned A* has been determined and the rank of A has 

been computed, the algorithm then proceeds with the tree-pruning algorithm 

straightforwardly adapted for an 1(2) system to obtain all acceptable ZNZ patterned 

as and ßs which are consistent with the ZNZ patterned A*. Let a p and ßp denote

a ZNZ pattern of a  and ß respectively and Ap the ZNZ pattern of A*. If the (i,j)-th 

entry of the product, a pßp is zero, and the corresponding (i,j)-th entry of Ap is also 

zero, then both a p and ßp are acceptable. This tree-pruning algorithm, which avoids 

the need to evaluate all possible ZNZ patterned as and ß s , is discussed in 

Appendix B.

The ZNZ patterns of acceptable a  and ß depend on the pattern of A* determined 

earlier by model selection criteria. Of note, the imposition of zero entries on ß does

not preclude a similar restriction on a . One example is that if the determined A* 

contains a zero row, such as:

A * 0 0 0 0 "  

1 1 0  1 ’

where 1 denotes a non-zero entry.
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In this case zero restrictions will have to be imposed on the first row of a . This is 

because the pattern of A* implies that the cointegrating relations in the system have 

no influence on the first variable in the system. Noting that the number of zeros in a  

and ß are not fixed even with a given ZNZ patterned A*, many differently 

patterned a  and ß can be obtained using the tree-pruning algorithm.

To obtain the correct specification for a  and ß , the algorithm next checks to see 

whether a  and ß can be uniquely obtained by factorising A*. If this is possible, the 

factorisation can be carried out. If it is not possible, the efficient estimation of 1(2) 

cointegrated systems based on a triangular ECM representation [see Stock and 

Watson (1993)] is employed to estimate ß . Since any non-zero entry in ß could be 

normalised as unity, the estimation procedure is repeated with all possible 

normalisations. Again different normalisations in practice may result in different 

forecasting performances for the model. The normalisation, which produces the 

smallest value for model selection, is then selected as the candidate ß . After the 

optimal normalisation is determined for every candidate ß , the associated acceptable 

ZNZ patterned as are then estimated in the VECM framework and model selection 

criteria are employed again to determine the optimal a  and ß .

There are two reasons for employing model selection criteria again to determine the 

optimal a  and ß . In the example given above, model selection criteria will help to 

select between (6.4), (6.5) and (6.6), since the approach of zero-maximisation cannot 

be used to determine ß. In addition, Engle and Granger (1987) have demonstrated 

that efficiency gains could be obtained in such estimation.
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6.6.3 PPP Testing between the Australian and US Dollar Using an 1(2) 

Analysis

In this section, an application to PPP testing using an 1(2) analysis is presented. 

Another application, which examines the relationships among the stock market, 

money supply and inflation, is illustrated in Section 6.6.4.

The quarterly seasonally-adjusted consumer price indices for Australia (CPIaus) 

and the United States (CPIus), and the exchange rates (EXCH) per US Dollar 

from March 1972 through December 1998 are used. The data are obtained from 

DataStream™.23 The y vector comprises log(CPIAlJs), log(CPIus), as well as 

log(EXCH), measured as the value of the Australian Dollar relative to the US 

Dollar. The Dickey and Pantula (1987) tests indicate that both log(CPIAus) and 

log(CPIus) are 1(2) while log(EXCH) is 1(1). Hence the issue of an 1(2) series 

arises. The results identified by SC are presented in Table 6.6. In addition, to check 

the adequacy of the model fit, the strategy suggested in Tiao and Tsay (1989) and 

Penm et al (1997) is used, with the proposed Penm and Terrell (1984a) algorithm 

applied to test the residual vector series, using the SC criterion. The results in 

Table 6.6 support the residual vector being a white noise process.

The selected pattem of the cointegrating vector demonstrates some interesting 

findings. The first selected cointegrating vector indicates that Alog(EXCH) is 

stationary. The second selected cointegrating vector confirms that both

“3 The calculation of the CPI in the USA changed after 1 January 1999, hence the fourth 

quarter of 1998 is chosen as the end period.
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log(CPIAus) and log(CPIus) are cointegrated with log(EXCH). The same sign 

occurring in log(EXCH) and log(CPIAus), as shown in Table 6.6, indicates that, 

ceteris paribus, an increase in CPIAus leads to a depreciation in the Australian 

Dollar, and the opposite sign occurring in log(EXCH) and log(CPIus) indicates 

that, ceteris paribus, an increase in CPIus leads to a depreciation in the US Dollar. 

The presence of the long-term cointegrating relationships is consistent with PPP 

holding within the 1(2) system and across the Australian and US exchange market.

In looking for causal relations among the nominal exchange rate, and the 

domestic and foreign price levels, the VECM selected indicates feedback relations 

exist between the pair of CPIus and CPIAys24 and the pair of CPIAus and EXCH, 

and one-way causation from CPIus to EXCH. Although there is no direct Granger 

causation from EXCH to CPIus, there is however indirect causation from EXCH 

to CPIus via CPIAus- Hence, shocks to any one of the variables will be transmitted 

through the system. This in turn offers some insights into the dynamics which 

have been observed among these variables, despite PPP holding in the long-run 

[see Abuaf and Jorion (1990)].

24 The causation detected from CPIAus to CPIUS is an unexpected result. However this 
result may be driven by other underlying and fundamental relationships.
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Table 6.6

The VECMa for the relationship linking exchange rates and consumer price 

indices between Australia and the USA

Variables: y| = log(CPIAus), y? = log(CPI us), y? = log(EXCH AUS,us) 
Sample Period: 1972.1 to 1998.IV_________________________________

d  =
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0.105 0.0

0.0 0.0 0.0 0.0 0.0 1. 0 '

-0.278 0.607 1.0 0.0 0.0 0.0

+

Residual analysis“ Existing
lags

0 1 2  3 1,2 1,3 2,3 1,2,3

Value of SC 1.0 1.008 1.012 1.010 1.009 1.014 1.020 1.015

Long-term Cointegrating Relationship Identified:
1) A stationary Alog(EXCH)
2) log(EXCH) = 0.2781og(CPIAUS) - 0.6071og(CPIus)
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Granger Causal PatternL Recognised: CPIauss  \
CPIUS -------►EXCH

a) Model selected by SC Using the GLS Procedure. Standard errors in parentheses. A 

denotes first difference.

b) For simplicity, the values of SC for q>3 are not presented, but can be supplied to 

readers upon request.

c) x Granger-causes y: (Notation : x ------- ►y);
Feedback exists between x and y: (Notation : x ^  ^  y).

6.6.4 A Three-Variable Stock Market System

This section examines the relationships among the stock market, money supply 

and inflation. Prior research has shown that these three variables are linked. First, 

despite the Fisher effect, inflation has generally been shown to exhibit a negative 

relationship with the stock market [see Fama and Schwert (1977) and DeFina 

(1991)]. The reasons that have been advanced to explain the relationship include 

inflationary expectations, fixed price nominal contracts and the tax shield effects 

associated with depreciable fixed assets. However as Stulz (1986) argues this 

relationship is dependent also on money growth.

Second, announcements of the money supply have been shown to convey a valuable 

information signal to the stock market. While there is some conjecture as to the sign 

of the relationship, it is generally accepted that a negative relationship exists between 

the money supply and stock returns. The general theory advanced is that the linkage 

between the money supply and interest rates affects economic activity and corporate
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profits. However, there are questions over whether the real rate of interest is affected. 

Two main hypotheses26 have emerged. First, changes in the money supply may alter 

expectations about monetary policy. An increase in the money supply may 

foreshadow a future tightening of monetary policy from the Central Bank resulting in 

expectations of higher interest rates, which in turn act to depress stock prices through 

both a rise in the real rate and a reduction in economic activity. Second, an increase 

in the money supply may raise expectations of higher inflation which in turn leads to 

higher interest rates through the inflation premium in nominal interest rates. As 

discussed above, higher expected inflation decreases stock prices. Both of these 

hypotheses suggest a negative sign on the relationship between money supply and the 

stock market which is generally supported by the evidence. Hardouvelis (1988) 

shows that increases in the money supply induce rises in interest rates. Moreover, 

Pearce and Roley (1985) and Jain (1988) find evidence of a significant negative 

relationship between unexpected money supply signals and stock market movements.

Finally, the third interaction in the system is the linkage between inflation and the 

money supply. This relationship is well-known and rooted in monetary theory [eg. 

Mishkin (1992)]. Despite arguments over the influence of lags and the money 

multiplier, the economic relationship is well established. Of note, the purpose here is 

not to test in detail hypotheses surrounding these variables, but rather to illustrate 

how relationships in the financial markets can be tested.

25 DeFina (1991) provides a good overview of the various arguments.

26Another hypothesis, suggesting that higher money supply leads to increased general 

price levels, could be proposed. This will cause spillovers into company profitability, 

thereby increasing the stock prices. However in the current application this hypothesis is 

not supported by the empirical findings.
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The following data are used in the test. The focus is the Australian market, both 

because of the ease of data availability and the lack of previous research in this 

area in the Australian market.27 The All Ordinaries Index (AOI) is used as the 

stock market indicator. The AOI is a broad market indicator with coverage of 

around 320 stocks representing about 90-95% of total market capitalisation. The 

index is value-weighted and calculated on the basis of market capitalisation of the 

constituent stocks traded on the Australian Stock Exchange. Money supply is 

measured by the standard stock of money (M3).28 Inflation is measured as the 

seasonally adjusted consumer price indices for Australia (CPIaus)- The CPI 

measures the aggregate price behaviour of all consumer goods and services and is 

commonly used by government and industry in Australia to adjust for cost-of- 

living allowances in wage and benefit contracts. Data are collected from 

DataStream™ over the period June 1981 through December 1999. While money 

supply and the stock market index are available over shorter frequencies, CPI 

figures are produced on a quarterly basis, and hence this forms the basis for the 

sampling frequency.

27 The three variable system proposed here could be tested in any other market.

28 M3 is a common measure of the money supply and is used in Reserve Bank targeting. 

While an alternative measure of M2 comprises money that can be spent immediately and 

assets invested for the short term, M3 consists of the sum of M2 plus large deposits. 

These deposits include institutional money-market funds and agreements among banks. 

Since M3 comprises M2, we employ M3 in the test.
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The Dickey and Pantula (1987) procedure is used to test for the presence of more 

than one unit root. The procedure rejects the hypothesis of three unit roots for 

both log(CPlAus) and log(M3) at the 5 percent level, and the hypothesis of two 

unit roots for log(AOI). Subsequently, the procedure accepts the hypothesis that 

both log(CPlAus) and log(M3) have two unit roots and log(AOI) has one unit 

root.

The procedure described in Section 6.6 is then utilised to identify the 

specification for the VECM formed by these variables. The results using SC are 

presented in Table 6.7. In addition, to check the adequacy of the model fit, the 

strategy suggested in Tiao and Tsay (1989) and Penm et al (1997) is used, with 

the proposed Penm and Terrell (1984) algorithm applied to test the residual vector 

series, using the SC criterion. The results in Table 6.7 support the residual vector 

being a white noise process.

The results are generally consistent with economic intuition and prior evidence. 

The causality identified in the selected ZNZ patterned VECM confirms that M3 is 

an independent source of financial and economic disturbance, and an indirect 

causality exists from M3 through CPIaus to AOI. This result supports the impact 

that money supply has on stock prices through inflationary pressures. Of note, the 

presence of this indirect causality cannot be detected from inspecting the nonzero 

elements in all their coefficient matrices of a conventional full-order VECM. 

Among CPIaus, M3 and AOI, two cointegrating vectors are found. The first 

selected cointegrating vector supports that Alog(AOI) is stationary. The second 

selected cointegrating vector confirms that log(CPIAus), log(AOI) and Alog(AOI)
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are cointegrated with log(M3). This indicates that both log(CPlAus) and log(M3) 

are 0 (2 ,1 )  processes, not 0 (2 ,2 ) processes as described in Engle and Granger 

(1987). The positive sign between log(M3) and log(CPlAus) and the negative sign 

between log(M3) and log(AOI) is consistent with the hypothesis discussed above 

that increases in the money supply leading to an increase in inflation, which in 

turn is taken by the stock market as a negative signal.

Table 6.7

The VECM a for the relationship linking money supply, inflation and stock

market indicator for Australia

Variables: yj = log(M3), y2 = log(CPI Aus), y? = log(AOI).
Sample Period: 1981.11 to 1999.IV

A2yf
A2y2
A2y’

+

" 0.340 0.0 0 .0" "0.0 0.0 0 .0"

(0 . 110)
A2y!_i

r

0.148 0.468 0.0 0.0 0.0 0.0
(0 .105) (0 .091)

A2yf_,

A2y ?,

+

0.0 0.0 0.0 0.0 0.155 0.0 L

(0 .092)

0.0 0.0 0.0 "0.0 0.0 0.0

- 0.045 0.388 - 0.105 y ! - i
9 0.0 0.0 0.220

(0 .020) (0 . 105) (0 .070)
y t - i +

(0 . 121)

0.0 0.0 0.0 L y t - i J 0.0 0.0 1.081

(0 . 115)

Ay

Ay
Ay

A2y|-3

A2y2

A2y
t-3

t-3

t-1

t-1

t-1

+

= e(t)

0.0 0.0

0.0 0.0 0.0 0.0 0.0 1.0

& =
0.0 -0 .045

(0.010) ß = 1.0 -8 .433 2.278 0.0 0.0
(0.106)
-4 .789

1.081 0.0 (0.452) (2.285) (1.532) (2.660)
(0.115) -

Residual
analysis5

Existing
lags

0 1 2 3 1,2 1,3 2,3 1,2,3

154



Value of SC 1.0 1.019 1.010 1.018 1.031 1.038 1.029 1.050

Long-term Cointegrating Relationship Identified: 

l)Alog(AOI) is stationary

2)0.118 log(M3) = log(CPIAUS) -  0.270 log(AOI) + 0.568 Alog(AOI) 

Granger Causal Patternc Recognised: CPIAus

a) Model selected by SC Using the GLS Procedure. Standard errors in parentheses. A 

denotes first difference.

b) For simplicity, the values of SC for q>3 are not presented, but can be supplied to 

readers upon request.

c) x Granger-causes y: (Notation : x --------►y);
Feedback exists between x and y: (Notation : x ^  ^  y).

6.7 Summary

This chapter consists of three parts. In the first part, the sensitivity of PPP testing 

to the nature of the unit root tests is demonstrated. Three unit root tests are 

employed for fourteen real bilateral exchange rates. The first two - the augmented 

Dickey-Fuller test and the Phillips-Perron test - are procedures using the null 

hypothesis of a unit root. The third, the Kwiatkowski et al (1992) test, is a 

procedure which employs the null hypothesis of stationarity. The results are 

contradictory. PPP is consistently accepted or rejected for only four exchange 

rates. For the remaining ten, PPP is accepted using the Kwiatkowski et al 

procedure, but rejected by the augmented Dickey-Fuller test and the Phillips- 

Perron test.
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In the second part of this chapter, a new test procedure for PPP is introduced. In 

this procedure PPP is tested in the framework of subset VECM with zero 

coefficients. Since VECM modelling can accommodate both long-term and 

dynamic responses, this approach is different from those based on unit root tests. 

This new procedure adds to the available methods of testing for PPP.

The results of this procedure are promising. Both the necessary and the necessary 

and sufficient conditions for PPP are sequentially tested. Of the fourteen 

exchange rates investigated, the necessary condition is found acceptable for seven 

and the necessary and sufficient condition cannot be rejected for three. These 

results support the existence of PPP, at least for some exchange rates. In 

analysing these results, this thesis also finds that the short-term dynamic structure 

may be an important influence in testing the necessary and sufficient condition 

for PPP. This suggests that a more sophisticated specification could be useful in 

improving the test for PPP [see Penm et al (2001b)].

The third part of this chapter develops an effective algorithm to select the optimal 

ZNZ patterned cointegrating and loading vectors in a ZNZ patterned VECM for 

an 1(2) system. Many financial series are of order 1(2) and hence the procedure 

developed has substantial applicability. In addition, testing for PPP using an 1(2) 

analysis has been conducted. The outcome confirms support for the necessary 

condition of the PPP hypothesis for the bilateral exchange rate between the 

Australian and US Dollar. The inter-relationships between the stock market, 

money supply and inflation are also studied and the results are generally 

consistent with both theory and prior evidence.
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CHAPTER 7

NON-LINEAR FORECASTING USING NEURAL NETWORKS

7.1 Introduction

Neural networks have been used in financial modelling and for simulation for a 

number of years [see Kim and Chan (1998), Refenes et al (1995)]. Zhang et al 

(1998) provide a survey of neural networks. These networks provide a procedure 

that generates ex ante forecasts as a non-linear function of historical observations. 

Chakraborty et al (1992) show that neural networks can be suitable for forecasting 

multivariate time-series, while Teräsvirta et al (1993) demonstrate the power of the 

neural network linearity test.

Conventionally, researchers have proposed procedures for conducting ‘full-order’ 

neural networks with fixed connections between nodes in all layers. However a 

full-order neural net has difficulty in practical modelling of subset time-series 

systems. Consequently this results in poor ex ante forecasting performance due to 

over-parameterised modelling. Hence, there is a need for relaxation of the 

assumption of fixed connections between nodes in all layers.

