
Power Consumption of Instruction
Encodings on Cortex-M4
A report submitted for the course

COMP2300 (Advanced Studies Extension)

Zixian Cai
Research School of Computer Science, Australian National University

June 14, 2018

Abstract

Energy efficiency is increasingly important with wider use of battery-
powered devices. There are many factors involved in the power consump-
tion of instructions, such as encodings. The energy implication of these
factors is not clear, and needs to be evaluated.

The main contribution of this work is the characterization of power
consumption of some instruction encodings of ARM v7-M on Cortex-M4
MCU STM32L476VGT6. I also designed and implemented a self-contained
power measurement infrastructure on 32L476GDISCOVERY.

I found that the encodings of instructions could affect the energy con-
sumption of the MCU.

The results of this work can make application programmers and hard-
ware vendors be aware of the energy characteristics of programs and de-
vices. Future work of a more detailed model could allow us to predict the
energy consumption when designing new systems.

1 Introduction

1.1 Problem Statement

Computers, from IoT devices to supercomputers, are widely deployed nowa-
days. Despite the vastly different hardware they are running, the power con-
sumption of these devices has always been a main concern. Being power
efficient, mobile devices can have longer battery life, and millions of dollars
can be saved for electricity bill of server farms.

On commonly used ISAs, such as ARM v7-M, there are multiple factors
that could potentially affect the energy consumption of a device. For exam-
ple, different encodings of the same instruction may lead to different power
consumption, as they have different code sizes and map to different hardware
capabilities. On the one hand, wider instructions can lead to pressure on the
cache and memory bus, and potentially consumes more energy. On the other
hand, these wide instructions provide more functionality, which can improve
the hardware utilization.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The Australian National University

https://core.ac.uk/display/160609187?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The power implication of different factors in using instructions is not clear,
and experiments need to be carried out.

1.2 Contributions

I first designed and implemented a self-contained power measurement frame-
work on 32L476GDISCOVERY. This framework does not rely on extra hardware
and adapter, except for the board to be measured itself. It also allows auto-
mated collection of data points at scale.

Through the use of this framework, I evaluated the power consumption of
different encodings of ADD, SUB and RSB instructions. I also demonstrated that
this approach could be used on non-arithmetic instructions, such as LDR and
STR.

1.3 Outline

Section 2 describes the design and implementation of the power consumption
measurement framework. Then, Section 3 presents the results gathered via
the framework, and discusses potential factors that could affect the energy
consumption of instructions. Finally, Section 4 summarizes the work, and
points out potential future extension to this project. The artefact can be found
at https://gitlab.anu.edu.au/u5937495/comp2300-ase.

2 Design and Implementation

2.1 Measurement Kernels

The goal of this work is to find out the power implication of different in-
structions. Due to my time constraints, only a small range of operations are
evaluated.

Among these instructions, ADD and SUB are particularly interesting. They
have multiple different encodings that support difference range of operations.
For example, the encoding that uses 4 bits, rather than 3 bits, to specify register
operands can access all 16 of the registers. In addition, they support on-the-fly
bit-shifting to operands via the barrel shifter, which requires wider encodings.

Beside the arithmetic instructions mentioned above, I also evaluated mem-
ory operations, such as load/store (register), for the sake of completeness.

For each measurement kernel, the instruction of interest needs to execute
for a long period of time so that the the energy consumption will stabilize
and converge. In order to minimize the impact of unrelated code, a script
is used to repeat a sequence of instructions based on the description of the
kernel (see Fig. 1(a) and Fig. 1(c)). It has the advantage over loops that we
are not measuring the overall energy cost of target instructions and branching
(see Fig. 1(b) for an example).

Note that the assembly instructions and mnemonics are used in Fig. 1
only for illustration purposes. For the widely used GNU Assembler, it does
not guaranteed whether a particular encoding would be used to implement
an assembly instruction. Therefore, in the actual kernels used in this work,

2

https://gitlab.anu.edu.au/u5937495/comp2300-ase


instructions are explicitly transcoded to binary forms, so that we have precise
control over the encoding (see Fig. 2).

