Sino-Tibetan numeral systems: prefixes, protoforms and problems

PACIFIC LINGUISTICS

FOUNDING EDITOR: Stephen A. Wurm
EDITORIAL BOARD: Malcolm D. Ross and Darrell T. Tryon (Managing Editors), Thomas E. Dutton, Nikolaus P. Himmelmann, Andrew K. Pawley

Pacific Linguistics is a publisher specialising in linguistic descriptions, dictionaries, atlases and other material on languages of the Pacific, the Philippines, Indonesia and southeast Asia. The authors and editors of Pacific Linguistics publications are drawn from a wide range of institutions around the world.

Pacific Linguistics is associated with the Research School of Pacific and Asian Studies at the Australian National University. Pacific Linguistics was established in 1963 through an initial grant from the Hunter Douglas Fund. It is a non-profit-making body financed largely from the sales of its books to libraries and individuals throughout the world, with some assistance from the School.

The Editorial Board of Pacific Linguistics is made up of the academic staff of the School's Department of Linguistics. The Board also appoints a body of editorial advisors drawn from the international community of linguists. Publications in Series A, B and C and textbooks in Series D are refereed by scholars with relevant expertise who are normally not members of the editorial board.

To date Pacific Linguistics has published over 400 volumes in four series:

- Series A: Occasional Papers; collections of shorter papers, usually on a single topic or area.
- Series B: Monographs of intermediate length.
- Series C: Books; publications of greater length, especially reference books such as dictionaries and grammars, and conference proceedings.
- Series D: Special Publications; including archival materials, pedagogical works, maps, audiovisual productions, and materials that do not fit into the other series.

SINO-TIBETAN NUMERAL SYSTEMS: PREFIXES, PROTOFORMS AND PROBLEMS

James A. Matisoff

Pacific Linguistics
Research School of Pacific and Asian Studies
The Australian National University
Canberra

Published by Pacific Linguistics
Research School of Pacific and Asian Studies
The Australian National University
PO Box 1428
Canberra ACT 2601
Australia
http://coombs.anu.edu.au/Depts/RSPAS/LING/pl/pageone.html

First published 1997
Copyright © The author

National Library of Australia Cataloguing-in-Publication entry:

Matisoff, James A.
Sino-Tibetan numeral systems: prefixes, protoforms and problems.

Bibliography.
ISSN 0078-754 X
ISBN 0858834642

1. Sino-Tibetan - Numerals. I. Australian National University. Research School of Pacific and Asian Studies. Pacific Linguistics.
II. Title. (Series: Pacific Linguistics. Series B-114).

495

Copyedited by Basil Wilson
Typeset by Jeanette Coombes
Printed by ANU Printing Service, Canberra
Bound by F \& M Perfect Bookbinding, Canberra

TABLE OF CONTENTS

SYMBOLS AND ABBREVIATIONS viii
PREFACE ix
CHAPTER 1: INTRODUCTION 1
1.1 Issues in the reconstruction and systematic behaviour of the Tibeto-Burman numerals 1
1.1.1 Proto-variation 1
1.1.2 Lexico-semantic issues 3
1.2 Overview of Sino-Tibetan numeral systems according to subgroup 5
1.2.1 Lolo-Burmese and Karenic 5
1.2.2 Kachin-Nung and Qiangic 7
1.2.3 Himalayish and Rgyalrong 8
1.2.4 Kuki-Chin-Naga and Bodo-Garo 9
1.2.5 Abor-Miri-Dafla 10
1.2.6 Chinese 10
CHAPTER 2: LANGUAGE CONTACT AND THE WEIGHT OF NUMBERS 12
2.0 Introduction 12
2.1 Nepali and the TB languages of Nepal 13
CHAPTER 3: ONE AND TEN AND TEENS AND TWENTIES 17
3.1 Profile of number ONE 17
3.1.1 *it $¥ y a t$ 17
 18
3.1.3 *ka and *ko 19
3.1.4 ${ }^{*} g-t(y) i-k \not{ }^{*} t y a-k$ and ${ }^{*} d / t a y \not{ }^{*} d /$ dan 19
3.1.5 New roots for ONE in Abor-Miri-Dafla and elsewhere in Tibeto-Burman 21
3.1.6 ONE as indef inite article or general numeral affix 24
3.2 Profile of number TEN 24
3.2.1 *gip * *gyap 25
3.2.2 *ts(y)iy **tsyay 25
3.2.3 New roots for TEN in Kuki-Chin-Naga, Abor-Miri-Dafla, and elsewhere 26
3.3 Teen formation: from 10 to 20 30
3.3.1 Teen formation in Kuki-Chin-Naga 31
3.3.2 Teen formation elsewhere in Tibeto-Burman 34
[A] Himalayish 34
[B] Lolo-Burmese 34
[C] Bodo-Garo 35
[D] Abor-Miri-Dafla 36
3.4 Interchange and confusion between ONE and TEN 36
3.4.1 *ko/*ka in Abor-Miri-Dafla, Himalayish, and Naga 37
3.4.2 mu- in Mishmi 37
3.4.3 tšek/s(ə). in Rgyalrong 37
3.4.4 *s(h)e 'l' and *ts(y)iy '10' 38
3.5 Round Number Formation: decimal and vigesimal systems 38
3.5.1 Vigesimality, in Tibeto-Burman and elsewhere 38
3.5.2 Round number formation in Kuki-Chin-Naga 42
3.5.3 Round number formation in Himalayish 50
[A] Cuona Menba 51
[B] Tamang and Sharchop/Tsangla 52
[C] Kaike and Jirel 52
[D] Kanawari 53
[E] Magari and Khaling 53
3.5.4 HUNDRED and THOUSAND 58
CHAPTER 4: THE PRIMARY NUMERALS: TWO to NINE 64
4.0 Introduction 64
4.1 The lower numerals: 2-5 67
4.1.1 Profile of number Two 67
4.1.2 Profile of number THREE 70
4.1.3 Profile of number FOUR 72
4.1.4 Profile of number FIVE 74
4.1.5 Traces of quinary numeral systems in Himalayish 77
4.2 The higher numerals: 6-9 78
4.2.0 Additive, subtractive, and multiplicative formations 78
4.2.1 Profile of number SIX 81
4.2.2 Profile of number SEVEN 84
4.2.3 Profile of number EIGHT 90
4.2.4 Profile of number NINE 94
CHAPTER 5: PREFIXAL BEHAVIOUR WITH NUMERALS 98
5.1 Prefixal variability and replaceability 98
5.1.1 Voicing and vocalisation of prefixes 99
5.1.2 Contamination by prefixes of non-contiguous numerals 99
5.1.3 Prefix preemption of the root-initial of a numeral 99
5.2 'Prefix runs' and reprefixation 100
5.2.1 Mnemonic and rhythmic considerations 102
5.3 Numeral prefixes in Himalayish 103
5.3.1 Bodish languages with distinctive dental-initialled SEVEN 103
5.3.2 Khaling 103
5.3.3 Gurung-Tamang-Thakali and Newari 104
5.3.4 Kanawari (=Kanauri) and Lepcha (=Rong) 104
5.3.5 Monpa dialects 105
5.4 Numeral prefixes in Kuki-Chin-Naga 106
5.4.1 Retention of the proto-system (as conceived in STC) 106
5.4.2 Degeneration of the proto-system: prefix loss 106
5.4.3 Secondary general numeral prefixes 108
5.4.4 Innovative runs in the higher numerals 109
5.5 Numeral prefixes in Abor-Miri-Dafla 115
5.5.1 Runs in the lower numerals 115
5.5.2 Systems with no secondary prefixation in the lower numerals 118
CHAPTER 6: SUMMARY AND AFTERWORD 119
APPENDIX 1: METASTATIC FLOWCHART OF NUMERICAL SEMANTIC ASSOCIATIONS 121
APPENDIX 2: INDEX OF RECONSTRUCTED ETYMA 122
APPENDIX 3: INDEX OF LANGUAGES AND SOURCES 125
REFERENCES 129

SYMBOLS AND ABBREVIATIONS

A \lessgtr B	A and B are co-allofams; A and B belong to the same word-family
AMD	Abor-Miri-Dafla
BIHP	Bulletin of the Institute of History and Philology (Beijing; Taipei)
BMFEA	Bulletin of the Museum of Far Eastern Antiquities (Stockholm)
BSI	Bible Society of India
CSDPN	Clause, sentence, and discourse pattems in selected languages of Nepal
	(Hale, ed. 1973)
GEM	Geoffrey E. Marrison (1967)
GSR	Grammata Serica Recensa (Karlgren 1957)
GSTC	God and the Sino-Tibetan copula (Matisoff 1985b)
Him.	Himalayish
HJAS	Harvard Journal of Asiatic Studies
JASB	Journal of the Asiatic Society of Bengal
Jg.	Jingpho
JRASB	Journal of the Royal Asiatic Society of Bengal
KCN	Kuki-Chin-Naga
LSI	Linguistic survey of India (Grierson and Konow 1903-28)
LTBA	Linguistics of the Tibeto-Burman area (Berkeley)
MC	Middle Chinese (= Karlgren's 'Ancient Chinese')
NBP	Nagaland Bhasha Parishad (Linguistic Circle of Nagaland, Kohima)
OC	Old Chinese (= Karlgren's 'Archaic Chinese')
PGmc	Proto Germanic
PIE	Proto Indo-European
PLB	Proto Lolo-Burmese (=Proto Burmese-Yipho)
PNN	Proto Northern-Naga
PST	Proto Sino-Tibetan
PTB	Proto Tibeto-Burman
STC	Sino-Tibetan: a conspectus (Benedict 1972)
STEDT	Sino-Tibetan etymological dictionary and thesaurus project (Berkeley)
TB	Tibeto-Burman
TBL	A Tibeto-Burman lexicon (Dai/Huang 1992)
TSR	The Loloish tonal split revisited (Matisoff 1972a)
VSTB	Variational semantics in Tibeto-Burman (Matisoff 1978a)
WB	Written Burmese
WT	Written Tibetan
ZMYYC	Zang-Mianyu Yuyin he Cihui (Chinese Academy of Social Sciences 1991)

PREFACE

This study was originally prepared for the Seventeenth International Conference on SinoTibetan Languages and Linguistics at the University of Oregon (September 1984), ${ }^{1}$ but has been languishing on the back bumer for about a decade before being published in 1995 as 'Sino-Tibetan numerals and the play of prefixes' in the Bulletin of the National Museum of Ethnology (Osaka) 20/1:105-252. It is here reprinted with some revisions with the persmission of the Bulletin. Although it is the most extensive synchronic and diachronic treatment of the Tibeto-Burman numerals yet attempted, considerations of time and space have made the present revised version less complete than I would have wished. I have tried to include data from as many languages as feasible, but the coverage is far from exhaustive, and is of uneven depth with respect to Tibeto-Burman as a whole. Of the hundreds of TB languages and dialects, ${ }^{2}$ the ones whose numeral systems have been examined for this paper are listed in the Index of Languages and Sources at Appendix 3.

A fine-tuned subgrouping of the TB languages is an essential long-term goal, though for the moment it belongs in the realm of Zukunftsmusik - music of the future! For our present purposes we shall have to be satisfied with a schematic family-tree like the following, where each major subgroup of the family is portrayed as branching off coordinately from the protolanguage. See Figure 1.

This scheme differs in several respects from the diagram presented in Sino-Tibetan: a conspectus (Benedict 1972; henceforth 'STC'). ${ }^{3}$ In any event, there are vast differences,

1 I would like to thank Nicholas C. Bodman and David Bradley for their cogent comments on the first version of this monograph. My thanks also to Chang Kun for the numerals of the Zida (Tzuta) dialect of Rgyalrong; Gérard Diffloth for information on numerals in Mon-Khmer languages; Robert Goldman for helping me read a Hindi source on Pochury; David Solnit for data on Kayah Karen; Purna C. Thoudam, for sending me over a dozen translations of the Bible into TB languages of India; Graham Thurgood for forms from Idu and Rawang; Chhewang Rinzin for making clear tape recordings of the numerals in Sharchop and Dzongkha; and Gabrielle Yablonsky for putting me in touch with Mr. Rinzin. For more recent helpful comments and practical assistance I am much obliged to Lon Diehl, Ives Goddard, Eric Hamp, Gary Holland, Adam Jacobs, Terrence S. Kaufman, Ian Maddieson, Eric Oey, Eve Sweetser - and of course the 'STEDTniks', especially Leela Bilmes, Michael Brodhead, Jonathan Evans, Zev Handel, Matthew Juge, John B. Lowe, Pamela Morgan and Ju Namkung.
For a fairly complete alphabetical list of TB languages, where each is assigned to a subgroup of the family, see Matisoff (1986). A revised and expanded version of this list has appeared as Volume 2 of the STEDT Monograph Series (Matisoff 1996).
In the chart in STC (p.6) Karen is excluded from 'TB proper', largely on syntactic grounds (since it is SVO, while TB proper is SOV). The rest of TB is indicated as radiating out of Kachin (=Jingpho), to which Benedict accords a genetically central position, both for geographical and lexico-phonological reasons. The STC does not recognise the Qiangic languages as a separate subgroup at all, not surprisingly since most of them have only recently been put into relief by Chinese scholars. I have suggested the term 'Kamarupan' (from Kāmarūpa, the ancient Sanskrit name for Assam) as a neutral, overall geographical designation for the branches of TB spoken in NE India and adjoining regions, pending the vast increase in our knowledge that will be necessary before we can sort these dozens of languages out with more precision. (Kamarupa is home to more TB languages than any other region,
both qualitative and quantitative, in the data available for particular TB languages or language-groups.

Figure 1: The Branches of Tibeto-Burman

For the Naga languages we are still heavily dependent on G.E. Marrison (1967) ('GEM'), a rich source mined to excellent effect by W.T. French (1983). ${ }^{4}$ When used with caution, the little glossaries produced by the Nagaland Bhasha Parishad ('NBP') (Linguistic Circle of Nagaland) are also useful sources of information. For some Chin languages (Hmar, Gangte, Kom Rem, Kuki, Paite, Tiddim, Vaiphei) I have had to extract the numerals from translations of the Bible. (I would like to take this opportunity to sing the praises of the Book of Revelation as a numerological resource, with its Seven Seals, thousands of winged beings, and such invaluable passages as Rev. 21.19-20: "And the foundations of the wall of the city were garnished with all manner of precious stones. The first foundation was jasper; the second, sapphire...the twelfth, an amethyst.")

For the languages of the 'Abor-Miri-Dafla' or 'Mirish' group, the old data to be found in the Linguistic Survey of India ('LSI') (Grierson and Konow, eds 1903-28) has been largely superseded by recent work in Arunachal Pradesh, especially by K. Das Gupta and I.M. Simon, much of which has appeared in the modest journal Resarun (<Research Arunachal). A University of Calcutta dissertation by Shail Kumari Dubey (1983) contains useful material from several AMD languages. In China, the most important recent study of AMD languages is Sun, Lu, and Ouyang (1980), which presents highly accurate data on Monpa (Menba), Loba (Lhopa), and Deng (Taraon). Most recently, Jackson T. Sun's dissertation (Sun 1993) has laid a firm foundation for the reconstruction of the 'Tani' nucleus of this branch of TB.
and is the 'centre of diversification' of the entire family.) The genetic position of the highly Sinicized Bai language (formerly called 'Minjia') is still controversial (see Zhao 1982, Wiersma 1990), though it seems safest for now to assign it to a subgroup of its own.
For full references to all works mentioned see the reference list.

A key compendium of data on the Himalayish languages of Nepal is Hale, ed. (1973) ('CSDPN'). For Hayu (= Vayu) the best modern source is Michailovsky (1981). By happy chance, a recent treatment of the Kiranti group of Nepal TB languages (Gvozdanovic 1985) focusses directly on their numeral systems; although it appeared after the first version of this monograph was written, it will be discussed in appropriate contexts below ($£ 2.1, \S 3.5 .3$ and §4.0.2). Important older works on the Himalayish languages of Sikkim and Bhutan include Mainwaring and Grünwedel (1898) for Lepcha, and Sandberg (1895) for Sikkim Bhutia (= Danjongka = Dzongkha). I was able to use lists of the numerals of Sharchop (Tsangla) and Dzongkha specially tape-recorded by a native speaker, Mr Chhewang Rinzin. An extremely interesting article on the ambiguous conceptual bases of the Dzongkha numeral system (Mazaudon 1985) also appeared after the first version of this monograph was composed (see §3.5.3.4).

Reliable data on the Qiangic languages of Sichuan is now becoming available in quantity, thanks to the efforts of scholars like Sun Hongkai (for example, Sun 1981, 1982a, 1985), and Lu Shaozun (e.g. Lu 1983).

For Jingpho (Kachin) the classic source is Hanson (1906), now supplemented by Maran (in preparation) and two excellent dictionaries produced by Dai Qingxia, Xu Xijian, et al. (Chinese/Jingpho 1981; Jingpho/Chinese 1983). For Nungish, older sources like Barnard (1934) and Lo Ch'ang-p'ei (1942) are now vastly enriched by Sun Hongkai 1982 (Dulong) and 1986 (Nung).

Not much new data has appeared on the Karenic branch of TB since Jones (1961), though important works are soon to appear (for example, Henderson's dictionary of Bwe and Solnit's grammar of Kayah).

Lolo-Burmese, ${ }^{5}$ perhaps the best-studied branch of TB, continues to receive its fair share of attention. On the Burmish side, Burling (1968) includes data from Atsi and Maru. More recently other first-class works have appeared on Atsi (= Zaiwa) by Yabu (1982) and Xu and Xu (1984), and on Achang by Dai Qingxia (1982). Luce (1985) contains data on several Burmish languages, including Lashi, while Henderson (1986) refines data on Hpun collected long ago by Luce. On the Loloish (= Yi) side, useful data may be extracted from sources like Gao Huanian (1955) (Hani), (1958) (Nasu); He and Jiang (1985) (Naxi); Hu and Dai (1964) (Hani); Lewis (1968) (Akha); Ma Xueliang (1949) (Luquan), (1951) (Sani); Matisoff (1973a, 1988a) (Lahu); Nishida (1966/67) (Bisu); Srinuan (1976) (Mpi); Rock (1963), Chen Weidong (1990) (Naxi); and Yuan Jiahua (1947) (Woni), (1953) (Axi). Comparative LoloBurmese studies include Nishida (1964); Burling (1968); Bradley (1978); and Matisoff (1972a, 1978b, 1979, 1994b).

CHAPTER 1

INTRODUCTION

1.1 ISSUES IN THE RECONSTRUCTION AND SYSTEMATIC BEHAVIOUR OF THE TIBETO-BURMAN NUMERALS

In a sense this monograph is a critique and expansion of the treatment of the PTB numerals presented in Benedict's Sino-Tibetan: a conspectus ('STC'). In that pioneering work, the emphasis is on the nuts and bolts of phonological reconstruction. Yet even a simple listing of the STC's proto-numerals ${ }^{1}$ as in Figure 2, raises a variety of interesting morphophonemic and lexico-semantic issues.

ONE

TWO
THREE
FOUR
FIVE
SIX
SEVEN
EIGHT
NINE
TEN
TWENTY
HUNDRED
THOUSAND

```
g-ni-s (\#4)
*g-sum (\#409)
*it (94, 162); *kat (94); *g-t(y)ik (84, 94, 169, 189)
*b-liy \(={ }^{*} b-l ə y^{2}(\# 410)\)
*l-ŋа ~ *b-ŋа (\#78)
*d-ruk (\#411)
\({ }^{*}\) s-nis (\#5)
*b-r-gyat ~ *b-g-ryat (\#163)
*d-kuw = *d-kəw~ *d-gaw (\#13)
*gip (\#16); *ts(y)i(y) ~ *tsyay (\#408)
*m-kul (\#397)
\({ }^{*}\) r-gya (\#164)
\({ }^{*}\) s-tog (\#32)
```

Figure 2: Proto Tibeto-Burman numerals

1.1.1 PROTO-VARIATION

Proto-variation must be recognised as just as much of a fact of life in Sino-Tibetan as in Indo-European. Reconstructed etyma should not be viewed as invariant monoliths, but rather as 'word families': sets of morphophonemically and semantically related forms that cluster

[^0]around a basic phonological shape and a core of meaning. Variability is observable in all parts of the TB syllable: rhymes, initials, prefixes, tones. ${ }^{3}$ To some extent STC is prepared to recognise cases of proto-variation, and its labyrinthine pages contain many more 'allofamic reconstructions' than is at first apparent. An examination of Figure 2 reveals several instances of putative proto-variation, either in the rhyme (NINE, TEN) or in the prefix (FIVE, EIGHT). Yet STC does not exactly 'go the whole hog' and embrace the notion of proto-variability with enthusiasm. It is selective, sometimes even arbitrary, about which attested variants are ascribed to Proto Tibeto-Burman and which are branded as 'secondary' or explained away on other grounds.

1.1.1.1 VARIATION OF PROTO-RHYME

The STC recognises a PTB alternation *-uw ~ *-aw in NINE, on slender evidence, rejecting as secondary the better-attested variant in -wa (Lushai pakua, Angami thepf ə). ${ }^{4}$ For TEN, the first version of STC recognised 'vowel gradation' between *-ai and *-i to account for Written Burmese (WB) ?achai versus, for example, Jg. shi. This view was later changed (note 272) in favour of introducing a complication into the reconstruction of the initial consonant. ${ }^{5}$

TWO furnishes an example of variation of final consonant. Alongside the principal allofam in $-s$, a variant in $*_{-k}$ (underlying, for example, WB hnac $<*_{s}$-nik) is also attested independently in several branches of TB, but is denied PTB status in STC. (See §4.1.1.)

In the course of this study, several new numerical etyma have been unearthed where the rhymes show such well-established variational patterns as alternation between homorganic final stops and nasals, or between the vocalic nuclei ${ }_{-}^{*} j$ - and ${ }^{*}$-ya-, or between the rhymes *-ay and *-an. ${ }^{6}$

1.1.1.2 VARIATION OF PROTO-PREFIX

All the numerals from 2 to 9 are reconstructed with a prefixal element, to which no particular meaning may be assigned. In the case of FIVE, STC does admit proto-variation, positing alternation between the $* b$ - and ${ }^{*} I$ - prefixes at the PTB level.

EIGHT presents special problems, since it is a clear instance of a doubly prefixed form even at the PTB stage. The daughter languages which retain segmental reflexes of two prefixes show wide variation both in the particular consonants 'chosen' to serve as prefixes, and/or in their relative ordering. The STC recognises this latter fact by positing proto-metathesis - i.e. metathetic co-variants that existed already at the PTB stage.

In other words, STC admits prefixal proto-variation for two numerals, FIVE and EIGHT, conceiving of this phenomenon in a paradigmatic sense for FIVE but in a syntagmatic sense for EIGHT.

[^1]However, proto-variation in prefix may with equal justice be imputed to at least two other numerals, SIX and NINE. Besides the ${ }^{*} d$ - prefix for NINE, at least four branches of TB point to a sibilant prefix ${ }^{s}$ s- which STC does not recognise (Garo sku, Kanauri zgui, Jingpho džəkhû, Pumi sgiuh). As for SIX, the initial velars in Himalayish, Jingpho and Lolo-Burmese (for example Magari $k r u k$, Jg. krú? , WB khrok) are treated as secondary developments from the dental prefix before root-initial $*_{r-\text {, that }}{ }^{*} d-r>k r$. Yet tonal developments in Loloish, where the word appears in the low-stopped tone despite its voiceless initial (for example, Lahu $k h \grave{\jmath}$), clearly point to a doubly-prefixed prototype ${ }^{* d} d$ - -rok. ${ }^{7}$ This syntagmatic view of the prefixal dynamics in SIX makes its behaviour analagous to that of EIGHT, another numeral with a 'weak' liquid root-initial that was particularly conducive to repeated prefixation.

Of particular interest in the context of prefixal variation in numerals is the phenomenon we call 'prefix runs’ ($\S 5.2 \mathrm{ff}$.), whereby consecutive numerals acquire the same prefix. It is undeniable that many modern TB languages, especially in Kamarupa, have innovated by levelling out their numeral prefixes to produce runs, with the limiting case being languages like Lushai, where all the numerals from 1 to 9 have developed the same prefix, pə- (written pa-):

Lushai

1	pakhat	2	pahnih	3	pathum
4	pali	5	panga	6	paruk
7	pasarih	8	pariat	9	pakua ${ }^{8}$

Yet STC has to recognise two shorter prefix runs already at the PTB level: the ${ }^{*} g$ - in TWO ${ }^{*} g$ nis \Leftrightarrow THREE ${ }^{*} g$-sum, and the ${ }^{*} b$ - in FOUR $* b$-ləy $<\Rightarrow$ FIVE ${ }^{*} b-\eta a .{ }^{9}$ Does this mean that one of the two PTB prefixes posited for FIVE, *b-, might actually be 'secondary', due to contamination from the *b- in FOUR, so that the 'original' Sino-Tibetan prefix in FIVE was *I-? Must we assume that the further back we go, the fewer prefix runs we should find?

To me it seems more reasonable to conceive of the prefixation of numerals as a highly idiosyncratic and variable business 'right from the beginning', with cyclical waves of analogical levelling and re-differentiation having occurred throughout (and before) the documentable history of the ST family.

1.1.2 LEXICO-SEMANTIC ISSUES

Numerals constitute a uniquely structured semantic field, both syntagmatically (because of their fixed linear order in counting), and paradigmatically (because of the multitude of mathematically precise relationships (such as additive and subtractive, multiplicative) in which they simultaneously participate.

Prefix runs are only one of the manifestations of the influence of adjacent numerals on each other. We shall point to cases where other areas of the syllable are clearly affected by internumerical contamination, including the root-initial consonants and rhymes (vowels, tones, and

[^2]even suffixes) of consecutive numerals (§4.0.1). In fact, it is not even necessary for numerals to be consecutive in order for them to influence each other's phonological shape. It is widely assumed that the complex initial consonant sequence in WT brgya 'hundred' is somehow modelled on the word for 'eight' (WT brgyad), though nobody has suggested any conceptual basis for this in terms of a mathematical relationship between ' 8 ' and ' 100 '. ${ }^{10}$

Although wholesale borrowing of numerals is by no means unheard of, ${ }^{11}$ and has reached critical proportions in many of the TB languages of Nepal ($\S 2.0-\S 2.1$), numerals are generally considered to be among the best specimens of core vocabulary. Indeed, the TB languages overwhelmingly reflect a single inherited etymon for each of the primary numerals from TWO to NINE. ${ }^{12}$

In striking contrast, there are multiple roots reconstructible for both ONE and TEN, with no single etymon distributed through all the branches of the family. ${ }^{13}$ As we shall see, the proliferation of lexemes for TEN is undoubtedly connected to its special role as the 'base' of most TB numeral systems, to its propensity for being confused or 'transvalued' with ONE or TWENTY, and to its frequently ambiguous role as both a numeral and a classifier.

Several interesting issues may be raised concerning the relationship of the lower numerals (1-5) to the higher ones (6-10). First of all, from the viewpoint of language contact and lexical replaceability, the lower numerals seem much more resistant to outside influence than the higher ones. In areas like Nepal, where the local TB languages are under severe pressure from a prestigious majority language, it is common to find that the higher TB numerals have totally fallen into desuetude, while only a few of the lower ones are preserved. ${ }^{14}$ To my knowledge no cases have ever been documented where a language has retained its inherited higher numerals, but replaced its lower numerals by borrowing. ${ }^{15}$

Language internally, the higher numerals may be conceptually secondary to the lower ones. A number of TB languages have lost their inherited forms for $6-9$, replacing them with additive or multiplicative formations based on $1-5$. Thus EIGHT may be expressed as ' $5+3$ ', or as ' 4×2 '. (See $\S 4.2 .0$.) ${ }^{16}$ A glance at Figure 2 reveals a similar phenomenon already at the PTB level: both TWO ($* g$-nis) and SEVEN ($* s$-nis) are reconstructed with identical roots, differing only in prefix. Every daughter language (even if it no longer retains any prefixes) manages to keep TWO and SEVEN distinct by one phonological means or another (§4.1.1, $\S 4.2 .2$), but it seems likely that the TB numeral system once related them conceptually.

The STC (note 148, p.45) does not exaggerate when it declares that "This pair of numeral roots [EIGHT and HUNDRED] presents unusual difficulties both in TB and in Chinese".
11 As is well known, the Chinese numerals have been borrowed by Thai and Japanese, in the case of the former supplanting the native numerals almost entirely.
See the 'profiles' of the primary numerals at $\S 4.1-\S 4.2 .4$. This is not to say that isolated forms do not crop up here and there in one or another TB language or subgroup, a celebrated example being WT bdun ' 7 ’ (§4.2.2). The AMD branch of TB (§1.2.5) has the most aberrant-looking numeral sets in the whole family.
13 Besides the three roots for ONE and the two roots for TEN that are reconstructed in STC (see Figure 2), several additional etyma have been discovered for both. See §3.1.5, §3.2.3.
14 Even Thai has retained its inherited word for ONE (nỳg), using the Chinese loan Pèt only in compound numerals (11, 21...101).
15 This is certainly not to deny that a language may replace its lower numerals by some other means. Jingpho, while faithfully retaining its inherited etyma from 3 to 10 , has introduced new lexemes for ONE (laŋâi) and TWO (lakhôy), that until recently have not been relatable to anything else. In Matisoff 1994c I identify the former with the Jg. first person pronoun $\eta \bar{a} i$ ' I '. '9-1'.

This leads to the whole question of the 'conceptual bases' of TB numeral systems. Besides the traces of QUINARITY just mentioned, there are strong indications that several other nondecimal bases have served as building-blocks for numeral systems at various stages in the history of the family. A monomorphemic form for twenty, *m-kul, is reconstructible for PTB (see Figure 2), and a number of modern languages have thoroughgoing VIGESIMAL systems of 'round-number formation’ (§3.5). In many cases, however, there is hesitation between decimality and vigesimality within an individual language, sometimes involving change in referent or 'transvaluation' of the lexeme for twenty (§3.5.1, §3.5.3.4). Other, more exotic types to be found in one or another TB language include QUATERNARY (Boro, Kubhinde Dumi) and DUODECIMAL (Chepang) systems. In the case of Chepang, the system seems to have come into being through a transvaluation of the inherited root for twenty into the meaning twelve (§3.5.3.5).

Actually the phenomenon of numeral transvaluation is surprisingly widespread in TB, a testimony to the multiple simultaneous conceptual interconnections among the numbers themselves (§4.0.2).

In sum, this monograph is concerned only tangentially with the refinement of the phonological reconstructions of the proto-numerals. At least equal attention will be paid to an appreciation of the internal workings of synchronic TB numeral systems. By studying the morphophonemic and conceptual vicissitudes that the inherited material has undergone in the various languages, we may arrive at something approaching a taxonomy or typology of TB numeral systems.

1.2 Overview of Sino-Tibetan numeral systems according to subgroup

In general, it is the Kamarupan languages - especially the Kuki-Naga and Abor-Miri-Dafla groups - that best illustrate the complex 'play of prefixes’ with numeral roots (§1.2.4, §5.4, §5.5). On the conceptual side, the Himalayish languages are of particular interest, especially because of the hesitation between decimality and vigesimality in their higher numerals (§1.2.3, §3.5.3). Yet all the subgroups of the family have their characteristic numerological flavour, and it is worthwhile to do a quick rundown of the various branches, giving a representative specimen of the kinds of numeral systems to be found in each.

1.2.1 LOLO-BURMESE AND KARENIC

These branches of TB have undergone radical simplification of initial consonant groups, and have thus lost most direct traces of prefixes with their numerals. An exception is the voiceless sonorants of Burmese (both in the anciently attested Written Burmese and in the modern dialects), which do directly reflect earlier prefixes, PLB *s- or *?, as in hnac '2', hrac ' 8 ' ($<$ PLB ${ }^{*} s$-ni-t and ${ }^{*} s$-rit, respectively).

	Written Burmese	Lahu（C．Loloish）
ONE	tac	tê
TWO	hnac	nî
THREE	stîm	
FOUR	lê	6
FIVE	刀â	刀â
SIX	khrok	khゝ？
SEVEN	khu＇－hnac	$\underbrace{}_{\text {ST }}$
EIGHT	hrac	hí
NINE	kûi	$q 5$
TEN	to－chay ${ }^{18}$	tê－chi
TWENTY	hnə－chay	nî－chi

Figure 3：Some Lolo－Burmese numerals
Another route by which a prefix could survive was by＇pre－empting＇or driving out a weak （non－obstruental）root－initial ${ }^{19}$ ，as in SEVEN ${ }^{*}$ s－nit $>$ Lahu $\breve{s} \neq$ ，where the root－initial $* n$－has fallen victim to the sibilant prefix．Another famous example is the Maru（Burmish）word for FOUR，bit（ $<{ }^{*} b$－liy），an isolated instance of the survival of the ${ }^{*} b$－prefix in Lolo－ Burmese．${ }^{20}$

Karen，like LB，shows no hint of vigesimality in its system of round numbers．Unlike LB， however，many Karenic languages have non－decimal multiplicative／additive formations for the numbers from 5 to $9 .{ }^{21}$ Compare the decimal Sgaw system with the non－decimal system of Kayah（＝Red Karen＝Karenni）in Figure 4.

Since other Kayah dialects preserve the monomorphemic forms，Solnit（pers．comm．1984） feels that these composite numerals are recent developments，and glosses swá as＇double’． （It also occurs in compounds with the meaning＇companion＇，as in khō－bé－swá＇friend＇， bé－swá－rи́＇be companions with＇）．${ }^{22}$ The Kayah numeral tə－＇one＇is an always unstressed bound form，which must appear with a following classifier．Syntactically，Kayah SIX and EIGHT are preceded by their classifiers（for example，plo sō swá？＇six round objects＇）， while with all the other numerals，including SEVEN and NINE，the classifier must follow（sō swá ta－plo ‘seven round objects＇）．
$\check{s} \hat{\varepsilon} ?$ is the variant that occurs in counting，while the＇etymologically correct＇allofam $\check{s} \bar{\varepsilon} \bar{n}$ now appears only before certain classifiers．Morphophonemic alternations in Tibeto－Burman numerals，besides being triggered by classifiers，also typically occur in compound numerals（teens and round numbers），similarly to English five \approx fif－，or ten \approx－teen $¥-t y(\S 3.3)$ ．
One characteristic type of morphophonemic change in numerals is destressing in non－final position in a collocation，as in Burmese TEN and TWENTY．Note that in these languages TEN is a classifier，not a numeral，that is＇ 10 ＇is expressed as＇one tenworth＇，＇20＇as＇two tensworth＇，and so on．See §3．3．2（B）， and the Kayah form for ONE（Figure 4）．
For the first use of the term prefix preemption，see Matisoff（1972b）．
The development of＊－iy＞Maru－it（as well as of＊－uw＞Maru－uk）is regular．See Burling（1968）．
Karen dialects mentioned as having such composite numberals in STC（p．130）include＂White Karen， Bwe，Brek，Red Karen，Yintale，and Mano＂．
It seems likely that this morpheme is ultimately related to Chinese（Mand．shuāng）＇pair＇，which also underlies the Thai numeral sy̆oŋ＇two．＇

Sgaw (Jones 1961) E. Kayah (Solnit 1984)

ONE	tə	$t 2-$
TWO	$k h \hat{1}^{23}$	$n \bar{\square}$
THREE	$\theta \tilde{\partial}$	sō
FOUR	lwì	$1 w_{1}$
FIVE	jè	刀 $\overline{\mathrm{e}} \sim \tilde{n} \bar{e}$
SIX	$x \tilde{y}$	sō swá?
SEVEN	$n w \overline{1}$	sō swá? to-
EIGHT	$x{ }^{\text {¢ }}$?	lwī swá?
NINE	khwĩ	lwī swá? ${ }^{\text {co }}$ -
TEN	f_{1}	chí \sim chã ${ }^{24}$

Figure 4: Some Karen numerals

Other Karen dialects, especially Pa-O (Taungthu) have developed secondary dental suffixes with certain numerals: Pa-O līt ' 4 ', ngãt '5', kũt ' 9 '. In the case of nũt ' 7 ' and $s \tilde{\partial} t ~ ' ~ 8 ', ~ t h e ~$ PTB forms themselves are reconstructed with final dentals (*-s and *-t respectively), but since Karen does not generally preserve final consonants, the $-t$ in these forms also appears to be secondary. ${ }^{25}$ We consider these final dentals to constitute a 'suffix run', one of the many manifestations of the interinfluence of consecutive numerals (§4.0.1). As we shall soon see (§1.2.3), numeral suffixes are also characteristic of Himalayish, but there they tend to be fully syllabic.

1.2.2 KACHIN-NUNG AND QIANGIC

Jingpho (= Kachin) has a lively proliferation of prefixal morphology, some of which is exploited for specific semantic ends. The negative morpheme ${ }^{*} m a$ has been reduced to a syllabic nasal prefix, n-. The old causative prefix ${ }^{*} s$ - has been preserved and generalised as $\check{s} \partial-\sim d z \check{\partial}$-. Younger strata of prefixation are much in evidence, with a tendency to create fully syllabic prefixes out of sub-syllabic ones, for example, *m-rag 'horse' > Jg. gùm-rà η. With respect to numeral prefixation, Jingpho is relatively conservative, preserving the protoprefixes rather well, though it does have a secondary 'prefix run' from THREE to FIVE (see Figure 5).

The Nungish languages seem generally quite close to Jingpho. However, unlike the sesquisyllabic Jingpho, which abounds in words beginning with prefixal 'minor syllables' of the form Cə- ${ }^{26}$, Nungish is strictly monosyllabic, so that only an occasional prefix survives before a non-obstruental root initial, as in Nusu (Central Nung: Sun and Liu 1986) vis ${ }^{35}<{ }^{*} b$ lay 'four'.

24 The rising-toned variant is basic, while the mid-tone occurs in the round numbers 20-90. As Solnit observes, this tonal difference has a practical disambiguating function. Compare, for example, chí sō $s w a ́$ ' 16 ', i.e. $10+(3 \times 2)$, where TEN is in an additive relationship to the following numeral, with $c h \bar{n}$ sō swá ' 60 ', i.e. $10 \times(3 \times 2)$, where TEN stands in a multiplicative relationship with it.

26 The term sesquisyllabic, referring to words 'a syllable and a half long', was introduced in Matisoff (1973b).

Some Qiangic languages (the newly articulated branch of TB spoken in Sichuan) have complex initial consonant groups, often of demonstrably secondary origin. The Qiangic language with the most elaborate numeral prefixes seems to be Ergong (Sun 1985).

	Jingpho	Nusu	Ergong
ONE	lə $\mathrm{la} i$	thi ${ }^{53}$	zau
TWO	$1 ə \mathrm{khôg}$	$m m^{55}$	WnE
THREE	məsūm	so ${ }^{35}$	WSU
FOUR	mə\̄̄	vii i^{35}	WZE
FIVE	məŋã	па ${ }^{55}$	wjue
SIX	krú?	kh.ıu 53	wtchau
SEVEN	sənit	กั๊ ${ }^{\text {L5 }}$	spie
EIGHT	mə tsát	$\mathrm{Sa}^{\text {+53 }}$	زis
NINE	jokhû	gut ${ }^{35}$	Пge
TEN	Šī	tshe ${ }^{35}$	zBa/sqha

Figure 5: Kachin-Nung and Qiangic numerals
Note the impressive run of the prefix $w-\left(<^{*} b-\right)$ in the Ergong numerals from 2 to 6, even longer than the Jingpho run of mə- in 3 to 5 . As mentioned above (footnote 15), the Jingpho forms for ONE and TWO are innovations which require a special explanation.

1.2.3 Himalayish and Rgyalrong

Himalayish shows fairly good preservation of the proto-prefixes, but by and large little innovation of secondary ones, so that 'prefix runs' in the numerals are rare. The languages show variation and vacillation between decimality and vigesimality (§3.5.3.4). In the case of many of the minority TB languages of Nepal, the higher native numerals are rapidly giving way to Indo-Aryan replacements from Nepali (§2.1).

The numeral prefixes of Written Tibetan (WT) are taken (perhaps too uncritically) by STC as faithfully reflecting the most ancient stratum of prefixation in TB. In any case, WT is certainly much more conservative in this respect than younger Himalayish languages like, for example, Tamang (Nepal) or Kanauri (Simla Hill States, Punjab), which only show prefixes with a few of the numerals.

	Written Tibetan	Kanauri	Tamang
ONE	gćig	id	ki:h
TWO	gñis	nif	ni:h
THREE	gsum	fum	som
FOUR	bźi	pū	plih
FIVE	lga	ga	ja:h
SIX	drug	tuk	tu:h
SEVEN	bdun	stif	nis
EIGHT	brgyad	rai	preht
NINE	dgu	zgui	ku
TEN	bću	sai	ci

Figure 6a: SOME Himalayish numerals

Among the more prefixally innovative Himalayish languages is Lepcha (Sikkim), which not only preserves the 'proto 4-5 run' as fə-, but has also innovated a $k ə$ - prefix for 7-10.27 Even more exuberant in this respect is Rgyalrong (= Jiarong), which for several numerals not only retains the proto-prefix but adds a new one in front of it, creating a long velar-prefix run from 2 to 7. This is still another indication that Rgyalrong is not 'core Himalayish' at all, but rather a transitional language, with suggested affinities to Abor-Miri-Dafla (see Nagano 1984), ${ }^{28}$ and/or Qiangic (as maintained by Sun Hongkai 1985). ${ }^{29}$ See Figure 6b.

	Lepcha	Rgyalrong (Zida dialect)
ONE	$k a t$	tšek
TWO	nət	kenes
THREE	sam	kesomæ kesam
FOUR	foli	kewdži
FIVE	fəŋо	kemıa
SIX	tərək	keta
SEVEN	kəkyək	kessñit kes̃nis \% kessñes
EIGHT	kəku	warže(t)
NINE	kəkyot	kengu
TEN	kəti	stsi

Figure 6b: Himalayish innovators: Lepcha and Rgyalrong

It is characteristic of many languages of Nepal to have suffixes attached to their numerals, for example, Dumi -po (tūk-po '1’, sak-po '2', suk-po '3'), Bantawa (ũk-pok -pok '1’, hũa-pok '2', sum-ka-pok '3'), Yakkhaba -ci/-ji (nic-ci '2', sum-ji '3', ri-ji ‘4'), etc. (Gvozdanović 1985:135-136). These suffixes are fully syllabic (unlike those of Pa-O Karen, §1.2.1), so one may surmise they are (or once were) classifiers, or even gender markers, rather than meaningless formatives. See §2.1.

1.2.4 KUKi-Chin-NaGa and Bodo-Garo

KCN shows good preservation of the proto-prefixes, but also a strong tendency toward innovative prefix runs. This is the branch of TB whose numeral prefixal behaviour will be discussed in the most detail (§5.4). Like Himalayish, Kuki-Chin-Naga shows a complex interplay of decimal and vigesimal characteristics (§3.5.2).

Bodo-Garo (= Barish) displays occasional cases of reprefixation (for example, Garo ge-gni ' 2 '), but in general is not so extreme in this respect as KCN, Qiang, or Rgyalrong. Boro can definitely be shown to have a quaternary or 4-based numeral system, very unusual for TB. ${ }^{30}$

As we shall see ($\S 4.0 .2, \S 4.2 .3, \S 4.2 .4$), these Lepcha forms for EIGHT and NINE seem to have undergone an 'etymological flipflop'.
The possibility of a special AMD-Rgyalrong relationship is vigorously criticised in J.T. Sun (1993:379-389).
29 This Rgyalrong run is reminiscent of the 2-6 run of the w-prefix in the Qiangic language Ergong (§1.2.2), though Ergong shows only one prefix per numeral.
30 See §3.3.2(C) 'Teen formation in Barish' and §4.2.0.1 'Multiplicative phenomena'. Elsewhere in TB, the closest thing I have found to the Boro quaternary system is the duodecimal system of Chepang (§3.5.3.5).

1.2.5 ABOR-MIRI-DAFLA

This relatively obscure branch of TB harbours some of the strangest numeral systems of all from a comparative viewpoint, especially with respect to the 'higher numerals' (7, 8, 9). Not only do we find roots that are hard to relate to anything else in TB, but also the systems reveal peculiarities of internal structure (for example, 'multiplicative' forms for EIGHT: see §4.2.0, §4.2.3.7). Several new roots for ONE and TEN have been unearthed in this subgroup (§3.1.5, §3.2.3).

The numeral prefixes that appear with the highest frequency in AMD consist of a vowel alone: a-, $o-, e-$. All other prefixes (for example, $k V-, p V-$, ra-) are quite rare with AMD numerals. See §5.5.

For some indication of the bizarre appearance of some AMD numeral systems, consider those cited in Figure 7.

	Aka	Miju	Milang	Serdukpen
ONE	a	kumo	akan; atel	han
TWO	kshi	kinin	ne	$n(y)$ ik
THREE	zu	ksam	ham	ung
FOUR	fi-ri	kambran	pe	bi:si
FIVE	phum	klin	pangu	khu ${ }^{31}$
SIX	rieh	katam	sap	khit
SEVEN	mulh	nin	rangal	sit
EIGHT	sikzi	grin	rayeng	sargiat
NINE	sthö	natmo	kanyem	dikhi
TEN	rhi	kyapmo	hangtak	dokche

Figure 7: Some aberrant Abor-Miri-Dafla numeral systems ${ }^{32}$

1.2.6 Chinese

Evidence for pre-Archaic Chinese prefixes is of course indirect, but it looks as if there may have been a run of the ${ }^{*} s$ - prefix in the numerals from FOUR to SEVEN. ${ }^{33}$ See Figure 8.

[^3]| ONE | Old (= 'Archaic') Chinese | Proto Tibeto-Burman |
| :---: | :---: | :---: |
| | *? iĕt (GSR \#394) | *it |
| | *tśjäk (GSR \#1260) | *g-t(y)ik |
| TWO | * $n \mathfrak{j}$ 矿 (GSR \#564) | $*_{g}$-ni-s |
| THREE | *ts'əm ~ * səm (GSR \#647, 648) | *g-sum |
| FOUR | *sjəd ${ }^{34}$ (GSR \#518) | *b-ləy |
| FIVE | * n go ${ }^{35}$ (GSR \#58) | *l-/b-ŋa |
| SIX | *lîok ${ }^{36}$ (GSR \#1032) | *d-ruk |
| SEVEN | *ts'jĕ́t (GSR \#400) | $*_{s \text {-nis }}$ |
| EIGHT | *pwăt ${ }^{37}$ (GSR \#281) | *b-g-ryat**-r-gyat |
| NINE | *kjug > MC *kiəw (GSR \#992) | *d-kə w |
| TEN | * ${ }_{\text {dj}}$ \%p (GSR \#686) | * $g(y) i p$ |
| HUNDRED | *păk ${ }^{38}$ (GSR \#781) | ${ }^{\text {r-gya }}$ (but WT brgya) |

Figure 8: Old Chinese and PTB numerals

STC derives this from pre-Archaic ${ }^{*} p$-say.
STC cites the very early loan into Proto Tai, *ha, as evidence for Pre-OC *hga (ultimately < **s-ŋa). STC posits a pre-Archaic ${ }^{*} b$ - prefix for SIX on xie-sheng evidence. Proto Tai *hrok also points to some sort of prefix in pre-OC, but not necessarily in my view to a labial prefix. ${ }^{*}$ s- in fact seems more likely (cf. Tho sok), though Benedict claims that Ong-Be sok points to *phr-("a regular shift").
STC (pp.162, 179) derives this from pre-Archaic *b-ryat < *bryât.
STC ingeniously but ad-hoc'ly derives this OC form "from *pak(-rya) [with typical unvoicing of the prefix, then restressing of the prefixal vowel] < *b-grya < *b-r-gya)".

CHAPTER 2

LANGUAGE CONTACT AND THE WEIGHT OF NUMBERS

2.0 INTRODUCTION

The numeral systems of majority languages may easily make profound incursions into those of less prestigious minority languages. Numbers prevail - a numerically dominant population will 'make its numbers felt' in more ways than one! Differential numerical prestige is dramatically illustrated, for example, in market situations, where speakers of minority languages come to town and have to bargain using the foreign numerals of the majority population.

The embattled indigenous languages of the Malay peninsula, belonging to the 'Aslian' branch of Mon-Khmer, are a good case in point: "Mon-Khmer languages of Malaya, with the exception of Semelai and Semoq Beri, have not retained a complete set of Mon-Khmer numerals, but, above the numbers three or four, use Malay borrowings" (Diffloth 1976:31).

Similarly, various Tai languages have exerted a decisive influence on the numerals of coterritorial TB languages, especially those spoken by very small populations. In Hpun, a moribund Burmish language of Kachin State, Henderson reports that "there was great uncertainty and much dispute among his informants over the numerals above three. Luce supposes that since the local bazaars are mostly run by Shans, Shan numerals have replaced the Hpun ones in general use." ${ }^{1}$ In Bisu, a Southern Loloish language spoken in a few villages of Thailand, the original TB numerals $1-5$ are still current, but above five only loans from Thai are found: ‘ 6 ' h亏̄k, ' 7 ' kjīt, ' 8 ' pet, ' 9 ' kãw, ' 10 ' sĩp. ${ }^{2}$

Going a step further up the totem pole of relative prestige, the Tai languages themselves have long ago replaced all their native numerals from 2 to 10 with Chinese ones. ${ }^{3}$ In fact, the overwhelming influence of the Chinese numerals has been felt throughout the 'Sinosphere', including Japanese, Korean, Vietnamese, Miao-Yao, and a number of the TB languages of China.

The same phenomenon is apparent in the 'Indosphere' as well. Emeneau (1957) reports the massive influence of Indo-Aryan on the Dravidian numerals. Closer to home, the numerals of the Kamarupan and Himalayish branches of TB have undergone some influence from IndoAryan (Bengali, Assamese, Kashmiri, Hindi) - though the most dramatic inroads have been made by Nepali on the TB languages of Nepal. As we shall see (§4.0.2), foreign incursions

[^4]into a language's numeral system can lead to widespread transvaluations, or reinterpretations of the meaning of the individual elements in the system.

2.1 Nepali and the TB languages of Nepal

Nepali is a member of the northern group of Indo-Aryan languages. Its numerals are displayed in Figure 9.