In this chapter an extension to the structure of neural networks is introduced to 

increase their modelling power for subset time-series systems. The extended neural 

networks are likely to improve the performance of financial modelling due to their
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parsimonious model structure. At the same time they provide simulation 

instruments that can be used for analysing market properties.

This chapter also presents a numerically robust lattice-ladder learning algorithm 

that sequentially selects the best specification of a subset time-series system using 

extended neural networks. The algorithm is suitable for a situation in which the 

structure of the extended neural network is evolving. It is able to extend the 

relevance of multi-layered neural networks and so more effectively model a greater 

array of time-series applications. The approach recognises that many connections 

between nodes in layers are unnecessary and can be deleted. Inhibitor arcs - 

reflecting inhibitive synapses-are then introduced.

The algorithm allows for connections between nodes in different layers, which 

have variable strengths at different points of time, by introducing additional 

excitatory arcs - reflecting excitatory synapses. The ability to resolve both time and 

order updating leads to the optimal synaptic weight updating, which allows for the 

optimal dynamic node creation/deletion within the extended neural network. Thus 

the algorithm first uses the new available observation and regards the structure of 

the extended neural network as evolving, so the weights of the structure can be 

updated. Second, if the order lag structure is also evolving, the algorithm can 

utilise the order updating algorithm continuously to recheck and update the lag 

structure of the network.
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The remaining sections are organised as follows: Section 7.2 introduces the 

extended neural network structure for subset time-series modelling. Section 7.3 

demonstrates the overall lattice-ladder learning algorithm for extended neural 

networks. Section 7.4 provides an illustration, in which the proposed learning 

algorithm is used to describe the provision of all possible lattice-ladder structures 

for subset vector rational distributed lag (VRDL) modelling and all possible lattice 

structures for subset VAR modelling. Section 7.5 employs two case studies to 

demonstrate the usefulness of the algorithm in tests of causality between two 

equity market indicators and the inter-relationship in application to the stock 

market. In Section 7.6 a brief summary is provided to conclude the chapter.

7.2 The Extended Neural Network Structure for Subset Time-series 

Modelling

Consider a vector time-series model of the form

where h', i=l,2,...,p are gxr parameter matrices, eh(t) is a gxl stationary process 

with E{ eh(t) }=0 and

z(t)+Zh'y(t + l - i )  = eh(t), (7.1)
i =l
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Equation (7.1) and properties associated with eh(t) together constitute VRDL, 

which involves a g-dimensional regressand vector z(t) and an r-dimensional 

regressor vector y(t).29

In subset VRDL modelling, the predictor of a subset VRDL system can be 

described as

z(t) = - i h ' ( I s)y(t + l - i ) ,  (7.2)
i=l

where h '( I s) = 0 if i e  Is. Thus Is specifies the integers between 1 and p-1 that

correspond to excluded entries1. A VRDL model can serve as an infinite moving 

average representation of a rational vector AR, ARMA or ARMAX model [see 

Penm et al (1993) and (1999)]. The use of VRDL models in economic and 

financial time-series is versatile. Mittnik (1989) successfully applies the VRDL to 

time-series forecasting using balanced state space representations. Holmes and 

Hutter (1989) suggest the use of a subset VRDL system to assess the relationship 

between z(t) in (7.1) and the set of current and lagged y(t) where there is a 

continuous or a random delay.

29 In practice the assumption that E{ s h (t) }=0, means that the vector data of both z(t) and 

y(t) need to be mean-corrected. For simplicity, mean-correction is ignored, as its 

presence would make no difference to any of the findings presented in this chapter.
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Watanabe et al (1992) study a two-layered linear neural network as a physical 

structure of a full-order autoregressive moving-average model and find that no 

hidden layer suffices in the network for the learning requirements as y(t) comprises 

the first-order terms yi(t),y2(t),... ,yr(t).

This chapter develops an extended two-layered neural network that can be easily 

applied to a time-series system with a subset structure. To achieve this objective 

two types of connection, namely inhibitor arc and switchable connection, are 

introduced to extend the neural network structure. The inhibitor arc was introduced 

to network theory by Petri (1979) and the associated connection strength for all 

these arcs is constrained to zero at all times. The switchable connection is obtained 

from switching theory and the strength is switchable between zero and non-zero at 

any time. The introduction of these connections increases the modelling and 

analytical power of the neural networks. This new feature supports neural nets as a 

tool for the study of subset time-series systems, which are common in financial 

markets.

As described in Chapter 1 traditional full-order time-series models, including VAR 

and VECM models, have become increasingly popular in the analysis of financial 

markets. Standard full-order time-series models assume nonzero entries in all their 

coefficient matrices. However applications of time-series models to financial 

market data have revealed that zero entries are indeed possible [see Brailsford et al 

(2001a)]. In such cases, the use of full-order models may lead to incorrect 

inferences and inferior forecasts. This chapter develops and investigates extended 

neural networks to select the model’s optimal order and ZNZ pattern
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determination. If key linear and non-linear interactions among variables are 

captured accurately, the chosen ZNZ system can improve the modelling and 

simulation performance.

If y(t) does not only include the first-order terms, but also contains the second- 

order terms yx (t)y 2 (t), yf (t) and y?(t), then a polynomial neural network, with a 

single hidden layer investigated in Kwok and Yeung (1997), can be constructed as 

a physical structure of the subset VRDL model of (7.1). The hidden-node transfer 

function consists of a quadratic regression polynomial of two variables, and this 

network can approximate any non-linear function to a desired degree of accuracy. 

Section 3.7 of this thesis details this development.

It is often the case that a VRDL model, which works well in explaining the 

behaviour of a system covering a specific sample, may evolve over time because 

of political, economic, environmental or other external changes relating to 

financial time series. To incorporate such evolution, a learning algorithm is often 

included in a VRDL model so that the model can be updated over time. There are 

many well-developed computationally efficient and numerically robust recursive 

algorithms which can be employed to update the VRDL models [see Carayannis et 

al (1986)]. However, most of these algorithms are only applicable to full order 

models. In subset VRDL modelling, the commonly used learning algorithms for 

full order models are not applicable because the structure of the lag coefficients is 

estimated without the 'presence and absence' restrictions. As a result, it is 

necessary to develop a learning algorithm for subset VRDL models which include 

full-order models as a special case.
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Section 7.3 focuses on a double (a-priori and a-posterior) lattice-ladder algorithm. 

The algorithm does not need to update the angle variable, but carries out in a more 

direct way the update of the optimal structure. This algorithm, which computes 

concurrently both the a-priori and a-posterior residuals in a recursion cycle, 

possesses better numerical accuracy and is less sensitive to roundoff errors than its 

direct matrix inversion counterpart. In addition, only the lattice algorithm is 

required for VAR modelling.

7.3 The Lattice-Ladder Algorithm for Subset VAR and VRDL Modelling

A double (a-priori/a-posterior) lattice-ladder recursive algorithm for subset VRDL 

and VAR modelling is introduced in this section. This is followed by providing the 

order-recursive algorithm, which can be used to initialise the lattice-ladder algorithm.

Let z(t) and y(t) be jointly stationary and zero mean vector time-series.30 The 

subset VRDL(p) model can be described as:

z(t) + Zh'(Is)y(t + l - i )  = eh(t). (7.3)
i=l

As defined in (7.2), Is represents an integer set with elements ip i2,---,is 

1 < ij <■••<is < p -1. h '(Is) = 0, as i e l s . The disturbance variance-covariance

30 A mean adjustment can be done first.
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matrix is £2(Is)and the covariance matrix, so-called partial correlation matrix 

between e h(t) and y (t-p), is Ah(Is). G iven tw o finite data sam ple sets, {y ( l ),..., 

y(T )} and { z ( l) ,. .. ,  z(T )}, and both y(j)=0 and z(j)=0  for j < l ,  it is necessary to 

sequentially estim ate all possib le subset V R D L  m odels from (7 .3) using the 

prew indow ed case investigated by Penm et al (1995). S ince the actual schem e o f  

(7 .3) m ay not be order p, the resulting estim ates o f  hj is denoted by hpj  (i), where 

T is the sam ple size under exam ination. Then the predictor o f (7 .3) is o f  the form:

H pT(Is) and Ypi(I s) are formed by rem oving the (i\),...,(is)’th row block o f H pj  and

Y p,i respectively. The a-posterior prediction residual vector for observation i is 

defined as

z ( i)  = - H'p-rÜJYp.iÜs),

where Ypi = [y '(i)  y ' ( i - l )  ••• y ' ( i - p  + l ) ] ,

e p,i ( I s ) = z(i) + H' T(I ,)Y p j (Is), (7.4)

and the a-priori prediction residual vector for observation i is

e p,i (Is ) -  z(i) + Hp T_j (Is )Yp j (Is). (7.5)

164



In reality, many time-series systems present complex non-stationary features and 

cannot be modelled by assuming that y(t) and z(t) are stationary [see Bollerslev et al 

(1992)]. Thus, an estimate of the structure at time t should give a higher weight to the 

more recent observations and a lower weight to the observations of the more distant 

past. Thus, for a VRDL model fitted to these two sample sets using the prewindowed 

method of forming the sample covariance matrix, the following relationships can be 

established:

V i , T ( I i > H p. T ( U  = - r p_liT(Is), where Rp_1T(Is) = J V " 'Y pi(Is)Ypl(Is),
i=l

T

rP-i,T(I>)= Z V “'Ypi(Is)z'(i), and Q p,T(Is) =
>=1 i=l

where X , 0 < X < 1, is the fixed forgetting factor as described in Hannan and Deistler 

(1988).

The fixed forgetting factor is a data weighting process which gives more weight to 

recent observations and less weight to earlier data. The estimation method using 

the fixed forgetting factor can be considered as a type of kernel estimation (which 

will be discussed in Section 8.5). The use of the forgetting factor in statistical 

modelling has attracted significant attention in recent years. For example, 

Brailsford et al (2000) report the use of the forgetting factor in modelling and 

simulation of financial time-series, while Guo and Wu (1998) use the kernel 

regression to examine the exchange rate exposure of Taiwanese firms. The effect 

of their kernel is equivalent to the effect of a forgetting factor. Azimi-Sadjadi et al 

(1993) suggest the recursive updating procedure for the training process of a multi -
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layer neural network, and Goto et al (1995) use the forgetting factor in the 

recursive least squares ladder algorithm for spectral estimation of a non-stationary 

process.

Next a further regressor y(t-p) is introduced into the VRDL model. For this enlarged 

VRDL(p+l,Is) model, the following relationship is developed:

Rp,T (Is)  Hp+l,T( ls )
rp-i,i(Is) 

V p,T ( i s )

where v T(Ig)=  IX T"iy ( i-p )z /(i).
i=i

Following the work by Carayannis et al (1986), the forward subset VAR(p) model 

with the deleted elements ij, i2,..., is can be described as:

I  a;(Is)y(t - i) = e(t,Is), { ao(Is) = I, ai(Is) = 0, a s i E l s,} (7.6)
i=0

where E{e(t,Is)} = 0, E{s(t,Is)y'(t -  p -1 )} = A(IS) and E{e(t,Is)e'(t,Is)} = V(IS) as 

k=0; =0 as k>0. In addition, a backward subset VAR(p) model [see Penm and

Terrell (1982) and (1983)] can be considered as:

I  bi(Ms)y(t-p + i) = £(t,Ms), { bo (Ms) = I, bi(Ms) = 0, a s i e M s,} (7.7)
i=0

where Ms represents an integer set with elements mi, m2,..., ms, mj = p+l-ij , j = 1, 

2 ,.. .,  s.
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Suppose for a given sample {y( 1 y(T)},  all possible subset VAR models from 

(7.6) and (7.7) are fitted. Since the actual scheme may not be of order p, the 

resulting estimates of ak and bk are denoted by aPjT(k) and bp,T(k) respectively. As a 

result:

A'p.T -  [ ap,T(l)---ap,T(p)l, B'p,t -  [ bp,T(p)---bp,T(l)] .

For a forward VAR(p,Is) fitted by this sample set, the following relationships are 

established:

T
Rp,i(Is) = lA ^Y p+u (Ls) Y'p+i.i (Ls), where Yp+u (Ls)

i=l
y(i)

Yp,i-i(Is)
Yp,i (Ls)

. y(i - P) J ’
RP,x(Is)

I

Ap,t(Is)
v pj(is)

o ’ Bp,i(Is) -  y(i) + A/p>T(Is)Yp i_1(Is),

(7.8)

where Ls represents an integer set with elements /j, j= l,..., s, and /j = ij + 1. 

Yp+i,i(Ls) and Yp,i(Ls) are formed by removing the (/i),..., (/s)'th row block of Yp+i,i 

and YPii respectively. Similarly A P!t(Is) and YPi i-ids) are formed by removing the 

(ii),..., (is)'th row block of AP)T and YP)i.i respectively. s pi(Is) will be called the a-

posterior forward AR residual vector to distinguish it from the a-prior forward AR 

residual vector defined as

e p,i (Is) = y(i)+ Ap>T. l(I,)YPiM(I,). (7.9)

In addition, for the corresponding backward VAR(p,Ms), the following 

relationships are developed:

167



Rp,t(M s ) = IA.
i=l

T-i Y p j(M s)

y(i-p)
[Y'p.iCMs) y'(i-p)]

Dp,t(Ms)

< t(Ms)
rbp,T(Ms)
Vbp,T(Ms)J

R p,t ( M s)
Bp,t(M s)

I

0

Vp,T(Ms)
, epi (Ms) = B'pT(Ms)Yp j(Ms) + y(i -  p), (7. 10)

where Bpj{M s) and Yp,i(Ms) are formed by removing the (p+l-mi),..., (p+l-m s)’th 

row block of BpT and Yp>j respectively. Thus Rp>t(M s) = Rp,t(Is).

Next, the associated VAR and VRDL partial correlation matrices become:

Ap+i.tds) = vp+i t (Ms) + A 'T(IS) rbT.,(Ms),

and Ahptl.T (Is) = vp,T (Is) + B'p,T (Ms) rp.i,T (Is) •

The forward and backward reflection matrices of the form become:

Kp+i.xGs) — " V V t G s) ^p+l,T(Is) » 

kp+lj(Ms) — - Vp,T-l(Ms) Ap+1,t(Is) ,

and the ladder gain matrix of the form becomes:

K p+1,t(Is) = - v  ’p x(Ms) Ahp+l,T(ls) •
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In addition,8pi(Ms) is called the a-posterior backward AR residual vector to 

distinguish it from the a-prior backward AR residual vector as defined by

ePli (Ms) = [ b ' p,t-i(M s) I ]
Ypj(Ms)

y(i-p)
(7.11)

A double (a-priori/a-posterior) lattice recursive algorithm for subset VRDL and 

VAR modelling can then be developed as follows.

Lattice algorithm for subset VAR models

e p+l.T s )  =  e p , l ( ^ s )  +  ^-p+l.T-1 ( ^ s ) e p,T-l ( M s ) (7.12a)

e p + i ,T ( M s ) -  e p,T-i ( M s )  +  K p + 1 T _ , ( I s )ep T( I s ) (7.12b)

^ p + l . T ^ s  ) =  ^ p + l , T - l  ( I s )  +  e p,T-l ( M s ) e p ,T ( I s ) (7.12c)

K j +llT a . )  =  - V p " . i ( I , ) A /p+1>T( I s ) (7.12d)

K ^ 1>T( M s ) =  - V - ^ ( M s ) A p+1>T( I s ) (7.12e)

£ P+1,t ( ^ s )  =  £ p ,t ( ^ s )  ■*" ^ p +1,t ( M s ) £ p j _ i  ( M s ) (7.12f)

£ p + i ,t ( M s )  =  8 p T _ j ( M s )  +  K p+1 T ( I s ) 8 p T ( I s ) (7.12g)

Vp+i,T ( M s ) =  ^ 'V p+1T_ 1 ( M s ) +  ep+1>T ( M s )ep+1T ( M s ) (7.12h)

^p+l,T  ( ! s ) =  ^ V p + l ,T - l  ( I s ) +  e p+l,T ( I s  ) e p+l,T ( I s ) (7.12i)
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Ladder algorithm for subset VRDL models:

e p+i,T d , ) = ehPiT (I.) + K'p+1-r.j (I. )ep>T (Ms) (7.12j)

Ap+i.jds)= ^Ap+1T_j (Is) + 8pT(Ms)epT(Is) (7.12k)

Kp+1,Td s) = -V-UMs)Ahp+liT(Is) (7.121)

e p + i , i d s ) ~  £ p,t ( ^ s ) +  K p +i , T ( I s ) e p J ( M s ) (7.12m)

ß p +i.T d s )  -  A Q p+i>T_ i (Is) +  £ p+i!t ( I s ) c p+iit ( I s ) • (7.12n)

To initialise the lattice-ladder algorithm, the order update algorithm proposed by 

Penm and Terrell (1982) and (1983), is extended and incorporated in the current 

overall algorithm. If q denotes the number of non-zero coefficient matrices of the 

VAR model, the following order-update equations can be established.