1 {
2 "prologue": "ldr r1, [r0]\nmov r2, #2\n",
3 "body": "add r1, r2\n",
4 "epilogue": "str r1, [r0]\n",
5 "size": 100
6 }

(a) Description of a Kernel

1 benchmark:
2 ldr r1, [r0]
3 mov r2, #2
4 mov r3, #0
5 loop:
6 add r1, r2
7 add r3, #1
8 cmp r3, #100
9 blt loop

10 str r1, [r0]
11 bx lr

(b) Implementation using loop

1 benchmark:
2 ldr r1, [r0]
3 mov r2, #2
4 add r1, r2
5 add r1, r2
6 ...97 more times...
7 add r1, r2
8 str r1, [r0]
9 bx lr

(c) Generated by script

Figure 1: Measurement kernel: an example

2.2 Power Measurement

It is difficult to find out the exact energy consumption of an instruction. There-
fore, the current of the entire MCU is measured as the proxy metric.

The STM32L476VGT6 MCU1 is a part of the STM32L4 series that target
ultra-low-power embedded devices. These embedded devices are sensitive
to power consumption, and thus makes the MCU a natural target for my ex-
periments.

32L476GDISCOVERY2 is a development kit that hosts an STM32L476VGT6 MCU.
It provides an on-board MCU ammeter with 4 ranges and auto calibration.
This allows easily accessible measurements without additional hardware, and
therefore makes it an ideal choice as my hardware platform. The schematic

1http://www.st.com/en/microcontrollers/stm32l476vg.html
2http://www.st.com/en/evaluation-tools/32l476gdiscovery.html

3

http://www.st.com/en/microcontrollers/stm32l476vg.html
http://www.st.com/en/evaluation-tools/32l476gdiscovery.html


1 {
2 "prologue": "ldr r1, [r0]\nmov r0, #1\n",
3 "body": ".hword 0b0001100000001001\n", // add r1, r0
4 "epilogue": "",
5 "size": 100
6 }

Figure 2: Measurement kernel with explicit encoding

of the measurement circuit can be found in the ST manual UM18793 with title
IDD measurement / Multi-Function eXpander (MFX).

The BSP library provided with the board supplies various functions for
interacting with the ammeter. This library controls the MFX to translate the
voltage signals into current readings in the unit of 10nA. The usage of the
library can be found at https://gitlab.anu.edu.au/u5937495/comp2300-ase/blob/
master/src/idd.c.

2.3 Data collection

Once the current reading is gathered from the on-board ammeter, the USB
OTG port is used to transmit the data to a host computer. The USB OTG port
can be configured as a USB communications device class (CDC) device, whose
support presents in most modern operating systems. On these supported
platforms, 32L476GDISCOVERY is exposed to the host computer as a virtual
COM port (VCP) (see Fig. 3). Then, standard tools like screen can be used to
read the current readings from the serial device. This infrastructure enables
automated data collection, which allows me to collect data points at a larger
scales. STM32CubeMX4 is used to generate boilerplate code for USB CDC.

Other alternative approaches are also evaluated, but they are not used.
LCD screen 32L476GDISCOVERY has a on-board six-digit LCD screen, which

can be used to display current readings. However, it requires manual data
logging, which is not feasible when we want to gather a large amount of
data points. In addition, the current reading does not fit in the screen, and
therefore either the scrolling display needs to be used or the data need to
rounded. Either way, it increases the difficulty of data collection.

ST-LINK VCP The ST-LINK MCU on 32L476GDISCOVERY is connected to
one of the USART RX/TX ports of the main MCU. Like the USB OTG ap-
proach, the ST-LINK protocol also supports VCP. In addition, the communi-
cation goes through the same cable for flashing, which makes the connection
simpler. However, the ST-LINK VCP requires a special driver, which to my
best knowledge, is only provided on Windows. This impedes portability.

3 Results

The results obtained via the measurement infrastructure discussed in Section 2
will be presented and discussed in this section. The kernels can be found

3http://www.st.com/resource/en/user_manual/dm00172179.pdf
4http://www.st.com/en/development-tools/stm32cubemx.html

4

https://gitlab.anu.edu.au/u5937495/comp2300-ase/blob/master/src/idd.c
https://gitlab.anu.edu.au/u5937495/comp2300-ase/blob/master/src/idd.c
http://www.st.com/resource/en/user_manual/dm00172179.pdf
http://www.st.com/en/development-tools/stm32cubemx.html


32L476GDISCOVERY

Host
computer

Virtual
COM
Port

ST-
LINK

Power supply, 
prgramming 

kernels to MCU 
Measurement 

data

Figure 3: USB OTG VCP: organization of hardware

at https://gitlab.anu.edu.au/u5937495/comp2300-ase/tree/master/src/kernels, and
the original data can be found at https://gitlab.anu.edu.au/u5937495/comp2300-ase/
tree/master/results.

