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Abstract 
Commercial and scientific applications exist with computational and communications 

requirements that far exceed the most powerful computers available today. Short of 

radical change in technologies, it is generally recognised that the way ahead to satisfy 

the demand for increased computational resources is restricted to parallel computer 

systems. Many such parallel computers present a distributed address space 

programming environment which assists in achieving scalable performance. 

Finding safe and efficient language mechanisms for programming in the context of 

a distributed address space is a significant challenge for computer science. This thesis 

addresses several issues that arise in meeting the challenge through development of the 

process-oriented programming language paraML. The design choices for the language 

are motivated and realised as extensions to ML. 

The paraML language is modelled theoretically by an untyped lambda calculus 

called A,ro· The key results of the theoretical modelling are the formal specification of 

computation with reference variables which have been copied from one process to 

another. A proof of type soundness for the polymorphic type system is given which 

thus guarantees that any typable program will not produce a type-error at runtime. 

A working version of paraML has been implemented as a proof-of-concept and 

used for applications. The performance metrics of the implementation are given to 

illustrate the scalable characteristics of the implementation. ParaML demonstrates 

that process-oriented mechanisms are valuable in simplifying many of the 

complications associated with programming in distributed address spaces. 

V 

~ 



----
t::7:s----

-
=

=
 



Acknowledgments 
Thanks ... 

TO the members of my supervisory panel-Malcolm Newey, Robin Stanton and Chris 

Johnson: for their ad vice and encouragement. 

TO Mike Bailey, Joanne Evans, James Popple, Trevor Vickers and Greg Wilson: for 

their comments on and helpful critical reading of various parts of various drafts. 

TO the members of our weekly graduate student forum, particularly the regulars -

Steve Blackburn, Stephen Fenwick, Bill Keating and Richard Walker: for their 

enthusiastic approach to research, constructive debates and general support. 

TO Dave Hawking, Paul Mackerras, David Sitsky, Andrew Tridgell and Dave Walsh: 

for their first-class work in creating and supporting the computing environments 

with which I've worked. 

TO the various members of the Department of Computer Science's academic, 

administrative and computing support staff - particularly Sally Begg, Kath Read 

and Wendy Novak. 

TO Alisdair Bruce, Simon Chapple, Lyndon Clark, Murray Cole, Neil Heywood, Andy 

Sanwell and Gordon Smith: for their help and support during six months visiting 

the Edinburgh Parallel Computing Centre. 

TO Andy Gordon, Thierry Le Sergent, Dave Matthews, Greg Morrisett, Benjamin 

Pierce and John Reppy: for their discussions and advice on matters concerning ML 

and concurrency. 

TO the staff at The Gods Cafe - particularly Warwick, Di and Bill: without whose 

coffee mornings would have been so much less productive. 

AND TO my family and friends - Margaret & Michael, Thomas & David, Reagan, Clare, 

Penelope, Charlie & Ingrid, Keiran, Kim, Nigel, Subho, Andy & Rachet Felicity, 

Graham & Charlotte, Quintin, Simon & Heather, Greg, Don, Gavin & Emma, and 

Joey: for sustaining me throughout the years. 

This research was supported by an Australian Postgraduate Award PhD Scholarship. 

Additional financial support was provided by a topup PhD Scholarship from the Advanced 

Computational Systems Cooperative Research Centre and by a TRACS Scholarship from the 

Edinburgh Parallel Computing Centre. 

Vll 

~ 





Contents 
Part I - INTRODUCTION ................................................................................................... 1 

Chapter 1. Introduction ................................................................................................... 3 

1.1 Motivation ...................................................................................................... 3 

1.2 Focus ..................................................................................................... . 3 

1.3 Process-oriented programming ..... ................................................................... 7 

1.4 Contributions of this thesis ..... .... ............. ............................ ............................ 8 

1.5 Thesis structure ........................................................................ ........ ....... ...... ... 9 

1.6 History ................... .. ........................... .... .. ...... ........ .... ................ ............ 10 

Chapter 2. Related work ............................................................................................... 11 

2.1 Introduction ................................................. ... ........................................... ..... 11 

2.2 Meanings .............................................................................. ... ................... 11 

2.3 Static versus dynamic invocation of processes ........... .......... ........................ 12 

2.4 Styles of communication and synchronisation .............................................. 12 

2.5 Other ways of managing program partitioning ........... ................ .................. 15 

2.6 Specific comparisons ..................................................................................... 17 

2.7 Conclusions ........................ ............................ ... ........ .................. ........... .. ...... 21 

Part II - DESIGN .................................................................................................... 23 

Chapter 3. Programming model ..................................................................................... 25 

3.1 Introduction ...................... .. ......... ..... ............................................ ..... ......... .. .. 25 

3.2 Processes .................................................................................................... 25 

3.3 Safe and efficient high performance programming facilities ......................... 2 9 

3.4 Programming model ....................................................................................... 35 

3.5 Abstract machine model ....................................... ......................................... 38 

3.6 Physical machine model. ................. ...... ........ .......... ....................................... 39 

3.7 Implications for programming ... ........................... ...... ................................... .45 

3.8 Summary .................................................................................................... 46 

Chapter 4. Design .................................................................................................. .. 4 9 

4.1 Overview .................................................................................................... 49 

4.2 Design concerns .............................................................................................. 4 9 

lX 

j 



4.3 Core extensions .............................................................................................. 5 3 

4.4 Derived operations ........................................................................................ 62 

4.5 Input/ output ................................................................................................. 70 

4.6 Machine attribute operations ........................................................................ 72 

4. 7 Concurrency within processes ....................................................................... 7 2 

4.8 Benefits and limitations ................................................................................. 73 

4. 9 Con cl us ion ................................................................................................... 7 4 

Part III - THEORY ................................................................................................... 77 

Chapter 5. Theory background .................................................................................... 79 

5.1 Introduction and motivation ......................................................................... 79 

5.2 Related work ................................................................................... ............... 79 

5.3 Notation ................................................................................................... 81 

5.4 Formal semantics ........................................................................................... 82 

5.5 Summary ............................................................................. ...................... 99 

Chapter 6. Operational semantics .............................................................................. 101 

6.1 Introduction ................................................................................................. 101 

6.2 Syntax ................................................................................................. 101 

6.3 Dynamic semantics ...................................................................................... 103 

6.4 Traces ................................................................................................. 115 

6.5 Fairness ................................................................................................. 117 

6.6 Summary ................................................................................................. 118 

Chapter 7. Typing •••••••••••••••••••o•••••••••••••••••••••••••••••••o••••••••••••••••••••••••••••••••••••••••••••• 119 

7.1 Static semantics ........................................................................................... 119 

7 .2 Type soundness ........................................................................................... 122 

7 .3 Con cl us ion ................................................................................................. 12 8 

Part IV - PRACTICE ..•..........•..........................................................................•..•••... 12 9 

Chapter 8. Applications .............................................................................................. 131 

8.1 Introduction ................................................................................................. 131 

8.2 Algorithmic skeletons ... ............................................................................... 131 

8.3 Object stores .............................................................................. .................. 135 

8.4 SIMPLE .............................................................................. ................... 141 

8.5 Conclusion ................................................................................... .............. 143 

Chapter 9. Implementation ......................................................................................... 145 

9.1 Introduction ................................................................................................. 145 

9.2 ParaML runtime system design .................................................... ............... 145 

9.3 ParaML runtime system implementation .................................................... 148 

9.4 ML compiler and runtime system extensions .............................................. 154 

X 

l1 

i' 
1I 

11 

I 
I 

I; 
II 

J 
' 



9 .5 Concurrency within processes ..................................................................... 15 7 

9.6 MPI as a communication platform .............................................................. 158 

9.7 Limitations of implementation .................................................................... 160 

9 .8 Conclusion .................................................................................................. 161 

Chapter 10. Performance ............................................................................................. 163 

10 .1 Introduction ................................................................................................ 16 3 

10.2 Multicomputer characteristics ..... ..................... ....... .................................. 163 

10.3 MPI performance ....... ................................................................................. 164 

10.4 ML performance ....... .................................................................................. 166 

10.5 ParaML runtime system ....................................... ...................................... 168 

10.6 ParaML operations ....................................... .. ........................................... 169 

10.7 Mandelbrot benchmark .............................................................................. 180 

10 .8 Optimisations ............................................................................................ 18 3 

10.9 Conclusion ..... ... ........................................... ............................................... 184 

Part V - CONCLUSION .................•....................................................•.•....•........•....•••... 185 

Chapter 11. Future research ........................................................................................ 18 7 

11.1 Introduction ................................................................................................ 187 

11.2 Design .................................................................................................. 18 7 

11.3 Theory .................................................................................................. 188 

11.4 Practice ................................................................... .. ............................. 188 

Chapter 12. Conclusion ............................................................................................... 1.91 

Appendices, Glossary, References ............................................................................. 19 3 

Appendix A -1 .................................................................................................. 195 

Proof of Lemma 5-6 .......................................... ................................................. 19 5 

Proof of Lemma 5-7 ........................................................................................... 19 6 

Proof of Lemma 5-8 ........................................................................................... 19 8 

Proof of Lemma 5-9 ........................................................................................... 2 0 0 

Proof of Lemma 5-10 ......................................................................................... 2 0 2 

Appendix A -2 .................................................................................................. 205 

Proof of Lemma 7-4 .. ....... .................................... .............................................. 2 0 5 

Proof of Lemma 7-5 ........................................................................................... 2 0 6 

Proof of Theorem 7 -6 ................................................. ... ..................................... 2 0 8 

Proof of Theorem 7-7 ...................................................... ................................... 2 0 9 

Proof of Lemma 7-10 ................ ... .................... .................................................. 219 

Proof of Lemma 7-11 ....................... ...... .......................... .................................. 223 

Glossary 

References 

.................................................................................................. 231 

.................................................................................................. 236 

XI 

i 





Figures 
Figure 3.1 - Processes and ports in the programming model. ..................................... 3 7 

Figure 3.2 - Shared memory MIMD computers ........................................................... 40 

Figure 3.3 - Distributed memory WMD computers ................................................... 40 

Figure 3.4 - The multicomputer model. ....................................................................... 42 

Figure 3.5 - Virtual processor model. .......................................................................... 43 

Figure 3.6 - Simple sharing of memory in the programming model. ........................... 45 

Figure 4.1-A possible asynchronous message ordering; not possible in paraML .... 59 

Figure 4.2 - Synchronous communication ................................................................... 6 3 

Figure 4.3 - Outport communication ........................................................................... 64 

Figure 4.4 - Guarded choice ........................................................................................ 65 

Figure 4.5 - Processes used for results of functions .................................................... 65 

Figure 4.6 - Process group creation and execution ..................................................... 6 6 

Figure 4.7 - Basic port group creation and attribute operations ................................ 6 7 

Figure 4.8 - Basic port group communications ........................................................... 6 7 

Figure 4.9 - Scattering and gathering to port groups .................................................. 68 

Figure 4.10 - Synchronous port groups ....................................................................... 68 

Figure 4.11 - Reduction and scan operation interfaces .............................................. 69 

Figure 4.12 - Barrier synchronisation for groups ........................................................ 69 

Figure 4.13 -Input/ output for process groups ........................................................... 71 

Figure 4.14 - Machine attribute operations ................................................................. 71 

Figure 5.1 - Ground terms of Aro . ................................................................................ 8 2 

Figure 5.2 - Basic syntactic definitions ....................................................................... 82 

Figure 5.3 - Grammar for expressions, exceptions and values ................................... 83 

Figure 5.4 - Free variables in terms ............................................................................. 85 

Figure 5.5 - Substitution in terms .................. .............................................................. 86 

Figure 5.6 - Grammars for evaluation contexts ............. ............................................. 88 

Figure 5.7 - Rules of reduction with E contexts in Aro ................................................. 89 

Figure 5.8 - Rules of reduction for references with R contexts in Aev··························· 89 

Figure 5.9 - Basic syntax for type constants and variables ....................................... 91 

Figure 5.10 - Type rules for Aro .................................................................................... 94 

Figure 6.1- New ground terms ........ ...... ............................. ....................................... 102 

Figure 6.2 - New expressions and values of the grammar ........................................ 102 

Figure 6.3 - Free variables in new terms ........................................................... ......... 103 

Xlll 



Figure 6.4- Substitution in new terms ........................................................... ............ 103 
Figure 6.5 - Grammars for contexts ........................................................................... 104 
Figure 6.6- Sequential evaluation relation ................................................................ 104 
Figure 6.7 - Syntactic definitions for process configuration components ................. 106 
Figure 6.8 - Parallel evaluation rules for: (a) sequential evaluation; 

(b) exception binding; (c) proc; (d) self_id ................................................ ......... 107 
Figure 6.9-Parallel evaluation rules for prt .............................................................. 108 
Figure 6.10 - Parallel evaluation rules for execute ..................................................... 108 
Figure 6.11 - Parallel evaluation rules for send ......................................................... 110 
Figure 6.12 - Parallel evaluation rules for recv ................ .......................................... 110 
Figure 6.13 - Parallel evaluation rules for probe ....................................................... 110 
Figure 6.14- Definitions of mem and mem_gc . ........................................................ 113 

Figure 7.1-New type rules for Apv ............................................................................. 121 

Figure 8.1- Shared memory program execution ........................................................ 137 
Figure 8.2- Generic object store in shared memory .......................... ......................... 137 
Figure 8.3 - Generic object store in a process-oriented system ................................. 138 
Figure 8.4 - Object store in paraML .......................................................................... 138 

Figure 9.1-Programming model components ..... ........ ........ .... ...... ..... ......... ... ... .. ...... 146 

Figure 10.1-Performance for small messages under MPI ......................................... 165 
Figure 10.2-Performance for large messages under MPI. ......................................... 165 
Figure 10.3 -Performance for small messages under MPI for paraML ..................... 167 
Figure 10.4-Performance for large messages under MPI for paraML ...................... 167 
Figure 10.5 - Times for process operation with differing numbers of processes ..... 172 
Figure 10.6 - Times for port operation with differing numbers of processes ....... .. .. 17 4 
Figure 10.7 - Times for execute operation with differing numbers of processes ....... 17 4 
Figure 10.8 - Elapsed sending times for one process and different message sizes ... 176 
Figure 10.9- Sending times for differing numbers of processes ................................ 177 
Figure 10.10 - Sending times with standard deviation between runs ....................... 178 
Figure 10.11 - Scatter plot of elapsed sending times ................................................ 179 
Figure 10.12 - Scatter plot of user sending times ...................................................... 179 
Figure 10.13 -Times for Mandelbrot with differing numbers of processes .............. 180 
Figure 10.14 - Speed for Mandelbrot at size 64 ........................................................ 181 
Figure 10.15 - Speed for Mandelbrot at size 8192 .... ................................................ 182 

XIV 



Tables 
Table 4-1 - Summary of extensions ............................................................................ 61 

Table 9-1 - Categories of message requests accepted by the message handling 

thread ..................... .... ........................... .. .... ................... ......... .. ....... .... 149 

Table 10-1 - Object marshalling and unmarshalling ................................................. 168 

Table 10-2-Times in µsecs for function loop and process descheduling and 

resmeduling ................................................. .. .... ................................... 16 9 

Table 10-3 -Times and standard deviations in µsecs for self _id, probe, 

recv and self _port operations ..................................................... 170 

Table 10-4 - Times and standard deviations in µsecs for naive translation of 

self _po rt operation ................... .. ............ .. ..................................... 171 

Table 10-5 - Costs of paraML operations per process in Mandelbrot program ..... 182 

xv 



Part I 

INTRODUCTION 

1 





11•· 

1. Introduction 
1.1 Motivation 

Modem computing systems look radically different from those of thirty years ago. 

Computers are now ubiquitous, and immensely more powerful. Long gone is the time 

when it was possible to assert that all of a country's computing requirements could be 

supported with a single computer. As computers have become more and more 

widespread, the range of problems to which they have been applied has expanded 

similarly. And as computers have become more powerful, the degree of complexity in 

the problems being attempted has increased. Indeed, there exist many problems of 

interest which existing sequential computers are incapable of solving in a satisfactory 

time. 

High-speed interconnection networks1 are altering the possibilities for how 

computing services are provided. For instance, programs may reside on quite separate 

computers from the one in front of a user. These programs may execute either on the 

local computer after being sent across the network, or be invoked remotely with data 

from the user through some interface such as a Web browser. Computers connected by 

networks constitute a distributed computer system. 

The realisation of programming environments to meet the changing nature of 

computer systems, particularly with respect to distributed computer systems, is a 

challenging task. The goal of this thesis is to show that process-oriented programming 

facilities provide an effective solution to some of the difficulties involved. 

1.2 Focus 

The three main concerns addressed by this thesis are: 

• Supporting computation in the context of a distributed address space. 

• Enabling partitioning and coordination of computation. 

• Providing programming facilities that are both efficient and safe. 

As usual in computing, many of these terms are open to different interpretations. The 

focus of the thesis will be better understood with clear definitions of the key terms as 

they are used in this thesis. 

1 Short definitions of italicised words are available in the Glossary, p. 231 
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4 Chapter 1: Introduction 

1.2.1 Distributed address spaces 

The essence of distributed address spaces is that the physical computer memory is 

partitioned among a number of processing elements (PEs) or nodes, and there is a one-to­

one mapping between address spaces and memory partitions. Each PE typically 

consists of one or more central processing units (CPUs), memory, and network interface 

components which connect that PE to other PEs. Non-local access to a PE's memory 

must pass through a network which connects the PEs. At some layer of programming 

abstraction, the distribution of the address space, and consequently memory, becomes 

visible. The effect of this visibility means the programmer becomes aware of a 

difference between local and non-local memory access. 

The distributed approach is in contrast to the traditional model of computing, 

where even if there are multiple CPUs, any of them may access any part of memory on 

an equal basis and there is a single shared address space. Some modem computers use 

physically distributed memory for scalability purposes, but provide a shared address 

space so that the same mechanism is used for both local and non-local memory access. 

Computer systems with distributed address spaces are becoming increasingly 

common. Networked computers, from multicomputers to clusters of workstations to 

the Internet, have progressively wider memory distribution among nodes. As 

networked computers become more widespread, finding good mechanisms to program 

with the distributed address spaces they embody becomes more critical. 

For sequential algorithms, a distributed address space requires a program to 

draw together disparate data entities into a computation. This action can be done by 

a layer which emulates a shared address space from the various memory components 

of the distributed address space. The merits of hiding the distribution of memory in 

layers of abstraction below programming languages are part of an ongoing debate. This 

issue is not central to this thesis, and its examination is deferred until later. 

The network bandwidth and latency involved with distribution over the Internet 

can be highly unpredictable. For reasons of simplicity, this thesis examines only 

distributed address spaces over networks with high bandwidth and low latency, as 

may be found in multicomputers. 

1.2.2 Concurrency: partitioning and coordination 

Some problems are best described by partitioning the actions to be performed into 

separate tasks. For example, consider the problem of modelling electricity generation 

by steam turbines in a power station. Water must be piped to the power station from 

a reservoir. The water is turned into steam, which is used to drive the turbines. The 

turning turbines generate electricity, which must then be transmitted onto the electricity 

grid. Modelling this system is most naturally accomplished by coding each task and its 

interactions as a separate component. The area of concurrent computing addresses the 

issues involved with problem partitioning. 
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Many concurrent systems assume an underlying shared address space, since the 
goal of such systems is to introduce concurrency, not to manage issues of distribution. 

On other occasions, a problem is not naturally specified concurrently, but the 
performance of a sequential implementation is inadequate. In these instances, some 

partitioning of the problem is usual, to make efficient use of a computer with a 

distributed address space and multiple PEs. 

Returning to the steam generation example, modelling of the turning turbines can 

be performed with varying degrees of precision. A very simple model will encode the 

rate of electricity generation by the amount of steam being delivered. However, the 
power station may wish to optimise its electricity generation. If a simple model is too 

inaccurate, a more complex simulation would become necessary, perhaps modelling the 

fluid dynamics of steam in the turbine. Fluid dynamics simulations are 

computationally expensive, and could require the resources of high performance 

computers with distributed address spaces. The space through which the fluid flows 

might be modelled with a 3-dimensional mesh decomposition, with different mesh 

elements mapped to different PEs. 

In both cases, there is a notion that a single program is being executed, albeit 

composed of different parts. This characteristic is significant, since it distinguishes 

systems designed to support partitioned programming from those which support 

multiple distinct programs. The latter system type is often referred to as a distributed 
system or sometimes as a coordination system. Many of the issues involved in 

distributed systems are similar to those described for partitioned programs in 

distributed address spaces. However, there is considerably stronger coupling between 

the program components in a partitioned program than necessarily occurs in a 

distributed system. This thesis investigates the challenges of partitioning and 

coordinating the components of a program in a distributed address space. It does not 

concern itself with the issues of managing and coordinating a distributed set of distinct 

programs, which is the domain of distributed system languages or coordination 

languages. 

Partitioning in the specification of a problem (either to achieve better 

performance or because the specification is inherently concurrent) usually requires some 

mechanism to coordinate the various activities. Coordination typically occurs by the 

communication of some information, either directly between the two (or more) program 

entities or through some intermediary. Typically information is communicated by 

either a message passing system or some common data structure manipulation. 

In the power station model example, communication is required to carry 
information about rate of delivery of water to the power station, rate of production of 

steam and delivery to the turbine, and so on. Coordination is also required so that 

steam production does not occur prior to the water being delivered from the reservoir. 

In the fluid dynamics example, communication occurs between neighbouring elements 
about the state of steam movement through the spatial element in the previous step of 

~ 



6 Chapter 1: Introduction 

the simulation. Coordination is required to make sure that any steam which has 
migrated into the element during the previous step is incorporated into the calculations 
for the current step of the simulation. 

1.2.3 Efficient programming facilities 

There appears to be no limit to the desires for increased performance. One of the 
barriers to increased performance is access to memory. On shared memory computers, 
the access to memory becomes a bottleneck. Physically distributed memory offers a 
scalable solution to this bottleneck, and computers with multiple PEs embodying 
distributed address spaces will continue to be an effective means of achieving 
performance improvements. For example, the precision of a simulation is dependent 
on the resolution in the spatial decomposition. If the space can be modelled with a 
larger number of smaller components, then the margin for error diminishes since each 
component needs to make fewer assumptions about interactions with other 
components. Smaller spatial elements will also result in a closer match with the actual 
space being modelled. However, having more elements means more computation and 
more interactions overall, thus requiring more computing performance to solve the 
problem in the same time. Being able to model the fluid dynamics of the turbine more 
precisely may result in more cost-efficient operation. 

Distributed address spaces and partitioned program specifications pose both a 
challenge and an opportunity for achieving high performance. The challenge arises 
because of the extra overheads and delays in coordinating concurrent actions in such 
an environment. The opportunity arises because of the potential for simultaneous or 
parallel execution of the different actions. ·Achieving maximum performance means the 
overheads of managing parallelism must be minimised, and thus the programming 
facilities must be efficient. 

1.2.4 Safe programming facilities 

Programs may fail in a number of ways. Some of these failures may be statically 
detectable before the program is ever run. Other failures are impossible to detect prior 
to execution, and occur while the program is running. The meaning of "safe" as it is 
used in this thesis is firstly that programs should not fail because the language permits 
semantically incorrect operations (such as adding strings to integers) which can be 
detected statically. Similarly, the design of the language should not permit avoidable 
system failures (such as those arising from memory leaks or null pointer dereferencing). 
If errors do arise which are undetectable prior to program execution (such as division 
by zero), there need to be clean mechanisms for identifying and recovering from such 
errors. 

Of particular concern are ways to statically prevent and/ or dynamically recover 
from failures in the mechanisms for partitioning and coordinating concurrent actions. 
For instance, if the destination of a communication action is no longer active, the 
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sender should be informed and have means of performing an alternative computation. 

More problematically, a system-wide deadlock situation should be identified and 

indicated to the user, even if there is no clear recovery state. Circumstances in which 

an otherwise safe program might work incorrectly would be because the programmer 

makes a logical error in the construction of the program (such as a non-terminating 

computation, which is generally undetectable). 

For example, matching power generation to the demand for electricity in the grid 

is a problem that can be optimised by "just-in-time" simulations. These simulations 

are used to adjust the delivery of the various requirements for power generation 

according to changing demand just as the demand arises. Meeting this need requires 

both a very efficient simulation and one which is safe. Suppose the simulation is used 

to drive delivery of water to the steam generator to increase turbine speed (and thus 

electricity generation) when demand rises. If the reservoir suddenly drops below a 

critical level, the simulation must detect this condition, and prevent the steam 

generator from continuing at the previous rate. A critical failure of this kind could be 

addressed in the simulation using exception-handling language facilities. 

The mechanisms which expose distributed address spaces and the mechanisms 

which specify problem partitioning necessarily introduce new complexities to a 

programming language. The need for these mechanisms to be as safe and robust as any 

other aspect of a language is just as strong as in sequential programming. 

1.3 Process-oriented programming 

The basic notion of a process is that of an entity that contains some code to perform an 

action or series of actions, while maintaining information on the state of computation, 

including what will execute next in the code. The process encapsulates any data (or 

memory) required by the code for its execution. If data is not available when the 

process commences, it may be communicated to the process through some defined 

interfaces. These interfaces may be established dynamically during the course of 

execution of the code of the process. 

One of the best mechanisms to achieve high performance is by utilising the 

resources of parallel computers. For a program to make use of such parallel computers, 

there must be ways to partition the problem into processes that can execute 

simultaneously. Coordination of the processes occurs through communication. As 

such, processes are naturally suited to programming in a distributed address space, as 

each process may be mapped to a different PE and thus a different part of memory. 

The interconnection network would then be used for communication. 

Coordination by communication among processes must be managed safely. At a 

purely textual level, it is helpful to distinguish different sorts of information to be 

communicated to a process. Such separation is achieved by providing multiple ports as 
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the destinations to which information is sent. Additional measures for achieving 
safety tend to be language-dependent. 

In object-oriented computing, the primary structuring unit of computation is an 
object. Methods define the set of actions that may be performed by the object, and are 
invoked only when messages are sent to them. The term "process-oriented" is used 
here to capture the notion that the primary structuring unit is the process. Unlike 
object methods, where the semantic effect of message arrival is the invocation of some 
defined action, processes use ports just to receive information. The information may 
be used in whatever manner desired, as specified in the process code. 

Process-oriented programming is useful for tackling the complications of efficient 
partitioned computation in distributed address spaces. 

1.4 Contributions of this thesis 

Supporting a process-oriented style of programming requires the development of some 
semantic notions for processes and ports in a programming language. The approach 
taken in this thesis is to extend an existing programming language, ML [MTH90]. 

The development of ML took place over a number of years, and represents the 
fusion of many efforts in building a rigorously defined, safe and high-level language. 
ML is based on the functional programming paradigm, but incorporates imperative 
features. It has a history of use in exploring new programming features: for example, 
concurrency, data parallelism, and distribution; as well as various developments in 
type systems. Several high-quality and efficient implementations of ML exist which 
are available for modification. ML is an excellent platform on which to develop the 
necessary semantic notions for processes and ports. ML is useful both as an 
implemented language for computation within processes and as an instance of a sound 
theoretical model. 

The name given to the process-oriented extended ML language is paraML. 
ParaML' s extensions to ML are a compact set of requirements for supporting the 
process-oriented model within a strongly-typed programming framework. In paraML, 
processes provide services to create communication facilities and to execute some 
code. Evaluation takes place against an encapsulated data environment local to the 
process. Communication is performed by message passing to ports which hold queues 
of messages. Ports are created dynamically during execution and are local to 
individual processes. 

A particular focus of the experiment has been to explore ways to achieve safe 
and efficient programming facilities. This thesis has thus developed the process­
oriented extensions to ML in such a manner as to provide support for safe and 
efficient computing. The ability for paraML to address four major themes specific to 
high performance computing in the context of distributed address space computers 
and partitioned problem specifications is also explored. These themes are: 
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• Concurrency- ability to make use of multiple computing resources. 

• Scalability- ability to utilise increases in the number of PEs. 

• Portability- independence from particular makes of parallel computers. 

• Locality - promotion of local data access through the programming model. 

The design of the language also addresses a number of issues that are relevant to 

achieving safety, including: 

• Simplicity and minimalism in language extensions. 

• Type-safe communication during program execution. 

• Formal modelling of the language. 

• Non-determinism. 

• Modularity of program components to permit composition and clean 

interfaces to their environment. 

The extensions are formally characterised by an operational semantics complete with a 

proof of type soundness. Theoretical specification of computation with values that 

have been communicated from other memories, including mutable values, under a 

copying semantics has not previously been demonstrated. The value of the paraML 

language is demonstrated by its use in the development of derived operations, 

alternative high performance programming paradigms and applications. 

1.5 Thesis structure 

This thesis has five parts. The motivation and thesis are introduced in Part I -

Introduction (Chapters 1-2), together with an overview of related work. The process­

oriented programming model is used to motivate the choice of primitives in Part II­

Design (Chapters 3-4). The language is then modelled formally by an operational 

semantics in Part ill -Theory (Chapters 5-7). The design is demonstrated by its use as 

a support system for other programming models and its use in applications, as 

described in Part IV - Practice (Chapters 8-10). Some possibilities for future 

developments are discussed in Part V - Conclusion (Chapters 11-12). 

It is assumed that the reader is familiar with the ML language; if not, there are a 

number of textbooks on programming with the language now available including ML for 

the Working Programmer [Pau91] and Elements of ML Programming [Ull93]. A formal 

definition of the language [MTH90, MT91] also exists, as do overviews of ML in other 

dissertations such as Reppy's Higher-Order Concurrency [Rep92]. The theoretical part 

of this dissertation does not assume familiarity with the style of semantics used, but a 

basic understanding of the A calculus will be helpful; Barendregt' s work provides a 

solid introduction [Bar84]. 
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1.6 History 

The thinking behind paraML has evolved over the last five years. Preliminary ideas 
were developed and explored with an initial implementation of the paraML language 
[BN93, BNS+94] culminating in a version 1.0 release for the Fujitsu APl 000 
multicomputer in January 1994 [Bai94]. The early version of the language was used for 
a number of purposes, including as the implementation language for a parallel Hough 
transform application [Und95]. Since that time, work has progressed through a major 
evaluation and redesign of the language, and the concurrent development of a formal 
semantics [Bai96], leading to the current version as described here. 
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2. Related work 
2.1 Introduction 

As with any experiment in language design, the choices made in developing paraML 

have been conditioned by its intended use. The three major concerns of the experiment 

(distributed address spaces, partitioned computation, and safe and efficient high 
performance) overlap with many related experiments in concurrent, parallel, and 

distributed language design. It is helpful to examine some of the different options 

available and their impact. Four languages with similar concerns to paraML are 

examined in detail. 

2.2 Meanings 

The terms parallel and concurrent have frequently been used synonymously in 

computing. More recently, distributed computing has at times been used to imply 

parallel computing. The terms are also applied to computer hardware, programming 

languages and individual algorithms and programs. With respect to programming 

languages, the terms will be used as follows for this thesis: 

• Concurrent means the language permits the user to specify a program as a 

collection of independent tasks, capable of interaction. 

• Parallel means the language provides facilities to specify concurrency, and 

there is an expectation that when a program is executed, a subset (possibly 

all) of the tasks will be evaluated simultaneously. This parallel evaluation is 

achieved by parallelism in the hardware, usually involving several PEs. 

• Distributed means the language provides facilities to specify concurrency, 

execution of a program's entities will exhibit parallelism, and the tasks will be 

executed on physically distributed (possibly heterogenous) computers. In 

particular, the user is made aware of the effects of distribution on program 

execution, including the possibility for failure in some parts of the system. 

The term parallel will be used both in the manner defined above and to denote the 

superset of concurrent/parallel/ distributed computation where the distinguishing 

aspect is simultaneous execution of the tasks. The issues that paraML explores are 

predicated on execution of programs on a parallel computer with a distributed address 

space, such as a multicomputer or tightly-coupled local area network of workstations. 

However, it is assumed that issues such as node reliability or heterogeneity are handled 

transparently. These simplifications enable paraML to focus on support for safe and 

efficient high performance computing in the context of a distributed address space. 

11 

~ 
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2.3 Static versus dynamic invocation of processes 

Parallel processes may be explicitly invoked either statically or dynamically. Static 
invocation establishes a configuration of processes executing in parallel within the 
boundaries of some defined start and end points. Frequently languages which allow 
only static invocation further restrict process creation to the start of the program. 

Dynamic invocation establishes a new process operating in parallel with the 
invoking process. Dynamically invoked processes provide greater flexibility in 
accommodating algorithms which require changing computational requirements during 
the course of a program's execution. This is one of the reasons dynamic process 
creation is used in operating systems such as UNIX and in message passing systems for 
networks of workstations such as PVM [GBD94] and MPI-2 [MPI96]. Dynamic 
process invocation is adopted in paraML primarily due to the inflexibility of static 
process creation. 

2.4 Styles of communication and synchronisation 

Coordination among processes is most often achieved by some form of communication 
of information. There are a wide variety of ways to communicate information between 
processes, but these fall into basically two classes which reflect the characteristics of 
the underlying address space. Hennessy and Patterson remark that the shared 
address space form of communication is an implicit one involving loads and stores, 
while distributed address space communications are explicit, involving sends and 
receives of messages [HP94]. However, both of these can be layered on top of either 
shared or distributed address space computer systems. 

2.4.1 Shared address space communications 

Shared address spaces may be a property of the computer and/ or its operating 
system, or they may be emulated in software from an underlying distributed address 
space. The latter form is often referred to as distributed shared (virtual) memory (DSM 
or DSVM) [LH89]. A shared address space permits processes to communicate via 
some common data structure. One process updates or writes some data value which is 
then readable by another process. Since more than one process may be active and 
attempting to access the same data value at any point in time there is a need to 
preserve the integrity or coherency of the data. Effectively this means that mechanisms 
must exist so that only one process may actually alter the data value at any time. 
These problems also arise in the context of multiple local caches of variables. 

A wide variety of mechanisms exist to preserve data consistency. Low-level 
solutions include protection mechanisms by other data objects such as locks and 
semaphores [Dij68] or critical regions [Bri73] which indicate when a data structure is 
being accessed by some process. Such features are to be found in Ada [ Ada83] and 
Modula [Wir77, Wir83] for example. Higher-level variants of this form of data sharing 
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include M-structures [BNA91] and the M-vars of Concurrent Haskell [PFG96]. 

Another alternative is to provide data structures that may only be modified once, 

though read many times, such as I-structures [ANP89]. An alternative to coherency of 

individual data values is to adopt a programming model that enforces a consistent set 

of data structure accesses and updates. Examples of this approach include monitors 

[Hoa74], transactions [LS83, Mos85], and Linda [ACG86]. Many variants of these 

different forms exist, often designed to relax the serialisation properties of data access 

(that is, in order to increase the achievable level of parallelism). Non-determinism with 

shared variable forms of communication is primarily a result of the scheduling policies 

of processes in the system. 

2.4.2 Distributed address space communications 

The distribution of an address space typically requires that information be explicitly 

communicated by means of i;nessages. Since a process may have no access to any 

shared data with another process executing in a different part of the distributed 

address space, communication occurs by physically transmitting data between their 

local memories. In the simplest case, one process sends a message and another process 

receives it. Many extensions exist, which expand the number of senders (scatter-gather) 

or receivers (broadcast, multicast). 

There are also choices to be made about the mechanisms used to send or receive 

data. For instance, should the message be buffered at the sender/ receiver, should the 

message be sent synchronously or asynchronously, should the destination be named as a 

process or as a channel/port, and so on. Many of these alternatives are addressed and 

supported in the recent standardisation of a message passing interface for parallel 

computing -11PI [11PI94, GLS95]. 

Message passing may also be used on top of shared memory systems in order to 

support particular models of interaction, such as pipelining or client-server systems. 

Message passing models do not promote sharing of data, but have the advantage of 

making data locality very straightforward. If data is required by a process then either 

it already has the data or the data must be obtained by it in a message from some 

other process, after which the data is locally available. There have been some 

interesting results which indicate that a message passing programming model can 

achieve greater data locality and thus perform as efficiently as, or better than, a shared 

address space programming model on a shared memory computer system [NS93L but 

that is not of direct concern to this thesis. 

2.4.2.1 Synchronous message passing 

Synchronous message passing requires that both the sender and the receiver of a 

message are engaged simultaneously in the communication operation from the point of 

view of some observer. The act of communication is deliberately merged with the act 

of synchronisation between processes. Communicating sequential processes (CSP) 

[Hoa78] is the canonical model of this form of message passing. A major advantage 
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claimed for such systems is that the synchronous nature of message passing makes it 
easier to reason about programs. A number of process calculi (including CCS [Mi180] 
and the 1t calculus [MPW92]) exhibit synchronous communication by message passing. 