ONE	ek	SIX	cha
TWO	$d u i$	SEVEN	sa:th
THREE	tin	EIGHT	a:th
FOUR	ca:r	NINE	nau
FIVE	pa:nc	TEN	das
TWENTY	bis	HUNDRED	se

THOUSAND hajaar

Figure 9: Nepali numerals

The TB languages of Nepal are no exception to the principle that the lower a numeral is, the more likely it is to resist change. ${ }^{4}$ Many languages (for example, Kham, Sunwar, Chourase, Mewahang, Athpare) preserve only the TB numerals 1-3; Magari retains 1-4; Chepang and Lohorong go so far as to keep $1-5$. All other numerals in these languages are from Nepali, or else derived from extraneous morphemes meaning 'finger' or 'hand'. See Figure 10.

	Kham	Sunwar	Magari	Chepang
ONE	tobo	ka:	kat ${ }^{5}$	ya:t-jo?
TWO	nehplo	niksyi	nis	nis-jo?
THREE	sohmlo	sã:	som	sum-jo?
FOUR			pulir	play-jo?
FIVE				poŋa:-jo?
	Chourase	Mewahang	Athpare	Lohorong
ONE	kolo/kwalo	ekku	thik	thikko
TWO	nimpha	hicci	ippok	nicci
THREE	summakha	sumji	sumbok	sumci
FOUR				ricci
FIVE				пасi

Figure 10: Preserved TB numerals in some languages of Nepal ${ }^{7}$

4 See §1.1.2, §2.0. For the exceptional situation in Jingpho in this regard, see Chapter 1, note 15 and Figure 5.
5 I believe Magari k at and Chepang ya:t to be cognate, both descending from a PTB etymon *k-y-at that underlies two supposedly independent roots set up in STC, viz. *kat and *it. See the discussion of words for ONE, §3.1.
6 There is no trace of a velar prefix in TWO or THREE, but the labial prefix is preserved in Magari FOUR and Chepang FOUR and FIVE.
7 Data from the first four languages in the chart are from Hale, ed., (1973) ("CSDPN"); forms in the other languages are from Gvozdanović (1985). Chourase kollabremci '5’ and nimphalabremci ' 10 ’ are derived

Similarly, Michailovsky (1988:123) reports that in Hayu (= Vayu), a language now on its last legs, "à partir de cinq (quatre pour la plupart des locuteurs) les numéraux et classificateurs nepali sont employés". Speaking in almost identical terms of the situation in Thulung Rai, Allen (1975:102) notes that "no Thulung that I met knew how to count in Thulung beyond four (many could only reach three)."

What accounts for the relative hardiness of the lower numerals? Gvozdanović (1985:140) attempts an explanation in terms of grammatical function, claiming that "the process of numeral decay is at each stage characterised by a language-specific cut-off point, defined by the highest numeral which is actively used in numeral constructions". This is a merely circular explanation, however, since it amounts to saying that only the native numerals which are preserved are available to participate in native numeral constructions! Whether a language will preserve its original numerals only for 1 and 2 , or whether it will keep 3,4 , and/or 5 as well is certainly not predictable from any independent grammatical parameter (for example, whether the language maintains a category of dual in its pronouns and verbs). The staying power of the lower numerals is best appreciated in a more common-sensical way. It is the lower numerals which have the highest real-life (pragmatic) frequency and saliency - things in the world come in two's and three's much more often than they do in seven's and eight's. Children learning their native language will have a clear conception of TWO and THREE long before they have the higher numbers figured out. ${ }^{8}$ The lower numerals are apt to appear in many more idioms and collocations (set expressions) than the higher ones, which contributes to their survival value. 9,10 Irregularities and suppletions are quite tolerable with the high-frequency lower numerals, but tend to be quickly levelled out with the lower-frequency higher ones: we can readily accept the irregular ordinals first and second, since we have learned them by rote at such an early age, but we would not like it so much if it were, for example, EIGHT and NINE that had irregular ordinal forms while the others were predictable from the corresponding cardinals.

In any event, loss and replacement of numerals can occur much more rapidly than a language's grammatical categories change. We have seen that by 1975 no speaker of Thulung Rai knew the TB numerals above FOUR. Yet Allen (1975:102-103) notes that in a vocabulary compiled by Agami Singh Rai only 30 years before (1944), a full set of TB-derived Thulung numerals is given, including those in Figure 11.

ONE	ko	SIX	ru
TWO	nə	SEVEN	yet
THREE	sium	EIGHT	let ${ }^{11}$
FOUR	blə	NINE	gu
FIVE	go	TEN	kodium

Figure 11: The moribund TB-DERIVED numerals of Thulung Rai

[^5]In the case of Hayu, we can trace the breakdown of the traditional numeral system through a period of over a hundred years. It is interesting to compare the surviving TB numerals in Michailovsky's data (1988) with the forms to be found in Hodgson's (1880) 19th century material. See Figures 12a, 12b.
(a) Michailovsky (1988:167)

ONE	kolu
TWO	nakpu (human) / naung (non-human)
THREE	tshukpu (human) / tshu'ung (non-human)
FOUR	$b(1) i ? u n g$

(b) Hodgson (ca. 1860, cited in LSI III/1:384). ${ }^{12}$

	Masculine	Feminine	'Irrational'
ONE	kom-pu/kwong-pu	$k w o-m i /$ kwong-mi	ko-lu
TWO	na:k-pu	na:ng-mi	na:-yung
THREE	chhuk-pu	chhung-mi	chhu-yung
FOUR	blik-pu	blig-mi	bli-ning

Figure 12: SURviving TB numerals in Hayu
What Hodgson found was considerably more elaborate than the vestigial system reported by Michailovsky after 120 more years of intense pressure from Nepali. In fact, the 3-way gender distinction in Hodgson's (1880) data furnishes a possible clue as to the original function of the suffixes which are such a characteristic feature of Himalayish numeral systems (§1.2.3).

Several suffixes like these, which may once have been gender markers and/or classifiers, are still attested in more than one TB language of Nepal:
(a) -lo/-lu. Besides Hayu ko-lu '1', cf. Chourase kolo/kwalo '1'; Kham nehplo '2' (with epenthetic $-p-$?) and sohmlo ' 3 '; and Yakkha kolok ' 1 ' (with $-k$ suffix).
(b) -pu/-po. Besides Hayu nakpu '2', tshukpu '3', blikpu '4', cf. Kham tobo '1'; Sunwar sa:hpu ' 2 ' and suhpu ' 3 '; and especially the Saptesar dialect of Dumi, which has generalised the -po with all the numerals from 1 to 9 (trkpo ' 1 ', sakpo ' 2 ' ... ompo ' 8 ', rekpo '9'. 13
(c) -pok/-bok. Possibly related to the previous suffix is a form with velar final that occurs in Athpare ippok ' 2 ', sumbok ' 3 ', and in some dialects of Bantawa ($\ddagger k p o k$ ' 1 ', hrapok ' 2 ', sumkapok ' 3 ', retkapok '4'). ${ }^{14}$

[^6](d) -ci/-ji. Several languages have this numeral suffix, including Mewahang hicci ' 2 ', sumji ' 3 '; Yakkha hitci ' 2 ', sumci ' 3 '; and Lohorong nicci ' 2 ', sumci ' 3 ', ricci '4', naci ‘ 5 '. Sometimes it is found generalised with the whole set of numerals from 2 to 9 or 2 to 10 , as in Yakkhaba (nicci ' 2 ' ... nokci ' 9 ') and Kulung (nicci ' 2 ' ... nuci ' 9 ', bэci ' 10 ').
(e) -si/-shi. This suffix, which may well be etymologically related to the previous one, is found in Bahing niksi ' 2 ' and Sunwar niikshi ' 2 '. In Limbu it has been generalised with all the numerals from 2 to 8 (netsshi ' 2 ', sumsi ' 3 ', liisi '4', $n(g)$ aasi ' 5 ', tuksi ' 6 ', nuusi ' 7 ', phangsi ' 8 '. There may also be an allofamic relationship with a velar-finalled suffix -tsing found in Sharchop and Monpa (Motuo) nik-tsing '2'.
Other suffixes, for example, Chepang -jo? (Figure 10) and Hayu - ? $u n g$, remain a mystery in comparative terms. The old Hayu feminine suffix -mi, however, is relatable to a general TB root *mi(y) 'woman, female' (for example, Lahu yâ-mî'daughter', j̀-mî-ma 'wife').

The generalisation of a particular suffix to a succession of adjacent numerals may be referred to as a 'suffix run'. ${ }^{15}$

CHAPTER 3

ONE AND TEN AND TEENS AND TWENTIES

3.1 Profile of number ONE

As STC (p.94) observes, there is no single general root for ONE or TEN in Tibeto-Burman, in sharp contradistinction to the 'primary' numerals $2-9$, for each of which a single etymon overwhelmingly predominates. The special importance of the concept ONE links it to many other semantic fields. As the most frequently occurring numeral, its constant use may lead to its semantic bleaching, until it becomes an indefinite article. Its high frequency encourages morphophonemic irregularity, and idiosyncratic fusions with other morphemes. (Compare the multiple English allofams which all descend somehow from PIE *oino-: one, an, once, only, alone, anon, onion, eleven ($<\mathrm{ME}$ ellevene $<\mathrm{OE}$ endleofan $<$ *ain-lif- 'one left (beyond ten)'.)

Sometimes a language maintains more than one ONE, one of which occurs as the independent numeral while the other survives only as a part of compound numerals, for example, Thai nỳ̀ ' 1 ', sìp ' 10 ', but sìp-èt ' 11 ', róoj-èt ' 101 '. (This -èt, like the rest of the Thai numerals from 2 to 9 , is of Sino-Tibetan origin (§3.1.1).)

In Garo, three separate etyma for ONE have been preserved, each frozen into the numeral system in its own restricted context: sa ' 1 ' (independent), chi-sa ' 11 ', ritcha-sa ' 100 '; but kolgrik '20' ('20 x 1’; §3.1.4); and chi-kung ' 10 ’ (presumably ' 10×1 l'; §3.1.3(b)).

Many languages have an unrelated ('suppletive') form for the ordinal corresponding to ONE, for example, English first. This study does not deal with words like first or single, since they frequently come from unpredictable non-numerical semantic fields.

3.1.1 *it * yat

STC (p.94) sets up a PTB etymon *it on the basis of only two forms, Kanawari id and WB ac, identif ying it as cognate to Old Chinese *? jë̀t (p.162).

To these I would now like to add Chepang ya:t(-jo?), which agrees well with Chinese, and leads me to revise the PTB (and PST) reconstruction to ${ }^{*} i t * * y a t$. I am thus claiming that this root displays the -i-ya- variational pattern established independently for a number of nonnumerical roots (for example, EYE, PHEASANT ${ }^{1}$), and, strikingly enough, with several other numerical etyma as well, as we shall see. ${ }^{2}$

[^7]Several TB languages of Nepal have disyllabic forms for ONE where the first syllable has a superficial resemblance to the above forms, but these all seem to be borrowings from Nepali $e k$ (see Figure 9):

Mehawang	$e k-k u^{3}$
Yakkhaba	ik-ko
Khulung	i-bum ~ i-bim
Bantawa	various dialects: Gvozdanović 1985:188)

We are now able to relate the root ${ }^{\text {it }} \approx *$ yat to another set of forms that STC sets up as an independent etymon, *kat (next section).

3.1.2 ${ }^{*} k$-(y)at $*^{*} k$-(y)it ${ }^{*} k$-yan $*^{*} k$ - (y) in

STC (p.94) laconically sets up a PTB root *kat on the basis of 'Lepcha kat and Kuki-Naga *khat'. More specifically, we may cite the following forms from Kuki-Naga languages:

Zeme and Zeliang (hang)kat; Kom Rem inkhat; Lushai, Hmar, and Vaiphei pakhat; Gangte, Khoirao, Maring, Paite, and Puiron khat; Liangmai khad; Thado xıt; Nruanghmei khüt.
To the Lepcha form, we may add another cognate from a Himalayish language, Magari kat (with unexplained retroflex t).

3.1.2.1 *kya-næ*kya-t

Many other Kamarupan forms with front vowels may reflect a medial $-y$-:
Mzieme ket; Sangtam khe (also khürü); Pochury khe; Meluri ke (also kesü); Sema khe (also lakı); Mishmi (Dubey 1983) khege; Chulikata e:khe:; Idu khe-ge (also kheng-ge).
Other Abor-Miri-Dafla languages have a final nasal after the front vowel (note the variation in Idu):

Idu kheng-ge (also khe-ge); Gallong aken (also ako); Lhopa aken (also ako); Padam akem (also atel); Tagin akin; Dafla akkin (E. Dafla, Hamilton 1900), aking (also aku) (Das Gupta 1969), akhin (Yano Dafla, Bor 1938), a:-kin (Robinson 1851); Taraon (e:-) khing (Digaru Mishmi, LSI 3/1:623).

I would like to relate all these forms in a word family like $* k-(y) a t \approx k-(y) i t \approx * k$-yan * ${ }^{*} k$ - (y) in, showing variation both between $-i$ - and $-y a-$, and between final homorganic stop and nasal. Also perhaps to be accommodated here are the two forms cited in STC \#34: WT rkyaŋ-pa, WB khyât ‘single’.

A similar variational pattern in TWO is suggested by the Lepcha doublet niæ năt. See §4.1.1.4.

3.1.3 *ka AND *ko

The forms in these groups, with velar initial and non-front vowel, may or may not be etymologically related to the forms cited in §3.1.1 and §3.1.2. Several Kamarupan languages have two velar-initial words for ONE, one with a back vowel and the other with a front one (for example, Gallong/Lhopa aken and ako).
(a) With -a vocalism and no overt trace of a final consonant:

Ao ka (Chungli), akha (Mongsen); Lotha ekha; Lakher mia-kha (also sa-, §3.1.5.2); Yacham-Tengsa kha-tu (for second syllable see §3.1.4.3); Tangkhul akha, khatkha4; Sunwar (Himalayish) ka:-.
(b) With -o or $-u$ vocalism and no following nasal element:

Abor-Miri-Dafla

Abor-Miri a-ko ‘one', -ko 'general numeral suffix’; Lhopa a-ko (also aken); Gallong a-ko (also aken); Dafla aku (also akkin, aking); Miju -ko ‘one; -teen’ (see §3.4).

Himalayish

Thulung Rai ko 'l', ko- '-teen’ (see §3.4); Newari -gu: ‘general numeral suffix’; Hayu ko-lu 'l'; Yakkha ko-lok, Chourase ko-lo, kwa-lo; Mewahang ek-ku, Yakkhaba ik-ko; Lohorong thik-ko (all meaning ONE).

The first syllables in the Mewahang and Yakkhaba forms seem to be loans from Nepali ek (§3.1.1); if the second syllables also mean ONE, these are redundant or pleonastic formations (as in Lohorong, where the first syllable descends from another native root for ONE (§3.1.4)). In these languages the second syllables have evidently been bleached to suffixal status, as in Abor-Miri or Newari, devoid of anything but a weak meaning like 'unit' (§3.1.6).
(c) With non-front vowel and following nasal element:

Abor-Miri-Dafla

Milang akan; Minyong akon (also atîr, ayirr); Darang Deng k'un ${ }^{55}$; Apatani kun (nonhumans), kon (humans); Idu khum ${ }^{55}$ (Sun 1983:69). ${ }^{5}$

Other TB forms which seem to belong here are Bahing (Himalayish) kong ' 1 ', and Garo (Bodo-Garo) chi-kung ' 10 ' (lit. ' $10 \times \mathrm{I}$ ').

3.1.4 ${ }^{*} g-t(y) i-k * * t y a-k$ AND ${ }^{d} /$ tay $*{ }^{*} d / \tan$

STC reconstructs an etymon *g-t(y)ik**tyak 'one’ on the basis of WB tac, Nung thi, and a group of forms from Himalayish (WT gcig, Chingtang thit-ta, and 'Rai' tik-pu). ${ }^{6}$ To these

4 The Tangkhul variant khatkha is hard to evaluate in the light of our present knowledge. Is it reduplicative? Or does each syllable represent a quite separate etymon, *ka versus *kat? Or is the $-t$ a suffix (*ka-t)?
5 J.T. Sun (1993:183) has now reconstructed a Proto Tani root *kon, on the basis of forms he cites as Apatani $k \tilde{u} \nless k o ̄$, Bengni a-kin, Bokar a-ken, and Padam-Mising a-kon.
6 See STC, pp.84, 94, 169 and 189. It is amusing to note that J. Greenberg (1987:112) has seized upon this reconstructed PST root as a good candidate for his 'Proto World' or 'Proto Sapiens" lexicon, claiming it is genetically related to (among others) Proto Indo-European *deik- 'to point', Amerindian
may be added Dumi ttk-po, tok-pu; Lohorong thik-ko (for the second element see §3.1.3); Athpare thik; Limbu lot-thik; Dzongkha ci; Kaike ti; and the second element of Sikkim Bhutia khe-chik '20' (lit. '20 x l').

Allofamic variations involve all parts of this etymon:
(a) A velar prefix is reconstructed on the basis of WT and other Himalayish languages (for example, Rgyalrong kətzk (ZMYYC \#911)), but other prefixes are attested elsewhere (for example, Qiang pets ${ }^{h}$ (Wen Yu 1950)).
(b) The root-initial consonant shows hesitation between a dental stop and a palatal affricate (natural enough before a high front vowel), both at the proto-level (compare WT gcig and WB tac) and at much more recent time-depths (for example, in Nungish, where Rawang has hti (=thi) (Barnard 1934) but a Nujiang dialect has $t \epsilon i^{55}$).
(c) The Himalayish languages of the Tamang-Gurung-Thakali nucleus seem to point to medial *-r- rather than ${ }^{*}-y$-: Gurung grihq, Tamang ki:h (with preemption), Thakali tih.
(d) The vocalic nucleus also shows proto-variation between ${ }^{*}-i$ - and ${ }^{*}$-ya-, a mysterious property of several other numerical roots as well (§3.1.1). The variant with ${ }^{*}$-yavocalism, *tya-k (STC, note 271, p.94), is reflected by Chinese 隻 *tśjäk 'one, single' (GSR \#1260c), to which we may add a number of putative TB cognates: Bumthang thek, tek (Nishi 1982); Monpa (Cuona) t'e ${ }^{254}$ (Sun et al., 1980); Bai tia (Dell 1981:61). ${ }^{7}$ Several forms with affricate initials probably also descend from the allofam *-ya-, with no direct reflex of a final stop: Newari cha; Konyak Naga ja; Chang Naga chie. ${ }^{8}$
(e) Many daughter languages show no trace of an original final stop. Sometimes this is undoubtedly the regular fate of the *-ik rhyme, but often (for example, in LoloBurmese) we are forced to recognise a proto-variant with no final consonant. If we indicate this in our reconstruction by putting a hyphen before the ${ }^{*}-k$, the resultant *t(y)i-k then looks a lot like one of the main TB roots for TEN *ts(y)iy *tsyay (§3.2.2), a resemblance that may be more than accidental. (See §3.4, 'Interchange and confusion between ONE and TEN'.)

Many Loloish languages have forms meaning 'one’ or 'only' with dental stop or palatal affricate initials and high front vowels, but microlinguistic work reveals a confusing array of variants already at the PLB stage. Some modern forms reflect final *stops, others do not. The vocalism appears to vary among ${ }^{-i-},{ }^{*}-a y$, and ${ }^{*}-e y$, suggesting that this etymon was often unstressed and hence of unstable vowel quality. ${ }^{9}$ Any given language is likely to have
forms like Karok ti:k 'hand; finger', Yagua tiki 'one', and Eskimo tik-iq 'index finger', as well as NiloSaharan forms like Maba tek, Fur dik 'one’. For a critique of Greenberg's unfettered approach to linguistic comparison, see Matisoff (1990a).
7 Other possible reflexes of *tyak in languages of Nagaland are Phom hük, and the 2nd syllable of Wancho tu-ta. For the first syllable of this Wancho form, see below.
8 French (1983:529) sets up a Proto Northern-Naga root *-kla, to which he assigns the Konyak and Wancho forms, as well as the second syllable of Yogli śa kha ' 100 ' (' 100×1 '), suggesting a connection with Jg. ma ${ }^{55} \mathrm{khra}^{31}$ 'all; whole' (Dai et al., 1983:455). (An obvious alternative source for the Yogli syllable would be *ka (§3.1.3).
In Modern Burmese the fully stressed form ti? (the regular reflex of WB tac) appears only in isolation, while the unstressed variant to-occurs in the stream of speech (e.g. before classifiers). Similarly, in Akha the stressed form ti? with constricted vowel, is used in counting, while a low-tone open syllable tioccurs otherwise. See also the unstressed form for ONE in Kayah (§1.2.1), as well as Dulung tips (Sun 1982:244-245), and Karenic forms like Pa-O tò?-ba, Palaychi to-, Sgaw to-.
developed several co-existent variants (much like English one, an, only, and so on; see §3.1), for example, Lahu tê 'one’, dê-dê 'all', tí 'only’, tè'-chí 'nothing', a-cí 'little bit' < PLB *day, *nday, *? dik, *dek, and *?gyik, respectively. ${ }^{10,11}$

It is actually far from certain that Lahu tê 'one; whole; a/an' and dê-dê 'all' are relatable at all to the other forms in the group just cited. As explained in GSTC \#148, it is more plausibly to be derived from a newly reconstructed PST root *day**tay, underlying forms like Jingpho tai 'single', ətai 'one, as of a pair', guntai 'single', shingtai 'only'; Boro otay 'whole'; and Lakher dei 'only, alone'. ${ }^{12}$ The affinities of this etymon seem to lie not with the *tyik family, but rather with the nasal-finalled Chinese morpheme *tân 單 'single, simple' (GSR \#147a-d). ${ }^{13}$

A group of forms with tu are perhaps distinct from the above: ${ }^{14}$

(Himalayish)	Khaling	$t u$
(Naga)	Yacham-Tengsa	kha-tu
	Wancho	tu-ta

3.1.5 New roots for ONE in Abor-Miri-Dafla and ElSEwhere in Tibeto-Burman

3.1.5.1 *tir **tur

The AMD group and a few geographically close Bodish languages have a group of forms for ONE with dental initials, high vowels, and liquid finals, which seem independent of the other roots we have discussed with dental onsets (${ }^{*} t y i-k *{ }^{*} t y a k,{ }^{*} t / d a y$, or $\left.{ }^{*} t / d a n\right)$:

Mising (=Miri)
Padam (=Abor)
Minyong
Milang
Monpa (Motuo)
Monpa (Central)
Sharchop/Tsangla
Written Tibetan

```
a-ter
a-tel (also akem (q.v.))
atîr ~ayirr (also akon (q.v.))
atel (also akan (q.v.))
t'or
thur (Das Gupta)
thur (Chhewang Rinzin; also Nishi 1982)
thor-bu ‘single; separate' (Jäschke p.289)
```

[^8]We reconstruct this etymon as ${ }^{*}$ tir $\approx * \operatorname{tur}(-u-\approx-i-$ is a well-established variational pattern in TB; see VSTB pp.41-42). ${ }^{15}$

3.1.5.2 * (t) se

This group of Kamarupan forms meaning 'ONE' seems to have undergone 'contamination' with a root meaning ‘TEN’. (See §3.2.2; §3.4.)

Tangsa (Moshang)	ashi (GEM); ashe (Das Gupta 1978)
Tangsa (Muklom)	ase (Dubey)
Tangsa (Yogli)	ashi (GEM)
Kimsing	ashi (Das Gupta 1978)
Boro	-she (LSI); se (Bhat 1968)
'N. Monpa A'	$h i$ (Nishi 1982)
Ntenyi	kesü̈ (with prefixal k-)
Dimasa	$s e^{16}$
Mikir	isi

Two higher Mikir numerals contain this morpheme in interesting combinations: throk-si ' 7 ', an additive formation based on throk ' 6 ' (' $6+1$ ') and sir-kep ' 9 ', a subtractive formation based on kep ' 10 ' (1 from 10’); see §4.2.0.

Distinct from the above is another group of Kamarupan forms with -a vocalism, apparently from *sa or ${ }^{*} t s a:$

Garo	sa (Burling, Phillips); gesa (Momin)
Kokborok	-cha $-s a \sim-c a$
Lakher	sá ‘one' 17

This Lakher morpheme is also used as a prefix before all the numerals $2-10$, for example, sa-pali '4’ (lit. ' 1×4 '), sa-pangaw ' 5 ' (' 1×5 '). Also perhaps reflecting this etymon are Tiddim a-ma-sa 'first', Lotha ma-tsa-nga 'one'.

3.1.5.3 *han or *han

Serdukpen han (Dubey)
Zeme hangkat
Maram hangline

[^9]This morpheme seems to function as a fully syllabic prefix ${ }^{18}$ with the lower numerals in a few languages:

Nocte
Maram
van-the 'one', vanyi 'two' (<*van-nyi), van-ram 'three' hang-line 'one', hang-na 'two', hang-tum 'three'

3.1.5.4 *a

This 'minimalist' morpheme has only been unearthed in a couple of languages so far, but seems to represent a genuine etymon:

Aka (Hruso)
Qiang (Taoping) ${ }^{19}$
Qiang (Mawo)
a
$a^{21}($ Sun 1981:217)
a (Sun 1981:217)

3.1.5.5 ($k-) / V(N)$

A number of forms with lateral initials look as if they are related somehow, though their vowels cannot yet be reconstructed. A couple of these words for ONE have final nasals, which make them look suspiciously like a root for TEN reconstructed as $* / /$ rig $\approx l /$ ryaŋ (§3.2.3.3; §3.4):

Pwo Karen	İn(Jones 1961:618)
Yimchungru	khü-lang (first syllable is a prefix)
Sangtam	khürü (also khe)
Kezhama	kele (ke- is a prefix, part of a 1-3 run)
Mao	kali ($k a$ - is a prefix, part of a $1-3$ run)
Sema	la ki (also khe)
Maram	hang-li-ne (cf. *hang, §3.1.5.3)

It it not clear whether these forms are relatable to a group of phonologically similar Himalayish words for ONE, for example Chourase kolo/kwalo; Yakkha kolok; Hayu (Hodgson) ko-lu (§2.1; §3.1.3b).

3.1.5.6 MISCELLANEOUS RESIDUAL FORMS

(a) A few Naga languages of the Angami group have words for ONE with initial p-and a back vowel:
Angami puo (Kohima), po (Khonoma)
Chokri pü
Chakhesang püh
(b) A few Kamarupan languages have forms with initial m - and (except for Rengma) a nonfront vowel:

[^10]| Deng Geman | $k u{ }^{31} m u^{53}$ (Sun et al. 1980:252) |
| :---: | :---: |
| Kaman (Miju Mishmi) | ku-mo(Das Gupta 1977a) |
| | kmo: ~ kŏmo: (LSI 3.1:623) ${ }^{20}$ |
| Rengma | me 'one' |
| Tiddim | a-ma-sa 'first' |
| Lotha | ma-tsa-nga 'one' |
| Meithei | ama 'one' |

Compare also Meithei ma-pan ' 9 ', a subtractive formation from TEN ('one from ten'), alongside ni-pal ~ni-pan ' 8 ' ('2 from 10'); cf. *ban **bal 'ten', §4.2.0.3. ${ }^{21}$
(c) The Jirel form for ONE given in CSDPN is dok-pei. It is tempting to compare the first syllable with Chinese 獨 'alone; only' (OC *d'uk (GSR \#1224(i)), but since Jirel is a Bodish dialect, it would be well to find a cognate in WT before going out on a limb.

3.1.6 ONE AS INDEFINITE ARTICLE OR GENERAL NUMERAL AFFIX

Abor-Miri shows a clear picture of semantic interchange between ONE and a kind of indefinite article or general numeral suffix: AM a-ko 'one', -ko 'general numeral suffix' (§3.1.3(b)). This same etymon appears as a suffix in the vestigial numeral systems of Kiranti languages like Mewahang, Yakkhaba, and Lohorong (§3.1.3(b)), and has been generalised with all the numerals in Newari (cha-gu 'one', ni-gu 'two', swa-gu 'three'...jhi-gu 'ten'). We have also seen Lakher sa-used as a prefix with all the numerals from 1 to 10 ; this etymon appears as the independent word for ONE in Garo (§3.1.5.2).

In fact nothing is more natural than for a language to develop a generalised counter or an indefinite article by semantic bleaching of the numeral for ONE. This is of course what has happened in English, ${ }^{22}$ and a similar process is now well advanced in Israeli Hebrew, where the numeral exad 'one' is rapidly developing into an indefinite article.

3.2 Profile of number TEN

As STC (p.94) observes, "extreme variation obtains" in TB with respect to etyma for the number TEN. The special importance and salience of TEN in decimal systems sets it apart from the ordinary numerals $2-9$. Since a morpheme meaning ' 10 ' normally occurs in all compound numerals (both the TEENS and the ROUND NUMBERS), there is frequently morphophonemic variation as it interacts with its fellow constituents. ${ }^{23}$ Often a language will maintain several
$k \omega-/ k u-/ k$ - is now a meaningless prefix, part of a secondary 1-6 'prefix run' (§5.5), but is perhaps itself a reflex of *ko 'one' discussed above in §3.1.3. Compare also Mishmi (Dubey) mu-ou '10', especially in the context of the interchange between ONE and TEN (§3.4).
21 As a long shot we might compare these forms with the Lahu 'general classifier for objects', mà (Matisoff 1973a:91-92, 1988a:975-976).
22 English an derives from the unstressed variant of one, just as the preposition of is historically an unstressed version of off. The schoolchild's chant 'a one, and a two, and a three, let's go!' is perhaps the closest English equivalent to the TB penchant for modifying all the numerals by a form of the number ONE.
23 In much the same way as the English ten has the allofams -teen (<OE -te:ne, -ty:ne), and -ty (e.g. twenty < OE twe:gentig 'twice ten' < *-tig '10').
etymologically distinct morphemes for ' 10 ', one used as the independent numeral, and the other(s) for the TEENS and/or ROUND NUMBERS.

3.2.1 *gip * *gyap

In STC \#16, a PST etymon *gip 'ten' is reconstructed, based on Limbu gip (in composition), Miju kap~kyep, Mikir kep, Maring tśip, Yawdwin (S. Kukish) gyip (in composition), WB (∂) kyip.

In fact, however, this seems to be still another root where we must posit $-i \approx-y a-$ variation ${ }^{24}$, as witness these forms from an AMD language: Kaman (Miju Mishmi) kyap-mo (LSI has kap), Deng Geman kiap ${ }^{55} m u^{54}$.

The obvious Chinese cognate is $十$, reconstructed as OC ${ }^{*} \hat{d}$ diəp in GSR \#686 (see STC p.175).

3.2.2 *ts $(y) i(y) *$ tsyay

One other root for TEN is reconstructed as *ts(y)i(y) in STC (\#408 and pp.131, 136), based on the following forms:

Jingpho tśi ~ śi, Namsang (= Nocte) i-tśi, Moshang rok-śi, ${ }^{25}$ Garo tśi, Dimasa dźi, Miju si (in composition), Karen (Taungthu) tśi, (Pwo and Sgaw) shi.
The vocalism of WB achai poses a problem, ${ }^{26}$ which the original version of STC (p.94) glosses over with the remark that it "appears to be related to this root through vowel gradation". In a new footnote (272), Benedict suggests that the solution is to change the reconstruction to *tsyay, but I feel it is better to recognise both allofams at the proto-level, *ts $(y) i(y) \approx * t s y a y$, giving us yet another instance of the $-i-\approx-y a-$ variational pattern in numerals.

Many other forms may be added in support of this reconstruction:
(Himalayish) Newari jhi, Tamang ci, Sherpa ci-thamba:q, Tsangla/Sharchop $s(h) e$, Kanawari sáí. ${ }^{27}$ Here belong several other Himalayish forms with -u vocalism: ${ }^{28}$ WT bću (Lhasa cu), Kaike chyu, Gurung cyuq, Thakali cyu, Jirel cyu-ta:mba:q, Sikkim Bhutia chu-tamba, Dzongkha (Mazaudon) cu-thãm. ${ }^{29}$
(Kamarupan) Monpa (Cuona) tci ${ }^{53}$, (Dubey) chi; Monpa (Motuo) se; Garo chi-kung (Phillips), ci-king (Burling); Kokborok ći
(Baic) Bai (= Minchia) tsw ${ }^{8}$ (Dell)

28 Michailovsky and Mazaudon (1992) point out that WT and other Himalayish -u corresponding to yodated vowels elsewhere is paralleled in several other roots (e.g. 'bow' PST *d-lay (STC 463), but WT gźu), and may be viewed as a quasi-regular (dissimilatory?) development after palatal affricate initials.
See *tik *tyak (§3.1.4), *it * *yat (§3.1.1).
The Moshang (= Tangsa) form cited in STC seems to be an error, since the second syllable means ONE, not TEN (cf. rok-ni '20', aśi 'one', ani 'two'); rok is from a distinct Moshang root meaning TEN, not mentioned in STC (§3.2.3.3(c)). Ultimately, however, I believe that the meaning ONE for forms like shi, she might actually be a transference from an original meaning TEN (see §3.1.5.2).
Note that Burmese has reflexes of both *gip (§3.2.1) and *tsyay, with some repartition of function. According to Judson (1953:215), "kyip is substituted for chai in the numbering of rational beings." Perhaps $>$ Kanawari sa'e- ' 10 in additive higher round numbers'; see §3.5.3.3[D].

The morpheme $-t(h) a m$ - in many of these forms is to be referred to PTB *dyam * *tyam 'full' (STC \#226); for a detailed discussion of this root see Matisoff (1988b). See §3.2.3.5.
(Qiangic) Ersu tshe ${ }^{55}$, Proto Rgyalrong*sytsye (Nagano 1984) < *s-tsyiy (JAM)
(Loloish) Proto Loloish *tšil>Lahu chi, Akha tsé, Lisu htsi', Phunoi təsé (tə- 'one'), and so on.
(Nungish) Dulung tsă ${ }^{55}$, Rawang hti sel, Nujiang ts'i ${ }^{55}$ tshăn ${ }^{5530}$ (first syllables mean 'one'). Have these curious Nungish forms with final -l developed from *-y, or do they point to an allofam *tsyal?

3.2.3 New roots for TEN in Kuki-Chin-NaGa, Abor-Miri-Dafla and elsewhere

3.2.3.1 PROTO-KUKI-ChIN *som (< *tsom)

This root is widespread in Kuki-Chin, ${ }^{31}$ both as the independent numeral for TEN, and as the first constituent in higher multiples thereof:

Kom Rem, Kuki, Puiron som; Lushai shom 'ten', shom-hni' 'twenty'; Gangte, Hmar, Paite, Tiddim, Vaiphei sawm; Anal, Lai, Laizo, Ngawn, Thado som; Maring chip 'ten' (< *gip (§3.2.1), but som-thum '30’, som-li '40’; ${ }^{32}$ Zotung suף

There is evidence that this etymon may be more widespread, at least in the Kamarupan nucleus of TB. One likely relative is the Garo bound morpheme for TEN (sot-) in the round numbers from '40' on up, for example, sot-bri 'forty’, sot-bonga 'fifty’ (§3.5.1). J.T. Sun (1993:277) proposes a relationship between the KC forms and his Proto Tani *čam, also a bound morpheme occurring in multiples of ten (for example, Bengni čam-ni 'twenty', čam-pi 'forty'; Hill Miri čom-oum 'thirty', čaŋ-go 'fifty', čem-pig 'eighty'). ${ }^{33}$

For now we reconstruct this etymon as Proto Kamarupan (maybe ultimately PTB) *tsom.

3.2.3.2 *pal OR *bal

Several forms meaning TEN in Northern Naga languages (Chang an, Phom an, Konyak pen, Wancho ban) led W.T. French (1983:565-566) to set up PNN *bo:n, though he suggests that this might be a "loan from Austroasiatic into Northern Naga", citing Khasi ši pón 'ten’ (ši means 'one'34).

I consider this loan origin highly unlikely, however, in view of a pair of very interesting forms in Meithei: nipal ~ nipan 'eight', mapan 'nine'. These are both subtractive formations from TEN, meaning respectively ' 2 from 10 ' and ' 1 from 10 ' (Meithei ani ' 2 ', ama ' 1 ') (see §4.2.0). These forms seem to indicate that the original final consonant in this root was *-l. 35

Also undoubtedly to be assigned to this etymon are Phom püan- ('plus ten'), used in the odd round numbers of its vigesimal system, for example, pinyi-püan '50' ('(2×20) +10 '); and perhaps also Ntenyi apyam-, used in the decimal formation of its round numbers from 60 to 90 (see §3.5.2.2).

Undoubtedly this $-n$ is from an earlier lateral *-1.
See Ono (1965).
GEM (gives Maring som-nga for both ' 20 ' ($\mathbf{p} .279$) and ' 50 ' (p .79), but the former seems to be an error. See §3.5.1.3, §4.14.
33 Note that this morpheme for TEN precedes the unit both in KC and in Tani. There is another etymon for multiples of ten in Tani ($\mathrm{PT}{ }^{*}$ rjug), but it follows the unit. See §3.2.3.3.
34 Note the fortuitous similarity of this Khasi morpheme to some of the TB forms for ONE cited in §3.1.5.2.
35 The independent word for TEN in Meithei is tara, whose affiliations are elsewhere (§3.2.3.3(a)).

3.2.3.3 ${ }^{*}$ s-r/lig and ${ }^{*} s$-r/lyan

The AMD languages clearly point to an etymon for TEN with liquid initial (it is not easy to decide whether it was ${ }^{*} r$ - or $* l-$), velar nasal final, and a vocalic nucleus that displays the familiar ${ }^{*}-i-z^{*}$-ya- variational pattern:

Abor-Miri eying-ko, iying-ko (-ko 'one'); Minyong e'ying; Tagin ering; Nishi aring, Nishing/Dafla erig ~ erjag (Das Gupta; note the intralingual variation of rhyme), rengcheng (Yano), ra:ng (Robinson), il-lyi (E. Dafla), Apatani alyã (for humans) z lya (for non-humans; < *lya-g); Gallong $i^{\prime} r i^{\circ} \sim i^{\prime} y i^{\circ}$; Padam (Dubey) i:yi, i:i; Aka (Hruso) rhi, $r u ;$; Taraon ha:long, Darang Deng xa ${ }^{55}$ lung ${ }^{55}$; Idu hū (Talukdar et al. 1962), hong ${ }^{55}$ hong ${ }^{53}$ (Luoba: Sun 1983); Chulikata hush ($<{ }^{*} h u-s h V$, with vowel of second syllable apocopated ${ }^{36}$)
J.T. Sun (1993:144) sets up Proto Tani *rjuy on the basis of Bengni u-rjuy, Lhopa/Bokar ujuing, and the above Abor-Miri (=Padam-Mising) forms, also citing Dhammai lin, Bangru ron ${ }^{53}$, and Idu/Luoba (ZMYYC) $h \ldots o \eta^{55}$ (used in multiples of ten, for example, ni ${ }^{55}$ hıO 55 ' 20 ', a^{31} SOף ${ }^{35}$ h.OO 55 ' 30 '). ${ }^{37}$

Several of the above AMD forms with h - or voiceless sonorant initials point to a possible ${ }^{*} s$ - prefix on this root (Aka rhi, Idu $h \bar{u} ¥ h . J o \eta^{55}$), and the same is true of an apparently solid Sema Naga cognate, lho- 'combining form in multiples of ten', as in lho-bidi 'forty'. Weidert (1987:249) reconstructs a Proto North Assam etymon *lhyag 'ten (in decimal counting' (i.e. in multiples of ten), to which he assigns this Sema form, along with Kezha(ma) lha- (for example, lha-pangu '50’38), Tangkhul həŋ- (for example, həŋ-phənga '50'), Southern Rengma hē (for example, hem-pfü '50'), Angami (Kohima) hie- (for example, hie-pengou '50'), and Chokrü (=Chokri) he- (for example, hie-püngu '50' (GEM); we should add Angami (Khonoma) lhi-(for example, lhi-pengu '50').

We should now consider a large number of sesquisyllabic Kamarupan forms, mostly from the Naga group (as cited in 'GEM', Marrison 1967), with dental or velar prefix followed by a full syllable with a liquid onset. Though they all seem to be related internally, the vocalic correspondence is obscure (partly due to the inadequate phonetic transcriptions of the forms available to GEM). In the present state of our knowledge, it is not clear whether to assign them to *rig *ryan, or rather to the stop-finalled PNN etymon *rok discussed below (§3.2.3.4):
(a) With velar prefix:

Angami kerü, Chokri küri, Chakhesang keri, Liangmai kariu, Maram kero, Mzieme/Zeliang kerei, Zeme kereu, Mikir kre-39

[^11](b) With dental prefix:

Ao (Mongsen) tera, Ao (Chungli) ter (with apocope) ${ }^{40}$; Khoirao sara, Lotha taro, Meithei tara, Meluri tera, Ntenyi dagha, ta'a ${ }^{41}$; Pochury türa, Rengma tsarü, Sangtam thüre, Tangkhul thara, Yacham-Tengsa thelu, Yimchungru thïrü
(c) With palatal affricate word-initially:

Kezhama chiro, Mao chüro, Sema chüghi

The first syllables in these last three forms require some comment. On the one hand, they bear a superficial resemblance to reflexes of *tsyiy \approx tsyay (§3.2.2). A closer look convinces us that they are merely prefixal. This is especially clear in Mao where all the higher numerals (6-10) participate in a prefix run with a palatal pre-syllable (choro ' 6 ', chani ' 7 ', chacha ' 8 ', choku ' 9 ', chüro ' 10 '). The second syllable of Sema chüghi (where the ' $g h$ ' presumably stands for [$\mathrm{\gamma}]$) agrees well with other Naga forms (for example, Chakhesang kerı), and might well be an intralingual co-allofam of the Sema combining form (above). Alternatively, lhomight better be assigned to ${ }^{*} s$-ryak $\approx * s$-rwak (next section).

As a possible Himalayish connection to this etymon, we should mention Kaike phera:ng, used in its vigesimal system of round numbers to express 'minus-ten' from the next higher multiple of 20 (§3.5.3.3).

3.2.3.4 ${ }^{*}$ s-ryak ${ }^{*}$ s-rwak

French (1983:565) sets up a PNN etymon ${ }^{*}$ ro:k on the basis of several combining forms for multiples of ten in Northern Naga languages:

Tangsa (Moshang) rok-shi ${ }^{2}$ ' 10 ' (' 10×1 '), rok-tachat ' 80 '; Tangsa (Yogli) rauk-shi ' 10 ', rauk-tüchat ' 80 '; Kimsing ro-shi ' 10 ', ro-bangi '50’ (Das Gupta 1978); Nocte i-chi '10' (< *tsyiy), but ruak-banga '50', ruakisat '80'
However, a better PNN reconstruction would be *rwak, in view of a number of forms from other Naga languages that point to ${ }^{\text {r ryak: }}$

Zeme riak-seruk '60', Liangmei ria-charuk '60', Nruanghmei (=Rongmei) rek-cüruk ‘ 60 '43

Somewhere in this word family (probably under the *rwak allofam) we must also include the Nruanghmei independent numeral ruh ' 10 ', as well as the Lakher morpheme -hraw ' 10 ', which apparently must always be preceded by one of three semantically equivalent prefixes: sa-hraw, pa-hraw and mia-hraw ' 10 '. ${ }^{44}$ The Lakher voiceless liquid clearly points to an *sprefix at an earlier stage.

[^12]We may thus combine the etyma discussed in §3.2.3.3-§3.2.3.4 into a single word family comprising both nasal- and stop-finalled allofams, and displaying both $-i-z-y a-$ and $-y-z-w-$ variation:

```
*S-rin **s-rya\eta ***s-ryak z*s-rwak
```

There is some evidence of phono-semantic interchange between TEN and HUNDRED/ THOUSAND in this root, which once might have meant something more vague, like 'BIG NUMBER'. See §3.5.4.6, §3.5.4.7.

3.2.3.5 ${ }^{*} d(y) a m \approx * t(y)$ am 'ten; a full decade'

We have already mentioned ($\$ 3.2 .2$, footnote 29) a morpheme meaning FULL that occurs in several Himalayish compounds for TEN, evidently signif ying something like the completion of a full decade, for example, Sherpa ci-tham-ba:q, Jirel cyu-ta:m-ba:q and Sikkim Bhutia chu-tam-ba. ${ }^{45}$

Several other Himalayish languages have words for TEN with a similar-looking morpheme, though a connection with the concept FULL has yet to be demonstrated: Bahing kudum ' 10 ' (Gvozdanović 1985:135); Khaling tadam (the first syllable looks like a reduction of tu 'one'); Thulung Rai ko-dium (glossed 'one-zero' in Allen 1975); Lepcha ka-ti (kat 'one'; see §3.1.2). ${ }^{46}$ Note that in these languages the first element means ONE, whereas in the Bodish languages the first element means TEN.

This morpheme for TEN, perhaps bleached of any synchronic association with FULL, seems also to occur in Qiangic: Pumi (Taoba) $k a^{55} t^{-55}$, Pumi (Qinghua) qa ${ }^{55} s t i i^{55}$, Qiang (Taoping) $x a^{2 l} d y^{33}$ and Qiang (Mawo) hədiu.

3.2.3.6 *p/bon

Several Kiranti languages (East Nepal) have multiplicative morphemes that occur in compounds for the multiples of ten, reflecting Proto Kiranti *poy or *boy:

Kulung ik-pog ' 10 ', ngi-pog '20', and so on; Yakkhaba ip-pog '10’; Limbu thi-boon '10', ni-boog '20', sum-booŋ '30', and so on (Gvozdanović 1985: 136, 146, 162)
Limbu also has an interesting form i-boon 'NINE', which looks as if it may have been transvalued or 'downstepped' from an earlier meaning of TEN (compare Yakkhaba ip-pop). The words for ONE in Limbu and Yakkhaba are thik (§3.1.4) and ik-ko (§3.1.1), respectively. See §4.0.2.

This root ${ }^{*} p / b o \eta$ is distinct from the general, meaningless suffix -pok/-bok attached to whole sets of Kiranti numerals (§2.1).

[^13]
3.2.3.7 APPARENT ISOLATES

There remain a number of isolated forms meaning TEN in individual languages that so far resist attempts at etymologisation, including:
(a) Boro khao-she ' 10 ’ (-she 'one’) ${ }^{47}$
(b) Mishmi muou ' 10 '

Is the $m u$-segmentable off with the meaning 'one'? Compare Geman Deng kiap-mu 'ten' (for the first syllable, see §3.2.1).
(c) Milang hang-tak ‘ 10 ’ (hang- ‘one’)
(d) Apatani khrã ' 10 ’
(e) Damu pət ' 10 ’

3.3 TEEN FORMATION: FROM 10 TO 20

As we shall see, 'teen problems' are not limited to acne and sexual awakening. For our purposes, the 'teens' include all the numerals from 11 to 19 - it is only an accident of English morphophonemics that ELEVEN and TWELVE lack the -teen suffix. The teens are almost always morphemically complex, i.e. combinations of a morpheme for TEN and one for the particular unit from one to nine.

Parameters to consider in analysing teen-systems include:

- Does the TEN morpheme come before or after the UNIT morpheme? For example, is ' 19 ' TEN + NINE (like French dix-neuf) or NINE + TEN (like German neunzehn)?
- Is this TEN morpheme identical to the independent simple numeral for ' 10 ' (as in French dix-sept, dix-huit, dix-neuf)?
- If it is not, is it merely an allofam (morphophonemic variant) of the ordinary independent numeral for ' 10 ' (like English -teen), or is it a totally separate etymon (for example, Mikir kep '10’, kre- '-teen')?
- Is the complex numeral agglutinative, easily segmentable into the TEN part and the UNIT part (French dix-huit, German achtzehn), or is it fusional (French onze, douze, treize, quatorze, quinze)? Does the UNIT morpheme undergo morphophonemic change when combined with the TEN morpheme (for example, English five /fayv/but fifteen /fif-/; three $/ \theta$ riy/but thirteen $/ \theta \partial r-/ /)$? Does an epenthetic sound get inserted at the morpheme boundary?
- Are the TEN and UNIT morphemes combined by simple juxtaposition, or is the additive combination explicitly marked by a linking morpheme?
- Do any teens occur that are not simple additive combinations of TEN and UNIT? For the higher teens (16-19 or 17-19), are there any subtractive formations based on TWENTY (for example, Latin duodēvīginti '18’, undēv̄̄ginti '19')?
- Strictly speaking the concept of TEENS is only relevant to decimal systems of numerals. In vigesimal systems, the numbers $1-19$ correspond to the 'units' 1-9 of decimal systems. In vigesimal systems, it is advantageous to be able to refer to the numbers from 21 to 39 as a group - I suggest the term TWENTEENS. The twenteens 21-39 of vigesimal systems correspond to the teens 11-19 of decimal ones. (See, for example, the discussion of Sherpa, §3.5.3.4[B].)
- In the excessively rare duodecimal type of system represented by Chepang (§3.5.3.5), the numbers 13-23 correspond to the teens of decimal systems. We might as well call them the TWELVEENS.

3.3.1 TEEN FORMATION IN KUKI-CHIN-NAGA 48

In virtually all languages of this group so far examined, the TEEN morpheme precedes the UNIT, the only apparent exception being Maram (below).