3.1 Power Consumption of Instructions

Different kernels are interleaved when conducting experiments. For example,
instead of running kernels in the order of AABBCC, the order ABCABC is used.
This is to avoid one kernels being skewed by short term background noises.
The results are summarised in Table 15.

Kernel
Addressable
registers

Barrel
shifter

Width
Mean energy

consumption (10nA)
add_reg_T1 8 No 16 1414594.3
add_reg_T2 16 for Rm, 8 for Rdn No 16 1411220.85

add_reg_T3_lsl0 16 Yes 32 1402551.8
ldr_reg_T1 8 No 16 1625625.45
str_reg_T1 8 No 16 1664383.65
sub_reg_T1 8 No 16 1473407.9
sub_reg_T2 16 Yes 32 1458067.6
rsb_reg_T1 16 Yes 32 1470169.55

Table 1: Characteristics of instructions tested

5Instructions usually have registers as their operands. However, the addressable registers are
different from encodings to encodings and usually depend on the number of bits used to specify
a register.

5

https://gitlab.anu.edu.au/u5937495/comp2300-ase/tree/master/src/kernels
https://gitlab.anu.edu.au/u5937495/comp2300-ase/tree/master/results
https://gitlab.anu.edu.au/u5937495/comp2300-ase/tree/master/results


3.2 Statistical Analysis

In order to find out whether the difference in instructions leads to different
energy consumption, analysis needs to be performed. Independent two sam-
ple t-test is a commonly applied statistical hypothesis test. In order to use it,
however, several assumptions need to be satisfied.

The current readings gathered can be assumed to be independently sam-
pled, as the experiments are interleaved (see Section 3.1). Furthermore, the
assumption are made that the current readings follow normal distribution.

In the following sections, t-test is used to discuss the results obtained, and
both the sample size and p-value will be reported.

3.3 The Encodings of Addition Instructions

The MCU used in this work supports the Thumb-2 instruction set, which is an
extension to the 16-bit Thumb instruction set. It provides 32-bit instructions
that cover some functionalities of the ARM instruction set, such as the barrel
shifter. The ADD (register) instruction has 3 different encodings: T1, T2 and T3.
Encoding T1 and T2 are 16-bit long, and encoding T3 is 32-bit long.

Encoding T1 and T2 differs in the access to registers. In encoding T1, the
two operand registers and the destination register can all be different. How-
ever, only the first 8 registers can be used. In contrast, encoding T2 supports
access to all 16 of the registers, but the first operand and the destination reg-
ister have to be the same.

Encoding T3 is more powerful than T1 and T2 that it exposes access to
the barrel shifter, and supports full access to registers. It makes bit-shifting
on-the-fly possible, and it is commonly used in addressing with scaling. It
also allows the expression, such as addition with multiples of an operand, in
one instruction.

To evaluate whether the encoding of an instruction affects the power con-
sumption, the following kernel bodies are used. In these kernels, the same
instruction ADD r1, r0 are expressed in encoding T1, T2 and T3 respectively.

1 @ add_reg_T1
2 .hword 0b0001100000001001
3 @ add_reg_T2
4 .hword 0b0100010000000001
5 @ add_reg_T3_lsl0
6 .hword 0xeb01
7 .hword 0x0100

As shown in Fig. 4, three different encodings lead to statistically signifiant
difference in terms of power consumption.

3.4 The Encodings of Subtraction Instructions

There are two different encodings for SUB (register), The first encoding T1 is
similar to encoding T1 of ADD (register), and the second encoding T2 is similar
to encoding T3 of ADD (register). In addition, there is an instruction RSB, which
supports reverse subtraction with barrel shift. Intuitively, SUB r1, r1, r0
is equivalent to RSB r1, r0, r1, but the difference between them in power
consumption needs to be evaluated.

6



Kernel Sample size Mean Standard deviation

add_reg_T1 20 1414594.3 701.9635
add_reg_T2 20 1411220.85 899.2575

add_reg_T3_lsl0 20 1402551.8 585.7135

(a) Power consumption of kernels

add_reg_T1 add_reg_T2 add_reg_T3_lsl0
add_reg_T1 1.00E+00 1.90E-15 1.55E-38

add_reg_T2 1.90E-15 1.00E+00 1.28E-30

add_reg_T3_lsl0 1.55E-38 1.28E-30 1.00E+00

(b) P-values of kernels

Figure 4: Different encodings of the same addition operation

The techniques discussed in Section 3.3 can also be applied here, and the
following kernel bodies are used.
1 @ sub_reg_T1
2 .hword 0b0001101000001001
3 @ sub_reg_T2
4 .hword 0b1110101110100001
5 .hword 0b0000000100000000
6 @ rsb_reg_T1
7 .hword 0b1110101111000000
8 .hword 0b0000000100000001

As shown in Fig. 5, the same subtraction calculation can be expressed in
three different ways, and lead to statically significant difference in energy
consumption.