2.4.2.2 Asynchronous message passing 

Asynchronous message passing makes no guarantee about the synchronisation of the 
sender and receiver. Thus the sender may proceed past its communication operation 
without the receiver having completed or even initiated the matching part of the 
communication. An asynchronous version of the 7t calculus [HT91] exists which can be 
shown to be equivalent to the synchronous version. This result is not surprising given 
that it is clearly possible in synchronous systems with dynamic thread creation to 
model asynchronous communication by creating a new thread which accepts a send 
request and then attempts to complete the communication synchronously. The original 
thread that performed the send request is able to continue execution asynchronously. 

Asynchronous message passing is better suited to distributed systems or parallel 
systems with distributed address spaces due to the increased latencies involved in 
message transmission. Since a sending process is not delayed waiting for the receiving 
process to actually perform a receive operation, the increased latencies are immaterial 
to the sender. This characteristic becomes important as the number of computing 
resources mcreases. 

2.4.2.3 Buffering and blocking 

The 11PI standard has made explicit the implications of synchronous and 
asynchronous communications by providing different modes of communication that 
deal with memory and control requirements. In fact, MPI does not even provide an 
"asynchronous" mode of communication. There are four major modes for sending that 
MPI defines: 

• synchronous - the operation does not complete until the matching receive 
operation completes; 

• ready - the operation does not return control to the caller until a matching 
receive operation commences; 

• buffered - the operation returns control once the message has been buffered 
for transmission (or a buffer is provided to a matching receive operation); 

• standard - this mode is the generic mode, and may or may not buffer the 
outgoing messages according to the underlying implementation and runtime 
conditions. The operation is blocking in that it does not return control to the 
caller until the message has been stored for transmission or successfully 
delivered. 

Each of these operations blocks control of the sender until the conditions of the mode 
are satisfied. However, it is also possible to return control immediately to the sender 
by the use of non-blocking variants of these calls. In these cases, a handle is returned 
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which may be used to test completion of the operation. Most asynchronous 

communication in existing systems is equivalent to buffered mode in MPI. 

2.4.2.4 Naming of the communication destination 

There are many different mechanisms for specifying the destination of a 

communication request. The simplest is merely the identifier of another process; it is 

up to the program to discriminate between the contents of different messages. 

Frequently this model is expanded to allow meta-data to be carried with message 

content, including the identifier of the sender and some integer tag field. 

MPI provides an additional layer of abstraction, by allowing the creation of 

communicators by subsets of the processes in a system, which are a communication 

layer disjoint from any other communicators. This facility permits the construction of 

software which isolates messages between functionally different components within a 

program, as in library routines. 

Another form of abstraction is that of channels or ports. Sometimes channels have 

a notion of restriction to use by only two processes - the sender and receiver. 

Sometimes channels have a notion of being bidirectional, with the implication that 

processes may both send messages on and receive messages from channels. Channels 

are also referred to as sockets in UNIX terminology. Ports by contrast tend to denote a 

communication destination only, owned by a particular process which is privileged to 

read from the port. Ports are sometimes referred to as mailboxes. Other processes may 

send messages to the port, but may not receive messages from it. It is feasible to create 

groups of channels and ports in instances where multiple senders or receivers are 

envisaged [Kru93]. In strongly-typed languages, channels and ports tend to be typed 

to restrict the kind of object which may be transmitted on them. For example, an 

integer-typed port will allow only integer messages. 

2.4.2.5 Non-determinism in communication 

With most forms of message passing, it is highly likely that some non-determinism in 

message arrival order will occur. As soon as two processes are capable of sending 

messages to a single receiver, unless there is some other synchronisation that takes 

place, it cannot be determined in advance which message will arrive first. Message 

passing can be made deterministic, as Foster and Chandy point out in the design of 

Fortran M [CF93, FC94], by restricting the use of a channel to a single sender and single 

receiver. Similar problems with non-determinism arise with communications by shared 

variables. In practice, most parallel programs are written to cope with non­

determinism. 

2.5 Other ways of managing program partitioning 

The discussion so far has centred on program partitioning achieved through multiple 

processes: ways to initiate them and how they communicate. There exist other ways to 



16 Chapter 2: Related work 

manage partitioning, including algorithmic skeletons, data parallelism, futures and 
actors. 

2.5.1 Algorithmic skeletons 

Algorithmic skeletons were developed by Cole [Col89] as a means to abstract from 
programmer involvement in the management of parallelism. Essentially, a skeleton 
provides a framework to perform all the creation of computation processes and 
communication and synchronisation required. The user is responsible for providing a 
set of operations that actually perform the work for a particular application. In many 
ways this is analogous to a sort routine in a library, where the user provides the 
datatype specification and a comparison function, and the sort routine actually 
implements the algorithm. The other major benefit from skeletons is that they are 
developed with a complexity metric to enable accurate performance predictions for 
applications across different computational platforms. The area of skeleton-based 
parallel programming has seen significant research interest in recent years (for example 
[BD0+95, DGT +95]), including a system for ML [Bra94]. 

2.5.2 Data parallelism 

Data parallelism takes a completely different approach to the predominantly process 
parallel systems discussed above. The way parallelism is incorporated is to find 
operations that can be applied to many data elements simultaneously. A 
straightforward example is adding 1 to every member of an integer array. A large 
percentage of scientific applications have ·many opportunities for data parallelism, 
which has been one of the driving forces behind the development of High Performance 
Fortran (HPF) [HPF94]. Data parallelism has been investigated by extensions to many 
existing languages, including C [HQ91], C++ [LG91, LRV92] and ML [HF93], as well 
as inspiring the development of novel languages such as NESL [BCH+93] and SETL 
[Lev75], which is based on set comprehensions rather than parallel arrays. The 
popularity of data parallel languages was also supported through custom-designed 
parallel computers such as the Thinking Machines CM-2 and the MasPar. 

2.5.3 Futures 

Futures were developed by Halstead for MultiLisp [Hal85] as a way to exploit 
parallelism in functional programming languages. In essence, futures involve spawning 
a new thread of computation and binding the future result to a variable. Computation 
can proceed asynchronously with the variable representing the future result until such 
time as the actual value is required. If the future thread has completed execution,, the 
result will already have been associated with the variable; otherwise computation will 
block until it becomes available. Futures neatly encapsulate a concept of result 
communication and synchronisation between threads. The main disadvantage of the 
model is that it leads to quite a fine-grained level of parallelism which relies on a 
programmer identifying parts of the computation which can proceed asynchronously. 
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2.5.4 Actors 

The actor model of programming [AH87] involves another hybrid form of 
communication and program partitioning. Actors are both active computation entities 

and also communication messages. They predate the development of the higher-order 

distributed object-oriented systems such as Ob liq [ Car95], but bear strong operational 

resemblances. The main limitation on their performance has been in the cost of 

initiating threads of control, since the model lends itself to a fine-grained parallel 

approach and programs may end up with thousands of actors. 

2.6 Specific comparisons 

There are numerous examples of extensions to languages and language extensions 

which adopt a process-oriented model, using either shared variable and/ or message 

passing forms of communication. These include imperative languages such as Fortran 

M [FC94], object-oriented languages such as Concurrent Eiffel [Car90], Modula-3 

[Nel91] and Java [Sun95], and functional languages such as Concurrent Haskell 

[PFG96]. When combining object-oriented concepts with higher-order programming 

languages, object methods may accept arbitrary arguments including code represented 
by closures. Obliq [Car95] is a good example and in some ways the forms of 

communication are similar to those of a higher-order programming language with ports 

and dynamic process creation. However, to minimise the number of differences due to 

the nature of the underlying language, this section examines some specific examples of 

other mostly-functional languages that have been extended for parallelism (in the 

broad meaning of the term) with explicitly invoked processes (or their equivalent) and 

message passing. Exploring the reasons for their development and the ways in which 

they differ from paraML will help to clarify the distinctiveness of the approach taken 

in this thesis. 

2.6.1 CML 

Concurrent ML (CML) [Rep92] is perhaps the most elegant example of extensions to 

ML for concurrency. CML is representative of most of the concurrent extensions to ML 

such as Distributed Poly /ML [Mat91] and LCS [B1S94], and provides a higher-level 

model than the systems-level concurrency package ML-Threads [MT93]. Threads and 

synchronous message passing on channels with guarded choice are provided as the 

basic primitives. From these, Reppy developed the notion of an event, which is a 

synchronous operation that may be treated as a first-class abstracted value. Events 

can be used to construct alternative forms of concurrent operations by composing and 

manipulating them in different ways. 

Although CML uses message passing for communication, this is done to support 
certain styles of concurrency, not because the language is based on a distributed 
address space programming model. CML assumes a shared address space 
programming model; its provision of channels and guarded choice are very difficult to 
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implement efficiently under a distributed address space programming model. Reppy 
has explored the possible development of a version of CML for distributed systems 
where he suggests the use of a Linda-style tuple space [Rep94], based loosely on an 
earlier development of ML-Linda [SC91]. Reppy remarks that CML's programming 
model is not well suited for distributed programming with remote communication and 
that individual processes may well be best structured as concurrent programs in their 
own right. 

The operational semantics of CML [Rep91], developed as an extension of 
Plotkin' s Av calculus [Plo75], does not actually prevent a distributed address space 
programming model, but neither does it address the issues that arise in a distributed 
address space implementation such as transmission of references in messages. Reppy 
provides an encoding for shared references by means of channels and threads, whereby 
a channel stores the current value, and messages sent to dedicated channels are 
processed by the thread to report or update the current value. The problem with 
sending normal reference values is that a reference identifies a mutable value in a 
particular address space. Thus if the reference is transmitted to another process in a 
different address space, it is no longer clear to what the reference refers. 

Krumvieda' s work on Distributed ML (DML) [Kru93] is based on CML, but 
incorporates asynchronous multicast transmission of messages on port groups. A 
number of other extensions were planned to allow DML to fully address the 
requirements of distributed computation (in a similar manner to the Isis toolkit 
developed for Cat Cornell University [BJ87]), but none of the other projects proceeded 
and it is thus difficult to critique DML for these inadequacies. 

Work by Matthews and Le Sergent [MLS95] and Steckler [Ste96] with 
Distributed Poly/ ML and LCS describes mechanisms for efficient implementation of 
concurrent programming in a distributed computer system. The approach taken is to 
develop a DSM, using type information about mutable objects to optimise data 
consistency algorithms for the DSM. Static analysis of the locality of communications 
allows optimised implementations of the channel primitive, thereby avoiding 
message-passing overheads. Since a DSM is used, a shared address space, rather than 
a distributed address space is implied for computation. 

2.6.2 Facile 

Facile [TLP+93], developed by a group at the European Computer-Industry Research 
Centre, is another extension of ML, but unlike CML is designed to be used as a 
distributed programming language. Facile programs are structured as collections of 
dynamically-created processes which communicate synchronously over channels. 
Processes are executed on dynamically-created nodes, which correspond to the notion 
of a virtual processor. Processes conceptually have their own local environment, but 
are executed against a common heap for all other processes on the node, thus allowing 
reference variables to be shared. Several nodes may be executed by a single computer. 
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Facile also deals with node failure, heterogenous execution environments, and type­
safe communication between processes from separately-compiled programs. The latter 
has required Facile to make some alterations to Standard ML's structure-level syntactic 
constructs. These allow the user to dynamically obtain structure/ signature definitions 
from a structure server in the network. 

The ability of a Facile programmer to specify distribution (through node creation) 
and concurrency (through process creation) is excellent. It is my assertion that the 
major weakness of the system is in the corresponding failure to distinguish concurrent 
communication from distributed communication. Both are handled through the 
synchronous channel mechanism and channels are separate entities, not owned either 
by a node or a process. Thus in a distributed communication three separate nodes 
may be involved ( one for the sender process, one for the channel, and one for the 
receiver process). 

Transmission of values on channels is not uniform in that references are shared 
when communicated between two processes and a channel all on the same node, but 
copied otherwise. The fact that distributed communication is not syntactically 
distinguished from concurrent communication means that it becomes a much more 
difficult (perhaps impossible) task for the programmer to inspect a program (or a part 
of one) and understand the outcome of communication involving references. The Facile 
group adopts the same theoretical solution as Reppy of encoding shared references as 
channels and threads. Such a translation has been shown to preserve the semantics of 
references [BMT92]. However it is arguable whether such shared references are 
actually desirable for programming in the context of a distributed address space. 
Neither do shared references capture the notion of copying. The operational semantics 
for Facile [Ama94], like that for CML, does not deal with references. 

2.6.3 STING 

The STING system [JP92, JP94] is aimed at providing efficient and flexible runtime 
support for concurrency experiments with programming languages such as Scheme and 
ML. Written in Scheme, the system provides facilities for: 

• thread creation; 

• customable protocols for scheduling, migration, and load-balancing; and 

• adjustable thread execution strategies and storage allocation policies. 

The implementation makes extensive use of first-class procedures and continuations in 

its approach to concurrency support. All the elements of a typical parallel computer 
system (physical machines and processors, virtual machines and processors, and 
threads) are modelled abstractly and exposed as first-class objects in STING, and the 
user is able to adjust such parameters as virtual processor and thread scheduling 
policies. 
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STING assumes a shared address space, so that on distributed address space 
machines the system relies on a distributed shared memory (DSM) platform. Object 
references are thus defined no matter where the object is actually located. Although 
threads are responsible for managing their own private and public heaps, garbage 
collection is supported across thread boundaries. STING also supports message 
passing via ports, using an asynchronous send and a blocking receive semantics. The 
designers remark on the similarity between active messages [vEC92] and 
communication of first-class procedures to a thread-spawning process. 

The STING system provides an example of how programming languages such as 
Scheme and ML can be used to experiment with parallelism in ways made significantly 
easier by the language support for first-class procedures and functions. The designers 
do not commit themselves to any particular model of parallelism, seeing the system 
instead as a way to experiment with different models. A formal semantics for the 
system has not been developed; it relies instead on the semantics for Scheme. While 
their results are impressive on shared memory multiprocessor systems, it is not clear 
how these would translate to a distributed address space system that would need to 
support a DSM. 

2.6.4 Kali Scheme 

Kali Scheme [CJK95] is a distributed extension to a dialect of Scheme called Scheme 48 
[KR94], which in itself provides lightweight concurrent threads with condition 
variables and locks for synchronisation. Scheme 48 and Standard ML are quite 
similar, and it is worth noting that although type checking in Scheme is performed at 
runtime, rather than statically, finding ways to increase the level of static type checking 
is an active research area [JW95]. Kali Scheme extends Scheme 48 with facilities for 
message passing of objects between address spaces. Address spaces are first-class 
objects in their own right, and may be created dynamically. By default, most objects 
(including closures) transmitted between address spaces are structural copies of their 
value in the source address space. As a consequence, successive copies of mutable 
objects are not considered equal. 

Kali Scheme adds a new form of object called a proxy, which consists of a record 
with two slots: the first holds a system-wide unique identifier (uid), and the second 
holds a value. When a proxy (or an instance of other classes of objects such as 
procedure templates and symbols which are uniquely identified) is transmitted 
between address spaces, only the uid component of the object is included. Operations 
are provided for determining the address space on which a proxy was created, 
determining the value component of the proxy on the creating address space, and 
setting the value component of the proxy to a new value on the executing address 
space. Local access to a proxy's value does not require any global synchronisation or 
communication, and proxies generally allow the programmer to distinguish local and 
remote values. 
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Kali Scheme also provides facilities for remotely executing code and migrating 

thread computations by way of continuations. The system performs mostly local 

garbage collection (for non-proxy objects), with some asynchronous global garbage 

collection to deal with proxies which may be globally referenced. Kali Scheme is 

expected to be executed on either loosely-coupled or tightly-coupled networks of 

workstations, although the system does not provide facilities for dealing with failure of 

nodes and communication channels. It is not clear whether the system executes on 

heterogeneous workstation networks; however, Scheme 48 is executed by a byte-coded 

interpreter, and thus has the potential to support heterogenous program execution in 

the same manner as Java [Sun95]. 

As with STING, there is no formal semantics for the language at the present time. 

The strong point of the system is the notion of proxies, which allows users to adopt 

different styles of parallelism as appropriate to the application; proxies may be used 

to implement on-demand sharing of values across address spaces without the 

overheads of a DSM, and also to implement distributed data structures where values 

for a proxy object are different between different address spaces. The system also 

provides for automatically-marshalled data content in message passing forms of 

parallel program construction. 

An interesting observation from the four systems studied above is that the ML 

heritage provides an impetus for a formal theoretical treatment while the Scheme 

heritage does not. All of the systems studied make use of the higher-order features of 

Scheme and ML to implement complex concurrency primitives in flexible and 

interesting ways. 

2. 7 Conclusions 

Most efforts for dealing with distributed address space programming are addressed by 

distributed programming languages. Partitioning of computation is addressed more 

generally by concurrent, parallel and distributed programming languages, but the means 

of coordination vary enormously. Relatively few systems attempt to combine both 

safety and high performance. While the Facile project has many similar concerns to the 

paraML experiment, its emphasis on distributed computation rather than efficient high 
performance computation and its failure to formally model copied mutable reference 

values makes the paraML experiment important to pursue. 

The design of paraML discussed in the next part of this thesis attempts to 

combine safety and efficiency in the manner of CML, while addressing programming in 

a distributed address space context in a manner similar to Facile. It also provides a 

semantics for copying of mutable values between these address spaces, although 

without providing the flexibility of Kali Scheme's shared and copied mutable objects. 

The separation of abstract notions for processors and virtual processors provided in 

STING is adopted for components of the programming model, although not exposed to 

become user-specifiable. 
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3. Programming model 
3.1 Introduction 

In examining the design of extensions to ML for process-oriented programming, it is 

essential to consider the programming model that the language is to support, and what 

goals the programming model is trying to achieve. The programming model is founded 

on the notion of processes, and it is worthwhile considering exactly what are processes, 

independent of any end use. Subsequently, the ways in which processes can support 

the goals of safety and efficiency in a high performance programming context are 

considered. The programming model of paraML is described with respect to the 

evaluation, memory and communication traits that are identified with processes. 

These traits are also used to motivate the abstract machine and physical machine 

models and the associated software characteristics of these layers. Lastly some of the 

implications for programming under such a model are discussed. 

3.2 Processes 

3.2.1 History 

The concept of processes has been explored by many people during the history of 

computing. Two main uses for processes emerged almost immediately: operating 

system support for the management of multiple user programs, and concurrent 

programming specifications. The focus of concern in operating systems for supporting 

multiple user programs was on protection, particularly with regards to shared data. 

Processes were viewed as an elegant means to specify independence between different 

user programs. In concurrent programming, processes were seen as structuring 

mechanisms within a single program for disjoint, but possibly related, series of actions. 

The definition of process used by Dennis and Van Hom was a "'locus of control 

within an instruction sequence" [DVH66], and they described both of the above uses 

for processes. Dijkstra's understanding of a process was similar, though he specialised 

it to be a sequential process where the program was a sequence of rules of behaviour 

[Dij68]. These definitions capture a primary property of a process: that it acts as a 

self-contained evaluation entity. 

While parallel programming did not make an immediate impact, the expensive 

resources of available computers in the 1960's meant that operating systems capable of 

supporting multiple users at the same time became extremely important. An example 

of this kind of use was the Multics system [DD68, Org72], which tied the notion of a 

process to the concept of an address space or virtual memory. Each process executed 

with respect to its own address space, created independently of all other address 
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spaces. Multiplexing of the available processor computation resources to each process 
was performed by the "traffic controller module" which would be termed the process 
scheduler of the operating system kernel in current terminology. The one-to-one 
relationship between a process and its address space is the second property that is 
crucial to the nature of processes. 

Concurrent Pascal developed a more restricted notion of process, being that of a 
data structure and the sequential program that performed an operation on the data 
[Bri75]. However, this definition still conforms to the notion of a restricted address 
space that is in one-to-one correspondence with some sequential code acting on it. 
Mesa developed dynamic processes for concurrency and dynamic nested monitors for 
synchronisation [MMS79]. The interface to invoking a process was similar to invoking 
a procedure, but instead the process was executed concurrently with the caller. 

The multiplicity of alternative program structuring devices (beyond the basic ones 
of repetition, conditional action, and sequencing) led to Hoare' s development of 
communicating sequential processes (CSP) [Hoa78]. This proposal adopted Dijkstra's 
sequential processes, creation of parallelism and guarded commands [Dij75], and 
added inter-process communication by means of synchronous message passing. CSP is 
aimed directly at expressing concurrent computation, not at operating system support 
for multiple programs. The CSP model is basically that of a calculus for concurrency 
and communication. Considerable interest in the development and characterisation of 
models of concurrency and communication arose; notable among these are Milner' s 
calculus of communicating systems (CCS) [Mil80], Milner et al's 1t calculus [MPW92], 
and various other process calculi [San92, Tho95]. The calculi have moved 
progressively towards the expression of computation itself by communication. The key 
to all of this work is that processes are seen to have a third major property, being the 
ability to communicate. 

3.2.2 Issues 

Throughout their history in computing, processes are considered to: 

1. perform an evaluation, 
2. have their own private address space or memory, and 
3. communicate with other processes. 

3.2.2.1 Evaluation 

The process model is fundamentally concerned with isolating individual computations 
from each other. Irrespective of whether processes are to be used for parallel 
programming or operating system support, the capacity to specify a structural unit of 
active evaluation remains essential. The notion of evaluation as sequential execution of 
program statements should be read more generally to mean any standard evaluation 
mechanism; ranging across imperative, functional, logic, and object-oriented 
programming languages. The Multi.cs system goes beyond this and argues that cases 
exist where "multi.purpose processes" are appropriate [Org72]. In the terminology 
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defined in the previous chapter, this implies that the evaluation mechanism within a 

process may also be concurrent. 

In his Turing Award lecture [Mil93] Milner characterises processes in the 

1t calculus as capturing the concept of values, with names locating and accessing these 

values. Processes are active in as much as they interact with other processes through 

their names, and all evaluation is expressed by this interaction. This notion of 

evaluation is radically different from the sequential notion of evaluation represented by 

the '"A calculus, which is based on the reduction of terms. 

3.2.2.2 Sharing and protection 

An essential aspect to avoiding confusion between processes is the ability to protect 

data from inadvertent access and/ or alteration. (Data in this instance includes both 

executable code instructions and statically or dynamically created program data.) The 

simplest such mechanism is to provide every process with its own copy of all data. 

However, the consequence of such an action would be to forgo any possibility of 

sharing. 

Eliminating unnecessary duplication of shareable procedure code data in 

operating system support for multiple user programs is clearly desirable. The Multics 

system's mechanisms to achieve this provide an excellent example, covering both a 

virtual memory system [DD68] and protection facilities [Gra68] that provided 

complete safety with respect to concurrent invocations of the same procedure. The 

mechanisms provided were sufficiently general to manage sharing of program data as 

well as procedure code data. The modem equivalent is with dynamically-linked 

shared libraries in UNIX-like operating systems. 

The requirement for protection in parallel programs is somewhat different. Early 

investigations assumed that multiple processes would cooperate through common data 

structures, thus requiring mechanisms (such as locks and monitors) that would protect 

against other processes from destructively accessing the shared data. However, on 

parallel computers that do not provide shared memory it remains important to 

eliminate unnecessary duplication of the code of common procedures for processes 

executing on the same node. 

Sharing of program data among processes in parallel programs is a more 

contentious issue. The primary problem that arises is that access to data structures 

becomes non-uniform for processes on the same node and processes on remote nodes. 

A system of access control to such shared data is then required, and some notion of 

data coherence must be developed. Simplifying the issues concerned, it will be 

assumed that the process model used for parallel computing in the context of a 

distributed address space does not share program data. Any sharing of either 

executable code or program data is transparent to processes, by virtue of some 

underlying operating system or middleware support layer. 
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3.2.2.3 Communication and naming 

Hoare' s work on CSP [Hoa78] was partially motivated by his belief that computers 
consisting of a number of self-contained processors, each with its own memory, would 
become prevalent. On such computers, it was no longer clear that data structures 
should be shared among processes. Yet it was still essential that multiple processes 
could coordinate and synchronise their actions as well as communicate information. 
Hoare believed that the communication of copies of data between processes would 
enable a model of parallelism that could be realised on either form of computer 
(monoprocessor or multiprocessor in his terminology) and that was sufficiently general 
to describe a wide number of alternative mechanisms for managing communication and 
synchronisation. The CSP model permits communication when one process is willing 
to output a value to a particular destination and the destination process is willing to 
input a value from the sender, in which case a copy of the sender's value is made in the 
destination. 

A variety of mechanisms may be employed to realise inter-process 
communication. Among processes in an operating system, communication tends to 
operate by copying into a kernel memory space, and then copying from there into the 
user process's memory space. This is the low-level mechanism employed for most 
higher-level forms of inter-process communication in UNIX operating systems, such as 
pipes, sockets and streams. It is also possible to share pages of memory between 
processes and to map files into the memory space of a process. 

In parallel programming systems, both shared variables and message passing are 
used for communication. The choice between the two remains a contentious area of 
investigation, with different algorithms being better suited to one or the other model of 
communication. (An example of some quantitative research comparing the two models 
for a range of applications and shared address space computers may be found in 
[NS93].) 

While the CSP model does not specify the underlying mechanism that is used for 
communication, the fact that the value is copied and the explicit action of 
communication implies a notion of message passing. The model is very restrictive in 
that communication occurs between two processes in a synchronous fashion, although 
non-determinism is permitted through the alternative operation which selects one from 
a number of guarded communication commands to proceed. The only naming 
mechanism to identify communication targets in CSP was that of a process. 

The notions of ports and channels were developed to allow a process to use 
multiple input and/ or output facilities, each of which had a unique name to identify it. 
In some systems (for example, CCS [Mil80]), these names could not themselves be 
communicated to other processes. It turns out that this is a significant limiting factor in 
the expressivity of parallel programs since it prevents dynamic reconfiguration of 
communication facilities. The development of the 1t calculus [MPW92] explicitly 
addresses this restriction by allowing the communication of link names. In fact, the 
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only things that can be communicated are link names, and this ability, together with the 

rules of reduction for combining processes, provides computation facilities for 

expressing arbitrarily linked systems that may be dynamically reconfigured. 

In the n calculus processes themselves cannot be transmitted on links; however, 

the links that activate processes can be transmitted, which is both more and less 

powerful than the ability to pass processes. (The subtleties of these distinctions are 

discussed on page 17 of [MPW92t but are outside the scope of this thesis.) Thomsen 

developed an alternative process calculus called CHOCS which does permit the 

transmission of processes [Tho95]. The main semantic question with process 

transmission is knowing what exactly is being transmitted. Milner et al's understanding 

of transmitting a process is that it constitutes transmitting the text of a process; 

however, the definition of process that has been used earlier is not restricted to this 

static understanding of a process. Instead, there is a notion of dynamic evaluation of 

some self-contained fragment of code together with associated memory and 

communication facilities, not just the code fragment itself. Thus it is not at all clear 

how to ascribe meaning to the transmission of such an ongoing evaluation. 

3.2.3 Summary 

In essence, the concept of processes is intimately bound up with three things: 

evaluation, memory, and communication. A process performs evaluation ( of some 

self-contained fragment of code or expression) with respect to some memory. The 

notion of memory encompasses the values of all the variables required for the process's 

evaluation, including the evaluation code itself. Communication of values is used to 

achieve cooperation and interaction with other processes. 

This characterisation of the process model is independent of any end use of the 

modet although it was originally developed to enable parallel programming and 

multiple user program support in operating systems. It should be noted that the 

communication of values among processes is a stronger requirement for parallel 

programming than for operating systems. The precise way in which the process model 

is used in the design of paraML though is dependent on the end use of the language. 

3.3 Safe and efficient high performance programming facilities 

One major purpose in the design of paraML is to efficiently support safe high 
performance programming. The process model described above is generic in that it 

provides a useful model for various types of programming. :High performance 

computing on distributed address space parallel computers requires support for 

concurrency, scalability, portability and locality. The emphasis in this section is on 

how the process model provides good facilities for supporting these attributes. 
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3.3.1 Concurrency 

Inherent in the process model is the ability to support concurrent specification of 
distinct computation entities. Creation of a process relies on support from the 
underlying system to specify the computation to be performed and the communication 
facilities. The system may provide facilities to create new processes at any point in 
time with respect to an originating process (dynamic process creation). Alternatively, 
the system may only permit process creation at one point in time - resulting in a fixed 
group of processes (static process creation). 

In a system permitting dynamic process creation, there is no inherent limit to the 
degree of concurrency which can be supported. Naturally, any actual computer system 
will impose some physical limits which cannot be exceeded; these limits are 
implementation-dependent. Creating a new process simply requires program code to 
be executed with respect to data (as specified by a parent process). There is no 
necessity for the process's execution to be reliant on any process other than the parent, 
and only then at creation time. However, processes may cooperate by the 
communication of information, provided there is some mechanism to identify the 
destination of the communicated information. Dynamic process creation is also useful 
in that programs tend not to be reliant on fixed configurations of resources. Thus there 
is less likelihood of programs using dynamic process creation failing due to a mismatch 
between the degree of concurrency in the program and the computer. 

These attributes of the process model described above ensure that the first and 
most essential goal in supporting high performance programming on distributed 
address space computers - that is, the ability to express concurrency- is achieved. 

3.3.2 Scalability 

Scalability is a term in common use in the parallel computing community, but one 
which is subject to imprecise usage and difficulties in measurement. The term is used 
both with respect to hardware and to software. 

Data parallel computers such as Thinking Machines' CM2 have been built with 
several tens of thousands of PEs, but the PEs being utilised are much simpler than for 
other parallel computers. Data parallel architectures are good for achieving scalability, 
at least for data parallel algorithms, but are not so effective for general programming 
problems. Without utilising off-the-shelf CPUs, they also have difficulty in tracking 
general hardware performance improvements. As a consequence of the need to track 
performance improvements in hardware, the majority of computers used for parallel 
computing today have standard RISC CPUs in the PEs. The total number of PEs in a 
computer typically ranges from around four or eight to several hundred. Shared 
memory computers are typically limited to at most 32 PEs, after which memory bus 
contention prevents the addition of more PEs from being effective. Without dramatic 
change to manufacturing technology, the expense of individual PEs means that 
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computers with several thousand PEs are likely to remain too expensive for the 

foreseeable future, other than for very specialised and well-funded agencies. 

Put simply, scalability indicates the degree of efficiency in the use of increasing 

numbers of PEs. One motivation behind this approach is that the user of a parallel 

program to solve some problem wishes to know that if an n-PE parallel computer can 

execute the program in time t and the cost of this computer is $c, then a 2n-PE parallel 

computer costing $2c will execute the program in a time less than t. Ideally, the time 

taken will be t I 2, but this rarely happens in practice. However, there is clearly no 

point in purchasing a computer with more PEs if it fails to solve the problem faster. 

The exact point between t I 2 and t at which the purchaser agrees to buy the more 

powerful computer is dependent on how much the ability to solve the same problem in 

a faster time is valued. 

The software view of scalability is more complex. Scalability is intimately 

connected to the notion of speedup. Speedup is a measure of the performance 

improvement relative to the performance using only one PE, calculated as the inverse of 

the time taken multiplied by the time taken for a one-PE computer implementation. 

Linear speedup is where the speedup is the same as the number of PEs used. 

Reporting speedup as the only performance metric for parallel programs is 

problematic. For example, Hennessy and Patterson warn about the dangers of 

examining speedup on a parallel computer based on Intel 8086-based PEs when 

readily available sequential workstations easily outperform any such machine [HP94]. 

Efficiency is measured as the fraction of speedup achieved relative to linear 

speedup; thus achieving linear speedup yields an efficiency of 1. However, almost all 

problems have components which must be executed serially. Amdahl's Law [Amd67] 

states that as the number of processors approaches infinity, the maximum possible 

speedup is 1 / er where eris the fraction of the problem which must be executed serially. 

The problem with this definition is that the user is unlikely to want to solve the same 

scale of problems on a single processor computer as on a parallel computer. In fact, it 

may not even be possible to determine the time taken to solve the problem on a single 

processor computer due to the size of the data involved. 

One approach to providing a more balanced notion of speedup incorporates 

scaling the size of the problem to be solved as the number of PEs increases. The 

formulation of this notion of speedup is known as Gustafson's Law [GMB88],, and 

relies on the time taken to perform the sequential part of the computation rema:irung 

unchanged regardless of the number of PEs and the size of the problem. With this 
formulation, it is possible to achieve efficiencies which approach 1 for large enough 

problem sizes. However, it is also unusual to find problems where the serial 

component of the problem does not depend on the size of the problem and the number 

of processors being used. 
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A final refinement is the notion of isoefficiency first developed by Kumar and 
others [KG91, KGG+93]. This concept defines a function by which the size of a 
problem must be scaled up as the number of PEs increases in order to maintain a 
specified constant efficiency. The isoefficiency function computes the relationship 
between the time taken for parallelism overheads and the total useful computation 
time. While this metric is the best one for characterising scalability of parallel 
programs, it is also the most complex. Since the metric is completely dependent on the 
algorithm used and the characteristics of the parallel computer on which the program is 
executed, it enables valid comparisons between different parallel computers for the 
same algorithm. 

In summary, scalability can be characterised as the degree to which performance 
improves relative to increases in the degree of parallelism. Alternatively, it can be 
viewed as the degree to which problem size (which is typically dependent on the data 
size) must be increased to retain the same performance when the degree of parallelism 
is increased. Comparisons of scalability between different parallel computers need to 
use metrics such as isoefficiency to eliminate individual biases in the overheads of 
parallelism. 

Having established a meaning for scalability, the next question is whether the 
process model helps or hinders scalability. The major issues for the process model 
with respect to scalability are: 

• can it make use of increases in the number of PEs? 

• are there any inherently serialising constraints that restrict increases m 
parallelism? 

• do the overheads of process creation outvveigh any benefits from increased 
parallelism? 

Since the process model permits dynamic creation of processes, there is no 
inherent limit on the number of processes that can be created. Thus any increase in the 
underlying hardware can be utilised by creating more processes to be executed. Note 
that the computer's hardware or operating system will impose restrictions on the total 
number of processes which may be created, as a consequence of finite memory 
resources. 

In the process model, there need be no global system resource which is required 
for process creation, and processes execute independently of others ( other than where 
communications betvveen processes imply synchronisation). Hence there is no 
inherent constraint in the model on increases in parallelism. 

The overheads of process creation are dependent on a particular implementation 
of the process model, and may be dependent on problem size. However, the 
overheads for any single instance of process creation should not be affected by the 
total number of processes. Thus, overall process creation overheads should be 
dependent on the number of processes and problem size, but still finitely bounded. 
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Whether or not the overheads are offset by the increased parallelism will depend on 

the degree of parallelism in an individual application, as characterised by isoefficiency. 

3.3.3 Portability 

It is an oft-stated position that one of the main problems facing high performance 

parallel computing is that building efficient parallel programs is more complex than 

developing sequential programs. Wilson remarks on the lack of good software 

techniques for managing parallelism as a significant contributing factor to this problem 

[Wil95]. Hennessy and Patterson comment on the current need for detailed machine­

specific knowledge to achieve efficient implementations, and this knowledge does not 

carry over to other architectures [HP94]. Regardless of the reasons, it thus becomes 

essential that once a solution has been developed, it can be reimplemented on a number 

of different parallel computers without having to replace large quantities of code, or 

worse still, redesign the entire algorithm. The procedure by which this 

reimplementation is carried out is known as porting, and if porting can take place with 

little or no alterations, perhaps only requiring recompilation of the program source, 

then the system is said to possess good portability. However, it is also desirable that 

the efficiency of the ported system remains comparable to its original implementation. 

These requirements are similar to sequential computing, where a program, once 

developed, is expected to execute on a wide range of sequential computers requiring 

only minor modifications ( to such things as operating system inter£ ace calls) but with 

similar levels of performance. One of the main reasons for the success of portability on 

sequential computers is that they all embody the same basic machine model (the von 

Neumann machine), and the components of these machines are fairly similar (CPU, 

cache, main memory, secondary storage and input/ output devices). Portability has 

been more difficult to achieve across parallel computers due to the wide variation in 

their construction and the lack of a single programming model which performs well on 

different architectures for different types of problems. 

The major issues for the process model with respect to portability are: 

• can it be used to support parallel programming systems on different types of 

parallel computers with a degree of performance invariance? 

• are there characteristics of the model which are likely to result in an inefficient 

implementation? 

Operating systems for sequential computers are typically founded on the process 

model, so it is clearly possible to support processes on a sequential computer. Modem 

parallel computers are converging towards construction from a number of processing 

elements (PEs ), where each looks like a sequential computer, although the available 

memory may be shared among all PEs or be disjoint. Where the memory is shared, the 

techniques to support the process model are well established, since the parallel 

computer appears basically the same as a sequential computer but with more available 
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PEs to execute processes simultaneously. Communication between processes occurs 
via the shared address space. Where the address space is distributed, each PE may 
support multiple processes, and communication occurs either through the shared 
memory on a PE, or through the inter-PE communication network. Sharing of common 
program code can occur for processes on the same PE, and each PE maintains a 
complete copy of all the executable program code. Thus the process model can be 
realised on different types of parallel computers, and used to support parallel 
programming systems. 