3.3.1.1 WHERE THE COMBINING FORM (‘-TEEN') IS IDENTICAL OR MORPHOPHONEMICALLY RELATED TO THE INDEPENDENT NUMERAL TEN

	TEN	-TEEN	3	13	5	15
Angami (Kho.)	keru	kero-	se	kerose	pengu	keropengu
Angami(Koh.)	keru	kere-	se	kerose	pengou	kerepengou
Ao (Chungli)	ter	ter(i)-	asem	terasem	pungu	teripungu
Ao (Mongsen)	tera	tera-	asam	teraasam	phanga	teraphanga
Chokri	kuri	kuri-	su	kurisu	pungu	kuripungu
Meluri	tera	tera-	keche	terakeche	manga	teramanga
Nocte	ichi	ichi-	vanram	ichivanram	banga	ichibanga
Ntenyi49	ta'a	ta'a-	keching	ta'akecham	munga	ta'amanga
Sangtam	thure	thure-	asang	thureasang	munga	thuremunga
Sema	chughi	chughi-	kuthu	chughikuthu	pongu	chughipongu

[^14]3.3.1.2 WHERE A LINKING MORPHEME OCCURS BETWEEN THE TEN AND THE UNIT

	TEN	LINKER	3	13	5	15
Chang	an	-tak-	sam	antaksam	ngau	antakngau
Khoirao ${ }^{50}$	sara	-na-	kathum	charanakasum		
Konyak	pen	-me-	lem	penmelem	nga	penmenga
Lotha	taro	-si-	etham	tarosietham	mungo	tarosimungo
Moshang	rokshi	-ra-	atum	rokshiraatum	banga	rokshirabanga
Nruanghmei	ruh	-na-	kathum	ruhnakathum	pangu	ruhnapangu
Phom	an	-pu-	jam	anpujam	nga	anpunga
Tangkhul	thara	-da-	kathum	tharadakathum	phanga	tharadaphanga
Wancho	ban	-ba-	ajam	banbajam	aga	banbaga
Y-Tengsa	thelu	-le-	asam	talulesam ${ }^{51}$	phungu	talulephungu
Yimchungru	thuru	-kheak-	asam	thurukheakasam	phungu	thurukheakphungu
Zeme	kereu	-ze-	kechum	kereuzekechum	mengeu	kereuzemengeu

3.3.1.3 WHERE THE LINKING MORPHEME COMES AFTER THE UNIT

	TEN	LINKER	3	13	5	15
Liangmai	kariu	-kiu	shum	kariushumkiu	mangiu	kariumangiukiu
Mao	churo	-o	kosu	churokosu-o	pongo	churopongo-o
Meithei52	ara	-thoi	ahum	tarahumthoi	manga	taramanga
Mzieme53	kerei	-ngkei	ketsum	kerieketsumngkei		
Puiron54	som	-to	thum	somthumto		
Rengma	tsaru	-chu	keshan	tsarukeshanchu	pfu	tsarupfuchu

3.3.1.4 WHERE THE COMBINING FORM (‘-TEEN’) IS A DIFFERENT ETYMON FROM THE INDEPENDENT NUMERAL TEN

Mikir

10	-TEEN	3	13	5	15
kep	kre-	kethom	kre-kethom	phongo	kre-phongo

[^15]
3.3.1.5 WHERE THE TEEN MORPHEME FOLLOWS THE UNIT:

Maram

1	11	2	12	3	13
hangline	kerui-kaniko	hang-na	nangko	hang-tum	tumko

Unfortunately 11-13 are the only Maram teens given in Marrison. The independent word for TEN is kero, which evidently is the basis for the first element in ELEVEN. The -ni- of kaniko may be an allofam of the -ne of hangline. ${ }^{55}$ The morpheme -ko apparently means '-teen'. Note the intrusive -ng- in TWELVE.

3.3.1.6 SUBTRACTIVE HIGHER TEENS

The phenomenon of subtractivity in the formation of the higher teens has no genetic significance - dialects of the same language may differ in this respect. Thus in Marrison's data Angami (Khonoma) and Ao (Mongsen) have subtractive higher teens, but Angami (Kohima) and Ao (Chungli) do not.

	Angami (Khonoma)	Ao (Mongsen)
SIXTEEN	(kerosuru)	mukyimupenterok
SEVENTEEN	mekupomothena	mukyimupenteni
EIGHTEEN	mekupomothetha	mukyimupentsit
NINETEEN	mekupomotheku	mukyimupentuku
TWENTY	meku	mukyi

Meluri
mukweshuntaro mukweshunteru mukweshuntuze mukweshuntokhu mukwe

	Ntenyi	Pochury	Rengma
SIXTEEN	kwushetuo	mkeshuntoro	nkipamotsaro
SEVENTEEN	kwushetughu	mkeshunturu	nkipamotsanu
EIGHTEEN	kwushetuza	mkeshuntuze	nkipamotutse
NINETEEN	kwushetukhu	mkeshuntoku	nkipamotukhu
TWENTY	mekweru/mukwung	mke	$n k i$

These formations are subtractive in a different sense from, for example, Latin duodēvīginti ' 18 ' and undēvīginti ' 19 ', literally 'two from twenty' and 'one from twenty', respectively. The last morphemes in these Naga words for 16-19 are not the lower numerals 4, 3, 2, 1, but rather the additively appropriate higher numerals $6,7,8,9$. That is, the expressions mean something like the six before twenty, the 7 that comes before 20 , and so on. ${ }^{56}$

We therefore assume that the linking morphemes in these numerals (i.e. Angami -pomo-, Rengma -pamo-, Ao -mupen-, Meluri and Pochury -shun-, Ntenyi -she-) mean something like 'before.' ${ }^{57}$

3.3.2 TEEN FORMATION ELSEWHERE IN TibETO-BURMAN

[A] Himalayish

Evidently the norm in Himalayish teen-formation is to have the morpheme for TEN precede the UNIT. Usually there is no overt marker of the conjunctive relationship between the TEN and the UNIT (as in, for example, Tibetan and its dialects, Newari, Thakali, Kanauri and Dzongkha). Lepcha seems to be an exception to both of these generalisations:

Lepcha

ONE	$k a t$	THIRTEEN	sam- $-t^{\prime} \partial p$
TEN	$k \partial t i$	FOURTEEN	fəli-t'əp
ELEVEN	$k \partial t i-k a t-t^{\prime} \partial p$	SIXTEEN	$t \partial r \partial k-t^{\prime} \partial p$
TWELVE	$k \partial t i-n y \partial t-t^{\prime} \partial p$	NINETEEN	dəkyot- $t^{\prime} \partial p$

Lepcha ' 11 ' and ' 12 ' are formed with the linking morpheme t ' ∂p added to the independent numeral for TEN plus the units ONE (kat) and TWO (nyət). However, in the higher teens the independent morpheme for TEN disappears, and the t'əp takes over its semantic load. ${ }^{58}$ Note that now the order of constituents is reversed, so that the UNIT precedes the TEN.

In Kanawari and Dzongkha/Sikkim Bhutia, the combining form for TEN undergoes morphophonemic changes, though it is not clear how big a role free variation and/or vowel harmony are playing. Thus, Kanawari sai ' 10 ', sanish ' 12 ', sorum ' 13 ', sapü ' 14 ', songa ' 15 ', and so on; Sikkim Bhutia chu ' 10 ', chu-sum ' 13 ', chegye ' 18 '. In Sharchop, the independent numeral for TEN is she, but the combining form for -TEEN is song-, for example, song-sam '13' and song-zon '17'.

[B] LOLO-BURMESE

In Loloish the morpheme for TEN is often a classifier, not a numeral - that is ' 10 ' may be expressed multiplicatively as ' 1×10 ' (for example, Lahu tê ' 1 ', tê-chi ' 10 '), in the same way as the other round numbers (for example, Lahu $n \hat{\imath}$ ' 2 ', $n \hat{\imath}$-chi ' 20 '). Teens are then formed by adding the UNIT morpheme after the classifier for TEN, for example, Lahu:

$$
\begin{array}{ll}
\text { têchitê } & \text { ' } 11 \text { ' ' }(1 \times 10)+1 \text { ' } \\
\text { tê chi } k h \grave{\jmath} ? & \text { ' } 16 \text { ' ' }(1 \times 10)+6 \text { '. }
\end{array}
$$

In Burmese, TEN is also a classifier with respect to the round numbers: WB tac ' 1 ', to-chay '10'; hnac '2', hnə-chay '20' (tə-and hnə- are unstressed combining forms of ' 1 ' and ' 2 '). However, the teens contain only the root chay- ' 10 ' itself, without the ONE morpheme: chay-tac '11', chay-hnac ' 12 ', chay-khrok ' 16 '.

Alternatively, TEN may function as an ordinary numeral, as in Akha tshé '10' (with ONE not expressed), tshé-tì' ' 11 ', tshé-kò ' ‘ 16 '.

[C] Bodo-Garo

In this branch of TB, the teens are usually formed simply by juxtaposing TEN to the UNIT:

Garo

chi-kung '10' (kung seems to mean ONE: see §3.1.1)
chi-sa ' 11 ' ($s a$ is the independent numeral ONE)
chi-gni '12', chi-gatham '13', chi-dok '16', chi-sni '17’

Dimasa

$j i$ ‘ 10 ', $j i$-se ' 11 ’, ji-gini ‘12’, ji-gatham ' 13 ', $j i$-biri ‘ 14 '; but there is a special form for ' 15 ', je-ra, which looks unrelated to the independent numeral bonga ' 5 '. Dimasa is also a language with a special form for FIFTY, dan, which looks related to the KCN group discussed below (§3.5.2.2).

Kokborok ${ }^{59}$
$c(h) a$ ~ -sa '1’, -ci '10', kay-ci-cha '11', kay-ci-ba '15', kay-ci-cuku '19'.
I believe this kay- is related to the Boro morpheme in zokkay 'group of four' (below), and means something like 'group' or 'unit'. 60

Boro (Bhat 1968)

Boro has the most thoroughgoing QUATERNARY (four-based) system that I am aware of in TB. ${ }^{61 / 62}$ As D.N.S. Bhat (1968:29) says, "The system is basically a quadruplous one":

ONE	se	SIX	zokkay-se kanəy
TWO	$n ə y$	SEVEN	zokkay-se katam
THREE	tam	EIGHT	zokkay-nəy
FOUR	$b r ə$	NINE	zokkay-nəy kase
FIVE	$b a$	TEN	dos (< Indo-Aryan)

The numbers 1-5 are the usual Barish set of inherited forms (with preemption by the prefix in FIVE). The higher numerals, however, are formed on the basis of groups of four (zokkay). Even multiples of 4 ($8,12,16 \ldots$) are expressed by zokkay plus the appropriate UNIT (2,3 , $4 \ldots$). Unfortunately, Bhat does not provide the word for ' 11 ' - is it dos kase or zokkay-nəy katam? Numerals between multiples of 4 are expressed by velar-prefixed forms of ONE, TWO, and THREE postposed to the next lower multiple of 4, so that the TEENS probably are as follows (the only teen actually to appear in Bhat is ' 14 '):

THIRTEEN	zokkay-tam kase	$(4 \times 3)+1$
FOURTEEN	zokkay-tam kanəy	$(4 \times 3)+2$
FIFTEEN	zokkay-tam katam	$\prime(4 \times 3)+3 '$
SIXTEEN	zokkay-brə	$' 4 \times 4 '$

59 Data from Pushpa Pai Karapurkar (1976).
60 Compare the mysterious first syllable of the etymologically distinct though semantically similar WB form $k h u$ '-hnac ' 7 ', alongside hnac ' 2 '.
61 According to Ian Maddieson (pers.comm. 1984), quaternary numeral systems are widespread in African cultures that hold markets every four days.
62 Other possible reflections of an original quaternary system are Abor-Miri-Dafla multiplicative formations for EIGHT of the form ' 4×2 ' (see §4.2.3.7).

SEVENTEEN	zokkay-brə kase	$\prime(4 \times 4)+1$,
EIGHTEEN	zokkay-brə kanəy	$(4 \times 4)+2$,
NINETEEN	zokkay-brə katam	$(4 \times 4)+3$ '

Note that in a quaternary language like this, the concept of TEEN is quite meaningless!
The inherited TB numerals for 6-9 seem to survive as ordinals: thai-do-nia '6th', thai-shninia '7th', thai-dang-nia '8th' and thai-ne-nia '9th' (Revelation 21:19-20) .

However, the quaternary system seems to be on the way out in Boro, judging from the Bible translation (1972), where the teens are formed decimally: khao-she ' 10 ' (-she ' 1 '), khao-she-thai-she '11', khao-she-thai-noi '12' and khao-she-thai-broi ' 14 '. Note the conjunctive marker thai, which certainly belongs with the root meaning big, reconstructed as PTB *tay in Matisoff (1985b: 'God and the ST copula' \#68). Compare Tangkhul kətay 'be extra', khə mətay 'increase, multiply’, akətay 'remnant'; Wancho a-tai 'far', tai-hu 'many’, and so on.

[D] Abor-Miri-DAFLA

My data on teen formation in AMD is quite limited, though a couple of points may be noted.

Abor-Miri, Gallong, and Idu form teens of the type TEN + LINK + UNIT, with cognate linking morphemes (-lang-/-la-/-lo-):

Abor-Miri eying-ko '10', eying-ko-lang-ater-ko '11', eying-ko-lang-akeng-ko '16', eying-ko-lang-pinyi-ko ' 18 '
Gallong iri-go '10', iri-go-la-ken '12', iri-go-la-um '13'
Idu hũ '10', ho-lo-ke '11' (ke '1')
Note the relative prolixity of the Abor-Miri formation, where both the TEN and the UNIT morpheme take a prefix (e-, a-) and the suffix -ko. In Gallong only the TEN takes the suffix -go, while in Idu neither the TEN nor the UNIT morpheme is suffixed.

This suffix -ko is extremely interesting. In Abor-Miri a-ko is still one of the independent words for ONE (along with ater-ko), but AM has also developed it into a general suffix used with all numerals, exactly like the cognate Newari morpheme -gu: (§3.1.3). However, in Kaman (Miju Mishmi) there is a different word for ONE, and this -ko has taken on the meaning TEEN: kumu ' 1 ', kumu-ko ' 11 ', kinin ' 2 ', kinin-ko ' 12 '..., providing us with one of our most striking instances of the "interchange and confusion between ONE and TEN". (See the next section.)

3.4 INTERCHANGE AND CONFUSION BETWEEN ONE AND TEN ${ }^{63}$

ONE and TEN both occupy unique places in decimal systems. When two morphemes, one meaning TEN and the other meaning ONE, are juxtaposed in a compound numeral, it can either

See §3.1.4 ${ }^{*} t(y) i k ;$ §3.1.5.2 ${ }^{*} s(h) e$; §3.1.5.5 ${ }^{*}(k-) / V(N) ; ~ § 3.2 .3 .3{ }^{*} s$-riŋ $*{ }^{*}$ s-ryat; also §3.2.3.5, $\S 3.5 .4 .6, \S 3.5 .4 .7$. The Proto Mayan forms for ONE (*xu:n) and TEN (la:xu:n; lit. 'end of one’) are obviously related morphophonemically and conceptually (pers. comm. Terrence Kaufman 1994). According to Ives Goddard (pers. comm. 1994), there is also ONE/TEN interchange in Algonkian.
mean ONE TIMES TEN $=10$; or ONE PLUS TEN $=11$; that is, either the end of the first decade (...10), or the beginning of the second decade (11...). 64

Put another way, both the UNITS (1-9) and the TEENS (11-19) can claim 'firsts' - the UNITS are the first group of ten above zero; but the TEENS are the first decade where two digits are required to express the numbers.

More facetiously, there is literally nothing (i.e. zero) distinguishing ONE from TEN.

3.4.1 ko/ka IN ABOR-Miri-DAFLA, HimALAYISH, AND NAGA

Abor-Miri a-ko 'l', -ko 'general numeral suffix' corresponds neatly both phonologically and semantically with Newari -gu: 'numeral suffix' (§3.1.3(c)). But -ko means something quite different in Miju Mishmi, viz. -TEEN: kumo ' 1 ', kumu-ko ' 11 '; kinin ' 2 ' and kinin-ko '12'. The development in Miju probably was via the notion 'one more time around; once more coming back to the unit ONE' - i.e. ELEVEN in a sense is 'ONE and ONE', as its graphic shape 11 implies. All that separates 'ONE + ONE' from 'ONE + TEN' is one zero - and that's nothing much.

In exactly analogous fashion, Thulung Rai (E. Nepal) ko means 'l', but also functions as the morpheme for -TEEN in the formation of the numerals from 11 to 19: ko-nə '12', ko-sium '13', ko-gu '19'.

Similarly, Lotha ekha means ONE as an independent numeral. As a formative in the three highest round numbers, however, it means TEN (i.e. -TY): ti-ing '7', ekha-ti-ing '70'; tiza '8', ekha-tiza '80'; toku '9', ekha-toku '90'.

3.4.2 mu-IN MISHMI

In Das Gupta's 'Miju Mishmi' (1977a), kumu means ' 1 ', but the first syllable $k u$ - is a meaningless prefix, part of a $1-6$ run. The root is $-m u$ - 'ONE'. The word for TEN is kyap-mo (' $10 \times \mathrm{l}$ ’; for the first syllable see §3.2.1). In Shail Kumari Dubey’s Mishmi (1983), with a set of numerals vastly different from those reported by Das Gupta for Miju, TEN is muou (§3.1.5.6), probably to be segmented $m u-o u$, with one syllable meaning ONE and the other meaning TEN - but which is which? ${ }^{65}$

3.4.3 tšek / s (∂) - IN RGYALRONG

In the Zida dialect of Rgyalrong(data from Chang Kun), ' 10 ' is stssi; what seems to be the same initial element occurs in sətšek ' 11 ', şnes ' 12 ', and presumably all the higher teens as well. It could well be that this prefix is a reduced form of the independent numeral tšek ' 1 ', so that stssi meant ' 1×10 ' (i.e. < *tšek- $t_{s} I$); in the teens, however, where it co-occurs with the UNIT morphemes, the $s ə$ - then came to mean ' 10 ' (-TEEN). (Note that this analysis implies that an older form of '11' was something like *tšek-tšek, with subsequently greater and greater destressing of the first syllable.)

65 This is the same problem STC faced (p.94) in analysing Moshang rok-shi ' 10 ' as ' 1×10 ', when actually its structure is ' 10×1 '. See $\S 3.2 .2, \S 3.2 .3 .4$.

3.4.4 *s(h)e ' 1 ' and *ts(y)iy ' 10 '

Given the high degree of phonetic similarity between ${ }^{*} s(h) e$ ' 1 ' (§3.1.5.2) and *ts(y)iy ' 10 ' ($\S 3.2 .2$), as well as the organic semantic connection between the concepts ONE and TEN, it is not surprising that these etyma now seem inextricably intertwined.

3.5 ROUND NUMBER FORMATION: DECIMAL AND VIGESIMAL SYSTEMS

3.5.1 VigESIMALITY IN TiBETO-BURMAN AND ELSEWHERE

Is vigesimality a primitive characteristic? Consider that well-known primitive language, French: quatre-vingts ' 80 ' (‘ 4×20 '), quatre-vingt-un ' 81 ' (' $(4 \times 20)+1$ '), quatre-vingt-dix ' 90 ' (' (4×20) +10 '), quatre-vingt-quatorze ' 94 ' (' $(4 \times 20)+14$ '), and so on. Many Francophones outside France (Belgium, Switzerland, Québec) sensibly prefer decimal alternatives to the higher round numbers, viz. septante ' 70 ', octante ' 80 ', nonante ' 90 '. $66 / 67$

The Danish numeral system is even more vigesimal than the French, and is so interesting that it is worth presenting in some detail:

Danish ${ }^{68}$

TEN	$t i$
TWENTY	tyve
THIRTY	tredive
FORTY	fyrre(tyve)
FIFTY	halvtreds(indstyve)

SIXTY	tres(indstyve)
SEVENTY	halvfjerds(indstyve)
EIGHTY	firs(indstyve)
NINETY	halvfems(indstyve)
HUNDRED	hundrede

The complications presented by this system are due largely to the word for TWENTY itself (tyve), which consists of the morpheme for TEN (ti) plus an element -ve which once meant TWO, but which has now lost its independent morphemic identity. This leaves the way open for a transvaluation of tyve from $\operatorname{TEN}(\mathrm{S})$ to TWENTY. There is no problem with THIRTY, which is simply 'three (times) ten' (with voicing of the initial of the second constituent). With the higher round numbers 40-90, however, a tendency to drop the last element in the numeral has led to total loss of transparency in the system. The word for FORTY, originally a decimal multiplicative formation fyrretyve 'four (times) ten'), has been shortened to fyrre (lit. 'four'). The remaining even round numbers, SIXTY (originally tresindstyve, lit. '3 times ten') and EIGHTY (originally firsindstyve, lit. '4 times ten') were once segmentable as tre-sinds-tyve, fir-sinds-tyve (sinds 'times'), but have now been shortened (except in very formal, emphatic speech) into tres and firs, with incorporation of the first consonant of sinds into the unit numeral. The transvaluation of tyve is apparent from comparing FORTY and EIGHTY; in FORTY, tyve means 'ten'; in EIGHTY, tyve means 'twenty'. It is only the morphological difference between fyrre 'four' and firs (with incorporated -s from the following syllable) that keeps the shortened forms distinct. The higher odd round numbers $(50,70,90)$ are expressed in an even more indirect and opaque way. With the last elements -sinds-t yve expressed, these

Note a bit of orthographic pedantry here: for the round number ' 80 ', the plural grapheme - s is used after vingt (quatre-vingts), emphasising the multiplicative nature of the numeral ('four twenties'). For the odd numbers (81, etc.) the -s is omitted: quatre-vingt-un, quatre-vingt-deux. This distinction is hailed by educated Frenchmen (e.g. Gérard Diffloth) as a particularly subtle and powerful triumph of Gallic logic, and is obviously pushed hard in the French educational system.
numerical expressions at least make sense in terms of their constituent morphemes: FIFTY halvtredsindstyve, literally 'half-from-three times twenty', that is 'two and a half times twenty'; SEVENTY halvfjerdsindstyve, literally 'half-from-four times twenty', that is 'three and a half times twenty'; NINETY halvfemsindstyve, literally 'half-from-five times twenty', that is 'four and a half times twenty'. When the last elements are omitted, however, one is left with the paradoxical vigesimal sequence fyrre ' 40 ', tres ' 60 ', firs ' 80 ', etymologically ' 4 ', ' 3 ' and ' 4 ', respectively - that is 'four (tens)', 'three (times (twenty))' and 'four (times (twenty))'!

In Tibeto-Burman, hesitation between decimality and vigesimality is apparent in several subgroups - Himalayish, Barish (e.g. Garo) and Kuki-Naga. Some languages have both kinds of systems in more or less free variation, with the vigesimal one apparently older. ${ }^{69}$

It is common to find systems (e.g. in Kuki-Naga or Bodo-Garo) with a unitary monomorphemic word for TWENTY (like archaic English score), but where the higher twenties $(40,60,80)$ are formed on the basis of TEN not TWENTY, for example, English eighty (<EIGHT - TEN) versus fourscore. In Garo, for example, '20' is kol-grik (' 20 x I') and ' 30 ' is kol-a-chi (' $20+10$ '), but from ' 40 ' on up the system becomes decimal, using the bound morpheme sot- '- TY' before the unit: sot-bri ' 40 ', sot-bonga ' 50 ' and sot-dok ' 60 '. 70 Conservative speakers use a vigesimal system throughout (for example, kol-chang-gni or wakma-gni ‘40’). (See Phillips 1904; Momin n.d.; Burling 1961.)

In a 'pure decimal' system (for example, Nocte, §3.5.1.3) even the word for TWENTY is analysable into TEN and TWO. The maximal contrast is furnished by a 'super-vigesimal' system, where even the word for HUNDRED is expressed as TWENTY times FIVE (§3.5.2.4).

3.5.1.I TWENTY AS A UNITARY, UNANALYSABLE MORPHEME

STC reconstructs a monomorphemic, unanalysable word for ' 20 ', like English score, of the shape ${ }^{*} m-k u \Gamma^{11}$, on the basis of the following forms: Jingpho khun, Garo khol ~khal, Dimasa khon, Mikir ingkol ~ ingkoi, Siyin kul, Haka kul ~ kwe. ${ }^{72}$

There is no trace of this root in Lolo-Burmese or Karen. On the other hand, it is very widely attested in Kuki-Chin-Naga, where the nasal prefix is faithfully preserved (data mostly from Marrison ('GEM') 1967:279):

Angami (Khonoma)	meku	Meluri	mukwe
Angami (Kohima)	mepfu	Nruanghmei	ncui
Ao (Chungli)	metsu	Ntenyi	makweru/mukwung
Ao (Mongsen)	mukyi	Pochury	mke
Chokri	mechi	Rengma	nki
Khoirao	machi	Sangtam	mukyu
Liangmai	makai	Sema	muku

69
French itself belongs to this 'mixed' category of languages, with both decimal and vigesimal features. All its round numbers are decimal except for ' 80 ' (4×20 ') and ' 90 ' (' $(4 \times 20)+10$ '). The round number ' 70 ' (soixante-dix) (" $60+10$ ") resembles ' 90 ' in its additivity, but ' 60 ' is not itself based on twenty. For a discussion of this 'vigesi-decimal vacillation', see §3.5.3.3.

This sot- is possibly related to Chin som '10’ (§3.2.3.1).
STC \#397, pp.15, 18, 83, 119, 120.
This etymon is discussed in Matisoff (1980:17-18), 'Stars, moon, and spirits...'

Lotha	mekwi	Tangkhul	maku (Bhat 1969)
Mao	makei	Yacham-Tengsa	machi/tamong
Maram	make	Yimchungru	muku
Meithei	kul	Zeme	$n k a i$

Yet, interestingly enough, even though *m-kul is so widespread in Kuki-Naga, it is not used to form the higher twenties $(40,60,80)$ anywhere in the family (i.e. ' 40 ' is not ' 2 times *m-kul').

In the original version of STC (\#10, p.18), Benedict had reconstructed a distinct root *kun 'all', based on WT kun 'all' and WB kun 'come to an end; be used up' amd əkun 'all'. In the footnotes and indices of the published version (pp.15, 18, 202), he changed his mind, and decided to group these forms under $* m-k u l$, an etymon now assigned the broader gloss 'all; twenty', 74 with the linking notion being 'all the fingers and toes are used when counting up to this number'.

Things may not be so simple, however. A number of languages, mostly Himalayish (cf. §3.5.3.3; §3.5.3.4) seem to reflect a prototype with *-a-, i.e. *-kal:

Sherpa khal-jik; Jirel khalq; Tamang kha:l; Khaling (k)ha:el; Lepcha k'a; and perhaps Sikkim Bhutia khe-chik, Sharchop khye ${ }^{75}$.
To these we should probably add Monpa (Motuo) (AMD group) k'ai, as in k'ai-ŋa ' 100 ' ('20 x 5'), and perhaps also Wancho ca. In a couple of other languages, the initial is a dental rather than a velar:

Kaike (Him.) tha:l; Miju (AMD) katal-mo (-mo 'one', $k a$ - is a secondary prefix).
(It should be noted that these Himalayish and AMD forms deriving from *kal (unlike the KCN forms $<* m-k u I$), are used in multiplicative formations for the 'higher twenties' 40, 60, 80.)

As Mazaudon (1985:136) points out in her excellent study of the Dzongkha numeral system, the WT cognate khal provides the semantic key to these forms, at least as far as Himalayish is concerned. This WT form is glossed with two main meanings: (1) 'burden, load' (sgal 'load of a beast of burden', p.114); and (2) 'bushel; a dry measure equal to 20 bre ; therefore a score or twenty things of the same kind’ (Jäschke 1881:40).

Two explanations are therefore possible. Either we assume that two totally unrelated etyma are involved, one with $-u$ - vocalism (*m-kul 'all; twenty') and one with medial -a- (*kal 'load; bushel measure; group of twenty'). Alternatively, we can posit an earlier allofamic connection between these two roots ($* m-k u l \approx * k a l)$, and claim that the semantic developments have all sprung from the same original meaning, for example, 'a complete load; everything that can be placed on a beast of burden at one time'. The variational pattern -a- $-u$ - is grudgingly recognised even in STC (e.g. \#405 *b-sug* *b-sag 'fragrant').76/77

Marrison (1967) has Tangkhul maga.
If we accept this, the Burmese forms for 'all' would cause us to modify our above statement to read 'there is no trace of this root with the meaning 'twenty' in Lolo-Burmese'.
Mazaudon (1985:154) cites several additional Himalayish forms, including Gongar (Bhutan) khay/khel, Dungkarpa $k h \varepsilon$, Thakali $k h a l$, and Tamang ${ }^{4}$ pokal, as well as Tipra (=Kokborok) khol.
Several other such etyma are discussed in VSTB (Matisoff 1978a:43-44). See also our posited allof amic alternation *sam *sum 'three' (§4.1.2). Note that the Garo alternants cited in STC (khol ~khal)

There are a couple of other monomorphemic etyma for TWENTY of much more restricted distribution, which should be mentioned:
[A] Meithei -phu; Wancho pu-78; Phom pü- ~ bü- ~ pi-~ bet-;
[B] Yacham-Tengsa tamong and mesung. The former seems to be the same etymon that means FIFTY in several other languages (§3.5.2.2; §3.5.2.4).
These etyma are used multiplicatively to form the higher twenties (including HUNDRED) (§3.5.4.2).

3.5.1.2 DECIMAL MULTIPLICATIVE TWENTY, WITH THE UNIT FIRST

$$
{ }^{\prime} 20=2 \times 10 '
$$

This is the universal pattern in Lolo-Burmese, for example, Lahu nîchi.

3.5.1.3 DECIMAL MULTIPLICATIVE TWENTY, WITH THE UNIT SECOND

$$
' 20=10 \times 2 ’
$$

(a) Where the morpheme for TEN is the same as the independent numeral ' 10 ':

	2	10	'-TY'	20	30	40	50
Puiron	kani	som	som-	somni	somthum	somli	somnga

(b) Where a special combining form for TEN is used, that has no etymological relationship to the independent numeral:

	2	10	'-TY'	20	30	40	50
Nocte	vanyi	ichi	ruak-	ruaknyi	ruakram	ruakbeli	ruakbanga
Maring	khani	chip	som-	somni 79	somthum	somli	somnga

Note that there are many Kuki-Chin languages where som is the independent numeral ' 10 ' (for example, Lushai). In Maring, however, it is a bound morpheme occurring only in the round numbers from 20 to 90 .

In this kind of PURE DECIMAL system, ' 20 ' is treated the same as all the other round numbers from 30 to 90 . In languages where TEN is expressed as ' 10×1 ', TWENTY is of course also expressed as ' 10×2 '. See $\S 3.4 ;$ 33.5.2.1.3.

The Central Chin language Lakher (= Mara) has no fewer than four alternative expressions for TWENTY (mia-ki, sy-no, sa-ki, hlei-hraw), each formed according to a different pattern:

[^16]
Lakher

mia-ki 'twenty'
mia- is a general prefix used with all numerals; $k i$ is the inherited monomorphemic root;
sy-no 'twenty'
sy- '10; -TY', as in sy-pali '40'; no '2': '10 x 2'
sa-ki 'twenty'
sa- '1’; ki= '20' : '1 x 20'
hlei-hraw 'twenty'
-hraw '10'; hlei seems to mean 'pass, exceed, be extra'80

3.5.2 ROUND NUMBER FORMATION IN KUKI-CHIN-NAGA

3.5.2.1 DECIMAL SYSTEMS OF ROUND NUMBER FORMATION IN KCN

3.5.2.1.1 WHERE THE MORPHEME FOR TEN IN THE COMPOUND NUMERALS IS THE SAME AS (OR A MORPHOPHONEMIC VARIANT OF) THE INDEPENDENT NUMERAL ' 10 '

	10	30	40	60	70	80	90
Yimchungru	thïrï	samrii	yirü	rukrü	nieriü	zharii	kurii

Yimchungru has a special word for ‘ 50 ’ (§3.5.2.2).

3.5.2.1.2 WHERE THE MORPHEME FOR TEN IN THE COMPOUND NUMERALS IS ETYMOLOGICALLY UNRELATED TO THE INDEPENDENT NUMERAL

Here we must make a further distinction:
(a) Where 30 behaves differently from 40 to 90

In many Kuki-Naga languages all the round numbers from 30 to 90 are multiplicative decimal constructions, but the formation of ' 30 ' is different from ' 40 ' and above; that is, THIRTY is expressed as 3×10, with the morpheme for TEN based on the independent numeral ' 10 ', and the UNIT morpheme preceding this TEN morpheme; but ' $40,50 . . .90$ ' are expressed as $10 \times 4,10 \times 5 \ldots 10 \times 9$, with the UNIT morpheme following this TEN morpheme. The morpheme for TEN used in composition is usually etymologically distinct from the independent numeral.

	10	3	30	'-TY'
Angami (Khonoma)	keru	se	serü	lhi-
Angami (Kohima)	keru	se	serü	hie-
Chokri	küri	sü̈	-	hie-
Kezhama	chiro	katsu	-	lha-
Khoirao	sara	kathum	thumra	ra-/re(k)
Liangmai81	kariu	shum	samriu	ri(a)-
Mao	chüro	kosü	shüro	ri-
Maram	kero	hangtum	tumru	rag-/re(k)
Mzieme	kerei	ketsum	tsamrei	riak-
Nruanghmei	ruh	kathum	tümru	rek-
Rengma	tsarü	keshan	shenrü	en-
Sema ${ }^{82}$	chüghi	küthu	sheghi	lho-
Tangkhul	thara	kathum	thumra	hang-
Zeme	kereu	kechum	himreu	he-/re-/
				riak-83

	40	50	60
Angami (Khonoma)	lhida	lhipengu hiepengou	lhisuru hiesorou
Angami (Kohima)	hiede	hiepungu	hieshwuru
Chokri	hieda	hiepangu	-
Kezhama	-	ramri	renga
Khoirao	atai	ringiu	reksaruk
Liangmai	ridei	ripongo	riacharuk
Mao	ragdai	rengo	richoro
Maram	riakdai	riangngel ${ }^{84}$	reksaruk
Mzieme	rekdai	rekngu	riakheruk
Nruanghmei	henzi	hempfü	rekcüruk
Rengma	lhobdhi	lhopongu	hentsaro
Sema	hangmati	hangphanga	lhotsogho
Tangkhul	hedai	rengeu	riakstharuk
Zeme			

[^17](b) Where 30 behaves the same as the higher round numbers

	Nocte	10	3	'TY'	30	40
ichi	vanram	ruak-	ruakram	ruakbeli	ruakbanga	

In Nocte, however, not only is ' 30 ' formed the same as the higher round numbers, but so is ' 20 '; that is instead of a monomorphemic word for ' 20 ', it too is composed of the special morpheme for TEN^{85} (along with the unit morpheme TWO): ruaknyi ' 20 '.

3.5.2.1.3 WHERE TEN IS A CLASSIFIER, NOT A NUMERAL

In this pattern, the number ' 10 ' itself is treated as a multiplicative construction ' 1×10 ', so that ' 10 ' is structurally identical to the higher round numbers ' 20 ', ' 30 '...
(a) This structure is common in Lolo-Burmese (see $\S 3.3 .2[\mathrm{~B}]$):

	1	10	2	20	3	30
Lahu	$t \hat{e}$	$t e ̂ c h i$	$n \hat{\imath}$	$n i ̂ c h i$	$\check{s} \hat{\varepsilon}^{?}$	$\check{s} \hat{\varepsilon}^{\}} c h i$

tê chi	' 10 ' (Num + Clf)	' 1×10 '
nî chi	'20'	' 2×10 '
$\breve{s}_{\underline{\varepsilon}}{ }^{7}$ chi	'30'	'3x10'.

(b) It is also found in at least one Naga language:

	1	10	2	20	3	30
Tangsa (Moshang)	ashi	rokshi	ani	rokni	atum	roktum
Tangsa (Yogli)	ashi	raukshi	anei	rauknei	adim	raukdim

The difference between the Tangsa and Lahu cases is simply one of word order. In LoloBurmese the numeral precedes the classifier TEN; in Tangsa the TEN precedes the numeral.

In most of Kuki-Naga the word for TEN is not analysable into two morphemes, ONE and TEN, but merely consists of a unitary root for TEN preceded by a meaningless prefix.

It is noteworthy that in languages where TEN is expressed as 'ten times one', TWENTY is also expressed as 'ten times two' - i.e. there is no unanalysable monomorphemic word for '20'.

3.5.2.2 LANGUAGES WITH A SPECIAL WORD FOR FIFTY

A number of Kuki-Chin-Naga and Barish languages have a disyllabic (but not easily analysable) form for FIFTY, which is quite distinct from their words for FIVE, TEN, or TWENTY:

	5	10	20	50
Ao (Chungli)	pungu	ter	metsï	tenem
Ao (Mongsen)	phanga	tera	mükyi	tünam
Lotha	mungo	taro	mekwi	ti-ingya86
Meluri	manga	tera	mükwe	teni
Ntenyi	münga	dagha	mekweru	teni
Pochury	mnga	türa	mke	tünie
Sangtam	münga	thüre	mükyü	thïnyang
Yimchungru	phïngüi	thüriü	muku	thünim
Dimasa	bonga	ji	khon	dan

The words for FIFTY in these languages have first syllables that begin with a dental stop, and later syllables that contain a nasal group ($-n-,-n g y-$ and $-n y-$), and sometimes 2 nasals (tenem, thïnyang).

Now it is reasonable to suppose that a disyllabic word meaning FIFTY should usually consist of components that mean TEN and FIVE (ordered either 10×5 or 5×10).
(a) First syllable:

There is some basis for hypothesising that it is the first syllable in these forms that means TEN. Note that the independent numeral ' 10 ' in all these languages (except Dimasa) has a prefix with dental stop. ${ }^{87}$ However, these eight languages have generalised a dental prefix with the numerals all the way from 6 to $10,{ }^{88}$ so we would have to suppose that an originally meaningless prefix came to take on the semantic value of the highest numeral with which it appeared (TEN). Lest this seems too far-fetched, we shall soon see (§3.5.2.3) how in Mikir the morpheme throk, etymologically 'SIX', has come to mean 'TEN'.
(b) Second syllable:

We might suppose that the second syllable is some allofam of the ordinary numeral for FIVE *b-ŋa or ${ }^{*} m$-ŋa. This is not implausible phonologically, since ${ }^{*} m$ - $ŋ \mathrm{~g}$ has two nasals, like the second element in many of the modern forms.

If this interpretation is correct (and it is certainly open to question ${ }^{89}$) we must note that the order of the constituents in FIFTY (TEN - FIVE) is the reverse of that for almost all the other round numbers from ' 30 ' to ' 90 ' in these languages (UNIT - TEN). ${ }^{90}$

[^18]| | 30 | 40 | 50 | 60 |
| :--- | :--- | :--- | :--- | :--- |
| | (3×10) | (4×10) | $(10 \times 5$?) | (6×10) |
| Ao (Chungli) | semer | lir | tenem | roker |
| Ao (Mongsen) | samra | lira | tunam | rokra |
| Lotha | thamdro | zuro | tiingya | rokro |
| Meluri | chera | zura | teni | rora |
| Ntenyi | chagha | jugha; zua | teni | apyampero |
| Pochury | chera | zura | tunie | rora |
| Sangtam | sangre | zyure | thunyang | rore |
| Yimchungru | samru | yiru | thunim | rukru |

	70	80	90
	(7×10)	(8×10)	(9×10)
Ao (Chungli)	neter	tir	tukur
Ao (Mongsen)	nira	lira-anekhi	telangtuku
Lotha	ekhatiing	ekhatiza	ekhatoku
Meluri	rura	zera	khura
Ntenyi	apyamtughu	apyamtuza	apyamtukhu
Pochury	rura	zera	kuru
Sangtam	nyure	zyurereanyu	kure
Yimchungru	nieru	zharu	kuru

On the other hand, we may be barking up the wrong tree here. Perhaps these problematic words for FIFTY come from an entirely different semantic field. After all there is something intrinsically special about FIFTY, since it is situated at the midpoint of the nine two-digit round numbers, with four below $(10,20,3040)$ and four above $(60,70,80,90){ }^{91}$ A language that is instructive here is Meithei, which also has a special word for ' 50 ', though it does not begin with a dental prefix: manga '5', tara '10', kul '20', yangkhei '50'. According to Purna Chandra Thoudam, a native speaker, Meithei yangkhoy ' 50 ' "might have some affiliation with yay 'backbone; middle of the back' or 'middle of the roof in houses' (i.e. 'ridgepole')."92 It is possible that forms like Sangtam thunyang or Lotha tiingya are also to be analysed as containing this element in their second syllables (thun-yang, tiing-ya).

Although these languages all have a unitary word for TWENTY, they do not form their 'higher twenties' $(40,60,80)$ vigesimally. These are either straightforward decimal formations, or else present other complications that have nothing to do with 'twenty' as a structural unit:

- In Sangtam ' 80 ' is expressed multiplicatively as '40 (zyure) x 2 (nyü)': zyure-re-anyiu. Ao Mongsen has an identical formation for ' 80 ’: 40 (lira) x 2 (anet): lira-anekhi.

[^19]- The Ao Mongsen word for ' 90 ' contains a special allomorph of ' 10 ' (telang). The independent Mongsen numeral ' 10 ' is tera, with no final nasal. Note that telang-tuku has the structure ' 10×9 ', unlike all the other Mongsen round numbers (except of course ' 50 '), which have the UNIT before the TEN.
- In Ntenyi, 60-90 have a special morpheme apyam-, which must mean ' 10 ', since it is followed by the unit morphemes 6-9 (-pero, -tughu, -tuza, -tukhu). However, the ' 6 ' in ' 60 ' (-pero) is not the same as the independent numeral togho, though clearly related to it (- ro $\approx-g h o$). It is possible that this apyam- is related to the root *(b)an which appears as the independent numeral for TEN in several languages (§3.2.3.2). In Lotha also, 70-90 contain a special morpheme ekha ' 10 ', distinct from the independent numeral (taro). What is especially interesting here is that ekha is also the ordinary Lotha word for ONE. This is a prime example of the interchangeability of ONE and TEN that we have already discussed (§3.4). An alternate Lotha form for ' 80 ' (zaro) follows the simple regular pattern of the root for EIGHT (za-) plus the ordinary root for TEN (-ro).
- I am at a loss to explain Lotha ti-ingya ' 50 ', ${ }^{93}$ which looks as if it has been influenced or contaminated by ti-ing ' 7 '. Why ' 7 ' and ' 50 ' should enjoy a special relationship remains obscure (even though ' 50 ' is one more than 7 -squared).
- Lotha thamdro ' 30 ' shows an interesting epenthetic $-d$ - intervening between the $-m$ of THREE and the r - of TEN. The position between a nasal and a liquid is a classic locus for an epenthetic stop. ${ }^{94}$
- The Ao Chungli round numbers (except ' 20 ' and ' 50 ') are all formed multiplicatively of UNIT x TEN. The TEN morpheme used as a combining form is -(e)r, a reduced version of the independent numeral ter (which itself is an apocopated form, as witness Ao Mongsen tera). Of special interest are the monosyllabic forms lir ' 40 ' and tir ' 80 '; this parallel between ' 40 ' and ' 80 ' is also evident in Ao Chungli, where ' 80 ' is actually expressed as ' 40×2 ', perhaps to avoid the near-pernicious homophony found in Mongsen. We should note that the Chungli independent numeral ' 4 ' is pezii; a more ancient-looking form ($<$ PTB ${ }^{*} b$-lay) now survives only in lir '40'.

3.5.2.3 The Case of Mikir

The round number system of Mikir presents special problems because of the polymorphemic (additive or subtractive) structure of the independent numerals 7-9:

1	isi	6	throk		60	throk-kep
2	hini	7	throksi	$(‘ 6+1 ’)$	70	throksi-kep
3	kethom	8	nirkep	$(‘ 10-2 ')$	80	throk-hir-kep
4	phir/phli	9	sirkep	$(‘ 10-1 ’)$	90	throk-sir-kep
5	phongo	10	kep		100	pharo

The round numbers from ' 30 ' to ' 60 ' are simply formed decimally, with the independent numeral kep following the UNIT morpheme: thom-kep, phli-kep, phongo-kep, throk-kep. As one would expect, ' 70 ' has a similar structure: throksi-kep. However, with ' 80 ' and ' 90 ' the language has a severe problem. Since EIGHT and NINE already end in $-k e p$, if their
corresponding round numbers were formed 'regularly' we would get *nirkep-kep and *sirkep-kep. Instead what we find is throk-hir-kep '80' and throk-sir-kep '90'.

This form for ' 80 ' is readily understandable. The first two syllables throk-hir- are an additive expression for ' 8 ' (' $6+2$ '), where the morpheme for ' 2 ' is the same as the first syllable of the independent numeral hini. (Note the difference from the ordinary subtractive expression for ' 8 ' (' $10-2$ '), where the morpheme for ' 2 ' is the same as the second syllable of hini.)

The form for ' 90 ' is more difficult to explain. The first two syllables throk-sir- do not stand in an additive relationship, as they do in throksi-kep ' 70 '. Morpheme by morpheme the three syllables mean SIX - ONE - TEN - and there is no way these can be juggled to yield ' 90 '. It looks to me as if the morpheme throk- ' 6 ', since it appears in ' 60 ', ' 70 ', and ' 80 ', has been included in ' 90 ' as well, where it has acquired the meaning TEN by a process of false analogy! If this is what has happened, we should interpret ' 90 ' as meaning ' $(10-1) \times 10$ ', that is ' 9 x 10.'95

3.5.2.4 VIGESIMAL SYSTEMS OF ROUND NUMBER FORMATION IN KUKI-CHIN-NAGA

Several Kuki-Naga languages express the even round numbers '40', '60', '80' as multiples of TWENTY. As noted above, however, the ordinary independent numeral '20' ($<* m-k u I$) is not used for this purpose; instead we find special forms which appear only in composition. In fact most of these languages do not have a reflex of *m-kul at all, and show different roots for the independent numeral TWENTY. In languages of this type, the odd round numbers ' 30 ', ' 50 ', ' 70 ', ' 90 ' are typically expressed additively or subtractively in terms of the next lower or higher multiple of TWENTY. That is, ' 70 ' may either be ' $(20 \times 3)+10$ ' (i.e. $60+10)$ or ' $-10+(20 \times 4)$ ' (i.e. $80-10) .{ }^{96}$

In what we might call 'super-vigesimal' languages (for example, Wancho and Chang in the following chart), the word for HUNDRED is also expressed in terms of TWENTY (' 20×5 ') that is HUNDRED is morphologically complex.

	Wancho	Phom	Konyak	Chang
TEN	ban	an	pen	an
TWENTY (indep.)	$t s a / c a^{97}$	ha	ta	sauchie
TWENTY	$p u-$	pü- \sim bü-	ta- \sim te-	sau-
(in comp.)		pi- \sim bet-		
FORTY	punyi	pinnyi	teija	saunyi
SIXTY	puram; hujam	püjam	telemja	sausam
EIGHTY	puli	büali	tepelija	saulei
THIRTY	ca-ban	ha-püan	ta-pen	kujih

Something rather similar seems to have occurred with Lotha ekha, which means ONE as an independent numeral, but functions like TEN in some higher round numbers (§3.5.2.2). For more on the Mikir system, see §5.4.2.1.
96 Compare French quatre vingts ' 80 ', quatre-vingt-dix ' 90 ' (' $(4 \times 20)+10$ '), and the Danish system discussed above (§3.5.1).
97 As Das Gupta (1979:28) puts it: "(Wancho) ca and pu both indicate ' 20 '; ca is used when the number is indicated by adding the numeral, and pu when multiplying the numeral".

FIFTY	punyi-ban	pinyi-püan	teija-pen	anchinsam
SEVENTY	puram-ban	betjam-püan	telemja-pen	anchinlei
NINETY	puli-ban	büali-püan	tepelija-pen	anchiningau
HUNDRED	puga	gho	kho	saungau

The Konyak higher twenties (' 40 ’, ‘ 60 ', ‘ 80 ') are each expressed by three morphemes instead of just two:

```
te- '20' x -i- '2'/-lem- '3'/-peli- '4' x -ja '1'.
```

That is, ' 40 ' $=20 \times 2 \times 1 ; ' 60$ ' $=20 \times 3 \times 1 ; ' 80$ ' $=20 \times 3 \times 1$. This semantically otiose one-factor serves to add a bit of redundancy to these numerals, and shows a certain mathematical sophistication.

In Chang the morpheme sau- ' 20 ' does not occur independently, and is treated as a classifier; thus sauchie means literally ' 20×1 '. Chang is supervigesimal, in that HUNDRED is also expressed in terms of TWENTY (' 20×5 '). W.T. French derives the form sau-from Proto Northern Naga *ja (§3.5.1.1), though it bears a striking superficial resemblance to the Northern Thai (Kham Myang) word saaw '20'. Is it possible that it could be a loan from Ahom?

Chang kujih ' 30 ' is quite mysterious, with no apparent resemblance to sam ' 3 ', an ' 10 ', or sau- ' 20 '. It is possible that the first syllable $k u$ - is from ${ }^{*} m-k u l$ ' 20 ', which does not otherwise seem to survive in Chang. If that is true, then -jih must mean ' 10 ', though its affiliations are uncertain at this time. Chang FIFTY, SEVENTY, NINETY look like subtractive forms, based on the next higher multiples of twenty (' 60 ', ' 80 ', ' 100 '). ${ }^{98}$ The final elements -sam, -lei, -(i)ngau are the morphemes ' $3,4,5$ '; the first syllable an- is ' 10 '. We can only assume, therefore, that -chin- is another bound morpheme meaning ' 20 ', in complementary distribution with sau- which only appears in the even round numbers. Thus an-chin-sam ' 50 ' would mean ' 10 (from) 20 times 3 ', that is ' 60 minus 10 '; an-chin-lei ' 70 ' is ' 10 (from) 20 times 4', that is ' 80 minus 10 ', and so on.

Finally, consider the complicated vigesimal systems of Meithei (=Manipuri) and YachamTengsa (N. Naga group):

	Meithei	Yacham-Tengsa
TEN	tara	thelu
TWENTY (independent)	kul	machi/tamong
TWENTY (in composition)	- -phu	machi-/tamong-/mesung-
FORTY	niphu	mesung-anat
SIXTY	humphu	-
EIGHTY	mariphu	tamong-phule
THIRTY	kun-thra	machi-li-thelu
FIFTY	yangkhei	tamong-anat-tule-thelo
SEVENTY	humphu-tara	tamong-asam-tule-thelo
NINETY	mariphu-tara	tamong-phuicu-le-thelu
HUNDRED	cha	mesung-phung

- In Meithei the combining form for ' 20 ', -phu, follows the UNIT morpheme (niphu, humphu, mariphu), unlike the cognate morphemes in Wancho (pu-) and Phom (pü-), which precede the UNIT.
- Meithei kun-thra ' 30 ', consists of a variant of the independent word for ' 20 ' (kuI) plus a variant of ' 10 ' (tara). In this form the order of the semantic components is the opposite of that in ' 40 ', 60 ' and ' 80 '. (If Meithei ' 50 ' were formed like ' 70 ' and ' 90 ', it would be *niphu-tara.)
- We have already noted that Meithei yangkhei/yaŋkhəy '50' is probably an intruder from another semantic field, with an original meaning related to 'backbone; ridgepole; midpoint'.
- The Yacham-Tengsa system of round numbers is perhaps the most cumbersome to be found in all of Tibeto-Burman. Marrison (1967:279) gives two different independent forms for ' 20 ', machi ($<* m-k u I$) and tamong. (This latter form looks suspiciously like our special root for FIFTY, §3.5.2.2!) Yet it is clear that a third morpheme for ' 20 ', mesung-, is also used in composition: mesung-anat ' 40 ' (anat ' 2 '); mesung-phung ' 100 ' (phungu ' 5 '). In ' 30 ' machi- is used - this is a slight exception to our generalisation that no descendants of ${ }^{*} m$-kul occur in the higher round numbers (it is still true that they do not occur at all in the higher multiples of 20). In ' 50 ', ' 70 ', ' 80 ', and ' 90 ', the morpheme meaning ' 20 ' is tamong-. Inexplicably the Yacham-Tengsa form for ' 60 ' is missing from Marrison (1967:232), so we do not know whether it is mesung-asam or (as I suspect) tamong-asam. '30', '50', '70', '90' are additive formations based on '20', '40', ‘60', ' 80 ', respectively, with $-l i-\sim-(t u) l e-$ serving as a linking morpheme. The form tamong-phuicu-le-thelu ' 90 ' is puzzling (we would expect tamong-phungu-(tu)le-thelu)- in fact it is very possible that 'phuicu' is just a typo for phungu.