Order updating for subset VAR models

A = v bp+liT(M s) + A'p J (Is)rpbT_1(M s)

k U tCU— v -UUA'

Kp+rT (Ms) = -  Vp"j_j (Ms )A

‘P+1.T d ,) =
■Ap,T(isy

0
B p.t- i ( M s )

I ■p+l.T (M s)

0 I
® p+i,t ( ^ s ) — B p,t_1(M s)_

+
A p,t (Is)_

Vp+llT(Ms) = VptT. 1(M5) + AKj+liT(Is)

Vp+1,T(Is) = VpiT(Is) + A'Kbp+1,T(Ms)
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Order updating for subset VRDL models

A hp+1)T ( I s )  = v p>T(Is) + B ; T(Ms)rp. ljT(Is)

K p+1,T( I s ) =  - V - U M s )Anp+1J ( I s )

Hp+1,t(Is)
' p j d s )

0
+

Bp,T(Msy
I Kp+1,t(Is)

Qp+i.t(I .) = Qp,T(I.) + A'ph+liT (I, )Kp+liT(I.).

In the special case, where the consecutive coefficient matrices a p_k for the lags of 

y(t-p+k), k=0, (c<p-l) of the forward VAR(p) model, fitted using the sample

{y(l),..., y(T)}, are missing, the estimated coefficient matrices are null, i.e. ap. 

kT(Is)=0. The corresponding coefficient matrices, a-prior and a-posterior forward 

prediction residual vectors, and V of the forward VAR(p-c-l) model are sufficient 

to continue the recursive estimations.

Similarly, if the consecutive coefficient matrices hp_k of the VRDL(p) model are 

missing, the analogous relations will hold.

Again, in the special case where the consecutive coefficient matrices bp-k, k=0, 

l,...,d (d<p-l) of the backward VAR(p) model, fitted using the sample 

{y(l),...,y(T)}, are missing, the coefficient matrices, a-prior and a-posterior 

backward prediction residual vectors, and V from the backward VAR(p-d-l) fitted 

using the sample {y(l),...,y(T-d-l)} allow the proposed lattice-ladder and order- 

update recursions.
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The order update algorithm is well suited to the initial stage of the lattice-ladder 

recursive algorithm. After the initialisation is carried out and all necessary lattice- 

ladder parameter matrices at t=T are obtained, the lattice-ladder recursive 

algorithm can be carried out from T to T+l, T+2, and so on. A model information 

criterion is then used to select the lag structure of the optimal subset VRDL and 

that of the optimal subset VAR at each time instant. Finally, the associated 

coefficient matrices Hi(Is) and Aj(Is) can be estimated. A detailed illustration for 

K=Q=4 is provided below in Section 7.4.

Of note, as mentioned in Penm et al (1995), recursively updated algorithms for 

subset time-series models are often desirable, when observation measurements 

exhibit some form of periodic behaviour when covering a range of different 

measurement periods [see Penm (1977)]. For instance financial data can be 

measured in periods of seconds, hours, and days, and from time-series systems 

where periodic variation exists.
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7.4 Illustration

Suppose there is a fit of all possible subset VAR models for y(t) = {yi, y2,..., 

y s i } up to and including the maximum lag K=4, and all possible subset VRDL 

systems, z(t) = {zu z2,..., z8i,...} and y(t) = {yi, y2,..., ys i,-} ,  up to and including 

the maximum lag Q=K at T=79, 80, 81 and so on. The following description 

would present a suitable method. Note that numerals 0, 1, 2 represent particular 

lags for y(t-s), s > 0, underlined numerals l, 2 ,... represent particular leads for 

y(t+s), s > 1, in VAR models, and italic numerals 0, 1, 2 represent particular lags 

for y(t-s), s > 0 in VRDL systems.

In the initial stage, the parameter matrices APjt, VPjT, BPiT, Vpt f°r eac^ necessary

subset VAR model, and Hp>t and £2p/r for each necessary subset VRDL model, can 

be obtained using the order update recursions at T=76, 77, 78 and 19?x All 

necessary models for performing the order update recursions are listed in Table 

7.1. To achieve this end, K should be set at 0 in the first recursion for each subset 

model at T=76 (i.e. 79-4+1), be set at 1 in the second recursion at T=77, and then 

increase linearly in time until it reaches 4 at T=79. Next, the lattice-ladder 

recursions are conducted from T=79 to 80, 81, and so on. A procedure for 

performing the order update recursions is as follows:

31 In order to conduct the lattice-ladder recursions from T=79, the parameter matrices of 

some models at T=76, 77 and 78 are required (see Table 7.1). Use is made of the order 

update recursions to estimate these models.
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(1) All one-lag forward and backward VAR models (1,1), (2,2), (3,3), and (4,4) at 

T=76, 77, 78 and 79 and all one-lag VRDL models 0, 1, 2 at T=79 must be fitted to 

start the recursions.

(2) Carry out the order update recursions to fit all 2-lag forward and backward 

VAR models at T=77, 78, 79. All estimates of each 2-lag VRDL system at T=79 

can also be obtained. Stage 1 in Table 7.1 presents the required models for 

performing the recursions.

(3) Again, carry out the order update recursions to estimate all 3-lag subset VAR 

models at T=78 and 79 and VRDL systems at T=79. Stage 2 in Table 7.1 

illustrates this situation.

(4) Obtain the estimates of the full order forward and backward VAR models with 

K=4 and the full order VRDL with Q=K at T=79 using the order update 

recursions. Stage 3 in Table 7.1 lists all models required.

To this stage, both A for each subset VAR and Ah for each subset VRDL are 

obtained.
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Assuming that all relevant quantities up to and including time T are known, the 

procedure for carrying out the lattice-ladder recursions from T to T+l is as 

follows:

Step 1: To begin with, all 1-lag forward and backward VAR models and all 1-lag 

VRDL models must be fitted. The associated prediction residual vectors are then 

computed:

e hp,T (Is)» ^p,T  (Is)» Cp,T (Is)» ^p,T  (Is)’ Cp,T (Ms)» £ p ,x  (Ms)

by using the equations (7.5), (7.4), (7.9), (7.6), (7.11) and (7.7) respectively.

Step 2: For all 2-lag models, ep+i,T+i (Is), ep+1T+1(Ms) , ehp+i,T+i( I s )» P = 1 can be 

obtained using (7.12a), (7.12b) and (7.12j).

Step 3: The partial correlation, reflection coefficient and ladder gain matrices can 

be updated using (7.12c), (7.12d), (7.12e), (7.12k) and (7.121).

Step 4: (7.12f), (7.12g) and (7.12m) are then used to estimate

Ep+1,T+1 (Is)’ C p + u +1 (Ms) ’ e hp+i,T+l (Is) ’ P = 1 •

Step 5: The residual variance-covariance matrices can be estimated using (7.12h), 

(7.12i) and (7.12n).

Step 6: Repeat Steps 2 to 5 for all 3-lag models, and then all 4-lag models.
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Furthermore, an order selection criterion for the vector case as suggested by 

Hannan and Deistler (1988), could be modified to use at each time instant with the 

proposed method to select the optimal subset VAR and VRDL models. From now 

on, MHQC is used as an abbreviation of the modified criterion, which is defined 

by

MHQC = log|G| + [21oglogf(T)/f(T)]S, f(T )= ^X T i,
i=l

where f(T) is the effective sample size, S is the number of functionally 

independent parameters, and Gis the estimate of V T(IS) for the VAR and the 

estimate of Qp T(Is) for the VRDL.
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Table 7.1
The necessary VRDLs and the forward and backward VARsa

the (p+l)th model 
T

the required pth models 
T T

Stage 1
12 (79) 1 (79) I  (78)
13 (79) 1 (79) 2 (78)
14 (79) 1 (79) 3 (78)
23 (79) 2 (79) I  (77)
24 (79) 2 (79) 2 (77)
34 (79) 3 (79) I  (76)
12 (79) 1 (79) I  (78)
13 (79) 2 (79) I  (77)
14 (79) 3 (79) I  (76)
23 (79) 1 (79) 2 (78)
24 (79) 2 (79) 2 (77)
34 (79) 1 (79) 3 (78)

01 (79) 0 (79) I  (79)
02 (79) 0 (79) 2 (79)
03 (79) 0 (79) 3 (79)
12 (79) 1 (79) I  (78)
13 (79) 1 (79) 2 (78)
23 (79) 2 (79) 1 (77)

Stage 2
123 (79) 12 (79) 12 (78)
124 (79) 12 (79) 23 (78)
134 (79) 13 (79) 13 (78)
234 (79) 23 (79) 12 (77)
123 (79) 12 (79) 12 (78)
124 (79) 23 (79) 12 (77)
134 (79) 13 (79) 13 (78)
234 (79) 12 (79) 23 (78)

012 (79) 01 (79) 12 (79)
013 (79) 01 (79) 23 (79)
023 (79) 02 (79) 13 (79)
123 (79) 12 (79) 12 (78)

Stage 3
1234 (79) 123 (79) 123 (78)
1234 (79) 123 (79) 123 (78)
0123 (79) 012 (79) 123 (79)

aThese are required to estimate all 2,3, or 4-lag subsets at T=79, using the order update 

recursions, and to update their a-priori/a-posterior errors, using the double (a-priori/a- 

posterior) lattice-ladder structure.
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Possible zero constraints should be considered in the non-zero coefficient matrices

of the optimal subset VAR and VRDL models. Geweke and Singleton (1981) 

introduced prior zero constraints in the coefficient matrices of a VRDL model to 

test hypotheses on the relations between observed economic time-series and latent 

factors. Previous studies [see Penm and Terrell (1984a) and Penm et al (1992)] 

show that the proposed search algorithm can, with minor modification, be adapted 

to select the optimum subset VAR and VRDL models with zero constraints using 

the prewindowed case.

7.5 Empirical Examples

This section presents two applications to illustrate the practical use of the 

algorithm. The first application concerns a causality relationship between the stock 

and futures markets. The second application concerns the relationship between 

prices of an individual share and the underlying stock market.

7.5.1 The Causal Relationship between AOI and SPI

The extended two-layered neural network described in Section 3.7 of this thesis 

can be used to model the relationship between financial time-series. In this 

example, the relationship between the Australian stock and futures markets is used. 

A futures contract is one of the most important hedging instruments for the 

underlying asset. Stock index futures have many attractive hedging benefits for a 

trader who wishes to trade the underlying stock portfolio corresponding to the
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index. As described in Section 6.6.4, in Australia the main stock market indicator 

is the All Ordinaries Index (AOI). The index is calculated on the basis of market 

capitalisation of the constituent stocks traded on the Australian Stock Exchange. 

The Sydney Futures Exchange offers a futures contract on the AOI. This contract 

is available on a quarterly expiry date and is known as the Share Price Index (SPI) 

Futures Contract.

There is already a considerable literature examining the relationship between stock 

and futures market prices. The literature has either examined theoretical 

relationships between the markets through models such as the cost-of-carry [see 

Chung (1991), MacKinlay and Ramaswamy (1988), Brailsford and Hodgson 

(1997)], or examined the causality between the markets through lead-lag 

relationships, cointegration tests or bivariate spillover models [see Chan (1992), 

Chan et al (1991), Martens et al (1996)]. The general findings confirm a strong 

causality between the markets [see Wahab and Lashgari (1993), Abhyankar 

(1995)]. This relationship is not unexpected given the pricing relationship between 

the markets and the fact that the basis reduces to zero at the maturity of the futures 

contract. However there has been debate about the direction of causality, with the 

evidence generally indicating that the futures market leads the stock market. In 

particular, Chan (1992) has examined the lead-lag relation between returns of the 

Major Market cash index and returns of the Major Market Index futures and S&P 

500 futures. His results indicate that the futures price is a leading indicator for the 

spot, when stock prices move together under market-wide movements. Tse (1995) 

has studied the causal relation between stock index futures and cash index prices in 

Japan, and documents that futures prices cause cash index prices.
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Data on the AOI and SPI are sampled daily between 27 January and 29 June 1998. 

The AOI data are observed as the daily market closing index value whereas the 

SPI data are observed as the last traded price on each day in the June 98 contract. 

Graphs of log AOI and log SPI in first differences are shown in Figures 7.1 and 

7.2. To test for the unit-roots for each plotted series, Microfit 4.0 is used to carry 

out the augmented Dickey-Fuller (ADF) unit root test. The 95 percent critical 

values for each test computed using the response surface estimates indicate that 

both log AOI and log SPI are non-stationary but both A log AOI and A log SPI are 

stationary for the period 27 January 1998 to 17 June 1998 (T= 98). A log AOI 

and A log SPI continue to be stationary for the extended period from 27 January 

1998 to 29 June (T=106), where T is the sample size now under consideration.
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Figure 7.1

Log AOI in First differences, daily: 27 January 1998 to 29 June 1998
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Figure 7.2

Log SPI in first differences, daily: 27 January 1998 to 29 June 1998
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The extended two-layered neural network described in Section 3.7 is used to 

model the relationships between the AOI and SPI. In detecting the causal 

relationship from log SPI to log AOI, the variables used are z(t) = log AOI and y(t) 

= log SPI. As discussed above, neither log AOI nor log SPI are stationary. 

Therefore, the forgetting factor, X ,  is incorporated to allow for the presence of non- 

stationarity. To begin, it is assumed Q=16, which corresponds to a three-week 

period (i.e. 15 business days). The order update and the lattice-ladder recursions 

described above are then used to select the 'optimal' specification of the distributed 

lag models at T=98, 99, ..., 106.

For the causal relationship from log SPI to log AOI, the optimal distributed lag 

models with ^=0.99 and 0.985 are presented in Table 7.2. The lower value of X  is 

consistent with strong persistence in market price fluctuations. For brevity, only 

the results obtained by the MHQC are presented. For cases where X  is less than 

0.985, the selected models are not reported due to the small effective sample size 

«50).

To assess the causality from log SPI to log AOI, a subset model for X  =0.99 with 

lags (0,1,10) was selected by the MHQC at T=98,99,...,102. A two-layered neural 

network can be constructed for this model. At T=103, the lag structure selected 

changes to (0,10). The connection strength from the input unit representing y(t-l) 

to the output unit has switched from non-zero to zero. In this case, the predicted 

output, log AOI, is related to the current and previous inputs of log SPI. Also, the 

lag 0 indicates instantaneous causality between AOI and SPI. These results
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indicate that both instantaneous and direct causal relationships exist from the 

futures market to the stock market even when emphasis is placed on recent data.

Table 7.2

The VRDLs selected by MHQC for detecting the causal relationship from SPI to AOI

Sample size 
(T)

Non-zero lag structure
for z(t)=log AOI and y(t)=log SPI Pattern of causality3

X=0.99 X =0.985
98,99,100,101,102 0 1 10 0 10 log SPI log AOI
103,104,105,106 0 10 0 10 log SPI log AOI
(a) y =±z: y causes z directly and instantaneous y-

For the causal relationship from log AOI to log SPI, Table 7.3 shows the optimal 

distributed lag models with A=0.99 and 0.985. These results strongly support the 

existence of instantaneous causal and bidirectional feedback relationships between 

the Australian stock and index futures markets. These conclusions are generally 

consistent with those reported elsewhere in similar markets by Chan et al (1991), 

Chan (1992), Wahab and Lashgari (1993), and Abhyankar (1995).

In general these outcomes can be explained by reference to transaction costs, time 

delays in computing the index, execution costs, and measurement errors [see Chan 

(1992)]. In addition to speculators, some investors, particularly institutional 

investors, participate in the futures market for hedging purposes. Usually they take 

opposite positions in the stock market and the futures market at the same time, in 

order to hedge their exposure. Since they participate in both markets, price 

information will flow between the two markets. Therefore the finding of
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instantaneous causal and bidirectional feedback relationships between these two

markets is consistent with our prior hypotheses.

Table 7.3

The VRDLs selected by MHQC for detecting the causal relationship from

AOI to SPI

Sample size 
(T)

Non-zero Lag Structure
for z(t)=log SPI and y(t)=log AOI Pattern of causality3

A =0.99 X =0.985
98,99,100,101,102 0 1 10 0 1 10 log AOI —> log SPI
103,104,105,106 0 10 0 10 log AOI log SPI

(a) y => z: y causes z directly and instantaneously.

Note there are other financial variables which could play a significant role in the 

stock-futures market analysis [see Brailsford and Hodgson (1997)]. This 

application merely demonstrates the usefulness of the extended, two-layered, 

neural network structure and the learning algorithm in time-series analysis

7.5.2 The Relationship between the Share Price of Telstra and AOI

The second application examines the non-linearities in the relationship between 

share prices and the underlying stock market. It focuses on the share price for 

Telstra Corporation Limited and the AOI. Telstra is one of Australia’s largest 

companies. The traded shares represent the partially privatised Commonwealth 

Government’s telecommunications organisation. The data used are daily series 

over the period 24 November 1997 to 30 March 1998 and were obtained from
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DataStream™.32 The value of Telstra’s beta, 1.019, is calculated by regressing the 

Telstra’s share returns against the returns of the stock market, where the AOI is 

used as a proxy for the market portfolio. This beta value reflects a strong 

relationship between the share price of Telstra and AOI.

The graph of the log of Telstra’s share price is shown in Figure 7.3. The 95 percent 

critical values for the ADF unit root test indicate that the log of Telstra’s share 

price is non-stationary. To demonstrate the usefulness of the proposed algorithm in 

a small sample environment, forecasting for period (T+l) is carried out by building 

subset VAR systems on the first T periods, using three-layer neural networks. The 

logarithms of the data are detrended and mean-corrected, rather than differenced 

for illustration purposes. Exponential forgetting was used with a forgetting factor 

0.99. The optimal subset VAR models with zero constraints for T=75 through 

T=87 were identified, where yi(t) = log of Telstra’s share price, y2(t) = log(AOI), 

y3(t) = yi(t)y2(t), y4(t) =yf(t)  and ys(t) = y 2 (t). The specifications of all identified 

optimal VARs as a basis for constructing three-layer neural network are outlined in 

Table C .l of Appendix C. One-step ahead forecasts based on each optimal VAR 

are calculated. For brevity, the forecasts are summarised in Table 7.4. The 

forecasts based on the naive random-walk model and the full-order VAR model 

are also shown for comparison purposes.