Inefficient implementations of the process model would arise if there is some 
characteristic of the model which is actively limited by the underlying hardware. The 
main characteristics of the process model are its evaluation of separate encapsulated 
computations with respect to some memory, and communication between these 
entities. Any parallel computer with the ability to execute programs on each PE can 
support encapsulated computations. The main impediment to performance will be if 
the number of PEs is very low relative to the number of processes. In this case, the 
overheads in switching between processes on a PE may outweigh the benefits of having 
parallel computation. Another consequence of large numbers of processes relative to 
the number of PEs is that access to shared memory may become a bottleneck. The last 
impediment to performance will be if the communication medium (be it the access to 
shared memory or the inter-PE communication network) becomes saturated with 
outstanding communications, thus preventing evaluation progress within processes. 
This problem arises if the amount of communication relative to computation is high. 
All of these problems are somewhat application-specific, and are not direct 
consequences of the process model itself. Typically, it is possible to adjust the number 
of processes being created according to the number of PEs available, which tends to 
limit the impact of these problems. 

3.3.4 Locality 

The concept of locality is used in two ways: 

• with respect to physical memory hierarchies ( virtual memory to main memory 
to cache to processor registers), the smaller the latency involved in accessing a 
data value, the greater the locality of the data; 

• with respect to software, whether the location of data values in the memory 
hierarchy can be directly influenced by the programmer. 

Performance of programs can be increased by reduced the memory access 
latencies. In the case of sequential programs and shared address space computers, 
enormous amounts of research and development have been carried out to minimise the 
performance penalties arising from poor data locality during program execution. The 
goal of this research is to find automatic ways of moving data into a lower-latency 
position in the memory hierarchy before (first or repeated) use. The Stanford DASH 
and FLASH multiprocessor projects [LLG+92] [KOH +94], and the SUIF compiler 
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system [AAL95] are examples of such research. Some programming languages permit 

the programmer to provide direct clues as to the expected frequency of use of data (for 

instance, the register directive in the C programming language [KR78]) and thus the 

need to maximise the data locality. In the context of parallel programming, the affinity 

directives of COOL allow the specification of various associations between object data 

and task execution to maximise locality [CGH93]. Program structuring mechanisms 

are another implicit way of providing such clues to data use (for instance, loop count 

variables are frequently accessed). When computing in a distributed address space, 

data may be located in a completely different memory unit from that associated with 

the current evaluation, and subject to much greater access latencies. 

The way in which data locality is promoted is important for good performance of 

parallel programs. The process model addresses both of the above aspects of data 

locality. Firstly, a process is an encapsulated evaluation with respect to some memory, 

so all data required as part of the computation will be physically resident within the 

process's memory at the time it is incorporated into the ongoing computation. This 

property is the result of the communication of values from process to process. 

However, a process may have to wait for this data to be communicated to it by 

another process before the data becomes local. In distributed address space 

computers, there is an additional complication. If some data value needs to be local to 

two separate processes simultaneously, a copy of the value must be resident in both 

places. If the data is mutable, then changes to one copy will not be seen by the other 

process, unless there is some mechanism for data coherence and sharing. However, as 

mentioned earlier, the process model being described makes the simplifying assumption 

that either data is not shared or any such sharing is transparent to the processes 

concerned. 

Secondly, the location of data values is clearly exposed to the programmer in as 

much as it is either locally present or resident in a remote process. For the value to 

become local if it is currently remote, there must be a deliberate act to communicate the 

value. Further discussion of the impact of distinguishing local and remote 

data/ memory access is provided in §3.6.3. The 7t calculus takes the concept of 

location one step further, by making names the sole mechanism of locating a value. 

Without a name, there is no mechanism to access a value. While this is an elegant and 

powerful way of viewing location in a concurrent system, its failure to provide any 

notion of distance or ownership becomes important in providing efficient high 
performance programming facilities in the context of distributed address spaces. 

3.4 Programming model 

The programming model of paraML is based on a process-oriented style of 

computation. Processes are good at supporting concurrency, scalability, portability 

and locality, which are essential to achieve high performance. The specialisation of the 
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process model for paraML is described with respect to its evaluation, memory and 
communication characteristics. 

3.4.1 Evaluation 

The programming model's organising unit of evaluation is the process. Each process is 
capable of executing some expression within an encapsulated data environment which 
includes some memory. The computation language within a process may be either 
sequential or concurrent; the precise details are not central to this design discussion 
although a concurrent language will allow more efficient implementations of certain 
problems, as discussed in §4.6. The coordination of processes is achieved through the 
extension operations that paraML defines, as described in the next chapter. The 
capacity to dynamically create multiple processes and for each to execute a unique 
expression provides the concurrency which is fundamental to a parallel programming 
system. 

3.4.2 Memory 

A defining feature of the programming model is that memory is not shared between 
processes at all. Thus processes must contain all information required for evaluation 
of an expression other than information communicated by other processes. The 
motivation for this approach is that it allows processes to be completely independent 
in their execution; they do not rely on the cooperation of any other process for memory 
access nor must they provide memory access services for other processes. The disjoint 
nature of process memory means that scalability is more easily achieved, since there 
are fewer shared resources to create barriers to performance scalability as the number 
of PEs in the physical machine increases. 

3.4.3 Communication 

Communication between processes takes place by message passing to ports. Ports are 
provided by and located on a process, and queue messages in order of arrival. Any 
process may send a message to the port, but just as the memory is disjoint, so 
messages in ports may only be removed by the process that created the port. The 
mailbox analogy is an appropriate one to characterise communications to ports. 
Successful delivery of a message to a port is reported to the sender, but this is no 
guarantee that the process will ever actually remove the message and incorporate its 
information into the ongoing computation. (In MPI terminology, this is like buffered 
mode communication, except that the buffer exists at the destination, not the source.) 
The motivation for this approach rather than fully synchronous message passing is that 
the latter binds together the progress of all processes in a program much more tightly. 
In particular, a sending process is unable to continue execution until the matching 
receive operation has been commenced. This characteristic increases the chances of 
inadvertent deadlock as well as possibly delaying the sending process until the 
receiving process calls its matching receive operation. The essence of the programming 
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Figure 3.1-Processes and ports in the programming model. 

model is illustrated in Figure 3.1, where three processes are engaged in communicating 

two values. 

The basic operations provided by the communication system are: sending, 

probing for, and receiving messages. The use of message passing to ports rather than 

some other form of communication ( even message passing on shared channels) 

promotes locality by ensuring that any information required by a process must be local 

to its memory (in one of its ports) prior to incorporating it into the computation. The 

very simplistic model of communication is also easy to provide in any modem parallel 

computer, and thus does not pose any restriction on portability. 

A degree of safety is achieved through the ability to differentiate messages by 

ports. Instead of a single buffer for all messages, identification of different classes of 

messages may be associated with different ports. It is still possible to overload use of 

a particular port with more than one form of information, but this is now chosen by the 

programmer rather than being imposed by a single message buffer approach. 

Foster describes a programming model which is similar to the processes and 

ports model, but he uses the terms tasks and channels [Fos94]; the term port is also used 

to refer to the interface of a task to its environment, where output ports and input 

ports of two tasks may be connected by a channel consisting of a queue of messages. 

This use of terms was deliberately avoided in paraML since it leads to confusion with 

the channels of CML. Foster also uses the term message passing to refer to a 

programming model where processes communicate by messages to other processes, not 

to individuated ports within the process. However, message passing is used in this 

thesis to mean simply the communication mechanism that involves sending and 
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rece1vmg messages. The process and port programming model is slightly less general 
than Foster's task and channel programming model, since there can never be more than 
one receiver at the end of a port. However, Foster prefers (but does not enforce) only 
single senders and receivers associated with any channel since this ensures determinism 
in communication. 

3.5 Abstract machine model 

The role of the abstract machine layer is to provide a model that can describe and 
support the programming model in terms of hardware concepts. Thus the abstract 
machine is a hardware analogy for the software model of programming with processes. 
The key concept in the abstract machine is that of a virtual processor (VP), where there 
is a one-to-one association between processes and VPs. A VP is not the same as a 
process however, since VPs are also responsible for the management of certain aspects 
of state and scheduling behaviours that are left implicit in the description of processes. 
The following description of the abstract machine model does not provide detail at the 
level of interpretation of machine operations, as is done with the functional abstract 
machine [ Car83] for example. The abstract machine model is realised by a runtime 
system which executes on each node of the parallel computer. 

3.5.1 Evaluation 

A VP provides an evaluation service capable of executing the code of a process. In this 
manner, it acts like a normal computer processor. All the facilities required for 
evaluation, such as memory and interfaces to the communication facilities, are also 
provided. At most one process is executed by a VP, and new VPs can be created 
dynamically, disappearing when the evaluation is complete. 

3.5.2 Memory 

The memory of each VP is disjoint from that of all other VPs and is effectively 
unlimited, like the virtual memory system in an operating system such as UNIX, where 
each process apparently has an address space, regardless of either physical memory of 
the machine or the number of processes being executed. In practice, a VP' s memory 
will be constrained by the available memory system, but as much as possible the 
process being executed by the VP should not be aware of this restriction. 

3.5.3 Communication 

Communication among VPs is provided such that any VP may send a message to any 
other VP. Unlike processes in the programming model, there is only a single 
destination for messages sent to a VP. The ordering on messages between VPs is 
preserved. There is no requirement for ordered broadcast facilities among VPs. The 
basic operations provided by the layer are to send and receive messages. Information 
in the messages is used to identify which port the message is destined for, and the VP 

--
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must provide queues for each distinct port that the process creates. The state of a 

message queue is sufficient to support the probe operation in the process layer. 

Additional information is carried in messages, which identifies the sender of a 

message, together with a unique message identity. This information is used in 

generating status messages about the success or failure of a request. 

3.6 Physical machine model 

3.6.1 Background 

Prior to examining the evaluation, memory and communication traits of the physical 

machine model, it is useful to examine some background on parallel computer 

architectures. The classic computer taxonomy is that of Flynn [Fly66], which 

characterises computers by the number of instruction streams they are capable of 

processing and the number of data elements that the instruction streams can operate 

on simultaneously. Most modem parallel computers, such as the IBM SP2, Fujitsu 

APl 000+, Cray T3E and Silicon Graphics PowerChallenge, would all be classified as 

ivfIMD machines-those capable of executing multiple instruction streams and multiple 

data elements. The main advantage of this form of architecture is that the separate 

building blocks or processing elements of the computer are themselves very similar to a 

traditional monoprocessor, and thus are subject to economies of scale in production. 

Flynn's taxonomy does not consider how memory is accessed by the instruction 

streams. In practice, this turns out to be one of the fundamental distinguishing 

characteristics of parallel architectures. As discussed in Chapter 2, parallel 

programming systems may embody either a shared address space or a distributed 

address space. Similarly, parallel architectures may provide either a single shared 

memory that is accessed by all PEs or many memory units, distributed across the 

machine, that are accessed by the PEs. The SGI PowerChallenge is an example of a 

shared memory :rvIDv1D machine (these are also known as multiprocessors), while the 

Cray T3E is an example of a distributed memory MIMD machine (these are also known 

as multicomputers). 

The most common approach with distributed memory computers is for each 

memory to be disjoint from all others, and accessible by only a single PE. Some parallel 

computers, such as the Silicon Graphics Origin2000 series and the Kendall Square 

Research KSR-1, provide hardware support for access to distributed memory modules 

from other PEs whilst retaining memory coherency and cache coherency. The reason 

for such an approach is that distributed memory is a scalable technology, but the 

shared address space retains simplicity for programming without the overheads of a 

software DSM. Such memory interconnection networks are analogous to the PE 

interconnection network that is provided to allow communication and synchronisation 

between PEs. The current generation of distributed memory :tvfIMD computers (for 

example, the Cray T3E and the Fujitsu APl000+) provide hardware-supported 
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Figure 3.3 - Distributed memory :tvnMD computers. 

operations that allow fetching and setting of memory locations in remote memory 
modules without involvement of the remote PE' s processor. Such operations though 
are still performed through the PE interconnection network. The connection to memory 
in shared memory :tvnMD machines is shown in Figure 3.2, and for distributed memory 
:tvnMD machines in Figure 3.3. 

The main benefit of distributed memory MIMD machines is that as the number of 
PEs grows, the technology for managing inter-PE communication is more scalable than 
with shared memory ivIDvID machines. Distributed memory machines need a faster 
switch for message routing, but shared memory machines require a faster memory bus 
which is shared among all PEs. The other problem is that the performance of the 
shared memory bus must increase linearly to retain performance but the switching 
technology does not have to increase at the same rate in order to retain the same 
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overall performance. Contention across the memory bus is higher since all non-cache 

memory accesses have to be mediated via the bus, while only communication requests 

require the communication network in a distributed memory machine. The overall 

result of these factors is that performance is more easily scalable on distributed 

memory machines. 

The main disadvantage of distributed memory :tvfIMD machines is that the ti.me 

to access memory values (which may reside in a remote PE and require the remote PE's 

involvement) is non-uniform. This characteristic is common to all modern computers 

due to caches, virtual memory, or shared memory buses on multiprocessors. However, 

the degree of non-uniformity is more significant with multicomputers, and thus gives 

rise to the acronym NUMA, for non-uniform memory access; the converse is UMA, for 

uniform memory access. Most NUMA architectures require the programmer to be 

aware of the distinction between local and remote memory value access since the 

actual access operations are typically different. A shared memory program can ignore 

this level of detail since the hardware provides a single method of access to all values; 

awareness of the non-uniformity characteristics becomes significant usually only when 

performance tuning is required. The Silicon Graphics Origin2000 series computers 

retain the simplicity of a shared address space kept coherent in hardware, while the 

physical memory is distributed and subject to NUMA latencies. The degree of non­

uniformity is kept smaller than other multicomputers by virtue of very high memory-to­

memory bandwidth and high performance switching technology. 

3.6.2 Physical machine model, operating system and runtime system 

The physical machine model that paraML has been designed for is the multicomputer. 

Foster's distinction between multi.computers and distributed memory MIMD computers 

is adopted [Fos94]. Multicomputers are a collection of PEs consisting of von Neumann 

computers, which communicate through an interconnection network. They differ from 

distributed memory MIMD machines by the simplifying assumption that the ti.me taken 

to send a message between two PEs is independent of the relative location in the 

network and other network communications, though the size of the message remains a 

factor. In this section, the key components of the multicomputer model are detailed: its 

evaluation, memory, and communication characteristics. The roles of the 

multi.computer operating system and communication library are also discussed. 

The primary reason that the multi.computer model was chosen as the target 

architecture is that it is sufficiently general to be representative of a broad class of 

current high performance computational systems. These include distributed memory 

:Milv1D machines, clusters of multiprocessors, and workstations connected by high­

speed interconnection networks. An alternative for characterising such classes of 

machines is the LogP model [CKP+93]; this model places greater emphasis on the cost 

metrics for communication. The canonical form of a multi.computer is illustrated in 
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Figure 3.4 - The multicomputer model. 

Figure 3.4, which shows that unlike the distributed memory WMD machine, each 
memory module is contained within the PE. The same diagram represents equally well 
the abstract machine model of VPs which may communicate via an interconnection 
network. 

3.6.2.1 Evaluation 

The main limiting factor of the multicomputer as a general model for parallel 
programming is that the number of processing elements (PEs) is fixed for any particular 
machine. This restriction poses a serious problem for portability of programs that use 
either dynamic process creation or a fixed number of processes that differs from the 
number of PEs. The standard technique us~d for programming multicomputers is to 
assume a Single Program Multiple Data (SPMD) approach which executes the same 
program on each PE; effectively the program is partitioned relative to the number of 
PEs available. This approach is useful for adapting programs that require fixed 
numbers of processes but does not address those which are best modelled with 
dynamic process creation. 

Evaluation services are provided by the processor(s) of the multicomputer's PEs. 
Each processor is capable of performing evaluation, accessing local memory, and 
initiating communication requests. In other words, the PEs are standard 
von Neumann-style computational devices. The multicomputer operating system 
provides facilities to allow the execution of at least one user process, and also 
supports file I/ 0 operations. The filesystem may be a single global filesystem common 
to all PEs, a filesystem per PE, or a parallel filesystem that supports either or both of 
the two previous modes of access. There is no requirement for the operating system to 
provide support for dynamic process creation during the course of program execution. 
Minimally of course it must provide facilities to initiate a process on each PE of the 
computer; typically this will be a single program executable file. 

The finite number of PEs available in a multicomputer must be capable of 
supporting a much larger and unbounded number of VPs which constitute the abstract 
machine. Each physical PE supports zero or more VPs, and VPs can be created 
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dynamically. A VP is very similar to a PE in that it performs evaluation of some 

program, has its own local memory, and can communicate with other VPs in the 

machine. The general construction of the abstract machine is shown in Figure 3.5, 

together with an expanded diagram of a PE supporting multiple VPs. 

In many ways, the concept of a VP is analogous to that of a UNIX process: each 

has a protected address space and access to physical resources of the machine, as 

managed by the underlying operating system. On a sequential computer, the operating 

system kernel is responsible for providing a process management service to ensure that 

each process is given time for execution by the processor. On a multicomputer, a 

runtime system is responsible for ensuring that each VP is given time to execute its 

program by the PE's CPU and to maintain the illusion that the machine consists of an 

arbitrary number of VPs that may communicate through an interconnection netwcrk. 

The runtime system must obviously be concurrent in order to provide these evaluation 

and communication services. It must also be capable of creating new VPs. Each VP 

has its own system-wide unique identifier. Thus the restriction that each PE may only 

be able to execute one program is solved by making that program the runtime system 

for VPs. 
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3.6.2.2 Memory 

Each PE incorporates a local memory whose address space is disjoint from the 
address spaces of all other PEs in the computer. The local memory is sufficient to 
execute entire sequential programs. There is no requirement that other PEs have access 
to the contents of the local PE' s memory, but nor is this excluded. A defining 
characteristic of the multicomputer is that access to local memory by the PE has higher 
bandwidth and lower latency than memory belonging to a remote PE which is accessed 
through the communication network. 

The VP runtime system is responsible for partitioning the available memory so 
that each VP is protected from accessing data belonging to another. Since multiple VPs 
may execute on the single PE, sharing of the code data of common program operations 
can be permitted, provided there are no problems with inconsistent memory update. 
This form of sharing is transparent to the processes being executed by the VPs, since to 
each it appears as if a completely unique copy of all code data is available. 

3.6.2.3 Communication 

The communication network and operating system layer must provide support for 
connections between arbitrary PEs. That is, the communication layer cannot be 
restricted to nearest-neighbour communications (as in, for example, transputer 
networks from the 1980' s ). There is no requirement for the physical network to 
support broadcast operations among all or a subset of the PEs. However, the 
communication software layer should be adequate to support an implementation of the 
:tvfPI definition [MPI94] . The :tvfPI library is also the basis for portability among 
different parallel computer systems with respect to the communication requirements. It 
is up to the 1v1PI implementation to provide efficient inter-PE communications at the 
physical machine layer. 

Communication among VPs is more complex than the communication layer 
among PEs. The main reason for this is that the :tvfPI standard makes no provision for 
dynamic process creation and communication among such processes; in other words, 
the number of processes and the system-wide communication group or communicator 
(known as MP I _COMM_WORLD) is fixed at the start of the program. This 
communication layer is used for the runtime system executing on each PE, not for 
individual processes being executed by VPs. Thus the runtime system must also 
deliver messages bound for particular processes to the corresponding VP to queue 
appropriately. Depending on the location of two communicating VPs, messages may 
need to be transmitted between PEs over the PE interconnection network or simply 
copied between VP memories residing on the same PE. 

3.6.3 Sharing 

The main potential criticism of the programming model is its elimination of any form of 
sharing of memory. The lack of sharing is a deliberate choice made to achieve the goals 

--
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Figure 3.6 - Simple sharing of memory in the programming model. 

discussed earlier. However, the issue of loss of sharing merits further discussion on its 

implications for programming; this is found in §3.7.1. Simplistically, sharing could be 

encoded in the model by having a single process manage any memory to be shared, and 

to provide a communication service that creates a new shared memory value and reads 

and writes the current value. An example of this type of sharing constructed in the 

programming model is shown in Figure 3.6. A single process (labelled the memory 

process) holds the memory for two types of values, and is about to receive a create 

request ( the message ml) for a third from the process labelled Pl. The process to the 

right of the diagram (labelled P2) has previously sent a read request (the message 

labelled m3 ), and is being answered by a copy of the current value (by the message 

marked m2). Normal message passing between the ports can still take place, as also 

shown in the diagram with the transmission of the black triangle value in message m4. 

However these create, read and write operations remain distinct from local 

memory access operations. 

3. 7 Implications for programming 

The programming model described has various implications for the style of 

programming that may be used. Two issues in particular deserve some attention: how 

the loss of automatic sharing affects programs and the "plumbing" required to connect 

processes together with ports. 

3.7.1 Loss of sharing 

One consequence of not providing sharing is that local and remote value access 

operations are distinguished. The issue of whether or not local and remote operations 
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should be differentiated is open to debate. An interesting discussion of the problems 
inherent in not distinguishing between local and remote memory operations in the 
context of distributed object stores may be found in Waldo et al's report [WWW+94]. 
The authors' arguments, though targeted at distributed computer systems, are still 
relevant with respect to their treatment of memory latency and access operations. The 
essence of their argument is that attempting to provide a unified model of memory 
access imposes cost penalties when the programmer knows the memory access is local. 
The penalties can only be eliminated if the memory access operations are distinguished. 
Although the implementation of programs where remote and local accesses are 
distinguished is more difficult, the authors suggest that programmers are able to learn 
how and when to use the different access methods and will not make other kinds of 
mistakes that arise with unified access operations. 

Another consequence of the lack of sharing, criticised by Wilson [Wil95], is the 
overheads of copying messages among processes when their VPs reside on the same 
PE. However, if copying is avoided by having the message passed by reference, then it 
is subject to update by both processes. Maintaining coherent access to such 
information then incurs the overhead of a coherence protocol on all memory accesses 
where the memory has either arrived or been sent as a message, and increased compiler 
overhead to determine whether the coherence overheads can be avoided. In many 
ways, the tradeoffs involved are similar to those discussed in the preceding paragraph. 

3.7.2 Plumbing 

Wilson describes the quantity of connections between processes, which he refers to as 
"plumbing", as the single biggest drawback of using message passing for 
communication [Wil95]. In practice, this problem starts to arise when the number of 
either processes or ports becomes large and ensuring that processes communicate 
correctly with the right destination ports becomes problematic. There is no simple 
solution to this problem, but there are a number of advantages at the language level in 
paraML for minimising the difficulties, as discussed in §4.4.7. At the programming 
model level, the ability to dynamically create processes rather than being restricted to a 
fixed set of processes from startup goes some way to modularising the communication 
requirements of any individual process. Foster argues that the nature of processes as 
encapsulating data and operations on that data, and ports providing interfaces, is 
modular and advantageous [Fos94]. He likens the data encapsulation and interfaces 
to the object-oriented programming paradigm. A mechanism to manage some of the 
complexity of the connections is through the use of algorithmic skeletons, as discussed 
in Chapter 8. 

3.8 Summary 

This chapter has presented the foundations of the models which underlie the paraML 
language design. The programming model of self-contained evaluation environments 
represented by processes, and ports for message passing among processes, is designed 

________,,.. 
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to map efficiently onto the abstract machine model, which in tum must map efficiently 

onto the physical machine model. There is a strong coupling between the programming 

model and abstract machine layer - the programming model is essentially the software 

description of the abstract hardware. The programming model uses processes to 

support concurrency, scalability, portability and locality in the context of efficient high 

performance programming for distributed address space computers. The physical 

machine model is the multicomputer, which is representative of a broad class of current 

and future high performance computers. Realising the process-oriented programming 

model is done by extensions to ML as discussed in the next chapter. 
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4. Design 
4.1 Overview 

The programming model described for paraML in the previous chapter develops an 

abstract view of process-oriented high per£ ormance programming facilities. This view 

is made concrete by the syntax and semantics of the operations for coordinating 

process-oriented constructs in paraML. This chapter starts by characterising the 

design concerns which these operations attempt to address and then introduces the 

core extensions. Alternative operations that may be derived from these core extensions 

are discussed, followed by a description of some useful operations to interrogate the 

multicomputer attributes. A discussion of the role played by concurrency within 

processes is included, along with a brief critique of the design. 

4.2 Design concerns 

The process-oriented programming model addressed issues of concurrency, scalability, 

portability and locality. These properties primarily facilitate efficient high 

performance programming. The other major aspect of the developments proposed in 

this thesis is safe high performance computing. The following concerns which address 

safety have influenced the design of the extensions. These concerns are: 

• Error prevention. 

• Simplicity and minimalism in language extensions. 

• Type-safe communication during program execution. 

• Formal modelling of the language. 

• Modularity of program components to permit composition and clean 

interfaces to their surrounding system context. 

Additional issues that require consideration, but which are not so directly tied to 

safety, include: 

• Granularity of mapping program components to the machine model. 

• Non-determinism in program execution. 

• Garbage collection. 

• Compiler alterations. 

• Ability to define different programming abstractions. 

49 
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4.2.1 Error prevention 

The prevention of errors is greatly to be desired in all programming languages, and is 
particularly important in facilitating safe high performance programming. The costs of 
fixing errors once a program is working are considerably higher than those of fixing 
them at the design or implementation stage. Characteristics of the ML language have 
long been considered as some of the most useful in preventing errors [Mac92, A pp93]. 
These characteristics include the static type system, the exception handling 
mechanisms, automatic memory management and the module system. The design of 
extensions for paraML seeks to prevent any of these characteristics being lost, within 
the limits imposed by process-oriented computation. 

4.2.2 Simplicity and minimalism 

The benefits of achieving simplicity and minimalism in the design of the language 
extensions are manifest. Simple operations are understood more readily and there is a 
greater likelihood that they may also be implemented simply and efficiently. Providing 
a minimal set of operations for process-oriented programming is akin to axiomatising a 
logic or defining an abstract datatype. The more minimal the set and the simpler the 
operations, the easier it is to formally model the extensions. Whether or not the chosen 
set of operations is actually useful is observable from the degree of simplicity with 
which they can be used to define alternative programming abstractions. Unlike the 
earlier version of paraML, the current design attempts to keep the set of primitives to a 
bare minimum and to restrict the action of any operation to interactions between at 
most two processes. 

4.2.3 Type-safe communication 

The many benefits of strong typing in program construction are well known. In the 
context of p·arallel computing, where programs are considerably more difficult to debug 
and the tools for debugging are also less adequate, the desirability of eliminating as 
many forms of error as possible before program execution commences is even greater. 
Communication by message passing is the only means of interaction among executing 
processes, and thus it is crucial to ensure that such interaction is carried out without 
errors that can be eliminated through type checking. Since ML is a statically-typed 
language, it is highly desirable that communication to ports should also be statically 
type checked. Communication will be safer through the use of typed ports just as 
programming is safer with strong typing. 

4.2.4 Formal modelling 

There are a number of advantages that can arise from the ability to formally model a 
language. These include: a precise description of the semantic objects in the language 
and how evaluation of programs combines these semantic objects; the ability to 
construct checkable proofs about the outcome of particular programs; and a 
declarative specification of how any implementation of the language must behave. 
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Since Standard ML has a formal definition [MTH90], extensions of the language need 

to provide some justification that the extension operations do not discredit the existing 

definition. There are a number of problematic areas in any formal definition that 

builds extensions on ML, but these are left to the discussion of the theoretical 

modelling of paraML in Part III. Formal definitions also provide a well-founded 

description of implementation requirements for the extensions. The implementation is 

more likely to be sound as a result. 

4.2.5 Modularity 

Modularity is another desirable attribute of any programming language. ML has a 

well-developed module system that goes a long way towards simplifying this goal with 

respect to any extension of the language. The principal requirement with paraML is 

that the extension operations provide a straightforward mechanism to interact with 

some program component ( constructed with a process or processes), and that these 

components can be composed together in a general but safe manner. Robust and 

reusable programming is enhanced through modular program construction, as 

independent components may be tested in isolation from the remainder of the program. 

4.2.6 Other issues 

4.2.6.1 Granularity 

It is obvious that the design of the core operations must not hinder the mapping of 

processes to the machine model. Similarly, the granularity with which this mapping is 

performed should to some extent be embodied in the operations as otherwise the 

efficiency of the resulting program is likely to be poor. 

4.2.6.2 Non-determinism 

Most parallel systems accept non-determinism in the order of evaluation of different 

parts of a program. It has been shown by Chandy and Foster [CF93] that parallel 

programs using message passing can be deterministic provided certain restrictions are 

made on the use of the communication primitives. However, non-determinism need not 

be seen as an unpalatable characteristic depending on the algorithm being employed, 

and thus the design of paraML does not attempt to mandate that all communication 

be deterministic. 

4.2.6.3 Garbage collection 

Automatic memory management is an integral part of ML. The major part of such 

management is to automatically create memory for storing values as required, and then 

to garbage collect the memory once the values can no longer be accessed. High 

performance programming systems for parallel computers with a shared address space 

model require garbage collection algorithms to be implemented so that when a value is 

common to more than one process/ thread, its memory is not garbage collected until all 
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references to the value are extinct. The typical solutions require either a "stop the 
world" approach where all evaluations are halted and garbage collection is performed 
globally, or an independent approach where a thread acts as a garbage collector 
autonomously from the other evaluations. The approach taken with paraML, enabled 
by the process model's encapsulated memory afuibute, is for each process to perform 
its own independent garbage collection. All the memory (other than some limited 
control information) associated with a process may be garbage collected once the 
process has completed execution. The solution is not quite as opportunistic as that 
achieved for CML [Rep92], which is able to garbage collect a thread (even if it is still 
executing) once it can be determined that it cannot interact with any other threads or 
perform input/ output operations. The solution for paraML avoids the problems 
associated with global garbage collection in a distributed system. 

4.2.6.4 Compiler alterations 

Alterations to compilers are, wherever possible, to be avoided when a language is 
designed as an extension to an existing one. In the case of Standard ML, the compilers 
whose source code is available for modification are the subject of active research 
projects in their own right, and frequently undergo changes and improvements. Thus 
extensions to the language should be designed so that these compiler changes have 
minimal effect on the implementation of the extensions; the simplest way to achieve 
this is by implementing the extension~ in ML itself. An extended discussion of this 
issue in included in §9.4. 

4.2.6.5 Defining abstractions 

It is difficult for an instance of any one programming model to provide all things to all 
potential users of the language. The goal of keeping the set of operations as small as 
possible contradicts any attempt to provide a large set of basic operations with 
different, possibly conflicting, functionality. The crucial requirement of the operations 
chosen is that they are useful for implementing alternative programming abstractions. 
Reppy' s work with CML provides an excellent example of how this may be achieved 
with concurrency. His choice of primitives is motivated by providing a higher-order 
view of concurrency. In paraML, the primitives are chosen with more concern for the 
safety and efficiency of their use for high performance programming in the context of 
distributed address spaces. It is important that alternative abstractions can be built 
from the paraML primitives and that their efficiency is not significantly worse than if 
these abstractions had been provided as primitives. A significant reason for building 
alternative abstractions from the existing primitives is that the formal meaning of these 
derived operations can then be given by their translation into the core primitives. If an 
abstraction is required to be more efficient than its implementation in terms of the core 
primitives, it is feasible to provide an optimised implementation. 

In general, the design of paraML attempts not to mandate particular styles of 
high performance programming. It embodies a process-oriented programming model 
that maps easily onto multicomputers, but does not require that the software view of 

---
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programming be carried out in this manner at all levels. 
alternative abstractions and the development of modules 
programming paradigms is important. 

4.3 Core extensions 
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The ability to define 
to embody alternative 

The core extensions can be split into two main groups: those required to capture the 
evaluation and memory characteristics as embodied by processes in the programming 
model and those required to perform communication between processes as embodied 
by message passing between ports in the programming model. 

4.3.1 Processes 

The first requirement in supporting the programming model is to capture the notion of 
processes. Processes provide services to evaluate an expression and to create new 
communication facilities. In particular, there must be some way to uniquely identify a 

process, create a new process, get it to evaluate an expression, and to obtain the 
process identity itself. 

4.3.1.1 Process identification 

A paraML system consists of a collection of processes. Initially this collection numbers 

only one. Processes are identified and referred to by name. Hence a new type of 

object is required for process names. This type is2: 

type ProcessNarne 

Values of type ProcessNarne are of course first-class objects (being objects that are 
denotable within the language; thus they may be returned as the result of function 
evaluation or incorporated into data structures). The use of the Name suffix is 
deliberate in that it emphasises that it is the process identifier which is a first-class 
object, not the process itself. 

4.3.1.2 Creating a new process 

Processes are created explicitly by the programmer in a paraML program. The choice 
of explicit process invocation rather than implicit invocation is so that the programmer 
is directly involved in the mapping of parallelism onto the machine, which may then be 

done at an appropriate level of granularity for efficient performance. Even the experi­
ences reported with Multi.Lisp [Hal85] and QLisp [GMc84, GG88] illustrate that 
explicit invocation can yield far too much parallelism when the invocation mechanisms 
lend themselves to fine-grain parallelism. Explicit invocation also requires the user to 
be involved in managing the structure of a program at a textual level to identify 

2 All text written in the following font is a piece of ML code. 
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appropriate ways of partitioning a problem that aids understanding of the component 
tasks. 

A new process is created by the process operation, which has the following 
type definition: 

val process : unit -> ProcessName 

The operational result of the process primitive is for a new process to be created 
(executing on a new virtual processor), which is identified by the process name value 
returned to the evaluation of the calling process. The operation requires no 
information, which is why it takes the null value as argument (often referred to as the 
unit value and written in ML as (); slightly confusingly this value has type unit). 
Note that the new process does not execute any expression, nor does it have any pre­
defined communication facilities. The separation of these two activities (expression 
evaluation and provision of communication facilities) led to the decision for neither 
activity to be incorporated into the actual creation of a new process. Such a 
separation also aids in keeping every operation as semantically simple as possible. In 
object terminology, a process is an object which provides two methods: one for 
evaluating expressions and one for creating communication ports. The separation also 
arose out of experiences with earlier versions of paraML which incorporated both these 
activities into the actual creation of a process, and led to unnecessary confusion over 
the nature of creation of communication facilities. 

4.3.1.3 Expression evaluation by a process 

Naturally a process must be capable of evaluating some expression if it is to be of use. 
The first process in a paraML program is effectively evaluating the expression that is 
the program. Any newly created process may be requested to evaluate an expression 
by the following command: 

val execute : ProcessName * (unit -> unit) -> unit 

As can be seen from the type of the execute operation, the argument is a pair 
consisting of the name of the process and a thunk expression ( a function taking a null 
argument). The null value is returned as a result of the application of the execute 
operation. An additional type constraint is that the thunk must also produce a unit­
typed result. This restriction arises so that the user is made aware that a process is 
not like a function. Again, experiences with earlier versions of paraML where 
processes did have results which could be examined by other processes led to the 
present formulation. It now seems clear that processes should only communicate 
information by means of the communication primitives, and that a result of a process 
being available for inspection is an implicit form of communication. The developers of 
the PICT language illustrate a derived operation which allows the final value of a 
process to be reported as the "result" of that process [PRT93]. A similar derived 
function can be implemented using the paraML operations, as discussed in §4.4.4. 
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The type restriction also eliminates the semantic question of what happens to the 

value produced by a process execution - since the value is constrained to be of type 

unit, it can be thrown away since it carries no information. (In fact, the value is either 

unit or an unhandled exception. Again, if the process which initiated the execute 

operation wishes to know whether the expression was correctly evaluated or not, a 

final result should be reported using the communication facilities prior to yielding the 

unit value.) At most one thunk expression will be evaluated by a process. Exceptions 

are reported if the process is already evaluating (Process Executing) or has 

completed evaluation of some other thunk (NoSuchProcess). 

Operationally, the thunk expression is sent to the process together with any 

environment meanings for the free variables of the expression - in other words, a deep 

copy. Reference variables are (recursively) copied together with the value(s) they refer 

to. On receipt of this thunk closure, the local environment of the process is 

conceptually merged with that of the thunk (possibly resulting in the creation of some 

new memory if there are reference variables in the closure), and then the thunk is 

applied to a unit value. Once evaluation is complete (if the expression evaluation does 

not diverge), the entire memory used by the process may be garbage collected. The 

runtime system on the PE need only keep knowledge about the identity of the process 

and any of the communication facilities created by the process so that it may report 

errors to other processes attempting to send messages or perform some interaction with 

the now defunct process. 

4.3.1.4 Determining a process's name 

During the course of evaluation, it is sometimes convenient for a process to determine 

its own identity. This facility is useful if the process wishes to create some new 

communication facilities that reside on itself for instance. The operation has a type 

defined as: 

val self id : unit-> ProcessName 

It would be feasible for a created process to have its own name included as part of the 

environment of free variables transmitted with the thunk expression to be evaluated or 

sent via the communication facilities. For example: 

let val proc_name = process () 
fun to_exec () = ( ... proc_name 

in execute (proc_name, to exec) 

end 

. 
I () ) 

Such forms of name transmission are non-intuitive and arduous. Most importantly, it 

is singularly impossible for the first process in the system, which is not created by the 

execute operation. Due to the nature of port creation, this would have the effect 

either of making port creation impossible on the original process or of requiring an 

operation which creates a port on the calling process. The former is clearly 

undesirable, as is the latter, the reasons for which are explained in §4.3.2.2. 