3.5.3 Round number formation in Himalayish ${ }^{99}$

In Himalayish languages with vigesimal systems, reflexes of the unitary lexeme *m-kul* *kal are used to form higher multiples of ' 20 '. This is different from Kuki-Naga, where this etymon is only used for TWENTY itself, with the higher multiples expressed in some other way.

3.5.3.1 SySTEMS UNDER HEAVY INFLUENCE FROM NEPALI

In languages like Hayu, Thulung Rai, Kham, and Sunwar, the TB numerals are barely preserved for $1-3$ or 1-4, let alone anything higher! (See §2.1.1.)

It is worth noting that the Nepali higher numerals have a high degree of morphemic opacity. As is characteristic of Indo-Aryan in general, considerable morphophonemic changes are undergone by the simple numerals when they appear in compounds: for example, Nepali cha, sa:th, a:th, nau '6-9', but sa:thi, sattari, asi, nabbe '60-90'. Although these were
probably not as easy to learn as the original, morphemically transparent TB-derived higher numerals had been, such is the cultural and economic power of Nepali that certain minority peoples seem to have had no alternative.

3.5.3.2 DECIMAL SYSTEMS OF ROUND NUMBER FORMATION IN HIMALAYISH

A few Himalayish languages have strictly decimal systems, including two of great cultural importance (Tibetan and Newari), and two (but not all three) members of the Gurung-Tamang-Thakali trio:

	10	3	30	4	40	5	50
Wr. Tibetan	bću	gsum	sum-ću	bźi	bźi-bću	Ija	Iŋa-bću
Thakali	cyu	som	som-cyu	plih	plih-cyu	ngah	ngah-cyu
Gurung	cyuq	soq	soq-jyu	plihq	plih-jyuq	ngahq	ngah-jyuq

The Newari case is less transparent morphophonemically, but identical structurally. In the Newari round numbers, the independent numeral jhi ' 10 ' appears in attenuated form as $-i$ (which then undergoes various further morphophonemic adjustments):

2	ni-gu:	20	ni:-gu:	$1<\mathrm{ni}+\mathrm{i} /$
3	swa-gu:	30	swi:-gu:	$/<\mathrm{swa}+\mathrm{i} /$
4	pe-gu:	40	pi:-gu:	$/<\mathrm{pe}+\mathrm{i} /$
5	nya:-gu:	50	nyae-gu:	$/<\mathrm{nya}:+\mathrm{i} /$
6	khu-gu:	60	khwi:-gu:	$/<\mathrm{khu}+\mathrm{i} /$
9	gu-gu:	90	gwi:-gu:	$/<\mathrm{gu}+\mathrm{i} /$

In all these languages the word for TWENTY itself is expressed in terms of TEN, that is ' 2 x 10': WT nyi-shu, Thakali and Gurung ngih-syu and Newari ni:- / < ni + i/. Note that the unit morpheme precedes the TEN morpheme in all these systems.

3.5.3.3 Vigesimal systems of round number formation in Himalayish

Quite a number of Himalayish languages have strict vigesimal systems, where the even round numbers are expressed as multiples of 20 , and the odd round numbers are additive or subtractive with respect to a neighbouring multiple of 20:
[A] Cuona MEnba (Mama (Southern) Dialect: Lu Shaozun 1986:184-185)
ten

twenty kha ${ }^{55}{ }^{1} i^{55}$
forty
sixty
eighty
che ${ }^{953}{ }_{-n A}{ }^{53}$
che ${ }^{253}$-sum ${ }^{53}$
che ${ }^{253}$ - pli 53

100 -gu: is a suffix which occurs with all Newari numerals (§3.1.3), and is irrelevant to the present discussion.
101 The final of this morpheme assimilates to the initial of the following unit numerals in teen-formation:

hundred	che ${ }^{953}-1 e^{31} \eta e^{53}$	('20 x 5')
thirty	kha ${ }^{55} \mid i i^{55}$-tci ${ }^{53}$	(' $20+10$ ')
fifty	che ${ }^{253}$-nai i^{53}-tci i^{53}	(' $\left.(20 \times 2)+10^{\prime}\right)$
seventy	che ${ }^{253}$-sum ${ }^{53}$-tci ${ }^{53}$	(' $(20 \times 3)+10$)
ninety	che ${ }^{953}-$ pli 53-tci ${ }^{53}$	(' $(20 \times 4)+10$)

In this dialect the word for ' 20 ', $k h A^{55} l i^{55}$, looks like a 'dimidiated' (i.e. disyllabified) derivate of *kal, with secondary final vowel. In the words for the higher even round numbers (40-100), a different morph for ' 20 ' appears, $\operatorname{ch} \varepsilon^{253}$-, though this may actually represent a coallofam of the same etymon, perhaps *kyal (<*kal $+i$?). (In the other dialect treated by Lu Shaozun, Wenlang (Northern Cuona), the simple form for ' 20 ' is also $k h a^{55}{ }_{i}{ }^{55}$, but the variant that occurs with $40-100$ is $k h A i^{55}$.) The odd round numbers ($30-90$) are additive formations based on the next lower multiple of 20 .
[B] Tamang and Sharchop/Tsangla

	Tamang	Sharchop
TEN	ci	she
TWENTY	kha:I-ki:h	khye-thor
FORTY	kha:I-nyi:h	khye-nyiktsing
SIXTY	ha:l-som	khye-sam
EIGHTY	kha:I-pli	khye-pshi
HUNDRED	kha:l-nga:h	khye-nga
THIRTY	kha:I-ki:h-syi-ci	khye-thor-dang-she
FIFTY	kha:I-nyi:h-syi-ci	khye-nyiktsing-dang-she
SEVENTY	kha:I-som-syi-ci	khye-sam-dang-she
NINETY	kha:l-plih-syi-ci	khye-pshi-dang-she

Tamang and Sharchop have true vigesimal formations from 20 upward, including 100. (Unlike Cuona Menba, these languages express ' 20 ' itself as ' 20×1 '). Tamang apparently goes so far as to maintain the vigesimal system all the way up to 1,000 , which is expressed as kha:l-paca:s (' 20×50 '), with the second element from Nepali. (Gurung and Thakali, so closely related to Tamang, are completely decimal, further demonstrating that decimality versus vigesimality is a useless criterion for linguistic subgrouping.)
[C] Kaike and Jirel

Jirel	Kaike chyu	
10	cyuta:m:baq	(ngi-chyu)
20	(nye:syu)	nghe-tha:I
40	khalq-nyiq	sum-tha:I
60	khalq-sumq	li-tha:I
80	khalq-syi	nga:-tha:I
100	(sei-jyiq)	

30	khalq-jyik-tangq-cyutambaq	nhi-chyu-chyu
50	khalq-nyiq-tangq-cyutambaq	phera:ng sum-tha:l
70	khalq-sumq-tangq-cyutambaq	phera:ng li-tha:l
90	khalq-syi-tangq-cyutambaq	phera:ng nga:-tha:l

Jirel and Kaike express ' 20 ' itself with an obviously innovative decimal formation, ' 2 x 10'. Jirel uses the inherited monomorphemic TB khalq for everything above 20 (for example, khal-jik-tangq-nyiq ' 22 '), but Kaike uses nhi-chyu throughout the twenteens (for example, nhichyu-chyu-di ‘31’ (' $20+11$ '), nhichyu-chyur-gu '39' (' $20+19$ '), and does not use tha:l ($<{ }^{*}$ kal $¥^{*} m$-kul) until '40'.

Kaike differs from these other languages in two important respects. While Tamang, Sharchop, and Jirel all form multiples of 20 by putting TWENTY before the UNIT (' $20 \times 1,2$, $3 . .$. '), Kaike puts the UNIT before the TWENTY (' $1,2,3 \ldots \times 20$ '). In the first three languages, the odd round numbers are formed additively from the next lower multiple of 20. In Kaike, they are formed subtractively from the next higher multiple of 20. The morpheme phera:ng is used to express '(minus) 10' in these expressions. (It may be related to the forms discussed above, §3.2.3.3c.) Jirel uses a Nepali borrowing for '100'.

[D] Kanawari

Kanawari is a rather well-behaved vigesimal language, though like Kaike and Jirel it has a decimal multiplicative form for ' 20 ' itself: $n i$-ja (' 2×10 '), where $-j a$ is apparently a variant of sai ' 10 ', and sa- - so- means '-teen'. The even multiples of ' 20 ' are expressed in a normal manner, with the UNIT preceding TWENTY: ni-nija ' 40 ', shum-nija ' 60 ' and pü-nija ' 80 '.

The odd round numbers, however, present some interesting peculiarities:

30	de'-nija
50	dai-nija
70	sa'e-shum-nija
90	sa'e-pü-nija

According to Joshi/Rose, the dai- in ' 50 ' is a loan from Hindi meaning 'two and a half': $50=$ $21 / 2 \times 20$! THIRTY seems to be additive, with de' ' 10 ' evidently also from Indo-Aryan. The morpheme sa'e- in ' 70 ' and ' 90 ' must also mean ' 10 ': $70=10+(3 \times 20)$; $90=10+(4 \times 20)$. The etymology of this sa'e- is still in doubt, however, there being several possibilities, including its being related to the independent Kanawari sáí ' 10 ’ (§3.2.2).

[E] Magari and Khaling

These are both thoroughgoing vigesimal languages, though they show strong Nepali lexical influence that will undoubtedly lead to future erosion of their original numeral systems.

Magari has borrowed the word '20' itself from Nepali (bis), but the structure of its higher round numbers is completely vigesimal. The even ones are expressed as multiples of 20 (nisbis ' 40 ', som-bis ' 60 ', ca:r-bis ' 80 '); while the odd ones are additively based on the next lower multiple via the Nepali morphemes -e-das (das '10'): bis-e-das '30', nis-bis-e-das '50', som-bis-e-das ' 70 ', buli-bis-e-das ' 90 '. Note that the native TB numeral buli ' 4 ' survives only in ' 90 ', while it has been replaced by Nepali ca:r in ' 80 ' itself. This demonstrates that the
pressure exerted by Nepali on the system is 'from the top down', from the higher numerals to the lower. The independent word for HUNDRED in Magari is a Nepali loan (say), but in compound numerals an inherited TB etymon (cha) appears, for example, cha-bis-e-das '130' (see §3.5.4.5).

In Khaling, TWENTY and its multiples are expressed by the inherited TB morpheme -(k)ha:el (tu-ha:el '20', sa:h-kha:el '40', suk-kha:el '60', bha:el-kha:el '80'). The higher odd numbers, however, are not expressed additively or subtractively in terms of these, but have simply been replaced by the Nepali equivalents: paca:s ' 50 ', sattari ‘ 70 ' and nabbe ' 90 '. This is actually quite a rational compromise for the language to have made. It retains the advantage of the concise even multiples of 20 , but avoids the cumbersome additive structure of the odd round numbers. Khaling thus enjoys the best of both the decimal and vigesimal worlds.

3.5.3.4 HESITATION BETWEEN DECIMALITY AND VIGESIMALITY: VIGESI-DECIMAL VACILLATION

Several Himalayish languages show particularly interesting vacillation between TEN-based and TWENTY-based systems of higher numerals.

[A] LEPCHA

A particularly schizophrenic case is Lepcha, which has two different words for ' 20 ', one monomorphemic ($k^{\prime} a$) and the other a multiplicative form based on ' 10 ' ($k ə-n y \partial t$). Two complete sets of higher round numbers coexist (or at least coexisted in Mainwaring's time), one based on k 'a ' 20 ' and the other on the combining form $k ə$ - (with short vowel and unaspirated initial):

	VIGESIMAL		DECIMAL	
TWENTY	k'a; k'a-kat	'20 ($\mathrm{x} \mathrm{l}^{\text {) }}$	kə-nyət	' 10×2 '
FORTY	$k^{\prime} \mathrm{a}-\mathrm{ny}$ ¢t	'20 x 2'	kə-fəli	' 10×4 '
SIXTY	k'a-sam	'20 x 3'	kə-tərək	' 10×6 '
EIGHTY	k'a-fəli	' 20×4 '	kə-kək'u ${ }^{102}$	' 10×8 '
HUNDRED	k'a-fəngo	'20 x 5'		

Non-vigesimal forms for HUNDRED also exist, though they are borrowed from Tibetan: gya; gyo-kat (kat 'l').

The odd round numbers present no problem in the decimal system. In the vigesimal system they are expressed (as is usual in systems of this type) additively in terms of the next lower multiple of 20, by means of the morphemes sə kəti 'plus ten':

VIGESIMAL

THIRTY	k'a-kat sə kəti	${ }^{\prime}(20 \times 1)+10 '$
FIFTY	k'a-nyət sə kəti	' $(20 \times 2)+10$ '
SEVENTY	k'a-sam sə kəti	${ }^{\prime}(20 \times 3)+10 '$
NINETY	k'a-fəli sə kəti	'(20 x 4) + 10'

DECIMAL

$k \partial-$ sam	$' 10 \times 3 '$
$k \partial-f \partial n g o 103$	$' 10 \times 5$
$k \partial-k \partial k y \partial k$	$' 10 \times 7$
$k \partial-k \partial k y o t$	$' 10 \times 9$

103 This form is lacking in Mainwaring; we supply it (perhaps rashly) as a guess; maybe this form was avoided because of its similarity to k 'a-fəngo ' 100 '.

We should note that although the independent numeral $k \partial t i$ ' 10 ' has the $k \partial$ - prefix, and though this has been carried over into the decimal higher round numbers, $k \boldsymbol{r}$ - may originally have had no connection with TEN at all. The $k \partial$ - in $k \partial t i$ is only part of a 'prefix run' that extends from 6 to 10 in Lepcha (§5.3.4).

[B] SHERPA

Sherpa has a classically vigesimal form for TWENTY, khal-jik ('20 x l’). CSDPN does not provide the word for THIRTY, but it does give khaljik-tang-curkhu '39' (' $20+19$ '), implying that one counts in an unbroken string from 20 to 40 , so that ' 30 ' must be khaljik-tangci(thamba:q) (' $20+10$ ').

I am suggesting the term twenteens for the numbers between 20 and 40 in a vigesimal system. (Perhaps a whole new stage in the life-cycle needs to be recognised: people from 21 to 39 could be called twenteenagers. See §3.3.)

From ' 40 ' on, however, a curious semantic transvaluation of the morpheme khal- has taken place. Instead of meaning TWENTY, it now means TEN:

FORTY	khal-ji	(ji ‘4')	SEVENTY	khal-din	(din ‘7’)
FIFTY	khal-ngaq	(ngaq ‘5')	EIGHTY	khal-ge	(ge ‘8')
SIXTY	khal-Tuk	(Tuk ‘6')	NINETY	khal-gu	(gu ‘9')

This obviously secondary 'decimalised' system continues through and beyond HUNDRED: khal-citambaq ' 100 ' (' 10×10 ') (etymologically ' 20×10 '), k hal-cupsum ' 130 ' (' 10×13 ') (etymologically ' 20×13 '). Compare Jirel khalq-Thuk-cyutambaq ‘ 130 ' ($(20 \times 6)+10$ ').

In Sherpa we can appreciate the passage from vigesimal to decimal ways of thinking at a transitional stage.

[C] Sikkim Bhutia/Danjongka/Dzongkha

The Dzongkha system recorded by Chhewang Rinzin (1984) is purely decimal. Sandberg's "Sikkim Bhutia" of a century ago was mostly decimal, but also presents a few unmistakably vigesimal features. The word for TWENTY is ni-shu (' 2×10 ') in Rinzin, but khe-chik in Sandberg (first syllable $<{ }^{*} m-k u l$ ' 20 ', second syllable $<{ }^{*}$ tyik 'l' (§3.1.4)). The higher round numbers are all formed decimally with chu- or chu-tamba ' 10 ', for example, zhib-chu '40', ngab-chu '50', Tuk-chu '60' (note the $-b$ at morpheme boundary in '40' and '50'). ${ }^{104}$ But Sandberg also cites a vigesimal variant for ' 60 ': khe-sum ('score-three'). It seems evident that the vigesimal forms are older in the language, relics of a more thoroughgoing 20-based system.

In her article 'Dzongkha number systems', the most detailed and insightful study of the numerals of an individual TB language to have appeared to date, Mazaudon (1985:150) demonstrates that "Dzongkha exhibits a coherent vigesimal system equal in complexity and extension to any vigesimal system described in any part of the world". Not only does the

[^20]language retain the general monomorphemic TB root for ' 20 ' ($k h e<{ }^{*} m-k u I$), but it also has lexemes for the next three powers of twenty:

20^{1}	khe	20
20^{2}	jiçu 105	400
20^{3}	kheche 106	8,000
20^{4}	jãche	160,000

Even so, the language has a normal decimal system of teen-formation (TEN + UNIT). Above twenty there now coexist two distinct systems of reckoning, one vigesimal and one decimal, with stylistic differentiation: the decimal system is characteristic of formal speech.

	DECIMAL
20	jni-cu('2 x 10')
21	tsa-cil ${ }^{107}$ ('20 + 1')
22	tsa-ji
30	sum-cu ('3 $\times 10$)
31	so-ci ('thir- + 1') ${ }^{108}$
35	so-ya ('thir- + 5')
40	zi-p-cu ('4 x 10')
50	па-p-cu
55	па-па
60	dhuk-cu
70	dyn-cu
80	ge-p-cu
90	$g u-p-c u$
100	cik-za ('1 x 100') ${ }^{109}$
400	zip-fa ('4 x 100')
500	ๆар-да ('5 x 100')
600	d,huk-fa ('6x 100')

VIGESIMAL
khe-ci ('20 x l')
khe-ci(da) ci('(20 x 1) +1')
khe-ci (da) Jni
khe pyhe da $11 i($ ' $20 \times(-1 / 2+2)$ ')
khe-cida cu-ci ('(20 x 1) +11 ')
khe ko da j1i ('20 x (-1/4 + 2)')
khe-ji ('20 x 2')
khe pfhe da sum ('20 $\times(-1 / 2+3)$ ')
khe ko da sum (' $20 \times(-1 / 4+3)$ ')
khe-sum ('20 x 3’)
khe pyhe da $z i($ ' $20 \times(-1 / 2+4)$ ')
khe-zi ('20 x 4')
khe pfhe da pa ('20 x (-1/2 +5)')
khe-ŋa ('20 x 5')
jnicu-ci ('400 x 1')
jnicu-ci da khe-ŋа ((‘400 x l) + (20 x 5)’)
jnicu pfhe da j1i ('400 x 1 1/2’)

In the vigesimal system, the even round numbers are expressed straightforwardly as multiples of khe '20', but the odd tens and fives are formed by what Mazaudon (following

[^21]Menninger 1958/1969) calls "back-counting". According to a Tibetan pattern whereby 'one and a half' is expressed as phyed-daŋ gnyis (phyed 'half', day 'with', gnyis ' 2 '), that is 'which with an additional one-half, would be two'), the odd round numbers are formed subtractively in Dzongkha: for example, ' 30 ' khe płhe da ni, that is 'twenty times one-half-less-than-two', or 'twenty times one-and-a-half'). ${ }^{10}$ Similarly, Dzongkha expresses the odd fives by backcounting in quarters (ko 'one fourth; a quarter'), as in '55' khe ko da sum, literally 'twenty times one-quarter-less-than-three', or 'twenty times two-and-three-quarters'.

Mazaudon (1985) convincingly argues for the ancient status of vigesimal numeral systems in TB, and attributes the relatively good preservation of vigesimality in Dzongkha to the political independence of Bhutan, and Dzongkha's status as a national language, so that it could "resist the spread of the all-powerful decimal system which had the support of both India and China" (p.150). The decimal aspects of the Dzongkha numerals were "borrowed from Tibetan for elegant speech" (p.154).

3.5.3.5 DUODECIMALITY IN CHEPANG

One of the strangest numeral systems in TB is to be found in Chepang. A study of the data presented in CSDPN shows it to be duodecimal in structure, conceived in terms of TWELVES, not TENS or TWENTIES.

Nowadays only the first 5 Chepang numerals are inherited TB etyma: ya:t-jo?, nis-jo?, sumjo? play-jo?, ponga-jo?. ${ }^{111}$ SIX through TEN are expressed by Nepali numerals: cha-gota:, sa:t-gota:, ?a:t-gota:, naw-gota:, das-gota:. The crucial form for ELEVEN is missing in CSDPN, but presumably it too is simply the unanalysable Nepali word.

The Chepang word for TWELVE is truly unique: ya:t-ha:le. The first syllable means ONE (§3.1.1), and the second element is clearly the inherited TB word for TWENTY ($<* k a l \approx * m$ kul; cf. Khaling (k)ha:el). Though it is theoretically possible that Chepang alone of all the TB languages has preserved an 'original' meaning TWELVE, while the rest of the family has changed its meaning to TWENTY, it seems much more likely that it is Chepang which has transvalued the numeral from TWENTY to TWELVE. 112

The other forms available in Hale (1973) support the duodecimal analysis:

ya:t-ha:le Pa:t-gota:	$20\left({ }^{(1 \times 12)}+8^{\prime}\right)$
ya:t-ha:le das-gota:	22 ($\left.(1 \times 12)+10^{\prime}\right)$
nis-ha:le	24 (' 2×12)
nis-ha:le ponga-jo?	29 ('(2×12) +5)
nis-ha:le sa:t-gota:	31 (' $(2 \times 12)+7$)
sum-ha:le play-jo?	$\left.40\left({ }^{(} 3 \times 12\right)+4\right)$
play-ha:le nis-jo?	50 (' $(4 \times 12)+2$)
ponga-ha:le	60 ('5 x 12')

[^22]- With the simple form for SIXTY the decimal and duodecimal systems are reconciled - both 10 and 12 are factors of 60 . It is this beautiful fact that lies behind such systems as the Chinese 60 -year calendrical cycle of the ' 10 heavenly stems' and ' 12 earthly branches.' Unfortunately no Chepang forms higher than SIXTY appear in Hale (1973) (CSDPN), and probably no Chepang would ever use anything but Nepali numerals in that rarefied range. (CSDPN notes that even the forms listed above are now much rarer than their Nepali equivalents.) ${ }^{113}$

Since the first version of this monograph was written (in 1984), R.C. Caughley, the leading authority on Chepang, has published a short article specifically on the subject of Chepang duodecimality (Caughley 1989). Here he adds another form he recorded as ya:t-ha:le sum-jo? ' 15 ' (' (1×12) +3 '), and offers an intriguing possible explanation for the use of twelve as a numeral base: "When counting the tip of the thumb is placed against each interstice in turn, starting from the base of the little finger and ending at the tip of the index finger. Since there are four fingers, each with three interstices, this means a total of twelve for each hand, and makes twelve a natural basis for counting" (1989:197).

3.5.4 HUNDRED ANDTHOUSAND

3.5.4.1 DECIMAL MULTIPLICATIVE EXPRESSIONS FOR HUNDRED (‘ 10×10 ’)

Gallong (AMD) cam-ri '100' (cam- '-TY', as in cam-nyi '20’ ('-TY x 2'), cam-um ‘30', cam-ke '60'; i-ri '10’). (See J.T. Sun 1993:276-277.)

Sherpa (Him.) khal-citambaq ' 100 ’ (citambaq ' 10 ’; khal is the inherited etymon for TWENTY ($<* m-k u l \approx * k a l$), but has become transvaluated to TEN in Sherpa, as in khalngaq '50', khal-Tuk '60' (§3.5.3.4[B]; §4.0.2).
Lakher (KCN) sy-hraw '100' (sy- '-TY', as in sy-pali ‘40'; pa-hraw '10'). Lakher has two other ways of expressing ' 100 ', either as an independent unanalysable numeral (za), or as ' $100 \times \mathrm{l}$ ', where the morpheme HUNDRED functions as a classifier (za-kha ' 100 ', kha ' 1 ').
3.5.4.2 VIGESIMAL MULTIPLICATIVE EXPRESSIONS FOR HUNDRED (' 20×5 ' OR ' 5×20 ')

HUNDRED TWENTY FIVE
Kuki-Naga
Chang
Wancho ${ }^{114}$
Yacham-Tengsa
sau-ngau
pu-ga
mesung-phung

sau	ngau
pu-	ga
mesung-	phung

[^23]Abor-Miri-Dafla
Monpa Motuo k'ai-nga k'ai nga

Himalayish

Tamang	kha:l-nga:h	kha:l	nga:h
Sharchop	khye-nga	khye	nga
Lepcha	k'a-fəngo	k'a	fəngo
Kaike	nga:-thal	thal	nga:

3.5.4.3 WHERE HUNDRED HAS A SPECIAL RELATIONSHIP WITH FIFTY

In Miju Mishmi (Das Gupta 1977a), '100' is waie-mo ${ }^{115}$ (- mo < kumo ' 1 '), while ' 50 ' is wa-ping-mo, glossed literally as 'half of hundred'. The numeral system described by Das Gupta is one of the strangest in TB, but certain key forms are lacking (' 40 ', ' 60 ') and the morphophonemics of the Miju round number system are still not clear.

3.5.4.4 WHERE HUNDRED FUNCTIONS AS A CLASSIFIER

In languages with this formation, HUNDRED is expressed as ' 100×1 ' or ' 1×100 '.
(a) ' 1×100 '

Lolo-Burmese
Lahu tê ha '100' (tê ' 1 '); ha < PLB *hra' or *? ral
Qiangic
Ersu $t{ }^{55} z a^{55}$
(b) ' 100×1 '

Himalayish
Dzongkha ja-ci (ci‘l’)
Barish
Garo ritcha-sa (sa 'I'), Dimasa raja-si

Kuki-Naga

Tangsa (Yogli) sha-kha (kha 'l'); Kuki ja-khat; Kimsing shi-shi (shi '100', shi ‘l’ presumably under different tones) ${ }^{116}$; Lakher za-kha (alongside two other expressions: see §3.5.4.1); Pochury mza-ke; Garo ritcha-sa; Dimasa raja-si

Of special interest is Tangsa (Moshang): rok-shi ' 10 ', rok-ni '20', etc. (rok = '-TY’), but rok-sha-shi ' 100 '. The middle syllable in rok-sha-shi is the root HUNDRED, and the third

[^24]syllable is ONE, so that here rok- does not have the meaning 'TEN', or indeed any meaning at all - it appears pleonastically, by analogy with the round numbers from 10 to 90.

3.5.4.5 WHERE HUNDRED IS A MONOMORPHEMIC REFLEX OF PTB * $b-r-g y a \approx$ *b-g-rya ${ }^{117}$

It seems clear that this etymon has been remodelled by analogy with EIGHT (§4.2.3). For EIGHT, STC recognises metathesis (*b-r-gyat $\approx * b-g-r y a t)$. We must now invoke metathesis in HUNDRED as well - perhaps an inevitable occurrence in such a complicated consonant sequence involving a liquid.

```
*b-r-gya with double prefix
    Written Tibetan brgya; Rgyalrong perzhe; Aka (Hruso) phogwa, purrwa
*b-rya with labial prefix
    Mikir paro, Nruanghmei phai (with preemption of the initial)
    Gurung pra:hq; Thakali prah
```

*g-rya with velar prefix

Angami, Chokri kra, krie; Kezhama, Mao kri. Khoirao ki, Sema a-keh and Liangmai kai might owe their velar onset to preemption of the liquid initial by the prefix - or they might simply descend from an unprefixed form where the velar was the root-initial (*gya). Under this allofam also belong laryngeal-initialled forms like Zeliang-Zeme-Mzieme and Maram hai.

```
*m-rya with nasal prefix
```

Lotha nzoa; Maring macha; Meluri and Ntenyi meza; Pochury mza-ke
${ }^{*}$ r-gya with liquid prefix
Jingpho latsa ${ }^{118}$; Puiron raja; Kom Rem raza; Phom gho (presumably ' $g h$ ' is a voiced velar fricative $<{ }^{*} r$); Kokborok racha; Garo ritcha-sa; Dimasa raja-si
*-gya or *-rya (no unambiguous evidence for any particular prefix)
Sikkim Bhutia gya; Magari cha (§3.5.3.3[E]); Konyak kho; Kanawari ra
Yogli ša; Moshang rok-ša-shi, Nocte cha (all < PNN *-khya (French 1983:506))
Tangkhul sha; Meithei cha; Rengma tsi; Sangtam thsi; Yimchungru chhi
Lushai, Lakher, Hmar, Gangte, Paite, Tiddim za; Vaiphei ja
Boro jou; Dulung çya
Pumi sha ${ }^{55}$; Qiang tshi ${ }^{55}$
Karen (Taungthu) rja, (Pwo) ja, (Palaychi) sa

3.5.4.6 A SPECIAL ABOR-MIRI-DAFLA ROOT FOR HUNDRED AND ITS RELATIONSHIP TOTEN

m-li(η) $\left(?<{ }^{} m-1-\eta y a\right)$

Abor-Miri	li-ko-ling-ko
Minyong	ling-ko
Dafla	leng-go
Nishi	lunkh
Apatani	lange, lan-e
Monpa Cuona	$c^{\prime} \varepsilon^{253} 1 e^{21} n g e^{53}$
Lhopa	lung
Darang Deng	malum ${ }^{55}$
Chulikata	malu:
Mishmi	malo ${ }^{19}$
Gallong	hamyi (<*s-mliŋ ?

It will be observed that these forms bear more than a slight resemblance to a set ${ }^{*}$ rin $* *$ *in 'TEN’ discussed above (§3.2.3.3(a), (b)): for example, Abor-Miri eying-ko '10’, and so on. However, my present view is that these two roots are distinct (cf. pairs of reflexes like Lhopa wjuing ' 10 ' and lung ' 100 '), ${ }^{120}$ though they may have 'contaminated' each other. ${ }^{121}$ It is possible that these forms for HUNDRED are ultimately to be derived from *m-lyya (ult. < *brgya) via apocope of the root vowel.

3.5.4.7 THOUSAND

(a) ${ }^{*}$-ton

STC \#32 (pp.21, 94) sets up the root *s-toy on the basis of forms from two languages, WT stoy and WB thoy. To these we may add:

[^25](b) ${ }^{*} s$-riŋ $*{ }^{*}$ s-raŋ ;

More problematic are forms meaning THOUSAND in a number of languages with sibilant/affricate, dental, or liquid initials plus the rhyme -it, as well as similar forms in other languages with the same kinds of initials but the rhyme -ay. It is my feeling that all the following words are related to one another somehow, and that we should leave open the possibility that they are ultimately connected to either of the phonologically similar etyma meaning TEN or HUNDRED already discussed (§3.2.3.3; §3.5.4.6): ${ }^{122}$
(1) with the rhyme -ig

Gangte sing; Tangsa (Yogli) hing, Kimsing hing-shi (shi ‘1'); Meithei lising, Maring lising; Puiron lising; Kom Rem lising; Dimasa rijing-si (se ' 1 '); Tangkhul thing-kha (kha ' 1 '); Jingpho ching; Karen (Taungthu) tə '-rèng (tə ' '1'), (Palaychi) hreng
(2) with the rhyme $-a \eta$

Taraon reja:ng; Ao (Chungli) meirijang; Mzieme tsang; Zeliang and Zeme chang; Lotha tsanga; Liangmai shang; Kuki sang; Paite sang (alongside sing ' 10,000 '); Ao (Mongsen) miyarsang; Vaiphei sang-khat (khat ' 1 '); Lushai sang; Lakher sa (low tone)
(c) A few languages have forms with palatal nasal or semivowel:

Angami $n(y) i e ;$ Meluri anye; Kheja nie kele; Rengma ye
(d) There remain a few miscellaneous forms whose affiliations are much in doubt:

- Ersu hpu ${ }^{55}$ ' 1,000 ' looks like the root for TWENTY found in a few languages (Meithei phu, Wancho pu-, Phom pii). See §3.5.1.1.
- Yimchungru amükhepin is totally mysterious, though the element miikhe looks much like a reflex of the root *m-kul '20' (but the Yimchungru word for ' 20 ' is given as muku in GEM, p.279).
- Tiddim tul and Mikir suri look as if they are related to each other, but not obviously to anything else.

3.5.4.7.1 MULTIPLICATIVE FORMS FOR THOUSAND

A number of languages have multiplicative formations for THOUSAND, with a wide variety of possibilities (since there are so many factors of such a big number):
(a) ' 100×10 '

Nocte	cha-ichi	(cha '100', ichi ‘10')
Ntenyi	meza-ta'a	(meza '100', ta'a '10')
Dafla	leng-rengcheng	(leng ‘100', rengcheng '10')
Apatani	lã-lyã	(lã '100', lya '10')
Abor-Miri	li-ying-ko	(li -ling '100', eying '10')
Adi 123	ling-ko-iying	(ling-ko '100', iying '10')

[^26](b) ' $10 \times 10 \times 10$ '

Gallong cam-ri-iri (cam- '10;-TY', iri '10’)
The morpheme cam- is used only in round numbers (for example, cam-nyi ' 20 '); iri is the independent numeral.
(c) ' 20×50 '

Tamang kha:l paca:s (kha:l '20’, paca:s '50’ (< Nepali))
(d) ' $20 \times 10 \times 5$ '

Chang sau-an-ngauni (sau '20', an '10', ngau '5')
(e) Wancho has the paradoxical form puban: pu means '20' (cf. puga '100', ga '5’), and ban means ' 10 ', so we would expect this word to mean ' 200 ', not ' 1,000 '! 124

3.5.4.7.2 BORROWINGS OF INDO-ARYAN REFLEXES OF PIE *gheslo- ‘thousand’ IN TB LANGUAGES

Finally, we should mention several forms for THOUSAND in Himalayish and Kamarupan languages that are borrowings from Indo-Aryan, ultimately from the PIE root *gheslo- (cf. Greek xilo- < *xeilo <*xeslo, Sanskrit sahasra ' 1,000 ' (sa- ‘one'), Armenian hazar, Persian hazar, Avestan hazarva, Nepali (Schmidt 1993) hajaar):

Adi ejar ~ hajar ("a borrowed word of Indo-Aryan origin" - Megu 1985:77)
Gurung hãqjãr
Kanawari hanzár (apparently with rhinoglottophilia in the first syllable; see Matisoff 1975.)

Konyak, Phom haja
Sangtam hajar

CHAPTER 4

THE PRIMARY NUMERALS: TWO TO NINE

4.0 INTRODUCTION

Tibeto-Burman languages mostly reflect one and only one etymon per numeral, especially with the lower numerals 2-5; the higher numerals 6-9 show more variation, with occasional additive, subtractive, and multiplicative complications, and a number of isolates and roots of limited distribution (not mentioned in STC).

For numerals above NINE, a language will occasionally use different words according to the thing being counted, for example, Apatani lya '10' (of non-humans) - alyã '10' (of humans) (§3.2.3.3); Dzongkha tsa '20’ (for counting objects from 21 to 29 , for example, tsa-ni '22’) versus ner '20' (for dates, for example, ner-ni 'the 22nd of the month'; Mazaudon 1985:129).

(1) Mutual influence of numerals (phonological): convergence and contamination

Since the numerals are such a uniquely structured semantic field, where the members typically occur one after the other in a fixed, rapid sequence (counting), it is no wonder that they are subject to all sorts of assimilatory phenomena. Examples may be found affecting all parts of the TB syllable:
(a) Influence on prefix

The most striking of these effects involves the prefixes that are so characteristic of numerals in the non-Sinospheric branches of TB. In the case of consecutive numerals, we speak of 'prefix runs’, treated below in detail (§5.2ff.), for example, Jingpho məsūm ' 3 ’ (< *g-sum) <-- məlī '4’ (< *b-ləy). ${ }^{1}$ In rare cases the prefix of a non-consecutive numeral may be a 'contaminating agent', the best example being WT brgya ' 100 ', apparently modelled after brgyad '8' (§ 1.1.2).
(b) Influence on root-initial consonant

Consecutive numerals may influence each others' initial consonants, with several famous examples in Indo-European. ${ }^{2}$ Compare, for example, Phom shüt ' 8 ' --> shü̈ ' 9 '; Serdukpen khu '5' <-- khit '6'; Khaling sa:hpu '2' <-- suhpu ‘3'; Khoirao kati '2' (< *kani) <- kathum '3'.

[^27]Milang rangal ' 7 ' has perhaps been influenced by pangu ' 5 ' ($\left.<^{*} b-\eta a\right)$, since the velar nasal is present 'by right' in FIVE, but not in SEVEN. The liquid prefix in rangal also has ancient status with FIVE (STC sets up the proto-allofam *l-ŋa; cf. WT lya, Kom Rem ranga ' 5 '), but not in SEVEN, which is reconstructed with *s-. (The final lateral -l in rangal remains a complete mystery - as does the aberrant Milang language in general!)
(c) Influence on rhyme

Consecutive numerals may influence each others' rhymes, for example, Thulung Rai yet ' 7 ’ ($<{ }^{*}$-is) $<\rightarrow$ let ' 8 ' ($<^{*}$-yat) (here the influence seems mutual); Sunwar tsəni ‘ 7 ’ \rightarrow tsəsi ' 8 ' (Gvozdanović 1985:143; here both the prefix and rhyme of ' 8 ' have been affected); Serdukpen khit ' 6 ' (originally with final velar, * d - k-ruk) <-sit ' 7 '. ${ }^{3}$
(d) Generalisation of final consonant to suffixal status

We have mentioned how some Karen dialects, especially $\mathrm{Pa}-\mathrm{O}$ (Taungthu) have generalised the final dentals that occur 'by right' in SEVEN and EIGHT ($<$ PTB *-s and *-t respectively) to other numerals where they do not belong etymologically (Iñt '4', ngãt '5', kūt '9'). (See §1.2.1, and Benedict 1979:18-20.)
(e) Influence on tone

Consecutive numerals may be affected by junctural phenomena that make themselves felt in counting. Lahu $\check{s} \hat{\varepsilon}{ }^{\prime}$ ' 3 ', with non-etymological high-stopped tone (written with - ${ }^{\wedge}$), doubtless developed the glottal stop as a demarcational feature to set it off from the next higher numeral $\hat{\jmath}$ ' 4 ', that begins with a vowel. ${ }^{4}$

Tones of successive numerals have undergone widespread convergence in Loloish, where ONE, TWO, THREE, FOUR, FIVE all show reflexes of PLB Tone *2, along with SEVEN and NINE. Only SIX and EIGHT, deriving from *stopped syllables, escaped this generalising tendency.
(f) Additive or subtractive copying of an adjacent numeral

In the most extreme cases, an entire numeral is expressed in terms of the next higher or lower one, for example, Mikir throk ' 6 ' --> throk-si ‘ 7 ’ (‘ $6+1$ ') (§4.2.2.9); Meithei nipan ' 8 ' ('2 from 10 '), mapan ' 9 ' (' 1 from 10 ’) ($\S 3.2 .3 .2$; $\S 4.2 .3 ; \S 4.2 .4$). See $\S 4.2 .0$ below.

(2) Transvaluation of numerals (semantic)

Throughout this monograph we are concerned with pointing out indisputable or possible cases of 'numerical transvaluation', that is a shift in the referent of a numeral from its etymological meaning. In this section the most interesting examples are listed together for convenience's sake. ${ }^{5}$

- Interchanges and confusions between 'ONE' and 'TEN' (§3.4), and between 'TEN' and 'HUNDRED’ (§3.5.4.7b).

3 Since Serdukpen ' 6 ' also influenced the initial of ' 5 ' (above), we can establish a three-link 'push-chain': 7 --> 6 --> 5 .
$4 \quad$ See my note 413 in STC (p.152), and §4.1.2.2.
5 In Appendix I we shall offer a semantic diagram or 'flowchart' that schematises all these shifts in meaning.

- Yacham-Tengsa tamong '20' looks like the same etymon that means 'FIFTY' in most other languages where it occurs (§3.5.2.2).
- The Mikir reinterpretation of throk 'SIX' to mean 'TEN' in the higher round numbers (above §3.5.2.3).
- The change in the value of *m-kul 'TWENTY' to 'TEN' in Sherpa (§3.5.3.4[B]), and to 'TWELVE' in Chepang (i.e. from ' 2×10 ' to ' $2+10$ '; §3.5.3.5).
- The Dzongkha numeral ficu, which sometimes means the etymologically correct 'TWENTY', but is often used to mean ' 20×20 ' or 'FOUR HUNDRED' (§3.5.3.4[C]). ${ }^{6}$
- In Lepcha an etymological flipflop between 'EIGHT' and 'NINE' seems to have occurred: kăkŭ ' 8 ' (but cf. PTB *d-kəw 'nine', §4.2.4), kăkyót '9' (but cf. PTB *-gyat '8', §4.2.3).
- The mysterious word zon means 'TWO' in Bumthang but 'SEVEN' in Sharchop. The interchange between TWO (PTB ${ }^{*} g-n i s$) and SEVEN (PTB ${ }^{*} s$-nis) is in fact the most obvious link between separate elements in the TB system of primary numerals, and certainly seems to bespeak a very early QUINARY or 5-based principle in the system (§4.1.1; §4.1.4; §4.2.0; §4.2.2).
- The moribund numeral systems of the Kiranti languages of E. Nepal are rife with examples of 'downward shifts' to a lower numeral, or occasionally 'upward shifts' to a higher one (Gvozdanović 1985):
-• In Limbu the numeral iboong '9' has evidently been transvalued from its original meaning '10' (compare Kulung ik-poŋ, Yakkhaba ip-poŋ '10') (§3.2.3.6; Gvozdanović 1985:162).
-. The Moli dialect of Bahing has etymologically correct forms for ' 6 ' (rukhu) and ' 7 ' (cũni), but in the Biguṭar dialect the cognate forms ruka and cani mean ' 5 ' and ' 6 ', respectively (Gvozdanović 1985:135).
-. In Kulung the word tupci, etymologically ' 6 ', has come to mean ' 5 ' in the Pawoi dialect, while the word retci, originally ' 8 ', now means ' 7 ' in the Bung dialect (Gvozdanović 1985:135).
-. The Saptesor dialect of Dumi has sukpo ' 3 ' and bhalukpo ' 4 ', but the cognate forms in the Kubhinde dialect, sokpu and bhlokpu, mean ' 2 ' and ' 3 ', respectively. On the other hand, Saptesor dumpo '6' looks like it originally meant ' 7 ' (a downward shift; cf. WT bdun '7').
-• Saptesor rekpo ' 9 ' looks like it comes from *b-rgyat ' 8 ' (an upward shift); in Kubhinde the cognate form rokpu has come to mean ' 4 ' (half of eight), just as in the Ranitar dialect of Bantawa, where the cognate retkapok now also means ' 4 ' instead of EIGHT (Gvozdanović 1985:135-136).
-• In Sunwar, the word gow means ' 10 ', but certainly seems to descend from *d-kəw '9' (Gvozdanović 1985:143). Similarly, Sunwar yaan '9' looks like it derives from *g-ryan '8' (§4.2.3.6).

4.1 THE LOWER NUMERALS: 2-5

4.1.1 Profile of number TWO

> TWO *g-ni-s/k

Like THREE, TWO is one of the most phonologically and lexemically stable numerals in TB. Again like THREE, the only consonantal prefix that can be reconstructed for TWO at the PTB level is the velar ${ }^{*} g_{-} / *_{k}$-. The relatively rare final consonant ${ }^{*}$-s is reconstructed for this root on the testimony of Written Tibetan (WT) gnyis, Rgyalrong(=Gyarung=Jyarong) kenes, and Kanauri nis (STC p.4). Forms in other languages reflect *-ik instead of *-is, notably Written Burmese (WB) hnac. Still others seem to derive from open syllables, for example, Lahu nî < PLB Tone *2. (Compare similar open-syllable derived forms in Loloish words for SEVEN, $\S 4.2 .2 .4$.) The STC, without much discussion (see note $486, \mathrm{p} .185$), considers the final ${ }^{*}$-s to be suffixal at the PST level, and the etymon is so reconstructed in the Indexes: ' ${ }^{*} g$-nis $={ }^{*} g$ $n i-s^{\prime} .{ }^{7}$ For Proto Lolo-Burmese (PLB) I have reconstructed *(?)ni-t (TSR \#160), but there is no hard evidence to enable us to distinguish between ${ }^{*} t$ and ${ }^{-k}$ here, and perhaps *(?)ni-? would be a better reflection of this indeterminacy.

Scattered around here and there are forms with secondary final $-t$.

Lepcha	nyi, nyət ${ }^{8}$
Ao (Mongsen)	anet
Yacham-Tengsa	anat

All these forms, however, go back to ${ }^{*}-s$, since ${ }^{*}-s>-t$ seems to be the normal development in these languages, as demonstrated by the fate of ${ }^{*} s$-rus 'bone' > Lepcha $\partial h r ə t$; Ao teret, terat; Yacham-Tengsa telet (STC \#6; GEM 34).

The unmistakable similarity even at the PST/PTB levels between Two and the word for SEVEN (PTB ${ }^{*} s$-nis) makes it obvious that some semantic connection was involved. Since 7 $2=5$, it is reasonable to guess that there might have been a QUINARY basis for the PST numeral system (STC p.16). ${ }^{9}$ There is, however, no evidence to link SIX with ONE, EIGHT with THREE, or NINE with FOUR.

It is not surprising that there should be hints of morphological accretions to this root, since words for TWO (perhaps the most important of all the numerals, with the possible exception of ONE) tend to combine with spatial and temporal morphemes in idiosyncratic ways. (Cf. English two, twelve, (<twa-liif 'two left (beyond ten)'), twenty, twain, twice, between, betwixt, twin, etc.).

Cases of lexical replacement of the basic PTB etymon for TWO are excessively rare, the most striking example being Jingpho ləkhôn, which has never been successfully related to anything else. (Curiously, Jingpho also has an isolated form ləŋâi 'ONE’, with the same prefix and under the same (rare and secondary) falling tone. ${ }^{10}$)

[^28]
4.1.1.1 FORMS WITH VELAR PREFIX

Angami (Khonoma) kena, (Kohima) kenie; Chakhesang and Chokri küna; Kezhama kenhi; Khoirao kati (with denasalisation of root-initial, maybe under the influence of kathum '3'); Mao kahei; Maring khani; Meluri keni; Mzieme kena; Nruanghmei kanei, künei; Ntenyi kenyi; Pochury küni; Puiron kani; Rengma khohiung; Sema kini; Tangkhul khani; Zeliang and Zeme kena
Dimasa gini; Garo gini, gni (Momin (n.d.) also gives a reprefixed form gegni, alongside gesa '1’, gedok '6’, gesni ‘7’)
Chulikata ka:ni; Deng Darang $k \partial^{2 l} n^{55}$ (with syllabic nasal; this form seems well on the way to 'preemption via apocope of the root vowel'; see for example, FIVE, §4.1.4.1.1); Deng Geman $k u^{21} j i n^{53}$ (' j ' is the palatal semivowel); Digaru Mishmi ka:-ying, Idu kanyi; Miju kinin; Mishmi (Dubey) kani; Taraon ka:ing, Aka (= Hruso) kshi

These Abor-Miri-Dafla forms require some comment. Several languages (Deng Geman, Digaru Mishmi, Miju and Taraon) show a final nasal which appears suffixal. (This is especially clear in Miju, which has two nasals in the syllable.) However, forms like Deng Geman -jin, Digaru -ying, and Taraon -ing are more equivocal. Two hypotheses seem equally likely in the present state of our knowledge: either these final nasals are also suffixal, and the root-initial n-has become weakened to y-under the palatalising influence of the following $-i$; or else the root- initial n - and the palatal vowel switched places by metathesis, so that the nasal is not an original suffix, but rather the original root-initial. This latter alternative is not so farfetched, since for Dafla, Das Gupta (1969) records two variants for Two, anyi and ain. The strange sibilant in Aka kshi could represent a fricativisation of the palatal semivowel: *n->ny > $y>s h .^{11}$

The distinctive initials in Karen (Palaychi) chi and (Sgaw) khi (Jones 1961) might well be preemptive survivals of the velar prefix. Other Karen dialects (Taungthu, Pwo ni) simply reflect the prefixless root.

Rgyalrongforms for TWO (for example, kenes) have a velar prefix, but so do all its numerals from 2 to 10 (except for 8).

4.1.1.2 FORMS WHICH SHOW NO TRACE OF A CONSONANTAL PREFIX

Dulung a ${ }^{2 l} n i^{55}$; Rawang əni
Apatani nĩ; Abor-Miri, Gallong, Lhopa, Minyong, Tagin a-nyi; Padam a-ni; Nishi anni; Dafla (Das Gupta) anyi ~ ain; Milang ne; Monpa (Cuona) nAi i^{2312}
Boro nôi; Kokborok nuy
Chepang nis-jo?; Gurung ngihq; Jirel nyiq; Kaike nghyi; Kanawari nish; Kham neh-plo; Magari nis; Newari ni-gu(-li); Sherpa ngyi; Sikkim Bhutia nyi; Tamang nyi:h; Thakali ngih; Thulung Rai nə; Tibetan (Lhasa) nyii
Ersu $n \varepsilon^{55}$; Bai (= Minchia) $n \varepsilon^{2}$, Pumi $n i^{23}$; Qiang nyif ${ }^{55}$

11 Something very similar happens in Lahu, where $/ y /$ acquires local friction before the high front vowels /i,e/, becoming a voiced slit spirant. See Matisoff (1973a:5-6).
12 J.T. Sun (1993:319, 340, 463) reconstructs PTani *ñi. W.T. French (1983:572) reconstructs PNorthern Naga *?-ni, with the *glottal prefix apparently motivated by the vocalic prefix in the Yogli, Moshang, and Wancho forms.