32 Since then, on 31 March 1998, the Telstra Entity paid a fully franked interim dividend 

of seven cents per share. The 30th of March is chosen as the end period.
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Figure 7.3

Log (Telstra’s share price), daily: 24 November 1997 to 30 March 1998

1 .5 

1 .4 

1 .3 

1 .2 

1 .1 

1

0 .9
0 2 0  4 0  6 0  8 0  1 0 0

Table 7.4

ZNZ VAR, full-order VAR, and random-walk forecasts: Telstra share price

/ 1 J '
a RMSE = I— ^ ( y j  - Y i ) 2 , where y t and y t denote the forecast value and the actual

V i=1

share price respectively.
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It is commonly agreed that accurate forecasting in share markets is a difficult task. 

The approach adopted here focuses on models which can correctly simulate share 

price rises, falls or no change. The trading profits gained from the outcome of 

these models can still be offset by stock market frictions, such as stamp duty costs, 

capital gains taxes, and broker’ fees. To examine the results presented in Table 

7.4, the optimal ZNZ patterned VARs appear to perform well. Of the fifteen signs 

(when there were ten ‘+’s and five ‘-’s) of daily price change over the test period, 

ZNZ VARs successfully predicted fourteen of these, whereas full-order VAR 

effectively simulated ten and the random-walk model correctly forecast only one.

Theil’s (1966) inequality coefficient, ~ » *s 0-0075 for the ZNZ VAR

forecast, 0.0136 for the full-order VAR forecast, and 0.0151 for the random-walk 

model forecast, where (P,,Ai) stands for a pair of predicted and observed changes. 

The root mean squared error (RMSE) error of the ZNZ VAR forecast is 54.86% of 

the prediction error of the full-order VAR forecast, and 49.55% of the random- 

walk forecast, respectively.

Of course many other non-parametric regression techniques and dynamic 

forgetting factor methods could play a significant role in simulations. The interest 

of this study is mainly to investigate how the algorithm may be utilised to 

improve the accuracy of financial simulations of share prices by using polynomial 

neural networks. Possible algorithms to improve the accuracy of the forecast 

magnitude are being investigated by various researchers.
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7.6 Summary

In this chapter, a numerically robust lattice-ladder learning algorithm has been 

developed to sequentially select the best specification for a subset time-series 

system using neural networks. An extended two-layered neural net is developed 

to model the VRDL system with a subset structure. As the neural input vector, 

y(t), includes second-order terms, the neural net with slight modification is 

extended to the cases of three-layers. The proposed construction method is simple 

to use and can be applied to an M-layered polynomial neural network with hidden 

layer nodes in layer m £ [1, M-2]. The overall lattice-ladder learning algorithm for 

extended neural networks avoids cumbersome matrix inversion and results in 

better numerical accuracy. Section 7.5 employs two case studies to demonstrate 

the usefulness of the algorithm. The first application investigates a causality- 

relationship between the stock and futures markets. The second application 

examines the relationship between prices of an individual share and the 

underlying stock market. These two applications demonstrate the effectiveness of 

the proposed algorithms and widen the possible use of the forgetting factor in 

financial simulations and/or forecasting.

The following chapter introduces and develops the forgetting factor method in 

financial time-series analysis. Two procedures are proposed to select the 

forgetting factor in subset AR modelling. The first procedure uses the bootstrap 

to determine the value of a fixed forgetting factor. The second procedure starts 

from this base and applies the time-recursive maximum likelihood estimation for 

a dynamic forgetting factor. Two illustrations are presented to demonstrate the
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usefulness of the proposed procedures. Improved forecasting performance arising

from these proposed procedures is consistently achieved.
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CHAPTER 8

SELECTING THE FORGETTING FACTOR IN SUBSET 

AUTOREGRESSIVE MODELLING

8.1 Introduction

As noted in the previous chapter, the use of the forgetting factor in time series 

modelling has attracted significant attention in recent years. For example, in the 

recursive estimation of an autoregressive (AR) model, Hannan and Deistler (1988) 

apply the forgetting factor in model order determination for a non-stationary 

process. Goto et al (1995) use the forgetting factor in the recursive least squares 

ladder algorithm for spectral estimation of a non-stationary process. Azimi-Sadjadi 

et al (1993) incorporate the forgetting factor into a recursive weight updating

33procedure for the training process of a multilayer neural network/

The forgetting factor is a data weighting process which gives more weight to 

recent observations and less weight to earlier data. Incorporating the forgetting 

factor in a time series model means that estimates of a model at time t give more 

weight to recent observations and less to past observations.

33 Other studies which utilise the forgetting factor in time series analysis include Cho et al 
(1991) and Moscinski and Ogonowski (1995).
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Traditionally the forgetting factor has been used in slowly time-varying linear 

models. A linear time-series model, which works well in explaining the behaviour 

of a process over a specific sample, may evolve slowly over time due to economic, 

political or structural changes. While a non-stationary series under such evolution 

may still be described by linear models, the forecasts obtained by allocating greater 

weight to more recent observations and ‘forgetting’ some of the past are likely to 

outperform alternatives in which such an allocation is not adopted. Hence, 

forecasting performance can be improved.

Consider an AR (p) model of the following form:

y(t) + X a ,y (t-i)  = e(t), (8.i)
i=l

where s(t) is an independent and identically distributed random process with 

E{e(t)}= 0 and E{e(t)e(s)} = 5tsc r, and the observations y(t) {t= l,2, ..., T} are 

available.

Following the approach of Hannan and Deistler (1988) a practical strategy for 

determining the value of the forgetting factor ^(t) is proposed as follows:

A(t) =  X  if l < t < S  
= 1 if S < t < T ’

where ‘forgetting’ of the past occurs from time S to time 1, and then no forgetting 

is involved from time S+l to time T. If X = i  for every t, then the ordinary least 

squares solution is obtained, but if 0<9l<1 is chosen, the past is weighted down
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geometrically from time S. This means that the coefficients in (8.1) are estimated 

to minimise:

T £

Z Ki-t[y(t) - Z aiy(t " i)i2’
t = i i=i

where the forgetting profile K T_t , which increases with t from time 1 to time S for 

a given S, is defined as:

For convenience, it is assumed that ‘forgetting’ of the past begins from time T-l 

immediately, that is S = T-l.

One important issue relating to the use of a forgetting factor in AR modelling is 

how to determine its value in various applications. The conventional methods are 

mostly based on arbitrary or personal choices. In this study two procedures are 

proposed to determine the value of the forgetting factor in subset AR modelling. In 

the first procedure the bootstrap is used to determine the value of a forgetting 

factor which will be fixed over a given sample (the fixed forgetting factor). The 

second procedure is based on the time-update recursive maximum likelihood 

(TRML) estimation for on-line time updating [see Hannan and Deistler (1988)]. 

This procedure presents a computationally efficient method for the analysis of time 

series data, i.e. the parameters at the kth stage may be explicitly estimated from the 

required information available from the (k-l)th stage for k=2,3,4,... Subsequently

l < t < S  
S < t <T

( 8.2)
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the value of a forgetting factor which is allowed to change can be determined as 

the time updating process is conducted (the dynamic forgetting factor).

Furthermore, the order selection criterion, that is MHQC as suggested in Section 

7.4, could be used to select the optimal subset AR model. MHQC is defined by

MHQC = log dJ,T + [2 log log f(T)/f(T) ]N,

T

where f(T) = ^ kt_; = T -T e +1 is the effective sample size, Te denotes the time
i=l

index of the first observation of the effective sample, y(Te), ..., y(S), ..., y(T), N is 

the number of functionally independent parameters, and GpT is the sample

estimate of a 2.

This chapter is organised as follows. Section 8.2 reviews subset AR modelling 

with a forgetting factor, and discusses AR order selection. Section 8.3 introduces 

two procedures -  the bootstrap and the TRML estimation -  to determine the value 

of the forgetting factor. Section 8.4 presents two illustrations to demonstrate the 

usefulness of the proposed procedures. A summary is provided in Section 8.5.
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8.2 Subset AR Modelling with a Forgetting Factor

In recent years, an interesting development in time series analysis has been the 

theory of subset AR modelling. Empirical research has shown that it is impractical 

to ignore the possibility of zero coefficients in AR models, and the estimation and 

forecasting results could be very different if the presence of zero coefficients is 

allowed [see Penm and Terrell (1984a, 1984b), Penm et al (1997)]. This section 

presents the method which incorporates a forgetting factor into subset AR 

modelling.

To incorporate either a fixed or dynamic forgetting factor into subset AR 

modelling, the superscript T denotes the transpose, and (8.1) is re-written with the 

following representation:

H t  ä p  (^S ) U p , T - l  — § T ’ ( 8 - 3 )

where Is denotes an integer set with elements ij, i2, is , l<ii<i2, •••, <is, which 

represent zero coefficients in the subset AR model.

The variables in (8.3) for a given Is can be defined as follows. Let

Üt = I VKo y(T) y(p +1) - * **>/kt -2  y(2)VKT_i y(l)],ap = [a, •••ap],

eT =[e(T)-••£(!)] and
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"Vm '(T -I)

V^y(T-P)

then a j( ls) is formed by placing 0 in the (ii, h, is)-th column elements of a  ̂. 

In (8.3), ap(Is) can be estimated using the least squares method. However, there 

are p possible zero or non-zero coefficients in (8.3), which implies the existence of 

2P possible subset AR models in the form of (8.3). To select the optimal 

specification of a subset AR model, Penm and Terrell (1984a) developed a tree 

search algorithm in conjunction with order selection criteria. This procedure can be 

utilised in a straightforward fashion to determine the optimal specification for 

(8.3).

As mentioned earlier, the forgetting factor has mainly been used in the analysis of 

non-stationary time-series based on AR model parameter estimation and order 

selection. The usefulness of order selection criteria in determining the specification 

of such a model was examined by Paulsen (1984) and Pötscher (1989). For a 

similar class of order selection criteria these researchers showed that results on 

consistency, which are valid in the stationary case, can be generalised to processes 

with roots which are on or within the unit circle. Empirical studies have been 

undertaken by Paulsen (1984), Goto et al (1995), and Penm et al (1997), to 

examine the efficiency of order selection criteria in determining the order for a 

system in the analysis of non-stationary time-series. The results indicate that the 

performance is broadly consistent with that of stationary systems reported by Penm
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and Terrell (1984b). Given these results, the procedure developed by Penm and 

Terrell, together with order selection criteria, can be extended to identify the subset 

AR model for an integrated series. Thus the method presented above can be 

applied to the analysis of non-stationary series including a forgetting factor.

8.3 The Bootstrap and the TRML Estimation to Select the Forgetting Factor

An important issue relating to the use of the forgetting factor in AR modelling is 

how to determine its value in various applications. The conventional methods are 

typically based on arbitrary or personal choices. Section 8.3.1 introduces the 

bootstrap to select the value of a fixed forgetting factor. Section 8.3.2 utilises the 

TRML, in conjunction with the bootstrap, to estimate the value of a dynamic 

forgetting factor.

8.3.1 The Bootstrap for a Fixed Forgetting Factor

The bootstrap is a statistical technique which permits the assessment of variability 

in an estimate using just the data at hand (Efron 1982). The idea is to approximate 

the theoretical distribution of a disturbance term by its empirical distribution and 

re-sample the original observations in a suitable way to construct ‘pseudo-data’ on 

which the estimator is based. Measures of variability, confidence intervals and 

even estimates of bias can then be obtained by repeating this process. The use of 

the bootstrap to evaluate forecasting models was first suggested by Peters and 

Freedman (1985).
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To reduce computational complexity the bootstrap is applied to univariate AR 

modelling in this section. The approach can be extended to VAR, VECM and 

VRDL modelling.

As noted in Section 8.1 the observations y(t) {t=l, 2, ... ,T} are available, this 

time-series is then fitted to Equation (8.1) with a fixed forgetting factor, X. 

Forecasts can then be produced using the following equations:

y(T + 1) = - 0 PiT(I,)[y(T)-. y(T - p + 1)]T , 

y(T + 2) = - 0 p,T(Is)[y(T + !)••• y(T - p + 2)]T ,

y(T + i -1 ) = - 0 p T(I5)[y(T + i -  2 ) -  y(T+i -  1 -  p)]T , 

y(T + i) = - 0 I>iT(I!)[y(T + i -1 )-  y(T + i - p)]T ,

where 0pT(Is) is the estimate of a* (Is) using data up to y(T), and y(T + i), i= l , ..., 

f, are the forecasts based on data up to y(T).

Now the bootstrap can commence with the estimated 0p T(Is) . For a large sample 

case the effect of KT_t declines as time t decreases from time T. At the point where 

t falls to Te the effect of KT_t becomes negligible and diminishes to a value which 

is less than a tolerance r\. Therefore a natural choice of the starting values to 

generate the pseudo-data would be the observations y(Te -p ), ..., y(Te -1 ) . If the 

sample size is small, then Te is irrelevant and should be equal to p+1. Thus the 

starting values would be the observations y(l),..., y(p).
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The estimated residuals can be obtained from the following equations:

e(t) = VKT-t y(t) ~ V KT-t 0P,T(!s )ty(t - 1) • • • y(t -  p)]t , t =Te, T .

Consequently, the pseudo-data, y*(Te), ..., y*(T), and the pseudo-future, 

y*(T + l) , ..., y*(T + f), can be obtained from the following equations with re

sampled residuals. That is:

[y(Te - D "  ■■ y(Te -  P ) f +

V ^ y '  (T -1) = - V ^ 0 pT ( Is )[y (T -  2) • • ■ y(T -  p -  1)]T + C ,

= - ^ e pT(Is)[y(T  - 1 ) -  y (T -  p)]T + §;

V y  y* (T +1) = - V C  ep,T ( Is )[y(T) • • • y(T -  p + 1)]T + e*T+1,

VC y* (t + f ) =-VC 0P,T (!s)[ y(T + f  -  *) • • • y (T + f  -  P)]T+ e;+f,

where ^/k~"= 1, i=0, ..., f, and e*, t=Te, ..., T+ f is obtained by randomly drawing 

from es, s=Te, ..., T, with replacement. To reduce the effect of initial values, the 

first 100 outputs from a uniform-distributed random number generator are 

discarded.

The AR model can be re-estimated using the pseudo-data y*(Te), ..., y*(T). 

Likewise a set of pseudo-forecasts, y*(t), t=T+ l, ..., T+f, can be produced. The 

pseudo-errors, y*(T + i) -y * (T  + i) , i= l,  ..., f, can also be calculated. Thus the 

distribution of the pseudo-errors can be used to approximate the distribution of the 

actual forecast errors.
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The bootstrap procedure can be repeated many times. Now let rjx denote the 

standard error of the i-th forecast. Following Penm et al (1992) the overall 

standard error (OSE) is the average of the standard error of each forecast:

O S E = £ (l/f )? ,.
i = l

The OSE is then used to assess the performance of the bootstrap procedure. The 

bootstrap procedure with a fixed forgetting factor is suitable for a model in which 

the underlying relationships between the variables involved change smoothly and 

gradually. Non-stationarity is not a concern, because the smaller is X,T_t , the more 

rapid is the forgetting.

8.3.2 The TRML Estimation for a Dynamic Forgetting Factor

In this section the time-recursive maximum likelihood (TRML) estimation for 

updating of a subset AR model with a dynamic forgetting factor is formulated. The 

concept of a dynamic forgetting factor is introduced by Fortescue et al (1981) to 

avoid a ‘blow up’ of the covariance matrix of the estimates and subsequent 

unstable control.

Following Hannan and Deistler (1988), the time-update recursions for the TRML 

estimation with a fixed forgetting factor, \(i)=X can be described as follows.

199



Consider

-p.t —p,t-i §pte p,t’

where t denotes the vector of coefficients estimated using data up to y(t). Let 

i P,i = [y (0  y ( i- l) -"  y(i-p  + l)]T- Then e pt = y(t) + £ ( £ ,_ ,  xpl_, is the
i=l

prediction error, g t = Pp t_jxp t[^ + *p tPp t_i2LP J _1 is the Kalman gain vector, and

1 t
Ppt = — [Pp t_i -  g p t x p,t^p.t-i 1 ls the inverse information matrix. The asymptotic

memory length is defined as L=l/(1-X), which means that the information dies 

away with memory length, L.

In order to reduce computational complexity, Carayannis et al (1986) have 

presented a number of time-recursive algorithms based on the pre-windowed 

method for full-order AR modelling with a fixed forgetting factor. Toplis and 

Pasupathy (1988) have introduced a fast a posteriori error sequential technique 

(FAEST) type of algorithm for full-order AR modelling with a dynamic forgetting 

factor. These algorithms are theoretically equivalent to TRML estimation and are 

computationally efficient. However, they cannot be applied to subset AR 

modelling without modification. If zero coefficient values were assigned to the 

missing lags in subset AR models and these algorithms were applied in a 

straightforward fashion, the properties of subset AR models will disappear and the 

time-recursive algorithms would fail. For subset AR modelling with a fixed 

forgetting factor, Penm et al (1995, 1997) have developed an applicable algorithm 

for the time-update recursions. In the following, this algorithm is extended to
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subset AR modelling with a dynamic forgetting factor. As the Kalman gain vector, 

g , is efficiently updated at successive time instants, this algorithm can be
—  P»t

regarded as a fast Kalman type of algorithm for subset AR modelling.