56 Chapter 4: Design 

4.3.2 Communication 

The essence of communication under the programming model of processes and ports is 
message passing. The primitives must define what a port is, how to send messages to 
a port and how to get messages from it. ParaML also defines an operation to test 
whether a port is empty or not. 

4.3.2.1 Port identity 

There are no predefined ports in a paraML program; all ports are created dynamically 
during the course of evaluation. Just as processes have identities, so too must ports. 
These names uniquely identify a port throughout the entire system of processes. Port 
names require the definition of a new type, parameterised by another type indicating 
what messages can be communicated to it. 

type' la PortName 

The notation 'la indicates that the type parameter is weakly polymorphic. In brief, this 
means that before use, the type variable must be instantiated to a monotype. 
Monotypes are those which are either base types (like int, boo 1, etc.) or constructed 
from these using the function type constructor ( - > ), union type constructor ( * ), or 
other data type constructors. This restriction on the type of PortName values 
prevents conflicting instantiations of a polymorphic type from being accepted by the 
type checking algorithm, which would then allow processes to send values of different 
types (say integers and strings) to the same port. Clearly, this would contravene the 
goal of achieving type-safe communications between processes. 

4.3.2.2 Port creation 

Ports are created by a request to a named process, in much the same manner as the 
execute operation. The result of the operation is a new port name which identifies 
the port that has just been created. If the process on which the port is to be created 
has already finished execution of a thunk then the port operation fails, reporting an 
exception (NoSuchProcess). The type definition of port is as follows: 

val port : ProcessName ->'la PortName 

Typically the new port will be bound to a variable and the type of the port name will 
be instantiated to a monotype. For example, a port to accept integer data might be 

created as follows: 

let val procn = process () 

in 

val data_port : int PortName = port procn 
fun to exec ( ) = ( . . . data _port . . . ; ( ) ) 

execute (procn, to_exec); 
data_port 

end 
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As discussed above, ports are owned by particular processes - in the example above, 

by the process known as procn, not by the process that has requested the port to be 

created. The port is a queue, initially empty, of messages - in the example above, these 

messages can only be integers. Any process that knows the name of the port may send 

messages to it, but only the owning process may remove messages from the queue. 

There are two issues that are worth discussing. The first is whether shared 

channels, accessible for sending and receiving by any process, would have been more 

appropriate. The second is whether the port creation mechanism should have been 

permitted only in the calling process and not on arbitrary processes within the system. 

Shared channels, while appropriate within a concurrent system, seem singularly 

inappropriate in a distributed address space context. The problem is that data 

locality with shared channels is harder to achieve and also difficult to implement 

efficiently. For instance, it ~snot clear on which physical PE a channel should reside: 

the creating process's PE, the PE of the process that commonly receives from the 

channel, or on a completely different PE altogether? Similarly, when constructs such as 

the choice mechanism (permitting a process to select from a number of alternative 

communication possibilities) are required, efficient (or even correct) implementation of 

such constructs is problematic. Kieburtz and Silberschatz [KS79] discuss the 

difficulties that arise, while Bornat [Bor86] provides a correct implementation for 

Occam. In general, the choice of ports attached to processes appears to improve the 

goal of locality compared to shared channels. 

Had a port creation mechanism been chosen such that ports were only ever 

created on the calling process, it would have meant a simpler formulation of the 

parallel evaluation rules for paraML (given in Chapter 6 ). However, the operational 

disadvantages of such an approach outweigh the advantages. While any paraML 

program can be rewritten so that creation of ports is only permitted on the calling 

process, it introduces the need for many more ports, used only for receiving the 

names of ports created by and on remote processes. (Such ports are used frequently 

anyway for some of the derived operations discussed in §4.4.) The principal 

reservation with this approach is that it leads to a lack of textual clarity in programs. 

It also requires a newly created process to spend some initial time sending the names of 

its ports to other processes who wish to communicate. The following example 

illustrates the problem, using the same example given previously (and the send and 

recv operations that are introduced in the next two sections). An operation 

sel f_port is used to indicate that the port is created on the calling process; this 

operation can be constructed trivially as: self_port = port ( self_id () ) . 



58 Chapter 4: Design 

let val procn = process () 

in 

val data_portname:int PortName PortName = self_port () 
fun to exec () = 

let val my_data_port:int PortName = self_port () 
in 

send (data_portname, my_data_port); 
my_ data _port . . . ; ( ) 

end 

execute (procn, to_exec); 
let val data_port = recv data_portname 
in 

data_port 
end 

end 

This example should clearly illustrate the code explosion that occurs with such 

an approach, particularly when considering multiple communication ports. The 

simplicity achieved with the preferred approach is partially due to the inclusion of 

port names in the closure constructed by the execute operation. Any such names 

that occur free in the thunk to be executed must have been subject to a binding 

operation in the surrounding lexical scopes, and thus are given meaning in the closure. 

In the example above, the variable da ta_portname occurs free in the definition of 

to_exec, but is let-bound in the previous statement. Effectively, this means that 

during the execution of a thunk by a process, any pre-existing values (including names 

of ports) referred to in the thunk can be used, rather than knowing only about values 

that are directly created during the course of the thunk' s execution. 

4.3.2.3 Sending messages 

The sending of messages to ports is an operation that should be both efficient and also 

valid. In the early versions of paraML, messages were sent asynchronously to ports 

and execution continued in the sender as soon as the message had been successfully 

moved into the communication network. The drawback of this approach is that, 

although very fast, it gives no guarantee of successful delivery to the destination port. 

For instance, there might be no available memory to store the message or the process 

that owned the port might have terminated. That observation led to the problem of 

how such error conditions could or should be reported to the sender. In the current 

version, the sending operation is designed such that successful execution guarantees 

that the message has been delivered and queued in the destination port. Unsuccessful 

delivery is reported by an exception being raised; typically No Such Pro c es s if the 

process has terminated. Naturally this does not guarantee that the process which 

owns the destination port will ever receive the message in the sense that it may not 

dequeue the message from the port's queue. 

> 
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Figure 4.1 - A possible asynchronous message ordering; not possible in paraML. 

The ML type of the operation is: 

val send : ' a PortNarne * ' a -> unit 

59 

The operation requires a destination port identified by a port name, and a value of the 

appropriate type. The unit value is returned if the operation is successful. Note that 

the type of the operation uses a strongly polymorphic type variable. This is permitted 

since any port name object will already have been instantiated to a monotype due to 

the type rule for the port operation. The only guarantee made with respect to 

message ordering between two processes is that if a process successfully sends two 

messages to the same port, they will be queued and available for receipt in the order 

they were sent. 

However, the confirmation of message receipt at a port allows a slightly stronger 

property to be achieved with communications between three processes. In a purely 

asynchronous system, there is no guarantee of message arrival order between three 

processes. Consider the example shown in Figure 4.1. In this situation, the process Pl 

sends two messages, to ports on P2 and P3 respectively. P3 sends a message also to 

the port on P2, but because of the vagaries in the communications network, message 

m3 arrives at the port on P2 before the message ml. ParaML prevents this from 

happening, as the message m2 cannot be sent until the runtime system confirms that 

ml has been queued in the port on P2 . 

It is also worth emphasising that any first-class object can be sent to an 

appropriately-typed port. Thus functions (or more strictly, closures of functions) can 

be communicated from process to process. The ability to send such values stands in 

stark contrast to imperative programming languages, where it is extremely difficult to 

send functions or procedures. The ability to dynamically create new functions that 

incorporate newly-arrived information provides a very powerful mechanism for 

simplifying programs. The technique is used extensively in applications programming, 

as discussed in Chapter 8. 
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4.3.2.4 Receiving messages 

Message receiving allows a port's owning process to remove the first message in the 

port's queue. If there is no such message available, the operation blocks until a 

message becomes available due to another process having performed a send operation 

to the named port. The ML type for the operation is: 

va l recv : ' a PortName -> ' a 

If the named port supplied to the recv operation is not owned by the process, then an 

exception (PortNotOwned) is raised to indicate the error. Note that if two different 

processes send messages to the same port, then it is non-deterministic as to which 

message will be received first and which second. 

As discussed earlier, receiving a message may result in new store fragments being 

created. For example, if the message type is an integer reference variable, then the 

message will actually consist of a reference variable and a copy of the integer value 

that the reference cell contained on the sending process. A new reference cell is created 

on the receiving process and initialised with the integer value, and the new reference 

cell's identifying variable is returned. A formal characterisation of this mechanism is 

given in the operational semantics defined in Chapter 6. 

4.3.2.5 Checking for message arrival 

Since the recv operation has a blocking semantics and paraML does not necessarily 

use multi-threading within processes, it is essential for the process to be able to check 

whether or not a message is actually available for receipt. The ML type for the 

operation is: 

v a l probe : 'a PortName -> bool 

The operation examines the port's message queue, and returns a boolean value 

indicating whether at least one message is present in the queue or not. As with recv, 

an exception (PortNotOwned) is raised if the port is not owned by the calling 

process. 

Due to the typing restrictions in paraML, it remains necessary to provide probe 

rather than a choice ( or guarded selection) primitive, despite the aesthetically 

undesirable nature of probe as a high-level parallel construct. In paraML it is not 

possible to define a choice primitive operation over a list of guards involving port 

names unless all the port names are of the same type without a fundamental change to 

the nature of ML, involving also an extensive change to the compiler. This is the 

general form of a choice operation: 

choice [ (guard1, action1), (guard2 , action2) ... (guardn, actionn)] 

Being able to choose only from a list of port names of the same type would either be 

unnecessarily restrictive or require user-specified type coercion of the port names. 

(Type coercion is not a practice that is encouraged in ML programs because of the 
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static type system, and is not even possible unless the underlying ML implementation 

provides a casting operation which transforms the type of an object at a user's behest.) 

The possibility of using an ML data type constructor to package up differently typed 

port names into a single union type value does not apply, since it is impossible to 

create a datatype over all possible types that may be used. The alternative approach 

of creating a new data type constructor for each different set of port name types 

used in choice operations throughout a program would not work as the implementation 

of choice would not know how to unpackage the different datatypes supplied in the 

guard arguments . 

The probe operation allows choice operations to be constructed as derived 

operations from the available communication primitives (see §4.4.3 ). It must be noted 

that such choice operations will not be fair in that message delivery occurs 

autonomously from expression evaluation. The reason for this lack of fairness is that it 

is not possible to simultaneously test all guards supplied to a choice operation and 

then non-deterministically select one of the ones which is currently satisfied using the 

available primitives. The :MPI standard does not provide any primitive choice 

operation, but it does provide probe operations. The implication of providing the 

probe operation in paraML is that repeated executions of the same program may 

result in differing behaviour if the program is written to rely on the outcome of a 

particular instance of probe, since the operation provides transient information about 

the state of a message queue which is not necessarily reproducible. 

4.3.3 Summary 

The design of paraML's seven core primitives and two new types has been described, 

and these extensions are summarised in Table 4-1 below. 

I operation I ML type 

ProcessNarne 

'la PortNarne 

process I unit -> ProcessNarne 

self id I unit -> ProcessNarne 

execute I ProcessNarne * (unit -> unit) -> unit 

port 

send 

recv 

probe 

ProcessNarne -> 'la PortNarne 

'a PortNarne * 'a -> unit 

'a PortNarne -> 'a 

'a PortNarne -> bool 

Table 4-1- Summary of extensions. 

The design was performed with a view to keeping the set of primitives as small 

as possible while making the semantics of each operation very simple. Thus each 

operation performs a single action that affects the state of at most one other process. 

These semantics permit a relatively straightforward formal modelling as described in 
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Part Ill. The communication primitives have been constructed so that all 

communication permits static type checking to be performed. These core primitives 

can be used to construct alternative abstractions as discussed in the next section. 

4.4 Derived operations 

A goal of the design of the primitives for paraML was simplicity, which leads to 

minimisation of the number of primitives provided. Simplicity also has the effect of 

making the development of formal semantics more straightforward by reducing the 

number of possible interactions. Although paraML is representative of one style of 

process-oriented programming, there are other constructs for initiating processes and 

communicating that a user may find useful. The core paraML primitives may be used 

to derive these alternative constructs as discussed below. 

4.4.1 Synchronous communication 

The communication in paraML is mixes both synchronous and asynchronous message 

passing. The ambiguity arises over whether the receipt and queuing of a message in a 

port constitutes an act of receiving, or whether only the re cv operation counts. For 

certain applications requiring a strong degree of synchronicity between processes, 

programmers sometimes prefer synchronous message passing. The synchronous aspect 

of the communication is that when a sending operation completes, the receiving 

application has also completed its re cv operation to incorporate the message into the 

ongoing computation. Synchronous communication can be encoded straightforwardly 

with the paraML primitives as shown in Figure 4.2. The implementation makes use of 

the ability to send port names as first-class values. A port is created transiently (see 

§10.8 for discussion of various optimisations in the use of transient ports in the current 

implementation) by the sender which is used to receive a confirmation that the actual 

value sent · has been received. The confirmation need only be the unit value, since the 

exception handling mechanism associated with the communications primitives will 

report any failure such as the destination process having terminated. Note that 

syncports created on the local process are impossible to use except if the internal 

language for the process is capable of concurrency, as discussed in §4.6. 

4.4.2 Outports 

The basic communication model in paraML is predicated on processes always knowing 

who is to receive a particular piece of information, and then sending it in a message to 

the corresponding destination port. An alternative model is where the producer of 

some information is willing to release it, but has no idea which process would like to 

receive it. I have called the implementation of this form of communication "outports". 

They can be modelled quite simply with the code in Figure 4.3. Once again, the 

implementation makes use of transient ports that are created solely to receive a value, 

and the name of the port is transmitted in a message. As with synchronous 

communication, a process is incapable of performing both a place and retrieve 
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(* a synchronous port is for synchronous communications, 

and consists of a port that accepts a value and a 

unit PortName, to which the confirm can be sent*) 

type 'la SyncPortName = ('la* unit PortName) PortName 
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(* sync_port generates a new synchronous port and name*) 

fun sync_port (procn: ProcessName) : 'la SyncPortName -

port procn 

(* the sync_send operation generates a confirmation 

port, and sends it and the value to the 

destination syncport; it then waits for a reply*) 

fun sync_send (spn: 'a SyncPortName, x: 'a) :unit= 

let val confirm_pn:unit PortName = self_port () 

in 

end 

send (spn, (x, confirm_pn)); 
recv confirm_pn 

(* the sync_recv operation receives the value and the 

confirmation PortName on the syncport and sends 

unit to the confirmation port of the sender*) 

fun sync_recv (spn: 'a SyncPortName) :' a -

let val (x,confirm_pn) = recv spn 

in 

end 

send (confirm_pn, ()); 

X 

Figure 4.2 - Synchronous communication. 

operation on one of its own outports except in the presence of concurrency. The 

implementation of both outports and syncports could be easily optimised to use only 

one send and receive pair at the runtime system level, rather than paying the overheads 

of two full paraML send/ re cv pairs. 

4.4.3 Choice 

The ability to choose from a number of alternative communication possibilities is an 

essential facet of most parallel programming languages. This ability was not 

constructed as a core primitive in paraML due to a number of reasons discussed earlier 

in §4.3.2.5. However, it is straightforward to implement such an abstraction from the 

core primitives as shown in Figure 4.4. The abstraction, called choose, accepts a list 

of pairs, where each pair consists of a guard (implemented as a thunk that yields a 

boolean value) and an action (implemented as a thunk that evaluates some arbitrary 

expression). Typically, the guard would be constructed as a thunk that uses the 

probe operation to test availability of a message for receiving. However it may be 

any arbitrary expression that yields a boolean value, and so can be constructed as a 
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(* output ports are a blocking output communication 
from a process, derived with the PortName type*) 

type 'la OutPortName = 'la PortName PortName 

fun out_port (procn: ProcessName) : 'la OutPortName -
port procn 

(* place "puts" a value onto the out port by waiting 
for an (input) PortName, to send the value to*) 

fun place (opn:'a OutPortName, x:'a) -
send ( (recv opn), x) 

(* the operation retrieve "gets" a value from an 
outport by generating a transient port, sending its 

name to the OutPortName, and then receiving a value*) 

fun retrieve (opn : 'la OutPortName) -
let val retrieve_pn:'la PortName = self_port () 

in 
send (opn, retrieve_pn); 
recv retrieve_pn 

end 

Figure 4.3 - Outport communication. 

more complex guard. The implementation evaluates the guards in order until a guard 

expression returns the value true. The user needs to be wary of this property due to 

the non-deterministic nature of message delivery. In the case of two successive guards 

which test two different ports for message arrival, the first guard may fail and then the 

second succeed, even if the first guard would have succeeded had it been tested at the 

same time as the second guard. The only possible way to avoid such a situation would 

be to have primitives which lock out the delivery of messages to all ports until the lock 

is released, but no such primitives have been provided. 

4.4.4 Result 

As mentioned earlier, it is sometimes useful to obtain a final value computed by a 

process, which can be thought of as the result of the process evaluation. A clean 

abstraction of this notion is one where a process is used to execute some function, and 

the result of the function is demanded at some later point. Figure 4.5 illustrates an 

implementation of this abstraction. The result function accepts a function f, creates 

a new process and a local port to receive the result of the function. A new function pf 

is declared which sends the result of the function to the local port, and this is executed 

by the new process. The result function returns another function which, when 

applied to the unit argument, receives the value sent to the local port. In many ways, 

this is very similar to the notion of futures developed in MultiLisp [Hal85]. In the 

example that follows, an instance of the res u 1 t abstraction is bound to the value 
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exception Choose 

fun choose (nil: ( (unit -> bool) * (unit -> 'a)) list):' a -

raise Choose 
choose (choices) -

let fun choose' (nil) = choose' choices 

( (guard,action): :rest) 

if guard () 
choose' 

then action () 

else choose' rest 

in choose' choices 

end 

fun result 
let val 

val 
fun 

in 

Figure 4.4 - Guarded choice. 

(f:unit -> 'la) :unit -> 'la -

procn = process () 

result_pn:' la PortName = self_port 

pf () = send (result_pn, f ()) 

execute (procn, pf); 

fn () => recv result_pn 

end 

let fun some function () -

() 

val get_function_result = result some function 

in 
get_function_resul t () 

end 

Figure 4.5 - Processes used for results of functions. 

get_function_resul t, and at some later point this is applied to a unit argument 

to incorporate the value computed by evaluation of some_function. 

4.4.5 Groups and collective communication 

Another area of practical parallel programming not addressed by the core primitives is 

that of collective communication facilities. Krumvieda identified this as the major 

weakness of CML when extending it to deal with distributed computing, and 

developed the notion of port groups in Distributed ML [Kru93]. Ports could be a 

source port, a destination port, or a meta port (which would receive information about 

other ports), and collections of these ports ( defined by a set of source ports and a set 

of destination ports) were termed port groups, with an ordered multicast semantics for 

communication over such groups. The :tvfPI standard [MPI94] develops its entire 

communication philosophy from the concept of a group of processes which have a 

communicator common to all members of the group. New communicators can be formed 

from sub-groups and efficient collective communications primitives are provided. 
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type GroupProcessName -

{ size 
processes 

int, 
: ProcessName list} 

fun group_process (n: int) : GroupProcessNarne -

{ size = n, 
processes = iterator (process,() ,n)} 

fun processes_in group ({processes, ... } : GroupProcessNarne) = 
processes 

fun group_execute ( {processes, ... } :GroupProcessNarne, 

to exec:unit -> unit) :unit -

(map (fn procn => execute (procn, to_exec)) processes; 

( ) ) 

(* determines the local process' s rank in the 

process group *) 

fun group_rank ({processes, ... } : GroupProcessNarne): int -

let val rny_procn = self_id () 

in 
isMernberNth (processes,rny_procn) 

end 

fun group size ({size, ... } :GroupProcessNarne) :int = size 

Figure 4.6-Process group creation and execution. 

The problems facing paraML are somewhat different in that there is no pre­

defined group of processes that commence execution together at the start of the 

program - each process (other than the initial one) is created dynamically during the 

course of program execution. The creation of a group of processes is the first facility 

that must be provided through the paraML primitives. The semantic characterisation 

given in Figure 4.6 uses iterated calls, but it would be possible to implement these 

operations more efficiently by providing inter£ aces for some of the collective MPI 

operations in the runtime system layer. The implementation relies on two functions: 

iterator, which applies a function repeatedly to an argument, and i sMem.berNth, 

which determines whether a value is a member of a list and if so the position within the 

list (numbering from 0). 

The operations to create a process group and to get each process in such a group 

to execute a function are straightforward. The operations for communication with 

groups are more complex. Just as there are process groups, there are also port groups 

(as defined in Figure 4.7; note these do not have the same semantics as those in 

Distributed ML [Kru93]) and variants of the standard communication primitives 

(given in Figure 4.8). The sending operation becomes effectively a multicast to all ports 

in the port group. An assumed function is nth, which finds the nth element of a list. 
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§4.4 Derived operations 

type 'la GroupPortName = 
{ size 

processes 
ports 

int, 
ProcessName list, 
' la PortName list} 

fun group_port ({ processes, size} : GroupProcessName} ) 

'la GroupPortName = 
{ size = size, 

ports = map 

processes = processes, 

(fn procn => port procn) processes} 
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fun ports in group ( { ports, ... } ) : ' a GroupPortName) = ports 

(* determines the local process' s rank in the port group 

* ) 
fun group_port_rank ({processes, ... } :' a GroupPortName) 

let val my_procn = self_id () 

in 
isMemberNth (processes,my_procn) : int 

end 

fun group port size ({size, ... } : GroupPortName): int = size 

Figure 4.7 - Basic port group creation and attribute operations. 

(* group_send is essentially a multicast operation*) 

fun group_send ({ports, ... }:' a GroupPortName,x:' a) :unit -

(map (fn pn => send (pn,x)) ports; ()) 

(* group_recv 

fun group_recv 
recv (nth 

receives from a multicast*) 

(gpn as {ports, .. -~ :' a GroupPortName) :' a -

(ports,group_port_rank gpn)) 

(* group _probe probes on a group port *) 

fun group _probe ( gpn as { ports, ... } : ' a GroupPortName) : ' a -

probe (nth (ports, group port _rank gpn) ) 

Figure 4.8 - Basic port group communications. 

Note that there is no guaranteed ordering in the case of two overlapping multicasts. 
Implementing a broadcast or an ordered multicast by sending to a single process's port 
and then having it resend the message to all members would be possible. 

Additionally, it is useful to provide an operation that scatters a list of values to 
a port group, and to gather a list of values from an outport group. Generalised stride 
communication primitives are clearly feasible to provide also. The basic scatter/ gather 
primitives are shown in Figure 4.9, together with definitions for outport groups. 
Assumed in the implementation are: zip, which merges two lists into a single list; 
1 ength, which reports the size of a list; and nth. A process may not scatter and 
gather on the same outport group except in the presence of concurrency. 
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exception GroupAri tyError 

type' la GroupOutPortName ='la PortName GroupPortName 

fun group_ out _port (gprocn:GroupProcessName) 
'la GroupOutPortName = 

group_port gprocn 

(* group_ scatter distributes a list among the 

port group *) 
fun group_ sea tter ( { ports, size, ... } : ' a GroupPortName, 

xs:' a list) :unit -

(if not (length x = size) 
then raise GroupArityError 
else map (fn pn_and_x => send pn_and_x) 

(zip (ports,xs)); ()) 

(* group_place makes available a value for collection*) 

fun group_place (gopn: 'a GroupOutPortName, x:'a) :unit -

send (recv (nth (ports,group_port_rank gopn), x)) 

(* group_gather assembles a list of values from a 

outport group; group_retrieve has the same 

functionality*) 
fun group_gather ({ports, ... } :' a GroupOutPortName) 

' a list = 
let val gather_pn: 'la PortName = self_port () 

in map ( fn pn => ( send (pn, gather _pn) ; 
recv gather_pn)) ports 

end 

val group retrieve = group gather 

Figure 4.9 - Scattering and gathering to port groups. 

type' la GroupSyncPortName = 
('la* unit PortName) GroupPortName 

val group_sync_port (gprocn: ProcessName) 
:' la GroupSyncPortName 

val group_sync_send (gspn:'a GroupSyncPortName, x:' a) :unit 

yal grou:e sync recv ( gspn:' a GroupSyncPortName) : ' a 

Figure 4.10-Synchronous port groups. 
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§4.4 Derived operations 

val reduce (gopns :' a GroupOutPortNarne, 
result:' a GroupPortNarne, 

redf:' a * ' a -> ' a, 

val scan 

x:' a) -> ' a 

(partial_scan:' b GroupOutPortNarne, 

scan_to_include :' b GroupPortName, 

scanf:' a * 'b -> 'b, 
identity:' b, 
x:' a) -> 'b 

Figure 4.11 - Reduction and scan operation interfaces. 

fun barrier (barrier _gpns as { ports, size, ... } 

unit GroupPortName) : unit = 

let val rank= group_port_rank barrier_gpns 

in 
if size= 1 then ( ) 

else 

end 

if rank= 0 
then ( 

iterator (recv, (nth (ports, 0)), size-1); 

group_send (barrier_gpns, ()); 

group_recv barrier gpns ) 
else ( 

send (nth (ports,0), ()); 

group_recv barrier_gpns ) 

Figure 4.12 - Barrier synchronisation for groups. 
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Synchronous versions of port groups are clearly easy to construct also. The same 

restriction holds that synchronous communication by a process to a port group of 

which it is a member is not possible except in the presence of internal concurrency. 

Only the type signatures of the basic operations are given in Figure 4.10. 

There remain two more interesting collective communication primitives: the 

reduction and scan ( otherwise known as parallel prefix) operations. Both of these may 

be implemented with varying degrees of efficiency from the basic and derived 

operations outlined above. The most efficient implementations using point-to-point 

message passing revolve around the construction of binary trees of the participating 

processes' port groups. Since most of their implementation is taken up with the 

manipulation of these trees, Figure 4.11 only gives the type definitions for the reduce 

and scan operations. They both rely on having appropriately-typed port groups 
created prior to use, but can accept arbitrary functions to perform the reduction or 
scanrung. 
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4.4.6 Barrier synchronisation 

There are no explicit synchronisation primitives built into the core of paraML, but with 
the provision of process and port groups, it becomes natural to desire barrier 
synchronisation facilities. The semantics of this operation is that every member of the 
process group must call the barrier operation, and no process can proceed past the 
synchronisation point until all others have participated in the barrier operation also. 
The implementation is given in Figure 4.12. The essence of the implementation is for all 
processes other than the root process in the group to send a message to the root, and 
once the root process has received them, it multicasts a message back to the port group 
(it must also receive this message itself). 

4.4.7 Summary 

The development of derived operations from the core extensions of paraML is greatly 
facilitated by the ML language itself. ML provides excellent facilities for building clean 
abstractions through functions, user-defined types, and modules. Some of the 
problems of "plumbing" message passing connections between processes are simplified 
with these facilities as they aid in the differentiation of ports. Ports are typed and 
port names are bound to lexically-scoped identifiers, which makes it difficult for them 
to be accidentally confused with other port names. The module system allows whole 
libraries to be constructed utilising or providing a particular set of derived operations. 
Interfaces to these modules are type-safe, and completely abstract the implementation 
details and inter-process message passing "plumbing" required. 

4.5 Input/output 

Any process-oriented programming system must confront the issue of input/ output 
(I/0), and how to manage potential interleaving of I/0 operations. In a system which 
is constrained to a fixed number of processes, standard output is relatively easily 
supported by tagging all output with the process rank, and performing a post­
execution sort on that value to collate each process's output. Alternatively, writing to 
a single file can be performed according to the process rank in a round robin fashion. 

The issue is somewhat more complex in paraML since process groups are created 
dynamically throughout the course of program execution, and thus the potential variety 
of inter leavings is increased accordingly. One simple solution is to define an I/ 0 
process, which is capable of performing standard I/ 0 requests, but buffers all output 
internally. When requested, the process can flush its buffer to a given file. When a 
process group is created, another process group of I/ 0 processes can also be created 
of the same size. When the process group terminates, it can flush its buffers in tum. 
An example of this form of programming is given in Figure 4.13, which illustrates an 
I/ 0 process group which accepts write and c 1 o s e requests. There are no read 

requests included in this example, but they would be straightforward to incorporate if 
there was a standard segmented input stream available. 
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§4.5 Input/output 

type Group IO = { write: string -> unit, 
close: unit -> unit} 

fun group_ io ( gprocn as { size, ... } : GroupProcessName) 
: GroupIO -

let val 
val 

val 

fun 

io_gprocn = 
write_gpn · 
group_port 

close_gpn 
group_port 

io exec () 

group_process size 
string GroupPortName -

io_gprocn 
unit GroupPortName -

io gprocn 

let val out buf =ref"" 
· fun io_loop 

choose 
( ) 

[ ( fn () => probe write _gpn, 
fn () => out buf := (!out_buf) A 

(group_ recv write gpn) ; 
io_loop ()), 

( fn () => probe close _gpn, 
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fn () => write (stdout, ! out buf)) 
] 

in 

in io_loop () 
end 

val { ports=wports, ... } = write _gpn 
fun write_op (to_write:string) :unit -

let val send_to_n = group_process_rank gprocn 
in send ( nth ( wp or ts , send_ to_ n ) , to_ write ) 
end 

val { ports=cports, ... } = close _gpn 
fun close_op () :unit = 

let val send_to_n = group_process_rank gprocn 
in send (nth (cports,send_to_n), ()) 
end 

group_execute (io_gprocn,io_exec); 
{ wri te=wri te_op, close=close op} : GroupIO 

end 

Figure 4.13-Input/ output for process groups. 

(* this operation reports the total number of PEs in the 
multicomputer*) 

val number of PEs : unit-> int 

(* this operation reports the rank of the PE on which 
the calling process is being executed*) 

val rank of PE : unit-> int 

Figure 4.14 - Machine attribute operations. 
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4.6 Machine attribute operations 

Optimal use of a multicomputer may be aided if the user is able to efficiently map 

problems to the available machine resources. Although the number of VPs is effectively 

unlimited, there are always only a finite number of PEs. In particular, it may be useful 

for a user's program to be able to query how many PEs there are available for use, and 

on which particular PE a process is executing. These two operations are shown in 

Figure 4.14. Effectively they correspond to the :rvfPI operations MPI_Comm_size and 

MPI_Comm_rank [MPl94], where the communicator argument to the operations is 

MPI_C0MM_W0RLD. 

The possibility of co-location of processes (that is, processes being executed on 

the same PE) is an obvious facility that programmers might like to utilise for particular 

algorithms. In general, the primitives have all been designed so that programmers do 

not work at the physical machine level. However, a process co-location primitive 

could be defined to create a new process on the same PE as an existing process; the 

operation would have the following type: 

val coloca te_process : ProcessName -> ProcessName 

Since the formal semantics does not incorporate information about PEs on which 

processes are executed, any program that is correct with the standard process 

operation will be unaffected semantically if one or more occurrences of those 

operations are replaced by the colocate_process operation. 

Co-located process groups could also be constructed easily using this primitive 
rather than the standard process operatio-n. Such a facility becomes useful when 

large data structures are distributed among a number of server processes since the 

corresponding client processes can then be distributed in a similar fashion, which is 

likely to result in the majority of message passing between clients and servers occurring 

on the same PE, leading to a decrease in communication costs. 

4. 7 Concurrency within processes 

There are many advantages if a process may internally utilise a concurrent extension of 

ML, rather than just sequential Standard ML itself. Many implementations of ML 
provide operations for manipulating continuations (in SML/NJ [AM91] these are 

callee and throw). These facilities are sufficient for implementing multithreading. 

Appel [App92] gives an example of this, providing routines for forking, yielding, and 
dispatching of threads. The paraML runtime system layer which manages process/ VP 

scheduling on an individual PE is built with a multi-threading system constructed by 

using continuations. Alternatively, the CML language [Rep92] can be used as the basis 

for a process's evaluation language, and the paraML primitives used to extend CML. 
The main restriction is that since threads exist within the shared address space of a 
process and may have certain thread runtime system state, they cannot migrate across 
different processes. It is possible for continuations to be transmitted, but they are 
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subject to the same restrictions as other communicated values. The formal semantics 
of paraML described in Part ill of this thesis do not incorporate continuations or 
concurrency within processes. 

There are a number of advantages in having a concurrent language within 
processes, which include the following: 

• Concurrent code allows the development of more flexible solutions to 
particular problems. 

• Concurrency allows a process to perform other actions whilst waiting for a 
blocking communication request to be completed, thus hiding network latency 
to a degree. 

• Synchronous communication operations can be performed where a process is 
both sender and receiver (provided these are actions of different threads). 

• Processes may become evaluation servers - forking new threads to execute 
expressions sent to them, thereby eliminating certain overheads associated 
with process creation rather than thread creation. 

The reader may be concerned that having both parallel process and concurrency 
primitives would be unnecessary, since they appear superficially to perform the same 
actions of allowing independent computation to take place. However, the two sets of 
primitives have a critical distinction - the process-oriented operations are predicated 
on execution in a distributed address space while the concurrency primitives are 
predicated on execution in a shared address space. If the same set of primitives was 
used for parallelism and concurrency, it would become necessary to distinguish the 
sharing attributes on creation of a process, which in effect is semantically equivalent to 
specifying two different creation operations. The other problem that arises is that a 
single set of communication operations fails to distinguish whether a transmitted object 
would be shared or not. For these reasons, I believe it is crucial to have two sets of 
operations to distinguish the sharing attributes of programming a high performance 
system. 

4.8 Benefits and limitations 

The major benefit of the approach taken with paraML is that it maps cleanly onto the 
underlying machine model. This mapping is important as it helps in achieving the 
attributes of scalability, portability, and locality. The last goal of locality is 
particularly important for achieving efficient programs, and the issue of locality is 
made explicit to the programmer by requiring the use of message passing to transmit 
objects among processes. The number of extensions to ML is close to minimal while 
still embodying the programming model described, which makes the language simple to 
learn. These extensions are also useful in creating alternative abstractions for process­
oriented programming as illustrated in §4.4. 
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The chief criticisms that are likely to be levelled at the type of programming 
system embodied by paraML are the lack of shared address space support (with the 
consequent requirement that the programmer needs to encode any such sharing through 
message passing) and the potential costs of copying objects on transmission between 
processes (which to some degree is a consequence of the lack of sharing). The main 
alternative on multicomputers to the distributed address space model supported by 
paraML is that of a distributed shared memory. Such a system provides the program 
with access to all (or most) of the memory in the multicomputer, regardless of its 
location relative to the current execution locus, and does not distinguish between local 
and remote access mechanisms. The advantage of this approach is that it requires only 
a single set of primitives in the programming language to initiate processes and to 
communicate and synchronise between processes. The disadvantages of the approach 
are: 

• The issue of data locality is removed from the awareness of the programmer, 
and the runtime system is responsible instead for trying to achieve good data 
locality. 

• Portability among different multicomputers becomes reliant on the provision 
of an equivalent DSM system, and such systems are much less available than 
implementations of MPI. 

• Scalable performance of DSM systems becomes increasingly difficult without 
relaxing memory consistency models; even so, fine-grained memory contention 
remains particularly problematic. 

An interesting critique of the current state of DSM research is available in [CKK95]. 
The consequence of these three disadvantages is that it becomes increasingly difficult 
to produce efficient programs that meet the stated goals for high performance 
computing. Recent advances in hardware technology, such as the Silicon Graphics 
Origin2000 . computers, may help to alleviate some of these problems by providing 
efficient coherent distributed shared memory. However, this technology retains the 
non-uniform memory access latencies associated with distributed address - space 
multicomputers. The issues involved in finding programming models which address 
the performance impediments that arise with distributed memories will remain in the 
foreseeable future. 

4.9 Conclusion 

While the programming model discussed in the previous chapter is an important factor 
in the design of paraML, the core operations that extend ML provide the full 
realisation of this design. These operations address a number of issues that are 
important for safe high performance programming. The flexibility of the operations 
determines how simple or complex it is to form alternative programming abstractions 
from them; a number of such alternatives have been presented. Understanding the core 
operations and the programming model is important since together they constitute the 
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distinctiveness of paraML. The central difference between paraML and CML is that 

the paraML operations must address the challenges arising from programming in the 

context of a distributed address space. The key to this is in capturing the notion of 

computation with values communicated from a different process's memory. This 

informal understanding is made concrete by the theoretical modelling of paraML in the 

next part of this thesis. 
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5. Theory background 
5.1 Introduction and motivation 

The sequential language Standard ML, on which paraML is based, has a rigorous and 

formal definition [MTH90]. The authors comment on the role of a language definer 

being to create a world of meanings ( or semantic objects) appropriate for the language 

and a precise way of describing what the meanings are without resorting to a 

programming language notation. They also discuss the benefits of providing a theory 

of the meanings, which then enables reasoning about the equivalence of objects. 