Ao (Chungli) ana; Kimsing anai; Chang nyi; Konyak i (with palatalisation of the initial); Liangmai nia; Lotha eni, oni; Meithei ani; Phom nyi; Sangtam anyü; Tangsa (Moshang) ani, (Yogli) anei; Wancho an(y)i
Gangte nih; Kom Rem hni; Kuki ni; Lakher no; Paite nih; Thado ni; Tiddim nih
We must include here Jingpho $n \overline{1}$, a bound form which is never used in isolation, but only in certain set expressions like nī ná? 'two nights' and round numbers like nī tsā '200'. It has also been grammaticalised into a plural or collective suffix, for example gwì nī 'the dogs'. The independent Jingpho numeral for TWO is the mysterious lekhon (§4.1.1.5).

4.1.1.3 FORMS WITH OTHER THAN VELAR PREFIXES

Yimchungru has a curious form manie, its only numeral to carry a ma- prefix.
Mikir has hini, its only numeral with a hi-prefix.
Maram and Nocte have prefixes of the type CVC- with the lower numerals 1-3: '2' Maram hang-na, Nocte va-nyi, wan-ni.

A few Chin languages have a general prefix pa- used with all numerals: Hmar pahni, Lushai pahnih, Vaiphei pani (§5.4.3).

4.1.1.4 FORMS WITH VELAR SUFFIX

$$
*_{n i-k}
$$

Several languages have forms pointing to the rhyme *-ik. We have already mentioned WB hnac, which could descend either from PLB *-ik or *-it (cf. WB hrac '8' < PLB *?rit or *?ryat, but also WB chac 'joint' < PLB *tsik).

Forms from Abor-Miri-Dafla and Himalayish also attest to the antiquity of a velar suffix with this numeral: ${ }^{13}$

Hayu nak-pu (for humans), naung (for non-humans) (Michailovsky 1988:167); Sunwar nik-syi; Bahing nik-si; Sharchop (Chhewang Rinzin) nyik-tsing; Monpa (Motuo) nyik-tsing, Serdukpen $n(y) i k$; Thulung nək
The second syllable of the Sunwar amd Bahing forms certainly seem related to the -tsing in Sharchop and Monpa, though their wider affiliations are still unknown.

4.1.1.5 UNUSUAL FORMS

There remain a few strange forms that we here assemble for simultaneous delectation:

Jingpho	ləkhông	(no known etymology)
Khaling	sa:h-pu	(apparently contaminated by suh-pu '3')
Bumthang	zon	

[^29]This Bumthang form is virtually identical in appearance to Sharchop zon and Central Monpa zum 'SEVEN', which we analyse as deriving from ${ }^{*} s$-nis via apocope of the final (§4.2.2.4). The Khaling forms are cited as saakpu '2' and sukpu '3' in Toba and Toba (1975), and are clearly cognate to Dumi sak ' 2 ' and sukli ‘ 3 '.

4.1.2 PRofile of number THREE

THREE *g-sum

This is perhaps the most stable of all TB numerals, with the fewest forms that do not conform to a relatively simple prototype. No doubt this stability is largely due to the relative conservatism of consonants like s and m, along with the conceptual saliency of the number THREE itself.

Prefixally speaking, this is also a very consistent numeral. The only prefix of obviously long standing with this etymon is the velar, $* g . / * k$-. Secondarily, a number of AMD and Kuki-Naga languages have developed vocalic prefixes which run through most or all of the lower numerals, and of course THREE is affected like the others (§4.1.2.2). Most TB languages, however, now show no overt trace of any prefix at all with this root.

STC sets up the proto-vowel as ${ }^{*}-u$-, and this is the reconstruction of choice. ${ }^{14}$ Many daughter languages (including Chinese) have -a-vocalism, however, and perhaps this cannot be dismissed as secondary in all cases - that is we may ultimately be forced to recognise ${ }^{*}$ - u $* *$-a- variation in this etymon, a pattern already noticed in a number of another etymologies (for example, 'fragrance' PTB *b-sun **b-say (STC \#405)). ${ }^{15}$

4.1.2.1 FORMS WITH VELAR PREFIX

Written Tibetan gsum

Chulikata ka:sh (with preemption via apocope of the rhyme); Deng Darang k ${ }^{2 l}{ }^{2 l}$ sung ${ }^{45}$; Deng Geman $k u^{2 I}{ }^{2} ə \mathrm{~m}^{53}$; Idu (Sun 1983) ka^{31} song ${ }^{35}$; Miju Mishmi ksam; Taraon ka:sa:ng

Kezhama katsii; Khoirao kathum; Mao kosii; Maring khiyum; Meluri keche; Mikir kethom; Mzieme ketsum; Nruanghmei kathum; Ntenyi keching, keshang; Pochury küche; Rengma keshan; Sema kiithu; Tangkhul kathum; Zeliang and Zeme kechum
Dimasa gatham; Garo git(t)am
Rgyalrongkesom ~ kesam is not criterial, since all its primary numerals (except 1 and 8) have acquired a secondary velar prefix (§5.2).

4.1.2.2 FORMS WITH NO OVERT TRACE OF A CONSONANTAL PREFIX

Miri (=Mising), Gallong, Minyong, and Tagin a-um; Abor (=Padam) a-ŋum; Aka zu; Apatani hi; Dafla (=Nishi) (a-)om, um; Bokar a-hum; Lhopa afum ${ }^{16}$; Milang ham; Monpa (Motuo) sam, (Dubey and Cuona) sum; Serdukpen ung
Angami se; Chakhesang süh; Chang sam; Chokri sü; Liangmai shum; Phom jam; Wancho a-jam, a-zam; Ao (Chungli) asem, (Mongsen) asam; Kimsing acam; Lotha etham; Meithei ahum; Sangtam asang, Tangsa (Moshang) atum, (Yogli) adim; YachamTengsa and Yimchungru asam; Nocte van-ram, wan-rım; Konyak lem;
Lakher thô; Gangte, Kom Rem, Kuki, Thado, Paite, Puiron, and Tiddim thum
Rawang (Barnard 1934) ətsum; Dulung a ${ }^{21}$ sum ${ }^{53}$
Boro and Kokborok tham
Ersu $s{ }^{i 55}$; Pumi $s a ̃ u^{23}$; Qiang $t s h i^{55}$; Bai (= Minchia) sa ${ }^{1}$
Chepang sum-jo?; Gurung soq; Hayu tshuk-pu (for humans), tshu? ung (for nonhumans); Jirel sumq; Kaike sum; Kanawari shum; Khaling suh-pu; Kham sohm-lo; Lepcha sam; Sharchop sam; Magari som; Newari swa-gu;; Sherpa sumq; Sikkim Bhutia/Danjongka sum, sung; Sunwar sã.; Tamang and Thakali som; Thulung Rai sium; Tibetan (Lhasa) sum

Karen (Pa-O) som, (Pwo) л-ən, (Palaychi) tyq, (Sgaw) ग-ə
Proto Lolo-Burmese ${ }^{*}$ sum $\left(\right.$ Tone $\left.{ }^{*} 2\right) ~>$ WB sûm, Lahu $\check{s} \hat{\varepsilon}^{7}-s \check{\varepsilon}$, etc.
The glottal stop in Lahu is secondary, a junctural feature that arose to separate THREE from FOUR in counting, since Lahu $\hat{\mathfrak{\jmath}}$ ' 4 ' has a vocalic onset. ${ }^{17}$ For similarly secondary final laryngeals in this etymon, compare the Hayu and Khaling forms just cited.

4.1.2.3 FORMS WITH MISCELLANEOUS SECONDARY PREFIXES

Several Chin languages have developed a general numeral prefix, pa-, used with all the primary numerals: Hmar, Lushai and Vaiphei pathum (§5.4.3).

A couple of Naga languages have developed a fully syllabic CVC- prefix with the lower numerals (§5.5.1.2): Maram hang-tum; Nocte van-ram.

Most strikingly, Jingpho has developed a nasal prefix with this numeral - mosum. This is part of a celebrated Jingpho run of the labial nasal prefix from THREE to FIVE ($m ə s u \bar{m}$, mə \sqrt{I}, monā). Clearly it is not THREE that is influencing the two higher numerals, but vice versa, since both FOUR and FIVE have been associated with labial prefixes from PTB times. See §4.1.3; §4.1.4.

4.1.3 PROFILE OF NUMBER FOUR ${ }^{18}$

> FOUR *b-liy or *b-ləy

The following forms are cited in STC \#410:19
Written Tibetan bźi; Thulung bli; Kanauri pö; Magari buli; Digaro kəprei; Miri pi; Nung əbyi, əbəli; Jingpho məli; Written Burmese le:; Maru byit (with secondary final stop); Mikir phli.

The weak root-initial lateral in this etymon offered little resistance to the preemptive propensities of the prefix (§4.1.3.1).

The ${ }^{*} b$ - that goes with FOUR is one of the best-attested of all numeral prefixes in TB. To the forms given in STC, add:

Apatani pilye, pu-lje (also pe, with preemption); Monpa (Cuona) pli ${ }^{53}$, (Dubey) blee, (Central) b(i)ci~p(i)ci; Serdukpen bi:sis ${ }^{20}$

Ao (Chungli) peziu, (Mongsen) phüli; Kezhama pedi; Kimsing balai; Konyak peli ${ }^{21}$; Lakher pali; Mao padei; Maring phili; Mikir phli (also phir (Marrison), with metathesis and/or apocope); Muklom Tangsa balee; Nocte beli; Nruanghmei padei; Rengma pezi; Sema bidhi; Tangsa (Moshang) bali, (Yogli) balai; Yacham-Tengsa phale; Yimchungru phiyi
Dulung $a^{2 l} b l i i^{53}$ (with secondary vocalic prefix)
Boro brôi; Dimasa biri; Garo bri; Kokborok bruy
Chepang play.jo?, Hayu b(l)i?ung; Gurung plihq; Tamang and Thakali plih; Thulung Rai blo; Sharchop pshi; Dumi balikpi.

In several Chin languages (for example, Hmar, Lushai, Vaiphei pali) the pa- prefix is secondary, used as a general prefix with all the numerals. See §5.4.3.

4.1.3.1 FORMS WITH PREEMPTION OF THE INITIAL BY THE LABIAL PREFIX:

Abor-Miri a-pi; Apatani pe (also pilye (for counting humans)); Dafla api; Gallong appi; Lhopa api;, Milang pe; Monpa (Motuo) p'i; Nishi and Padam appi; Tagin epi ${ }^{22}$
Khaling bha:el (alongside bho:m '5', also with preemption); Kanawari pii; Newari pe-gu:
A rare 'survival via preemption' of the ${ }^{*} b$ - prefix in Burmish is Maru bit. (The development ${ }^{*}-i y(=* \partial y)>$ Maru -it is regular, as is the parallel ${ }^{*}-u w(=* \partial w)>$ Maru $\left.-u k.\right)^{23}$

[^30]The same development has taken place in the moribund Ugong language, where a more conservative form pli now varies with pi. ${ }^{24}$

4.1.3.2 FORMS WITH NASAL (NOT STOP) PREFIX: *m-ləy < *b-ləy

As with FIVE (§4.1.4; §4.1.4.2), many languages have a labial nasal instead of a labial stop prefix with FOUR. STC regards this nasalisation of the prefix as a secondary development, and does not push the stop ~ nasal variation back to the PTB stage.

Jingpho məli; Khoirao malhi; Kom Rem manli; Liangmai madai; Lotha mezü; Maram madai; Meithei mari; Meluri mezu; Mzieme m(a)dai; Ntenyi mez(h)ü; Pochury mzü; Puiron mali; Sangtam müzyü, Tangkhul mati; Zeliang mdai; Zeme medai

4.1.3.3 FORMS WITH LABIAL FRICATIVE PREFIX:

Aka (= Hruso) fi-ri; Lepcha fəli

4.I.3.4 FORMS THAT DO NOT OVERTLY REFLECT ANY CONSONANTAL PREFIX

Karen: \quad Taungthu lit (with suffix; §4.0.1(d)); Pwo li, lip; Palaychi and Sgaw lwi
Himalayish: Kaike li, Bahing le, Kulung li-chi, Limbu li-si
Chin: \quad Gangte, Kuki, Paite, Thado, Tiddim li
N.Naga: \quad Chang lei; Phom a-li; Wancho a-li

4.1.3.4.1 FORMS THAT INDIRECTLY REFLECT A CONSONANTAL PREFIX

PLB *hləy ${ }^{2}>$ WB lê; Lisu $l i^{55}$; YI (Dafang) $\ddagger i^{33}$; Naxi (Lijiang) $l u^{33}$; MPI $l i i^{6}$; Lahû(n) ${ }^{25}$;
Akha ø̆; Bisu ha; Phunoi hàn (with rhinoglottophilia), and so on.

4.I.3.4.2 WITH REPLACEMENT OF THE ROOT-INITIAL LATERAL BY A STOP ${ }^{26}$

Angami (Khonoma) da, (Kohima) die; Chakhesang daa; Chokri da

4.1.3.5 WITH FUSION OF PREFIX AND INITIAL TO A SPIRANT/AFFRICATE

Naxi (Moso) $z_{2} v^{33}$
Jirel syi; Sherpa ji; Sikkim Bhutia/Dzongkha zyi - syi

[^31]Ersu zo ${ }^{33}$; Pumi (Taoba) z^{55}, (Jinghua) $3 \varepsilon^{55}$; Qiang (Taoping) d 31^{55}, (Mawo) $g z z^{2}$; Ergong wze; Muya ze ${ }^{35}$; Queyu (Yajiang) $z i^{35} t \epsilon a^{53}$; Guiqiong $t s 1^{55}$; Namuyi $z 1^{33}$; Shixing $3 u e^{33}$
Bai (Dell 1981) su ${ }^{2}$, (Dali, Jianchuan) $6 i^{44}$, (Bijiang) $s i^{44}$

4.1.3.6 WITH VELAR PREFIX:

*g-lay >	Minyong	aki (with preemption)
*g-b-lay>	Rgyalrong(Zida)	kewdzyi
		(with lenition of the *-b- to -w-)
	Idu Mishmi	kapri
	Taraon	ka:pra:i
	Deng Darang	$k{ }^{21}$ руәi ${ }^{55}$
	Chulikata	ka:ppi
	Digaro	kəprei

With this last allofam also belong Miju Mishmi kambran, Deng Geman $k u^{2 l} b \& u n^{53}$, evidently with a fully syllabicised prefix and secondary nasalisation in both syllables: ${ }^{*} g(N)-b-l ə y-$ (N). ${ }^{27}$

4.1.4 Profile of number FIVE

FIVE * $1-\eta a \approx * b-\eta a$
In STC \#7828 the following forms are cited in support of the reconstruction *l-ŋa * b - ŋa:
WT lıa; Jingpho məŋa; WB ŋâ; Garo bona; Lushai ga ~pəŋa ${ }^{29}$.
Many TB languages have forms for FIVE with labial nasal prefix, $m V$-, rather than with a labial stop prefix, as the proto-prefix is supposed to have been. STC claims that the nasal developed secondarily from the stop (for example, Jg. məŋa<*b-ŋa). Yet an ${ }^{*} m$ - prefix is independently required for PTB beyond any question, both with nominal and verbal roots. It seems to me quite likely that stop ~ nasal prefixal variation existed in this etymon already at the proto-level - a situation one might expect, given that the root-initial itself is a nasal. ${ }^{30}$

Since FOUR is also reconstructed with ${ }^{*} b-, 4-5$ constitutes a proto-prefix run (§1.1; §5.5.1).

The lateral prefix is much less well attested in TB as a whole (${ }^{*} b$ - is much more generally represented': STC p.94) and one feels that STC relied overmuch on the testimony of Written Tibetan lga in reconstructing * $/$-for the proto-language. One possible origin for the l - would

Compare for example the syllabic prefix gùm- that Jingpho developed in its word for 'horse' gùmrà (η) < *m-ray.

29 . 28.
29 It should be noted that the Lushai form with pa- is of no weight in reconstructing *b-, since it is a late, secondary prefix used with all the numerals (§5.4.3).
30 The case is somewhat less strong for positing *b-*m-variation at the proto-level for FOUR (§4.1.3.2).
be the widely distributed root *lak (STC \#86) 'hand', given the well-known fact that hands have five fingers. ${ }^{31}$

Other TB forms that point to a liquid prefix for FIVE are:
‘Old Kuki’ ${ }^{r}$ - ga (for example, Rangkhol ringa) (STC, ibid.)
Kom Rem ranga
Monpa (Cuona) le ${ }^{2 l}$ nge ${ }^{54}$, (Northern) lyange
The Milang form rangal ' 7 ' looks like it has been heavily contaminated by a lateral-prefixed version of FIVE, though the final -1 is a problem (§4.0.1(b)). Compare also the inner lateral prefix in Padam pilngo (§4.1.4.4), and the Miju and Kaman forms in $k-1$ - (§4.1.4.8).

4.1.4.1 FORMS WITH LABIAL STOP PREFIX

Dimasa and Garo bonga
Chepang ponga:-jo?
Milang pangu
Dulung pui ${ }^{21}$ nga ${ }^{53}$; Rawang (Barnard 1934) hpung-nga
The following Kuki-Naga forms all participate in FOUR/FIVE prefix runs (see §4.1.3; §5.2; §5.4).

Ao (Chungli) pungu, (Mongsen) phanga; Kezhama pangu; Kimsing bangi; Lakher pangaw, Mao pongo; Maring phanga; Mikir phongo; Muklom Tangsa and Nocte banga; Nruanghmei pangu; Sema pongu; Tangkhul phanga; Tangsa banga; Yacham-Tengsa phungu; Yimchungru phüngü
In the following 'Angamoid' languages, FOUR is an unprefixed monosyllabic form, so that these words for FIVE are isolated with their labial prefix:

Angami (Khonoma) pengu, (Kohima) pengou; Chakhesang puhngu; Chokri püngu

4.1.4.1.1 WITH PREEMPTION OF THE ROOT-INITIAL BY THE LABIAL PREFIX:

$* b-(\eta) a>$	Boro	$b a^{32}$
	Kokborok	$b a^{33}$
	Rengma	$p f i i$

Several forms have been uncovered where the preemption served to compensate for the apocope of the root vowel (see §5.1.3.1):

Khaling (Him.)	bho:m
Puiron (KCN)	pang
Aka (AMD)	phum

[^32]
4.1.4.1.2 WITH SECONDARY LABIAL PREFIX

A few Chin languages have developed pa- as a universal numeral prefix, used with all the numerals even if they already bear a prefix inherited from PTB (§5.4.3). Naturally these languages cannot be used as evidence for the ancient status of $* b$ - with this numeral:

Hmar, Lushai, Vaiphei panga.

4.1.4.2 FORMS WITH LABIAL NASAL PREFIX

Idu (Sun 1983) ma ${ }^{31}$ nga ${ }^{35}$; Mishmi (Dubey) manga; Taraon ma:nga:; Deng Darang ma^{21} nga ${ }^{45}$; Chulikata ma:nga;; Rgyalrong(Zida) kemnga (with superadded ke-)

All the m-prefixed Kuki-Naga forms for FIVE occur in languages which also have forms for FOUR with the m - prefix; that is all these words for FIVE participate in $4-5$ prefix runs (§4.1.3.2):

Khoirao manga; Liangmai mangiu; Lotha mungo; Maram mingu; Meithei, Meluri manga; Mzieme mengei; Ntenyi münga; Pochury mnga; Sangtam münga; Zeliang mengei; Zeme mengeu

4.1.4.2.1 WITH PREEMPTION OF THE ROOT-INITIAL BY m-
 Bai (Dali) $m u^{3}$

4.1.4.3 FORMS WITH LABIAL SPIRANT PREFIX:

Lepcha fəngo (alongside fəli ‘4’)

4.1.4.4 DOUBLY PREFIXED FORMS:

*b-l-ŋga > Padam/Abor pilngo (see LSI III.1, p.622); Shimong Adi pi-ri-ŋo

4.1.4.5 FORMS THAT SHOW NO OVERT TRACE OF A CONSONANTAL PREFIX:

Dzongkha/Sikkim Bhutia nga; Gurung nga:hq; Jirel nga:q; Kaike nga;; Kanawari nga; Sharchop nga; Newari nya:-gu;; Sherpa, Tamang and Thakali nga:q; Thulung Rai ngo; Dumi go; Kulung ga-chi; Limbu ga-si

Chang ngau; Konyak and Phom nga; Wancho aga (with denasalised initial)
Gangte, Kuki, Paite, Tiddim nga
Monpa (Motuo) nga; Apatani ngo; in this category we may include other AMD forms with vocalic prefix, for example, Abor-Miri, Dafla, Gallong, Minyong, Tagin ango; Nishi a:ngo; Lhopa ongo; Bangni u-pu
Ersu nguar ${ }^{33}$; Muya ηa^{35}; Queyu $\eta u a-t c \tilde{a}^{53}$; Guiqiong $\eta \bar{\varepsilon}^{35}$; Namuyi ηa^{33}
Proto Lolo-Burmese ${ }^{*} g a^{2}>$ WB gâ; Lahu gâ; Lisu gwa; MPI ηo^{2}; BISU ngà ~ hà; Phunoi 7àn (with rhinoglottophilia), and so on.

Bai (Jianchuan, Bijiang) ηv^{33}
Karen (Pa-O) ngat (with suffix); other Karen dialects have lenited the nasal to a palatal semivowel: Pwo $j \varepsilon$, $j a i$? , Palaychi and Sgaw $j \varepsilon$

4.1.4.6 WITH SPIRANTISED INITIALS:

In several Qiangic languages the velar nasal has become a velar or 'uvular' fricative:

4.1.4.7 WITH VELAR PREFIX AND APOCOPATED ROOT-VOWEL (?)

Two weird forms from AMD can perhaps be accounted for if we assume a variant secondary velar prefix and apocope of the root vowel, something like *g-l-p(a):

Kaman $k u^{2 l}{ }^{2 l}{ }^{55}{ }^{55}$; Miju klin

4.1.4.8 A CONTAMINATED FORM IN SERDUKPEN

Serdukpen $k h u$ ' 5 ' seems to have undergone contamination of its initial by khit ' 6 '. Curiously enough, this word for ' 6 ' has itself undergone the influence of the next higher numeral sit ' 7 ’ (§4.0.1(c); §4.2.1.8).

4.1.5 Traces of QUinary numeral systems in Himalayish

Several Kiranti languages of E. Nepal have numeral systems where the number FIVE has an explicit morphological relationship with their word for HAND or FINGER: 34

Bantawa (Raniṭar dialect): chuk ‘HAND', ũkchuk 'FIVE' (1×5 5'), hũachuk 'TEN’ ('2 x 5')
Mewahang: huk 'HAND', ihuk 'FIVE'
Chourase: brem 'FINGER’, kollabremci 'FIVE' (kolo ‘one')
Yakkha: mukta 'HAND', muktapi 'FIVE'
Yakkha in fact has the most thoroughgoing quinary system reported so far for any TB language, with interesting additive and subtractive features (discussed below in §4.2.0) which make it look quite a bit like Khmer.

We have noted (§4.1.1) the virtual identity of the PTB forms for TWO ($\left.{ }^{*} g-n i s\right)$ and SEVEN ($\left.{ }^{*} s-n i s\right)$. Although these quinary formations in Kiranti appear to be of quite recent origin, ${ }^{35}$ they at least demonstrate that the idea of counting by fives still occupies a niche in TB conceptual space.

[^33]
4.2 The higher numerals: SIX TO NINE

4.2.0 ADDITIVE, SUBTRACTIVE, AND MULTIPLICATIVE FORMATIONS

There may once have been a certain mnemonic advantage in forming the more 'remote' higher numerals additively, subtractively, or multiplicatively in terms of other, more 'familiar' numerals. Conceivably it was easier for early French speakers to call ' 70 ' soixante-dix (' $60+$ 10') instead of septante - the speaker struggling to keep count at a numerical level far surpassing the number of his fingers and toes need only have run through the teens over again, keeping the TENS place constant, from soixante-onze ' 71 ' (' $60+11$ ') through soixante-dix-neuf ' 79 ' ($60+19$ '); similarly for quatre-vingt-dix ' 90 ' (' $80+10$ ', literally ' $(4 \times 20)+$ 10 ') through quatre-vingt-dix-neuf ' 99 ' (' $(4 \times 20)+19$ ').

TB languages also provide many examples of these phenomena, some of which have already been mentioned:

4.2.0.1 MULTIPLICATIVE FORMATIONS

[A] In the quaternary system of Boro (§3.3.2(c)), EIGHT is expressed as ' 4×2 ' (zokkaynəy), with the special morpheme zokkay 'group of four' (rather than with the unrelated cardinal numeral bra FOUR). The other numerals between five and ten are formed additively (§4.2.0.3).
[B] Many AMD languages have similar multiplicative expressions for EIGHT, for example, Apatani a-pi ‘4’, nyi ‘ 2 ’, pih-nyi ~ pryih-nyi ‘ 8 ’ (see §4.2.3.7).
[C] There are cases where a confusion between FOUR and EIGHT is evident from a comparison of closely related dialects. In the Annapurna subdialect of the Bhojpur dialect of Bantawa, retkapok means ' 4 '; but in Chhinamakhu subdialect of Bhojpur it means '8' (Gvozdanović 1985:136).
[D] As we have seen (§1.2.1), in Eastern Kayah (=Karenni=Red Karen) the numerals SIX and EIGHT are expressed as doubles of THREE and FOUR (sō 'three', sō swá 'six'; Iw $\overline{1}$ 'four', Iwīswá 'eight'), while SEVEN and NINE are in turn additively formed from SIX and EIGHT (sō swátə- ‘seven' ' $(3 \times 2)+1$ '; lwīswá tə- 'nine' ' $(4 \times 2)+1$ ').
[E] Perhaps Miju Mishmi katam '6' is multiplicatively based on ksam ' 3 '. The aberrant Milang language has ham ' 3 ' and sap ' 6 '.
[F] According to Hodgson's data (reproduced in LSI III.1:384), Hayu once had a numeral chhu-ning ' 6 ' that was a multiplicative formation based on ning ' 2 ' (3×2 '). At this same period there was also a numeral u:-ning ' 5 ', that looks like it was influenced by '6'.

4.2.0.3 SUBTRACTIVE FORMATIONS

Subtractive numeral expressions typically involve the two highest units EIGHT and NINE, and/or higher numbers ending in them (18,$19 ; 28,29 ; 38,39$, etc.), and/or the odd round numbers (30,50, 70 and 90). Examples may readily be found in Indo-European languages. Latin has subtractive forms for ' 18 ' and ' 19 ' (duodēvīginti ' 2 from 20 ' and undēvīginti ' 1
from 20'). ${ }^{36}$ In Sanskrit, pairs of alternative forms exist for ' 19 ' and the other higher numbers ending in nine. These are either an ordinary additive form with respect to the next lower round number, or a subtractive form in terms of the next higher round number:

Sanskrit

17
18
19

20

> saptadaśa
> aștadaśa
> navadaśa (‘ $9+10$ ') or ūnaviṃnsati < ekonavimśati
> ('one diminished 20 ' (pers.comm. Robert P. Goldman 1994))
> vimśati
> catvārimśat
> navacatvārimśat (' $9+40$ ') or ūnapañcāśat ('one-diminished 50')
> pañcāśat

We have already discussed subtractive formations for the higher teens in TB languages (§3.3.1.6), as well as subtractive ways of expressing the odd round numbers in TB vigesimal systems, for example, in Chang (§3.5.2.4) and in Dzongkha (§3.5.3.4[C]). As far as the basic unit numerals themselves are concerned, ${ }^{37}$ the best examples of subtractivity in TB are to be found in Mikir (§3.5.2.3; §5.4.2.1) and Meithei (§3.2.3.2; §5.4.4.5):

	Mikir	Meithei
ONE	isi	ama
TWO	hini	ani
EIGHT	nirkep	nipal-nipan
NINE	sirkep	mapan
TEN	kep	(tara)

4.2.0.4 ADDITIVE FORMATIONS OF THE BASIC UNIT NUMERALS ${ }^{38}$

Khmer is a striking example of a language where all the higher numerals from SIX to NINE are formed additively on the basis of FIVE:

Khmer 39			
ONE	muəy	SIX	prammuəy
TWO	pii	SEVEN	prampii
THREE	bəy	EIGHT	prambəy
FOUR	buən	NINE	prambuən
FIVE	pram	TEN	dap

36 Roman numerals in their written form make extensive use of the subtractive principle, e.g. FOUR 'IV' (1 from 5), NINE 'IX' (1 from 10), FORTY 'XL' (10 from 50), etc. These must have been a lot easier to carve in stone than non-subtractive alternatives like 'IIII', 'VIIII', or 'XXXX'.
Again looking beyond Sino-Tibetan, cases of subtractive EIGHT and NINE, while not exactly frequent, are attested in language families around the world, e.g. Finnish üksi/ühde 'one', ühdeksan 'nine'; kaksi, kahde 'two', kahdeksan 'eight' (pers.comm., Adam Jacobs 1992); Indonesian sembilan 'nine' ('taking one [from ten]' < ambil 'take away', se- ‘one'); delapan 'eight' (prob. '[taking] two [from ten]' <dua 'two').
We have already mentioned additive formations involving the round numbers of vigesimal systems (§3.5.2.4); and of course in connection with the teens and other higher numbers ending in 1-9, where additivity between the ten and the unit is the norm (§3.3).

As we have seen (e.g., §4.1.1 above), there is some evidence for a similar relationship at the PTB level between TWO (${ }^{*} g$-nis) and SEVEN ${ }^{*} s$-nis), though not between THREE/EIGHT or FOUR/NINE. In the peculiar quaternary system of Boro (see §3.3.2[C]), ' 6 ' and ' 7 ' are expressed as ' $(4 \times 1)+2$ ' and ' $(4 \times 1)+3$ ', while ' 8 ' is ' 4×2 ' and ' 9 ' is ' $(4 \times 2)+1$ ':

Boro

ONE	se	SIX	zokkay-se kanəy
TWO	nəy	SEVEN	zokkay-se katam
THREE	tam	EIGHT	zokkay-nəy
FOUR	brə	NINE	zokkay-nəy kase
FIVE	ba	TEN	dos (< Indo-Aryan)

An isolated case of a basic numeral being derived additively from the next lower one is to be found in Mikir, where throk-si ' 7 ' is formed from throk ' 6 ' plus isi ' 1 ' (§4.2.2.9). ${ }^{40}$ However, it is in the 'endangered' numeral systems of certain Kiranti languages that the most elaborate additive sets of basic numerals have been reported, for example, in the Ranitar dialect of Bantawa:

Bantawa (Ranitar dialect)

ONE	$\tilde{u} k-t a$	SIX	bhan-ka-chuk
TWO	hũa-ta	SEVEN	bhan-hũ-chuk
THREE	sum-kat	EIGHT	bhan-sum-chuk
FOUR	ret-katat	NINE	bhan-ret-chuk
FIVE	$\tilde{u} k$-chuk	TEN	hũa-chuk

As we have seen (§4.1.5 above), FIVE is here expressed as ' $1 \times 5 /$ HAND' and TEN is ' 2 x 5/HAND'. SIX through NINE are additive formations based on FIVE. (Presumably bhan- means something like 'add to', and the second syllable in SIX, -ka- is a 'suppletive allomorph' of $\tilde{u} k$ 'ONE'.)

Even more spectacular is the Yakkha system, where the use of non-numerical morphemes like HAND and FOOT, along with a variety of multiplicative, subtractive, and additive strategies, enable the language to express the entire basic set of numerals with only three native numerical TB roots (l-3), without having recourse to any Nepali loans:
Yakkha (Gvozdanović 1985:137)

ONE	kolok	SIX	muktapi usongbi kolok
TWO	hitci	SEVEN	muktapi usongbi hitci
THREE	sumji	EIGHT	muktapi usongbi sumci
FOUR	sumcibi usongbi kolok	NINE	mukcurukbi kolok hongbi
FIVE	muktapi	TEN	muktapi hita

Here FOUR is expressed as ' $3+1$ ' (usongbi 'plus'), while FIVE is the root for 'HAND' (mukta) and TEN means 'HAND x 2'). SIX through EIGHT are additive formations based on FIVE (' $5+1$ ', ' $5+2$ ', ' $5+3$ '), and NINE is a subtractive expression 'HANDS minus ONE', based on TEN (-curuk- 'plural', muk-curuk 'hands' (that is the number of fingers on both hands), hongbi 'minus'). Logically enough, TWENTY is simply the compound 'HANDS and FEET' (lang 'foot')!

4.2.1 PRofile of number SIX

```
SIX *d-ruk (STC)/*d-k-rok (JAM)
```

In TSR \#35 I reconstruct this etymon as Proto Lolo-Burmese *C-krok, where ' C-' stands for a voiced prefix for which there is evidence on tonal grounds, and which I interpret as pointing to PTB ${ }^{*} d-k r o k$.

The problem is that many TB languages reflect a VELAR prefix (or at any rate a velar component in the prevocalic part of the syllable), instead of - or in addition to - a dental one. STC (note 321, p.115) attempts to account for this in terms of regular sound change of an initial *dental group to a velar one, that is 'prefixal *d-r-' > Written Burmese khr- (versus 'cluster ${ }^{*} d r-$ ' $>$ WB $k h y-$), but this is not very convincing. ${ }^{41}$ In my view, both a velar and a dental element must be recognised at the PTB level.

4.2.1.1 FORMS THAT REFLECT A DENTAL (BUT NO VELAR) BEFORE THE - r

STC \#411 cites the following 6 forms:
WT drug; Kanauri tug; Lepcha tərək; Digaro thər); Garo dok (with preemption of the $-r$-); Mikir therok.

To these we may add:
Boro do (with preemption; cf. Boro ba '5' < *b-(g)a); Dimasa do; Kokborok dok
Dzongkha dru? Jirel thuk; Sherpa tuk; Sikkim Bhutia tuk; Gurung tuhq; Tamang tu:h; Thakali tuh; Kulung tuk-chi; Limbu tuk-si; Chamling tukara
Ao t(e)rok; Kimsing tarok; Lotha tirok; Maring tharuk; Meithei taruk; Meluri taro; Mikir throk; Ntenyi togho, tüo; Pochury toro; Sangtam thüro; Tangkhul tharuk; Tangsa (Moshang) taruk, (Yogli) tïruk; Yacham-Tengsa thelok; Yimchungru thruruk

The affricate-initialled prefixes in the following KCN forms are all parts of prefix runs affecting the higher numerals of these languages as a whole (see §5.4.4):

Lakher charu; Liangmai charuk; Mao choro; Nruanghmei ciinei; Rengma tsaro; Sema tsogho

4.2.1.2 FORMS THAT REFLECT A VELAR (BUT NO DENTAL) BEFORE THE -r:

*kruk	>	Written Burmese	khrok
		Achang	$x z^{\prime} 0^{\text {p5 }}$
		Langsu	khjauk ${ }^{55}$
		Zaiwa	khju ${ }^{55}$
		Nusu	$k h^{s} u^{53}$
		Naxi (Yongning)	$k h 2^{s / 3}$
		Jingpho	kru ${ }^{95}$
		Trung	$k^{\prime} 1 u^{44}$

Newari	khu-gu:
Monpa (Cuona)	$k^{\circ}{ }^{\text {P }}{ }^{53}$, (Dubey) gro
Kom Rem	$k a r u k$
Puiron	$k e r u k^{42}$

J.T. Sun (1993:132) reconstructs Proto Tani *kra, on the basis of Apatani xrju, Bengni a-kju, Bokar (=Adi=Lhoba) a-ku, Padam (=Abor) a-ke, Gallong ak-kə, Nishi (=Dafla) ax and Nyisu a-kr (with the latter two forms showing monosyllabification via apocope of the final vowel).

Several other AMD forms, however, have unexplained final $-\eta$: Mising (=Miri) a-kəŋ, Minyong ak(k)eng. These are paralleled by a few other forms from languages in adjacent areas of Tibet and Bhutan: Monpa (Motuo) k'ung, (Central) khung; Tsangla/Sharchop khuwoong/khong. It is conceivable that all of these are ultimately to be derived from a nasalfinalled allofam * $k r ə \eta$.

4.2.1.3 FORMS THAT REFLECT BOTH A DENTAL AND A VELAR ELEMENT

Just as with the doubly-prefixed EIGHT (*b-r-gyat**b-g-ryat), where there is evidence for both orderings of the prefixes in different branches of the TB family, so is there with SIX:

$(\mathrm{a}) * d-k$-ruk $>$	Deng Darang	$t 2^{41} x^{d} O^{54}$
	Taraon	ta:hro
	Idu	tarho
	Mishmi	tiaro

In this category also belong Loloish forms with velar initials that reflect Proto Loloish *LOW-stopped tone (for example, Lahu khう̀). This proto-tone implies a voiced prefix (which in this case we assume to be ${ }^{* d-}$) at an even earlier stage. See the discussion in Matisoff (1972a:14-15) ('TSR'), and the LB forms cited in TSR \#35:

WB khrok; Lahu khゝ̀?; Akha $k o_{A}$; Ahi $t_{s}{ }^{2} u^{244}$; Sani $k h u^{222}$; Hani (Gao Huanian 1955) $k h u^{2 l}$; Hani (Hu and Dai 1964) $k \underline{u}^{2 l}$; Lisu (Fraser 1922) hchaw ${ }^{6}$, Luquan (Ma Xueliang 1949) tš \underline{u}^{55}; Nasu (Gao Huanian 1958) tšu ${ }^{344}$; Moso $t s{ }^{\prime}$ 'wa ${ }^{55}$
(b) ${ }^{*} k-d-r u k$

The Rgyalrong dialects reflect a double prefixation in the reverse order, *k-d-ruk, with the velar being of demonstrably more recent origin. (All the Rgyalrongnumerals from 2 to 9 have the velar prefix ke-: §5.2.) Rgyalrongforms for SIX include: keta (Zida dialect); katruk, truk, keto, ki-trog, kə-tshuo, koco, ktru, ku-tok (cited in Nagano 1984); and kətsok (ZMYYC).

From the limited data available, it looks as if some languages of the Qiangic group also reflect doubly prefixed prototypes. Most languages of the group have non-committal affricates

[^34] ' 8 '; Puiron kakwa '9' (see §5.4.4.2, §5.4.4.3).
(Mawo) xtsə, (Taoping) $x t s u^{33}$ (ZMYYC \#916) seem clearly to point to a complex protoconsonant group where the first element was a velar, ${ }^{*} k-d-r u k .{ }^{43}$

Garo (Momin) gedok is another reprefixed form, paralleled by gesa ' 1 ', gegni ' 2 ', gesni '7'.

4.2.1.4 FORMS WITH INITIAL RESONANT, WITH NO OVERT SIGN OF A PREFIX

In this category belongs Chinese itself, with the Old Chinese form reconstructed as *liôk in GSR \#1032 (see §1.2.6).

TB languages that also reflect the bare root *ruk or *rok are scattered around the family:

(Himalayish)	Kaike ru; Khaling ra:; Thulung Rai ru
(Northern Naga)	Chang lak; Konyak wok; Phom vok
(Abor-Miri-Dafla)	Aka (LSI) rieh; Chulikata ahe;
	Sulong (ZMYYC \#916) jək ${ }^{33}$
(unclassified)	Tujia ${w o^{2 I}}^{2 l}$

We may here include Northern Naga forms with a vocalic prefix: Nocte irok (part of an irun from 6 to 10); Wancho arok (part of an a- run from 5 to 9).

In several Chin languages the word for SIX begins with a voiced velar stop:

Paite, Tiddim, Vaiphei	guk
Gangte, Kuki, Thado	gup ${ }^{44}$

At first glance it might look as if these are forms where the velar prefix has preempted the root-initial ($\left.{ }^{*} k-(r) u k\right)$, but in fact g - is the regular reflex of ${ }^{*} r$ - in these languages, ${ }^{45}$ so that these forms may also be referred back to the simple unprefixed allofam *ruk.

4.2.1.5 NAGA FORMS WITH SIBILANT PREFIX

Several Naga languages reflect secondary prefixal ${ }^{*}$-:
*s-ruk > Angami suru, sorou; Chakhesang shührüh; Chokri shwürü; Kezhama sarü; Khoirao and Maram saruk; Zeme seruk

Also, with ${ }^{*} s->h$-: Mzieme and Zeliang heruk.

4.2.1.6 MISCELLANEOUS FORMS WITH LABIAL INITIALS

Ergong (Qiangic group) wtchau shows an unusual labial prefix with this root. This is not to be compared with Chin forms like Hmar and Lushai paruk, languages where the pa- prefix has been generalised with all the numerals (§5.4.3).

[^35]A few other languages have forms with initial f-, for example, Yi (Xide) $f u^{55}$ and Bai (ZMYYC) $f v^{44}$, but, as is usually the case in TB, this labiodental consonant is a secondary development from an earlier sequence of consonant + resonant. ${ }^{46}$

4.2.1.7 ISOLATES

Milang sap is quite enigmatic. To it we may perhaps compare Miju katam/Deng Geman $k w^{2 I} t ə m^{53}$. The stop/nasal interchange is paralleled in EIGHT (Miju grin; see §4.2.3.6). This would imply that the final nasal is secondary, as it is in EIGHT. On the other hand, maybe these forms are somehow multiplicatively related to THREE *-sum **-sam (' 3×2 '), like a well-established group of forms for EIGHT that derive from ' 4×2 ' ($\S 4.2 .3 .7$). In this case the final nasal would be primary, and the stop in Milang secondary.

The obscure Serdukpen language of northern Arunachal Pradesh has a strange sequence of numerals from FIVE to SEVEN:

$$
\text { khu ‘ } 5 \text { ’ / khit ' } 6 \text { ' / sit ‘ } 7 \text { ’. }
$$

It looks as if the rhyme of SIX has been influenced by SEVEN, while the initial of FIVE has been influenced by the initial of SIX - that is the rhyme of ' 7 ' is -it 'by right', just as the initial of SIX is a velar stop 'by right'. It is as if SIX, having given up some of its autonomy to SEVEN, then turned around and proceeded to take revenge on the next lower numeral in the pecking order, FIVE. (See §4.0.1.)

4.2.2 PROFILE OF NUMBER SEVEN

$$
\text { SEVEN PTB } *_{s-n i s}{ }^{47} / \text { PLB } *_{s}(n) i-t(\text { TSR } \# 128)
$$

As we have already pointed out several times, ${ }^{48}$ the similarity of this reconstruction to that for TWO, *g-nis, has led to the deduction that the TB numeral system must once have had a quinary basis (STC, pp.16, 93), so that SEVEN was expressed as ' $5+2$ '. This seems very reasonable - but nobody has been able to identify any part of the proto-form ${ }^{*} s$-nis as meaning FIVE. The prefix ${ }^{*} s$ - is of no help in this connection, since the TB root for FIVE either took labial ($b-, m-$) or lateral ($l-$) prefixes, not s -

WB has hnac ' 2 ', khu'-hnac ' 7 ', with the morpheme $k h u$ ' meaning something like 'unit; individual thing.' I have suggested elsewhere that it may be related to a TB root *k(r)ut 'HAND', the connection being via the five fingers used in counting. ${ }^{49}$

4.2.2.1 FORMS OVERTLY REFLECTING THE *s- PREFIX, WITH RETENTION OF THE ROOTINTITAL

STC lists Kanawari stis ${ }^{50}$ (with denasalisation of initial), Rgyalrong kěněs ~ kěsnĕs, Garo sni, and Jingpho sənit. To these we may add:

[^36]Dulung (= Trung) $s w^{21} n y i t{ }^{55}$
Boro shni; Dimasa sini; Kokborok chini
Newari nhae-gu:
Written Burmese $k h u^{\prime}$-hnac (alongside hnac ' 2 '); Atsi n ? y yit; Maru n ? ${ }^{2}$ t (the glottalised vowels in Atsi and Maru reflect ${ }^{*} s$-)

Kezhama sinyi; Khoirao sini; Maram sina; Muklom Tangsa sanat; Tangkhul shini; Zeliang sinna; Zeme sena; Mzieme hena (part of a run of he- from 6 to 9)
Qiang (Mawo) stə (with denasalisation of the root-initial); Pumi (Taoba) noi ${ }^{355}$; Ergong snie/spie; Queyu ñã5

4.2.2.1.1 WITH DEVELOPMENT OF PREFIXAL*s- TO A DENTAL STOP OR AFFRICATE

Angami thena, thenie; Ao (Chungli) tenet, (Mongsen) teni; Chakhesang thena; Chokri thüna; Yimchungru thünie; Yacham-Tengsa thanyet; Sangtam thünye
Liangmai chania; Mao chani; Nruanghmei cünei; Rengma tsanü; Sema tsini

4.2.2.2 WITH RHOTACISM OF THE NASAL ROOT-INITIAL

Many Kuki-Chin-Naga languages have forms with prefixal s - (or one of its reflexes, t - or $t h$-), but instead of a nasal root-initial they have r-, $g h$ - (that is a voiced velar fricative) or g-:

Kuki-Chin

Gangte sagih; Hmar pasari; Kom Rem sari; Kuki sagi; Lakher sari; Lushai pasarih; Paite sagih; Puiron sari; Thado sAgi; Tiddim səgi?; Vaiphei sagi

Manipur/Naga

Meithei taret (cf. taruk ' 6 '); Meluri terü (cf. taro ‘ 6 '); Ntenyi tüghü (cf. togho, tüo ' 6 '); Pochury türü (cf. toro ' 6 ').

The STC regards these forms as reflecting a quite separate root from ${ }^{*} s-n i s,{ }^{51}$ but in my opinion they cannot be ostracised from this etymon. I believe these forms merely show 'rhotacism' - that is a 'liquefaction' of the nasal. We have already noted the regular development of ${ }^{*} r$ to g in many Kuki-Chin languages (§4.2.1.4). It seems clear that after some of these languages underwent rhotacism of the intervocalic nasal, the resulting liquid was then hardened to a voiced velar fricative or stop: *-n->-r->-g-.

In the case of Meithei and some Naga languages, the rhotacism was undoubtedly favoured by the next lower numeral SIX, which has an -r- 'by right'. Note that the same dental prefix occurs in ' 6 ' and ' 7 ' in these languages, forming what we might call 'prefix-cum-root-initial runs' of SIX and SEVEN.

4.2.2.3 FORMS WITH NO OVERT TRACE OF A PREFIX: *nis

Monpa (Cuona) nis ${ }^{55}$; Limbu nuu-s P^{52}
Gurung ngiq; Tamang nyis; Thakali ngis ${ }^{53}$; Kaike ne
Karen ${ }^{54}$ (Pa-O) nát, (Pwo) nwè, (Palaychi) nwìq, (Sgaw) nwí
Konyak nyit; Phom and Chang nyet
Guiqiong $n_{i}{ }^{55}$; Muya $n_{6} y i^{35}$
In this category we may also include forms where the sibilant prefix has been replaced by a vocalic one:

Maring ani; Nocte ingit (part of a run of i - from 6 to 10);
Wancho anat (part of a run of a- from 5 to 9)
There is a strong tendency to palatalise the nasal before the following high vowel in this root (cf. the Konyak, Phom, Chang, Guiqiong, and Muya forms just cited), and this development was carried to an extreme in Thulung Rai yet, where the nasal feature of the initial has disappeared entirely after palatalisation. ${ }^{55}$

4.2.2.4 PREEMPTION OF THE NASAL INITIAL BY THE SIBILANT PREFIX: ${ }^{*} s-(n) i-s / t$

(a) Loloish

Preemption of the initial by the prefix is the rule for this root in Loloish (see TSR \#128). A couple of languages reflect a stopped prototype *šit:

Akha $s j i q / s h i_{A}$; Hani (Gao Huanian 1955) $s l^{2 l}$.
Most Loloish languages, however, have forms pointing to an open syllable under PLB Tone *2, ${ }^{*} s^{2}$.

These latter forms are strikingly parallel to the Loloish words for TwO that also descend from open syllables under Tone *2 (§4.1.1), providing still another bit of evidence that the etyma for TWO and SEVEN are historically related. The major difference in treatment of these numerals in Loloish is that preemption of the initial never occurred with TwO, but always did with SEVEN.

[^37](b) Serdukpen

In this little-known and lexically aberrant language of Arunachal Pradesh, which so far has not been shown to be closely related to any other TB group, the word for SEVEN is sit (< ${ }^{s} s$-(n)it), a classic case of prefixal preemption. As we have noted, this numeral influenced the final of the next lower numeral, khit '6’ (§4.0.1(c)).
(c) Qiangic

Qiangic has treated the initial consonant sequence ${ }^{*} s$-n- of this etymon in a variety of ways (summarised below §5.0), with several languages showing preemption of the nasal root-initial by the prefix:

Namuyi $s 1^{33}$; Shixing $s \tilde{\varepsilon}^{55}$; Pumi (Jinghua) xi $\bar{\varepsilon}^{13}$.
In Shixing and Pumi(Jinghua), the nasal initial has been preserved by becoming 'prosodised' or 'suprasegmentalised' in the shape of vowel nasalisation. The Ersu form $\int_{7}^{55} n^{55}$ shows an alternative evolutionary strategy: disyllabisation via vocalisation of the prefix and preservation of the former root initial in the shape of a syllabic nasal. A further step was taken in Qiang (Taoping), where the word for SEVEN is a new monosyllable, cin ${ }^{33}$, such that the original prefix is now the root-initial, and the original root-initial is now the syllable-final consonant! ${ }^{57}$
(d) Sharchop and Monpa

These two Himalayish languages have peculiar-looking forms for SEVEN that certainly appear related to each other:

Sharchop (=Tsangla) zon; ${ }^{58}$ Monpa (Motuo) zum
There are at least two etymological possibilities here. Either these forms are related to WT bdun (§4.2.2.8); or else they are similar to the Qiang forms just discussed, so that the zreflects the old sibilant prefix and the final nasal $-n /-m$ represents the old root-initial.
(e) With metathesis of the sibilant prefix and the nasal initial?