To introduce this time-recursive algorithm, a backward subset AR(p) model is 

considered as follows.

p

y(t -  p) + X  bi (Ms)y(t - p + i) = e(t, Ms), { bi (Ms) = o, as i e  Ms,} (8.4)
i=l

where e(t,M s) is a zero mean Gaussian white noise disturbance term, and Ms 

represents an integer set with elements, mi, m2, ..., ms, denoting the zero 

coefficients, mj=p-ij and j= l, 2, ..., s. A reciprocal integer pair for a forward subset 

AR model and a backward subset AR model is a pair of (8.1) and (8.4). Figure 8.1 

illustrates the reciprocal integer pairs for all subset AR models with a maximum 

order of 4, i.e. K=4 and K>p. In this figure, numerals denote particular lags in a 

forward AR and underlined numerals represent such leads in a backward AR. 

Since the actual scheme of (8.4) may not be exactly of order K, the resulting 

estimates of bp are denoted by bp/r(k), where T is the sample size.
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Figure 8.1

The reciprocal integer pairs of a subset AR model with K=4a

Forward Backward Forward Backward
AR AR AR AR

1 I 12 12

2 2 13 23

3 3 14 34

4 4 23 13

24 24

34 14

Forward
AR

Backward
AR

Forward
AR

Backward
AR

123 123 1234 1234

124 234

134 134

234 124

“Numerals represent particular lags in a forward AR and underlined numerals denote such 
leads in a backward AR.

Next, following Toplis and Pasupathy (1988), for observation i the following 

relations arise:

yT =[y(i) y(i - 1)---y(i - p)] where y(j) = 0 for j < 0 and —P.i

zjxi = [> T - i(T )y(i) VKT- i ( T - l ) y ( i - l ) -  > T - i (T -p )y ( i -p ) ] ,

with Ka(T) = a > 1 

a < 1
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and

V T - p ) ,
'A-(T)

a  t  = p,T

Mt - pX
7,(T -1 )

M T -p )
X(T -  p +1)

Thus, for a forward AR(p, Is) fitted with this data set, the following relations 

emerge:

Rp,x (Is) ^ ^ p , T , i ( L s ) Z p X i ( L s )  ,

Rp,T (is)
1 V p ,T  ( i s )

. a j . r d s ) . 0

and the forward prediction error epT+1(Is) = [l a JT(Is) r pT(Is)]ypT+i(Ls), where 

ap T = [apT(l) a pT(2) ••• a pT(p)] with a p T(k) denotes the estimate of a k in
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(A.4.1), and vpT is the forward residual sum of squares. If Ls represent an integer

set with elements Zj, j=l, s, and /j=ij+l, then zpXi(Ls) and y . (Ls) are formed 

by removing the (/i, /s)-th row elements of zpTi and y . respectively, aJT(Is) is
—  P 'i

formed by removing the (ii, 12, ..., is)-th column elements of apT, and r pT(Is) is 

formed by removing the (ij, 12,..., is)-th rows and columns of rpT.

In addition, for the corresponding backward AR(p, Ms), the following relations 

arise:

hp i  = t bp,i(p)-" bp,T(l)L RP,i (Ms)

T

D p .T  (Ms) =  2 X - l . T . i ( M s ) 4 - l . T , i ( M s ) ,  
i=l

gpT(Ms) = D-p!T(Ms)yp_1T(Ms), 

ßp.T (Ms) = l - y ' IT(Ms)gpT(Ms),

and the backward prediction error epT+1(Ms) = [bpT(Ms)̂ 2pT(Ms) l]ypT+j(Ms), 

where vpt(Is)is the backward residual sum of squares, bpT(Ms) is formed by 

removing the (p+l-mj), ..., (p+l-ms)'th column element of bpT, and y^_).(MS) is 

formed by removing the (p+l-mi), ..., (p+l-ms)'th row element of y .. Thus
— p-l.i

bj.r (Ms) 0

1 _vp,t(M s)_
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is formed by removing the (p+l-m i), (p+ l-m s)'th rows and columns of

QpT. Of note, p+l-mj=l+ij=/j, and thus

y (M ) = y (L ) ,
£ . p- i , i v £_p- i , i v s / ’

and

Rp,T(Ms)=Rp)T(Is).

Next, the new information y(T+l) is assumed to be available and a backward 

A R (p+l, Ns) model fitted with the sample, y( 1), ..., y (T+l) is considered, where nj 

of Ns has the relation nj=mj+l. As a result:

"p+l,T+l (Ns) — 2  -p.T+u (M s )zp>T+1>i (M s),

g p+,T+i(Ns) =  Dp+l.T+i (Ns)y p lJ  (M s),

ßp+l,T+l ( N s ) i - y P.T+, ( M s >gp+1.Tt , (Ms).

When a backward AR(p, Ns) model fitted with the sample, y(l),..., y(T) is 

considered, the following relations emerge:
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Dp+i.T+i (Ns) — ^  Z p  T+] i (Ms )zp T+| j (Ms),

gpt.Ttl(Ns) = DpV,,T+i(Ns)yp_1T(Ms),

ß p + l ,T + l ( N s )  -  1 ■ Xp.T+l ^Ip+l.T+l (Ms)-

Suppose apT(Is), ypT+|(Is), ßp,T(N5), gpT(N s), bpT(Ms),vpT(Is), vpT(Ms) and 

A,(t) are available, then the proposed time-update recursions are as follows:

Forward time-update recursions from T to T+l

ep.T+i(I.) = [l äp,T(I.)FpT(I.)]ypT+l(Ls)

e p,T+l (^s)  =  e p , T + l ( I s ) ß p , T ( ^ s )

—p,T+l ( ! s )  =  ä p ,T  ( I S ) ^ p , T ( I s )  “  g p T ( N s ) e p,T+l ( I S )

Vp,T+1 (Is) = ^(T)vPiT (I,) + £p T+1 (Is )epT+1 (Is)

ßP+i,T+1(Ns) -  ßp,T(Ns) — Vp,T+1(Ii )ep,T+1(Is)

W N  ̂= M Ns)
+

äp,T+l(Is) v;1T+i(Is)ep,T+i(Is)

(8.5.1)

(8.5.2)

(8.5.3)

(8.5.4)

(8.5.5)

(8.5.6)
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pärtilion gp+1J+1(N ,) =
d
d

V+,(MS) = X(T -  p)dVp.T(M,)ßp| 1 T+1 (Ns) (8.5.7)

ßp.T+i (M ,) = ßp+1,T+1 (N ,) -  epT+1 (M ,)d (8.5.8)

e p,T+1( M s )  = ep,T+l(M s)ßp,T+1(M s) (8.5.9)

g_Ti,(M s) =
d -b „ .T(M s)QpT(Ms)d

-p.T+1

-P.T

1 -  e p.T+1 (M )d
(8.5.10)

V +i ( M s )  = M T -p ) v piT(M s) + 8pJ+1(Ms)ep>T+1(Ms) (8.5.11)

bp,T+1(M s) = b p>T(M s) a p>T(M s) - g pT+i(M s)ep,T+1(M s) (8.5.12)

If there is a consecutive set of k deleted leads beginning at lead 1 in the backward 

AR(p, Ms), then the following relations arise:

l P.Ttl(Ms) = gp.kT+1(Mk)and ßpT+l(Ms) = ß„.k,T«(MO . (8-5.13)

where Ms contains mi, ..., mk, ..., ms, mj=j, j= l, 2,..., k, and Mk contains mk+i-k, ..., 

ms-k.
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If there is a consecutive set of k deleted leads beginning at lead p in the backward

AR(p, Ns), then

8pX(Ns) = Sp.t,T_k(Nk)and ßpJ(Ns) = ßp.k,T. k(N„), (8.5.14)

where Ns contains ni, ns.k, ns.k+i, ns, ns+i.j=p+l-j, j= l, 2, k, and Nk 

contains n i , n s.k.

For full-order AR models with the fixed forgetting factor, that is all Is, Ms, Ns are 

empty sets and A(t) = X , the proposed recursions become the most efficient 

version of the fast Kalman algorithm presented in Carayannis et al (1986).

Following Cho et al (1991), the dynamic forgetting factor, ^(t), is selected to 

satisfy the following condition:

MO = 1 -  T y r . where L(t) = —— (8.6) 
L(t) q,(l-^ma*)

where a] is the expected measurement noise variance based on real knowledge of 

the process, Xmax is the upper limit value of the dynamic forgetting variable. The

extended prediction error variance which accounts for the non-stationarity of the 

signal is defined as

qt (8.7)
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where M is chosen to minimise the effect of a spurious large additive prediction 

error. Once the value of A(t) is determined, this value and its associated forgetting 

profile are incorporated into the proposed time-update recursions. As described in 

Section 8.1, the optimum subset AR model is then identified using MHQC.

Suppose the above time-update algorithm is undertaken for a subset AR model 

with K=4, and apT(Is), ypT+|(Is), ßp.T(Ns), gpT(Ns), bpT(Ms), vpT(Is),

vpT(Ms) and A(t) are all available. One possible initialisation of the recursions is

to carry out the direct method for an initial block of the sample set. By employing 

the equations (8.5.1 )-(8.5.12), apT+l(Is), bpTtl(Ms), vpT+1(Is) and vpT+l(Ms)

can be obtained for each reciprocal integer pair of the AR(p, Is) and AR(p, Ms) at 

T+l. Equation (8.5.13) indicates that both gpT+1(Ns) and ßpT+1(Ns) for certain

backward autoregressive models also arise from another backward autoregression. 

In Figure 8.2, dashed lines provide the illustration. Thus, gpT+1(Ns) and

ßp.T+i(Ns), corresponding to the backward autoregressions including lead 1, are 

required to carry out the recursions. However from (8.5.14) both g (Ns) and 

ßpT(N s) for certain backward autoregressive models also arise from another

backward autoregression. Solid thick lines in Figure 8.2 illustrate the recursions 

using (8.5.14) and solid thin lines illustrate the recursions without using (8.5.14). 

Figure 8.2 also indicates how to acquire the Kalman gain vector of each reciprocal 

integer pair of the forward and the backward autoregressions with K=4 from the 

time-update recursions. Indeed, after the initialisation is completed, g (Ns)for
— p,T
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the next time-recursion can be obtained. Thus the algorithm can be carried out

continuously.

Figure 8.2

Recursions to acquire g and ß for each reciprocal integer pair of the forward

and backward AR models (K=4)a

T=77 T=78 T=79 T=80

1234

123

124 
134

234

12

13

14 
24 
23

34
1
2
3
4

a Only the backward AR of each pair are listed. Solid thick lines represent the [ g pj(N s), 

Pp,t(N s)] to [gp,T+i(Ms), ßP,T+i(Ms)] recursions using (8.5.14), Solid thin lines represent the 
[ g p,t(N s), ßp,i(Ns)] to [g p,t+i(M s), ßp,x+i(Ms)] recursions not using (8.5.14), and dashed lines 

denote g P,T(MS)= g p-kJ(Mk) and ßp,T(Ms)=ßp.kj(M k).
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8.4 Case Studies

This section presents two case studies to demonstrate the effect of the forgetting 

factor method in subset AR modelling on ex ante forecasting of non-stationary 

time-series. Section 8.4.1 uses the bootstrap to examine the fixed forgetting 

factor on three real exchange rates. Section 8.4.2 uses the TRML, in conjunction 

with the bootstrap, to test the dynamic forgetting factor.

8.4.1 Use of the Bootstrap to Determine the Value of a Fixed Forgetting 

Factor

In this case study the bootstrap is utilised to determine the value of a fixed 

forgetting factor with a given sample. The effect of the fixed forgetting factor on 

forecasting is examined. The exchange rates under study are the bilateral 

exchange rates between the US Dollar and three other currencies comprising the 

German Deutschmark, the UK Sterling and the Korean Won. A real exchange 

rate series provides a measure of the international competitiveness of the 

economy, and a stable real exchange rate series means that business firms face 

minimal economic risk. Therefore real exchange rates are studied.

The real exchange rates are obtained by adjusting the monthly average nominal 

bilateral exchange rates by the inflation rate differentials approximated by 

movements in the wholesale price indexes in the respective countries. The sample 

period covers January 1975 to December 1993, a total of 228 observations. All 

the series are in logarithms and are obtained from DataStream™. Figure 8.3
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presents the real exchange rates for the USA with Germany, United Kingdom and 

Korea. The non-stationarity in the real exchange rate series was first examined, 

using the augmented Dickey-Fuller (ADF) unit root test. The results indicate non- 

stationarity in each of the real exchange rate series.

To decide how best to explain the movements of these series, which may be 

slowly evolving, the forecasting performance is compared using subset AR 

modelling, both with the forgetting factor and without the forgetting factor. If the 

series are better described by subset AR models using the forgetting factor, 

theorems based on stationarity would have less meaning. The findings reported 

below indicate consistently improved forecasting performance from the AR 

models using the forgetting factor. To briefly illustrate the potential use of the 

forgetting factor for improved forecasting performance in time-series which are 

non-stationary, only the bootstrap procedure is used.

To determine the specifications of the subset AR models, the Penm and Terrell 

(1984a) procedure is utilised with the forgetting factor incorporated in each of the 

AR models. As part of the approach, a forgetting process is introduced. In this 

process, ‘forgetting’ occurs from observation 148 to observation 1 (that is, T- 

S=80, where T=228 and S=148).
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Figure 8.3

Real exchange rates for the USA with Germany, United Kingdom and 

Korea, monthly: January 1975 to December 1993
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Another forgetting process is also carried out. In this process, the last 30 

observations are kept unchanged and the effect of XT_t has been assumed to be

negligible when XT_t is less than the tolerance 10'7. The subset AR specifications

with different forgetting factors are determined. Subsequently six ex ante 

forecasts are conducted. The subset AR specifications determined, and their 

associated percentage of improvement, are consistent with the results obtained in 

the T-S=80 case. The choices of 30 and 80 are for illustrative purposes only. A 

number of different values are assigned to the forgetting factor. The determined 

specifications for each AR model with different forgetting factors are presented in 

Table 8.1 These AR specifications are determined using MHQC.

It is interesting that in most cases the subset AR specifications determined with 

the forgetting factor are different from those without it. As the value of the 

forgetting factor is gradually reduced, changes to the specifications are also 

evident.

Table 8.1

Order of the subset AR models determined using MHQC

German UK Korean
Deutschmark Pound Won

Forgetting
Factor

Order Order Order

1.0 (1) (12 3) (3 7 9 10)
0.99 0) (12 3) (3 7 9 10)
0.97 (1) (12 3) ( 1 2 3 89 11)
0.95 (12) (12 5) ( 1 23 89 11)
0.93 0  5) (12 5) ( 1 2 3 89 11)
0.90 (12) (12 5 10) ( 1 23 89 11)
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To examine the effects on forecasting the root mean squared error (RMSE) is 

computed, for six one-period-ahead ex ante forecasts outside the observed sample 

data respectively, generated by these subset AR models. Using the AR model 

without the forgetting factor as the baseline, the percentage of improvement (or 

deterioration) is calculated for each subset AR model with the forgetting factor. 

The percentages are presented in Table 8.2 under the column ‘Data’.

Table 8.2

Improvements3 over ex ante forecasts using the forgetting factor

German
Deutschmark

UK
Pound

Korean
Won

Forgetting
Factor

Data Bootstrap Data Bootstrap Data Bootstrap

% % % % % %
0.99 0.0 4.6 -1.2 - 1.5 0.3 0.0

0.97 12 .6 * 13 .7 * - 1.6 1.7 15 .7 * 4 0 .0 *

0.95 6.7 11.7 7.4 14.2 14.2 29.7

0.93 6.7 7.7 8 .7 * 35 .8 * 12.1 23.8

0.90 7.3 7.0 4.5 30.1 10.3 23.2

“The improvements are expressed as percentages of the results when a forgetting factor is 

not included. The bootstrap results are based on 100 replications. The symbol * denotes 

the maximum improvement.

As portrayed in Table 8.2, the improvement (or deterioration) differs across cases. 

This creates a need to apply the bootstrap to determine the value of the forgetting 

factor. In Table 8.2 the bootstrap results based on 100 replications are also 

presented (using the label ‘Bootstrap’). Examination of the pseudo-errors across
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each replication in this exercise shows very stable results, indicating that 100 

replications are sufficient. As the OSE is employed to approximate the real 

forecast errors, the forgetting factor which produces the smallest OSE is expected 

to bring about the most significant improvement. For each case the improvement 

is also presented as a percentage of the OSE obtained from the AR model without 

the forgetting factor. Interestingly the bootstrap results are very consistent with 

those obtained using real data. That is, in almost all cases, the forgetting factor 

which generates the smallest OSE also produces the smallest RMSE in 

forecasting using real data. Also the bootstrap ensures more significant 

improvements in the forecasting performance. The outcome generally indicates 

that the bootstrap is a reliable procedure for determining the value of the 

forgetting factor in subset AR modelling.