The purpose of developing a formal semantics for paraML has fewer goals than 

that for Standard ML. The primary goal is to characterise formally how evaluation of 

a paraML program may proceed. This goal is achieved by the development of 

sequential and parallel evaluation relations for Apv, an extension of Plotkin' s call-by­

value Av calculus [Plo75]. The Apv calculus and the definitions of evaluation it encodes 

provide an operational semantics that models the essence of paraML. A polymorphic 
type system is developed for the calculus and proved to be sound with respect to the 

operational semantics. The combination of the operational semantics and the type 

system capture the requirements for an implementation of paraML. The style of 

semantics used is identical to CML [Rep91, Rep92], which makes it simpler to 

distinguish paraML' s treatment of communicated values. 

Another purpose of developing a formal semantics for paraML is in the benefits 

arising from the interplay between the language design, formal semantics, and 

implementation. Working on these three aspects concurrently for paraML helped to 

inform each aspect individually in a way that would have been impossible if they were 

approached as unrelated activities. 

The remainder of this chapter looks briefly at some related work in developing 

formal semantics for parallel extensions of existing functional languages, and then 

proceeds to review notation. The major component of the chapter is the development 

of an extended Av calculus called Acv to model sequential computation in paraML. The 

Ar:v calculus can be viewed as the computation language within processes. The Apv 
calculus is effectively a superset of Ar:v, although there are slight differences with respect 

to the treatment of exceptions. Chapter 6 develops the operational semantics for Apv 
and Chapter 7 covers the typing of Apv· 

5.2 Related work 

The formal semantics of paraML loosely follows the style developed by Reppy for 

CML [Rep92] and uses similar notation. In turn, Reppy's work is based primarily on 
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the style developed by Wright and Felleisen [WF91]. Reppy develops a concurrent 
extension of Av which he calls Acv, and uses this to model the operations of CML. The 
choice of Wright and Felleisen's style of semantics is useful in proving type soundness 
for the resulting calculus in a purely syntactic manner. However this style of 
operational semantics is really only useful for reasoning about entire programs, not 
about program fragments. The development of a theory to enable equational reasoning 
about program fragments is more manageable with other styles of semantics, such as a 
labelled transition system (LTS) semantics. Reppy' s remarks on the development of an 
algebraic theory for CML led to Ferreira, Hennessy and Jeffrey [FHJ95] developing a 
LTS for CML. Their work also proves an equivalence between their labelled transition 
system semantics and Reppy' s formalism. A similar approach should be possible for 
the semantics presented here. Berry, Milner and Turner also present an alternative 
semantics for CML [BMT92]. A number of obvious differences between paraML and 
CML (such as the distributed address space versus shared address space models) 
result in significantly different calculi. 

Formal semantics have been developed also for Facile [TLG92]. The authors 
grapple with many of the issues explored for CML, which are made more complex in 
Facile by the problems of distribution, time, and failure. The operational semantics 
take the form of two LTSs: one for an II evaluates" relation for evaluation of 
expressions and one for a II derives" relation for execution of processes. The concept of 
locality is addressed by adding node identifiers into the semantics, and providing a 
notation for indicating that a behaviour expression (effectively a thread of control or 
process) is located at a particular node; this concept is known as a distributed 
behaviour expression and requires yet another L TS. However, the semantics does not 
capture the transmission of reference variables in the two different ways that the 
informal characterisation describes. Shared references are modelled by an encoding 
into primitive thread creation and communication operations. The copied references 
are not modelled at all. The advantage of the approach taken in Facile is that the use 
of a LTS semantics should enable equational reasoning about program fragments. 

The development of Concurrent Haskell (a concurrent extension of Haskell) has 
also seen the development of a formal semantics [PFG96]. Concurrent Haskell 
assumes a shared memory model of computation, with explicit process creation and 
atomically-mutable state (MVars) for communication and synchronisation between 
processes. The problems of regarding input/ output as functional state transformation 
in Haskell led to Gordon developing a monadic characterisation for the semantics of 
I / 0 in purely-functional languages [Gor94] . These problems are even more serious 
when adding concurrency, which encouraged the use of operational semantics for 
Concurrent Haskell. The semantics are compact and simple, separating reduction into 
a deterministic reduction relation (specifying the computation language) and a non­
deterministic reaction relation (specifying the coordination language). This separation 
is similar to the sequential and parallel evaluation relations developed for A,ro· Locality 
is not addressed specifically, since their interest is with the concurrency aspects, not 
with distributed address space computation. 
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Another interesting language with formal semantics is PICT [PT94], but the 

semantics are obtained more through its nature as an implementation of the 
asynchronous 1t calculus than because a separate semantics has been developed for it. 

There is considerable interest currently in process calculi research. Some examples 

include the 1t calculus and its variants [HT91, MPW92], CHOCS [Tho95] and HO1t 

[San92]. These are not directly related to the style of semantics developed for 

paraML, and so are beyond the scope of this thesis. 

5.3 Notation 

Most of the notation required for the presentation of the formal semantics is based on 

mathematical set notation, and should be familiar. Given two sets A and B, their union 

is AuB, their intersection is AnB, and their difference A\ B. The empty set is 

denoted 0. The generalised union of a set of sets {A1, • • • , A ,J is written U{A1, ••. , An} 

= A1 u ... u An. The notation A fin B denotes the set of finite maps (partial functions 

with finite domains) from A to B. Given a map f the domain and range off are defined 

by: 

dom(f) = { x I J(x) is defined } 

mg(f) = { fix) I XE dom(j) } 

Finite maps are represented by the notation: 

{ al H b 1t ••• f an H b 1Z } 

where the domain of the map is { a1, •• • , a11 }. The map with an empty domain is written 

{ } . It is also useful to consider maps as sets of ordered pairs in the usual way. If C is 

a set, then C+x denotes Cu{x}; if C is a map and x = (a,b), then C+x is defined only 

when ae: dom(C). The+ operator associates to the left; thus C+x+y should be read as 

(C+x)+y. The composition of two finite maps is written/cg; /modified by g is also a 

map written f±.g whose domain is dom(f)udom(g ), and is defined as: 

(J + )(x) = {g(x) if x E d~m(g) 
g J(x) otherwise 

Note that if dom(g)ndom(f)=0 then the modification has a domain equal in size to the 

sum of the size of its component maps, but otherwise the size of the domain is less 
than the sum - thus the choice of the symbol+. The set of finite subsets of C is 

denoted Fin(C). Lastly, if there is a binary relationµ, thenµ* is the transitive closure of 

µ. Throughoutthetheory chapters, text in fixed-space font is used to indicate 

value constants of the calculi, and also for paraML operations as they are represented 

in the "Apv calculus. 
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X E VAR 

c E CONST= BCONST u FCONST 

variables 

constants 

BCONST = { ( ) , true, 0, 1 ... } base constants 

FCONST = {+, -, fst, snd, . . . } function constants 

ex E EXNNAME 

e E EXP 

v E VALcEXP 

exn E EXN c EXP 

exception names 

Figure 5.1- Ground terms of ACT}. 

expressions in the language 

values in the language 

Figure 5.2 - Basic syntactic definitions. 

5.4 Formal semantics 

The rest of this chapter introduces an extension of Plotkin' s call-by-value lambda 
calculus Av [Plo75]. The purpose of this extension known as ACT} is to present the basis 
of sequential computation in paraML. The extensions that have been incorporated are 
derived from two main sources: Reppy' s presentation of the sequential aspects of Acv 
(itself an extension of Av) [Rep92] and some of Wright and Felleisen's extensions to Av 
[WF91] . The style of semantics developed by Wright and Felleisen is adopted as it 
leads to a purely syntactic treatment of type soundness. 

A number of extensions are included to faithfully characterise the sequential 
semantics of paraML. The extensions to the basic Av calculus include: pair values, 
exceptions, references, and a polymorphic type system. Pair values and exceptions are 
drawn from Reppy' s presentation, references are adopted from Wright and Felleisen' s 
work, and the polymorphic type system is that of Damas and Milner [DM82] . The 
syntax and dynamic semantics are presented first, followed by the type inference 
system, together with some of the theorems that connect the static and dynamic 
semantics. 

5.4.1 Syntax 

The ground terms of the Aev calculus are variables, constants (which are split into base 
constants like integers, and function constants like + for integer addition; there is no 
overlap between base and function constants), and exception names. The ground terms 
are given in Figure 5.1. 

There are three syntactic classes of terms: expressions, values, and exception packets 
(which are raised exceptions). Values are the canonical terms in the dynamic 
semantics - since the semantics operates by subject reduction this means that they are 
irreducible. The exception packets are also irreducible terms, but are not values in the 
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e .. _ (e) parenthesised expression .. 

V value 

e1 e2 application 

(e1 . e2) pau 

let x = e1 in e2 let 

exception x in e exception 

raise e1 e2 raise exception 

e1 handle x e2 exception handle 

exn exception packet 

p8.e p-expression - store fragment 

V ··- C constant .. 

X variable 

y fixed point combinator 

(V1 . V2) pair value 

Ax(e) A-abstraction 

ex exception name 

ref reference creation 

dereference 

. - assignment . 

:= X curried assignment 

exn ··- [ex, v] exception packet .. 

X ··- { eX1,eX2, ... ,exn } exception name set .. 

e ··- { (x1,v1),(x21v2), .. . ,(x11,vJ} (variable, value) set .. 

Figure 5.3 - Grammar for expressions, exceptions and values. 

language. These syntactic definitions are given in Figure 5.2, and the grammar for 

expressions, values, and exception packets is given in Figure 5.3. According to the 

grammar, pairs of values may be either expressions or values; the latter is chosen since 

generally the calculus tries to reduce expressions to values. 

The reason for the formulation of exceptions being different from Wright and 

Felleisen' s approach is that when the language is extended to deal with parallelism, the 

transmission of exceptions can lead to problems unless there is an implicit global 

environment for the exception names. The terms for exception packets and exception 

names are intermediate forms that do not appear in programs. Implicit from this is 

that there are no constant exception names in the calculus. Evaluation of the 

exception term results in substitution of a new exception name ex for x in the 
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expression e. At the same time, the exception name is added to the global environment 
x containing exception names. This approach captures the generative nature of 
exceptions in Standard ML. The treatment of exceptions with a global exception name 
set is similar to the inclusion of such an exception name set in the state component 
(denoted s) of the inference rules for Standard ML's definition [MTH90]. However it 
should be noted that the semantics of exceptions is not identical to Standard ML. 
Handle expressions are evaluated and installed as handler functions before an 
exception is raised. 

The formulation for references is adopted straightforwardly from Wright and 
Felleisen, which in tum is taken from ML. The store is represented by pairs of 
variables and values (x,v). The expression p(x1,v1) ••• (x,z1v,).e binds x1 ••• xn in v1 ••• v11 and 
e, with the notation (x11v1) •• • (xwv 11 ) used as shorthand for {(x11v1), •• • ,(x,z1v,)} The symbol 
0 is a finite map from variables to values; recall from the notation that 0 is treated as a 
set of pairs whose first components are distinct. All p-expressions which differ only 
by a consistent renaming of bound variables are identified. The store can be thought of 
as a collection of (reference) cells with distinct names; each cell can store one value in 
it. The names of cells are represented by variables. The operation ref v creates a 
new cell with an initial value v, returning the name of the new cell x. The operation ! x 
returns the current value in the cell, and the operation : =xv replaces the current value 
in the cell named x with v, returning the new value ( which differs from Standard ML 
which just returns the unit value). Since assignment is a curried operation, the 
application of : = to a variable x is another value, which can be considered an ability 
to assign to the cell x. 

Free variables of a term FV(e) may be defined inductively over the structure of 
expressions, as given in Figure 5.4. Closed expressions and values are those with no 
free variables, that is, FV(e) = 0. The set of closed values is denoted VAL0

• The terms 
for let, A-abstraction, exception and pare the only terms which declare variables. 
Occurrences of an identifier within the subsequent expression are then considered 
bound within the scope of the let, "A, exception or p expression which declares the 
variable identifier. For example, a term (x y) contains two free identifiers. In the term 
Ax(x y ), x is bound and y is free. Terms are identified up to a-conversion of bound 
identifiers, thus: 

let X = l in+ X l -o: let x' = 1 in + x' 1 

The formulation of exceptions provides no binding mechanisms for exception 
names. Thus a closed value term may still contain free exception names. Free 
exception names may be defined as: 

Definition 5-1 (Free exception names) The free exception names of an expression e 
are denoted FEN(e), which is exactly the set of exception names exi that appear in e. 

l,1 

l 
111 
! 
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FV(c) - 0 

FV(x) - {x} 

FV(Y) - 0 

FV(Ax(e)) - FV(e) \ {x} 

FV(ex) - 0 

FV(ref) - 0 

FV( ! ) - 0 

FV(: =) - 0 

FV(: = e) - FV(e) 

FV(e1 e2) - FV(e1)uFV(e2) 

FV(e1 • e2) - FV(e1)uFV(e2) 

FV(let x = e1 in e2) - FV(e1)u(FV(e2) \ {x}) 

FV(exception x in e) = FV(e)\ {x} 

FV(raise e1 e2) - FV(e1)uFV(e2) 

FV(e1 handle x e2) - FV(e1)uFV(e2)u{x} 

FV(exn) - 0 

FV(p0.e) - (FV(e )uFV(rng( 0))) \ dom( 0) 

Figure 5.4 - Free variables in terms. 

The 1 et and A-abstraction terms are also important due to the substitution of 

terms that is integral to the A-calculus. (Substitution is also used for the exception 

term.) Substitution of a term e for variable x in a term e' is written {e / x}e'. However, x 

must not be bound in e' and no free variable of e must be bound in e'; to avoid this, 

Barendregt' s variable convention [Bar84] is used which, since bound variables can be 

renamed throughout a term, allows all the bound variables to be chosen different from 

the free variables, thus avoiding the problem of capture of free variables during 

substitution. The inductive definition of substitution for a term is given in Figure S.S. 

In the four binding terms (A-abstraction, let, exception and p) the bound variables 

are renamed to prevent any instance of x = x' affecting the substitution. 

5.4.2 Dynamic semantics 

The purpose of the dynamic semantics is to establish an understanding of what the 

semantic objects of the language are and how they interact. In the style of operational 

semantics developed by Felleisen, Friedman and Hieb [FF86, FH92], the objects of the 

dynamic semantics are syntactic terms which are members of the class of expressions 
(EXP). Both Reppy and Wright and Felleisen use this approach because the syntactic 
nature of the semantic objects permits a relatively straightforward and extendable 
mechanism for the establishment of type soundness for a language. 
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{e I x}c - C 

{e/x}x - e 

{e I x}x' - x' x' -=t=-x 

{ e I x} ( Ax' ( e' ) ) - Ax'({e/ x}e') 

{e I x}ex - ex 

{e/x}ref - ref 

{e Ix}! -

{e/x}:= - . -. 

{e/x}(:=e) - ( : = { e I x} e' ) 

{el x}(e1 e2) - {el x}e1 {el x}ez 

{e I x}(e1 . e2) - ({e I x}e1 . {e I x}e2) 

{e I x}(let x' = e1 in e2) - let x' = {e/x}e 1 in {e/x}e2 

{ e Ix}( exception x' in e') = exception x' in {e/x}e' 

{e/x}(raise e1 e2) - raise {e / x}e1 {e/ x}e2 

{el x}(e1 handle x' e2) - {el x}e1 handle {e/ x}x' {el x}e2 

{el x}exn - exn 

{el x}(p0.e') - p(x1,{e/ x}v1) •.• (x,t1{e/ x}v,).{e/ x}e' x~ dom(0) 

Figure 5.5 - Substitution in terms. 

In this form of operational semantics, rules of reduction are developed which are 
defined as binary relations that syntactically transform terms of the calculus. To 
restrict the order in which reductions are applied to terms, contexts are defined for the 
terms of the calculus. Contexts are expressions with one subexpression replaced by a 
hole marked by [ ]. Placing an expression e, or redex, in the hole of a context C[] 
produces a new expression, written C[e]. Context grammars may be thought of as a 
higher order syntactic pattern matching of expressions. For example, the contexts of Av 
would be defined: 

C ::= [] I Ce I e C I Ax(C) 

An example term in the calculus is: 

(Ax(x) Ax(x)) (Ax(x) 1) 

This term may be split into a context/ redex pair in several ways, for example: 

C = (Ax(x) Ax(x)) ([ ]) e = Ax(x) 1 

In tum, the subexpression e may also be split into a context/ redex pair, again in more 
than one way: 

C' = [ ] 1 e' = Ax(x) 
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This time, there is only one form of context for the subexpression e': 

C" = Ax([ ]) e'' = X 

Generalised contexts pose two problems for successfully modelling computation 

for call-by-value calculi. First, as is seen in the example above, placing the 

subexpression e" in the hole of the context C" leads to capture of the free variable x. 

Unintentional capture of free variables can lead to serious problems for well known 

reasons (as shown by Barendregt, page 25 of [Bar84]). The second problem is that 

there are potentially multiple ways of partitioning terms into context/ red ex pairs. In 

order to describe evaluation when evaluation order is fixed, there needs to be some 

way of restricting the term partitioning. 

Evaluation contexts are a restricted set of the full contexts for a language. The 

restrictions are carefully chosen to allow only certain pattern matching possibilities. m 
the case of strict call-by-value A calculi, this has the effect of specifying the order of 

reduction and preventing capture of free variables when a redex is placed in a context 

hole. The evaluation contexts E for Av would be defined: 

E ::= [ ] I E e I v E 

These evaluation contexts restrict term partitioning so that first the function term is 

evaluated to become a value (a A abstraction), then the argument term is evaluated, 

and finally the function value is applied to the argument value. There is no possibility 

of free variable capture, because the hole never occurs inside the binding construct of 

the calculus. The evaluation of the example term given above would proceed as 

follows, with the context/ red ex boundary marked by [ ] : 

[ (Ax(x) Ax(x ))] (Ax(x) 1) ~ 

Ax(x) [ (Ax(x) 1)] ~ 

[Ax(x) 1] ~ 

[1] 

Rather than specifying the rules of reduction for each function constant, a partial 

function 8 is assumed to exist which determines the result of applying function 

constants of the calculus to closed values. (If the closed values were always of the 

right type, the 8 function is total, but since this cannot be guaranteed the function is 

partial.) In Aev, the partial function 8 is defined: 

8: FCONST x VAL0 • VAL0 u { [ex,v] I ex EX, v E VAL0
} 

The inclusion of exception packets (arising from raised exceptions) in the range of 8 

allows for the inclusion of function constants like integer division which do not 

produce closed values on all members of their input domain. Thus an expression such 

as ( / 1 0) can raise an exception Div assuming such a defined exception name in the 

global exception name environment X· The requirement that constant functions be 

defined on all members of their input domain is known as 8-typability, which is defined 

formally in Definition 5-5. 
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E ::= [] I Ee I v E I (E. e) I (v. E) I let x = E in e I p0.E I 

raise Ee I raise ex E I e handle ex E IE handle ex v 

R ··­.. - [] I Re I v R I (R. e) I (v. R) I let x = R in e I 

raise Re I raise ex R I e handle ex R IR handle ex v 

Figure 5.6 - Grammars for evaluation contexts. 

The evaluation contexts E for Aro, are defined in Figure 5.6. Also defined are R 
contexts which are required for reductions involving reference variables. The R 
contexts ensure that there is a minimal ordering on reductions involving creation, 
dereferencing and assignment of reference variables. The R contexts do not include the 
exception term, in order to prevent exceptions escaping their binding site. The E and R 
contexts ensure that all operations in the calculus are evaluated in a leftmost­
outermost order, which is consistent with Standard ML. For example, functions are 
evaluated first, then the function argument, and then the function is applied to the 
argument, resulting in call-by-value evaluation for Aro. Sequential evaluation of 
statements separated by semicolons can be encoded with some syntactic sugar by 
applying the operation snd to select the second member of a pair expression (which 
will firstly require evaluation of both components to become values). 

(;) e1; e2 def s nd (e1 • e2) 

Lemma 5-1 If E [ e] is a closed term, then either e is a closed term, or E is of the 
form p0.E' and p0.e is closed. 

Proof. Examining the definitions of evaluation contexts, it should be clear that if x 
is free in e, then, since p0.E' is the only construct in E which could bind x, either x must 
also be free in E[e] (which is a contradiction) or there exists (x,v) E 0 which binds x in 
p0.e. The rules defining FV(e) illustrate that the let expression does not bind x in E. • 

The rules of reduction involving evaluation contexts for the calculus are defined 
in Figure 5.7. In all the rules except the Aro-exception rule there is an implicit global 
exception name environment x which remains unchanged during the reduction. The 
fixed point combinator Y is included to provide recursion at all types. The reduction 
involving Y introduces an abstraction around the (Y v) term to ensure that v is applied 
to a value. The union of these reductions is denoted v and a reduction in v is written 
~ . A large proportion of the rules are concerned only with propagating raised 
exceptions through terms, discarding any further computation until a matching handler 
is found. Wright and Felleisen' s formulation for exceptions performs this rather more 
elegantly through the use of contexts for raising and handling exceptions. Reductions 
involving references are defined in Figure 5.8; the union of them is denoted r and a 
reduction is written ~ - The union of both of these is referred to as vr and ~ is 
written for a reduction in vr. 
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E[c v] V E[8(c,v)] (Acv-8) ~ 

E[11.x(e) v] V E[{v/x}e] (Acv-~) ~ 

E[let x = v in e] V E[ {v I x}e] (11.cv-let) ~ 

E[Y v] V E[v (11.x((Y v)) x)] (11.cv-Y) ~ 

X, E[exception x in e] V x+ex, E[{ex/ x}e] ex E!=X (Acv-exception) ~ 

E[raise ex v] V E[[ex, v]] (Acv-raise) ~ 

E[v1 handle ex v2] 
V E[vi] (Acv-nohandle) ~ 

E[[ex, v] handle ex v'] V E[v' v] (11.cv-handle) ~ 

E[[exi, v] handle ex2 v'] V E[[exi, v]] ex1;t ex2 (Acv-reraise) ~ 

E[exn e] V E[exn] Acv exception ~ 

E[v exn] V E[exn] propagation ~ 

E[(exn . e)] V E[exn] rules ~ 

E[(v. exn)] V E[exn] ~ 

E[let x = exn in e] V E[exn] ~ 

E[raise exn e] V E[exn] ~ 

E(raise ex exn] V E[exn] ~ 

E[e handle ex exn] V E[exn] ~ 

Figure 5.7 - Rules of reduction with E contexts in Acv. 

R[ref v] r R[p(x,v).x] (11.cv-ref) ~ 

p0(x,v).R[ ! x] r p0(x,v).R[v] (Acv -deref) ~ 

1p0(x,v1).R[: = X V2] 
r p0(x,v2).R[ Vz] (Acv-assign) ~ 

R[p81 .p82.e] r R[p8182.e] ( Aro -p merge) ~ 

R[p0.e] r p0.R[e] if R ;z: [ ] (Acv-Plift) ~ 

Figure 5.8 -Rules of reduction for references with R contexts in Acv. 

Definition 5-2 ( ~) The sequential evaluation relation is the smallest relation 

"~,, satisfying the rules of reduction given in Figure 5.7 and Figure 5.8. The 

transitive closure of ~ is ~ * . 

The partial function eval is defined on closed expressions to be: 

Definition 5-3 (eval) eval(e) = a iff x,e ~ * x',a. 

The answers that may be produced as a result of evaluation are defined to be: 

Definition 5-4 (answers) a ::= {p0.} v I {p0.} [ex, v] where ex E x' 
(where the phrases within { } may be omitted). 
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Essentially, this statement may be read as being that answers consist of either a value 
(possibly bound within some memory) or an exception packet (again with the value 
possibly bound within some memory). The global bindings of exception names x and 
x' may be empty in the value case but x' must contain at least the name of the 
exception that is raised when the answer is an unhandled exception packet. 

5.4.3 Type system 

The motivation for proving type soundness of a type system is that evaluation of a 
program for which a type has been inferred using the type system does not ever 
produce a "wrong" answer. The concept of a "wrong" answer in the context of "A,c:v 

includes attempting to apply a function to incorrectly-typed arguments or attempting 
to apply a non-function to some value. The basic approach followed in proving type 
soundness for the polymorphic type system of "A,c:v is that developed in [WF91] and 
adopted by Reppy for CML [Rep92]. The type system is a deductive proof system 
which assigns types to ACT) terms. Polymorphism is achieved through the rules for let 
constructs. The system developed by Tofte [Tof88] is used to prevent overly generous 
type assignments for references and exceptions that could lead to runtime errors. 

Subject reduction is a method of reducing terms of the calculus according to some 
rules of reduction. Each term is rewritten and since the program itself is a term, each 
reduction of the program term is also a program in its own right. The rewritten terms 
correspond to intermediate states of evaluation of the program. The rules for reducing 
terms are purely syntactic. At each intermediate state of the evaluation, if subject 
reduction can be proved to hold, then the type of the rewritten term remains 
unchanged. 

The basic definitions for the type system are introduced, including the type 
inference rules. Then the standard proof strategy of [WF91] is followed, which 
proceeds by demonstrating subject reduction for the calculus, characterising the 
possible answers from evaluation and the faulty expressions, and finally proving that 
faulty expressions are untypable. Notions of weak and strong soundness are defined, 
which characterise the results which may be produced by typable expressions. 

5.4.3.1 Definitions 

The types for "A,c:v are formed from type constants and type variables, whose basic 
syntax is given in Figure 5.9. Following Tofte [Tof88], type variables are split into 
imperative type variables and applicative type variables, such that an imperative type 
may not contain any applicative type variables. Only values with imperative types 
will be capable of being stored in reference cells. Similarly, only parameters with 
imperative types will be permitted for raised exceptions. The distinctions between 
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l E TYCON = { unit, bool, int, ... } type constants 

u E lMPTYVAR imperative type variables 

t E APPTYVAR applicative type variables 

a,{3 E TYV AR = lMPTYV AR u APPTYV AR type variables 

Figure 5.9 - Basic syntax for type constants and variables. 

imperative and applicative type variables are a solution to problems arising from 

overly generous type assignments in the polymorphic type system.3 

The set of types ( r E TY) is defined: 

r ::= l 

, a 

(r1 • ri) 

( 'r1 X 'r2) 

rref 
rexn 

type constant 

type variable 

function type 

pair type 

reference cell type 

exception type 

Type schemes bind type variables in types, similar to the way in which a 

A-abstraction binds a variable throughout the subsequent expression. The set of type 

schemes, a E TYSCHEME, is defined as: 

a ::= r 
Va.a 

The type scheme V~ ... Van-a is abbreviated as V~ .. . a11 .a, and the type variables 

~, .. . ,a11 are considered bound. The type scheme V. r is identified with r, so all types 

are also type schemes. Type schemes represent the set of types r that can be obtained 

by substituting for the bound type variables a 1 to aw Type schemes are required 

because of the polymorphic type system, which allows variables to be bound to 

polymorphically-typed functions. Type schemes then allow the variable to be used 

with a set of different types. The simplest example is the identity function, Ax(x ), 

bound to a variable i. For values of type real, i can be used as a function of type 

real• real, while for values of type bool, i can be used as a function of type bool• bool. 

The set of such types is represented by the type scheme Va. a • a. If a type variable is 

not bound in a then it is regarded as free. The free type variables of a type scheme a 

are written FTV(a). 

3 In the recently revised definition of Standard ML, these distinctions are eliminated and replaced with a value 

restriction [SML96]. This restriction permits generalisation of the type of a variable binding only in 

circumstances where the expression on the right hand side is constructed from constants, other variables, 

lambda expressions, or combinations of these built with base-level combining operators. Since the semantics 

being described here were developed to model paraML, built with a version of Standard ML which predates 

the revised definition, the new restrictions were not adopted. 
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The set of imperative types is defined: 

lf/E lMPTY { r I FTV( r) c IMPTYV AR} 

Note that if the free type variables of a type is the empty set, FTV( r) = 0, then r is a 
monotype. From the definition of imperative type, it is clear that all free type variables 
of an imperative type are also imperative. 

The use of imperative and applicative type variables requires a restriction on 
substitutions that they are only permitted to map imperative type variables to 
imperative types. This substitution leads naturally to the notion of generalisation of a 
type r by a type scheme CJ, written CJ >- r. A generalisation exists if there is some 
substitution S of the bound type variables of CJ which yields '!, in which case r is said 
to be an instance of CJ. The substitution S is a partial function from type variables to 
types and is capture avoiding. 

(>-) V £Xi . . . a". t >- r iff :JS. St =rand dom(S) = {a1, ••• ,a,J 

Generalisation is also applicable to type schemes, and provides a partial ordering on 
them. 

(>-) CJ' >- (5 iff wherever CJ >- rthen a' >- r. 

Type environments are used for giving type information about variables in open 
expressions. Since the semantics is based on syntactic rewriting of terms, it is 
necessary to assign types to intermediate stages of computation. Thus the type system 
must be able to assign types to terms such as exception names. A type environment is a 
pair of finite maps. The first is a map from· variables to type schemes, defined as: 

VT E VARTY VAR fin TYSCHEME 

The second is a map from exception names to imperative types (of the parameters that 
are passed to the raised exception of the corresponding name): 

ET E EXNTY 

Type environments are defined: 

TE= (VT,ET) 

EXNNAME fin lMPTY 

E TYENV = (VARTY x EXNTY) 

The free type variables of variable typings and exception typings are denoted FTV(VT) 
and FTV(ET) respectively. The free type variables of a variable typing are the union of 
free type variables of all the type schemes within the range of the map, defined: 

FTV(VT) U FTV(a) 
CTErng(VT) 

Note that there are no bound type variables in exception typings, and also that 
FTV(ET) c IMPTYV AR. The free type variables of a type environment are thus defined: 
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FTV(TE) FTV(VT) u FTV(ET) 

Type environment modifications can be conveniently expressed as follows: 

TE+ {x Her} 

TE+ {ex H 1/'} 

def (VT + {x H er}, ET) 

def (VT, ET+ { ex H 1/f}) 

93 

The separation of imperative and applicative type variables leads to two forms of 

closures of types with respect to type environments. The closure of type r with respect 

to type environment TE is written: 

CL0&rE( r) V~ .. . a 11.r where {~ ... a,J = FTV(r)\FTV(TE) 

The applicative closure of type r with respect to type environment TE is written: 

APPCLOSTE( r) V ~ .. . a11 • r 

where {~ ... a,J = (FTV(r)\FTV(TE))nAPPTYVAR 

Two facts may be deduced from the definitions of type closures and generalisation 

which will be used in later proofs. 

Lemma 5-2 The following properties hold for any TE, er, a', r, and x: 

• If a' >- er, then CL0Sn:±{Xf-Hr'}( r) >- CL0STE±{xHcr}( r) . 

• If x ~ dom(TE), then CL0STE( r) >- CL0STE±{xHa}( r). 

Proof. Both of these properties arise from observing that if FTV(TE') c FTV(TE), 

then CL0STE'( -r) >- CL0STE( r). • 

Type judgements are the sentences which may be inferred from the type system's 

rules. These judgements are of the form TE r- e : r, which are read as meaning that the 

expression e has type r under the assumptions of type environment TE. If the type 

environment is empty, then judgements may be written r- e : r. Well-typed programs are 

closed expressions where a judgement exists in the form r- e: r. The type rules form the 

basis of the type system, and allow sentences of the form TE r- e : r to be inferred. 

A function TypeOf is assumed to exist, which is used to abstract the details of 

typing every individual base and function constant. 

TypeOf : CONST • TYSCHEME 

An important property of the 8 function (described earlier in §5.4.2) is 8-

typability. This property guarantees that 8 is defined on all constants of function type 

and arguments of matching type. Formally, 8-typability is defined: 

Definition 5-5 (6-typability) If TypeOf(c) >- ( r' • r) and r- v: r', then 8(c,v) is defined 

and r- 8(c,v) : r. 
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Type Of ( c) >- r 
TE 1-c: r 

VT(x) = r 
(VT,ET) 1-x: r 

ET(ex) = 1/f 

(VT, ET) 1- ex : 11' 
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TE 1-Y: ((r1 • r2) • r1 • r2) • r1 • r2 

TE l-e1: (r' • r) TE l-e2: r' 
TE l-e1 e2: r 

TE ± { x H r} I- e : r' 
TE I- AX( e) : ( r • r') 

TE l-e1: T1 TE l-e2: r2 
TE 1-(e1. e2):(r1xr2) 

TE 1-v: r' TE±{x H CLOSn(r')} 1-e: r 

TEl-letx=v ine:r 

TE l-e1: r' TE± {x H APPCLOSTE( r')} l-e2: r 

TE I- 1 et x = e1 in e2 : r 

TE I-ref: r • rref if ris imperative 

TE I- ! : r ref • r 

TE I- : = : r ref • r • r 

TE+{x1 H T1 ref, ... ,Xn H Tn ref} 1-e: 'f 

TE± { X1 H T1 ref, ... I Xn H Tn ref} I-Vi: 'ti 'ti is imperative 1:::; i:::; n 
TE 1-p(x1, v1) .. . (xn, Vn).e: 'f 

TE±{x H rexn} 1-e: r' ris imperative 
TE I-exception x in e: r' 

TE I-raise : T1 exn • T1 • Ti 

TE 1-e: r2 
TE 1-e handle: T1 exn • ( T1 • r2) • T2 

Figure 5.10 - Type rules for Aro. 

r-const 

r-var 

r-ex 

r-Y 

r-app 

r-abs 

. r-pa1r 

r-app-let 

r-imp-let 

r-ref 

r-deref 

r-assign 

r-rho i 

l 
Ii 
\' 

r-exn I 

I· 
. r-ra1se 

r-handle 
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The provision of exceptions in the range of the 8 function allows the inclusion of 

functions like division, since the answer may be a raised exception, not just a closed 

value. The type of a raised exception matches the type of the value that would be 

returned in unexceptional circumstances, as is seen from the type rules. 

5.4.3.2 Type rules 

The typing rules for Aro are given in Figure 5 .10. These rules cover all the expressions 

defined in the calculus, and from these rules, proofs of the types of arbitrary closed 

expressions can be deduced. Worth noting are the -r-app-let and -r-imp-let rules, which 

are defined separately to prevent the generalisation of variables in the store. The basic 

premise is that if the right hand side of the variable being bound is known to be a 

value, then evaluation of it cannot generate new memory cells, and thus it is safe to 

generalise any imperative type variables in its type since they cannot also generalise the 

type of a value in the memory. However, if the right hand side is an expression, then 

unrestricted generalisation of the type variables may lead to problems, and thus 

generalisation is conservatively restricted to applicative type variables. 

5.4.4 Type soundness 

The type system given above is only one aspect of the typing for ACT). The next step is to 

establish type soundness of the system with respect to the dynamic semantics given in 

§5.4.2. As mentioned earlier, the approach taken is that set out in [WF91] and 

[Rep92]. 

5.4.4.1 Supporting lemmas 

Before establishing subject reduction for Aro, there are several important lemmas 

required in the proof. The first lemma establishes that variables or exception names in 

the domain of the typing environment which are not free in an expression e can be 

ignored when typing e. The variable convention ensures that x e: FV(e) whenever the 

lemma applies. 

Lemma 5-3 If x e: FV(e) then TE r e:-r iff TE + {x H <1} r e:-r. Likewise, if ex e: 
FEN(e) then TE r e:-r iff TE+ {ex H vi} r e:-r. 

Proof. The proof is straightforward, and follows from induction on the height of 

the typing deduction. • 

The next lemma is known as the replacement lemma, since it allows the 

replacement of a complete subexpression in a term with another of the same type, 

without having any effect on the type of the whole term. 

Lemma 5-4 (Replacement) Let C[ ] be a context with a hole. Provided the following 

conditions hold: 

1. D is a type deduction which concludes TE r C[e1] : -r, 
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2. D1 is a subdeduction of D which concludes TE' r e1 : r', 

3. D1 occurs in Din the position which corresponds to the hole in C, 

4. TE' r e2 : r' I 

then TE I- C[e2]: r. 

Proof . The proof comes from [HS86] and is echoed in [WF91]. Consider the 
deduction b as a tree, with the conclusion as the root. The deduction D2 which 
concludes TE' I- e1 : r', may also be viewed as a tree, and it can replace the subtree D1 

in D. All occurrences of e1 in D can then be replaced by e2 in the resulting tree. This tree 
is then a valid deduction also, but concludes TE r C[e2] : r, by induction on the height 
of the tree. • 

The substitution lemma is used to show that types are preserved under 
,B-reduction. The proof of this lemma relies on an additional two lemmas, which are 
stated here. The first of these lemmas extends substitution on types to substitution on 
type judgements. 

Lemma 5-5 

Proof. 

If S is a substitution and TE I- e : r, then S(TE) I- e : Sr 

A proof of this lemma for a similar system may be found in [Tof90]. • 
The next lemma is used to show that generalising the typing assumptions (the 

information in the type environment) has no effect on the typing outcome of an 
expression. 

Lemma 5-6 If TE + {x H er} I- e : rand d >- rr, then TE + {x H d} I- e : r. 