It is not clear how to interpret a group of Northern Naga forms with labial nasal prefixes and sibilant root-initial:

Kimsing mishi; Tangsa (Moshang) mashi, (Yogli) mishi
Could these forms have arisen from a metathesis of the sibilant prefix with the old root-initial nasal? The obvious objection to this analysis is that there is no reason for the root-initial ${ }^{*} n$ - to have changed its point of articulation to m - after the metathesis. It is thus probably better to consider these forms as resulting from reprefixation after preemption, that is ${ }^{*} s-n->{ }^{*} s->$ *m-s-

4.2.2.5 AMD FORMS FOR SEVEN WITH A VELAR PREFIX

A number of AMD languages have developed a velar prefix with this etymon: ${ }^{59}$

[^38]Abor-Miri ki-nit; Padam-Mising (Tabu Taid) kunut; Lhopa (=Bokar) kunu; Apatani kanu; Bengni ka-ni; Minyong kenit; Dafla (Das Gupta), Gallong, Padam, Tagin kane; Nishi (Dubey) ken ${ }^{60}$

One would expect some problems with appending a velar prefix to the root for SEVEN, since that would make it look even closer to the general etymon for Two, *g-nis. Yet all these AMD languages manage to keep the two numerals distinct, by one means or another: either by introducing a new vocalic prefix for TWO (for example, Abor-Miri, Dafla, Gallong, Minyong, Tagin a-nyi), or by innovating a new root for SEVEN (for example, Chulikata joh, Taraon wé, German Deng num ${ }^{53}$, Idu $\left.\tilde{i} u ̃, ~ M i j i ~ m y a h, ~ M i l a n g ~ r a n g a l ; ~ s e e ~ b e l o w\right) . ~$

4.2.2.6 FORMS WITH A DOUBLE PREFIX: VELAR PLUS SIBILANT: ${ }^{* g-s-n i-s}$

A couple of languages have innovated a secondary velar prefix while retaining the older sibilant one:

Rgyalrong(Zida dialect) kesnyit ~ kesnyis ~ keshnyes.
All numerals in this dialect (except EIGHT) have developed the $k e$ - prefix as well. The retention of the inner sibilant prefix in SEVEN serves to distinguish it from kenes ' 2 '. See §5.2.

Garo (Momin n.d.) has gesni alongside the simpler sni cited above; this optional secondary prefix also appears in gesa ' 1 ', gegni ' 2 ', gedok ' 6 '.

4.2.2.7 FORMS WITH NASAL FINAL CONSONANT AS WELL AS NASAL INITIAL

Two AMD languages have forms for SEVEN with nasals in both initial and final position:
Miju nin (alongside kinin ' 2 ')
Deng Geman(= Kaman) num ${ }^{54}$ (no parallelism with $k u^{2 l}{ }_{j i n}{ }^{53}$ ' 2 ')
The most plausible explanation of these forms is that the final consonant has assimilated to the root-initial nasal. Both of these languages show convergence of the rhyme in SEVEN and EIGHT (Miju grin ' 8 ', Deng Geman grun ${ }^{53}$ ' 8 '), even though the latter is to be reconstructed with PTB *-t. ${ }^{61}$

A more far-fetched hypothesis would be to try to relate these forms to WT bdun (next section).

4.2.2.8 WRitten Tibetan bdun and its possible congeners

WT bdun ' 7 ' has always been something of a mystery, hitherto thought to be an isolate in TB, with cognates to be found only within 'Bodish': that is Tibetan dialects and a few other closely related Himalayish languages:

This monosyllabic Nishi form is another illustration of the process of 'prefix preemption with apocope of the root-vowel', so that the former root-initial has become the new final consonant. See also Nishi pin ' 8 ' (alongside, e.g. Minyong pini, §4.2.3.7); also such forms for FIVE as phung (§4.1.4), and some Qiangic words for SEVEN, §4.2.2.4(c). See §5.1.3.1.
61 As we have seen (§4.2.2.4), Thulung has also analogically levelled the rhymes of these two numerals, but in favour of a final stop rather than a nasal: yet ' 7 ', let ' 8 '.

Lhasa tüïn; Sherpa din; Jirel duin; Sikkim Bhutia (=Dzongkha) dŭin (the vowel in Chhewang Rinzin’s speech is $\boldsymbol{7}$); Baima de ${ }^{13}$ (pers.comm. Sun Hongkai 1991); also probably Khaling ta:er.
While most dialects of Rgyalrong have doubly-prefixed versions of the normal root ${ }^{*} s$-nis (§4.2.2.6), the Hanniu dialect has daen, ${ }^{62}$ which goes well with these Bodish forms (especially with Khaling), and seems to be an obvious loan from Bodish into Rgyalrong.

Monpa (Motuo) zum and Sharchop zon have some resemblance to these forms, but can equally well be considered monosyllabicised versions of the normal root ${ }^{*} s$-nis ($\S 4.2 .2 .4 \mathrm{~d}$).

Likewise, Kaman num ${ }^{53}$ and Miju nin, despite their own superficial similarity to bdun, are best considered to have arisen from the 'normal' root by assimilation of the final consonant to the nasal initial (§4.2.2.7).

That leaves as the only conceivable candidates for cognacy with WT bdun the following AMD forms:

Taraon wẽ
Deng Darang weng ${ }^{54}$
Idu (Talukdar et al. 1962)
$\tilde{\pi}$ (alongside inyũ ' 8 ')
Idu (Sun 1983)
i^{55} fong ${ }^{55}$ (alongside i^{55} lion ${ }^{35}$ ' 8 ')
Mishmi iuo
Chulikata (LSI) joh
All of these are perhaps to be referred back to PTB ${ }^{*} b$-dun, the initial ${ }^{*} b$ - being interpreted as a prefix. The etymon could somehow have developed a secondary palatalisation to *b-d(y)un (compare the Lhasa form with front rounded vowel), which could have weakened the preceding $-d$ - to the point where it was preemptible by the prefix ($\left.>^{*} b-(d) y u n\right)$. The b-could then itself have weakened to w-, or dropped entirely, leaving y - or a high front vowel as the syllable-initial. ${ }^{63}$

4.2.2.9 AN ADDITIVE FORM IN MIKIR

In Mikir, ' 7 ' is formed additively on the basis of ' 6 ':
throk ' 6 ' + isi ' 1 ' = throk-si ' 7 '.
As far as I know, this is the only such case in Tibeto-Burman. ${ }^{64}$
Since Mikir also expresses EIGHT and NINE subtractively on the basis of TEN (§4.2.3; $\S 4.2 .4)$, it has no monomorphemic inherited numerals between SIX and TEN.

4.2.2.10 ISOLATES?

There remain a few forms for SEVEN which cannot be related to anything else in the current state of our knowledge:

For a somewhat analogous sound-change, compare WT dbus 'head; central' > Lhasa üü.
(A) Milang rangal.

Could there by some contamination here from FIVE *l-ŋa ?
(B) Aka (=Hruso) (LSI) mulh.

This slightly resembles the last syllable of the Milang form.
(C) Dhammai mja?; MIJI (Simon 1979) myah

These closely resemble the Aka form.
(D) Lepcha $k ə-k y ə k$.

This is part of a $7-10$ prefix run, also including $k \partial-k u$ ' 8 ', kə-kyot ' 9 ', $k \partial-t i 10$ '.
(E) Lotha ti-ing is especially interesting. The first syllable is part of a secondary run of the $t V$ - prefix (ti-rok ' 6 ', ti-ing ' 7 ', ti-za ' 8 ', to-ku ' 9 ', ta-ro ' 10 '). The second syllable looks like a prefixed and apocopated form of *-nis (cf. Nocte ingit), but compare also Lotha ti-ingya '50' (§3.5.2.2).

4.2.3 Profile of number EIGHT

$$
\text { EIGHT } * b-r-\text { gyat } * * b-g-r y a t^{65}
$$

Key forms for justif ying this doubly prefixed reconstruction are WT brgyad and Jingpho mətsát. ${ }^{66}$ To these we may add Rgyalrong (Zida) warzhe (t), with wa- also < *b-. ${ }^{67}$ Naturally enough, the complex consonant sequence involving a liquid was particularly prone to metathesis and preemption. The Chinese cognate shows preemption of the rest of the initial cluster by the labial prefix: Old Chinese *pwăt (GSR \#281). It seems clear that the initial consonant group in HUNDRED (${ }^{*} b-r$-gya $* * b-g$-rya) has been influenced by that of EIGHT, despite the fact that these two numerals are not neighbours in linear order. 68

The busy numeral EIGHT is involved in subtractive, multiplicative, and transvaluational phenomena. In Mikir and Meithei, ' 8 ' (as well as ' 9 ') is expressed subtractively in terms of TEN (§3.2.3.2; §4.2.0.3); and in many Abor-Miri-Dafla languages it is expressed multiplicatively as ' 4×2 ' ($\S 4.2 .3 .7$). In Lepcha, ' 8 ' and ' 9 ' have undergone an etymological flipflop (§4.0.2; §4.2.4).

The prefixal behaviour of this numeral is predictably complicated. Some languages merely reflect a ${ }^{*} g$ - or an ${ }^{*} r$-, either one of which could function as the 'root-initial' because of this etymon's metathetic propensities. Others have a labial (or other) prefix before the velar or the $-r-$. Very often the reflexes in the daughter languages begin with a voiceless spirant or affricate, such that it is difficult to decide which elements of the complex proto-cluster might immediately underlie them. STC notes (note 148) that "Kuki-Naga has replaced the (labial) prefix [by a dental]: PKN *d-ryat < *g-ryat, apparently under the influence of TB *d-ruk '6' and *d-kəw '9'’. The STC is here groping toward the notion of 'prefix run' (see $\S 5.2 \mathrm{ff}$.).

See STC \#163, and pp.35, 45, 54, 57, 74, 88, 95, 96, 131, 141, 144, 161-162, 179 and 191. I have reconstructed this etymon for Proto Lolo-Burmese as *rrit ${ }^{L}$ (TSR \#171).
66 Other examples of Jingpho mə- < *b- include mali'four' <*b-lay, məŋā ‘5' < *b-ŋa.
67 EIGHT is the only Rgyalrong numeral from 2 to 9 not to have the prefix ke- (see $\S 5.2$). Undoubtedly its
See §3.5.4, and STC note 148 (p.45).

4.2.3.1 KUKI-CHIN-NAGA FORMS WITH DENTAL OR AFFRICATE PREFIX

Lakher chari; Mao chacha; Tangkhul chishat.
Angami and Chakhesang thetha; Chokri tïtha; Kezhama tiche; Kimsing tecat; Liangmai tachat; Lotha tiza; Meluri and Pochury tüze; Nruanghmei tacüt; Ntenyi tüza; Rengma tükhü; Sema thache; Tangsa (Moshang) tachat, (Yogli) tüchat; Yacham-Tengsa thesep, teset, Yimchungru tizha; Zeliang tesat, Zeme desat.

The Liangmai and Nruanghmei forms break up runs of numerals with affricate prefixes:

	Liangmai charuk	Nruanghmei
SIX	chania	cünei
SEVEN	tachat	tacüt
EIGHT	chakiuh	cükiu

4.2.3.1.1 WITH PREEMPTION OF THE ROOT-INITIAL BY THE DENTAL PREFIX

Konyak tet (<*d-ryat), alongside tu' 9 ', also a preemptive form $<{ }^{*} d-k ə w$); Ao (Chungli) ti (but Ao Mongsen has tsit, apparently a fusional rather than a preemptive form; compare Jg. mətsát)

4.2.3.2 FORMS WITH OTHER PREFIXES

A variety of secondary prefixes have been attached to this etymon in one language or another, including vowels, $p-, k$-, and s-, usually as part of a prefix run affecting most or all of the higher numerals:
(a) Vocalic prefix > Nocte isat; Wancho achat (§5.5.1.2)
(b) $p->$ Hmar pariet; Lushai pariat

This pa- is an innovative prefix that goes with all the numerals in a few Chin languages (§5.4.3), and has nothing to do with the PST/PTB *b- posited for EIGHT in particular (which is reflected, for example, in the labial initial of the preemptive Chinese cognate). ${ }^{69}$
(c) $\quad k->$ Khoirao kachat (not part of a prefix run); Kom Rem karet (alongside karuk '6'); Puiron karet (alongside kakwa '9').
Lepcha has a $7-10$ run of a velar prefix: kăkyăk ' 7 ', kăkŭ ' 8 ', kăkyót ' 9 ' and k ăti ' 10 ', wherein ' 8 ' and ' 9 ' seem to be reversed etymologically (§4.0.2; §4.2.4).
(d) s - > Maram sachat (part of a 6-9 run of $s V$-); Mzieme heset (part of a 6-9 run of he-).

Serdukpen has a doubly-prefixed form sargiat ($<{ }^{*} s-r-g y a t$), where the young sibilant prefix has been preposed to the older liquid one. Perhaps quite akin to this Serdukpen form is the strange Aka word given in LSI, sikzi ($<{ }^{*} s$-g-ryat?).

4.2.3.3 FORMS WITH VELAR INITIALS

Dzongkha/Sikkim Bhutia gye; Monpa (Dubey) giet; Jirel gyet; Kaike kye; Sherpa ge
Gangte giet; Kuki get, Paite, Tiddim, Vaiphei giat
Sangtam $k e$ is a lone monosyllabic form that breaks up a 6-10 run of dental prefixes (thüro '6', thünye ' 7 ', tiiku ' 9 ', thüre ' 10 ').
Qiang (Mawo) $k h a^{I}$ (ZMYYC \#1291) looks like an apocopated and metathesised form, and resembles several other reflexes with final $-r$ or a rhotacised vowel (for example, Nusu $s a^{153}$ and Kokborok char, §4.2.3.5).

4.2.3.4 FORMS REFLECTING INITIAL r - OR A CLUSTER OF $\mathrm{C}+r$

The Gurung-Tamang-Thakali group reflect *b-ryat, preserving both a labial and an r in this word: Gurung prehq; Tamang preht; Thakali preh.

Thulung Rai (Agami Singh Rai 1944) let (prob. < *ryat); Khaling ri; Kanawari rai
Proto Lolo-Burmese *? rit ₹*?ryat $>$ WB hrac; Lahu hí; Akha yeh ; Ahi xi44; Sani he ${ }^{22}$, Hani (Gao Huanian 1955) xae ${ }^{2 l}$; Hani (Hu and Dai 1964) še ${ }^{2 l}$; Lisu (Fraser) $h^{\prime} i^{6}$; Luquan ?hən ${ }^{55}$; Nasu (Gao Huanian 1958) xєn ${ }^{34}$; Achang $\epsilon e t^{55}$; Zaiwa Jit ${ }^{55}$; Maru $\int_{\varepsilon}{ }^{755}$; Anong cen ${ }^{55}$; Naxi (Lijiang) $x o^{55}$, (Yongning) $x u^{13}$ (see TSR \#171) ${ }^{70}$
Jinuo $x \varepsilon^{44}$; Tujia jie ${ }^{2 l}$
The aberrant and isolated Sulong language of Arunachal Pradesh has a form with liquid initial, $1 a^{33}$ (ZMYYC \#1291).

4.2.3.5 FORMS WITH AFFRICATE/SIBILANT INITIALS THAT COULD REFLECT EITHER *gy- OR ${ }^{*}$ ry-

Ao (Mongsen) tsit; Chang sat; Maring chot; Phom šət (alongside pa-šet '18', shə '9'); Wancho achat, Nocte i-sat; Tangsa (Yogli) tachat, (Moshang) tachat (with dental prefix: $\S 4.2 .3 .1$); Konyak tet (with preemption by the dental prefix) ${ }^{71}$
Newari cya:-gu:
Most Qiangic languages have sibilant spirants or affricates: Ergong 3yiє(<*r-gy); Ersu 31^{55}; Muya cye 53; Pumi (Jinghua) sui ${ }^{23}$, (Taoba) cye ${ }^{35}$; Qiang (Taoping) $t_{s}^{h} e^{33}$; Queyu cyを ${ }^{55}$; Shixing cyi $^{i 5}$. A couple of Qiangic languages have forms with initial semivowel or h-: Namuyi $h \tilde{r}^{33}$ (with rhinoglottophilia); Guiqiong je ${ }^{55}$.
Bai (Bijiang) tcua ${ }^{44}$. Other Bai dialects have apparent loans from Chinese; cf. Jianchuan and Dali pia ${ }^{44}$, §4.2.3.2.
Dulung çăt ${ }^{55}$; Trung šiat ${ }^{44 ;}$; Nusu sa $a^{\text {J53 }}$
Garo chet; Dimasa jai; Kokborok char (with the final -r apparently due to metathesis: *g-ryat $>$ *gyar > char); compare the Nusu form just cited, as well as Qiang (Mawo) $k h a^{J}, \S 4.2 .3 .3$ above).

71 W.T. French (1983:482) reconstructs Proto Northern Naga *C/V-gyat, with unspecified vocalic or consonantal prefix.

Karenic: PA-O sót; PWO xò?; Palaychi xó; Sgaw x̀̀? Kayah (=Karenni) has a multiplicative form for EIGHT (§1.2.1; §4.2.3.8).

4.2.3.6 A NEW ALLOFAM WITH FINAL NASAL: *g-ryan

Several AMD and geographically contiguous Himalayish languages have forms with final nasals that do not appear to be caused by rhinoglottophilia, but seem to be genuine reflections of an allofam like *g-ryan:

Miju Mishmi grin; Kaman (=Deng Geman) $g^{\lambda} u n^{53}$; Milang rayeng; Monpa (Cuona) cen ${ }^{23}$, (Motuo) jen (' j ' is palatal semivowel); Tsangla jen; Sharchop yin (Chhewang Rinzin 1984)

Compare also Sunwar yaan 'NINE', which is perhaps a transvalued ('upstepped') reflex of this allofam for EIGHT. ${ }^{72}$

4.2.3.7 A NEW AMD ETYMON *lyoŋ?

Some other AMD languages have forms with lateral initials and nasal or open finals, that are apparently independent of the group in $\S 4.2 .3 .6$, and that we tentatively refer to a new root like *lyoŋ:

Deng Darang lium ${ }^{35}$; Idu (Sun 1983) i^{55} liong ${ }^{35}$ (alongside i^{55} for ${ }^{53}$ ، 7 '); Idu (Talukdar 1962) inyũ (-ny- apparently < earlier -ly-; compare also Idu iũ '7’); Mishmi ili; Chulikata (LSI) ilu:

4.2.3.8 MULTIPLICATIVE FORMS IN ABOR-MIRI-DAFLA AND ELSEWHERE: $8=4 \times 2$

Many AMD languages have multiplicative compound forms for EIGHT of the structure ' 4 x $\left.2^{\prime}\right): 7^{73}$

Abor-Miri	a-pi '4', a-nyi '2' > pi-nyi - pui-nyi ' 8 '
Apatani	a-pi '4', nyi '2' > pu'?-nyi - pryul'-nyi '8'
Lhopa	api: '4', anyi ' 2 ' > pi:-nyi ' 8 '

Similarly: Dafla, Gallong, Padam, Tagin pine, Yano plə-ne; Minyong pini ${ }^{74}$; Nyisu plin; Nishi pin, piin. ${ }^{75}$

Other multiplicative formations for EIGHT in TB include Boro zokkay nəy (§3.3.2[C]; §4.2.0.1), and Kayah (= Karenni $=$ Red Karen) lwīswá? (§1.2.1; §4.2.0.1).

[^39]
4.2.3.9 ISOLATES

Boro thai-dang-nia 'eighth' (Bible Society of India 1972b) is a totally mysterious form. (The prefix thai- and suffix -nia occur with all the Boro ordinal numerals in the Book of Revelation. See §4.2.4.5.)
Limbu phang-si (Gvozdanović 1985:162) is also a puzzlement.

4.2.4 Profile of number Nine

$$
\text { NINE }{ }^{* d-k ə w(=* d-k u w) \not \approx * s-g ə w * d-g a w ~}
$$

4.2.4.1 WITH DENTAL OR SIBILANT PREFIX

STC reconstructs only the prefix *d-for the PTB level, relying especially on WT $d g u$ and Nung tegö. ${ }^{76}$ This ${ }^{* d}$ - also receives considerable support in Kuki-Naga, but this evidence is more equivocal, since in most of these languages the dental prefix in NINE is a part of a larger 'prefix run' ${ }^{77}$, involving EIGHT and often SIX, SEVEN, and/or TEN as well.

Kuki-Naga languages showing a prefix of the shape $t V$-or $t h V$-for NINE include: Angami theku, thepfü; Ao tuku, tüku; Chakhesang thechi; Chokri thüchi; Kezhama tepfü; Kimsing $\operatorname{tak}(a) u$; Konyak $t u$ (with preemption of the initial); Lotha and Sema toku; Maring tako; Meluri tokhu; Moshang takru (-r-< ?); Ntenyi tükhu; Pochury toku; Sangtam tüku; Yacham-Tengsa $t h a k u$; Yimchungru tuku and Yogli tiikau. To these we may add extra-KCN forms like Monpa (Cuona: Sun et al. 1980) $t u^{2 l} k u^{54}$, (Dubey 1983) dugu; and Serdukpen dikhi.

Not enough is known about the history of prefixes in KCN to be sure that all of the above reflect ${ }^{*} d$ - rather than, for example, ${ }^{*} s$-. The same uncertainty attaches to the origin of the affricate prefixes in KCN languages: for example, Khoirao chaku, Lakher chaki, Liangmai chakiuh, Mao choku, Nruanghmei ciikiu, Tangkhul chiko. These affricates also typically occur in 'runs' in KCN, but are to be found elsewhere as well, for example, Kokborok (Barish) chuku, Jingpho jəkhû. I have already observed in a previous analysis of this etymon ${ }^{78}$ that Jingpho $j z$-here may well come from ${ }^{*} s$-, given the fact that the Jingpho causative prefix šə - ($<$ PTB ${ }^{*} s^{-}$) undergoes a predictable morphophonemic change to \check{j} before verb roots beginning with an aspirated consonant (as in NINE) or a sibilant. Perhaps there was a tendency for $\mathrm{Jg} .{ }^{*} s$ - to become an affricate in non-causative contexts as well.

There is in fact considerable evidence for according ${ }^{*} s$ - just as ancient an association with NINE as that enjoyed by $* d$-. Two of the forms cited in STC \#9 as evidence for $* d$ - point more straightforwardly to a sibilant prefix: Kanauri(= Kanawari) zgui and Garo sku (also Dimasa sugu). To these we may add forms from the Qiangic group: Pumi (Lu Shaozun 1983) sgium ${ }^{55}$ and Qiang (Taoping) xguə ${ }^{33.79}$ None of these sibilant-prefixed words for NINE is participating in a 'prefix run' - the neighbouring numerals lack such a prefix. We should also mention Aka

See STC \#13, and pp.19, 23, 45, 61, 94-95, 116, 131, 134, 154, 162, 185, 188 and 196. "*d-gew" in the Appendix I (p.202) is a typo for ${ }^{*} d$-gaw. STC also recognises a Kuki-Naga variant ${ }^{*} d-k w a$, probably reflecting a secondary suffix ($<*_{d-k u w-a) \text {) Similar to the Nung form cited in STC are Anong }}$ $d \omega^{3 l} g \omega^{3 l}$ and Dulong $d \omega^{3 l} g \omega^{53}$ (ZMYYC).

79 Qiang (Mawo; ZMYYC \#1292) has an unusual prefixal r-(rguz), which is probably velar in articulation like Taoping x-, and could descend from ${ }^{*} s$ - as well.
(= Hruso: data from LSI) stheu, sthö '9’. This puzzling form may reflect a doubly-prefixed prototype ${ }^{*} s$ - $d-(k) ə w$ which underwent preemption of the root-initial velar.

These cases are to be sharply distinguished from those where NINE has a sibilant prefix shared by the neighbouring numerals, as in Maram soki '9' (but also saruk '6', sina ' 7 ', sachat ' 8 '); or Zeme sekui ' 9 ', but also seruk ' 6 ' and sena ' 7 ' (' 8 ' is desat). (The closely related Mzieme has he- from SIX to NINE).

Some languages have forms with sibilant or affricate initials which require explanation:
Phom šə (French 1983:527 refers this to Proto Northern Naga *C/V-gə:w, along with other forms with dental, vocalic, or zero-prefix.
Hani (Caiyuan; Biyue) $t s I^{3 l}$ (This is the only form with an affricate initial in Loloish proper, but compare also Jinuo tcy ${ }^{33}$.)
Bai (Dali and Jianchuan) $t \epsilon w^{33}$, Bijiang $t \epsilon i^{33}$

4.2.4.2 WITH VELAR PREFIX

A secondary velar prefix is occasionally found with NINE: Puiron kakwa (alongside karet ' 8 '); Lepcha kəkyót (part of a velar 'run' from SEVEN to TEN; the Lepcha words for EIGHT and NINE seem to have undergone an etymological flipflop; §4.0.2); and Rgyalrong kəngu (all Rgyalrongnumerals from 2 to 7 also have a velar prefix).

4.2.4.3 WITH PRENASALISED INITIAL

Several Qiangic languages have forms with prenasalised initials (Ergong ngiz, Muya $\eta g u u^{35}$; Ersu $n g \varepsilon^{33}$ and Namuyi $\eta g u^{33}$), as does the Lijiang dialect of Naxi $\left(\eta g v^{33}\right)$.

4.2.4.4 WITH NO OVERT TRACE OF A CONSONANTAL PREFIX

Northern Naga

A few languages in this group either have no prefix (Chang guh), or a vocalic one (Nocte i-khu and Waricho a-ku).

Qiangic and Himalayish
Several Qiangic and Himalayish languages show no trace of a prefix with this etymon:
Guiqiong gui ${ }^{33}$; Queyu $g w^{55}$; Shixing gue ${ }^{33}$; Thulung $g u$; Khaling ghu
Neither Lolo-Burmese nor Karenic show any evidence of a prefix:
Lolo-Burmese
PLB ${ }^{*}$ gəw $^{2}>$ WB $k u ̂ i$; Lahu q̂̂; Akha yø̀; Hani (Shuikui) γu^{31}; Lisu $k u^{55}$; Naxi (Yongning) $g v^{33}$; Achang $k a u^{3 l}$; Zaiwa $k a u^{2 L}$, Langsu (=Maru) $k u k^{31}$ (the secondary $-k$ is regular for the rhyme ${ }^{*}-\partial w$); Nusu $g w^{35}$; Tujia $k u e^{55}$

Karenic
Pho (Moulmein), Palaychi, Sgaw khwí; Pa-O kút (with suffixal -k: see §1.2.1)

4.2.4.5 A NEW ROOT FOR NINE IN ABOR-MIRI-DAFLA AND ELSEWHERE: * $k-n(y / w) a-\eta$

There is a newly discovered root for NINE in AMD, with possible Barish and Karen cognates. It seems to have a velar prefix, a nasal root-initial, a semivowel (y or w), and sometimes a final nasal as well. We may reconstruct it roughly as ${ }^{*} k-n(y) a-N$ or $* k-n(y / w) a-\eta$. The vocalism of the prefix fluctuates greatly, which we can symbolise by setting up a dummy vowel ($\left.{ }^{*} k V-n(y) a-\eta\right) .{ }^{80}$ Reconstructing a prefix consisting only of a consonant is tantamount to saying that any vowel that intervenes between that prefix and the root-initial is not distinctive - being unstressed, it is too prone to influence from the vowel of the root or from anything else.
(a) With -o- vocalism in the minor syllable:

Lhopa	konong $\quad(?<*$ k-nway $)$
Minyong	konang
Abor-Miri	ko-nang-ko
Gallong	kona
Padam	kona

(b) With - i - vocalism in the minor syllable:

Taraon	kinya:ng
Idu	kinyi
Chulikata	khili \quad (with lateral rather than nasal root-initial $)$
Apatani	kíwa $(<* k-(n) w a-N$, with loss of nasal root-initial)

(c) With -a- or -ə- vocalism in the minor syllable:

Deng Darang	$\mathrm{ka}^{2 l}{ }^{2} n_{m} g^{55}$
Milang	kanyem (with labial rather than velar final)

(d) With -e-vocalism in the minor syllable:

Nishi	keya	(with loss of nasal element)
Tagin	kéya	(with loss of nasal element)
Dafla	kéya	(with loss of nasal element)
Gallong	kenga	(with velar rather than palatal nasal)

To this group of forms also belong Nyisu kja: and Bengni kju-a::
(e) With no velar-initialled minor syllable:

Mishmi	a-niu-ma
Kaman/German Deng	$n ə n^{55} m u^{53}$ (with dental rather than velar final)
Miju	nat-mo (with final stop homorganic to the Kaman nasal)

As a long shot, we may perhaps relate this new root to a couple of isolated forms elsewhere in TB :

Boro (Bible Society of India 1972) thai-ne-nia 'ninth'. 81
W. Kayah (Karenic) nuə ${ }^{\prime 82}$

Sunwar yaan '9' does not seem to belong with this etymon, despite a certain phonological similarity to some of its reflexes. It is more likely to be a transvalued reflex of $* g$-ryan ' 8 ' (§4.2.3.6). ${ }^{\text { }}$

4.2.4.6 SUBTRACTIVE FORMS

In two important languages the word for NINE is formed subtractively on the basis of TEN: Meithei ma-pan and Mikir sirkep (§4.2.0).

[^40]
CHAPTER 5

PREFIXAL BEHAVIOUR WITH NUMERALS

5.1 PREFIXAL VARIABILITY AND REPLACEABILITY

We have seen many examples of completely different prefixes being attached to the same etymon in one language or another (for example, NINE *d-gəw**s-kəw). Yet for a given etymon, there is high variability even in the treatment of the same prefix between closely related languages, or dialects of the same language. As a random example we may take some Qiangic forms for SEVEN, all descending from the general root *s-nis (see §4.2.2). Some languages preserve an overt trace of the prefix (Qiang (Mawo) stə, Pumi (Taoba) $n \tilde{i}^{35}$, Ergong snie/spie and Queyu gan^{55}); others have lost the prefix entirely (Guixiong $n_{0} \mathbf{I}^{55}$ and Muya royi ${ }^{35}$; ; while still others show preemption by the prefix of the root-initial (Namuyi $\Omega_{1}{ }^{33}$, Shixing $\Omega^{5} \tilde{\varepsilon}^{55}$, Qiang (Taoping) cif^{33} and Pumi (Jinghua) xi $\boldsymbol{\varepsilon}^{13}$).

Does it make sense to speak of the 'repertoire of prefixes' that a given numeral has been observed to develop somewhere or other in ST? It is actually not too useful simply to list all the prefixes that have been attested for a given numeral, because of the phenomenon of 'prefix runs', whereby consecutive numerals (and sometimes even all the numerals) acquire the same prefix by a kind of assimilation.

We must factor out obviously late assimilatory developments, but there is no way we can claim that prefixal variation was absent even at the PTB level. The Conspectus has done a good job of identifying the most widespread prefixes attested for each numeral, but it does not go far enough in acknowledging that more than one prefix may be of ancient standing with any given numeral, or that in some cases it is impossible to say which of several prefixes is 'older'.

Can we establish the relative age of the ensemble of prefixes used with any given numeral? There are certain arbitrary aspects of the treatment in STC. For some numerals prefixal variation is posited at the proto-level (FIVE, EIGHT); the implication is that all other prefixes that pop up in daughter languages are secondary. Sometimes this is clearly the case, the limiting situation being that of e.g. Lushai, where a single prefix has been generalised for all the numerals. Similarly, in cases of reprefixation, the more outer prefix is clearly younger than the more inner one (§5.2). In other cases (SIX, NINE, maybe FOUR), however, there seems no reason not to posit prefixal variation as far back as one can go. The intrinsic variability of prefixes militates against a too rigid view of setting some up as 'proto' and all others as secondary.

5.1.1 Voicing and vocalisation of prefixes

There is no evidence for a voicing contrast in stop prefixes at the PTB level. The STC conventionally reconstructs *b-, *d-, *g-, but 'archiphonemic' symbols like *B, *D, *G would do just as well. We cannot usually put so fine a phonetic point upon proto-prefixal matters.

In Proto Lolo-Burmese, tonal reflexes force us to distinguish between ${ }^{*} g$ - (a putative subtype of the 'C-' prefix) and * k-, when they occurred before resonantal initials.' Yet this distinction is shaky, since there is no direct evidence for a distinctively velar voiced stop prefix in PLB. ' $\mathrm{C}-$ ' is a very vague proto-entity! Jingpho does have such a voicing contrast synchronically, for example, $k \boldsymbol{k}$ - versus $g ə-$, but there is much variability here. LaRaw Maran (forthcoming) and others (Dai Qingxia et al. 1983; Lon Diehl, pers.comm.) claim a tonal difference in minor syllables of this type, according to the voicing of the prefix. In some of our sources, synchronic variation in the voicing of a prefix is explicitly reported, for example, Central Monpa b(i)ci ~ p(i)ci ‘4’ (Das Gupta 1968).

5.1.1.1 THE VOWELS OF PREFIXAL SYLLABLES

Some languages show considerable fluctuation in the vocalisation and/or aspiration of the same prefix from numeral to numeral. Thus, Sema kini ' 2 ', but küthu ' 3 '; tsogho ' 6 ', but tsini ' 7 ' and thache ' 8 ', but toku ' 9 '. Cross-linguistically, the same prefix may be differently vocalised when attached to the same numeral (compare the fluctuation of the vowel from language to language in the new AMD root for NINE, §4.2.4.5).

5.1.2 CONTAMINATION BY PREFIXES OF NON-CONTIGUOUS NUMERALS

As STC observes (note 148, p.45), the prefix of HUNDRED has been altered in many TB languages to bring it into line with that of a more basic numeral with which it already shared a high degree of phonetic resemblance, i.e. EIGHT. (See §3.5.4; §4.2.3.)

5.1.3 PREFIX PREEMPTION OF THE ROOT-INITIAL OF A NUMERAL

Particularly apt to preempt are the ${ }^{*} b$ - in FOUR, the velar (${ }^{*} g$ - or $* k-$) or dental $(* d-)$ in SIX, and the sibilant ${ }^{*} s$ - in SEVEN (§4.1.3, §4.2.1, §4.2.2.4). This preemptability is due to the 'weakness' of the root-initial consonant (*-l- in FOUR, *-r- in SIX, *-n- in SEVEN). Preemption can be the road to survival for a prefix, most strikingly in isolated forms in subgroups where prefixes do not generally persist, for example, the labial prefix in FOUR in the Burmish language known as Maru or Langsu (Maru bit, Langsu pjik ${ }^{31}$ (ZMYYC 1287)). With respect to EIGHT, STC recognises metathesis even for the proto-level: *b-r-gyat * *b-gryat. Either prefix could (and often did) preempt the root initial. With respect to SIX, what one calls 'preemption' depends of course on what one takes the proto-form to be. Which prefix is 'more inner'? Is it *d-k-rok or *k-d-rok? How can STC be more sure of this than of the order of the double prefix in EIGHT?

[^41]
5.1.3.1 PREEMPTION VIA APOCOPE OF THE ROOT VOWEL

In forms like Aka (AMD) phum ' 5 ’ $\left(<{ }^{*} b-\eta a\right)$, the root-vowel -a had disappeared, so that the former root-initial consonant g - now appears in syllable-final position, becoming a labial $(-m)$ by assimilation to the original prefix. This erstwhile prefix must now step in to discharge the duties of the root-initial, while the unstressed vowel of the old prefix (which had presumably been just schwa) gets restressed, assuming a rounded quality due to its doubly labial environment. This can only be described as a radical reorganisation of the functional parts of the proto-syllable:

	PREFIX	PREFIXAL	ROOT	ROOT	FINAL
		VOWEL	INITIAL	VOWEL	CONSONANT
PTB	b	∂	η	a	zero
Aka	$p h$	u	m		
	ROOT	ROOT	FINAL		
	INITIAL	VOWEL	CONSONANT		

We have found a number of monosyllabic forms of this apocopated/preemptive type, including: Puiron pang ' 5 ', Khaling bho:m ' 5 ', Boro and Kokborok ba ' 5 ' (all < *b- $\boldsymbol{\eta}$ a); Boro do ' 6 ' ($<$ *d-ruk; all cited in §4.1.4.1.1); Chulikata kāsh '3' (< *g-sum; §5.5.1.1); Nishi ken '7’ (<*k-nit; §4.2.2.5); Nishi ax and Nyisu a-kr '6’ (<PTani *a-krə; §4.2.1.2); Qiang (Taoping) cin 33 and Ersu fi $^{55}{ }^{55}{ }^{55}{ }^{\prime} 7 \prime\left(<{ }^{*} s\right.$-nis; §4.2.2.4(c)).

This process applies equally well to dissyllabic compounds, where each syllable once had an independent meaning. Here the initial consonant of the first element in the compound becomes the initial of the new monosyllable:

Qiang (Sanlong: Evans 1993) han '12’ ($<$ ha ' 10 ' $+n i$ ' ${ }^{\text {' }} 2$ '); Nyisu plin and Nishi pin ‘ 8 ' (< *pri-ñi ‘ 4×2 ’; §4.2.3.7); Hill Miri čem-pi刀 ‘80’ (< *čam-p(r)i-ñi).

5.2 'PREFIX RUNS' AND REPREFIXATION

Prefix runs are a special kind of secondary prefixation, whereby adjacent numerals come to have identical (or very similar) prefixes. This is basically an assimilatory phenomenon - an analogical interinfluence between the prefixes on consecutive numerals. ${ }^{2}$ Such prefix runs were already a feature of PTB, as can be deduced even if one strictly adheres to the reconstructions in STC:

$$
\begin{aligned}
& 1<->2<->3 \quad{ }^{2} \text { g-tyik, }{ }^{*} \text { g-nis, }{ }^{*} \text { g-sum } \\
& 4<>5 \quad * b-l ə y, * b-ŋ a\left(x^{*} l-ŋ a\right)
\end{aligned}
$$

Consider the numerals of Rgyalrong (= Jiarong): ${ }^{3}$

ONE	tšek
TWO	kenes

[^42]| THREE | kesom; kesam |
| :--- | :--- |
| FOUR | kewdži |
| FIVE | kemŋa |
| SIX | keta |
| SEVEN | kes̃nit; kes̃̃is; kesñes |
| EIGHT | warže (t) |
| NINE | keŋgu |
| TEN | stşi |
| ELEVEN | sotšek |
| TWELVE | sones |
| TWENTY | kenes-tsi |

Thus with reference to PTB, Rgyalrong has not opted to save the prefix in ONE, but has retained it in TWO and THREE; not only that, it has generalised its use all the way up to NINE (broken only by EIGHT). The case of Rgyalrong 10-12 is somewhat different: Here the prefix $s-$, (usually vocalised with shwa as $s \sigma^{-}$) has come to mean TEN, and as such is present in all the teens (including 11 and 12). See the discussion of the interinfluence of ONE and TEN (§3.4.3).

Some striking examples of other secondary prefix runs include: pa- (Lushai, other Chin); ka- Kaman (Miju Mishmi); a- (Abor-Miri); Jingpho lə-in '1-2' (lə gâi, ləkhôŋ) and mə- in '3-5’ (məsūm, mə $\overline{1}, ~ m ə ŋ a ̄), ~ a n d ~ s o ~ o n . ~$

We may now introduce a further terminological distinction: perfect runs versus broken runs. A perfect run is an unbroken sequence of numerals with the same prefix. It may be long (for example, the Lushai pa- run) or short (for example, the PTB *b-run in '4-5'). A language may have a series of perfect runs, which among them exhaust the primary numerals (rather like a good gin rummy hand with three melds!). For example:

```
1-3: a- / 4-5: ma- / 6-9: ta-
```

A broken run is interrupted at some point by a numeral with a different prefix, or no prefix at all (for example, the long Rgyalrong ke- run above is broken by EIGHT which has a different prefix (wa-). If EIGHT were some day to succumb to the analogical pressure of its neighbours, the enlarged ke-run would extend all the way from 2 to 9 . Sometimes TEN is included in a prefix run, but often a language's topmost run will end with NINE, since TEN is frequently an unprefixed monosyllable in TB (§3.2).

Changing from a synchronic to a diachronic perspective, we may speak of secondary prefixation or reprefixation. To return to our Rgyalrong example, the numerals from FOUR to SEVEN have had a secondary velar prefix superadded to their 'original' ones inherited from PTB:

	PTB	Proto Rgyalrong	Zida
FOUR	*b-ləy	*k-b-liy	ke-w-dzi
FIVE	*b-ŋа	*k-m-ŋa	ke-m-nga
SIX	*d-ruk	${ }^{*}$ k-d-ruk	$k e-t a(t<*-d-r-)$
SEVEN	$*_{S-n i s}$	${ }^{*}$ k-s-nis	ke-snyes, etc.

It goes without saying that the inner prefix (i.e. the one closer to the root) is historically older. (The TB languages are not much given to infixation!) The analogical pressure to create a prefix
run causes a new system to be overlaid atop the old. Note that by superadding a velar to SEVEN, it is brought that much closer into line with TWO (PTB $* g$-nis).

Similarly, in Bodo-Garo: Garo gni ‘2’ reflects inherited PTB *g-nis, but a reprefixed form gegni ($<*$ g-g-nis) also occurs. This now forms a run with gesa 'ONE', from a root not mentioned in STC (see §3.1.5).

For Old Chinese, Baxter (1985) has suggested that the initial ${ }^{*} s$ - in ${ }^{*}$ sizd ' 4 ' arose through the influence of the sibilant in ' 3 ' $*(t)$ səm. (See $\S 1.2 .6$.)

5.2.1 MNEMONIC AND RHYTHMIC CONSIDERATIONS

Although we cannot go into this psycholinguistic topic seriously here, it seems clear that prefix runs serve an important mnemonic function, for example, in teaching children to count. (It is even a help to English-speaking children that 'six' and 'seven' both begin with the same consonant!)

Several languages whose numerals almost all have prefixes (i.e. are 'sesquisyllabic' in structure, in the sense of Matisoff 1973b) have a break or two in this rhythm at certain points. Thus, in Jingpho:

$$
\text { ləŋâi, ləkhôŋ- məsūm, mə } \overline{1}, \text { məŋā }
$$

krú?
sənìt, mətsát, jəkhû

> šī

The monosyllabic intruders serve to demarcate the string of numerals into manageable units, without making it necessary to homogenise the separate prefixes of SEVEN, EIGHT, and NINE. The numerals can thus be recited in easy mouthfuls, giving the counter a chance to take a breath between groups:

$$
1,2 \ldots 3,4,5 \ldots 6 \ldots 7,8,9 \ldots 10
$$

We thus introduce the concept of the monosyllabic breather into prefix-run theory. (See §5.4.4.5.)

English speakers sometimes break up a string of numbers when counting rapidly by pronouncing certain key ones implosively, with a sort of gasp, as they gather breath for the next sequence. The numbers of many languages have a curious tendency to fall into a natural rhythm, for example, the Sino-Japanese set:

ichi, ni
san, shi, go
roku, shichi, hachi
kuu, juu

5.3 NUMERAL Prefixes in Himalayish

The languages of the Himalayish group are relatively poor in numeral prefixes, tending merely to preserve one or two of those set up for the PTB stage, and refraining by and large from introducing new ones. ${ }^{4 / 5}$

5.3.1 BODISH LANGUAGES WITH DISTINCTIVE DENTAL-INITIALLED SEVEN

Tibetan and its dialects, as well as other closely related Himalayish languages, have a distinctive word for SEVEN, typified by WT bdun (see §4.2.2.8):

| | Written
 Tibetan | Lhasa
 Tibetan | Sherpa | Jirel | Kaike | Dzongkha ${ }^{6}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| ONE | gćig | ci:q | cikq | dokpei | ti | chi |
| TWO | gnyis | nyii | ngyi | nyiq | nghyi | nyi |
| THREE | gsum | sum | sumq | sumq | sum | sum |
| FOUR | bźi | shi | ji | syi | li | zhi |
| FIVE | lga | nga | $n g a: q$ | nga:q | nga: | nga |
| SIX | drug | thuu | tuk | thuk | ru | tuk |
| SEVEN | bdun | tüün | din | duin | ne | duin |
| EIGHT | brgyad | kEE | ge | gyet | kye | gye |
| NINE | dgu | qu | gu | gu | gu | gu |
| TEN | bću | cu | citham-ba:q | cyuta:m-ba:q | chyu-tamba | chu- |

WT preserves the PTB velar prefix run in $1-3$, reminiscent of what we find in many AMD languages (§5.5.1), as well as a curious pattern of prefixation in the higher numerals 6-10, which all have either $b-(7,8,10)$ or $d-(6,9)$ - a sort of 'interdigitated' or 'discontinuous' run. None of these modern Himalayish languages directly preserves any numeral prefixes, though the $* d r$-combination in SIX is reflected by retroflex initials (except in Kaike, which shows total prefix loss in SIX). Kaike is also peculiar in not sharing the special root for SEVEN with dental stop: ne looks as if it comes from the ordinary root ${ }^{*} s$-nis.

5.3.2 KHALING

The Khaling language of Nepal has several interesting features in its numeral system:

ONE	$t u$	SIX	ra:
TWO	sa:hpu	SEVEN	ta:er
THREE	suhpu	EIGHT	ri
FOUR	bha:el	NINE	ghu
FIVE	bho:m	TEN	tadam

[^43]The form for TWO is of obscure origin; its initial may have been influenced by THREE. Both TWO and THREE show the suffix -pu, which we have already observed in Kham and Hayu (§2.1), perhaps originally a marker of masculine gender. Suhpu ' 3 ' closely resembles Hayu tshukpu, where the final $-m$ of the root has also been replaced by a velar/laryngeal element. In FOUR and FIVE the original labial prefixes have become the root initials via apocope of the root vowels, a phenomenon which occurs sporadically elsewhere in TB (§5.1.3.1). The form for SEVEN with dental stop initial and liquid final seems related to the Bodish forms represented by WT bdun, though in the absence of detailed knowledge of Khaling phonology it is hard to be sure.

5.3.3 GURUNG-TAMANG-ThaKALI AND NEWARI

	Gurung	Tamang	Thakali	Newari
ONE	grihq	ki:h	tih	cha-gu(-li)
TWO	ngĩhq	nyi:h	ngih	ni-gu(-li)
THREE	sõq	som	som	swā-gu:
FOUR	plihq	plih	plih	pẽ-gu:
FIVE	nga:hq	nga:h	nga:h	nya:-gu
SIX	tuhq	tu:h	tuh	khu-gu:
SEVEN	ngiq	nyis	ngis	nhae-gu:
EIGHT	prehq	preht	preh	cya:-gu:
NINE	kuq	ku	ku	gũ-gu:
TEN	$c y u q$	$c i$	cyu	jhi-gu:

The closely-knit Gurung-Tamang-Thakali group have virtually identical systems, with preservation of the labial prefix in FOUR and EIGHT ($<* b-r y a t$), and an indirect reflection of a (dental or velar) prefix in the retroflex t of SIX; no trace of a prefix appears in $2,3,5,7,9$, or 10. ONE reflects a velar prefix overtly in Gurung; in Tamang this prefix has preempted the liquid root initial r - (presumably from PTB ${ }^{*}$ ty- in ${ }^{*} g$-tyik); in Thakali the velar prefix has fused with the r - of the root to yield a retroflex.

Newari maintains prefixes via preemption in FOUR (labial) and SIX (velar); the palatal initial in EIGHT points to a prototype *gyat, with neither a labial nor a liquid prefix (§4.2.3.5).

All of these languages reflect the 'normal' root for SEVEN, * $(s-) n i s$, realised as virtually identical to TwO in Gurung-Tamang-Thakali.

5.3.4 KANAWARI (= KANAURI) AND LEPCHA (= RONG)		
	Kanawari	Lepcha
ONE	id	$k a t$
TWO	nish	$n y a ̆ t ; ~ n y i ~$
THREE	shum	sam
FOUR	pü	fəli
FIVE	$n g a$	fəngo
SIX	$t u k$	$t ə r ə k$
SEVEN	stish	$k ə-k y \partial k$
EIGHT	rai	$k ə-k u ̆ ~$
NINE	$z g u i$	$k ə-k y o ́ t$
TEN	sai	$k ə-t i$

The Kanawari numerals, characterised as "merely corruptions of the Tibetan numerals" in Joshi/Rose (1909:2-3), are of course quite independent of the latter, featuring such nonTibetan traits as id for ONE (ultimately cognate, I believe, to Lepcha kat ($<$ PTB *k-yat; §3.1.1, §3.1.2.1); preemption of the root-initial by the prefix in FOUR ($\left.<{ }^{*} b-(l) \partial y\right)$; stish for SEVEN (from the 'normal' root ${ }^{*} s$-nis; no trace of a labial or velar in EIGHT; a sibilant prefix in NINE, and the form sai for TEN!

Besides preserving the labial prefix in FOUR and FIVE as $f ə-$, and the dental prefix $t \geqslant-$ in SIX, Lepcha has innovated a striking velar prefix run in 6-10, unparalleled elsewhere in TB to my knowledge. Further testifying to the close interinfluence of these numerals, Lepcha seems actually to have reversed the etyma for EIGHT and NINE, with -kyót ' 9 ' apparently < *gyat EIGHT, and $k u$ ' 8 ' apparently $<{ }^{*} d-k ə w$ NINE (§4.0.2). The form $k y \partial k$ for SEVEN remains a complete mystery.

5.3.5 MONPA DIALECTS

	Monpa (Dubey 1983)	M.Cuona (Sun et al.1980)	Central Monpa (Das Gupta 1968)	M.Motuo (Sun et al. 1980)
ONE	thee	$t^{\prime} e^{p 53}$	thur	t'or
Two	nai	$n \mathrm{ni}^{23}$	$n(y) i t s i n g$	ñiktsing
THREE	sum	sum ${ }^{53}$	sam	sam
FOUR	blee	pli ${ }^{53}$	$b(i) s i / p(i) s i$	$p^{\prime} i$
FIVE	lenga	$1 e^{21}$ nge ${ }^{53}$	nga	nga
SIX	gro	$\mathrm{kro}^{\text {? } 23 / 54}$	khung	khung
SEVEN	nis	$n i s^{55}$	zum	zum
EIGHT	giet	cen ${ }^{13}$	yen	jen
NINE	dugu	$t u^{2 l} \mathrm{ku}^{54}$	gu	gu
TEN	chi	$t c^{54}$	se	se

- Among the Monpa dialects must be included the language known as Sharchop or Tsangla (E. Bhutan), which seems virtually identical to Das Gupta's Central Monpa and Sun et al.'s Monpa Motuo. The numerals ' $1-10$ ' in Sharchop, as best I could transcribe them from a tape-recording (see above, note 1) are: thur, nyiktsing, sam, pshi, nga, khoŋ, zon, yin, gu, še.
- In FOUR all dialects preserve the labial prefix (with preemption of the root-initial in Motuo). In FIVE only Dubey's dialect and Cuona preserve the *I- prefix; these are also the only two dialects that preserve the dental prefix in NINE. All dialects have lost the velar prefix in TWO and THREE.
- The higher numerals show considerable interdialectal variation. Dubey's dialect and Cuona reflect the velar prefix in SIX, but the other dialects have forms with simple velar initials and aberrant nasal finals (§4.2.1.2). Central and Motuo Monpa have an idiosyncratic word for SEVEN (zum), which clearly belongs with Sharchop zon (§4.0.2), but whose further affiliations are very much in doubt (§4.2.2.4(d), §4.2.2.8). Dubey's Monpa reflects a simple velar initial in EIGHT ($\S 4.2 .3 .3$), but the other dialects have forms (as in SIX) that may reflect a nasal-finalled allofam of the general root (§4.2.3.6).