However as the number of replications for the bootstrap increases (beyond 100), 

the execution time required becomes very considerable, and the associated costs 

are unaffordable. Clearly, a trade-off is required. Although the algorithm of the 

bootstrap is superior in the improvement of forecasting performance, some 

sacrifice in computational efficiency is unavoidable.

8.4.2 Use of the TRML to Estimate the Value of a Dynamic Forgetting 

Factor

In this second study, the daily All Ordinaries Index (AOI) sample covering the 

period 15 June 1995 to 14 May 1996, a total of 211 observations. The index series 

is in logarithms and presented in Figure 8.4. Since the series exhibits varying 

periodic behaviour and is non-stationary, it is preferable to be assessed by subset
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time series models, which will be selected sequentially [see Penm et al (1995)]. A 

linear trend exists in this series and is removed before the forgetting factor analysis 

is conducted.

Figure 8.4

The All Ordinaries Index levels series over the period 15 June 1995 to 14
May 1996

8/9/95 5/ 12/9515/ 6/95

To conduct the TRML estimation, an initial subset AR model with a forgetting 

factor is required. To determine this initial model, the bootstrap procedure 

described in Section 8.3.1 seems to be a reasonable choice. Applying the procedure 

over the first 195 observations, the results indicate that the specification of the 

initial subset AR model is (1, 5, 7), and the value of the forgetting factor is 0.99. 

The value of a 2 T is also calculated from this estimation.
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Given these results, the TRML estimation for T+l=196 is then conducted. The 

selection of the dynamic forgetting factor depends on the value of Amax, Amin, M 

and d g . As the series under investigation is non-stationary after trend removal, an 

upper bound at Amax = 0.9995 is chosen. To prevent A(t) from becoming negative,

Amin is set at 0.75. As reported in Cho et al (1991), the value of M is small enough 

not to obscure the non-stationarity of the signal. However if this value is too small 

the effect of a spurious large additive prediction error would become significant. 

This adverse effect leads to a wild fluctuation of the dynamic forgetting factor to 

be used in the next recursion of TRML estimation. These results indicate that M 

should be larger than 5 both to achieve a smooth updating of the dynamic 

forgetting factor and to prevent a large spurious noise error from creating the 

calculation of a misleading dynamic forgetting factor. Also the larger that M is, 

the higher is the likelihood of over-averaging conducted by qt. Subsequently the 

non-stationarity of the signal is obscured. Therefore the value of M is set at 6. For 

a stationary time series, Cho et al (1991) indicate that g; approaches qt. In this 

illustration the quantity d 3 is set at 10~4, which is approximated by averaging the 

squared residuals of the initial model [see Toplis and Pasupathy (1988)].34

The value of A(196) is calculated at 0.975 (Table 8.3). This value is marginally 

different from that determined in the initial model. This dynamic forgetting factor 

is then incorporated into the proposed TRML to select the updated subset AR 

model. The order specification of this updated model remains as (1, 5, 7). To

34 Fortunately, the performance of the proposed algorithm appears to be insensitive to 

this quantity. Too small a value of d 3 may lead to a corresponding growing residual, 

which is not obtained.
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examine the effects on forecasting, the RMSE for six forward forecasts is again 

calculated. Compared with the subset AR model not utilising a forgetting factor, 

Table 8.3 shows that a 36.4 percent improvement in forecasting performance is 

achieved by using this updated model utilizing the forgetting factor.

This time-update is also undertaken for observations y(t), t=197, ..., 205. The 

values of the dynamic forgetting factor, A(t), t=197,..., 205, the updated subset AR 

models, and the improvements in forecasting performance, are presented in Table 

8.3.

For the purpose of comparison, the bootstrap is also conducted in a time-update 

fashion for the same sample period. As previously presented, a range of possible 

values are first assigned to the fixed forgetting factor, and each of the associated 

subset AR models is determined using the algorithm proposed by Penm and Terrell 

(1984a). In the course of the bootstrap, 100 replications are performed for each 

case. In addition, ‘forgetting’ is set to begin immediately, that is S=T. To assess 

forecasting performance the RMSE for six forward forecasts in each case is also 

computed. These results are also presented in Table 8.3.
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Table 8.3

The TRML estimation and the bootstrap results for the AOI

The TRML Estimation The Bootstrap Estimation

t Order Forgetting factor Improvement“’11 Order Forgetting factor Improvement“
196 (15 7) 0.975 36.4% (15 7) 0.99 46.8%
197 (15 7) 0.988 46.3% (15 7) 0.99 45.2%
198 (14  7) 0.999 63.8% (14 7) 0.99 63.3%
199 (14 7) 0.999 63.4% (147) 0.99 63.2%
200 (15 7) 0.999 64.9% (15 7) 0.99 65.8%
201 (15 7) 0.994 68.3% (15 7) 0.97 70.0%
202 0  5 7) 0.996 58.7% (15 7) 0.97 61.1%
203 (15 7) 0.999 39.1% (15 7) 0.98 44.5%
204 (15 7) 0.999 32.4% (15 7) 0.98 38.0%
205 (15 7) 0.985 23.4% (15 7) 0.97 30.3%

a Expressed as percentages of the results when a forgetting factor is not included. 
D X=.99 for the initial period.

Interestingly, the subset AR models determined in this fixed forgetting factor 

analysis exhibit the same specifications as those selected in the TRML procedure. 

This indicates that the value of the forgetting factor is the main contributor to 

forecasting improvement. It is also noteworthy that the forgetting profiles are 

different in these two procedures, even though the forgetting factors determined in 

these two procedures have the same value. It is also observed that X is generally 

higher than that for exchange rates.

In theory the inclusion of a dynamic forgetting factor in AR modelling, using the 

TRML estimation, should have the potential to outperform the bootstrap in a time- 

update fashion. This is because the former possesses a higher degree of flexibility 

in terms of the ‘forgetting’ process, which should lead to superior modelling, and
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hence improved forecasts. However this is not fully supported by the results (see 

Table 8.3), although noting the small sample size. One possible explanation is that 

the TRML estimation relies on asymptotic theory, while the bootstrap is based on 

an empirical distribution associated with the data sample for each series.

A comparison of the computer-execution time between the TRML estimation and 

the bootstrap in a time-update fashion is then conducted. The execution time 

required for the specification of subset AR models, and the associated values of the 

forgetting factor determined by each proposed procedure, are recorded. The results 

of the comparison indicate that on average the execution time for the bootstrap is 

around five times longer than that for the TRML estimation. As the number of 

replications for the bootstrap increases and is larger than the current practice of 

100 replications, the execution time required becomes substantial and the 

associated costs are unaffordable. Although the algorithm of the bootstrap is 

superior in conceptual simplicity and easier to maintain, sacrifice in computational 

efficiency is unavoidable.

8.5 Summary

In this chapter, two procedures were presented which can be used to determine 

the value of the forgetting factor in subset AR modelling. The first was based on 

the bootstrap to select the value of a fixed forgetting factor. The second used the 

TRML estimation, in conjunction with the bootstrap, to estimate the value of a 

dynamic forgetting factor. Two case studies were conducted. First, the bootstrap 

procedure, applied to real exchange rates, demonstrated that it is reliable in
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determining the value of the fixed forgetting factor. Second, the TRML 

estimation procedure, applied to the AOI, showed that it is effective in deciding 

the value of the dynamic forgetting factor. The results consistently indicated that 

the forgetting factor, so determined, can bring about significant improvements in 

forecasting.
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CHAPTER 9

SUMMARY AND CONCLUSIONS

In this thesis advanced non-linear statistical and econometric models have been 

combined and developed, in the context of international financial markets. The 

goal of this thesis was to derive new modelling techniques, and improve our 

understanding of the price behaviour of financial markets, particularly foreign 

exchange markets, thereby adding to the stock of knowledge on these topics.

VAR models are a useful tool to analyse relations within and between financial 

markets. In such models, there are structures that require zero entries in the 

coefficient matrices. The main contribution of the thesis has been the 

development of parsimonious ZNZ patterned vector time-series models, which 

allow for possible zero entries in coefficient matrices. These patterned models 

have been applied to a wide range of problems arising in exchange rate 

applications.

More specifically, this thesis has shown that a direct extension of the use of the 

Yule-Walker relations for fitting ZNZ patterned VAR models is inconsistent with 

statistical procedures as the resultant estimated variance-covariance matrix of the 

white noise disturbance process becomes non-symmetric. This inconsistency can 

hinder efforts to effectively test financial theories. Chapter 3 provided a 

consistent adjustment which fits with statistical theory and allows necessary 

testing. The adjustment is consistent with statistical procedure in theory and has 

the advantage of computational efficiency and reliability.
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Chapter 4 then demonstrated that ZNZ patterned VAR models could be used as a 

basis for detecting Granger causality, Granger non-causality and indirect causality 

for stationary vector financial time-series. The identified Granger causal relations 

derived from the ZNZ patterned VAR models with unit roots were shown to be 

identical with the causal relations identified from those derived from the 

equivalent ZNZ patterned VECM.

Both Chapters 3 and 4 focused on an effective and efficient algorithm to select 

the optimal ZNZ patterned cointegrating and loading vectors in a ZNZ VECM 

framework for an 1(1) system. The algorithm can be applied to a higher order 

integrated systems. The proposed algorithm is simple to use and leads to an 

efficient analysis of the cointegrating relationships in vector financial time-series. 

To demonstrate the usefulness of this algorithm, applications to financial markets 

were presented.

In Chapter 5 the procedure for selecting the optimal ZNZ VAR was utilised to 

investigate direct Granger causal relations between the money supply and the 

Euro exchange rate. These two variables have important linkages and their 

relationship has not previously been examined in the context of the European 

Monetary Union. The empirical results are consistent with both theory and prior 

evidence.
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In Chapter 6 the relevance of PPP was tested using various exchange rate series. 

While empirical testing of the PPP hypothesis has received significant attention in 

the literature, the introduction of the cointegration theory under the framework of 

ZNZ patterned VECM modelling provides new opportunities to accommodate 

both long-term and dynamic responses. Three unit root tests were utilised for 

fourteen real bilateral exchange rates under examination. PPP was consistently 

accepted or rejected for only four exchange rates. For the remaining ten, PPP was 

accepted using the Kwiatkowski et al (1992) procedure, but rejected by the 

augmented Dickey-Fuller test and the Phillips-Perron test. These conflicting 

results are attributed mainly to the sensitivity of statistical procedures used in 

testing PPP to the associated null hypothesis. In an alternative approach, the PPP 

relationship was estimated in a ZNZ VECM framework. The determined 

specification gives support for the presence of PPP for seven out of fourteen 

exchange rates, and indicates that reliance on such a long-term relationship is 

influenced by the current assessment of the short-term movements in the 

exchange rate. The outcome suggests that emphasis on the specification could be 

useful in improving the test for PPP.

Further, two case studies using an 1(2) algorithm were analysed. The first case 

study examined PPP in the Australian market. The findings confirm support for 

the necessary condition of the PPP hypothesis for the bilateral exchange rate 

between the Australian and US Dollars. They also indicate that direct or indirect 

causality exists among the nominal exchange rate, domestic and foreign price 

levels. The second case study dealt with the inter-relationships between the stock 

market, money supply and inflation. These results confirm that money supply is an
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independent source of financial and economic disturbance, and money supply 

impacts on stock prices through inflationary pressures. These findings are generally 

consistent with both economic theory and prior evidence.

The use of computer-intensive statistical methods including neural networks, 

forgetting factor, and bootstrapping in financial time-series research has offered 

opportunities to provide new insights into financial time-series. Such methods are 

flexible in accounting for potentially complex non-linear relationships not fully 

captured by linear regression methods. In Chapter 7 a numerically robust lattice- 

ladder learning algorithm was developed. At each point of time it reassess the 

order and parameter estimation for a subset time-series system using ZNZ 

patterned polynomial neural networks. The proposed lattice-ladder learning 

algorithm for extended neural networks avoids cumbersome matrix inversion and 

results in better numerical accuracy and importantly captures slow evolution in 

the parametric model structure.

Chapter 8 introduced and developed the forgetting factor method in subset AR 

modelling. In contrast to the conventional methods which are mostly based on 

arbitrary or personal choices, this chapter proposed two procedures to determine 

the value of the forgetting factor. The first method used the bootstrap to select the 

value of a fixed forgetting factor. The second method utilised both the bootstrap 

and the TRML estimation to determine the value of a dynamic factor. The 

findings show that the forgetting factor so determined can improve the 

forecasting performance.
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The major theoretical contributions and empirical findings of this thesis have 

been presented in Chapters 1 to 8. The thesis also contains a number of 

appendices. The purpose of appendices is to provide details that support the 

models, contributions and findings included in the chapters. Appendix A 

supplements Chapter 3, Appendix B supplements both Chapters 4 and 6, and 

Appendices C and D supplement Chapters 7 and 8 respectively.

Some of the approaches developed in the thesis, such as parsimonious patterned 

modelling and computer-intensive statistical methods, are novel in nature. The 

combination of these advanced approaches have provided forecasting 

improvements in the performance of vector time-series models. The main 

theoretical contributions of the thesis are ZNZ patterned VAR modelling, ZNZ 

patterned VECM modelling, ZNZ patterned polynomial neural networks, the 

forgetting factor method and bootstrapping to enhance existing linear and non

linear modelling techniques. Various chapters demonstrated the usefulness of 

these techniques to exchange rate and equity markets, including PPP testing, 

causality analysis, cointegration investigation, non-linearity examination, and 

simulations and forecasting.

The overall findings indicate that if the underling structure of financial data is 

patterned then the ZNZ VECMs and the equivalent VARs are a more 

straightforward, certain and effective means of testing for Granger causality, 

Granger non-causality and indirect causality. Also, the use of patterned vector 

time-series models, together with computer-intensive statistical methods increases 

the modelling power over conventional time-series models. These innovative
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approaches are sufficiently flexible to capture both linear and non-linear important 

interactions within and between foreign exchange markets.

If there is a slow evolution in the structural parameters then such movement is able 

to be handled through time-update and order-update methods in ZNZ patterned 

modelling. If these shifts occur more quickly, then the forgetting factor method can 

be incorporated to assess each incoming observation and apply appropriate weights 

to update the model structure and the model parameters in terms of modelling and 

forecasting performance.

As a final comment, this thesis has been interdisciplinary in nature. Advances in 

each of the innovative statistical and econometric approaches will open up new 

modelling and simulation possibilities in the study of international financial 

markets.
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Appendix A: Supplementary Mimeo to the Thesis

This appendix links to Chapter 3 and discusses the following issues:

A.l Background information on the selection of the optimal zero-non-zero 

(ZNZ) patterned vector autoregression (VAR)

A.2 Problems of direct extension of the use of the Yule-Walker relation for 

fitting ZNZ patterned VAR models

A.3 Outline of how existing studies ignore the issue of estimating the covariance 

matrix

A.4 The standard least squares approach, GLS method and the maximum 

likelihood approach

A.5 Different studies that have employed the Yule-Walker equation to estimate a 

ZNZ patterned V AR

A.6 Comparison of the results with and without using the proposed covariance 

estimator

230



A.l Background information on the selection of the optimal zero-non-zero

(ZNZ) patterned vector autoregression (VAR)

/

A.1.1 Let y(t)= {yx(t), y2(t), ym(t)} be a zero mean, wide-sense 

stationary time series of dimension m. The vector AR (p) model of the form can 

be expressed as:

2] Aky(t -  k) = e(t), (A.l)
k=0

where A0=I, Ak, k=l,...,p, are the mxm parameter matrices and e(t) is an mxl 

stationary vector process with E{ s(t) }=0, and thus

E{e(t)e'(t-k)}'
V as k =0 

k >0

The sample lag covariance matrices

, N -k

rk = T r Z y (t + k)y ,(t)
^  t= i

obey the following Yule-Walker relations proposed by Whittle (1963).
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The Yule-Walker coefficient relations are:

p.

r j +Z Äkr^ = °  o =i.- ,p). (A.2.a)
k=l

The Yule-Walker residual variance-covariance relation is:

(A.2.b)
k=l

where Tk = T'k; N is the sample size, and Ak and V are the estimates of Ak and 

V respectively.

Note that, for the Yule-Walker relations, only the following p+1 lag covariance 

matrices are required to compute Ak and V :

Also a VAR model with allowance for zero entries is described as a ZNZ 

patterned VAR model, and a VAR containing all nonzero entries as a full-order

A.1.1.1 It is interesting to note that modelling researchers often use the 

assumption that if a coefficient matrix in the VAR is nonzero, then all the lower- 

order ones will be nonzero too. For example in the bivariate AR model when p = 

9, every entry a k(i, j) of Ak, k = 1, 2, ..., 9 is assumed nonzero. That is, they 

neglect the VAR (p) models with possible zero entries ak(i,j) in the coefficient 

matrices, Ak. However there are 24(9)=236 = 68,719,476,736 possible models in 

this example. More important, applications of VAR models to economic and

r r r0 ’ A I » ’ (A.3)

VAR.
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financial time-series data have revealed that zero entries are indeed possible. In 

such cases the use of a full-order VAR can produce inefficient estimation and 

inferior projections. Of course it is hard to find the optimal VAR without an 

effective and efficient approach. Since there are a huge number of candidate VAR 

models to be considered, computational costs in terms of execution time and 

memory storage should be controlled.