Kernel Sample size Mean Standard deviation

sub_reg_T1 20 1473407.9 1042.7334
sub_reg_T2 20 1458067.6 917.7737
rsb_reg_T1 20 1470169.55 784.7996

(a) Power consumption of kernels

sub_reg_T1 sub_reg_T2 rsb_reg_T1
sub_reg_T1 1.00E+00 1.15E-35 3.69E-13

sub_reg_T2 1.15E-35 1.00E+00 4.31E-34

rsb_reg_T1 3.69E-13 4.31E-34 1.00E+00

(b) P-values of kernels

Figure 5: Different encodings of the same subtraction operation

3.5 Memory Operations

This approach can also be applied to memory operations. As a proof of con-
cept, the LDR (register) and STR (register) instructions are evaluated. The fol-

7



lowing kernel bodies are used.

1 @ LDR r1, [r0, r2]
2 .hword 0b0101100010000001
3 @ STR r1, [r0, r2]
4 .hword 0b0101000010000001

As shown in Table 2, loading and storing to memory using register ad-
dressing have statistically significant difference in power consumption.

Kernel Sample size Mean Standard deviation

ldr_reg_T1 20 1625625.45 875.6489
str_reg_T1 20 1664383.65 1021.7169
p-value 2.24E-51

Table 2: Power consumption of memory operations

4 Conclusion

Being power efficient is an important aspect of computer systems design. Dif-
ferent factors involved in using instructions, such as choosing encodings, pro-
vide unique opportunities for conserving energy whiling archiving similar
functionality.

In this report, I presented how power consumption measurements can be
obtained on 32L476GDISCOVERY. I showed the encodings of instructions can
affect the energy consumption of the MCU.

4.1 Future Work

There are several potential extensions to this work that I would like to do in
future.

4.1.1 Compiler Optimization Integration

System programming languages, such as C, are widely used to target appli-
cations to embedded devices. With the instruction-level energy consumption
model, one could integrate this into compiler frameworks, such as GCC and
LLVM. These compilers may provide compiler flags to optimise the generated
code for minimum power consumption, small code size, etc.

4.1.2 External Power Measurement Units

In this work, the power measurement is done via the on-board ammeter, so
that the whole measurement infrastructure is self-contained. However, this
also implies that the code reading the measurement is running on the same
MCU being measured. This might have negative impact on the reliability of
the result we are getting.

One could connect an external ammeter to the pin 1 and 2 of jumper JP5
of 32L476GDISCOVERY to measure current directly. Alternatively, Cao et al.

8



[2012] used an external Hall effect sensor, and an Arduino board to get energy
readings. This approach could be adapted to cross check with the readings
from the on-board ammeter.

4.1.3 More Comprehensive Evaluation

In this work, I isolated individual instructions to reason about their power
consumption characteristics. In future, my evaluation approach could be ex-
tended to real-world applications instead of synthetic homogeneous kernels.
This could help us to find out whether the combination of instruction encod-
ings makes difference in terms of energy consumption.

4.1.4 Establishing Power Consumption Models

This work only provides individual data points for each instruction encoding.
The approach I used could be extended to establish power consumption mod-
els. These models can then be used to predict how much energy a program
requires based the pattern of hardware usage, the size of function, frequency
of branching, etc.

Acknowledgments

First, I would like to thank my supervisor, Ben Swift, for his patient guidance.
I would also like to thank Ting Cao for pointing me to relevant resources.
Her PhD thesis directly inspired this work. Thanks also to my friend, Brenda
Wang, for helping me with the experiments and providing feedback for my
writing.

References

Cao, T.; Blackburn, S. M.; Gao, T.; and McKinley, K. S., 2012. The yin
and yang of power and performance for asymmetric hardware and man-
aged software. In Proceedings of the 39th Annual International Symposium
on Computer Architecture, ISCA ’12 (Portland, Oregon, 2012), 225–236. IEEE
Computer Society, Washington, DC, USA. http://dl.acm.org/citation.cfm?id=
2337159.2337185. (cited on page 8)

9

http://dl.acm.org/citation.cfm?id=2337159.2337185
http://dl.acm.org/citation.cfm?id=2337159.2337185

	Introduction
	Design and Implementation
	Results
	Conclusion