5.4 Numeral prefixes in Kuki-Chin Naga

5.4.1 RETENTION OF THE PROTO-SYSTEM (AS CONCEIVED IN STC)

The only runs recognised in STC for the PTB level are $1<-->2<-->3$ (*g-tyik, *g-nis, *g-sum) and 4<-->5 (*b-ləy, *b-ŋa).

Of all the Kuki-Naga languages, only Maring (an obscure language 'in the extreme south of the Naga region') presents a system more or less exactly like the one conceived of in STC for the proto-language. (In fact in all of TB only Maring and Written Tibetan have such systems!)

	Maring
ONE	khat
TWO	khani
THREE	khiyum
FOUR	phili
FIVE	phanga
SIX	tharuk
SEVEN	ani
EIGHT	chot
NINE	tako
TEN	chip

In fact, among living languages, Maring may well be the winner of the Miss Proto TibetoBurman Numeral Look-alike Contest. It has the 2-3 velar run, ${ }^{7}$ and the $4-5$ labial run. It presents a dental prefix in SIX and NINE (STC has *d-ruk and *d-gəw). The only innovation is the vocalic prefix in SEVEN (STC has *s-nis). The affricate in EIGHT is from some cluster that includes *-gy-, but we cannot tell exactly what combination of prefix plus initial consonant underlies this initial.

5.4.2 DEGENERATION OF THE PROTO-SYSTEM: PREFIX LOSS

Some KCN languages have few or no prefixes with numerals, and thus, a fortiori, no prefix runs:
[A] Chang-Phom-Konyak

	Chang	Phom	Konyak
ONE	chie	hük	ja
TWO	nyi	$n y i$	i
THREE	sam	jam	lem
FOUR	lei	ali	neli
FIVE	$n g a u$	$n g a$	$n g a$
SIX	$l a k$	vok	wok
SEVEN	$n y e t$	$n y e t$	$n y i t$
EIGHT	sat	shüt	tet
NINE	guh	shü	tu
TEN	$a n$	$a n$	an

TWENTY	sau-chie 20×1	ha	ta
HUNDRED	sau-ngau 20×5	gho	kho

- Note the diverse roots for ONE, and the interesting initial correspondences in THREE and SIX.
- Chang has no numeral prefixes. In Phom and Konyak, only FOUR has prefixes (and they are not the same).
- The initials in EIGHT and NINE are distinct in Chang, but have converged in the other two languages, merging to $s h$ - in Phom and to t - in Konyak. In Phom EIGHT has influenced NINE; in Konyak, apparently the preempting prefix in NINE has influenced EIGHT.
- Note the unusual root for TEN; is the Konyak form in p-related to the other two?
- The root forms of the Wancho numerals are closely related to those of the languages in this group (§5.4.3).
[B] Kuki-Chin

	Paite	Tiddim	Gangte	Kuki	Thado
ONE	khat	-	khat	-	xát
TWO	nih	nih	nih	ni; ba	ní~nì
THREE	thum	thum	thum	thum	thúm; thíng
FOUR	li	li	li	li	lì
FIVE	nga	nga	ngâ	nga	-
SIX	guk	guk	gûp	gup	gúp
SEVEN	sagih	səgi?	sagih	sagi	sígí
EIGHT	giat	giat	giet	get	-
NINE	kua	kua	kuo	ko	-
TEN	sawm	sawm	sâwm	som	s̀̀m

- The Paite, and most of the Tiddim, Gangte, and Kuki forms are from the Book of Revelation (especially XXI.19-20), where they appear as ordinals. In Paite, Tiddim, and Kuki (but not in Gangte), a cardinal numeral is turned into an ordinal by prefixing a- and suffixing -na: a-khat-na 'first', a-sagih-na 'seventh', and so on.
- Note the distinctive *kat for ONE (§3.1.2) and *som for TEN (§3.2.3.1).
- Final $-k$ in ' 6 ' becomes labial - p in Gangte, Kuki and Thado, probably via assimilation to the rounded vowel.
- The only numeral to preserve a prefix is SEVEN. ${ }^{8}$
- EIGHT is from *gyat (§4.2.3.3).
- NINE has peculiar vocalism, pointing to an *-a suffix. (See also Lushai, §5.4.3.)
- There are distinctive roots for THOUSAND and MYRIAD (fortunately available from contexts in the Book of Revelation). See §3.5.4.7(b).

5.4.2.1 ADDITIVE AND SUBTRACTIVE DEGENERATION OF THE PROTO-SYSTEM

Mikir

ONE	isi	
TWO	hini	
THREE	kethom	
FOUR	phir ‘4' phli ‘4'\quad (phli-kep '40') (GEM);	
	(phli-kep ‘40') (Grüssner)	
FIVE	phongo, pho (GEM) pho, phonho (Grüssner)	
	throk	
SIX	throksi	
SEVEN	nirkep	
EIGHT	sirkep	
NINE	kep	
TEN	kre-isi	

- Tones are provided in Grüssner (1979), but have been omitted here.
- This is an idiosyncratic system, well in keeping with the isolated genetic status of Mikir as a whole. (STC hesitates to assign Mikir to the core of Kuki-Naga.)
- There is an innovative prefix in TWO (§4.1.1.3), but prefix preservation from THREE to SIX. The prefix in FOUR has a tendency to preempt the root-initial liquid via metathesis with the following vowel.
- Grüssner correctly calls the disyllabic form of FIVE 'older'. There is thus a tendency to preemption here also, with the monosyllabic form (pho) having lost the root-initial nasal.
- SEVEN is an additive formation based on SIX: $7=6+1$. See §4.2.0.4.
- EIGHT and NINE are subtractive formations based on TEN: $8=$ 'two from ten', $9=$ 'one from ten’ (Grüssner: 'zwei bis zehn, eins bis zehn'). See above §4.2.0.3. "Das Element $/ r /$ [in nirkep, sirkep] ist zweifelsohne mit dem Affix /ra/ verwandt, das bei der Bildung zusammengesetzter Zahlen erscheint."
- A distinctive allomorph /kre-/ for TEN appears in the compound numeral ELEVEN (presumably $10+1$).

5.4.3 SECONDARY GENERAL NUMERAL PREFIXES

Some languages have innovated the same prefix throughout, producing a set of numerals with a single long prefix run. In such systems, prefixes have minimum diversificatory power. A single universal prefix is like no prefix at all:

	Lushai	Hmar	Vaiphei	Wancho
ONE	pakhat	pakhat	pakhat	tuta
TWO	pahnih	pahni	pani	ani, anyi
THREE	pathum	pathum	pathum	ajam
FOUR	pali	pali	pali	ali (Das Gupta),
				li (GEM)

FIVE	panga	panga	panga	aga
SIX	paruk	paruk	guk	arok
SEVEN	pasarih	pasari	sagi	anat
EIGHT	pariat	pariet	giat	acet (Das Gupta) achat (GEM)
NINE	pakua	pakuo	kua	aku

- Lushai and Hmar have generalised a prefix pa- to all the numerals from 1 to 9 . That this is a secondary development with respect to PTB is obvious, since the pa- is superadded to SEVEN, which (alone of all the numerals in Kuki-Chin) always preserves its 'inner' saprefix which goes back to PTB.
- The process of generalisation of a pa- prefix has not been carried so far in Vaiphei, so far only affecting $1-5$.
- As far as the root forms of the numerals go, and in every other respect, Wancho certainly does not belong here, but rather with Phom-Chang-Konyak (§5.4.2(a)). Like Lushai, however, it has generalised a prefix (this time a-) for all the numerals 1-9.9

5.4.4 INNOVATIVE RUNS IN THE HIGHER NUMERALS (6-9 OR 6-10)

These runs involve analogical levelling or redistribution of inherited prefixes, and/or the introduction of totally new ones. These innovative prefixal systems are classifiable in several ways, especially according to their continuity or discontinuity ; that is whether they completely or only partially segment the numerals into consecutive sets. As always, however, some systems are idiosyncratic and resist classification (for example, Kom Rem, §5.4.4.3).

A. Non-exhaustive segmentation

5.4.4.1 WITH LOSS OF ONE OF THE TWO LOWER RUNS:

	Tangkhul	Liangmai	Yimchungru	Lakher
ONE	akha/khatkha	khad	khülang	-kha; sa-
TWO	khani	nia	manie	-no
THREE	kathum	shum	asam	-thô
FOUR	mati	madai	phiyi	-pali
FIVE	phanga	mangiu	phüngü	-pangaw
SIX	tharuk	charuk	thruruk	-charu
SEVEN	shini	chania	thünie	-sari
EIGHT	chishat	(tachat)	tizha	-chari
NINE	chiko	chakiuh	tuku	-chaki
TEN	thara	kariu	thürü	-hraw; sy-

[^44]- Tangkhul retains the $2-3$ run; the pair $4-5$ both show a labial prefix, but with repartition into stop vs. nasal, so the run is lost; the high run includes only 8 and 9 (chi-).
- Liangmai loses the 2-3 run, but retains $4-5$ as ma-; the high run includes 6,7 , and 9 (cha-), but is broken by 8 (with innovative dental prefix ta-).
- Yimchungru loses the 2-3 run, but retains $4-5$ as $p h V$-; the high run extends all the way from 6-10, but is divided into two interdigitating 'sub-runs': 6, 7, and 10 have aspirated $t h V$-, while 8-9 have unaspirated $t V$-.
- Lakher (= Mara) loses the $2-3$ run, but retains $4-5$ as pa-; the high run includes 6,8 , and 9 (cha-), but is broken by 7 (which reflects original PTB ${ }^{*} s$-). Convergence has also occurred among the rhymes of 7, 8 and 9 . All these Lakher numerals may be preceded by the secondary prefixes mia- or sa- (the latter meaning ONE). This is only superficially analogous to the languages of the Lushai group (above §5.4.3) which have generalised a single prefix for all the numerals: in the latter the original prefixes have been replaced (except in SEVEN), while in Lakher the new generalised prefixes are superadded to the 'inner' prefix (for example, sa-pangaw, sa-charu, sa-sari, sa-chari).
5.4.4.2 WITH LOSS OF BOTH LOWER RUNS:

		Angami		Chokri
	Kohima	Khonoma		Puiron
ONE	puo	po	pü	khat
TWO	kenie	kena	küna	kani
THREE	se	se	sïi	thum
FOUR	die	da	da	mali
FIVE	pengou	pengu	püngu	pang
SIX	sorou	suru	shwürü	keruk
SEVEN	thenie	thena	thü̈na	sari
EIGHT	thetha	thetha	tütha	karet
NINE	thepfü	theku	thüichi	kakwa
TEN	kerü	kerü	küri	som

- All these languages lose the prefix for THREE, which breaks up the 2-3 run; Angami and Chokri retain the prefix in FIVE, but lose it in FOUR; on the other hand Puiron retains the prefix in FOUR, but apocopates the root-final vowel in FIVE, causing the former labial prefix to be reanalysed as the initial consonant of the resulting monosyllable (see §5.3.1).
- Angami and Chokri generalise a dental prefix for $7-9$; Puiron retains the old ${ }^{s}$ - in SEVEN, but develops a velar run for 8-9.

5.4.4.3 KOM REM

ONE	inkhat	SIX	karuk
TWO	inhni	SEVEN	sari
THREE	inthum	EIGHT	karet
FOUR	manli	NINE	ko:
FIVE	ranga	TEN	som

This language has a secondary 1-3 run with in-, similar to the syllabic prefixes of the languages in §5.4.4.6 below. ${ }^{10}$ Unlike the latter, however, the $4-5$ run is absent in Kom Rem, since FIVE has a liquid (not a labial) prefix, as in Written Tibetan Ina. ${ }^{11}$ With the higher numerals, SIX and EIGHT form a discontinuous run in $k a$-, interrupted by the conservative sain SEVEN. The - n - in FOUR may have arisen as a 'nasal prosody' through the influence of the prefix ma-.

B. Exhaustive segmentation

In systems of this type, one or two innovative run(s) in the higher numerals directly follow two runs in the lower numerals, yielding a three-way (ternary, tripartite) or four-way (quaternary, quadripartite) grouping. In a pure system of this type, with no discontinuities, each numeral from 1 or 2 to 9 is flanked by at least one other numeral with the same prefix. This is rather similar to a winning hand in gin rummy: if each similarly prefixed sequence represents a 'meld', the 'hand' of numerals is exhaustively subdivided into discrete configurations.

5.4.4.4 WHERE BOTH LOWER RUNS ARE PRESERVED WITH THEIR ORIGINAL PREFIXES, VELAR AND LABIAL RESPECTIVELY

All the languages in this group have a form for TEN with a root-initial liquid (§3.2.3.3, §3.2.3.4).
[A] Meluri-Pochury-Ntenyi

	Meluri	Pochury	Ntenyi
ONE	ke; kesü	khe	kesü
TWO	keni	küni	kenyi
THREE	keche	küche	keching; kechang
FOUR	mezu	mzü	mezhü; mezü
FIVE	manga	mnga	münga
SIX	taro	toro	togho; tüo
SEVEN	terü	türü	tüghü
EIGHT	tüze	tüze	tüza
NINE	tokhu	toku	tükhu
TEN	tera	türa	dagha; ta?a

- SIX has the t - prefix.
- The highest run includes 6-10.

[^45][B] MaO-NruANGHMEI

	Mao	Nruanghmei
ONE	kali	khït
TWO	kahei	kanei; künei
THREE	kosï	kathum
FOUR	padei	padei
FIVE	pongo	pangu
SIX	choro	cüruk
SEVEN	chani	cünei
EIGHT	chacha	taciut
NINE	choku	cükiu
TEN	chüro	ruh

- SIX has a palatal prefix, c - or $c h$ -
- Mao has a neater clumping than Nruanghmei. Nruanghmei's runs do not include the 'termini' ONE and TEN, and the highest run is discontinuous, broken by EIGHT.
- Mao has a distinctive root for ONE, shared by, for example, Kezhama (kele) (§3.1.5.5).
[C] ZEME-KHOIRAO

	Mzieme	Zeme	Zeliang 12	Khoirao
ONE	ket	kat; hangkat	kat	khat
TWO	kena	kena	kena	kati
THREE	ketsum	kechum	kechum	kathum
FOUR	madai; mdai	medai	mdai	malhi
FIVE	mengei	mengeu	mengei	manga
SIX	heruk	seruk	heruk	saruk
SEVEN	hena	sena	sinna	sini
EIGHT	heset	desat	tesat	kachat
NINE	hekui	sekui	hekui	chaku
TEN	kerei	kereu	kerei	sara
	$h-: 6-9$	$s: 6-7,9$	h: 6,9	s: 6-7,10

- SIX has s - or h - prefix.
- ONE lacks a velar prefix.
- In the highest run, Mzieme has a perfect sequence 6-9, but Zeme lacks 8, Zeliang lacks 7-8, and Khoirao lacks 8-9.
- Khoirao has a distinctive form for TwO, kati.

5.4.4.5 WHERE THE LOWEST RUN HAS A VOCALIC PREFIX

In these languages the numerals $1-3$ (or $2-3$) typically have a vowel prefix; $4-5$ have a labial stop or nasal; and the higher numerals 6-9 (or 6-10) have a dental or palatal prefix.

	Lotha	Yacham-Tengsa	Sangtam		Ao
				Mongsen	Chungli
ONE	ekha	khatu	khe; khürü	akha/ra	ka
TWO	eni/oni	anat	anyiu	anet	ana
THREE	etham	asam	asang	asam	asem
FOUR	mezü	phale	müzyü	phüli	pezü
FIVE	mungo	phungu	münga	phanga	pungu
SIX	tirok	thelok	thüro	terok	trok
SEVEN	ti-ing	thanyet	thünye	teni	tenet
EIGHT	tiza	thesep; teset	ke	tsit	ti
NINE	toku	thaku	tüku	tüku	tuku
TEN	taro	thelu	thüre	tera	ter

- The runs are perfectly unbroken in Lotha and Yacham-Tengsa; in the other three languages the uppermost run is broken by EIGHT, which is prefixless and monosyllabic. (Compare the concept of the 'monosyllabic breather' introduced above, §5.2.1.) We may call such interrupted runs as these discontinuous runs.
- Sangtam shows vacillation in aspiration in the highest run.
- Note the distinctive words for TEN (< *rok; §3.2.3.4).
- Note the apocope in Ao Chungli TEN. This form bears no relationship to the similar looking AMD root *tel 'ONE’ (§3.1.5.1).

In this group also belong the following, where the highest run is also discontinuous, broken either by SEVEN (Tangsa, Kimsing) or subtractively by EIGHT and NINE (Meithei):

	Tangsa		Kimsing	Meithei
	Moshang	Yogli		
ONE	ashi	ashi	ashi	ama
TWO	ani	anei	anai	ani
THREE	atum	adim	acam	ahum
FOUR	bali	bülai	balai	mari
FIVE	banga	banga	bangi	manga
SIX	taruk	türuk	tarok	taruk
SEVEN	mashi	mishi	mishi	taret
EIGHT	tachat	tüchat	techat	(nipal/nipan)
NINE	takru	tükau	tak(a)u	(mapan)
TEN	rok-shi	rauk-shi	ro-shi	tara

5.4.4.6 WHERE THE LOWEST RUN HAS A FULLY SYLLABIC CVC- PREFIX

Nocte-Maram

	Nocte		Maram
	(GEM)	(Dubey)	
ONE	vanthe	wanthe	hang-li-ne
TWO	vanyi	wanni	hangna
THREE	vanram	wanrom	hangtum
FOUR	beli	bali	madai
FIVE	banga	bang	mingu
SIX	irok	iro:k	saruk
SEVEN	ingit	ingit	sina
EIGHT	isat	itse:t; iset	sachat
NINE	ikhu	ikhu	soki
TEN	ichi	ichi	kero

- Note the different roots for ONE in the two languages.
- The higher numerals show perfect runs of 6-9 (Maram) or 6-10 (Nocte). Nocte has the unusual i-prefix here.
- For similar syllabic prefixes in 1-3, see Kom Rem (§5.4.4.3).

5.4.4.7 QUADRIPARTITE RUNS: WHERE THE TWO LOWER RUNS ARE PRESERVED, AND THE HIGHER NUMERALS SHOW TWO SUCCESSIVE INNOVATIVE RUNS

Four is the maximum number of runs attested from 1 to 9 :
1-3 or 2-3 / 4-5 / 6-7 / 8-9.

Kezhama-Sema-Rengma

	Kezhama	Sema	Rengma
ONE	kele	laki; k he	me
TWO	kenhi	kini	khohüng
THREE	katsii	küthu	keshan
FOUR	pedi	bidhi	pezi
FIVE	pangu	pongu	pfü
SIX	sarü	tsogho	tsaro
SEVEN	sinyi	tsini	tsanï
EIGHT	tiche	thache	tütse
NINE	tepfü	toku	tïkhü
TEN	chiro	chüghi	tsarü

- Rengma has preemption in FIVE. The runs 2-3,4-5 are less obvious in Rengma, because of aspiration differences in 2-3 and preemption in FIVE.
- In Sema the prefixes in the second run have a voicing difference, and those in the third run have an aspiration difference. In Kezhama, the prefixes fall into four perfect pairs, though the vocalism of the members of each pair is different.

5.5 NUMERAL PREFIXES IN ABOR-MIRI-DAFLA

5.5.1 RUNS IN THE LOWER NUMERALS

With few exceptions, only two prefixes appear in these languages: (a) the velar ka- (or rather $k V$-) and (b) a naked vowel, usually a- (but also sometimes e-or o-). (An exception is Milang, which has $p V$ - for $4-5$). Not only may we generalise with respect to the repertoire of prefixes here, but also with respect to the domain of the runs. Instead of the two separate runs $2-3$ and $4-5$, these languages exhibit enlarged or consolidated runs (usually also generalised backwards to include 1 and/or forwards to include 6: that is a single run from 1 to 5 or from 1 to 6 . Sometimes this long lower run is discontinuous at some point. Runs in higher numerals are virtually non-existent. (Again, Milang is an exception, with ra-for 7-8; also Apatani has $k V$-for 6-7, and Idu Mishmi has i - for $7-8$). This is because of the bizarre replacive roots for higher numerals which are characteristic of AMD.

5.5.1.1 WHERE THE RUN HAS A VELAR PREFIX

	Idu (Talukdar)	Mishmi (Dubey)	$\begin{aligned} & \text { Chulikata }{ }^{13} \\ & \text { (LSI) } \end{aligned}$	Taraon ${ }^{14}$ (Chakravarty et al. 1963)	Deng Darang (Sun et al. 1980)
ONE	khe(ng)ge	khege	e:khe:	khing	$k^{\prime} u n^{55}$
TWO	kanyi	kani	ka:ni	ka:ing	$k \partial^{2 l} n^{55}$
THREE	kasõ	kaso	ka:sh	ka:sa:ng	$k{ }^{21}$ sumg ${ }^{45}$
FOUR	kapri	kapri	ka:ppi	ka:pra:i	$k{ }^{2 l}{ }^{2 l}$ bri 55
FIVE	manga	manga	ma:nga:	ma:nga:	$m{ }^{2 l}$ nga ${ }^{45}$

In these languages the velar run is only from 2 to 4 (the velar in ONE seems to be the root initial - §3.1.2). In the following language, whose dialects are known variously as Miju, Miju Mishmi, Kaman, or Deng Geman, the velar run is extended in both directions, and extends all the way from 1 to 6 :

	Miju Mishmi (LSI)	$\begin{gathered} \text { Miju } \\ \text { (Das Gupta 1977a) } \end{gathered}$	Deng Geman (Sun et al. 1980)
ONE	kwo:/komo:	kumo	$k u^{2 l} m u^{53}$
TWO	ka:ning/kinnin	kinin	$k u^{2 l} j i n^{53}$
THREE	ka:-sa:m	ksam	$k u^{2 l}{ }^{2}{ }^{\text {a m }}{ }^{53}$
FOUR	kambrin	kambran	$k u^{2 l} b R u n^{53}$
FIVE	ka-li:n	klin	$k u^{2 l} l e n^{55}$
SIX	ka:ta:m	katam	$k u^{21}$ təm ${ }^{53}$

Note the characteristic nasal-finalled forms for FOUR (§4.1.3.6), as well as the totally idiosyncratic forms for FIVE and SIX (§4.1.4.7; §4.2.1.8).

14 Virtually identical to 'Digaru Mishmi' (LSI III.1, 623), which has e:khing, ka:-ying, ka:-sâng, ka:-prei for 1-4.

5.5.1.2 WHERE THE RUN HAS A VOCALIC PREFIX

(A) With a perfect 1-6 run in a-

	Abor-Miri	Gallong	Minyong
ONE	a-ko; a-ter/-tel	ako/aken	akon; atir/ayirr
TWO	a-nyi	anyi	anyi
THREE	a-um/a-ngum	aum	aum
FOUR	a-pi	appi	aki ${ }^{15}$
FIVE	a-ngo	ango	ango
SIX	a-keng/a-ke'	akke	akeng/akkeng

(B) With vocalic variation in the prefix (1-6 run)

Tagin
(Das Gupta 1975)

ONE	akin	ako; aken
TWO	anyi	anĩ
THREE	aum	afum
FOUR	epí	api:
FIVE	ango	ongo
SIX	aké	aku

In Tagin FOUR has e-; in Lhopa FIVE has o-. Tagin epí and aké are high tone (marked by acute accent).
(C) With a break in the 1-6 run

Padam
(Dubey 1983)
ONE akem/atel
(Das Gupta 1977b)

TWO	ani	anni
THREE	aum	om
FOUR	appi	appi
FIVE	pilngo	a:ngo
SIX	akke	akke

For FIVE Padam shows an interesting form with double prefix, $<{ }^{*} b-l-\eta a$. This is one case where STC does set up prefixal variation in a numeral at the PTB level, reconstructing both *b-ŋa and ${ }^{*} l-\eta a$. If anything the Padam evidence might suggest that the 'inner' 1 - prefix is more primary than the 'outer' labial one, so that only ${ }^{*} I$ - should be set up for the PTB stage; but I do not feel that we can make such a rigid distinction between proto-variation and diachronic change in TB prefixes at the present state of our knowledge (and perhaps in principle).

For THREE, Nishi (like some other Dafla dialects: see below) has a monosyllabic form with o - vocalism, which clearly derives from a disyllabic form with the a- prefix, as in Padam a-um. The fusing of the a-prefix with the root-vowel - u - to yield o - was made possible by the total loss of root-initial ${ }^{*} s$-, which is characteristic of many AMD languages. ${ }^{16}$ This fusion of prefix and root into a monosyllabic unit breaks up the rhythm of the 1-6 run.
(D) Dafla dialects

	Dafla (LSI:Robinson)	E. Dafla (LSI:Hamilton)	Yano Dafla (N.L. Bor 1938)	Dafla (Das Gupta 1969)
ONE	a:-kin	akkin	akhin	aking/aku
TWO	a:-ni	anyi	anyi	anyi/ain'17
THREE	a:-a:m	a-om	um	om
FOUR	a:-pli	a-pl	apli; appi	api
FIVE	a:-ngo:	a:-ng	ango	ango
SIX	akple	a:-kr	akke	aké

- Note the apocope in the E. Dafla forms FOUR, FIVE, SIX, paralleled also in its word for EIGHT pli:n (compare Yano Dafla plönö).
- Robinson's word for SIX has a strange consonant sequence $-k p l-$, where the $-p-$ has perhaps crept into the form through contamination by FOUR. Similar interinfluence between successive numerals seems to be at work in Robinson's words for SEVEN and EIGHT: ka:nag '7’, plag-nag '8' (see §4.2.0).

5.5.2 SYSTEMS WITH NO SECONDARY PREFIXATION IN THE LOWER NUMERALS

Aka-Apatani-Milang-Serdukpen

These languages form a miscellaneous group. Besides their prefixal paucity in the lower numerals, they are all characterised by highly idiosyncratic sets of higher numerals, though this trait is shared by many other AMD languages (§4.2).

	Aka (= Hruso) $($ LSI $)$	Apatani (Simon 1972)	Milang (Das Gupta 1980)	Serdukpen (Dubey 1983)
ONE	a	$k u ̈$	akan; atel	han
TWO	$k s h i$	$n \tilde{i}$	ne	$n(y) i k$
THREE	$z u$	$h \tilde{r}$	ham	ung
FOUR	fi-ri	$p e$	$p e$	bi:si
FIVE	phum	$n g o$	pangu	$k h u$

Only Aka preserves the velar prefix in TWO; there is no trace of any prefix in THREE; the labial prefix in FOUR is well-preserved (with preemption of the root initial in Apatani and Milang). In FIVE, the denasalised Serdukpen form perhaps reflects a lost p - prefix, preserved in Milang; in Aka phum the labial stop prefix has become the root-initial via apocope of the root-vowel - that is the final - m seems to reflect the original root-initial (§5.1.3.1).

[^46]Apatani has a special set of numerals used in counting humans, which seems more conservative with respect to prefix preservation; for example, ' 3 ' hingi, ' 4 ' pilye and ' 5 ' yango.

Chapter 6

SUMMARY AND AFTERWORD

The standard (STC) reconstructions for the PTB numerals stand up quite well, though we have nuanced them, especially with respect to the treatment of the prefixes. Reconstructions for several new numerical roots and allofams are offered, including ONE, SIX, NINE, and TEN. Several examples of previously attested variational patterns are provided by these new or revised reconstructions, for example, -i- *-ya (ONE *tik * tyak (§3.1.4); TEN *gip * gyap
 $\tan (\S 3.1 .4)$); -u-»-a-(THREE *-sum **-sam (§4.1.2); TWENTY ${ }^{*} m-k u l \approx * k a l(\S 3.5 .1 .1)$. We have emphasised the inter-influence of numerals in sequence, first in the context of general variational patterns in ST word families (§1.1.1), then in more specific morphophonemic and semantic terms (§4.0.1-§4.0.2.), finally focussing on prefixal behaviour in numeral sets (§5.2ff.). We have seen how some languages express their higher unit numerals (6-9) in additive, subtractive, or multiplicative formations (§4.2.0).

Throughout we have not merely been concerned with reconstructing the etyma for the individual units (1-9) in ST numeral sets, but have paid particular attention to their systemic structure (§1.1.2), as revealed by the various languages' methods of TEEN- and ROUNDNUMBER formation (§3.3-§3.5). We have pointed to striking cases of hesitation, flux, or transvaluation in the arithmetical bases of TB numeral systems, for example, between ONE and TEN (§3.4). Such phenomena are characteristic of Himalayish languages under strong contact influence ($\$ 2.0-\S 2.1$), including hesitation between TEN and TWENTY as bases for the system (for example, Sherpa, Lepcha, Dzongkha: §3.5.3.4), and even between TWENTY and TWELVE (Chepang: §3.5.3.5). We have noted traces of FOUR- (Boro, Kubhinde Dumi: §3.3.2(c)) and FIVE-based (Bantawa: §4.1.5) systems, which may well prove to represent ancient types of numerical organisation in the family.

On the semantic side, we have found a few interesting cases of 'transfield associations' between numeral concepts and roots from other semantic fields, for example, between FIVE and hand (§4.1.4-§4.1.5), and FIFTY and ridgepole (§3.5.2.2). For a diagrammatic representation of the various semantic interconnections uncovered among the numerals, see the semantic flowchart in Appendix I.

Aside from purely etymological problems like finding affiliations for the weird or isolated numeral forms that crop up here and there (especially in AMD), there remain plenty of intriguing conceptual puzzles for further research. As a random example, one could cite the strange Lahu classifier $l \hat{\varepsilon}$, which in some dialects (including varieties of Black Lahu) occurs as the general classifier, but only after the numerals 3, 4, and 9. (The ordinary Lahu general classifier is mà, functionally equivalent to Mandarin gè or Thai Pan.) Roop (1970:62-63) reports a similar Lisu general classifier lyön', occurring only after lyi ${ }^{55}$ ' 4 ', which he characterises as a 'suppletive allomorph' of the ordinary general classifier ma ${ }^{33}$. In the Qiangic
language Muya, a possibly cognate form $1 \varnothing^{55}$ occurs as a citation classifier, but after all the numerals from 1 to 10 (for example $s o^{55}-1 \varnothing^{55}$ ' 3 ', $z u^{35}-1 \varnothing^{55}$ ' 4 ', $\eta a^{55}-1 \varnothing^{55}$ ' 5 ', and so on). Another Qiangic language, Shixing, has a different etymon for its ordinary general classifier, $k o^{33}$, but with a special allomorph $k o^{35}$, under a different tone, after the numerals 2,4 , and 9 ! What numerical sense does this make? What do $3 / 4 / 9 /$ or $2 / 4 / 9$ have in common that would motivate these 'special general' classifiers?

This monograph should be viewed as part of the Sino-Tibetan Etymological Dictionary and Thesaurus project (STEDT), a long-term effort to reconstruct the lexicon of PTB/PST by semantic field, with the ultimate aim of recovering as much as possible of the semantic and phonological richness of the ancient lexicon. ${ }^{1}$

[^47]METASTATIC FLOWCHART OF NUMERICAL SEMANTIC ASSOCIATIONS

(chart by Jonathan P. Evans)

APPENDIX 2

INDEX OF RECONSTRUCTED ETYMA

ONE

*it * * yat §3.1.1

* ${ }_{2}$ jĕt (OC) §3.1.1
 §3.1.2
*kat §3.1.2
*khat(Kuki-Naga) §3.1.2
*kya-n **ya-t §3.1.2.1
*ka and *ko §3.1.3
*kon (PTani) §3.1.3
*g-t(y)i-k **tya-k §3.1.4
*d/tay $¥$ *d/tan §3.1.4
*tśääk (OC) §3.1.4
*tân 'single, simple’ (OC) §3.1.4
*day ${ }^{2}$ 'one’ (PLB) §3.1.4
*nday ‘all’ (PLB) §3.1.4
*?dik ‘only’ (PLB) §3.1.4
*dek 'nothing' (PLB) §3.1.4
*?gyik ‘little bit’ (PLB) §3.1.4
*-kla (PNN) §3.1.4
*tir *tur $^{(A M D) ~ § 3.1 .5 .1 ~}$
*tel (PEasternTani) §3.1.5.1
*tel (AMD) §3.1.5.1
*(t)se (Kamarupan) §3.1.5.2
*-tse (PNN) §3.1.5.2
*sa or *tsa (Kamarupan) §3.1.5.2
*han or *han (AMD) §3.1.5.3
*a (AMD) §3.1.5.4
* $(k-) / V(N)(A M D)$ §3.1.5.5
*d'uk ‘alone; only’ (OC) §3.1.5.5

TWO

*g-ni-s/k §4.1.1
*ni-k §4.1.1.4
*(?)ni-t, *(?)ni-?(PLB) §4.1.1

* $\tilde{n} i(\mathrm{PTani}) ~ § 4.1 .1 .2$
*?-ni (PNN) §4.1.1.2
*niəə (OC) §1.2.6
*g-g-nis (pre-Garo) §5.2

THREE

*g-sum §4.1.2
*sum ${ }^{2}$ (PLB) §4.1.2.2
*hum (PTani) §4.1.2.2
*ts'əm ~ *səm (OC) §1.2.6

FOUR

*b-liy = *b-ləy §4.1.3
*pri (PTani) §4.1.3
*bələy (PNN) §4.1.3
*hlay ${ }^{2}$ (PLB) §4.1.3.4.1
*m-lay < *b-lay §4.1.3.2
*g-lay §4.1.3.6
*g-b-lay §4.1.3.6
*g(N)-b-lay-(N) §4.1.3.6
*sizd (OC) §1.2.6
*k-b-lay §5.2

FIVE

*l-ŋа **b-ŋа §4.1.4
*b-l-ŋa §4.1.4.4
*m-ŋа §3.5.2.2
${ }^{*}$ r-ŋa (‘Old Kuki’) §4.1.4
${ }^{*} \mathrm{ga}^{2}$ (PLB) §4.1.4.5
*g-I-ŋ[a](AMD) §4.1.4.7

* ${ }^{\text {go }}(\mathrm{OC})$ §1.2.6
*k-m-ŋa < *b-ŋa (Proto Rgyalrong) §5.2
*lak 'hand’ §4.1.4
*k(r)ut 'hand' §4.2.2

SIX

*d-ruk §4.2.1
*d-k-ruk §4.2.1.3
*d-krok §4.2.1
*k-d-ruk §4.2.1.3
${ }^{*}$ ruk or ${ }^{*}$ rok §4.2.1.4
*k-[r]uk §4.2.1.4
d-k-rok or ${ }^{} k$-d-rok §5.1.3
*C-krok (PLB) §4.2.1
*krə (PTani) §4.2.1.2
*krəŋ (AMD) §4.2.1.2
${ }^{\text {s }}$-ruk (PNN) §4.2.1.5
*lị̂k (OC) §1.2.6
*k-d-ruk < *d-ruk (Proto Rgyalrong) §5.2
*a-krə (PTani) §5.1.3.1

SEVEN

${ }^{*}$ S-nis §4.2.2
*g-s-ni-s §4.2.2.6
*k-nit §4.2.2.5; §5.1.3.1
*b-dun > *b-[d]yun §4.2.2.8
*s(n)i-t (PLB) §4.2.2
${ }^{*}{ }^{2}{ }^{2}$ (PLB) §4.2.2.4
*hnəs (PKaren) §4.2.2.3
*kV-nut (PTani) §4.2.2.5
*ts'jĕt (OC) §1.2.6
*k-s-nis (Proto Rgyalrong) §5.2

EIGHT

*b-r-gyat $\sim b$-g-ryat §4.2.3
${ }^{*} s$-rit §1.2.1
*s-g-ryat §4.2.3.2
${ }^{*}$ pri-ñi (PTani) §4.2.3.8; §5.1.3.1
*gyat §4.233; §4.2.3.5
*pwăt (OC) §1.2.6; §4.2.3
*d-ryat < *g-ryat (PKN) §4.2.3
*b-ryat (Gurung-Tamang-Thakali) §4.2.3.4
*? rit *? $_{\text {ryat }}$ (PLB) §3.5.4.4; §4.1.1.4; §4.2.3; §4.2.3.4
*C/V-gyat (PNN) §4.2.3.5
*g-ryan (AMD, HIM) §4.2.3.6
*lyon (?) (AMD) §4.2.3.7

NINE

*d-gəw *s-kəw §5.1
*s-d-[k]วw §4.2.4.1
*C/V-gə:w (PNN) §4.2.4.1
${ }^{*}$ gəw 2 (PLB) §4.2.4.4

* $k-n(y / w) a-\eta$ (AMD et al.) §4.2.4.5
* $k V$-(n)aŋ (PTani) §4.2.4.5
*kiug (OC) §1.2.6

TEN

*gip **gyap §3.2.1
ts(y)iy $¥{ }^{}$ tsyay §3.2.2
*sytsye < *s-tsyiy (Proto Rgyalrong) §3.2.2
${ }^{*}$ ssi 1 (Proto Loloish) §3.2.2
*tsyal (Nungish) §3.2.2
*som (<*tsom) (Proto Kuki-Chin) §3.2.3.1
*čam (Proto Tani) §3.2.3.1
*rjuy (PTani) §3.2.3.1
*pal or *bal §3.2.3.2
*bo:n (PNN) §3.2.3.2
$*_{s-r / l i \eta} *_{s-r} /$ yan (AMDet al.) §3.2.3.3
${ }^{\text {rin }}$ * *in \quad §3.2.3.3
*liŋ * *lyaŋ 'ten/hundred’ §3.2.3.3
s-ryak $\neq{ }^{}$ s-rwak §3.2.3.4
*ro:k (PNN) §3.2.3.4
*d(y)am *t(y)am 'ten; a full decade' §3.2.3.5
*p/boy (Proto Kiranti) §3.2.3.6
*ban * ${ }^{\text {bal }}$ §3.2.3.2; §4.2.0.3

* $\hat{d} \dot{\jmath} \partial p(\mathrm{OC})$ §1.2.6

TWENTY

*m-kul §3.5.1.1
*kun 'all' §3.5.1.1
*kal 'load; bushel measure; group of twenty' (HIM) §3.5.1.1
*ja (PNN) §3.5.1.1; §3.5.2.4

HUNDRED

*b-r-gya * *b-g-rya §3.5.4.5
*b-rya §3.5.4.5
*m-rya (Naga) §3.5.4.5
*hra ${ }^{l}$ (PLB) §3.5.4.4
*m-lnya (AMD) §3.5.4.6
m-li($\eta)\left(?<{ }^{} m-1-\eta y a\right)(\mathrm{AMD})$ §3.5.4.6
*păk (OC) §1.2.6

THOUSAND
*s-toŋ §3.5.4.7
${ }^{*} s_{\text {-rin }} \times{ }^{*}$ s-raך §3.5.4.7
*gheslo- (PIE) §3.5.4.7.2

APPENDIX 3

INDEX OF LANGUAGES AND SOURCES

Abor-Miri-Dafla
Abor-Miri: Lorrain 1907. LSI III.1:622.
Apatani: Simon 1972:9-11. Sun, J.T. 1993.

Bengni: Sun, J.T. 1993.
Bogaer Luoba: TBL.
Bokar: Sun, J.T. 1993.
Bokar Adi: ZMYYC.
Chulikata (Taying Mishmi): LSI III.1:623.
Dafla (Nishi): Robinson 1851. Hamilton 1900. LSI III.1:622. Bor 1938 (Yano Dafla). Das Gupta 1969:2.
Damu: Sun, J.T. 1993.
Deng (Kaman, Geman): Sun Hongkai et al. 1980. ZMYYC. TBL.

Deng (Taraon, Darang): Sun Hongkai et al. 1980:384-387. ZMYYC. TBL
Gallong: Dubey 1983. Das Gupta 1963.
Hrusso (Aka): LSI III.1, 622-623.
Idu: Talukdar et al. 1962:15. ZMYYC.
Idu Luoba: TBL.
Lhopa: Sun Hongkai et al. 1980:384-387.
Miji: Simon 1979.
Miju Mishmi (Deng, Kaman, Geman): Das Gupta 1977a:19-20.
Milang: Das Gupta 1980. Sun, J.T. 1993.
Minyong (E. Dafla): Das Gupta 1977b:1622.

Miri: Simon 1976. Sun, J.T. 1993.
Mishmi: Dubey 1983.
Mising: Sun, J.T. 1993.
Nishi: Dubey 1983.

Padam: Das Gupta 1977b:16-22. Dubey 1983. Sun, J.T. 1993.

Padam-Mishing: Sun, J.T. 1993.
Serdukpen: Dubey 1983.
Tagin: Das Gupta 1975.
Taraon (Digaro): Chakravarty 1963.

Baic

Bai (Bijiang): ZMYYC.
Bai (Dali): ZMYYC.
Bai (Jianchuan): ZMYYC.
Bai (Minchia): Dell 1981. TBL.

Bodo-Garo

Boro: Bible Society of India 1972b, Revelation 21:19-20. Bhat 1968:29-30.
Dimasa: Marrison 1967.
Garo: Momin n.d. Burling 1961:57-58. Phillips 1904.

Himalayish

Athpare: Gvozdanović 1985.
Bahing: Gvozdanović 1985.
Baima: Sun Hongkai (pers.comm.) 1991.
Bantawa: Gvozdanović 1985.
Chepang: Hale 1973.
Chourase: Gvozdanović 1985.
Dumi: Gvozdanović 1985.
Dzongkha: Mazaudon 1985. Rinzin (pers.comm.) 1984.
Gurung: Hale 1973.

Hayu: Michailovsky 1981:167. LSI III. 1 (Vayu):384-385.
Jirel: Hale 1973.
Kaike: Hale 1973.
Kanawari: Joshi 1909:2-3.
Khaling: Hale 1973.
Kham (Nepal): Hale 1973.
Kulung: Gvozdanović 1985.
Lepcha: Mainwaring/Grünwedel 1898.
Magari: Hale 1973.
Mewahang: Gvozdanović 1985.
Monpa: Das Gupta 1968:101. Nishi 1982. Dubey 1983.
Monpa Cuona (Takpa): Sun Hongkai et al. 1980. ZMYYC. TBL. Sun, J.T. 1993.

Monpa Motuo (Tsangla): Sun Hongkai et al. 1980:384-387. ZMYYC. TBL.
Newari: Hale 1973.
Sharchop: Rinzin (pers.comm.) 1984.
Sherpa: Hale 1973.
Sikkim Bhutia (Dzongkha): Sandberg 1895:59.
Sunwar: Hale 1973. Gvozdanović 1985:143

Tamang: Hale 1973.
Thakali: Hale 1973.
Thulung Rai: Allen 1975:102-103.
Tibetan (Lhasa): Goldstein and Nornang 1970:395-396.
Tibetan (Written): Jäschke 1881.
Tsangla (Northern and Southern): Nishi 1982.

Yakkha: Gvozdanović 1985
Yakkhaba: Gvozdanović 1985.

Jingpho-Nungish

Anong Nu: TBL. ZMYYC.
Dulung (Trung): Sun Hongkai 1982b:54. ZMYYC. TBL.

Jingpho (Kachin): Hanson 1906/1954. Maran (in prep.).

Jingpho: ZMYYC. TBL.
Nusu Nu: TBL.

Karenic

Kayah: Solnit 1984.
Palaychi: Jones 1961.
Pa-O (=Taungthu): Jones 1961.
Pho (Bassein, Moulmein): Jones 1961.
Sgaw (Bassein, Moulmein): Jones 1961.
Kelun: TBL.

Kuki-Chin-Naga

Angami (Khonoma): Marrison 1967.
Angami (Kohima): Marrison 1967.
Ao (Chungli): Marrison 1967.
Ao (Mongsen): Marrison 1967.
Bawm (=Laizo): Osborne 1975.
Chakhesang: Nagaland Bhasha Parishad 1972a.

Chang: Marrison 1967.
Chokri: Marrison 1967.
Gangte: Bible Society of India 1972a:512.
Hmar: Bible Society of India 1970, Revelation 21:19-20.

Kheja: Nagaland Bhasha Parishad 1974.
Khezhama: Marrison 1967.
Khoirao: Marrison 1967.
Kimsing: Das Gupta 1978:12.
Kokborok (Tripuri): Karapurkar 1976:4548.

Kom Rem: Bible Society of India 1976, Revelation 21:19-20.

Konyak: Marrison 1967.
Kuki: Bible Society of India 1973, Revelation 21:19-20.

Lakher (=Mara): Lorrain 1951.
Liangmei: Marrison 1967.
Lotha: Marrison 1967.
Lushai: Marrison 1967.
Manipuri (=Meithei): Marrison 1967.

Mao: Marrison 1967.
Maram: Marrison 1967.
Maring: Marrison 1967.
Meluri: Marrison 1967.
Mikir: Marrison 1967. Griussner 1979:6364.

Mzieme: Marrison 1967.
Nocte: Marrison 1967.
Nruanghmei: Marrison 1967.
Ntenyi: Marrison 1967.
Paite: Bible Society of India 1974, Revelation 21:19-20.
Phom: Marrison 1967.
Pochury: Nagaland Bhasha Parishad 1972b, 15-16.
Puiron: Marrison 1967.
Rengma: Marrison 1967.
Sangtam: Marrison 1967.
Sema: Marrison 1967.
Tangkhul: Marrison 1967.
Tangsa (Moshang): Marrison 1967.
Tangsa (Muklom): Dubey 1983.
Tangsa (Yogli): Marrison 1967.
Thado: Thirumalai 1972.
Tiddim Chin: Henderson 1965. Bible Society of India 1979, Revelation 21:19-20.

Vaiphei: Bible Society of India 1971, Revelation 21:19-20.
Wancho: Marrison 1967. Das Gupta 1979:27-28. Dubey 1983.
Yacham-Tengsa: Marrison 1967.
Yimchungrü: Marrison 1967.
Zeliang: Nagaland Bhasha Parishad 1973.
Zeme: Marrison 1967.

Lolo-Burmese

Achang: ZMYYC. TBL.
Ahi: Yuan Jiahua 1953.
Akha: Lewis 1968.
Anong: ZMYYC.

Bisu: Bradley 1979.
Bola: TBL.
Burmese (spoken): ZMYYC. TBL.
Burmese (Written): Judson 1893/1953/1966.
Gazhuo: TBL.
Hani $($ Caiyuan $=$ Biyue $):$ ZMYYC.
Hani (Dazhai): ZMYYC.
Hani (Lüchun): TBL.
Hani (Mojiang): TBL.
Hani (Shuikui $=$ Haoni) ZMYYC.
Hani: Hu Tan and Dai Qingxia 1964. Gao Huanian 1955.
Jinuo: ZMYYC. TBL.
Lahu (Lancang): TBL.
Lahu: Matisoff 1973a. ZMYYC.
Langsu (Maru): ZMYYC. TBL.
Leqi: TBL.
Lisu: Fraser 1922. ZMYYC. TBL.
Luquan: Ma Xueliang 1949.
Mpi: Srinuan 1976:538-541.
Nasu: Gao Huanian 1958.
Naxi (Lijiang): ZMYYC.
Naxi (Yongning = Moso): ZMYYC.
Naxi: Rock 1963. TBL.
Nusu: ZMYYC.
Phunoi: Bradley 1979:338-341.
Sani: Ma Xueliang 1951:81. TBL.
Ugong (Kanburi Lawa): Bradley 1978.
Woni: Yuan Jiahua 1947.
Xiandao (Achang): TBL.
Yi (Dafang): ZMYYC.
Yi (Mile = Axi): ZMYYC.
Yi (Mojiang): ZMYYC.
Yi (Nanhua): ZMYYC. TBL.
Yi (Nanjian): ZMYYC.
Yi (Weishan): TBL.
Yi (Wuding): TBL.
Yi (Xide): ZMYYC. TBL.
Zaiwa (Atsi): ZMYYC. TBL.

Qiangic

Daofu: TBL.
Ergong: ZMYYC.
Ersu (Tosu): Sun Hongkai 1982a. ZMYYC.
Guiqiong: ZMYYC. TBL.
Muya: ZMYYC. TBL.
Namuyi (Namuzi): ZMYYC. TBL.
Pumi (Jinghua): ZMYYC. Lu 1983:37, 128.

Pumi (Jiulong): TBL.
Pumi (Lanping): TBL.
Pumi (Taoba): ZMYYC. Lu 1983:37, 128.

Qiang: Sun Hongkai 1981:88. TBL.
Qiang (Mawo): ZMYYC.
Qiang (Taoping): ZMYYC.
Queyu (Zhábā): ZMYYC. TBL.
Rgyalrong (Jiarong): Nagano 1979. ZMYYC. TBL.
Shixing: ZMYYC. TBL.
Zhábà: ZMYYC. TBL.

Other

Sulong (Sulung): ZMYYC.
Tujia: ZMYYC. TBL.
Nepali (Indo-European): Turner 1931, 1966. Hale 1973.

REFERENCES

Allen, Nicholas J., 1975, Sketch of Thulung grammar, with three texts and a glossary. Cornell University East Asia Papers, 6. Ithaca, NY: Cornell.
Barnard, J.T.O., 1934, A handbook of the Rawang dialect of the Nung language. Rangoon: Government Printing House.
Baxter, William, 1985, Tibeto-Burman cognates of Old Chinese *-ij and *-ij. In Thurgood, Matisoff and Bradley, eds., 242-263.
Benedict, Paul K., 1972, Sino-Tibetan: a conspectus. Contributing Editor, James A. Matisoff. Princeton-Cambridge Studies in Chinese Linguistics II. Cambridge: University Press. ('STC')
1979, Four forays into Karen linguistic history. LTBA 5/1:1-35.
1983, Qiang monosyllabization: a third phase in the cycle. LTBA 7/2:113-114.
Bhat, D.N.S., 1968, Boro vocabulary, with a grammatical sketch. Poona: Deccan College Postgraduate and Research Institute.
1969, Tankhur Naga vocabulary. Poona: Deccan College Postgraduate and Research Institute.
Bible Society of India, 1970, Pathien Lekhabu Inthieng. [Holy Bible in Hmar: Old and New Testaments.] Bangalore. 1710pp. (O.T.) and 533pp. (N.T.), paginated separately.
1971, Thuthung Thak le Sam. [New Testament and Psalms in Vaiphei.] Bangalore. 524pp. (N.T) and 137pp. (Psalms), paginated separately.

1972a, Thuthunthak leh Sam. [New Testament and Psalms in Gangte.] Bangalore. 513pp. (N.T.) and 189pp. (Psalms), paginated separately.