A.l.1.2 Penm and Terrell (1984a) proposed a search algorithm, using the Yule- 

Walker relations, for fitting VAR models in conjunction with model selection 

criteria, to select the optimal ZNZ patterned VAR models. However in their paper 

the estimate of V using the Yule-Walker residual variance-covariance relation of 

(A.2.b) was not analysed. Only the Yule-Walker coefficient relations were 

mentioned. A direct extension of the Yule-Walker residual variance-covariance 

relation to fit the ZNZ patterned VAR model is inconsistent with statistical 

theory, as the resultant estimated variance-covariance matrix of the white noise 

disturbance process becomes non-symmetric. The original use of the estimate of 

V = E{e(t)e/(t)} is computationally inefficient in terms of execution time and 

memory storage, because it requires an estimate of all individual mxl residual 

vectors, e(t) to conduct the computation of V. Section 3.5 presents a detailed 

analysis of the Yule-Walker residual variance-covariance relation, and derives the 

following equation for the estimate of V:

k=l j=l j=l k=l
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This equation presents a simple and straightforward formula which provides a 

theoretically consistent adjustment appropriate to statistical theory. This approach 

is one of the significant contributions of the thesis.

A.l.1.3 Definitionally V is symmetric in the true model of (A.l) and there is a 

requirement for the estimate V to conform to the behaviour of V. Therefore the 

estimate V must be a symmetric matrix. As a result a non-symmetric V resulting 

from the equation (3.5) in Section 3.4 is inconsistent with statistical assumptions 

of importance in financial theory. For instance, this non-symmetric V violates 

the symmetric condition required in Lee (1992) and in Penm and Terrell (1986). 

This violation indicates that, in practice, the innovation accounting (see Section 

A.2) described in Lee would not work, and a VAR model cannot be converted to 

its equivalent VMA model as proposed in Penm and Terrell to conduct testing for 

Granger-causality. Thus an adjustment to the Yule-Walker relations is required 

which is presented in Section 3.5.

A.1.1.4 Further, the advantages of using the Yule-Walker relations rather than the 

usual (standard) least squares (LS) approach are discussed in Section A. 1.2.1.2. A 

considerable amount of computational cost can be avoided when the Yule-Walker 

approach is used, and thus this approach has been selected. Since the 

conventional generalised LS (GLS) is derived from the commonly employed LS, 

therefore the conventional GLS does suffer from excessive computational costs. 

The ML approach is a non-linear approach which easily becomes infeasible as the 

number of parameters is large [see Chen and Zadrozny (1998)]. Thus this 

approach also suffers from unaffordable computational costs.
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A.1.2 Three model selection criteria are employed to select the optimal ZNZ

patterned VAR. They are

AIC=log V„ +[2/N]S,

HC=log Vp +[21oglogN/N]S,

SC=log Vp +[logN/N]S,

where S is the number of functionally independent parameters estimated.

The procedures to select the optimal ZNZ patterned VAR with the smallest value 

of each selection criterion are summarised in the following steps.

A.1.2.1 Step 1: To assign a maximum lag K

Clearly a maximum lag K must be chosen, so the order of the true model is less 

than this maximum lag. One suggestion is to use the classical sequential way as 

proposed in Penm et al (1999) to determine K. This means choosing M »  K and 

using each criterion to select the best full-order model among all full-order 

models with p= 0 ,l, ..., M. The order of this best full-order model is assigned as 

the value of K for each criterion.
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A.1.2.1.1 Fitting of full-order VAR models

Following Penm et al (1999), Equation (A.2.a) can be expressed as

a p r p = _ n p>
(A.4)

where Ap = iA, Ä2 a p). n

" r „ r, -  r i-p

r p =
r, r„

...
 ,

p

r M ^-2 -  r 0

A p } ’ n p = { r . r ,  . . .  r  } and

Analogously, to fit a VAR(p+l) model, the following arises:

A block Toeplitz matrix Cp+i is then formed:

(A.5)

Since Cp+i is a block symmetric matrix, the following block Choleski 

decomposition can be provided:

Cp+i — Lp+1Dp+1Lp+1, (A.6)

where Lp+1 is a lower block triangular matrix, and D p+1 is a block diagonal matrix 

with diagonal block entries d j , i = 1 ,..., p+1,
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Thus

' p + i r o -rpRp'Fp c v„

This relation leads to the following outcome:

where is referred to as the generalised residual sum of squares.

(A.7)

More importantly, in the course of computing V„ for the VAR (p) model, d l , \  =

1,..., p+1 will be obtained by using (A.7). Since dJ is the V for the VAR (i-1)

model, the generalised residual sum of squares for all the lower order VAR 

models fitted to the data are also obtained. Therefore a considerable amount of 

computational cost can be avoided.

A.l.2.1.2 The usual least squares (LS) estimation method is too 

computationally expensive

To fit a full order VAR (p) model of (A.l) for a given set of observations { y (t), t 

= 1,..., N}, the estimated V using the usual least squares method is as follows:

V = 1
N -p  J t ,

£ ; £i ' - ' i  ’

where Ej denotes the estimate of e -.

(A.8)
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For simplicity the scalar case is considered, (i.e. m=l). (A.8) can be rewritten as

v  = — —  Z ^ ®  -  Z ä kY( t  -  k ) ] [ y ( t )  -  y | a k y ( t  - k ) ] ' .

Thus the associated linear regression model can be expressed as

y ( N )  "
_

" y ( N  - 1) • • y ( N - p ) " “  a l

+
£ N

y (P  +  D_ y (p )  • • y ( i ) _ ~ a p_ ^p+1

The usual least squares estimate of ß = [- • • • -  ap J in the model

Y = Xß + r) is then:

ß = (X 'X^X 'Y.

As a result:

N-l N-l

Z y 2® Z  y(0y(i -  p + 1)

R l s ( P )  = ( X ' X )  =
i=p i=p

Z y ( i)y(‘ - p + »
i=p

N-p

Z y 2®

Analogously, to fit a VAR (p-1) model, the following arises:

N-l N-l

Zy2(i> Zy®y<!-p)
-l
N-p+l

Z y 2®

R ls(P- I )  =
i=p-l i=p-l

Zy®yö-p)
i=p—1

However R LS(p) * R l s ( P - I )  i

( A . 9)

Note that every (i,j) entry of R ^C p-l) is different from the (i,j) entry of 

R lsCp) . It is obvious that the LS method is quite different from the Yule-Walker 

approach.
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Thus, in fitting a VAR (p) model, the generalised residual sum of squares for all 

the lower order VAR models fitted to the data cannot be obtained by using the 

commonly employed LS method. R,^(p) for each different VAR model must be 

reconstructed from the observations to conduct individual fittings, and the 

observations must be saved in storage for reconstructing R ^ i^ i  = 1,_,p .

Therefore a considerable amount of computational cost in terms of execution time 

and data storage will be required. Note that these weaknesses of the conventional 

LS method also exist in the remaining steps of selecting the optimal VAR, and 

become severe when the number of lags or the number of variables in the system 

of (A.l) is large.

Since the conventional LS method is an expensive approach, therefore the Yule- 

Walker method to choose the optimal ZNZ patterned VAR is selected.

A.1.2.2 Step 2: To select the optimal subset VAR for each criterion.

Subset VAR models are VAR models with intermediate lags constrained to zero 

matrices. The subset VAR with the deleted lags ij,i2 , ... ,is has the representation

£ Ak(Is)y(t-k) = £(t), (A. 10)
k=0

where Is represent an integer set with elements ii,i2, --'ds, and Ak(Is) = 0, as 

k e l s.
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A leaps and bounds algorithm proposed in Penm and Terrell (1984a) and Penm et 

al (1999) is then used to search for the ‘best’ VAR model of size k, where k is the 

number of lags with non-zero coefficient matrices, k=l, 2, ..., p.

A.l.2.2.1 Fitting of subset VAR models

In fitting the subset VAR model of (A. 10), the Yule-Walker equation now has the 

form:

r j + Z ^ k(Is)r j-k = 0 (j = 1’- ’P) (A.IO.a)
k=l

r o + i ] M I , ) r _ k = V (I ,) (A.IO.b)
k=l

Note that, similar to Step 1, only the p+1 lag covariance matrices presented in 

(A.3) are required to compute Ak and V by using (A.IO.a) and (A.IO.b).

The modified equation (A.2.a) can be expressed as

Ap(i1)Rp(i,) = - n p(i,).

where A (Is) and n  (Is) are formed by placing zero block matrices 0 min the 

(i, ... i s) — th column of blocks of A pand n  . R (Is) is formed by placing

Imin the {(ipij) ... (is, i s)}-thdiagonal blocks of R p and zero block matrices 

everywhere else in the (i, ... i s)-th row  of blocks and also in the
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(i, ... is) - th column of blocks of R p. Thus the estimate of the |V(IS)| for the

VAR (p) model is

c „+1 (Js)_ p + l ' s

|cp(Js) ’

where jq = p + l - i q, q=l,2,...,s, Js contains jp j s, and matrices Cp+1(Js) 

and Cp(Js) are formed placing Imin the {(jpj,) ... (js, js)}-thdiagonal 

blocks and zero matrices elsewhere in the (jj ... j s)-th row  and column of

blocks of Cp+1 and C .

Step 3: To select the optimal ZNZ patterned VAR for each criterion 

A.1.2.3 Fitting of ZNZ patterned VAR models

A.l.2.3.1 In considering the use of the Yule-Walker coefficient relations for 

fitting of ZNZ patterned VAR models of (A.l), the coefficient estimates obey the 

following relationship:

Zp(Cr)a(Cr) = y(Cr) , (A.ll.a)

where Zp ={lm® R pj, a  = vec{Ap}, y = vec{np}, Cris an integer set which 

contains c,,c2,...,cr , and the (c1,c2,...,cr)th entries of a  are constrained to 

zero. Then a(Cr) and y(Cr)are formed by placing 0 in the (c,,c2,...,cr) th row 

entries of a and y, and Z(Cr) is formed by placing 1 in the
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{(c1,c ,) ,(c 2,c2),...,(c r ,c r )} diagonal entries of Z and 0 everywhere else in the

(c j ,c2, . . . ,c r ) rows and columns of Z.

Also, the estimate of V becomes:

p p p p

(A .ll.b )
k=l j=l j=l k=l

which is the equation (3.14) in Section 3.5.

Of note, similar to the above two steps, only the p+1 lag covariance matrices 

shown in (A.3) are required to compute A k and V by using (A. 11.a) and

A .l.2 .3 .2  As stated in Section A. 1.1.2, a direct extension of the Yule-Walker 

residual variance-covariance relation to fit the ZNZ patterned VAR model is 

inconsistent with statistical theory, as the resultant estimated variance-covariance 

matrix of the white noise disturbance process becomes non-symmetric. The 

equation (A .lib )  provides a symmetric residual variance-covariance matrix, and 

thereby provides a theoretically consistent adjustment appropriate to statistical 

theory.

(A .ll.b ).
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A.2. Problems of direct extension of the use of the Yule-Walker relation for

fitting ZNZ patterned VAR models 

A.2.1 As described in Section 3.2:

A direct extension of the use of the Yule-Walker relations for fitting VAR models 

with zero-non-zero patterned coefficient matrices is inconsistent with statistical 

procedure as the resultant estimated variance-covariance matrix of the white noise 

process becomes non-symmetric. This is because an estimated non-symmetric 

variance-covariance matrix is inappropriate for estimation in finance theory. For 

instance Lee (1992) described the VAR analysis based on innovation accounting, 

and introduced the following VMA modelling:

y(t) = £ F ( T ) E ( t - T ) ,  (A. 12)
T=0

where var{e(t)} = V .

Since V is a symmetric and positive definite (SPD) matrix, V-1 is also an SPD 

matrix. Thus the following arises: V-1 = G 'G.

Now a transformation innovation, r |(t), is defined such that

T](t) = Ge(t), and var{ri(t)} = Im, 

where Im is an identify matrix.
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Thus (A. 12) can be rewritten as

y(t) = X  F(T)G'‘Ge(t — T) = £ F(T)G-'ri(t -  t) = £  H(t)ii(t -  x).
T=0 1=0 T=0

The coefficients of H(t) represent innovations in particular variables.

As noted before V is an SPD matrix. A VAR model can subsequently be 

converted to its equivalent VMA model for which Penm and Terrell (1986) 

proposed methods of testing for Granger-causality. However a non-symmetric 

estimated variance-covariance matrix violates the condition that V must be 

symmetric. This violation precludes its use for innovation accounting, and a VAR 

cannot be converted to an equivalent VMA model. Thus this inconsistency must 

be corrected.

A.3. Outline of how existing studies ignore the issue of estimating the 

covariance matrix

A.3.1 Chen and Zadrozny (1998) proposed the extended Yule-Walker equation to 

estimate a VAR for mixed frequency data. The estimated residual variance- 

covariance matrix for their approach [contained in the second paragraph of 

Section 3 of Chen and Zadrozny (1998)] is as follows:

V =
N -  p

V1 /V / V /2^£;ei ' - ' i '
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This is the equation (A.8), using the LS of this mimeo. Section 1.2.1.2 has shown 

that the LS method is quite different from the Yule-Walker approach. Thus the V 

using the LS method is also quite different from the V using the Yule-Walker 

approach. It is obvious that Chen and Zadrozny have ignored the issue of 

estimating the covariance matrix.

Although the V using the LS method is asymptotically equivalent to the V using 

the Yule-Walker approach, these two estimated covariance matrices can be quite 

different in a finite sample. If the covariance matrix proposed in Chen and 

Zadrozny is estimated by using the Yule-Walker approach, then in the complete 

data (no missing values) case the proposed approach can be employed to select 

the optimal ZNZ patterned VAR. Thus a considerable amount of computational 

cost can be avoided.

Moreover many researchers [see Caines et al (1981) and Lee (1992)] estimate the 

covariance matrix, using V = E{e(t)e'(t)}. As described in Section 1.1.2, this 

method needs to estimate and store all individual mxl residual vectors, e(t),

t=l,2,...,N, and then compute V. In order to estimate individual residual 

vectors, all observation vectors y(t), t=l,2,...,N, must be held in storage for 

conducting e(t) estimation. Also a huge number of candidate ZNZ patterned 

VAR models is usually needed to be estimated before the optimal one is selected. 

Therefore a considerable amount of computational cost in terms of execution time 

and data storage will be required. Many researchers, working on data involving a 

large sample, will be aware of this inefficient procedure. It is obvious that
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estimation of the residual covariance matrix, which minimises the need for

computing resources, becomes an issue.

To the contrary, there will be no need to estimate individual residual vectors if the 

equation (3.14) is used. This equation is simple and straightforward. If the 

residual covariance matrix is estimated by using the equation (3.14), the above- 

mentioned computational issue will not be a problem, and a considerable amount 

of computational cost can also be avoided.

A.4 The standard least squares approach, GLS method and the maximum 

likelihood approach

A.4.1 As discussed in Section 1.2.1.2, the conventional LS approach is 

computationally expensive to select the optimal ZNZ patterned VAR when the 

number of possible candidate models could be billions. The conventional GLS 

method is conducted by applying the LS approach as a basis. After the symmetric

and positive definite V is estimated by the LS method, there exists an mxm non

singular matrix K, such that V '1 =KK\ y(t) is pre-multiplied by K-1. The LS 

estimation for fitting of the VAR models is then followed to obtain the 

conventional GLS estimates. However as the conventional LS approach to 

conduct the selection of the optimal ZNZ patterned VAR is computationally 

unaffordable, the conventional GLS method will also suffer from excessive 

computational costs. The ML approach is a non-linear approach which easily 

becomes infeasible whenever the number of parameters is large [see Chen and 

Zadrozny (1998)]. In addition, there exist a huge number of candidate models in 

the ZNZ patterned VAR environment. The ML approach needs to apply to each
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individual VAR model independently, and no previous computational 

information can be utilised. Thus this approach also suffers from extreme 

computational costs.

In contrast the theoretical extension and empirical applications of the Yule- 

Walker approach have been successful. The ZNZ patterned time-series modelling 

using the Yule-Walker approach has been extended to ZNZ patterned vector 

moving average (VMA) modelling, ZNZ patterned ARX modelling, ZNZ 

patterned state-space modelling, ZNZ patterned VECM modelling and ZNZ 

patterned cointegration analysis [see Penm, Terrell and co-authors (1986, 1992, 

1993 and 1997)]. Interesting results are also being obtained in the application of 

the above modelling technology, in particularly simulations carried out in foreign 

exchange markets, housing markets, and money markets [see Penm, Terrell and 

co-authors (1984, 1992 and 1994)].

A.5 Different studies that have employed the Yule-Walker equation to 

estimate a ZNZ patterned VAR

A.5.1 A pre-windowed approach using the Yule-Walker relations to estimate a 

ZNZ patterned VAR has been conducted by us [see Penm et al (1995) and 

(2000)]. For simplicity, the scalar case (m=l) is considered. In this pre-windowed 

approach, to fit a full order VAR(p) model of (A .l) for a given set of observations 

{y(t), t = 1 ,..., N }, the estimated V is as follows:

1 Nv=-y>8Ntr i ' - ' i  » (A. 12)

where 8j denotes the estimate of 8;.

247



(A. 12) can be re-written as:

v  = "  Z äkY(t -  k)][y(t) -  X äky(t -  k)] ',
^  i=l k=l k=l

where y(t)=0 as t <=0.