Proof. The proof of this lemma is by induction on the height of the typing 
deduction of TE+ {x Her} I- e: r, and case analysis on the shape of e for the last step. 
The details of this proof are given in Appendix A-1. • 
Lemma 5-7 (Substitution) If x ~ FV(v), TE I- v: r, and TE+ {x H V a1 . • . V awcr} I- e:r', 
with{~, . . . ,an}nFTV(TE) = 0, then TE I- {v / x}e: r'. 

Proof. Just as in the previous lemma, the proof of the substitution lemma is by 
induction on the height of the typing deduction, and case analysis on the shape of e for 
the last step. The details of the proof are given in Appendix A-1. • 

5.4.4.2 Type preservation 

The core result for establishing syntactic soundness is type preservation. Essentially, 
this states that if an expression can be assigned a type, then that type is preserved 
through reduction of the expression. 

Theorem 5-8 (Type preservation) For any type environment TE, expression e11 and 
type r, such that TE I- e1 : r, if e1 ~ e2 then TE I- e2 : r. 

~ 

t 

f 

I 
1 
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Proof. Let E[e]=e1 and E[e']= e'J./ and assume that TE' ~ e:r' with TE'=(VT',ET'). 

Then by Replacement (Lemma 5-4), it is sufficient to show that TE' ~ e':r'. This is 

done by case analysis of the definition of ~. Details of this proof are found in 

Appendix A-1. • 

5.4.4.3 Stuck expressions 

The type preservation theorem guarantees that if an expression is typable, any series of 

reductions will fail to produce an untypable expression. However, this is not sufficient 

to establish type soundness. The crucial property to establish is that typable 

expressions do not become stuck. 

Definition 5-6 (Stuck expressions) The evaluation of an expression e is stuck if e 

is not an answer and there is no e' such that e ~ e'. 

5.4.4.4 Faulty expressions 

The concept of stuck expressions is a semantic one. In particular, it is not decidable 

whether an expression will eventually reduce to a stuck expression. A useful 

approximation of the set of stuck expressions is a set of faulty expressions. These 

faulty expressions may become stuck (though they may not). Hence faulty expressions 

are a superset of the stuck expressions. 

Definition 5-7 (Faulty expressions) The faulty expressions of "-ev are those 

expressions containing a subexpression of the form: 

(c v) 

( (V1 . V2) V) 

(! v) 

(: = v) 

p8(x,v2).C[x V1] 

exception x in C[! x] 

exception x in C[:= x] 

exception x in C[x v] 

(raise v1 v2) 

(e handle V 1 V2) 

p0(x,v).C[rai se xv'] 

p0(x,v).C[e handle xv'] 

where o(c,v) is undefined 

where v e: VAR 

where v e: VAR 

where v1 e: VAR u EXNNAME 

where v 1 e: VAR u EXNNAL\1E 
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where 
C ::= [] I Ce I e C I (C.e) I (e.C) I let x = C in e I let x = e in C I 

Ax(C) I pe.C I p8(x,C).e I exception x in C I C handle ex v 

e handle ex C I raise Ce I raise ex C 

5.4.4.5 Uniform evaluation 

Evaluation can be characterised by the following uniform evaluation lemma. Firstly the 
notation e11' for the divergence of e is defined: 

Definition 5-8 (Divergence 11') If e ~ e' for some e' and for all e' such that 
e ~ * e' there exists an e" such that e' ~ e" I then en. 

Lemma 5-9 (Uniform evaluation) For closed expressions e, if no e' exists such that 
e ~ e' and e' is faulty, then either e11 or e ~ * a where the answer a= {p8.} v I 
{p0.} [ex, v] with ex E X· 

Proof. By induction on the length of the reduction sequence. The proof requires 
that one of the following holds for any expression e: e is faulty, e ~ e' and e' 1s 
closed, ore is an answer a. See Appendix A-1 for details of this proof. • 

5.4.4.6 Results 

A number of results can now be proven that establish type soundness for Ac:v. 

Lemma 5-10 (Faulty expressions are untypable) If e is faulty, then there are no TE, 
r such that TE r e : r. 

Proof. It is sufficient to show that the subexpressions e' of e that cause e to be 
faulty are untypable. The proof proceeds by case analysis on the form of the 
subexpression e'. See Appendix A-1 for the full details of this proof. • 
Theorem 5-11 (Syntactic soundness) Let e be a program, with r e : r. Then either e 11' 
or e ~ * a and r a : r. 

Proof. By Uniform evaluation (Lemma 5-9), either e ~ e' and e' is faulty, or e11', 
or e ~ * a. Since TE r e : r, Type preservation (Theorem 5-8) implies TE r a : r and 
TE re': r. Suppose that e ~ e' and e' is faulty. But faulty expressions are untypable 
by Lemma 5-10, and thus TE r e': r is a contradiction and cannot occur. Hence either 
e 11' or e ~ * a and TE r a : r. • 

The definition of evaluation is refined to permit statements about strong and 
weak soundness. Specifically, characterisations of "wrong" answers are necessary, to 
distinguish between programs that diverge and those which result in type errors. Weak 
soundness guarantees that a typable program does not produce a "wrong" answer, 
while strong soundness states that if an answer is produced, then its type is the same 
as the type of the program. 
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Definition 5-9 (eval') 

§5.5 Summary 

!WRONG if e ~ * e' and e' is faulty; 
eval'(e) = 

a ife~ * a. 
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Strong and weak soundness now follow as corollaries of Syntactic soundness 

(Theorem 5-11). 

Theorem 5-12 (Strong soundness) 

Theorem 5-13 (Weak soundness) 

5.5 Summary 

If f- e : rand eval' (e') = a then f- a : r. 

If f- e: rthen eval'(e) =t= WRONG. 

• 

• 

The purpose of this chapter has been to present the complete development of an 

extended Av calculus with respect to both its static and dynamic semantics. This Aro 

calculus is used as the sequential language within processes, and is very similar to ML. 

The central result of type soundness establishes that typable programs do not result in 

runtime type errors. 

The Aev calculus, the style of semantics and general notation are used throughout 

the next two chapters as the basis in developing a formal semantics to model paraML. 

Although the dynamic operational semantics is extended considerably to model the 

process-oriented aspects of paraML, the general structure of the proof of type 

soundness remains essentially unaltered. 





6. Operational semantics 
6.1 Introduction 

This chapter extends the Acv calculus introduced in the previous chapter to model 

evaluation in paraML. The sequential aspects of the calculus remain essentially 

unchanged, but a parallel evaluation relation is introduced which models the extension 

operations provided in paraML. This new calculus is known as Apv· The development 

of an operational semantics to characterise parallel evaluation is similar to the work of 

Reppy [Rep92] in developing an operational semantics for the concurrency aspects of 

CML. Parallel evaluation proceeds by transitions between process configurations, 

which draws from the Chemical Abstract Machine ( CHAM) model of parallel 

evaluation developed by Berry and Boudol [BB92]. The Ar:u calculus does not 

completely model Standard ML, and hence Apv does not completely model paraML. 

However, the core extension operations of paraML are captured. The interaction of 

exceptions and references with these process-oriented aspects of the Apv calculus is 

particularly novel. 

6.2 Syntax 

The description of the syntax for Apv is given just as extensions to the syntax for ACT}. 

The syntax is extended firstly with new ground terms for process names and port 

names as given in Figure 6.1. Process names and port names appear only as 

intermediate results in evaluation. 

The new expressions in the calculus (Figure 6.2) include expressions which match 

each of the extension operations in paraML and the new values are process names and 

port names. Notice that the extension operations are defined as expressions, not 

function constants, since they will be given meaning by the parallel evaluation relation, 

not by the sequential evaluation relation like the other function constants. 

The main differences between paraML and Apv are the formulations for process 

and port creation. These formulations have been chosen to assist in the typing rules of 

Apv described in the next chapter. Note that prt is a contraction of port (not 

"print"), and should be pronounced the same way. As mentioned in the previous 

chapter, there are no constant exception names. The exception identifiers used for 

indicating failure in the paraML operations are NoPortCrea ted, 

ProcessExecuting, NoSuchProcess, NoSuchPort, and PortNotOwned. 

101 
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n E PROCESSNAME 

¢ E ro~T_NAM_E_ 

e ··- proc x in e .. 

Chapter 6: Operational semantics 

process names 

ort names 

Figure 6.1 - New ground terms. 

process creation 

prt x on nine port creation 

execute e execute request 

self id e own process name 

send e send value to port 

recv e receive value from port 

probe e test ability to receive from port 

V ··- n process name .. 

</J port name 

Figure 6.2-New expressions and values of the grammar. 

The paraML forms of the operations proc and prt, together with these 
exceptions, can be achieved by embedding a Apv program e in the following context: 

let process = AX(proc pin p) in 
let port = AX(prtf on x inf) in 

exception NoPortCreated in 
exception ProcessExecuting in 

exception NoSuchProcess in 
exception NoSuchPort in 

exception PortNot0wned in 
[e] 

The definition of free variables remains as before, with the addition of those for 
the new expressions and values. There are no free variables in the terms for process 
names and port names. The free variables of the new expressions are just those of the 
argument expressions e, as shown in Figure 6.3. 

As in Aev the set VAL O is the set of closed value terms. However, closed value 
terms may contain both free process names and free port names, as well as containing 
free exception names as before. The free process names are denoted FPN(e) and the 
free port names are denoted FFN(e). As with exception names in Aa;, since there are no 
process name or port name binding forms, FPN(e) is exactly the set of process names 
that appear in e and FFN(e) is exactly the set of port names that appear in e. A 
program is a closed term which does not contain any subterms in the syntactic classes 
EXN, PROCESSNAME or PORTNAME. Thus programs do not contain intermediate 
values. 
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FV(n) - 0 

FV(</J) - 0 

FV(proc x in e) - FV(e) \ {x} 

FV(prt x on nine) - FV(e) \ {x} 

FV(execute e) - FV(e) 

FV(self _id e) - FV(e) 

FV(send e) - FV(e) 

FV(recv e) - FV(e) 

FV(probe e) - FV(e) 

Figure 6.3 -Free variables in new terms. 

{elx}n - n 

{e I x}q, - q, 

{el x}(proc x' in e') - pro c x' in { e I x} e' X-::/; X' 

{e I x}(prt x' on nine') = prt x' on n in {e I x}e' X-::/; X' 

{ e Ix}( ex e cute e') - execute {el x}e' 

{ e Ix}( s e 1 f _ i d e') - s e 1 f _id { e Ix }e' 

{e I x}(s end e') - send {e I x}e' 

{ e Ix}( re c v e') - re c v { e I x} e' 

{ e Ix }(probe e') - probe {e I x}e' 

Figure 6.4 - Substitution in new terms. 

Substitution in the new terms is straightforward. As before, the bound variables 

in the proc and prt rules are renamed to prevent any instance of x = x' affecting 

substitution according to the conventions of Barendregt [Bar84]. The definitions are 

given in Figure 6.4. 

6.3 Dynamic semantics 

The \,z, calculus is defined by a sequential evaluation and a parallel evaluation relation. 

The sequential evaluation relation 11
~" defines what goes on inside a process. The 

relation "~" is 11 
~" with some additional contexts and reduction rules. The 

parallel evaluation relation 11 •" extends sequential evaluation to finite sets of 

processes as well as defining how processes come into existence and how they 

exchange information. 
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E ::= [] I Ee I v E I (E. e) I (v. E) I let x = E in e I 

raise Ee I raise ex E I e handle ex E IE handle ex v I p0.E I 

execute E I self _id E I send E I recv E I probe E 

R ::= [] I Re I v R I (R. e) I (v. R) I let x =Rine I 

raise Re I raise ex R I e handle ex R IR handle ex v 

execute R I self id R I send R I recv R I probe R 

Figure 6.5 - Grammars for contexts. 

E[execu te exn] ~ E[exn] 

E[s elf_ id exn] ~ E[exn] 

E[send exn] ~ E[exn] 

E[recv exn] ~ E[exn] 

E[probe exn] ~ E[exn] 

Figure 6.6 - Sequential evaluation relation. 

6.3.1 Sequential evaluation 

As before, reductions in Apv involving function constants are defined abstractly using 
the partial function 3. Similarly, the answers a that may be produced as a result of 
sequential evaluatio·n of terms are defined as before. Recall too that the answers may 
possibly be p-bound in some memory. 

Definition 6-1 (answers) a E ANS = VAL O u { [ex, v] I ex E X, v E VAL O 
} 

The sequential evaluation order is controlled by the use of evaluation contexts. 
The E and R contexts in Apv are extended to include the new terms (shown in Figure 
6.5), excluding those which introduce new process names or port names. Terms 
involving name creation (such as the exception, proc and prt terms) do not 
appear in the evaluation contexts to prevent possible capture of free variables in the 
hole of the context. As a consequence, the proof of Lemma 5-1 remains the same, 
allowing its restatement here: 

Lemma 6-1 If E[e] is a closed term, then either e is a closed term, or E is of 
the form p0.E' and p0.e is closed. 

Proof. Examining the definitions of evaluation contexts, it should be clear that if x 
is free in e, then, since p0.E' is the only construct in E which could bind x, either x must 
also be free in E[e] or there exists (x,v) E 0 which binds x in p0.e. • 

The sequential evaluation relation from Ar:v is extended solely by new exception 
propagation rules, as shown in Figure 6.6. The additional change is that the 
Aev-exception rule is removed from the sequential evaluation rules for Apv. This 
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alteration is necessary to preserve the global nature of the exception name environment 

X, thus making it visible to all processes. Hence the Apv -exn rule for exceptions is found 

in those for the parallel evaluation relation. 

Note that the type system will guarantee that the arguments to the operations 

involving processes and ports are of the correct type. 

6.3.2 Parallel evaluation 

Reppy's concurrent evaluation relation is built around a CHAM model [BB92], 

except without any heating or cooling transitions. The machine is embodied at any one 

time by a configuration which consists of finite sets of process states and channel names. 

The same general approach is taken for Apv - each process is tagged with a unique 

name; similarly all ports are tagged with a unique name. A process state is given as the 

3-tuple consisting of the process name, the current state of any ports attached to the 

process, and the evaluation state of the process. Tagging each process state with a 

unique process name avoids having to use the multisets of a CHAM. Configurations in 

Apv consist of finite sets of exception names, X, and process states, P. The definitions 

for the various aspects of configurations are given in Figure 6.7, and explained in the 

following paragraphs. 

There are multiple ways to formulate the semantics for exceptions. Reppy's 

suggested mechanism for modelling exceptions was adopted in Aro with the express 

purpose of making their formulation straightforward in Apv- This technique of providing 

an implicit global environment for exception names guarantees that they are unique 

across all processes, despite an ability to escape their binding site in message 

transmissions. The requirement of a global environment for exceptions is unfortunate 

as they have no bearing on parallelism; ideally only process names and port names 

would have constituted an implicit global environment. The set of exception names x 
includes every exception name in the set of process states P. 

Communication in CML is synchronous; in paraML, messages are delivered to 

ports, which act as queues of messages destined for a particular process. This requires 

some additional notation to describe the state of communication for a port. Queues of 

messages are denoted q = I m11 . .. ,m N l and the empty queue is given by j_; the infix 

operation @ is used to indicate insertion into a queue. The normal semantics of FIFO 

queue operations are observed. 

A process can be in one of three different evaluation states: 

1. awaiting execution to take place (denoted by E); 

2. evaluating a term e (often written as E[e'], the sequential evaluation contexts 

defined earlier in Figure 6.5); or 

3. having completed evaluation (such that there is an empty evaluation context) 

to a closed basic value v or unhandled exception exn, which are collectively 

known as answers and written a. 
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= {ex1,ex21 • •• ,exN} c EXNNAME 

= I m1,m21 • •• ,mNl E QUEUE 

= {</>1H q1, </Ji.H q2, ··. , </)NH qN} 

E E +EXP+ ANS 

- (n; <P; es) E PROC 

- {A, Pit ·· .,ftN} 

E Fin(EXNNAME),Fin(PROC) 

exception names 

queues of values 

a set of maps from port name to 
queue; dom( <P) = { ¢1, ... , </JN} 

evaluation states 

process states 

sets of process states 

configurations 

Terminal ('P) c 'P, such that (n; <P; es) E Terminal('P) iff es= [a] and a EANS 

Awaiting ('P) c 'P, such that (n; <P; es) E Awaiting('P) iff es=£ 

Figure 6.7 - Syntactic definitions for process configuration components. 

Terminal processes of a configuration are those which have evaluated to an 
answer, and awaiting processes are those still awaiting an execute request. Implicit 
in the definition of possible evaluation states is that processes will only service at most 
one execute request. The definitions for these attributes of process configurations 
are given in Figure 6.7. By definition, there are no free variables, free exception names, 
free process names, or free port names in the awaiting evaluation state. Thus 
FV(E) = 0, FEN(E) = 0, FPN(E) = 0 and FFN(E) = 0. 

The set of process names from the process states of a configuration is given as 
PROCN('P), and the set of port names is given as PORTN('P). The initial configuration 
of a paraML system is an empty exception name set 0 and the singleton process state 
set {(n0; 0; E[e])}, where no port names have been allocated, and E[e] is the user 
program. The initial process name is given as n0 to distinguish it from processes 
created by the proc operation. This configuration is well-formed. 

Parallel evaluation proceeds by transitions between configurations, according to 
the parallel evaluation relation rules. For some of the rules, particularly those 
connected with the execute and send operations, there is an additional operation 
needed. The copy operation captures the semantics of copying a value complete with 
any information needed to interpret it in a different evaluation context. (It is not a new 
expression of the language, just a technique for describing value transmission.) Thus 
the copy operation takes a tuple argument consisting of an evaluation context and the 
value itself, and produces a p-bound expression consisting of a set of memory cells and 
the value. Since this expression is a term in the \w calculus, it can be placed in the hole 
of a different evaluation context with appropriate alterations. Since there are no free 
variables in a copied closed value, there are no variable capture problems. Memory cell 
identifiers copied with the value may be consistently renamed in the usual way to 
avoid capture as defined with the merge and lift rules for references. An extended 
discussion and definition of copy is given in §6.3.2.10. 
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e, =- e' 

(a) X,P+(n;<P;e) • X,P+(n;<P;e') (t\,pv-seq) 

(b) ex~ X 
X, P+(n;<P;E[ exception x in e ]) • X +ex, P+ (n;<P;E[{ ex Ix }e ]) 

o\,pv-exn) 

(c) ~---­
X,P+(n;<P;E[proc x in e]) • X,P+(n;<P;E[{n' I x}e])+(n';0;£) 

n' ~ PROCN(P) u { n} 
o"pv-proc) 

(d) -X,-P-+-,-(n_;_<P-;E-[s_e_lf ___ i_d_(_)],_)•-x-,P-+-(n_;_<P_;E-[n-]) (Apv-self _id) 

Figure 6.8 - Parallel evaluation rules for: (a) sequential evaluation; 

(b) exception binding; ( c) pro c; ( d) self_ id. 

The general form of the parallel evaluation rules shows preconditions above a 

horizontal line. Two configurations are connected by the parallel evaluation relation • 
below the line. This corresponds to a transition between the two configurations 

provided the preconditions are satisfied. One or two processes are selected on the left­

hand side of the relation, and their process state is given in full. No other transitions 

occur simultaneously with this indicated transition. An implicit precondition exists in 

every rule that for the selected process n (and for rt if applicable) n ~ PROCN(P) (and 

rt~ PROCN(P) if applicable), where Pis used to denote the unselected processes in 

the current configuration. 

6.3.2.1 Sequential evaluation 

The first rule in Figure 6.8 states that sequential evaluation can be deduced in the 

presence of parallel evaluation. The name of the selected process in this transition is n. 

Note that if e' = [a], then after the parallel evaluation rule has completed, 

n E PROCN (Terminal(P+( n; <P; [a]))). 

6.3.2.2 Exception binding 

The operation of choosing a new exception name is defined in the parallel evaluation 

rules since the new exception name must be unique and no other process may be 

allowed to choose the same name in an exception reduction. The new name is added 

to the global environment of exception names X, and substitution of the new exception 

name for the identifier is performed, as given in Figure 6.8 (b ). 
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<// e; PORTN(P) u dom( <P) 
X,P+(n;<P;E[prt x on n in e]) 

• X, P + (n;<P +{¢' H 1-);E[ {¢' / x }e ]) 

¢" E!: PORTN(P)udom{<Pu<P') n' e: PROCN(Terminal(P)) n i; n' 
X,P+(n;<P;E[prt x on n' in e])+(n';cJ)';es) 

• X, P+ (n;@;E[ {¢" / x }e ]) +(n'; cJ)' + (¢" H _i); es) 

n' e PROCN(Terminal(P)) 
X,P+(n;<P;E[prt x on n' in e]) 

• X,'P+(n;<P;E[raise NoPortCreated n']) 

Figure 6.9 - Parallel evaluation rules for prt. 

X,P+(n;<P;E[execute (n'. v)])+(n';cJ)';t:) 

• X,P+(n;<P;E[( )])+(n';<P';[(copy (E,v)) ( )]) 

n' e PROCN(Terminal(P)) 
X,'P+(n;<P;E[execute (n'. v)]) 

• X,'P+(n;<!>;E[raise NoSuchProcess n']) 

n' e: PROCN(Awaiting(P)uTerminal(P)) 
X, P+(n;<P;E[ execute (n'. v)]) 

• X,'P+(n;<P;E[raise ProcessExecuting n']) 

Figure 6.10 - Parallel evaluation rules for execute. 

6.3.2.3 proc 

()\;pv-prtl) 

o\,pv-prt2) 

o\,pv -p rt3) 

01,pv-execl) 

()1,pv-exec2) 

o\,pv-exec3) 

Process creation requires picking a new process name and creating a new process 
without any ports initially. The evaluation state of the new process is awaiting an 
execution request to be sent. The evaluation rule is given in Figure 6.8 (c). 

6.3.2.4 self id 

The self_ id operation, given in Figure 6.8 ( d), is straightforward, simply filling the 
evaluation context hole with the process identifier. 

r 
M 



jl, 

I 
•'111 

§6.3 Dynamic semantics 109 

6.3.2.5 prt 

Port creation requires picking a new port name, and a new mapping in the designated 

process from port name to queue. There are three basic situations (given in Figure 6.9): 

rule (\n,-prtl) describes what happens when the designated process is the same as the 

port requester; rule (Apv-prt2) describes what happens when the designated process is 

not the same as the port requester and is still executing; and rule (Apv-prt3) describes 

what happens when the designated process has terminated. 

6.3.2.6 execute 

There are three rules also for the execute operation (see Figure 6.10). These cover the 

following situations: rule (Apv-execl) is where an execution request is accepted by 

another process; rule (Apv-exec2) describes what happens if the process belongs to the 

terminal set of the configuration; and rule (Apv-exec3) describes what happens if the 

designated process (possibly itself) is already evaluating some expression. 

6.3.2.7 send 

There are three different rules for sending: rule (Apv-sendl) covers the situation where a 

message is sent to a port in the same process; rule (Apv-send2) details sending to a port 

on a remote process; and rule (Apv-send3) is the error situation when the port belongs to 

a process which has terminated. The use of copy in rule (Apv-sendl) is important as it 

permits a uniform treatment of values in a port's queue by the recv operation. The 

three rules for the send operation are given in Figure 6.11. 

6.3.2.8 recv 

There are two essential rules for receiving messages. The first situation is when the 

named port has a non-empty queue, in which case the first message is dequeued, given 

in rule (Apv-recvl). Rule (Apv-recv2) covers the error condition, where the port is owned 

by another process (or was before it terminated). The two rules for the recv 

operation are given in Figure 6.12. 

Rule (Apv-recvblock) is a derived rule. It covers the case where a process is blocked 

awaiting input on a named port. Evaluation can only proceed if there is a matching 

send to the same port. Rule (Apv-recvblock) is constructed by the successive 

application of rules (Apv-send2) and (Apv-recvl). Rule (Apv-recvblock) is given in Figure 

6.12. 

6.3.2.9 probe 

The rules for the operation probe look similar to the rules for receiving, except that a 

simple boolean truth value is returned, with true returned if the port queue is non­

empty, and false if it is. Error conditions are again detected, as shown in rule 

(Apv-probe3). The three rules are given in Figure 6.13. 
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¢' e dom( <P) 

X, P + (n;<P + ( ¢' H q');E[ send(¢'. v)]) 

• X,P+(n;<P+(</J'H q'@(copy (E,v)));E[( )]) 

¢" e dom(<P') n' e PROCN(Terminal(P)) 

X, P + ( n; <P; E[ send(¢". v)]) + (n'; <P' + ( ¢" H q"); es) 

• X,P+(n;<P;E[( )])+(n';<P' +(¢" H q"@(copy (E,v)));es) 

¢' E PORTN(Terminal(P)) 
X,P+(n;<P;E[send (¢'. v)]) • X,P+(n;<P;E[raise NoSuchPort ( )]) 

Figure 6.11- Parallel evaluation rules for send. 

¢' e dom(<P) M > 1 

X, P + ( n; <P + (¢'Hi mi, m2, ... , mM l); E[ recv ¢']) 

• X, P+(n;<P+(¢' HI m2, ... , mM l);E[ mi]) 

¢' e dom(<P) 
X, P+(n;<P;E[recv ¢']) • X, P+(n;<I>;E[raise PortNot0wned ( )]) 

¢" e dom( <P) 
X, P + (n; <P + ( ¢" H ..l); E[ recv ¢"]) + ( n'; cP';E'[ send(<//'. v) ]) 

• X, P + (n; <P + ( ¢" H ..l);E[ copy (E', v )]) + (n'; <P';E'[( )]) 

Figure 6.12 - Parallel evaluation rules for recv. 

¢' e dom( <P) q' * ..l 
X, P+(n;<P + (¢' H q');E(probe ¢']) • X, P+(n;<P + (¢' H q');E[ true]) 

¢' ~ dom( <P) 
X, P+ (n;<P + (¢' H ..l);E[probe ¢']) • X, P+ (n;cI> + (</>' H ..l);E[ false]) 

¢' e dom(<P) 
X, P+(n;<P;E[probe ¢']) • X,P+(n;cI>;E[raise PortNot0wned ( )]) 

Figure 6.13 - Parallel evaluation rules for probe. 

()"pv-sendl) I~ 

()"pv-send2) 

O"pv -send3) 

(Apv-recvl) 
'I ,. 

I 

(Apv-recv2) 

(Apv-recvblock) 

(Apv-probel) 

0"pv-probe2) 

0\,pv-probe3) 
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6.3.2.10 copy 

Various of the preceding rules rely on the copy operation. This operation defines how 

values are copied from one evaluation context so that they may be placed in the hole of 

a different evaluation context. The need for this operation is the inclusion of reference 

variables in the calculus and the semantics attached to transmission of such variables 

under a distributed address space model. Informally, any reference variable is sent 

together with a copy of the value it maps to in the memory of the sending process. At 

the destination process, a new memory cell is created (with a new identifying variable) 

and initialised with the copied value. 

Reppy's semantics for CML do not require any such operation as CML is based 

on a shared address space model, and thus reference variables are common between 

threads. In fact, Reppy does not introduce references into his calculus at all, and 

instead models them by an encoding with threads and channels, which is known to be 

semantics-preserving [BMT92]. Morrisett discusses how his dynamic type dispatch 

compilation mechanisms can be used to marshal objects into a transmissable form 

[Mor95]. In particular, this is demonstrated for functions represented by proxies in a 

heterogenous execution environment. Knabe discusses marshalling and unmarshalling 

in the context of mobile agents over distributed heterogenous environments for Facile, 

but does not include a formal semantics [Kna95]. Nettles provides a Larch 

specification of copying garbage collection [N et92 ], which is akin to the actions which 

take place in the implementation of paraML' s marshalling operations, but with only a 

single object. His specification is an abstract one for nodes connected by pointers, 

rather than for a full A calculus-like language. 

The copy operation relies on the mem operation, which recursively identifies any 

memory cells required by the value being copied. These memory cells are then used 

when the value is p-bound. The mem operation proceeds by case analysis on the 

possible structure of closed values and evaluation contexts. The definition of copy is 

as follows: 

Definition 6-2 (copy) copy (E,v) = p(mem(E,v)).v 

The definition of mem is given in Figure 6.14. The input to the copy and mem 

operations are an evaluation context E and a value v. In those cases where the 

contents of memory cells in an evaluation context are unimportant, the evaluation 

context is written simply E. Where the contents of memory cells, or the very presence 

of memory at all, is important, then it is written in the usual way with a p-expression. 

The output, m, from the copy operation is a p-expression of the Apv calculus, consisting 

of a set of memory cells 0 produced by the mem operation and the value v. 

The values for which memory in an evaluation context is important are memory 

cell identifiers, A-abstractions, and the curried form of reference update. In these cases, 

there are two rules - one for when there is memory and one for when the content of 
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memory is unimportant. The other cases are fairly self-explanatory, but the ones 
involving memory copying deserve some extra explanation. 

Copying memory cell identifiers proceeds by creating a memory consisting of a 
memory cell with the memory cell identifier and a copy of the value it maps to in the 
existing memory. The cell and the ~on of any additional memory that results from 
copying the value the memory cell identifier maps to becomes the set of memory cells 
associated with the memory cell identifier. The value v that is bound with the set of 
memory cells for transmission is the memory cell identifier itself. Note that as a 
memory cell is identified as required, it is removed from the p-expression binding in the 
evaluation context passed to the recursive use of the mem operation, thus preventing 
infinite cycles in copying. Once a memory cell identifier has been encountered once, a 
copy of the value will be present in the p-bound memory to be transmitted, and hence 
if the identifier is discovered again there is no further need to copy the value. Note 
also that although the identifier x for variables is used, the only variables that can be 
discovered are memory cell identifiers since any other variable will have been replaced 
by substitution throughout the structure of the value - a consequence of transmitting 
only closed values. 

If a A-abstraction is to be copied, then if there is any memory bound by a p­
expression in the evaluation context, the entire contents of memory are included in the 
memory to be transmitted. This definition may seem slightly surprising, but is 
necessary to make sure that any free (memory cell identifier) variables within the A­
abstraction are available when the p-expression is placed in the hole of the evaluation 
context at the destination. However, since it is possible to identify the free variables of 
the A-abstraction, garbage collection can be performed to eliminate all but the essential 
memory cells which correlate with free variables of the expression before transmission. 
The essence of this is captured in the mem_gc definition, given below the definition for 
mem. This definition states that the memory cells from a mem_gc operation are the 
generalised union of the memory cell sets produced for each free variable x of the 
expression e. Note that the generalised union operation eliminates any duplicates 
arising from the potentially multiple copies of memory cells. It is worth noting that 
although these definitions suffice to characterise ·the form of the object to be 
transmitted, they only provide a specification of the outcome; the definitions do not 
necessarily reflect the structure of the algorithm used in the paraML runtime system to 
perform the same action. Felleisen and Hieb describe explicit garbage collection in their 
work on state [FH92]. 

The last case involving memory copying is that of the curried update operation, 
: = x. In the Aro calculus, this denotes an ability to assign to the memory cell identified 
by x. It does not allow any examination of the current value stored in the memory cell. 
Thus when such an operation is copied and the memory cell identifier has not been the 
subject of an earlier mem operation, then all that is required is to include the memory 
cell's current contents in the memory to be transmitted, but not to perform a recursive 
copy on this value as it can never be accessed by the curried update operation. If some 
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mem (E,v) = 
case (E,c) - 0 

case (p8(x,v ).E' ,x) - (mem(p8.E',v ))u{(x,v)}' 

case (E,x) - 0 E is not in the form pe(x,v).E' 

case (E,Y) - 0 

case (E,(v1. v2)) - (mem(E,v1) )u(mem(E,v2)) 

case (p8.E' ,Ax(e)) - (mem_gc(p8.E' ,Ax(e))) 

case (E,Ax(e)) - 0 E is not in the form p8.E' 

case (E,ex) - 0 

case (E,n) - 0 

case (E,q>) - 0 

case (E,re f) - 0 

case (E, ! ) - 0 

case (E, : =) - 0 

case (p8(x,v).E',: = x) = {(x,v)} 

1case (E,: = x) - 0 

I 

mem_gc (p8.E,e) - LJ mem(p8.E,x) 
xEFV(c) 

Figure 6.14- Definitions of mem and mem_gc. 

other part of the value being copied provides access to the memory cell, then 

appropriate recursive copying of the memory cell value will be performed by the rule 

being applied to the other part, and the set union operations will ensure that sufficient 

memory is copied. 

Since the copied value mis a term in the Apv calculus, it can be inserted into the 

hole of the current evaluation context in another process. In the instances where the set 

of memory cells is not empty and the value is one of those which may require creation 

of memory, then the value is bound within a p-expression of the set of memory cells. 

The rules for dealing with references, in particular the Apv-Pmcrgc and Apv-Plift rules, are 

used to move the memory cells into any surrounding memory. The requirements on 

disjoint sets of memory cell identifiers in these rules are used to ensure that completely 

new memory cell identifiers are chosen if necessary to avoid any possibility of variable 

capture and consistently replaced throughout the subexpression. Thus there is no 

requirement for an explicit inverse of copy. 

A short discussion of the implications of the definition of copy is merited. 

Although it has been stressed above that process-oriented computing in distributed 

address spaces breaks sharing, this definition makes the loss of sharing absolute. 

Consider the case of sending a message between two processes 1r1 and ~ where the 

value to be sent is a reference x, which identifies a value in memory, say the integer 1. 

On receipt of the message (consisting of p(x,l).x), the Arro-Pmcrgc and Apv-Plift rules will 
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choose a new memory cell identifier, say y, place the pair (y,l) in 1ei's p-bound memory, 
and the expression y will remain in the hole of the evaluation context. If the same 
message is sent by n1 again, the Apv-Pmagc rule chooses a completely new memory cell 
identifier, say z, places the pair (z,l) in nz's p-bound memory, and returns the 
expression z. Thus, performing an operation such as (rec v ¢) = (rec v ¢) will return 
fa l se. Of course, in '!ri, x = x will return true. Conversely, if n2 sends back the value 
it first received (send (</l . (recv ¢)), then n1, on receiving the value will create a new 
memory cell also. Thus, performing an equality test such as x = (recv ¢') will return 
fa l se. 

The only way to avoid such problems would be to uniquely identify the source 
process's address space. For example, the representation of memory could be changed 
so that memory identifiers consisted of an identifier (say x) and the process name n. In 
the previous example, the reference to an integer 1 might instead be represented as 
((x,'!ri),l). No renaming of the identifiers would be required since (x,n1) would uniquely 
identify the memory location in '!ri. The consequence of such a choice would be how to 
share memory across processes, including issues such as coherency, access protocols, 
and global garbage collection. These considerations are not the focus of this thesis, 
which is finding effective mechanisms to support programming in distributed address 
spaces. 

6.3.2.11 Well-formed configurations and the parallel evaluation relation 

Definition 6-3 A process state set P is well-formed if for all (n; <1>; es) e P the 
following hold: 

• FV(es) = 0 (es is closed), and 

• if (n; <1>'; es') E P, then es' = es and <1>' = <1>. 

The definition requires that any process within the set is unique and that no free 
variables exist in its evaluation state. Note that it may contain free exception names, 
free process names and free port names. 

Definition 6-4 A configuration X,P is well-formed if for all (n; <1>; es) E P the following 
hold: 

• Pis well-formed, 

• FEN(es) c x 
• FPN(es) c PROCN(P), and 

• FFN(es) c PORTN(P) 

Definition 6-5 (•) The parallel evaluation relation is the smallest relation "•" 
satisfying the rules: (Apv-seq), (Apv-exn), (Apv-proc), (t.,pv-self_id), (Apv-prtl), (Apv-prt2), 
()\.pv-prt3 ), (Apv-execl), (Apv-exec2), (Apv-exec3 ), (Apv-sendl), 0"pv-send2), (Apv-send3 ), 
(Apv-recvl), (Apv-recv2), (Apv-probel), (Apv-probe2), and (Apv-probe3). The transitive 
closure of • is • *. 

!• 
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Under these rules, processes always remain in the configuration, even if a process 

evaluates to some basic value or an unhandled exception (in which case it is a member 

of Terminal(P)). As discussed in the theoretical modelling of CML [Rep92], it would 

be feasible to include a rule that would remove processes from configurations. This is 

not done however as it is easier to state and prove some properties if the process set 

increases monotonically. 

6.4 Traces 

It is useful to consider some properties about configurations and evaluations. A Apv 

evaluation proceeds by progressive transitions of the configuration X,P, commencing 

with the initial well-formed configuration of 0,{(n0; 0; e)}, where e constitutes the 

program. Clearly it may be possible for many different transitions to occur from a 

single configuration. It is also possible for interesting programs not to terminate. 

Reppy's general formulation of traces is adopted here also. Traces are a useful 

terminology for describing possible evaluation sequences and for stating fairness and 

type soundness results. 

Lemma 6-2 If X,P is well-formed and X,P • x',P' then the following also hold: 

• x',P is well-formed 

• xcx 
• PROCN(P) c PROCN(P') 

• PORTN(P) c PORTN(P') 

Proof. By examination of the rules for •. • 
Corollary 6-3 The properties of Lemma 6-2 hold for • *. 