1972b, Godan Rodai. [New Testament in Boro]. Bangalore. 657pp.
1973, Pathen Lekhabu Theng. [Holy Bible in Kuki.] Bangalore. 1296pp. (O.T.) and 322pp. (N.T.), paginated separately.

1974, Laisiangthou. [Holy Bible in Paite.] Bangalore. 973pp. (O.T.) and 307pp. (N.T.), paginated separately.
1976, Tongtep Ther leh Lha. [New Testament and Psalms in Kom Rem.] Bangalore. 568pp.
1979, Lai Siangtho. [Holy Bible in Tiddim Chin.] Bangalore. 1072pp. (O.T.) and 350pp. (N.T.), paginated separately.

Boltz, William, 1969, The numeral ONE in Old Chinese. Unicorn IV, 56-59.
1977, The etymology of the Old Chinese numeral TWO: grammatical and semantic consideration. Paper presented at Tenth Sino-Tibetan Conference, Georgetown University, Washington, D.C.
Bor, N.L., 1938, Yano Dafla grammar and vocabulary. JRASB 4:217-281.
Bradley, David, 1978. Identity, dialect, and sound change in mBisu and Ugong. Working Papers in Linguistics, University of Melbourne 4:37-46.
1979, Proto-Loloish. Scandinavian Institute of Asian Studies Monograph Series, 39. Copenhagen and London: Curzon Press.
Bradley, David, E.J.A. Henderson and Martine Mazaudon, eds, 1989, Prosodic analysis and Asian linguistics to honour R.K. Sprigg. PL, C-104.

Burling, Robbins, 1961, A Garo grammar. Deccan College Postgraduate and Research Institute Monograph Series, 25. Poona: Linguistic Society of India.
1968, Proto-Lolo-Burmese. IJAL Special Publication 33.2, Part II. Issued simultaneously as Indiana Publications in Anthropology and Linguistics 43. The Hague: Mouton.
Caughley, Ross C., 1989, Chepang: a Sino-Tibetan language with a duodecimal numeral base? In Bradley et al., eds., 197-199.
1972, A vocabulary of the Chepang language. 40pp. mimeo. Kirtipur, Nepal: Summer Institute of Linguistics.
Chakravarty, L.N. et al., 1963, A dictionary of the Taraon language. Philology Section, Research Department, Northeast Frontier Agency, Shillong.
Chen Weidong, 1990, [Numerals in the Naxi language.] In Chinese. Unpublished research report, in a collection entitled Research on Numerals in Tibeto-Burman Languages.
Chinese Academy of Social Sciences, 1991, Zang-Mianyu Yuyin he Cihui [Tibeto-Burman phonology and lexicon]. Compiled and edited by Xu Jufang, Liu Guangkun, Sun Hongkai, et al. 1420pp. Beijing. ('ZMYYC').
Dai Qingxia, 1982, [Outline grammar of the Achang language.] In Chinese. Beijing: People's Publishing Co.
Dai Qingxia, et al., 1981, /Chinese-Jingpho dictionary.] In Chinese. Kunming: Yunnan People's Publishing Co.
1983, [Jingpho-Chinese dictionary.] In Chinese. Kunming: Yunnan People’s Publishing Co.
Dai Qingxia and Huang Bufan, 1992, Zang-Mian Yuzu Yuyan Cíhui [A Tibeto-Burman lexicon]. In Chinese. Beijing: Central Institute of Nationalities.
Das Gupta, K., 1963, An introduction to the Gallong language. Shillong: Northeast Frontier Agency.
1968, An introduction to Central Monpa. Northeast Frontier Agency. Shillong.
1969, Dafla language guide. Shillong: Northeast Frontier Agency. 114pp.
1975, A few features of the Tagin language. Resarun 1/4 (6pp).
1977a, A phrase book in Miju. Published by Director of Information and Public Relations, Arunachal Pradesh. Shillong.
1977b, A few aspects of the Minyong language. Resarun 3/4:16-22.
1978, A note on the Tangsa language. Resarun 4/2:6-16.
1979, A note on the Wancho language of Arunachal Pradesh. Resarun 5/I:25-37.
1980, A note on [the] Milang language. Resarun 6/2:14-18.
Dell, François, 1981, La langue Bai, phonologie et lexique. Paris: Ecole des Hautes Etudes en Sciences Sociales.
Diffloth, Gérard, 1976, Mon-Khmer numerals in Aslian languages. In Diffloth and Zide, eds, 31-37.
Diffloth, Gérard and Norman Zide, eds, 1976, Austroasiatic number systems. Special issue of Linguistics: an International Review, 174. The Hague and Paris: Mouton.
Dubey, Shail Kumari, 1983, Linguistic study of Arunachal dialects: phonology. (Contains data on Gallong, Mishmi, Monpa, Muklom Tangsa, Nishi, Padam, Serdukpen). Unpublished D. Litt. dissertation, University of Calcutta.
Emeneau, Murray B., 1957, Numerals in comparative linguistics (with special reference to Dravidian). BIHP 29:1-10.
Evans, Jonathan P., 1993, Unpublished fieldnotes on the Sanlong dialect of Qiang.
Fraser, J.O., 1922, Handbook of the Lisu (Yawyin) language. Rangoon: Government Printing House.

French, Walter T., 1983, Northern Naga: a Tibeto-Burman mesolanguage. PhD dissertation, City University of New York. 737pp.
Gao Huanian, 1955, [A preliminary investigation of the Hani language of Yang-wu.] In Chinese. Journal of Zhongshan University, 175-231.
1958, [A Study of the grammar of the Yi (Nasu) language.] In Chinese. Scientific Publishing Co. Beijing.
Goldstein, Melvyn C. and Nawang Nornang, 1970, Modern spoken Tibetan: Lhasa dialect. University of Washington Press. Seattle and London.
Greenberg, Joseph H., 1987, Language in the Americas. Stanford: Stanford University Press.
Grierson, Sir George A. and Sten Konow, eds, 1903-28, Linguistic survey of India. Vol. III, Parts 1-3, Tibeto-Burman family. Reprinted 1967 by Motilal Banarsidass (Delhi, Varanasi, Patna).
Griissner, Karl-Heinz, 1979, Arleng Alam: die Sprache der Mikir. Wiesbaden: Franz Steiner Verlag.
Gvozdanović, Jadranka, 1985, Language system and its change: on theory and testability. Trends in Linguistics Studies and Monographs 30. Berlin, New York, Amsterdam: Mouton.
Hale, Austin, ed., 1973, Clause, sentence, and discourse patterns in selected languages of Nepal. 4 vols. Publication of the Summer Institute of Linguistics. Kathmandu: University Press, Tribhuvan University.
Hamilton, R.C., 1900, An outline grammar of the Dafla language, as spoken by the tribes immediately south of the Apa Tanang country. Shillong.
Hanson, Ola, 1906, A dictionary of the Kachin language. Rangoon. Reprinted (1954) by Baptist Board of Publications.
He Jiren and Jiang Zhuyi, 1985, (Outline grammar of the Naxi language.] In Chinese. Beijing: People's Publishing Co.
Heimbach, Ernest E., 1969, White Meo-English dictionary. Data Paper 75, Southeast Asia Program, Ithaca, NY: Cornell University,
Henderson, Eugénie J.A., 1965, Tiddim Chin: a descriptive analysis of two texts. London: Oxford University Press.
1986, Some hitherto unpublished material on Northern (Megyaw) Hpun. In John McCoy and Timothy Light, eds, 101-134.
1997, Bwe Karen dictionary and texts. Edited by Anna J. Allott, David B. Solnit, and James A. Matisoff. London: School of Oriental and African Studies.

Hodgson, Brian H., 1880, Miscellaneous essays relating to Indian subjects. 2 vols. London: Trübner.
Hu Tan and Dai Qingxia, 1964, [Plain and constricted vowels in the Hani language.] In Chinese. Zhongguo Yuwen 128:76-87.
Huffman, Franklin E., 1970. Modern spoken Cambodian. New Haven and London: Yale University Press.
Jasanoff, Jay H., 1994, Italo-Celtic: the second coming. Paper presented at Fifth Spring Workshop on Theory and Method in Historical Reconstruction, University of Pittsburgh (April 10).
Jäschke, H.A., 1881, A Tibetan-English dictionary. London. Reprinted (1958) by Routledge and Kegan Paul Ltd.
Jones, Robert B., 1961, Karen linguistic studies: description, comparison, and texts. University of California Publications in Linguistics 25. Berkeley and Los Angeles.

Joshi, Tika Ram, 1909, A grammar and dictionary of Kanawari. Edited by H.A. Rose. Journal of the Asiatic Society of Bengal, n.s., vol.5, extra number.
Judson, Adoniram, 1953, Judson's Burmese-English Dictionary. Centenary edition, revised and enlarged by R.C. Stevenson and F.H. Eveleth. Baptist Board of Publications, Rangoon. 2nd Printing 1966 (1123pp.).
Jui I-fu, 1948, [Notes on the sounds of the Lisu language, with remarks on the Lisu script.] In Chinese. BIHP 17:303-327.
Karapurkar, Pushpa Pai, 1976, Kokborok (Tripuri) grammar. Central Institute of Indian Languages Grammar Series, 3. Mysore.
Karlgren, Bernhard, 1957. Grammata Serica Recensa. BMFEA 29/1:1-332. ('GSR’).
Kitamura, Hajime, T. Nishida and Y. Nagano, eds, 1994, Current issues in Sino-Tibetan linguistics. Organizing Committee, 26th International Conference on Sino-Tibetan Languages and Linguistics. Osaka.
Knowlton, Edgar C., Jr., 1976, Serial enumeration in Malayan Semai. In Diffloth and Zide, eds, Austroasiatic number systems, p.99. (Special issue of Linguistics: an International Review, 174).
Koefoed, H.A., 1958, Teach yourself Danish. London: English Universities Press Ltd.
Lewis, Paul, 1968, Akha-English dictionary. Data Paper 70, Southeast Asia Program, Cornell University, Ithaca, NY.
Lo Ch'ang-p'ei, 1942, A preliminary study of the Trung language of Kung Shan. HJAS 8/3-4:343-348.
Lorrain, J. Herbert, 1907, A dictionary of the Abor-Miri language. Shillong.
Lorrain, Reginald A., 1951, Grammar and dictionary of the Lakher or Mara language. Shillong: Eastern Bengal and Assam Secretariat Press.
Lu Shaozun, 1983, [An outline grammar of the Pumi language.] In Chinese. Beijing: People's Publishing Co.
1986, [An outline frammar of the Cuona Menba language.] In Chinese. Beijing: People's Publishing Co.
Luce, G.H., 1985, Phases of Pre-Pagán Burma: languages and history. 2 vols. Oxford and New York: Oxford University Press.
Ma Xueliang, 1949, [Annotated translation of the Lolo classic Rites, cures, and sacrifices: a text in the Luquan dialect of Lolo.J In Chinese. Bulletin of the Institute of History and Philology 20. Beijing.
1951, [Studies in the Sani Yi language.] In Chinese. Chinese Academy of Sciences Linguistics Monograph Series, 2. Shanghai.
McCoy, John and Timothy Light, eds, 1986, Contributions to Sino-Tibetan studies. Leiden: E.J. Brill.

Mainwaring, G.B. and A. Grünwedel, 1898, Dictionary of the Lepcha language. Berlin: Unger Brothers.
Maran, LaRaw, [in prep.], The Jingpho dictionary: a dictionary of modern Jingpho. [Revised and enlarged version of Hanson 1906, with tones indicated.]
Marcos-Marín, Francisco, 1993, Numerals and typology in minority languages of China. Proceedings of the XVth International Congress of Linguists, vol.4:169-172.
Marrison, Geoffrey E., 1967, The classification of the Naga languages of North East India. 2 vols. Doctoral dissertation, School of Oriental and African Studies, London.
Matisoff, James A., 1972a, The Loloish tonal split revisited. Research Monograph 7. Berkeley: Center for South and Southeast Asia Studies, University of California.

1972b, Tangkhul Naga and comparative Tibeto-Burman. Tonan Azia Kenkyu (Kyoto) 10/2:1-13.
1973a, The grammar of Lahu. University of California Publications in Linguistics, 75. University of California Press, Berkeley and Los Angeles. Reprinted 1982.
1973b, Tonogenesis in Southeast Asia. In Larry M. Hyman, ed., Consonant types and tone, pp.71-95. Los Angeles: Southern California Occasional papers in Linguistics, 1.
1975, Rhinoglottophilia: the mysterious connection between nasality and glottality. In C.A. Ferguson, L.M. Hyman, and J.J. Ohala, eds, Nasálfest: papers from a symposium on nasals and nasalization, 265-287. Stanford, CA: Stanford University.
1978a, Variational semantics in Tibeto-Burman: the 'organic' approach to linguistic comparison. F.K. Lehman, ed. Occasional papers of the Wolfenden Society on TibetoBurman linguistics, vol.6. Philadelphia: Institute for the Study of Human Issues (ISHI).
1978b, Mpi and Lolo-Burmese microlinguistics. Monumenta Serindica (Tokyo) 4:1-36.
1979, Problems and progress in Lolo-Burmese: Quo Vadimus? LTBA 4/2:11-43.
1980, Stars, moon, and spirits: bright beings of the night in Sino-Tibetan. Gengo Kenkyu (Tokyo) 77:1-45.
1985a, Out on a limb: arm, hand, and wing in Sino-Tibetan. In Thurgood, Matisoff, and Bradley, eds, 421-450.
1985b, God and the Sino-Tibetan copula, with some good news concerning selected TibetoBurman rhymes. Journal of Asian and African Studies (Tokyo Foreign Languages University) 29:1-81.
1986, The languages and dialects of Tibeto-Burman: an alphabetic/genetic listing, with some prefatory remarks on ethnonymic and glossonymic complications. In J. McCoy and T. Light, eds, 3-75.
1988a, The dictionary of Lahu. University of California Publications in Linguistics, 111. Berkeley, Los Angeles, London: University of California Press.
1988b, Universal semantics and allofamic identification - two Sino-Tibetan case studies: STRAIGHT/FLAT/FULL AND PROPERTY/LIVESTOCK/TALENT. In Akihiro Sato, ed. Languages and history in East Asia: Festschrift for Tatsuo Nishida on the occasion of his 60th birthday, 3-14. Kyoto: Shokado.
1989, Palatal suffixes in Sino-Tibetan. Paper originally presented at 22nd International
Conference on Sino-Tibetan Languages and Linguistics, University of Hawaii.
1990a, On megalocomparison. Language 66/1:106-120.
1990b, The dinguist's dilemma: V / d interchange in Sino-Tibetan. Paper presented at the 23rd International Conference on Sino-Tibetan Languages and Linguistics, University of Texas (Arlington).
1991, Sino-Tibetan linguistics: present state and future prospects. Annual Review of Anthropology 20:469-504.
1994a, Regularity and variation in Sino-Tibetan. In Yasuhiko Nagano et al., eds Current Issues in Sino-Tibetan linguistics, 36-58. Osaka: National Museum of Ethnology.
1994b, Sangkong of Yunnan: secondary 'verb pronominalization' in Southern Loloish. In Yasuhiko Nagano et al., eds Current issues in Sino-Tibetan linguistics, 588-607. Osaka: National Museum of Ethnology.
1994c, Watch out for number ONE: Jingpho ŋāi 'I' and ləŋâi 'one' (with some speculations about Jingpho number TWO). LTBA 17/1:155-165.
1995, Sino-Tibetan palatal suffixes revisited. In Yoshio Nishi, James A. Matisoff and Yasuhiko Nagano, eds, New horizons in Tibeto-Burman morphosyntax, 35-91. Osaka: National Museum of Ethnology.

1996, Languages and dialects of Tibeto-Burman. STEDT Monograph Series 2. Berkeley, CA: Center for Southeast Asia Studies.
In preparation, Languages of mainland Southeast Asia. Cambridge University Press.
Mazaudon, Martine, 1985, Dzongkha number systems. In Suriya Ratanakul et al., eds Southeast Asian linguistic studies presented to A-G. Haudricourt. 124-157. Nakon Pathom: Mahidol University.
Megu, Arak, 1985, Numerals of the Adis: a comparative study. Resarun 11/2:75-77.
Mei Tsu-lin and Jerry Norman, ca. 1968. The numeral SIX in Old Chinese. Unicorn 2:22-32.
Menninger, KarI, 1969, Number words and number symbols: a cultural history of numbers. Cambridge, Mass.: MIT Press. Translated from the revised German edition (1958).
Michailovsky, Boyd, 1988, La langue Hayu. Paris: Editions du Centre National de la Recherche Scientifique.
Michailovsky, Boyd and Martine Mazaudon, 1992, Preliminary notes on the languages of the Bumthang group (Bhutan). Paper presented at the 25th International Conference on SinoTibetan Languages and Linguistics, University of California, Berkeley. To appear in Proceedings of the 6th Conference of the International Association of Tibetan Studies (Fagernes, Norway).
Momin, K.W., n.d., English-Achikku [Garo] dictionary. Calcutta.
Nagaland Bhasha Parishad [Linguistic Circle of Nagaland], 1972a, Hindi-ChakhesangEnglish dictionary (Chokri dialect). Kohima. 138pp.
1972b, Hindi-Pochury-English dictionary. Kohima. 100pp.
1973, Hindi-Zeliang-English dictionary (Zemi dialect). Kohima. 95pp.
1974, Hindi-Kheja-English dictionary. Kohima. 199pp.
Nagano, Yasuhiko, 1979, A historical study of rGyarong rhymes. LTBA 5/1:37-47.
1984, A historical study of the rGyarong verb system. Tokyo: Shiseido.
Nishi, Yoshio, 1982, Swadesh 100-word lists for some languages of the Monpa group. MS.
Nishi, Yoshio, James A. Matisoff and Yasuhiko Nagano, eds, New horizons in Tibeto-Burman morphoxyntax. Senri Ethnological Studies, 41. Osaka: National Museum of Ethnology.
Nishida, Tatsuo, 1964, [Burmese and the Lolo languages: a comparative study of their tonesystems] In Japanese. Tonan Azia Kenkyu 4:13-40.
1966/1967, [A comparative study of the Bisu, Akha, and Burmese languages.] In Japanese. Part I, Tonan Azia Kenkyu 4/3:42-68 (Dec. 1966); Part II, TAK 4/5:52-68 (March 1967).
Ono Toru, 1965, [The reconstruction of Common Kuki-Chin: (I) Word-initial consonants.] In Japanese. Gengo Kenkyu 47:8-20.
Osburne, Andrea G., 1975, Transformational analysis of tone in the verb system of Zahao (Laizo) Chin. PhD dissertation, Cornell University.
Phillips, E.G., 1904, Outline grammar of the Garo language. Shillong.
Rai, Agami Singh Dewsa, 1944, Thulung Rā̄̄ Bhāsā [The Thulung Rai language]. In Nepali. Darjeeling.
Robinson, W., 1851, Notes on the Dophlás and the peculiarities of their language. JASB 20:126-137.
Rock, J.F.C., 1963, A Na-Khi-English encyclopedic dictionary, Part I. Serie Orientale Roma 28, Istituto Italiano per il Medio ed Estremo Oriente. Rome.
Roop, DeLagnel Haigh, 1970, A grammar of the Lisu language. PhD dissertation, Yale University.
Sandberg, Graham, 1895, Manual of the Sikkim Bhutia language or Denjongke. Second and enlarged edition. London: India Office Library.
Schmidt, Ruth L., 1993, A practical dictionary of modern Nepali. Delhi: Ratna Sagar P. Ltd.

Simon, I.M., 1972, An introduction to Apatani. Philology Section, Department of Research, Arunachal Pradesh. Gangtok, Sikkim.
1976, Hill Miri language guide. Published by Director of Information and Public Relations, Arunachal Pradesh.
1979, Miji language guide. Philology Section, Department of Research, Arunachal Pradesh. Gangtok, Sikkim.
Solnit, David B., 1979, Proto-Tibeto-Burman ${ }^{*} r$ in Tiddim Chin and Lushai. Linguistics of the Tibeto-Burman Area 4/2:111-121.
1984, Kayah numerals. MS.
In preparation, A grammar of eastern Kayah. (Will include a collection of texts and a glossary.)
Srinuan Duangkhom, 1976, An Mpi dictionary. Edited by Woranoot Pantupong. Working Papers in Phonetics and Phonology, vol.I, No.l, Indigenous Languages of Thailand Research Project. Bangkok.
Sun Hongkai, 1981, [An outline grammar of the Qiang language.] In Chinese. Beijing: People's Publishing Co.
1982a, [A brief introduction to the Ersu (Tosu) language.] In Chinese. Yuyan Yanjiu 2:241264.

1982b, [An outline grammar of the Dulong language.] In Chinese. Beijing: People's Publishing Co.
1983, [Outline of the Idu Luoba language.] In Chinese. Minzu Yuwen (6):63-79.
1985, [Peoples and languages of the Six River Valleys and their genetic classification.] In Chinese. Minzu Xuebao 3:99-273.
Sun Hongkai and Liu Lu, 1986, [An outline grammar of the language of the Nu people (Nusu dialect).] In Chinese. Beijing: People's Publishing Co.
Sun Hongkai, Lu Shaozun and Ouyang Jueya, 1980, [The Monpa, Lhopa, and Deng languages./ In Chinese. Beijing: Chinese Social Sciences Publishing Co.
1993, A historical-comparative study of the Tani (Mirish) branch of Tibeto-Burman. PhD dissertation, University of California, Berkeley.
Sun, Jackson Tianshin, 1992, Review of ZMYYC (Chinese Academy of Social Sciences, 1991). LTBA 15/2:73-113.
Taid, Tabu, 1993, Mising wordlist. MS.
Talukdar, G.C. et al., 1962, A phrase book in Idu. Philological Section, Research Department, Northeast Frontier Agency, Shillong.
Thirumalai, M.S., 1972, Thaadou phonetic reader. Central Institute of Indian Languages Phonetic Reader Series, 6. Mysore.
Thurgood, G., J.A. Matisoff and D. Bradley, eds, 1985, Linguistics of the Sino-Tibetan area: the state of the art. PL, C-87.
Toba, Sueyoshi, 1975, A Khaling-English and English-Khaling glossary. Kathmandu: Tribhuvan University Press.
Turner, Ralph L., 1931, A comparative and etymological dictionary of the Nepali language. London: Routledge and Kegan Paul Ltd.
1966, A comparative dictionary of the Indo-Aryan languages. London: Oxford University Press.

Weidert, Alfons, 1987, Tibeto-Burman tonology: a comparative account. Amsterdam/ Philadelphia: John Benjamins.
Wen Yu, 1950, [An abridged Ch'iang vocabulary (Chiu Tzu Ying dialect).] In Chinese. Studia Serica 9:17-54.

Wen Yu, 1950, [An abridged Ch'iang vocabulary (Chiu Tzu Ying dialect).] In Chinese. Studia Serica 9:17-54.
Wiersma, Grace, 1990, Investigation of the Bai (Minjia) language along historical lines. PhD dissertation, University of California, Berkeley.
Wu Zili, 1993, [A preliminary study of the Mo'ang speech in Funing County, Yunnan.] In Chinese. Minzu Yuwen 2:53-63.
Xu Xijian and Xu Guizhen, 1984, [An outline grammar of the Zaiwa language of the Jingpho nationality.] In Chinese. Beijing: People's Publishing Co.
Yabu, Shiro, 1982, (A classified dictionary of the Atsi or Zaiwa language (Sadon dialect), with Atsi. Japanese, and English indexes./ In Japanese. Tokyo: Institute for the Languages and Cultures of Asia and Africa, Tokyo Foreign Languages University.
Yuan Jiahua, 1947, [Preliminary investigation of the Woni language of Er-shan.] In Chinese. Nankai State University, Frontier Peoples' Culture Department, Publication 4. Tianjin.
1953, [The Folksongs and Language of the Ahi People.] In Chinese. Beijing: Chinese Academy of Sciences, Linguistics Research Institute Monograph Series, 5.
Zhao Yansun, 1982, [The problem of the genetic affiliation of the Bai language.] In Chinese. In Minzu Yuwen Yanjiu Wenji, 150-188. Xining: Qinghai People's Publishing Co.

[^0]: 1 See especially STC, § 16 , pp.93-95. References preceded by '\#' refer to the numbered cognate sets in STC; other references are to page numbers.
 2 Shortly before the publication of STC, Benedict changed his original reconstructions of the PTB rhymes *-iy and *-uw to ${ }^{*}-\partial y$ and ${ }^{*}-\partial w$. These reconstructions are essentially equivalent (for some discussion see Matisoff 1985b, 20-21), hence the 'equals' signs in the chart. Quite distinct from the above are cases where Benedict (explicitly or implicitly) recognises phonological variation at the proto-stage. These are marked with a tilde in the chart. The case of TEN poses a special problem (see below).

[^1]: 3
 The theoretical framework for the analysis of variational phenomena in TB, including the notion of allofam (i.e. word-family alternant) has been developed at length in Matisoff (1978a), Variational semantics in Tibeto-Burman ('VSTB'). The symbol ' x ' is there introduced to stand for the allofamic relationship: $\mathrm{X} ¥ \mathrm{Y}$ ' X and Y are co-allof ams; X and Y both belong to the same word-family'.

[^2]: 7 See Matisoff (1972a 35, 71), The Loloish tonal split revisited.
 8 Lushai pasarih ' 7 ' is a doubly prefixed form, with the younger *pa- attached before the older sa- (< PTB *s-nis). Contra Matisoff (1980:16-17), the Lushai form pakua '9' furnishes no support for a PTB *bprefix with this numeral.
 9 According to STC, SIX and NINE have the same prefix $* d-$, but there are no two consecutive higher numerals (6-7, 7-8, or 8-9) with the same prefix at the PTB level. For innovative runs in the higher numerals in Kuki-Naga, see §5.4.4.

[^3]: See §4.2.1.7.
 32 Aka/Hruso from LSI III. 1, Miju from Das Gupta (1977a); Milang from Das Gupta (1980); Serdukpen from Dubey (1983).
 33 See also the section 'Chinese numerals' in STC, pp.161-162. Special studies have been devoted to the Chinese numerals ONE (Boltz 1969), TWO (Boltz 1977), and SIX (Mei and Norman 1968).

[^4]: Henderson (1986:112).
 See Nishida (1966/7).
 In Matisoff (forthcoming), I suggest the term 'Sinonumeric' to refer to those Tai-Kadai languages that have borrowed the Chinese numerals en masse. The inherited Austro-Tai numerals are preserved only in a few obscure 'outlier Kadai' languages like Li (Hainan). For the introduction of the terms 'Sinosphere' and 'Indosphere', see Matisoff (1990a and 1991).

[^5]: from la 'hand' and brem 'finger'; Mewahang ihuk '5' (and perhaps hukhu '10') are derivates of huk 'hand'. For the widespread association between FIVE and HAND, see §4.1.5.
 8 For young children, big numbers are mysterious undifferentiated jumbles, so many 'forty-levens'es'.
 9 We do have a few idioms in English involving higher numerals (at sixes and sevens, six of one and half a dozen of the other, a stitch in time saves nine, etc.), but none of them are likely to be acquired by a child at an early age - certainly not until long after he has learned things like ' $1,2,3$-go!'
 Analogously, expressions like give him an inch and he'll take a mile will survive long after the English-speaking world converts completely to the metric system.
 11 Note the convergence of the rhymes in SEVEN and EIGHT.

[^6]: 12 LSI also cites forms for FIVE and SIX, which appear, however, to be multiplicative in origin (§4.2.0.1).
 13 The Kubhinde dialect of Dumi also uses -pu with all its TB-derived numerals, though only 1-4 survive in this dialect: tokpu ' 1 ', sokpu ' 2 ', bhlokpu ' 3 ', rokpu ' 4 '. As noted below ($\S 4.0 .2$) the Kubhinde words for ' 2 ' and ' 3 ' have been 'transvalued' from their original meanings of ' 3 ' and ' 4 ', respectively.
 14 Other Bantawa dialects have a suffix with retroflex t, e.g. $\ddagger k t a(k)$ ' 1 ', h hata ' 2 ', sumkat ' 3 ', retkatat ' 4 '. See Gvozdanović (1985:155).

[^7]: 1 See Matisoff (1978a:40-41). ('VSTB')
 2 Compare *tik *tyak '1’(§3.1.4), *gip *gyap '10’(§3.2.1), and perhaps *ring *ryang '10' (§3.2.3.3).

[^8]: Supporting forms for *?gyik 'little bit' offered in TSR \#70 include WT cig 'a little, few, some’, WB $k y a c ~ ' b e ~ d i m i n u t i v e, ~ s m a l l e r ~ t h a n ~ o r d i n a r y ', ~ L a h u ~ a-c i ́, ~ A k h a ~ a ́-c y ́ q, ~ a n d ~ M o s o ~ t c i ' s ~ ' . ~$.
 Several PLB variants are reconstructed in Matisoff (1972a) ('TSR') \#31/\#48 and \#70: *-tik * *ti*
 *Tdik *?-gyik **yik. A revised analysis is offered in Matisoff (1985b) ('GSTC') \#148, where there is reconstructed a new PST word-family of the shape *day *tay *dan *tan. Still another allofam *tey is recognised in GSTC to underlie forms like WB thî'single, alone'. Much work remains to be done in this complex word-family, which challenges our understanding of Lolo-Burmese vocalism in general.
 Other candidates for membership in the $*$ day $*$ tay group include Monpa (Dubey) thee, Nocte wan-the (Dubey, Das Gupta), van-the (GEM) (for the first syllable see ${ }^{*} h a \eta$, §3.1.5.3), Ersu $t \varepsilon^{55}$, Pumi $t i^{13}$ (Qinghua); t^{45} (Taoba). For an alternative etymology of the Nocte form see §3.1.5.2.
 It is demonstrated in GSTC that Lahu -e is the normal reflex of PTB *-ay (as well as of *-an). The variation between TB ${ }^{*}$-ay and Chinese ${ }^{*}$-an that is hypothesised for this etymon is shown to be paralleled in several other cases. For detailed further discussion of these complex word families, please see Matisoff (1989/1995, \#27).
 Compare also Kham to-bo. Michailovsky observes that Khaling -u can be a reflex of *-ik (pers.comm. 1995).

[^9]: 15 J.T. Sun (1993:234) reconstructs Proto Eastern-Tani *tel on the basis of the Mising-Padam and Milang forms.
 16 Dimasa and Mikir s-frequently reflect the PTB affricate ${ }^{*} t s$ - (STC p.28). French (1983:529) reconstructs Proto Northern-Naga *-tse on the basis of the Yogli and Muklom forms just cited, as well as Chang Naga cie and Nocte van-the. An alternative etymology for this Nocte form is suggested above (footnote 12).
 17 Lorrain (1951:59) notes that the word for 'one' (here written sá) is "high-pitched", while the nearly homophonous Lakher word for 'thousand' is "low-pitched" (sà). Undoubtedly cognate to these Kamarupan forms is Jingpho šà ‘only’ (Dai et al. 1983:726).

[^10]: 18 See §5.4.4.6 'Where the lowest run has a fully syllabic CVC- prefix'.
 19 These Qiang dialects have other allomorphs for ONE (which occur in compound numerals like ELEVEN): Taoping $t \mathrm{fi}^{33}$, Mawo tgi (Sun 1981:217), clearly from the ${ }^{*} t(y) i$ - family (§3.1.4).

[^11]: 36
 This is an apocopating language. Compare Chulikata $k \bar{a} s h ~ ' t h r e e ' ~<~ * g-s u m ~(§ 4.1 .2, ~ § 5.1 .3 .1) . ~$
 These AMD forms are phonologically quite similar to another, probably distinct root for HUNDRED (§3.5.4.6).
 38 All these illustrative forms meaning ' 50 ' are from GEM, not Weidert.
 39 This is the Mikir combining form for teens, as in kre-isi ' 11 ', kre-hini ' 12 '; the independent Mikir numeral ' 10 ' is $\operatorname{kep}(\S 3.2 .1)$.

[^12]: 40
 This form bears a merely accidental resemblance to some AMD forms descending from *tir 'ONE', e.g. Mising a-ter, Padam a-tel (§3.1.5.1).
 41 The apostrophe probably means glottal stop.
 42 This form was cited in STC \#408, but the first syllable was not related to anything else, and the second syllable was misinterpreted as TEN, not ONE. See footnote 25 , above.
 43 See Weidert (1987:413) and §3.5.2.1.2.
 44 Lakher also has a multiplicative combining form for the multiples of ten, sy- (e.g. sy-pali ‘40'), hence ' 10 ' can also be expressed as $s y-k h a$ ($k h a$ 'one').

[^13]: 45
 This root has several reflexes in Tibetan, e.g. WT Itams-pa 'be full', tham-pa them-pa 'complete, full', Idem-pa 'straight, upright'. As demonstrated in Matisoff (1988b), STC \#226 'full' and \#227 'straight/flat' really represent one and the same etymon. The presence of the 'infinitive' or nominalising suffix -ba/-pa in these Bodish forms indicates that the preceding morpheme is inherently verbal. Perhaps allofamically related to this root is Lepcha t'ăp (<*tap, with homorganic final stop), used in teen-formation, e.g. sam-t'ăp '13', tărăk-t'ăp '16’; see §3.3.2[A]. But see footnote 58, below.

[^14]: 48 All data in this section is from Marrison (GEM), except for the Pochury forms (for which see Nagaland Bhasha Parishad 1972b).
 49 The independent Ntenyi form for THREE is either keching or keshang, both different from the combining form -kecham.

[^15]: ' 13 ' and ' 12 ' are the only Khoirao teens to be found in Marrison. Note the change in the consonant of the UNIT morpheme (k athum > -kasum), paralleled also in ' 12 ' charanakachi ($k a t i$ ' 2 '), as well as the change in the prefix of the TEN morpheme (sara > chara-).

 Meithei has the linking -thoi suffix only in 11-13; the rest of its teens are formed by simple juxtaposition (e.g. 15).
 11-14 are the only Mzieme teens that appear in Marrison. Note the combining form kerie- vs. independent kerei ' 10 '.
 Puiron ' 15 ' is lacking in Marrison, but 11-14 are somkhatto, somkhanito, somthumto, somlito (< khat. kani, thum, mali'1-4’).

[^16]: confirm the reality of the variational pattern with this root, as perhaps do the Tangkhul variants maga and maku (footnote 73).

 Af icionados of worldwide look-alikes will be pleased toknow that the reconstructed etyma for TWENTY in at least two Mesoamerican language families bear a striking resemblance to our TB forms: Proto Mayan ${ }^{*}$ 'ahl (with ${ }^{*}$ preglottalised initial) and Proto Otomanguean *kala! (Pers.comm. Terrence S. Kaufman, April 1994.)
 The independent Wancho word for ' 20 ' is caor tsa (above). W.T.French (1983:572) reconstructs Proto Northern Naga *ja on the basis of Wancho tsa, Konyak ta, Phom ta, and Chang sau (see §3.5.2.4), but perhaps these may all be referred back to an earlier ${ }^{* * k}(y)$ al.
 Marrison (1967:279) has 'somnga' for ' 20 ', though this certainly seems to be an error, since sompa is glossed as '50' on p.79. The form somni is my own guess.

[^17]: 81 Liangmai '40' does not exactly fit the pattern; it has the prefix a-instead of ri(a)- ('4' is madar); '70, 80, 90' all have ria- (riachania, riatachad, riachakiu).
 82 Note kiithu 'three' she- 'thir-'.
 83 Zeme '70, 80, 90' have riak: riaksena, riakdesat, riaksekui.
 84 Note the assimilation of the final of riak- to the nasal root initial in FIVE.

[^18]: 86 Compare Lotha ti-ing ' 7 ', ekhati-ing ' 70 '.
 87 The Dimasa form dan looks as if the rhyme of an original second syllable was apocopated, so that the former prefix amalgamated with the former second syllable's initial to form a stressed monosyllable. See §4.1.4.1.1.
 A slight exception is Sangtam, which lacks a dental prefix in ' 8 ' (thuro, thunye, ke, tuku, thure). See §5.4.4.
 89 Among the puzzling sidelights here is the similarity between FIFTY (ti-ingya) and SEVEN (ti-ing) in Lotha. Is this merely accidental? See §4.2.2.8.
 90 This is similar to the case of those languages discussed above (§3.5.2.1.2(a)) where it was the word for THIRTY whose constituent order was out of step with all the higher round numbers.

[^19]: 91 Wednesday occupies an analogous position with respect to the other days of the week (cf. German Mittwoch, lit. 'mid-week').
 92 Pers.comm., July 18, 1988. This metaphor makes especially good sense if one thinks of the horizontal backbone of an animal on all fours. A more specific Meithei compound for 'backbone' is yay-len səru (where the last constituent means 'bone'). A rough analogy to this intrusion of a word from an outside semantic field into a system of round numbers is Russian sórok '40', which is said to derive from a word meaning 'a batch of fur pelts'.

[^20]: 104 These forms are obviously resyllabifications of compounds where the second element began with prefixal b - (cf. WT bću ' 10 '). Incidentally, this language has developed special 'round number combining forms' for almost all of the primary numerals, e.g. sum ' 3 ', so- 'thir-', as in so-chi ' 31 ', sonyi ' 32 '; Tuk ' 6 ', re- 'six-', re-chi ' 61 '.

[^21]: 105 This form, etymologically ' 2×10 ', originally meant ' 20 ' in the decimal system, but has been transvalued to mean ' 20 squared' in the vigesimal system! See the following chart, and $\S 4.0 .2$ below.
 106 The second syllable is identified by Mazaudon (1985:137) with WT che-ba 'large', so that the compound means 'a large twenty', much as French une grosse (> English gross) ' 12 dozen; 144' derives from une grosse douzaine 'a big dozen'). The etymology of the first syllable of jãche remains obscure. Michailovsky (pers.comm. 1995) suggests a connection with Tibetan yay 'again', that is 'even bigger'.
 107 The morpheme $t s a$ is a fascinating example of a radical but entirely natural semantic slippage. As Mazaudon shows (1985:129), it derives from the WT conjunctive particle rtsa used to connect the tens to the units, e.g. nyi-shu-rtsa-gcig ' 21 ' (' 2×10 plus 1 '). When the first element was omitted (as of ten in Tibetan itself), the connective took on the meaning ' 20 '! See the discussion of numerical transvaluation, §4.0.2. The morpheme $d a(<W T d a y)$ then took over connective function in the Dzongkha vigesimal system (e.g. khe-cida cı).
 108 See footnote 104 for the first syllable. For an etymological explanation of the special combining forms of the names of the units used for the tens, see Mazaudon (1985:153).
 109 One can also say fa-thampa (' 100 full'), with the same 'full' morpheme as found, e.g. in Sherpa and Jirel (§3.2.2; §3.2.3.5; §3.5.3.3[C]; §3.5.3.4[B]).

[^22]: 110 This is not so different from the German and Russian way of expressing the half-hour when telling time, for example, German halb vier, Russian polovino cetvortogo '3:30', i.e. 'half of four'.
 111 Hodgson (1880:166-167) gives them all the way to 10: kruk-zho '6', chana-zho, prap-zho, takhu-zho, gyib-zho.
 112 Compare the case of Sherpa, §3.5.3.3, where this same etymon has been transvalued from TWENTY to TEN.

[^23]: 113 The Chepang forms for ' 40 ', ' 50 ', and ' 60 ' are inadvertently transposed one column to the left in CSDPN (p.204), which makes it a maddening task to figure out what is going on! This error has also been noticed by Mazaudon (1985:155).
 114 Another dialect of Wancho (Das Gupta 1979) has hesitation between a vigesimal and a non-vigesimal expression: hu-ga (hu '20'), corresponding to Marrison's pu-ga) but also ho-ta (-ta, tu-ta ' 1 '), where ho looks like a reflex of the general monomorphemic root *b-r-gya (below).

[^24]: 115 Sun Hongkai et al. (1980) transcribe Deng Geman (Kaman) ' 100 ' as $w 2^{55}{ }^{5} e^{53} m u^{53}$.
 116 The apparent homophony of these two syllables reminds one of the Lahu number hí hí ' 8,000 ', where even the tones are identical. This is pure accident, however: the first syllable is from PLB * ?rit 'eight', but the second is a loan from Shan hig 'thousand'. See Matisoff (1988a:1070).

[^25]: 119 Compare perhaps Mishmi (Dubey) muou ' 10 ' (§3.2.3.7, §3.4.2).
 120 J.T. Sun (1993:121) sets up a Proto Taniroot *lurg 'hundred', distinct from PTani *rjug 'ten’ (p.144), citing forms like Bengni and Bokar luig, Bangru lan ${ }^{53}$, Dhammai bur-loy, and Hruso phu-yu.
 121 A case of confusion of ' 10 ' and ' 100 ' through borrowing is pointed out for Kanauri by Joshi (1909:108), where Tibetan nyi-gyá ' 200 ' has been borrowed as Kanauri ni-jä ' 20 '.

[^26]: 122 Note that the Germanic word for THOUSAND is historically a compound meaning 'swollen hundred' (PGmc * θ us-hundi, Old Norse θ eshundrad).
 123. This Adi form is from Megu (1985). Note the different order in which the morpheme ko 'one' appears in Abor-Miri and Adi.

[^27]: 1 In this discussion we use the symbols --> and <-- to indicate the direction of influence.
 2 For example Germanic FIVE influenced FOUR (we would expect English *whour); Russian desjat' ' 10 ' influenced devjat' ' 9 ' (instead of the expected ${ }^{*}$ nevjat). See $\S 5.2$. At first glance it looks as if Latin quattuor ' 4 ' influenced the initial of quinque ' 5 ' (instead of the expected *pinque); but the labiovelar in FIVE was a regular assimilatory development in etyma of the form ${ }^{*} p . . . k w$ (other examples are 'oak' (PIE *perkwo-> Lat. quercus, not *percus) and 'cook' (PIE *pekw- > Latin coquo, not *poquo). See Jasanoff (1994).

[^28]: 7 See STC \#4, and pp.16, 75, 94, 130, 131, 147, 162, 168, 169, 185, 186.
 8 Lepcha here exhibits the variational pattern -i-~-ya-, that is so well documented for TB as a whole (see STC note 251, p.84; VSTB pp.40-43).
 9 Khmer has such a system to the present day, where SIX is expressed as ' $5+1$ ', SEVEN as ' $5+2$ ', EIGHT as ' $5+3$ ', and NINE as ' $5+4$ '. See $\S 4.1 .5$.
 For an explanation of this form as an allof am of the Jg. first-person pronoun gāi, see Matisoff (1994)
 'Watch out for number one', LTBA 17.1.

[^29]: 13
 STC (notes 60 and 61, p.16) fudges on whether suffixal ${ }^{*}-k$ is to be set up for this root, deciding finally that it is not; but the AMD and Himalayish forms settle the matter in the affirmative as far as I am concerned.

[^30]: This numeral plays interesting conceptual roles in some TB languages. We have seen how the Boro system is basically quaternary ($\S 3.3 .2[\mathrm{C}]$); many AMD languages express EIGHT as a multiplicative formation ' 4×2 ' (§4.2.3.7).
 See STC pp.33, 61, 88, 91, 94, 104, 111-112, 131, 152, 158, 171-172, 180, 196.
 J.T. Sun (1993:124) reconstructs PTani *pri.

 21 This is the only Konyak numeral that carries a prefix. W.T. French (1983:492) reconstructs Proto Northern Naga *bolay.
 22 Many of these AMD forms have acquired a secondary vocalic prefix, af ter the preemption.
 23 This point has been much discussed in the literature, sometimes with acrimony. See STC, p. 60.

[^31]: 24 This Burmish language, formerly known by the misnomer 'Kanburi Lawa', has been rediscovered by D. Bradley. See, for example, Bradley (1978).

 25 The unusual Lahu vowel reflex is regular, with several parallel examples that have been much discussed in the literature. See my note 195 and notes 263-264 in STC, pp.61, 91. The most extensive recent treatment is in Matisoff (1994a:46-50). The optional nasalisation of the vowel is due to 'rhinoglottophilia' after the zero-initial (see Matisoff 1975).

[^32]: Compare Proto Austronesian *ka-lima 'five; hand', as well as evidence for a 'hand-based' quinary numeral system in some Himalayish languages (§4.1.5).

[^33]: See the charts in Gvozdanović (1985:135-136). As noted above (footnote 31), such a constellation of ideas is also found in Austronesian (PAN *ka-lima 'hand; five').

[^34]: Kom Rem and Puiron have a velar prefix with other high numerals as well: Kom Rem and Puiron karet

[^35]: 43 A couple of other Qiangic languages have simple velar stop initials (Namuyi $q h^{33}$ and Guiqiong $k h \nu^{33}$).
 44 Apparently with assimilation of the final stop to the roundedness of the vowel.
 45 As convincingly demonstrated in Solnit (1979). See also §4.2.2.1.2.

[^36]: 46

 For example, §4.0.2; §4.1.1; §4.1.4 and §4.2.0.
 See Matisoff (1985a:432), 'Out on a limb: arm, hand, and wing in TB'.
 Given as stish in Joshi (1909:2-3).

[^37]: 52 Limbu - si is suffixal, occurring with most of the other numerals (' 3 ' sum-si, ' 4 ' lii-si, ' 5 ' $n(\mathrm{~g}$)aa-si, ' 6 ' tuk-si, '8' phang-si). See Gvozdanović (1985:162).
 53 Cited as "nigs" in CSDPN, an obvious typo.
 54 Benedict (1979:13) sets up Proto Karen *hnas, and seems to be claiming that the final *-s (reflected by $\mathrm{Pa}-\mathrm{O}-t$) is to be considered part of the root - even though with the numerals FOUR, FIVE, and NINE it is a suffix (1979:19; see §1.2.1). This apparent contradiction is resolved by assuming that in 'SEVEN' the suffix had already become "welded" to the root at the PST level (1979:20). For Loloish forms which support the suffixal nature of the ${ }^{*}-s$ in SEVEN, see $\S 4.2 .2 .5$.
 55 This form also shows convergence in rhyme with the next higher numeral, Thulung let 'eight'.
 56 Contra TSR \#128, the Luquan form does not come from a stopped syllable; if it did, the ${ }^{55}$ tone would have constriction. The same is true of the Luquan form for TWO (contra TSR \#160), cited at §4.1.1.

[^38]: Monosyllabisation of disyllabic compounds is a strong tendency in Qiangic. See Benedict (1983) and Matisoff (1991:493). Compare similarly preempted and apocopated forms for FIVE (§4.1.4.1.1), the Nishi forms for ' 7 ' and ' 8 ' (§4.2.2.5), and the general discussion (§5.1.3.1). See also Bumthang zon ' 2 ', and 'Transvaluation of numerals', §4.0.2.
 59 J.T. Sun (1993:213) reconstructs Proto Tani *kV-nut.

[^39]: 72 This is all the more probable since Sunwar gow means 'TEN', but looks like an 'upstepped' reflex of NINE (*d-kəw). For another possibility, see §4.2.4.6.
 73 J.T. Sun (1993:125) reconstructs a Proto Tani multiplicative compound, ${ }^{*}$ pri-ñi.
 74 Compare Minyong a-nyi ' 2 ', but $a-$ ki '4' (<?). Note that the inherited PTB root for FOUR, *b-lay, survives in Minyong only in its multiplicative derivative EIGHT.
 Nishi and Nyisu show apocope of the final vowel, as also in Nishi ken ‘7’ (cf. Padam kane).

[^40]: 81 Compare thai-day-nya 'eighth', §4.2.3.8. Unlike 'eighth' and 'ninth', the Boro ordinal numerals 'sixth' (thai-do-nia) and 'seventh' (thai-shni-nia) faithfully preserve the general TB roots for SIX and SEVEN that have been lost in the usual quaternary system of cardinal numbers (§1.2.4). syllables with former final stop. This seems directly cognate to the Miju form in -t. (This dialect of Kayah has another form for ' 9 ', $d a$ (Tone *B-1), whose etymology remains obscure (data from D. Solnit).

[^41]: 1 In TSR (Matisoff 1972a), ' C ' is used as a cover symbol to stand for a *voiced prefix that caused its syllable to belong to the LOW category of stopped syllables, even if the following root initial was *voiceless. Conversely, the ${ }^{*} k$ - prefix had the power to shift a syllable with a voiced resonantal rootinitial into the HIGH stopped class.

[^42]: 2 See the discussion of 'Mutual influence of numerals', §4.0.1. Similar phenomena are readily found in other language families, including Indo-European (above, loc. cit.) and such branches of Austroasiatic as Aslian (see the discussion of made-up rhyming numerals in Semai in Knowlton 1976) and Katuic (Gérard Diffloth pers.comm.). Ives Goddard (pers.comm. 1994) observes that the Proto Algonkian numerals from 1 to 5 all have initial ny-, pointing to an original quinary system.

[^43]: 4 Rgyalrong, with its rich and complex prefix combinations, including double prefixes for most numerals, is probably best regarded as not belonging to the Himalayish branch of TB, but rather to the newly articulated Qiangic group. See §1.2.3.
 Many TB languages of Nepal have lost their higher numerals, replacing them with Indo-European ones from Nepali. These are discussed in §2.1.
 6 These forms are from Sandberg's (1895) 'Sikkim Bhutia', now the national language of Bhutan under the name Dzongkha (or Danjongka). They are closely confirmed by the tape of Chhewang Rinzin (pers.comm. 1984); on this tape the vowel of SEVEN sounds like barred-i: d $d n$.

[^44]: 9 This may merely be an artifact of the data in GEM. It is quite possible that all the numerals in Phom-Chang-Konyak-Wancho can optionally take the a-prefix (cf. Wancho ' 4 ', given as liin GEM, but as aIi in Das Gupta 1979). This brings out the important point that having a single prefix usable with all numerals is like having no prefixes at all; in neither case are prefixes exploited for distinctive purposes.

[^45]: 10 This prefix is reminiscent of the favourite Mikir prefix ing-, which occurs with many dozen common nouns (but only with one numeral, ingkoi TWENTY). See §5.4.2.1.
 11 It will be remembered that STC sets up ${ }^{1}$ - па as a PTB allofam of $* b$-ŋа (§4.1.4).

[^46]: 16 See Matisoff (1978a:277-278) (note 258).
 17 Several AMD languages show a tendency to metathesise the initial consonant and vowel of TWO. An intermediate stage is represented by the syllabic nasal in Deng Darang (§4.1.1.1).

[^47]: 1 As this monograph was going to press, I learned of a large-scale project on the 'typology of numeral systems' being carried out at the University of Madrid, which includes data on the minority languages of East Asia. The present study should provide much grist for their mill. See Marcos-Marín (1993).