Thus the associated linear regression model can be expressed as

y(N) ' y ( N - l )  -

i'ciIZ
 

‘

~ a i
e N

y(p + 1) 

y(i)

y(p)

0 0

yd)
0
0

a p_

+
£P+1 

. £ 1 _

and the following arises:

R PW (p) ~ x ' x

Z y 2(0

N - l

^ y ( i ) y ' ( i  -  p + i)
i=l

N - l

£ y ( i - p  + i)y'(i)
i=l

X y 20)
i=l

Analogously, to fit a VAR (p-1) model, the following can be achieved:

RpW( p - l )

N - l

l y 2«
i=i

N -l

^ y ( i ) y ' ( i - p )
i=l

N - l

Xyö-piy'ö)
i=l

N-p

E y 2(>)
i=l

which indicates R pw(p) Rpw(p-l) :
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Since R pw(p)is a symmetric matrix the inverse of R pw(p)can be conducted by

applying the Choleski decomposition method, which provides an iterative 

improvement on reducing numerical error generation and propagation. Thus the 

following emerge:

r pw(p ) = l pd pl ; =

and RpW( p - l )  = Lp-iDp. lL '_1,

(A.13) 

(A. 14)

where L p is a lower triangular matrix, and D p is a diagonal matrix.

More importantly, in the course of computing both L p and D p for the VAR (p) 

model, Lj and D i5 i = 1 ,..., p will be obtained by using (A.13) and (A. 14). Since 

Lj and Dj are required to conduct matrix inversions for all the lower order VAR 

models, a considerable amount of computational cost can be avoided. However, 

since R pw(p) is not a Toeplitz matrix, the equation (A.7) does not hold. Thus in

the course of fitting a VAR (p) model, the generalised residual sum of squares for 

all the lower order VAR models fitted to the data cannot be obtained by using the 

pre-windowed approach. Therefore compared to the Yule-Walker approach, the 

pre-windowed approach is substantially more computationally costly.
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Further, Chen and Zadrozny (1998) proposed the extended Yule-Walker equation 

to estimate a VAR for mixed frequency data. The estimated residual variance- 

covariance matrix for their approach [contained in the second paragraph of 

Section 3 of Chen and Zadrozny (1998)] is as follows:

V = V ' '  ~  ^  /

2 .8i8i’P i=p+l

(A.15)

which is identical to the conventional LS approach. Thus the approach of Chen 

and Zadrozny also needs to apply to each VAR model independently for 

estimation of individual residual vanance-covanance matrices. Further, in 

complete data cases, their approach only concerns full-order models. The ZNZ 

patterned modelling with no missing data is not investigated. However their 

approach addresses an interesting topic of estimation for mixed frequency data. 

Therefore incorporating their approach into the ZNZ patterned modelling for 

mixed frequency data deserves further investigation.

A.6 Comparison of the results with and without using the proposed 

covariance estimator

A.6.1 The proposed covariance estimator for ZNZ patterned VAR modelling is 

the product of the proposed search algorithm in this Appendix, which employs 

the Yule-Walker equation in conjunction with the model selection criteria to 

select the optimal ZNZ patterned VAR model. The most successful applications 

in ZNZ patterned VAR modelling are associated with Granger-causality, Granger 

non-causality and indirect causality detections. This is because both Granger non

causality and indirect causality detections are crucially dependent on making use
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of zero coefficient entries in the true structure, where the structure does indeed

include several zero entries. Application of VARs to economic and financial 

time-series data has revealed that zero entries are indeed possible [see Caines et al 

(1981) and Penm et al (1992,1999)]. Since the ZNZ patterned VAR modelling 

allows for zero entries, the selected optimal ZNZ patterned VAR provides a 

straightforward and effective means of indicating all Granger-causality, Granger 

non-causality and indirect causality from the coefficient matrices on the lagged 

terms.

Without using the proposed covariance estimator, the model used is most likely to 

be the commonly employed full-order VAR model. However full-order VAR 

models assume nonzero elements in all their coefficient matrices. Since the 

number of coefficient entries to be estimated in these potentially over- 

parameterised models grows with the square of the number of variables, the 

degrees of freedom will be heavily reduced. Also, as indicated in Terrell (1988), 

heavy parametrisation of these models has resulted in poor out of sample 

forecasting performance. Thus, the use of a full-order model can lead to 

inappropriate inference and inferior projections.
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Appendix B: Tree-Pruning Algorithm for Cointegration

This appendix links to Section 4.5 of the thesis for an 1(1) analysis, and to 

Section 6.6.2 for an 1(2) analysis. It provides a tree-pruning algorithm for 

cointegration. The tree-pruning algorithm presented here provides us with a 

means of finding all acceptable patterns for a  and ß without evaluating all

possible patterns that arise from the relation A* = a ß ' .

To begin this tree-pruning algorithm an inverse tree for ß is constructed, where 

each node of the tree represents a pattern for ß . The ß tree is then traversed in 

binary order. Furthermore there is an a  inverse tree embedded in each node of 

the ß tree, with the nodes of this inverse tree representing all possible patterns of 

a . The a  tree is also traversed in binary order. This tree traversal method is 

simple to implement and efficient in terms of computing time and storage 

requirements.

Suitable tree-pruning rules are then set up in the algorithm for restricting the 

search to the acceptable patterns of a  and ß only. Since these rules avoid 

searching along unfavourable branches, a complete search through all possible 

patterns of a  and ß is not required. Thus a considerable saving of computation 

time and storage can be achieved. After this tree-pruning algorithm is conducted, 

all acceptable possible patterns of a  and ß will be found.
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The procedure for constructing inverse trees consists of two stages as follows.

(A) A t-entry inverse tree for ß

The first step is to decide the size of an inverse tree for ß . As noted in Section 

3.6, a  , ß and A denote a ZNZ pattern of a , ß and A* respectively. For

instance, when a  =
0 0 0.1

0.2 0 0
then a  can be expressed as

0 0 1
, where 1 represents a non-zero entry and 0 a zero entry.

LI  0 0 J

Analogously both ßp and Ap can be constructed.

Assuming that the v-th entry of ßp is zero and the other entries are non-zero, the 

matrix a pßp (v)is tested. If for every a p there exists a zero entry of a pßp (v), 

but the corresponding entry of Ap is non-zero, then this represents a 

contradiction. This means that the v-th entry of ßp must be set to non-zero. On 

the other hand if the corresponding entry of A p is zero, the v-th entry of ßp is 

undetermined.

If there are t undetermined entries in ßp after testing all k entries of ß , then a t- 

entry inverse tree for ß needs to be constructed.
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The root of the tree represents a pattern with all t undetermined entries. The n-th 

generation, n=l, 2, t-1, is taken by interior nodes, of which there are C„

nodes in the n-th generation. Those nodes represent the possible ßp patterns in 

which the t entries have n zero entries.

To move from one generation to the next, the rule that the a-th offspring in 

generation n has a-1 offspring in generation n+1 (the next generation down the 

tree) is used. In setting up the second and later generations, the ordering of the 

nodes from left to right is controlled by natural ordering. For instance in the 4- 

entry case the second generation would have the 2 zero entry subsets, i.e. 12, 13, 

14, 23, 24, 34. Therefore, a node describes a pattern in terms of the zero entries, 

as indicated in Figure B.l.

Figure B.l

A four-variable inverse tree

Root Null

1 2 3 4

I I I I I

12 13 23 14 24 34

r _  I

123 124 134 234

1234
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It is noted that the amount of both computation time and storage increases 

exponentially as t becomes larger. The following pruning principles are therefore 

proposed to avoid travelling along unfavourable branches during the search.

Pruning principles

After the inverse tree is constructed, the pruning proceeds. This is undertaken 

using the following criteria:

Let S be a set of zero entries of ßp and U a superset of S.

1) If ßp(S)has one or more zero rows, the node representing S or U can be 

pruned because both the ranks of ß'(S) and ß'(U) are not full, and they must be.

2) For an 1(1) system: If the nonzero entries of a row of ßp correspond to only 

one 1(1) variable, then the node associated with ßp can be ignored.

For an 1(2) system: If the nonzero entries of a row of ßp correspond to either 

of the following conditions:

a. only one 1(2) variable

b. no 1(2) variable and only one 1(1) variable.

Then the node associated with ßp can be ignored.
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3) If there are r cointegrating vectors in the system, but only N components of 

y(t) are involved in these cointegrating relationships (N< r), then the node 

associated with ßp can be ignored. For instance, if

ß'
ß, ß2 o 

ß3 ß„ 0 /

then this means that the first two components of y(t) are cointegrated by two 

cointegrating vectors. This contradicts cointegration theory.

4) If a ßp is examined, then any node represented by Pßp, whereP is an rxr row

permutation matrix, can be ignored. This is because both Pßpand ßp represent

the same cointegrating relation. For instance, consider ßp
1 0 1 0 o '
0 1 0 0 1 .In
0 0 0 1 0

this example there are 3! ßp patterns representing the same cointegrating 

relation.

5) For a given ßp(S) if there exists a non-zero entry of Ap, but the 

corresponding entry of a pß'p(S) is zero for all possible a  then this ßp(S) is not 

acceptable. The node representing ßp(S)can be pruned and so can the node 

representing ß (U ).
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(B) An m-entry inverse tree for a

In the second step the size o f the inverse tree for a  is decided by using the 

algorithm similar to that for ß. For a given ßp the matrix a p(k ,)ßp, where the

ki-th entry o f a p is zero and the other entries are non-zero, is tested. I f  there 

exists a zero entry in the matrix a ( k j ) ß ' , but the corresponding entry o f A p is

non-zero, then this represents a contradiction. This means that the kj-th entry of 

a p must be a non-zero entry. Thus this kj-th entry o f a p is determined and

must be set to non-zero. On the other hand i f  the corresponding entry o f A p is 

also zero, the ki-th entry o f a p remains undetermined. This can be demonstrated 

by the following example. Consider

1 1 1 1

1 1 1 1
<0 r

1 1
and ß'

1 0  1 1  

0 1 1 1
for an 1(2) system,

and

A r

1 1 
1 1

0 1 
1 1

, and ß'
1 0 
0 1

for an 1(1) system,

where k j= ( l, l) .  The ( l, l) - th  entry o f cxpßp in this example is zero, but the (1,1)-

th entry o f A is in fact non-zero. Therefore the ( l, l) - th  entry o f a  must be set

to non-zero.
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Assum ing that there are m undetermined entries of a p after testing all k entries 

of a p , an m-entry inverse tree for a p needs to be constructed. The procedure 

for constructing the inverse tree for a  is similar to that for ß .

Pruning principles

35The pruning is performed using the following criteria:

Let E  be a set of zero entries of a p and denote the a p(E) node as the node 

representing the a p(E) pattem. Also let R be a superset of E  and the a  (R) 

node represent the a p (R) pattern.

1) If there exists a zero entry of a p(E)ß'p but the corresponding entry of A p is 

non-zero, then the node representing a p (E) can be pruned and so can the node 

representing a  ( R ) . For instance, consider

<xP(E)

and

a P(E)

"0 f "l 1 1 f
, ß'D = . and A„ =

1 1 0 0 1 1 F

"0 f "l 1 "0 f
, ß ' = . and A_ =

1 1 ’ * p 0 0 F 0 1

0 1 1 1  
0 1 1 1

for an 1(2) system,

for an 1(1) system.

35 Also note that the amount of computation time and storage increases exponentially 

with m. The tree-pruning principles are required to reduce these amounts by avoiding 

travelling along unfavourable branches.
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In this example, the (l,2)-th entry of a p(E)ßp is zero, but the (l,2)-th entry of 

A p is non-zero. This represents a contradiction and th e a p(E) node can be 

pruned. Any a  (R) whose zero entry set is a superset of E will also fail the test, 

and, therefore theseap(R) nodes can also be pruned.

2) If otp(E) has one or more zero columns then theseaP(E) a n d a p(R) nodes 

can be pruned. This is because the rank of the loading vectors a(E) is not full, 

and neither is a (R ) .

3) If an entry of a p (E)ßp is non-zero but the corresponding entry of Bp is zero, 

then this entry of a  (E)ßp has to be restricted to zero. If either of the following 

two conditions is met, the a P(E) node can be ignored:

(a) If the number of non-zero entries of a p (E) involved is less than the number 

of restrictions then there will be no acceptable solution for a (E ) . For instance, 

consider

cc(E) > ß '
= 'ßn ß 12 ß 13 ß 14 , and An =

" 0  1 1 1 "

_ ß  21 $ 2 2 ß 23 0 p ° ° 0 1

an 1(2) system, and

a(E) . ß' = "ßn ß 12 ß 13 , and An =

1
o

1

_ß 21 ß22 ß23_ p 0 0 0
for an 1(1)

system.
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In this example the following three restrictions arise:

Ĉ 2lßlk + 2̂2ß2k = k— 1,2,3.

Although ß' can be estimated by using the estimation method proposed in 

Section 3.6, there will be no solution for a 21 and a 22 because only two 

unknowns, a 21 and a 22, exist.

(b) If any non-zero entry of a p(E) has to be zero to satisfy restrictions then the 

given otp(E) is unacceptable. For instance, consider

a(E) «11 0 '
. ß '  =

' 0 ß12 o '
, and An =

'0 1 0"

0̂ 21 ^22. _ß 21 0 ß23 p ° 1 1
for an 1(2) system,

and

a(E) = « 1 1  0 '
. ß' =

r
C'i

g
£o

1 , and An =
"0 f

_cc 21 o c 22 1
os22L p ° 1

for an 1(1) system.

Now the following restriction arises:

^22ß21 =  O'

This indicates that a 22=0. Thus a p(E) is unacceptable.
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4) If the (i,j)-th entry of a p(E) is the only non-zero entry of the ith row, then the 

zero-non-zero pattern of the jth row of ßp should be identical to that of the ith row 

of A p. If this is not true then the a p(E) node can be ignored.

5) If the (i,j)-th entry of ßp is the only non-zero entry of the jth column, then the 

zero-non-zero pattern of the ith column of a p (E) should be identical to that of the 

jth column of A p. If this is not the case then the a p (E) node can be ignored.
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Appendix D: Understanding the Forgetting Factor via Kernel Regression

This appendix links to Chapter 7 and provides a method of describing the 

forgetting factor via kernel regression. The forgetting factor method uses a sample 

of data and estimates the value of the forgetting factor from the sample. This 

method will tend to fit it better than a parametric approach, which uses some 

assumed parameters. Since the forgetting factor method is equivalent to a kernel 

estimation -  which is a non-parametric method -  it is likely to give more accurate 

estimates and better forecasting performance in financial time-series than a 

parametric one.

Let Y = [y(l) y(2) ••• y (T -l)  y(T)] be a time-series observed at equally- 

spaced time points x,, x2, ••• xT_,, xT. An AR(p) model of the following 

form results:

where e(xt) is a zero mean Gaussian white noise disturbance term with a variance

The coefficients in (D .l) are obtained by minimising:

(D.l)
i=l

(D.2)
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For the case of the fixed forgetting factor, X,  1>A>0, the forgetting profile,

is defined as:

-  AT_t,t = T ,T -l, , 1. (D.3)

For the case of the dynamic forgetting factor, X -, the forgetting profile,

^ X t — X j ^
is defined as:

'[A J,t = T ,T - l .....1,
j=t

where X T =  1.

(D.4)

In general, the equation of (D.2) can be re-written as

P p
y(xT) - Xajy(xT - xT_j) y(xT_i) - Xajy(xT_i - Xj .j.j) 

i=l i=l

y(xT)- Zajy(xT -xT.j)

y(xT_i) - ZajyCxj.! - Xj.j.j)

X y  —  X y

h

0

0

 ̂X — X j  ^

(D.5)

which is a typical weighted least squares problem in kernel regression.
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The fixed forgetting factor case

In the fixed forgetting factor case as proposed in Penm et al (2000), if the 

bandwidth h and the forgetting profile are defined as follows:

h _  XT ~ X .

- ( T - l ) l o g e \

X x • — X T X T ■ -  xK(——---- T~) = e x p (-^ -----
h h ) •

Then the following relations emerge:

K(—— — ) = K(0) = exp(0) = 1, as i=0,
h

K(Xt-‘ ÄT) = K(loge X) = exp(loge X) = X , as i=l, 
h

K ( XX72~XT) = K(logeX2) = x2, asj=2i
h

T P

As a result (D.5) becomes ]T^T~‘[y(xt) - ^ a ^ X j  -x ^ )]2.
t=l i=l

(D.6)
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The dynamic forgetting factor case

In the dynamic forgetting factor case as proposed in Penm et al (2001c), If the 

bandwidth h and the forgetting profile are defined as:

h-r-i —
x T -  x T-i

logeXT-i

(  ^ 
X T-i " X n

v “ T-i y
= exp(0) = 1

X H

1 X H = exp
/  \xT_i - x T (  \  

X T-i+1 X T

 ̂ h  T-i , V ^  T-i ,

IV

V ^  T-i+1 >

as i = 0, 
as T > i > 0.

Then the following identities arise:

K(— — — ) = K(0) = exp(0) = X T =  1, as i=0,
h o

— — ~) =  K(loge XT.j) = exp(loge Xt-.^KCO) = ^ T_,, as i= l,
h T -l

--- — ) = K 0 °g e ^T-2 ) = eXP0°ge ^T-2 )K 0 °g e ^T-l ) = ^T-2^T-1 » aS i=2,n T_n

T T p

Consequently (D.5) becomes 2]]~[^j[y(xt) - ^ a jy ( x t
t=l j=t i=l

(D.7)
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