Proof. By induction on the length of the evaluation sequence. • 
The preservation of well-formedness under • * implies that parallel evaluation 

preserves closed terms. 

Definition 6-6 A trace T is a sequence (possibly infinite) of well-formed 

configurations, where each configuration is obtained through application of the rules 

for •. (The notation ((a; b; ... )) is used to denote a sequence.) Traces are written: 

T = ((xo,Po; X1,P1; · · · )) 

such that XitPi • Xi+i,Pi+i (for i < n, if Tis finite with length n+ 1). The head of Tis Xo,P0• 

Clearly if Xo,Po is well-formed, then any possible sequence of evaluation steps 

proceeding according to the rules governing "•" and starting with Xo,Po is a trace. 

Process states incorporate an evaluation state that is either awaiting (prior to 

execution), terminal (after evaluation to an answer), or evaluating some term. The 

status of a process with respect to a configuration is defined as following: 
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Definition 6-7 Let 'P be a well-formed process set and let (n; <P; es) E 'P. The status 
of n in ;:; is either awaiting, terminated, blocked, or ready. These are characterised as 
follows: 

• if es = E, then n is awaiting, 

• if es = [a], then n is terminated, 

• if es= E[recv ¢J, </Ji~ qi E <P, qi= ..L, and there does not exist a 
(n'; cf)'; E'[send (¢i . v)]) E 'P, then n is blocked in 'P, 

• otherwise, n is ready in 'P. 

_ The status of process configurations can be characterised according to the status 
of their constituent processes. 

Definition 6-8 The set of ready or enabled processes in a process state set ;:; is 
defined by: 

Ready('P) = {n I n is ready in 'P} 

The following definitions about a process configuration x,,'P then hold. 

1. If PROCN('P) = PROCN(Terminal(P) u Awaiting('P)), then the configuration 
X,'P is complete. 

2. If Ready('P) = 0 and the configuration X,'P is not complete, then the 
configuration X,'P is deadlocked. 

3. Otherwise, the configuration is running. 

Definition 6-9 A trace T is a computation if it is infinite, or if it is finite and the final 
configuration is complete. In either of these cases, the computation is maximal. If e is a 
program, then the computations of e are defined to be: 

Comp(e) = {T I Tis a computation with head 0,(n0; 0; e)} 

Definition 6-10 The set of processes of a trace Tis defined 

Procs(T) = {n I 3xi,,'Pi E T with n E PROCN('PJ} 

The definitions of convergence and divergence that were established for sequential 
evaluation are inadequate in the context of many different computations for a single 
program. Thus convergence and divergence are defined relative to a specific 
computation of a program. 

Definition 6-11 A process n E Procs(T) converges to an answer a in a computation T, 
written nJ.lra, if there is a configuration Xv'Pi + (n; <P; [a]) E T. A process n diverges in T, 
written nff T, if for every Xv'Pi E T, with n E PROCN(PJ, n is ready or blocked in Pi. 

In addition to capturing processes executing forever, divergence may include 
deadlocked processes and would-be terminating processes which do not evaluate 
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enough to terminate. The possibilities of the latter occurring are described in the next 

section, which discusses fairness with respect to traces. 

6.5 Fairness 

Unfair traces - those in which some processes fail to make progress despite the fact 

that they are enabled - can exist given the definitions above. The characterisation of 

fair traces proposed draws on Reppy' s solution to similar problems in characterising 

evaluation in "-cv· ParaML implementations should not exhibit such properties of unfair 

traces, and thus a characterisation of acceptable traces is necessary. 

Definition 6-12 A computation T is acceptable if it ends in a configuration that is 

complete, or if T satisfies strong process fairness constraints as defined in 

Kwiatkowska's survey of fairness issues [Kwi89]. This definition requires that any 

process that is enabled infinitely often is selected infinitely often. The enabled 

processes in a trace are those which are ready in a configuration. 

The actions that can be taken by an enabled process are defined by the parallel 

evaluation rules and the selected processes are those that are the subject of one of the 

transitions described by these rules. Reppy faced two problems, since not only did he 

require strong process fairness, but also strong event fairness. The latter property is 

used to guarantee progress in communications on channels in "-cv· However, since all 

communications in "-pv are captured in the parallel evaluation rules as ready processes, 

there is no such requirement here. 

Reppy also makes the point that in practice a stronger set of fairness 

requirements are needed for finite traces, since the infinite selection property may be 

inadequate. This additional refinement is captured by Reppy using k-bounded fair 

traces. The property for "-pv is expressed as follows. 

Definition 6-13 A finite trace T of length n is k-bounded fair (for k a fixed positive 

integer) if every intermediate configuration X/P; satisfies one or other of the following, 

with m = i + k I Ready(PJ I : 
• m > n, or 

• for every n E Ready(P; ), n is a selected process at least once in the trace 

subsequence X;,P; • ... • XwP,n-

An infinite trace Tis k-bounded fair, if every finite prefix of Tis also k-bounded fair. 

In practice, with the implementation of this language it is fairly straightforward 

to guarantee fairness properties by pre-emptive scheduling of processes, with FIFO 

queues of ready processes. The time slice between pre-emptions must be long enough 

for a process to make continue making progress. 
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6.6 Summary 

The definition of Apv as an extension to Aro simplifies the specification of an operational 
semantics to model paraML. The combination of sequential and parallel evaluation 
rules neatly distinguishes actions that go on inside a process and those that result in 
interactions between processes. The general form of semantics draws strongly from 
Reppy' s theoretical specifications for CML, which is not totally suprising since similar 
problems are faced by both languages. This form of semantics is particularly useful in 
specifying the operational requirements on implementations of paraML. 

One of the major difference between Reppy's presentation and mine is that 
Reppy models recursion and references by encodings into the "-cv calculus. I have 
chosen instead to build them into the underlying sequential "-ro calculus on which "-pv is 
based, so that the description of how these features interact with parallel evaluation is 
made explicit. The definition of copy carries these interactions in the context of 
communications across distributed address spaces. The next chapter presents a 
formal proof of the type soundness of "-pv· 

I 
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7. Typing 
7.1 Static semantics 

The static semantics for Apv are developed in a similar fashion to the dynamic 

semantics. The polymorphic type system of Aro is extended to characterise the 

extensions made in Apv. This type system is then subject to a proof of type soundness 

relative to process configurations rather than just sequential evaluation. Once again, 

the form of extensions to the type system draws on the style developed by Reppy for 

Acv. The central result in the proof of type soundness is that a well-typed Apv program 

will never produce a runtime type error. This result is especially important given that 

programs may involve communications between processes, and the values that are 

communicated are transferred among distributed address spaces. In other words, type 

soundness provides a guarantee that receiving and computing with a value will be 

sound with respect to the type of the value. The type system for Apv is essentially 

identical to that for paraML. 

7.1.1 Definitions 

The types for Apv are formed from type constants and type variables, which include all 

of those found in Aerr The addition of ProcessName types and PortName types in 

paraML is captured in Apv by changes to the definitions of types and type constants to 

include ProcessName and PortName. The restrictions imposed on reference cell values 

and raised exceptions also apply with respect to ports. Thus only values with 

imperative types will be capable of being transmitted to ports. 

The set of types ( r E TY) is defined: 

r ::= l type constant 

a type variable 

( r1 • r2) function type 

( 'l"1 X 'l"2) pair type 

rref reference cell type 

rexn exception type 

r PortName port name type 

The set of type constants i (consisting of such things as bool, int, etc. in Acv) is extended 

with a new type constant, ProcessName. Note that the operational semantics do not 

allow there to be either process name constants or port name constants. This 

restriction makes the proof of some of the subsequent type soundness properties 

simpler. The absence of process name values as constants should not be confused with 

ProcessName being a type constant. 

119 
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Type environments are used for giving type information about variables in open 
expressions. It is also necessary for the type system to assign types to intermediate 
stages of computation. Just as it was necessary for the type system to be able to assign 
types to exception names, the same is true for process names and port names. Since 
process names are always of type ProcessN ame, there is no requirement to map process 
names to types, other than through a type rule. However, port names are similar to 
exception names and a similar approach is used to assign types to port names. A type 
environment in Apv is a 3-tuple of finite maps. The first two maps are for variables and 
exception names, defined: 

VT E VARTY 

ET E EXNTY 

VAR fin TYSCHEME 

EXNNAME fin lMPTY 

The third map is from port names to imperative types: 

PT E PORTTY PORTNAME fin lMPTY 

Type environments are defined: 

TE = (VT,ET,PT) E TYENV = (VARTY x EXNTYx PORTTY) 

The free type variables of port name typings are denoted FTV(PT), and those for 
exception name typings FTV(ET). There are no bound type variables in port name or 
exception name typings, and FTV(PT) c lMPTYV AR and FTV(ET) c lMPTYV AR. 

The free type variables of a type environment are thus defined: 

FTV(TE) FTV(VT) u FTV(ET) u FTV(PT) 

Type environment modifications for variables, exception names and port names can be 
conveniently expressed as follows: 

TE+ {x Ha} 

TE+ {ex H l/'} 

TE + { </> H l/'} 

=def 

-def 

- def 

(VT+ {x Ha}, ET, PT) 

(VT, ET+ {ex H l/'}, PT) 

(VT, ET, PT+{¢ H l/f}) 

The two forms of closures of types with respect to type environments remain the same. 
The closure of type 'r with respect to type environment TE is written: 

CLOSTE(r) - V ~ .. . an- r 
where {£Xi ... an} = FTV( r) \ FTV(TE) 

The applicative closure of type r with respect to type environment TE is written: 

APPCLOSTE( r) = V ~ ... all. r 
where {~ ... a,J = (FTV(r)\FTV(TE))nAPPTYVAR 

The two facts about generalisation expressed in Lemma 5-2 remain true for Apv. 
Similarly, the notions of type judgements and well-typed programs as closed 
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TE I- re : ProcessN ame 

PT(¢)= 1/f 

(VT, ET, PT) 1- </J : 1/f 

TE± { x H ProcessN ame} I- e : r 

TE f-proc x in e: r 

§7.1 Static semantics 

TE I- re : ProcessN ame TE± { x H 1/f PortN ame} I- e : r 

TE 1-prt x on re in e: r 

TE I-re: ProcessName TE 1-v: unit • unit 

TE I-execute (n. v): unit 

TE I- sel f_id : unit • ProcessName 

TE I- </J: 1/f PortName TE 1-v: 1/f 

TE I- send(¢. v): unit 

TE 1--</J: 1/f PortName 

TE I- recv </J : 1/f 

TE I-probe: r PortName • bool 

Figure 7.1- New type rules for Arv· 
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r-procvar 

r-prtvar 

r-proc 

r-prt 

r-execute 

r-self id 

r-send 

r-recv 

r-probe 

expressions with a judgement in the form r- e : r remain identical. The 8-typability 

property is also unchanged. 

7.1.2 Type rules 

The typing rules for ~ which extend those from Ar:v are given in Figure 7 .1. These new 

rules cover all the new expressions defined in the calculus. From these rules, proofs of 

the types of arbitrary closed expressions can be deduced solely from the syntactic form 

of the expression. Note that although the rule for exceptions moved from the 

sequential evaluation relation to the parallel evaluation relation in Arv' the type rules for 

exceptions ( r-ex and r-exn) remain unchanged. 

7.1.3 Configuration typings 

A configuration typing is a finite map from process names to types: 

CT E CONFIGTY PROCN AME fin TY 

Typing judgements extend to process configurations according to the following 

definition: 
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Definition 7-1 A well-formed configuration X,'P has type CT under an exception 
name typing ET, and port name typing PT, written: 

ET, PT r X,'P : CT 

if the following hold: 

• X c dom(ET), 

• PORTN(P) c dom(PT), 

• PROCN(P) c dom(CT), and 

• for every (n; <P; es) E P, ({}, ET, PT) r es : CT(n). 

The type of a process in a configuration with evaluation state £ is defined to be unit. 
For Apv, since execute requires a (unit • unit) argument for evaluation by the remote 
process n, the configuration typing is CT(n) = unit for all n E PROCN(P), other than 
for the initial process n0• The configuration typing CT(n0) may have any type 
whatsoever, which is considered to be the type of the program. 

7.2 Type soundness 

The type system given above is only one aspect of the typing for Apv· The next step is 
to establish type soundness of the system with respect to the dynamic semantics given 
in Chapter 6. In this I follow the alterations suggested in [Rep92], which focus more on 
stuck expressions than on faulty expressions. This is the major difference between the 
type soundness proofs for Apv and those for Aar 

7.2.1 Supporting lemmas 

Before establishing subject reduction, there are several important lemmas required in 
the proof. The first lemma establishes that variables or exception names in the domain 
of the typing environment which are not free in an expression e can be ignored when 
typing e. The variable convention ensures that x e FV(e) whenever the lemma applies. 
Some proofs are essentially identical to the equivalent ones in Chapter 5, and are 
indicated as such. 

Lemma 7-1 If x e FV(e) then TE r e: riff TE + {x H a} r e: r. Likewise, if 
ex e FEN(e) then TE re: -riff TE+ {ex H l/1} re: r. And if </J e FFN(e) then TE re: -r 
iff TE + { </J H l/1} r e : -r. 

Proof. As for Lemma 5-3. • 
The next lemma is known as the replacement lemma, since it allows the 

replacement of a complete subexpression in a term with another of the same type, 
without having any effect on the type of the whole term. 
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Lemma 7-2 (Replacement) Let C[] be a context with a hole. Provided the following 

conditions hold: 

1. D is a type deduction which concludes TE f- C[e1] : r, 

2. D1 is a subdeduction of D which concludes TE' f- e1 : r', 

3. D1 occurs in Din the position which corresponds to the hole in C, 

4. TE' f- e2 : r', 

then TE f- C[e2] : r. 

Proof. As for Lemma 5-4. • 

The substitution lemma, which is used to show that types are preserved under /3-
reduction, relies on an additional two lemmas. The first of these lemmas extends 

substitution on types to substitution on type judgements. 

Lemma 7-3 

Proof. 

If S is a substitution and TE f- e : r, then S(TE) f- e : Sr. 

As for Lemma 5-5. • 

The next lemma is used to show that generalising the typing assumptions (the 

information in the type environment) has no effect on the typing outcome of an 

expression. 

Lemma 7-4 If TE+ {x H er} f- e: rand a' >- er, then TE+ {x H a'} f- e: r. 

Proof. The proof of this lemma is by induction on the height of the typing 

deduction of TE + {x H a} f- e : r, and case analysis on the shape of e for the last step. 

The additional cases from Lemma 5-6 that must be considered are given in 

Appendix A-2. • 

Lemma 7-5 (Substitution) If x e:FV(v), TE f- v: r, and TE+{x H \ia1 ..• \ian.cr} I- e: 'X', 

with {£Xi, ... ,an}nFTV(TE) = 0, then TE I- {v / x}e: r'. 

Proof. Just as in the previous lemma, the proof of the substitution lemma is by 

induction on the height of the typing deduction, and case analysis on the shape of e for 

the last step. The additional cases from Lemma 5-7 to be considered in this proof are 

given in Appendix A-2. • 

7.2.2 Type preservation 

The core result for establishing syntactic soundness is type preservation. EssentiaHy, 

this states that if an expression can be assigned a type, then that type is preserved 

through reduction of the expression. Type preservation must be established both for 

the sequential evaluation relation and for the parallel evaluation relation. 

Theorem 7-6 (Sequential type preservation) For any type environment TE, 

expression e1, and type r, such that TE f- e1 : r, if e1 ~ e2 then TE f- e2 : r. 
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Proof. Since e1 ~ e21 then it must be because a rule of the form E[e] ~ E[e'] was 
used, with E[e] = e1 and E[e'] = e2 • Assume that TE' 1- e: r with TE'= (VT',ET',PT'). 
Then by the Replacement Lemma (Lemma 7-2), it is sufficient to show that TE' l­
e' : r. This is done by case analysis of the definition of~, effectively on the structure 
of e. The proof is given in Appendix A-2. • 

The second subject reduction theorem states that parallel evaluation preserves 
configuration typing. 

Theorem 7-7 (Parallel type preservation) 
with 

X,'P • X','P' 

If a configuration X,'P is well-formed 

and, for some exception name typing ET and port name typing PT, 

ET, PT I- X,'P : CT 

Then there is an exception name typing ET', port name typing PT', and configuration 
typing CT', such that the following hold: 

• ETC ET', 

• PT C PT', 

• CT C CT', 

• ET', PT' I- X','P' : CT', and 

• ET' I PT' I- X,'7: : CT' 

Proof. The final property follows from the others. The proof of the first four 
properties proceeds by case analysis of the left hand side of the parallel evaluation 
relation •. Since the proof is quite lengthy, full details are found in Appendix A-2. • 
The corollary of this theorem with respect to traces of configurations is immediate: 

Corollary 7-8 Let (( Xo,'P0; .. . ; Xn1'Pn)) be a finite trace, with 

ET, PT I- Xo,'Po: CT 

Then there is a exception name typing ET', port name typing PT', and configuration 
typing CT', such that: 

• ETC ET', 

• PT C PT', 

• CT c CT', and 

• for i E {O, ... ,n}, ET' I PT' I- Xit'Pi : CT'. 

Proof. This follows by a straightforward induction on n. • 
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7.2.3 Stuck expressions 

Parallel type preservation (Theorem 7-7) guarantees that if a configuration is typable, 

any series of reductions will always yield a typable configuration. However, this is not 

sufficient to establish type soundness. The crucial property to establish is that typable 

configurations do not become stuck. The focus in the type soundness for Ar:v was to 

establish that faulty expressions are untypable, since faulty expressions are a 

conservative approximation to those which may become stuck. Faulty expressions are 

still useful in helping to determine which processes may become stuck in a 

configuration. 

Definition 7-2 A process nwith process state ft= (n; <P; es) is stuck if es ~ {E}u{[a]}, 

and there do not exist well-formed configurations X,'P+ft and x','P' such that 

X,'P+ft • x','P', with n a selected process. A well-formed configuration is stuck if one 

or more of its processes are stuck. 

This definition requires that if a process is evaluating an expression and is yet to 

produce an answer, it must have an ability to continue evaluating (possibly in 

conjunction with other processes). The concept of a process being stuck is a semantic 

one. In particular, it is not syntactically decidable whether a process's evaluating 

expression could eventually become stuck. The crucial result will be to establish that 

stuck processes are untypable. To prove this results requires a statement about 

uniform evaluation and a definition of stuck expressions. 

Lemma 7-9 (Uniform evaluation) Let e be a program, TE Comp(e), and n E Procs(T). 

Then either n-Uia, n1l'r, or (n; '1>; e') E Pi and n is stuck for some X/Pi E T. 

Proof. The uniform evaluation result follows directly from the definitions. • 

The next lemma provides a definition of stuck processes based on the syntactic 

form of an evaluating expression. 

Lemma 7-10 (Stuck processes) A process n with process state (n; '1>; e) and e 

closed, is stuck if! e has one of the following forms: 

1. E[c v] where 8(c,v) is undefined 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

E[v v'] 

E[ ! v] 

E[:=v] 

p0(x,v2).E[x v1] 

exception x in E[! x] 

exception x in E[:= x] 

exception x in E[x v] 

E[raise V 1 V2] 

E[e handle v1 v2] 

where v has the form (v1 • v2), ex, n, or </J 

where v e VAR 

where v e VAR 

where v 1 e VAR u ExNNAME 

where v1 e VAR u EXNNAME 
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11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

p0(x,v).E[rai se x] 

p0(x,v).E[e' handle x] 

E[prt x on v in e')] 

£[execute (v1 • v2)] 

£[send (v1 • v2)] 

E[recv v] 

£[probe v] 

p0(x,v).E[proc x in e'] 

where V e VAR u PROCESSNAME 

where v 1 e VAR u PROCESSNAME or v2 has 
the form Y, (v 1 • v2), ref, ! , : =, : = x, ex, 
n, or </J 

where v1 e VAR u PORTNAME 

where v e VAR u PORTNAME 

where v e VAR u PORTNAME 

19. p0(x,v').E[prt x on v in e')] 

20. p0(x,v).E[ execute (x . v2)] 

21. p0(x,v).E[s end (x . v2)] 

22. p0(x,v').E[recv x] 

23. p0(x,v').E[probe x] 

Proof. The if component of the iff is proved by case analysis on the possible forms 
of e' where e = E[e']. This is given in Appendix A-2. The only if component follows 
directly from the definitions. • 
Lemma 7-11 (Stuck configurations are untypable) If n is stuck with process state 
(n; <P; E[e']) in a well-formed configuration· X,P, then there do not exist ETE EXNTY, 
PTE PORTTY, and CTe CONFIGTY, such that 

( {},ET,PT) f- E[e'] : CT(n) 

In other words, X,P is untypable. 

Proof. Let n be stuck with process state (n; <P; E[e']) in X,'P, and assume that 
there exist ET E EXNNAMETY, PT E PORTNAMETY and CT E CONFIGTY, such that 
( {},ET,PT) f- E[e'] : CT(n). It suffices to show that e' is untypable, which is a 
contradiction. Let r be the type of e'; that is, TE' f- e' : r, for some TE'. Note that since 
X,'P is well-formed, E[e'] is closed; and thus Lemma 7-10 gives the possible forms of e'. 
The proof proceeds by case analysis on the form of the subexpression e', showing that 
e' is untypable in each case. The details are given in Appendix A-2. • 

7.2.4 Soundness 

The key results can now be proven that establish type soundness for Arv· 

Theorem 7-12 (Syntactic soundness) Let e be a program, with f- e: r. Then for any 
TE Comp(e ), n E Procs(T), where Xit'Pi is the first configuration in T containing n, there 
exist an ET, PT and CT , such that 

1
1
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ET,PT I- X/Pi: CT 

and CT( n0 ) = -r. Then either 

• n1l'T, or 
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• n.Uya and there exists an extension ET', PT' of ET, PT 

with ({},ET',PT') f-- a: CT(n). 
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Proof. The existence of ET, PT and CT follows from Parallel type preservation 

(Theorem 7-7). By Uniform evaluation (Lemma 7-9), it follows that either n.U.ya, n1l'T, 

or n is stuck with process state (n; <P; E[e'])e Pj for some Xi,Pi E T. 

Assume that n is stuck with process state (n; <P; E[e'])E Pj in Xi,Pj. By Lemma 6-2, 

X/Pi is well-formed and by Lemma 7-11 it must be untypable. But, since the initial 

configuration (0,{(n0; 0; e)}) of the trace is typable, by Parallel type preservation 

(Theorem 7-7), there is an ET' E EXNTY, PT' E PORTTY, and CT' E CONFIGTY, such that 

ET',PT' I- X/Pj: CT'. Which means that ({},ET',PT') f-- E[e'] : CT'(n), hence n cannot be 

stuck and either n.Uya or n1l' T· 

If n1l'T, then there is no more to do. 

Assume that n.Uya and let Xjt'Pi E T such that (n; <P; [a])e Pi. Parallel type 

preservation (Theorem 7-7) means that there exist extensions ET', PT' and CT' of 

ET, PT and CT respectively such that ET' ,PT' f-- Xi,Pj : CT'. Since CT' is an extension of 

CT, CT'(n) = CT(n), and hence ({},ET',PT') f-- a: CT(n). • 

The definition of evaluation must distinguish between programs that produce a 

result and those which have type errors. 

Definition 7-3 For a computation T, define the evaluation of a process n in T as 

WRONG if n has process state (n; <P; E[ e']) E 'J);for some X;, Pi ET 

evalT (n) = i and E[ e'] causes n to be stuck; 

a if n .U. ra. 

For sequential programs, this is essentially the same as the result for Aro. The 

definition of evaly enables the proof of strong and weak soundness properties for A,ro· 

Theorem 7-13 (Soundness) If e is a program with f-- e: -r, then for any T E Comp(e) 

and any n E Procs(T), the following two statements hold: 

(Strong soundness) If evalr (n) = a, and Xi,Pi is the first configuration in T containing an 

occurrence of n, then for any ET, PT and CT such that ET,PT I- Xil'Pi : CT and 

CT(n0) = -r, there are extensions ET' and PT' of ET and PT respectively, such that 

( {},ET' ,PT') f-- a : CT(n). 

(Weak soundness) evaly (n) * WRONG. 

Proof. The proof follows directly from Syntactic soundness (Theorem 7-12) and the 

definition of evaly. • 
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7.3 Conclusion 

The importance of establishing type soundness for Arv is that it guarantees that well­
typed paraML programs will never result in runtime type errors. This property is 
significant since it extends the strong static type checking of ML to process-oriented 
computation, despite the added complications of process initiation and inter-process 
communications. To my knowledge, this result has not been established previously for 
languages where communication takes place between processes each with its own 
evaluation environment, where communication includes transmission of copied mutable 
values. Previous formulations of semantics for languages with distributed execution 
environments, such as Facile [TLG92], have encoded references with process and 
communication primitives into global shared objects. Such encodings do not capture 
the nature of transmission of non-shared mutable reference values between memories. 

The other major goal of Apv has been to capture the operational requirements on 
an implementation of paraML. This goal has been achieved without recourse to 
encoding common programming facilities in ML as derived operations in the 
concurrency and communication operations of the calculus. In the next part of this 
thesis, the implementation and use of paraML in practice is considered. 
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8. Applications 
8.1 Introduction 

The ultimate test of any language design is its use in practice. The description of 

derived operations in Chapter 4, while valuable, does not provide convincing proof 

that the language mechanisms are actually worthwhile. This part of the thesis 

describes the practical use of paraML. In this chapter, paraML' s use in the 

development of alternative programming paradigms and applications is discussed. 

The next chapter describes the actual implementation of paraML on the Fujitsu 

APl000+ multicomputer. Chapter 10 details performance measurements of the 

implementation. 

Just as the choice of language paradigm may be functional, imperative, object­

oriented or logic-based, high performance programming has a number of differing 

paradigms that may be adopted. The paradigm embodied by paraML is that of 

processes with message passing to ports. However, this paradigm may not be best 

suited for certain applications, or individual programmers may prefer to work with an 

alternative. In this chapter, two such alternatives are considered: algorithmic skeletons 

and object stores. With each, the goal is to find out how to layer their implementation 

on paraML' s process-oriented model and what aspects are limited or enhanced. The 

use of paraML as an implementation language for parallelising the SIMPLE 

hydrodynamics benchmark is also discussed 

8.2 Algorithmic skeletons 

8.2.1 Overview 

A frequent criticism of high performance parallel programming is that the programmer 

does not wish to be involved in the explicit details of managing the parallelism. 

Although there is undeniable merit in involving the programmer in specifying possible 

concurrency in the program design, there are also situations where utilising pre-existing 

sequential algorithms is a much simpler option than hand-coding a new solution to an 

old problem. In sequential computing, this is borne out by the large numbers of libraries 

(for classes, routines and so forth) and the general emphasis on software reuse and 

modularity. Cole developed a similar concept for parallel computing with what he 

termed algorithmic skeletons [Col89]. These skeletons allow the user to specify a 

number of routines which perform the essence of an individual program, but leave the 

details of making best use of an underlying parallel machine to the skeleton's 

implementation. The skeleton provides all the necessary management of parallelism, 

including decomposition, communication and synchronisation. 

131 
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Cole's motivation was twofold: the first aspect of a skeleton was an informal 
description of a particular algorithm together with detailed implementation 
suggestions. The second aspect was to provide a formal analysis of the performance 
characteristics of the implementation. A degree of abstraction of the underlying 
computer architecture was required, but within these parameters, an algorithmic 
skeleton should be guaranteed to perform with the same relative performance across 
different platforms. This approach was designed to remove the need to retune or 
totally redevelop an algorithm when porting parallel programs. Skeletons for high 
performance computing are an active area of research. The work of Darlington's group 
at Imperial College [DGT +95] and the P3L group at the University of Pisa [DP93, 
BD0+95] represent mature developments in the field. A skeleton system for the 
functional subset of ML was also developed by Bratvold [Bra94]. Cole's four original 
skeletons are used as the basis for an experiment in paraML' s process-oriented 
framework. The implementation characteristics of the skeletons are discussed, together 
with some comments as to the strengths and weaknesses of this approach to managing 
parallelism in paraML. 

8.2.2 Which skeletons 

Cole's original four skeletons [ Col89] were: 

• divide and conquer - successive subdivision of a problem into manageable 
parts; 

• cluster - clustering of objects according to depth in a solution tree; 

• iterative combination - iteratively find best partner relationships of objects in 
a set, until only one object is left or no best partner may be found; 

• worker farm - fragment the problem into separate tasks, and farm tasks out 
to workers, combining the results until no tasks remain. 

Cole's original solutions assumed an underlying architecture that supported only fixed 
numbers of PEs and whose communications could only occur between neighbouring 
PEs. These restrictions are clearly not necessary in the context of paraML. The 
assumptions were primarily utilised in making guarantees of performance complexity. 
However, it is not possible to do the same with paraML since it may be impossible to 
predict how many processes execute on the same PE. 

8.2.3 Implementation 

8.2.3.1 The need for abstractions 

During the design and implementation of the algorithmic skeletons in paraML, the 
value of collective operations was made apparent. This need contributed to the 
definition of the derived operations for groups described in §4.4.5. Process-oriented 
programming facilities benefit from an ability to refer to collections of processes or 
ports when used for parallel programming. Depending on how frequently these 

. I, 
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facilities are used in practice, it may be appropriate to build optimised versions of 

these operations. 

8.2.3.2 Divide and conquer 

The divide and conquer skeleton is one of the simplest to express in a language like 

paraML. A problem is divided into successively smaller sub-problems, until such 

point as a sub-problem is solved directly. The results of combining solved sub­

problems are passed back up a level, combined with other solutions, and so on. Each 

sub-problem is solved by creating a new process, and outport communications make 

the result available to the process which will combine a number of results. 

The solution is an almost exact translation of the functional specification for the 

skeleton, with a small number of primitives for creating processes and collecting 

results. An ability to create solutions which closely match a functional definition is 

encouraging, since it simplifies the translation phase from problem specification to 

solution, and thus is less likely to produce errors. 

8.2.3.3 Cluster 

The cluster skeleton is one which Cole invented for the purpose of working backwards 

from an interesting idea to an algorithmic definition. Objects are combined together, 

incorporating information about their depth in the solution tree. Cole's proposed 

implementation splits object sub-sets across processes, in a manner similar to the 

iterative combination skeleton discussed in §8.2.3.4. However, the motivation for 

doing this is an orientation towards the particular architecture that Cole envisaged 

being used, which bears little resemblance to that of paraML's abstract machine model. 

In addition, since the object spaces to be distributed would have to be small enough to 

fit into the top-level process at the commencement of the problem, object distribution is 

not being used for reasons of space restrictions. 

The problem specification looks moderately close to the divide and conquer 

skeleton. With appropriate manipulations of the user-supplied functions and data 

types, it was possible to transform the cluster skeleton into an instance of the divide 

and conquer skeleton. The transformation approach to skeleton construction is 

somewhat similar to the explorations of skeletons by Darlington's group at Imperial 

College [DGT +95]. 

8.2.3.4 Iterative combination 

The iterative combination skeleton proved to be the most complex of all four skeletons 

constructed. The problem is to find the best partners for all objects from a set, 

combine the best partners to reduce the size of the set, and iterate until there is either a 

single combined object (representing a solution for the data set and cost metric of 

combination), or there are no more best partners and hence no solutions for the 

problem. 
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The basic imperative and declarative specifications of the algorithm are 
straightforward, and a data parallel solution would probably be the most natural 
mechanism to build a parallel solution. However, the paraML solution closely follows 
Cole's suggested implementation, which requires splitting the set of objects across a 
group of processes. During each phase of computation, each object requires access to 
every other object in the set, and this requires constructing a local form of identification 
for the objects, and providing a mechanism by which sub-sets of objects can be 
communicated around the ring of processes. Since the number of objects can also 
shrink to less than the number of processes in the ring, it is necessary to dynamically 
re-map the communication boundary points. 

The solution is approximately an order of magnitude more complex (in terms of 
number of lines) than any of the other solutions. Nevertheless, this approach to solving 
a problem, while complex, illustrates that standard forms of problems involving a 
fixed number of communicating processes in a distributed space can be used to 
provide the illusion of a shared address space, and illustrates some techniques to 
manage collections of objects. 

8.2.3.5 Worker farm 

The basic algorithm is an explicitly parallel one, designed to solve the problem of load 
balancing a system where any form of static decomposition could lead to unacceptable 
load imbalance. A master process generates a number of tasks that are handed out to 
workers as they make requests. Each worker solves its own task, reports the result to 
a sink for the output (which will combine the results as required), and makes a request 
of the master for more work. When there is,.,.no more work to be done, the workers are 
killed off on completion of their last task. 

The facilities available in paraML make this a straightforward algorithm to 
implement-processes are dynamically created for the master and workers, specialised 
by the user-provided functions for task generation and so forth, and left to 
communicate on appropriate ports for the delivery of new tasks, results, and requests 
for more work. The paraML solution is significantly more compact than an equivalent 
worker farm, the Parallel Utilities Library Task Farm module [CFT+94] developed at 
the Edinburgh Parallel Computing Centre, though it is necessary to be wary of drawing 
direct comparisons between C and ML. 

8.2.4 Strengths 

The module system of ML is an excellent basis for providing skeleton abstractions. 
Users are completely separated from the details of process creation and inter-process 
communication. The functions required by a skeleton are specified in a signature file, 
and the user provides a corresponding structure module. This structure module is then 
used to parameterise the skeleton functor module, producing a specific instance of the 
skeleton for use. The ability to send functions as messages between processes makes 
the implementation of the skeletons more flexible. Similarly, since processes are 
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created dynamically, it is practical to compose skeletons. The work of Darlington's 

group is an example of how such skeleton composition could be made more efficient. 

8.2.5 Limitations of using algorithmic skeletons 

The major weakness of using paraML with skeletons is that it remains difficult to 

guarantee the performance complexity of algorithms. The reason for this is that the 

performance complexity metrics of Cole's skeletons are predicated on having only one 

process execute on each processor. Given these restrictions, paraML can provide the 

same performance guarantees. However, unless the skeletons make use of the 

knowledge of the number of PEs available in a multicomputer, the implementation may 

execute several processes on a single PE, thereby invalidating the performance 

complexity metrics. 

8.2.6 Summary 

The algorithmic skeleton approach to providing an alternative high performance 

programming paradigm is cleanly supported by paraML. This arises from the 

correspondence between the original conception of the machine architecture targeted by 

algorithmic skeletons and the programming model supported by paraML. Algorithmic 

skeletons in general provide a useful means of structuring and managing parallelism, 

and may be optimised by a skilled programmer. The benefits of software reuse and 

leveraging such knowledge for other programmers is as clear for high performance 

programming as it is for sequential programming. 

8.3 Object stores 

8.3.1 Overview 

One of the major distinguishing features of paraML is the distribution of processing 

resources encapsulated by processes. Similarly, all data is managed by processes and 

hence distributed. These design choices are made to promote locality of data access, 

given the latencies involved in accessing data in a distributed address space. · An 

alternative paradigm for data storage and management is a logically shared global 

store of objects. This object store may be accessed by any computing entity with the 

appropriate permissions. In this investigation, the mechanisms for providing access to 

individual objects and maintaining coherence are of particular interest. The key issues 

that an object store must address are coherent mutable objects, the reintroduction of 

sharing among processes, and reduced copying of objects between processes. 

Various efforts have been made at extending ML with objects [RV96, RR96]. The 

extensions are typically interested in developing object-oriented notions, such as object 

data encapsulation with methods. In this exploration, objects are treated more simply, 

just as data values which may be updated. In this sense, they are similar to reference 
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variables in ML, except that these objects are accessible to any process, not just locally 
within a process. 

Object stores grew out of research in two areas: persistent programming languages 
such as Napier [MBC+89], which did not desire the overheads of database storage, 
and toolkits for database construction, such as EXODUS [CDV88]. Object stores take 
a position in the spectrum of data management research which includes: relational 
databases [Sto94]; object-oriented databases (OODBs) [ZM90]; object stores; and 
tuple stores [ACG86]. ML has also been used with tuple stores in the development of 
ML-Linda [SC91], and in exploring transaction programming models [HKM+93, 
WFH+93]. 

8.3.2 Basic model 

An object store returns to the notion of a single shared address space ( or environment) 
that is accessible by the computation. In many languages, memory management is 
performed explicitly by the program, and thus memory is treated simply as a 
sequential block of bytes. Concurrent languages permit multiple threads of control to 
access this single environment. Figure 8.1 represents the situation of a program 
executing in this way. 

An object store provides a slightly higher level notion of what this environment 
provides, since it must also define what constitutes an object. If the object store is 
intended to be language-independent, only very weak definitions of what constitutes 
objects are possible, typically consisting of some control information, a collection of 
pointers and a contiguous byte sequence [BM92]. If the object store is tied into a 
language-specific framework, that language's definitions of what constitutes values in 
the languages can be utilised. Either way, object stores hold collections of objects. 
Operations exist for individual objects to be added or removed from the store, and for 
their values to be made accessible for computation. Objects are typically identified by 
a name. Figure 8.2 illustrates this form of simple object store. 

A process-oriented construction of an object store can be characterised as a 
single process which other processes know about. Objects are stored by this process, 
and access by other processes is controlled through whatever inter-process 
communication system exists. The primary difference of this form of object store is 
that the memory is now conceptually disjoint, and thus access to objects involves 
access to remote environments. Access protocols which specify how data or 
computation are moved between these environments are necessary for the 
implementation. Figure 8.3 illustrates a process-oriented object store. If the system 

· uses dynamic process creation, the object store must be created dynamically too, and 
information about its existence communicated to other processes. Static process 
configurations would assign the object store role to one process at configuration time. 
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Figure 8.1 - Shared memory program execution. 
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Figure 8.2-Generic object store in shared memory. 

8.3.3 Realisation in paraML 

For the purposes of this experiment in paraML, an object is characterised by: 

• a mutable data structure whose value is some first-class ML object; 

• a set of access methods for the data structure; 

• a protocol for interpreting access requests; 

• a unique name that identifies the object. 
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Since paraML is a process-oriented language, object stores in paraML are also 

going to be process-oriented. The basic model of a single object store process remains; 

however there are a number of extensions in the realisation of the object store on the 

grounds of efficiency. Instead of a single object store process, there are a group of 

processes for storing objects. This alteration permits the distribution of objects across 

processes on every PE of the machine. Secondly, instead of a centralised object 

allocation strategy, the implementation of the object store provides a distributed object 

allocation strategy, which allows computation processes to contact processes in the 

object store directly. The object allocation strategy can be either a very simple round­

robin one or it can take user advice on the desirability of object co-location. The 
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construction of the object store is represented in Figure 8.4. Note that there is nothing 
that has specified that only one object store can exist; indeed, a multiplicity of object 
stores can exist, each uniquely identified by a name. Individual objects are identified 
by a name; object names will actually be represented by port names. The use of port 
names carries the typing information essential with typed objects in ML. The scope of 
knowledge about how to contact object stores or objects within object stores is 
governed by the usual rules which determine scoping of port names in paraML. 

The object store implementation provides an interesting demonstration of the 
impact of concurrency within processes. The key idea behind the object store is that 

t 
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each process acts as storage for many objects. However, these objects may be of any 

type. The central body of the process must service requests for object creation. Where 

there is no concurrency within the process, it is also necessary for this central body to 

service access requests for objects. This is done by having the creation operation return 

a tuple, which will test for an access message and perform an appropriate access 

protocol action. The tuple is placed in a list of such tuples, and the derived operation 

choose is used to check for object access requests and creation requests. When the 

language within processes is extended to include concurrency, a creation request simply 

spawns a new thread which will repeatedly block waiting for an access message to 

arrive and perform the appropriate action. The advantage of the concurrency-based 

approach is that the process is only active when servicing requests, and does not need 

to continually probe for message arrival. The performance difference between the two 

is significant when object store processes are placed on every PE, since other processes 

are then unnecessarily delayed by the need to keep activating the object store process 

to check for message arrivals. 

8.3.4 Key results 

8.3.4.1 Coherency 

Object coherency is supported by the object access protocol. Object access is currently 

an atomic operation, although it would be possible to allow the user to specify the 

coherency protocol at creation time of individual objects. Serialisable atomic 

transactions over collections of objects or compound objects could be programmed 

through the use of global locks using standard techniques, as has been done previously 

with ML [HKM+93]. 

8.3.4.2 Sharing 

Sharing of data structures across processes can now be supported in a loose sense, in 

that objects can reside in the object store, and thus any process that knows the object's 

name also knows how to access the object and therefore "shares" it with the other 

processes. 

8.3.4.3 Reduced copying 

Use of an object store cuts down the amount of object copying required. Transmission 

of objects can now be done by reference alone - an object's name - which is relatively 

small in size compared to the potential size of the object. Another advantage brought 

about by the nature of ML is that computations may be sent to the object to perform 

locally. Thus, an entire function may be sent to the object store process hosting an 

object. The implementation of the access protocol passes the current value of the 

object to the function, which is used to perform some computation, and then the result 

is sent back to the accessing process. This facility promotes locality of data access, 

rather than requiring copying of data values backwards and forwards between store 

processes and computation processes. 
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8.3.5 Limitations in the object store model 

There are a number of limitations with the current object store model. The 
reintroduction of sharing is particularly problematic since the memory remains 
distributed and is now under the control of individual processes, rather than a memory 
manager. Since object access is being managed through message passing to an object's 
access port, it is clearly not as efficient as direct memory manipulation, so there is a 
question of efficiency to take into consideration. Concomitant with efficiency, the issue 
of object granularity becomes important. Lastly, the implementation strategy makes 
strong demands on process scheduling in the paraML runtime system. 

8.3.5.1 Garbage collection 

Object names may be shared across many processes. Individually, a computation 
process may garbage collect an object name once it is identified as no longer reachable. 
However, since the garbage collection mechanism is not global, there is no mechanism 
by which the objects themselves can be garbage collected in the object store processes. 
This is a serious weakness since one of the main advantages of using high-level 
languages such as ML is that they do all the memory management for the programmer. 

8.3.5.2 Granularity 

An obvious factor in the search for efficiency will be object granularity. If global 
objects are too small (for instance, an integer), then the costs involved in accessing 
them will be very large indeed relative to the computation performed involving the 
object itself. Obviously, the bigger the object, the relative cost of object access will be 
smaller. These performance characteristics impose some natural limits on the 
granularity of shared objects in programs, which is very similar to the problems faced 
by DSM systems. 

8.3.5.3 Process scheduling 

The other requirement of the current implementation of the object store is that process 
scheduling is both efficient and frequent. Since individual objects are managed by 
object store processes (which may be co-located with computation processes) it is 
essential that mechanisms are available to service access requests promptly. The 
obvious solution to this problem is to use message-driven interrupts to drive process­
rescheduling. The implementation of object store processes without concurrency still 
incurs unnecessary overhead due to the need to scan through the list (possibly quite 
large) of possible guards to find the one which is satisfied by a new access request 
message. 

An alternative implementation which also does not require concurrency solves 
this particular problem. Instead of just identifying an object by a port name, functions 
that perform the access operations also become part of the object identity. However, 
for these to work correctly after being copied to a different process, they must have a 
unique way of identifying the object's state. This identity obviously cannot be the 
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object's reference variable address, since a copy will have been taken if sent to some 

other process. The solution here is to use the technique of encoding the object's state 

by sending to, and receiving from, a private port. This technique is that same as 

suggested by Reppy for shared references in CML [Rep92] . The port's message queue 

then buffers the object state. Since the port is local to the object store process, the 

object's state can be retrieved or set only by the access functions when executing on the 

object store process. While removing the overheads of checking lists of access requests, 

this solution leads to the object identifier becoming a much bigger data value than just 

a simple port name. It also requires bigger overheads in message transmission of access 

function closures to the store process. 

The best solution is to permit concurrency within processes. The individual 

threads within the process are then blocked until a message arrives to access an object. 

Message-driven rescheduling for a process will result in the process being activated 

only when necessary to service an object access or creation request. Implementing 

threads within processes efficiently requires some additional support from the paraML 

runtime system, as discussed in §9.5. 

8.3.6 Summary 

The experiments with the object store system reveal that scheduling of processes in 

paraML is critical for efficient performance. The best approach appears to require pre­

emption of a currently-executing process on message arrival at a PE in order that the 

sending process is not unnecessarily delayed. It also suggests that a priority system for 

process scheduling (for server processes) would be a useful addition to the paraML 

runtime system. Overall, the experiment illustrates that the paraML system can be 

used to construct object stores relatively successfully. They provide a usE:ful 

abstraction which emphasises the distinction between local mutable values and 

globally accessible objects which may be shared across a number of application 

processes. The benefits of ML' s data abstraction and information hiding features for 

constructing such alternative programming models are apparent in this experiment. 

8.4 SIMPLE 

The SIMPLE benchmark [ CHL78] is a hydrodynamics simulation of a pressurised fluid 

within a spherical shell. It has been studied for a variety of different parallel 

programming languages, and there exists a sequential implementation in ML as part _of 

the SML/NJ benchmark suite. Various choices in parallelisation strategies for SIMPLE 

are outlined by Lin and Snyder in their discussion of implementing SIMPLE using their 

portable parallel programming system Orea [LS91]. 

The simulation is typically encoded by projecting the discretized spherical 

domain onto a 2-dimensional Cartesian space, which is naturally represented as a 2D 

array. Attributes of the fluid, such as viscosity, specific internal energy, temperature, 

heat conductivity and so forth, are maintained for each discrete point in the space. 
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The progression of time is also broken into discrete steps, satisfying the Courant 
condition that the time for a signal travelling at the speed of sound across a grid cell is 
greater than a time step in the simulation. At each time step, a number of 
computations are performed to recalculate the state of the fluid attributes at each 
point in the discretized space. These calculations require some knowledge of 
neighbouring points' attribute values, with different sets of neighbour points required 
for different attributes. The calculation of the attributes typically iterates over the two 
dimensions of the attribute arrays using two for-loops. 

In parallelising the sequential ML implementation of SIMPLE, there are two 
obvious approaches. The first approach uses a data parallel strategy, where the 2D 
array is partitioned among a number of processes, but the algorithm remains effectively 
sequential. The calculations involved at each step are sent to the processes to perform. 
The implementation of a 2D array data abstraction distributed among processes is 
relatively straightforward. Included in the array access operations is the ability to 
execute for-loop calculations over the local array elements. The critical requirement for 
efficient performance is that local array access operations remain fast. The sequential 
ML implementation represents each of the attributes with a separate 2D array. Since 
the array access operations are encoded through access to ports in the 2D distributed 
array data abstraction, local accesses are in danger of being unnacceptably slow. 

A better strategy is to encode a state attribute datatype, which is used as the 
type parameter of the distributed 2D array data abstraction. All local array accesses 
to any of the attribute values can then be performed without recourse to message 
passing. A side effect of this approach i~s that the array creation costs are only 
incurred once, rather than for each attribute. The disadvantage of this approach is 
that in certain of the calculations, knowledge of neighbouring elements is requµ-ed. This 
non-local access requires sending messages to other processes involved in the 2D 
distributed array abstraction. Without concurrency in the ability to handle array 
access requests, such non-local access requests can lead to deadlock. The solution 
requires servicing any array access request that comes from a remote process with a 
new thread. The implementation of the interface to the for-loop calculations then 
needs to perform a barrier synchronisation on completion of the request to prevent the 
program progressing to a new step of the simulation prior to it being completed in all 
the distributed 2D array processes. 

The second approach requires a more explicitly parallel strategy. As before, the 
2D array is partitioned among a number of processes. However, the data movement 
requirements among neighbouring processes are now made explicit. Thus at each step 
of the simulation, sending and receiving data to and from other processes is performed 
explicitly for each of the attribute calculations requiring information from neighbouring 
points if these points exist on other processes. These changes avoid the deadlock 
problems associated in the data parallel implementation without having to use 
concurrency within processes. This simplification comes at the cost of making the 
overall parallelisation of the sequential code more complex. The choice of how to 
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partition the 2D array among the processes is also open. Lin and Snyder analysed the 

relative merits of partitioning the space in strip and block decompositions, and 

determined that the block decomposition always produces better results due to 

decreased overall message size [LS91]. This second approach of an explicitly parallel 

strategy is more naturally suited to paraML than the first. It also avoids the 

complexities of dealing with concurrency and synchronisation requirements in the 

construction of the 2D distributed array data abstraction. 

8.5 Conclusion 

In both of the alternative programming paradigms explored, there are a number of 

advantages provided by paraML. The flexibility gained from the first-class nature of 

process names and port names, and the dynamic creation of processes and ports are 

strong attributes of the language. In building the algorithmic skeletons and the object 

store system, the desirability of collective group-based operations is clear. An 

interesting avenue for exploration would be marrying collective and process-oriented 

computation models with particular emphasis on high performance. However, this 

support should not be at the cost of flexibility for individual processes. 

The overall conclusion of the investigations into alternative high performance 

programming paradigms is that paraML's process-oriented model provides a useful 

basis on which to experiment. However it cannot be wholly relied upon to provide an 

efficient solution for any conceivable model of programming. Nor does the safety 

emphasis of paraML' s design translate into equivalent levels of safety in 

implementations of other paradigms. For example, object store systems typically 

promote a transaction-based model for guaranteeing data coherency. While paraML 

may facilitate certain aspects of a transaction system implementation, the safety of 

transactions would depend on the quality of the implementation. ParaML is most 

suited to paradigms which adopt or are based on similar characteristics of distributed 

address spaces and message passing communication facilities among collections of 

computation entities. 

More extensive application development is merited before conclusive statements 

can be made about paraML's efficiency for high performance programming. The 

experiments with SINIPLE illustrate that explicitly parallel solutions can be encoded 

straightforwardly, albeit with increased code complexity. Providing support for 

internal concurrency within processes would enable a greater variety of approaches to 

be taken when parallelising an existing sequential implementation. The next chapter 

goes on to describe the details of implementing paraML itself. 





9. Implementation 

9.1 Introduction 

This chapter examines the implementation of the paraML system using current 

software technologies. The design of the runtime system for paraML is described, 

together with a discussion of how the sequential ML runtime system has been 

extended. The paraML runtime system is one approach to satisfying the requirements 

specified in the design and theoretical modelling described in Parts II and III. There is a 

particular concern for achieving portability, and the use of MPI as a communication 

platform is analysed with respect to this goal. Limitations of the implementation and 

future possibilities for development are also included. 

9.2 ParaML runtime system design 

9.2.1 Motivation 

The process-oriented model for computation described in Part II gives a clear account 

of three layers of abstraction. The top layer consists of the paraML operations 

embodying processes and ports. The next layer is the virtual processors, and the 

bottom layer is the physical machine layer of collections of PEs, connected by an inter­

PE connection network. These components of the programming model are represented 

in Figure 9.1. The abstract design description for these layers is realised through 

available software technologies. The goal of this implementation is to provide a safe 

and efficient system with which to execute paraML programs. 

The fundamental requirement for implementing the programming model is a 

paraML runtime system. ML compilers use runtime systems to manage dynamic 

aspects of an ML program's execution such as garbage collection and interfacing to the 

operating system. Similarly, the paraML runtime system is responsible for managing 

dynamic aspects of a paraML program's execution. These include process scheduling, 

message delivery, and error handling. 

9.2.2 Components of a paraML runtime system 

Within each process, the language for describing computation is ML, extended with the 

paraML operations for processes and ports. Thus a minimal requirement in the 

paraML runtime system is support for executing ML programs. Naturally, using an 

existing ML compiler and runtime system to do this is desirable, and the SML / NJ 

compiler has been chosen for this purpose [AM91]. The reasons for this choice are 

explained in more detail in §9 .2.5 and §9 .4.1. 
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Figure 9.1- Programming model components. 

Support is required for executing programs which will act as the processing 
elements in the programming model. Additionally, inter-PE communications must be 
supported. The chosen system is :tv1PI [MPI94], which provides an efficient and 
portable inter-PE communication environment. Interfaces to the :tv1PI routines are 
available in C or Fortran. MPI systems such as the one for the Fujitsu APl 000+ 
[Sits95] adopt a SP:tvID model, where a single program executable is used for each 1v1PI 
process. The MPI system discriminates each process by its rank within the global 
communicator MPI _COMM_ WORLD which connects all processes. At this layer, there is 
no knowledge of ML or its type system. 1v1PI does provide its own type representation 
for values communicated between processes, but this type system is simply used to 
describe the byte layout of values within a process's memory. There is no inter-process 
type checking, and the 1v1PI standard rern~ks that if a process receives a value and 
declares it to be a different type to that used when sending the value, then there is no 
guarantee about successful execution of the program. 

The paraML runtime system then is the program which executes as an 1v1PI 
process. This program must interface with the MPI communications operations to 
support dynamic communication linkages between paraML processes. It must also 
support multiple virtual processors, each executing a paraML process which may 
require full ML functionality. 

9.2.3 Embedding the ML compiler/runtime system 

The SML / NJ compiler [AM91], version 0.93, provides either interpreted execution of 
code or batch compilation of modules. Executing an ML program minimally requires 
the runtime system and either a dynamic link loader (for separately compiled modules) 
or the interpreter. Together, these occupy between 2 and 5 MB of program executable 
size. It is clearly undesirable to provide support for several of these programs within 
the same paraML runtime system. Instead, the paraML runtime system provides a 
single ML runtime system and interpreter or link loader. Thus the paraML runtime 
system (which executes as each 1v1PI process) is constructed as an extended SML/NJ 
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link loader/ interpreter and runtime system, executing a program written in ML to 

support inter-PE communications and multiple VPs. 

9.2.4 Inter-PE requirements 

The paraML runtime system must deliver and accept communications from the 

paraML runtime systems on other PEs. The mechanisms by which the SML/NJ runtime 

system is extended to interface with MPI are described in §9 .4. On receiving a request 

(which may be requests for VP/ process creation, other process control requests, or 

communications for ports), it must be handled, and a response sent to the requester. 

These requirements suggest that the paraML runtime system adopt an event-driven 

core, where events are generated by message arrival. 

The paraML runtime system is also responsible for establishing ML type 

information about newly-arrived messages. The MPI layer delivers messages with no 

type information, and nor does the SML / NJ system carry type information in the 

runtime representation of values. (Note that other ML compilers, such as the TIL 

compiler [TMC+96], preserve some or all type information in the runtime 

representation of values.) Thus mechanisms are required to guarantee that the ML 

type of a received message is identical to the ML type of the message in the sending 

paraML runtime system. 

9.2.5 Intra-PE requirements 

The paraML runtime system must provide support for multiple VPs. Each VP 

executes one paraML process, and is responsible for managing process state and the 

communication ports. Since there may be many VPs, the processing resources of the 

PE must be shared among them equitably. VP scheduling is thus an exercise in 

concurrency within the paraML runtime system. The SML / NJ compiler provides 

various programming facilities which may be used for supporting concurrency, which is 

another reason the SML/NJ compiler was chosen. 

The paraML runtime system must also successfully deliver communications 

between any paraML processes for which it is responsible. The central requirement is 

that the semantics of communications between processes within the same paraML 

runtime system is identical to communications between processes from different 

paraML runtime systems. 

9.2.6 ParaML operations 

Just as the paraML runtime system is written in ML, constructing the paraML 

operations in ML is also advantageous. Each operation may require access to the VP 

data structures and some of the VP scheduling mechanisms. These requirements are 

far simpler if their implementation can manipulate these mechanisms within the 

language framework of ML. Choosing to build the paraML operations in ML also 

means that alterations to the underlying SML /NJ compiler system do not require 
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changes to the implementation of the paraML operations. This simplification is a 
significant consideration with limited resources for language development. 

9.3 ParaML runtime system implementation 

Some language runtime systems are heavily dependent on operating system support for 
such things as process/ thread scheduling. A voiding operating system dependencies is 
desirable in order to maximise portability. Since the paraML runtime system is written 
entirely in ML, with minimal extensions required for interfacing with the :tv1PI 
communications layer, many of the operating system dependencies are eliminated. 

9.3.1 Multi-threading support within the processor abstraction 

The paraML runtime system provides support for both the processor and VP layers of 
the machine model. The processor layer is emulated by the paraML runtime system 
itself. An executing paraML system will consist of a collection of paraML runtime 
system programs. These are initiated as MPI processes, with the entire set connected 
by the MP I_ co MM_ WORLD communicator. On a multicomputer each MPI process 
executes on a separate node. Alternatively, each MPI process may simply be executed 
by a UNIX process on a workstation version of :MPI. The design of the paraML 
runtime system must also permit the use of only one :MPI process. 

Each paraML runtime system uses a collection of threads to support multiple VP 
abstractions and the handling of messages. Multi-threading within the paraML 
runtime system is implemented using co~tinuations, in a fashion similar to that 
described by Appel [App92]. In SML/NJ, there are two functions for manipulating 
continuations: callee and throw. The callee operation applies a function (of 
type ' 1 a cont -> ' 1 a) to the current continuation of the program and returns a 
value (of type ' la). The throw operation (of type ' a cont -> ' a -> ' b) 

invokes a continuation with an appropriately-typed argument. This operation never 
returns. 

The implementation of the continuation functions in SML / NJ is extremely 
efficient. The SML/NJ compiler is constructed using a continuation-passing style 
(CPS) semantics, originally due to Steele [Ste78] and described for SML/NJ by Appel 
[App92]. Reppy reports in detail on the advantages of using SML/NJ's support for 
continuations for efficient implementation of thread support [Rep92]. The code for 
implementing callee and throw is very similar in performance to that for function 
calls, although restoration of the enclosing exception handler must be performed for 
callee, thus breaking tail recursion. 

9.3.2 Basic components of the runtime system 

The message handling thread is the initial component common to all runtime systems. 
It must respond to any new message which arrives at the runtime system. The 
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Table 9-1- Categories of message requests accepted by the message handling thread. 

response to a message depends on what information is carried by the message. There 

are five main categories of message, which have differing prerequisites, information, 

actions and responses, as summarised in Table 9-1. 

Receipt of a process request results in the creation of a data structure containing 

information for the VP abstraction's support of a process. This data structure is 

inactive, but contains various handlers for port, execute and port message requests. 

The initial process execution state in the VP is set to awaiting. As detailed in the table, 

the response to requests is dependent on the current state of the process: awaiting, 

evaluating, or terminal. The responses are prescribed by the semantics given for the 

parallel evaluation relation in Chapter 6. Once a process has received an execute 

request, a thread of evaluation is associated with the VP data structure. Execution 

state in the VP is set to evaluating until the computation completes; then it is set to 

terminal. If the evaluation must be suspended for any reason, the state of computation 

is captured by a continuation. Thus the basic components of the paraML runtime 

system consist of a collection of threads, including the dedicated message handling 

thread, a collection of VP data structures, and the single processor data structure. 

These interactions are coordinated by the scheduling mechanisms in the paraML 

runtime system. 
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9.3.3 Scheduling 

Since continuations are first-class objects, an inactive thread's continuation may be 
queued for rescheduling in data structures. Rescheduling of threads usually requires 
only a small amount of data structure manipulation (enqueing a continuation/identifier 
pair onto a descheduled queue, dequeing a continuation/identifier pair, and updating 
information about the currently executing VP), before throwing to the scheduled 
thread's continuation. 

The paraML runtime system always has one thread active, whether it be the 
message handling thread or one of the threads for an active process. The identifier of 
the current thread is maintained, together with the VP identifier if appropriate. The 
continuations of inactive threads are stored in various data structures, which facilitate 
the scheduling policies of the current implementation. These data structures are as 
follows: 

• the dedicated message handler thread; 

• a dedicated interrupted process thread; 

• a FIFO queue of executable, but currently suspended, processes, together with 
the ids of their VPs; 

• re cv-blocked processes, associated with the port on which they hope to 
receive a message; 

• a hash table of descheduled processes, awaiting a reply from a request 
message they have sent; the requests are uniquely keyed which allows the 
reply to find the requesting process_ in the table. 

For single-threaded processes, no other data structures are required. However, 
we have argued previously that concurrent execution within processes is essential 
[BNS+94]. Concurrency within processes has also been shown to be useful in the 
implementation of systems such as the object store experiment discussed earlier. 
Modifications to these data structures in support of concurrent execution within 
processes is discussed later in §9.5. 

A number of different events impel the rescheduling of threads managed by the 
paraML runtime system: 

• message-arrival signals; 

• interval timer signals; 

• blocking paraML operations; 

• request/ reply paraML operations. 

9 .3 .3 .1 Message-arrival signals 

The signal handler for message-arrivals attempts to suspend the currently executing 
process if there is one. If it is unable to do so due to the process executing code within 

~ 
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an atomic region, it sets a flag to indicate the message handler thread should be called 

on exit from the atomic section. When permitted, an executing process is interrupted 

and its continuation stored in a dedicated data structure, unless there is no currently 

executing process. The message handler thread is invoked and performs appropriate 

actions for any newly-arrived messages. When no more messages are available, the 

message handler thread checks to see whether there is an interrupted process thread to 

be rescheduled. If there is, the message handler thread suspends and invokes the 

interrupted process. If there is no interrupted process, the suspended process queue is 

checked instead. If the queue is not empty, the message handler dequeues the first 

suspended process thread, suspends itself, and invokes the process. If there are no 

suspended processes either, the message handler thread performs a blocking probe to 

await a new message. 

9.3.3.2 Interval timer signals 

The interval timer signal handler is similar to the message-arrival signal handler. 

However, instead of invoking the message handler thread, it simply results in the 

suspension of any currently executing process. The thread for this suspended process 

and the id of its VP are enqueued on the FIFO queue of suspended processes, and the 

first member dequeued and invoked. The interval ti.mer is used to guarantee progress 

to all processes being executed on a paraML runtime system. 

9.3.3.3 Blocking paraML operations 

The only blocking paraML operation is re cv. If this operation is called and there are 

no messages ready in the port's queue, the process's executing thread is suspended, 

and its continuation placed in the data structure associated with the port. The 

continuation of the next process on the suspended process queue is dequeued and 

invoked. If no process is currently suspended, the message handling thread is invoked 

instead. At some later time, if a message arrives for the port, the suspended process's 

continuation is moved from the port data structure to the suspended process queue. 

9.3.3.4 Request/reply paraML operations 

Any operation involving communications with other processes requires a request 

message to be sent, which is uniquely identified within the paraML runtime system. 

The requesting process's executing thread is suspended, and its continuation inserted 

into the hash table with the identifying key. The continuation of the next process on 

the suspended process queue is dequeued and invoked. If no process is currently 

suspended, the message handling thread is invoked instead. At some later time, when 

the reply arrives for the request, the suspended process's continuation is extracted 

from the hash table, and placed back on the suspended process queue. 

Currently, there is no decision to alter priorities of executing processes based on 

whether a blocked or reply-suspended process has just been made executable again. 
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More detailed profiling of the performance of the current implementation would need 
to be done to determine whether this was a useful scheduling mechanism. 

9.3.4 ParaML operations 

Given the support from the processor and VP abstractions and the scheduling 
mechanisms in the paraML runtime system described above, implementation of the 
core paraML operations is straightforward. 

9.3.4.1 process and self _id 

Creating a new process requires selecting a paraML runtime system to host the virtual 
processor. A request message is sent to it, and the requesting thread is descheduled to 
await the reply. When the reply is received, either it will indicate that it was not 
possible to create the process (due to memory constraints for example), or it will report 
the new process's name, which is then provided to the requesting thread which is 
rescheduled. Determining the process's name with self_ id just involves extracting 
the process name value stored by the VP abstraction. 

9.3.4.2 execute 

An execute request packages up the thunk and the key for the target process's execute 
request handler. The request is sent, and the requesting thread descheduled with a 
continuation which will act on the contents of the reply message. When the reply is 
received, either it will indicate success or it will report that the request could not be 
satisfied in which case an exception will be_ raised. 

9.3.4.3 port 

A port creation request simply sends a request message to the target process's port 
creation request handler. The requesting process is descheduled with a continuation to 
act upon the contents of the reply message. When the reply is received, either it will 
indicate success and carry the new port name or it will indicate the reason for failure in 
which case an exception will be raised. The handler is created at process creation time. 

As explained earlier, the message containing the new port name simply arrives as 
an undifferentiated array of bytes. The message body component that is the port name 
must then be coerced to the correct (weakly polymorphic) type and returned to the 
requesting process computation. This mechanism is similar to the treatment of other 
messages, where the message content is treated as a generic object ( the SML / NJ type 
given by System. Unsafe. object), and only coerced when the actual ML type can 
be identified from the other information contained in the message. Treating messages 
as generic objects is beneficial in maintaining the port queues. Since the VP data 
structures are implemented in ML, it is necessary to have collective data structures 
(such as hash tables) for maintaining the port queues. However, collective data 
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structures must be over uniform ML types, and thus the hash tables are for queues of 

System. Unsafe. object values. 

Since there are no extensions to the fundamental datatypes in SML/NJ, port 

names must be constructed from existing ML values. The particular requirement is for 

port names to carry weakly polymorphic type information. Since port names are used 

to identify location information (the PE's id, the owning process's id, and a unique 

integer key), there is no intrinsic field to carry type information. Thus port names are 

actually constructed as records, which contain the identifying information and a 

' 1 a 1 is t field initialised as a n il list. This field is used to carry the type of the 

port name, and since the field never contains anything other than n i 1 , port names are 

always of uniform size. 

9.3.4.4 send, recv and probe 

A sending request attempts to deliver a message to a target port's queue. As usual, the 

requesting process is descheduled to await the reply. The reply message will either 

indicate that the message was successfully inserted into the queue or indicate the 

reason for failure. In the latter case, an exception is raised in the rescheduled 

requesting process. 

The recv and probe operations have no need to generate request messages. 

Instead, they examine the state of the queue associated with the port given as 

argument. In the case of probe, a simple boolean value is returned to indicate the 

presence or absence of messages in the queue. In the case of rec v, if a message is 

available in the queue, it is removed and returned. If no message is available, the 

thread is descheduled and placed into a continuation data structure awaiting message 

arrival on the port. 

The type system is used to make sure that sending a message to a port only 

occurs when the type of the value sent is of the corresponding type to the port name's 

parameter type. Thus it is essential that ports are identified in a unique way 

throughout the entire collection of paraML runtime systems. Messages carry with them 

the unique id of the port for which they are destined. On arrival, all messages are 

stored in the queues as generic objects, which are then coerced to the appropriate type 

when removed from a port queue by the recv operation. All type coercion happens in 

the implementation of the paraML runtime system and the paraML operations. 

Coercion is necessary only due to the fact that no ML type information is carried with 

the runtime representation of values when received from a communications network as 

an array of bytes. 

9.3.4.5 paraml 

To commence execution of the root process in a paraML program, the pararnl 

function is called with the thunk for that process. All paraML runtime systems execute 

the same basic program up to the point of calling this function. An initialisation 
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function is called to establish the paraML runtime system programs as a collection of 
11PI processes. All paraML runtime systems initialise their processor abstractions, 
and set off their message handling thread. The first paraML runtime system also 
initialises a virtual processor abstraction and starts execution of the root process. 

9.4 ML compiler and runtime system extensions 

High performance of a paraML system is not achievable without some support for 
execution on parallel computers. Since the paraML runtime system is an ML program 
in its own right, high performance execution of paraML programs requires multiple 
paraML runtime system programs to cooperate. Each runtime system will execute on a 
different node of the computer. Basic support for such multiple program execution 
comes from an operating system at the most primitive level and an MPI package at the 
layer above. The first set of extensions to an ML system is thus interfacing to a core 
set of routines from the :rvfPI package. The second set of extensions are those to 
marshal and unmarshal data objects into contiguous byte arrays for transmission 
between the paraML runtime system programs. 

9.4.1 ML compiler 

The ML compiler chosen as the basis for extensions to support paraML was the 
SML/NJ compiler (version 0.93), from AT&T Bell Laboratories and Princeton 
University [AM91]. This system was selected for a number of reasons: 

• it is freely available and complete source code accompanies the distribution; 

• the generated code is of high quality, and it conforms almost totally to the 
formal definition of Standard ML; 

• automatic marshalling and unmarshalling operations are provided for data 
objects to and from file storage; 

• mechanisms exist for interfacing ML code with C routines. 

The mechanisms for calling C language routines from ML have been vastly 
improved in new versions of the compiler (1.09 and later), but at the time of 
implementation, there was only partial support for marshalling of data objects. 
However, with version 0.93, adding interfaces to a small set of MPI routines was 
practicable. The routines are added to a library of C functions compiled into the ML 
runtime system. ML wrappers to these routines are made available through a module 
in the pervasive environment that is available on startup of the system. The primary 
disadvantage of the SML /NJ system is its large memory requirements, with the basic 
compiler/ runtime system for SP ARC architectures requiring over 4 MB of memory. 
Since the extended SML / NJ system is embedded as the core of each paraML runtime 
system, there is significant overhead in initialising each MPI process. 

r 
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9.4.2 Basic ML-C interface operations 

These are the set of operations necessary to support multiple paraML runtime system 

programs: 

• invoking the MPI initialisation and finalisation operations; 

• querying the MPI system on the number of :rviPI processes and the rank of an 

individual process; 

• sending arbitrary ML objects to another MPI process; 

• receiving arbitrary ML objects; 

• probing for message arrival. 

In total, there are seven ML-C operations required. All but the sending and receiving 

operations are straightforward to implement. Each requires conversion of any ML 

arguments to a C representation, call to the appropriate MPI routine, and return of any 

results after conversion back to an ML format. An additional operation was provided 

in the runtime system so that ML-format strings of arbitrary size could be allocated in 

the ML heap from the C runtime system. This operation is a minor modification of an 

existing string allocation routine. 

The SML / NJ runtime system uses b r k and sb r k to perform all of its memory 

allocation (explicitly setting available process memory), and typically rnalloc/ free 

cannot be safely intermingled with these operations. However, an alternative 

implementation of brk/ sbrk was created for the AP /Linux operating system 

[TMS+96] by Andrew Tridgell, using mmap on / dev / zero. This alteration was 

required to enable the MPI library and the other extensions to the ML runtime system 

to use standard ma 11 o c / free operations without potentially corrupting the 

SML/NJ-controlled memory. 

9.4.3 Marshalling operations 

The sending and receiving operations are the most complex, primarily because they 

must accept arbitrary ML values for transmission. The key problem here is that the 

representation of an ML value at runtime may have different components of the object 

in widely different areas of memory. The MPI communications package only transmits 

contiguous byte arrays as messages. Thus there needs to be a mechanism which maps 

an arbitrary ML value into a contiguous byte array. This mechanism is known as 

marshalling. Similarly, when a contiguous byte array is received, it may require some 

work to generate a recognisable ML value from the byte array representation. This 

reverse operation is known as unmarshalling. The formal description of copy in 

Chapter 6 is one model of the semantics of what happens during the marshal 

operation. It should be stressed that it is only a model, not the actual algorithm used 

in the implementation. 
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The SML/NJ system provides two operations to perform such operations, but 
the implementation in version 0.93 writes and reads these arrays to and from files. 
The implementation also produces a header of three integers, used to provide 
information about the location of the start of the object within the byte array. The 
operation is analogous to the problem of garbage collection of a single object using a 
copy algorithm, where objects are copied between "from" and "to" spaces. The 
operations are capable of marshalling any first-class ML value, including functions (by 
generating an appropriate closure which gives meaning to the free variables of the 
function expression) and reference values (where a deep copy of the object which is 
referenced is included). 

Modifications for sending were required so that the header and byte array could 
be sent to a destination MPI process instead of being written to file. Ideally, the 
implementation would package up the header and the byte array into a single data 
object, thereby incurring only a single message overhead, rather than sending the header 
and byte array separately. However, the main problem with such an approach is the 
extra copying and buffer allocation involved and the interactions with memory 
allocation between the SML/NJ system and the MPI communications package. The 
likely future implementation of the marshalling operation in SML / NJ will make this 
alternative straightforward [Rep95], since the result of such an operation will be a 
Word8Vector. vector (effectively a byte array). Rather than writing the header 
and array to file directly, it will be up to the user to determine what to do with the byte 
array representation. In paraML' s case, this would be passed directly to the :rvtPI 
sending operation. (In the current implementation, there are performance advantages 
to be gained from sending a header mes~age, due to the complexities of receiving 
messages of unknown size in MPI. Further discussion of this point is found in §10.3.) 

On receiving a message, first the header is decoded to determine the length of the 
following byte array. A byte array is allocated within the ML heapspace (using the 
sized string allocation operation), and the subsequent byte array message transferred 
into this buffer. Some relocation of relative pointer offsets occurs, and then control is 
returned to the ML system, with the result being the offset into the buffer which 
identifies the start of the ML object. 

The sending and receiving operations must be able to work for arbitrary ML 
objects. Thus the type signature of the ML interface to these C operations uses a 
strongly polymorphic type variable, respectively: 

val me send : int* int*' a-> unit 
v a l me recv : int* int->' a 

A voiding type errors when receiving messages then becomes an issue for the paraML 
runtime system. The mechanisms for re-establishing type information about newly­
arrived messages ( which do not possess ML type information) was detailed earlier in 
§9.3.4. 

!t I 
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Since the processor and virtual processor abstractions are just ML data values, 

the reader may wonder how marshalling of messages which contain uses of the 

paraML operations avoids copying all of these abstractions. One of the characteristics 

of the marshalling/unmarshalling operations in the SML/NJ compiler is that they 

assume the executable that unmarshals an object has the same locations for non-heap­

allocated data structures and routines. This assumption means that when marshalling 

an object, any pointer to a data structure not in the heap can be shallow copied (the 

pointer is copied, not the object it references). The SML/NJ compiler provides an 

operation as part of the pervasive environment (not heap-allocated) which allows the 

caller to set and get an arbitrary variable (set var and get var respectively). The 

getvar operation allows the user to coerce the returned value to any type desired. 

These routines are used to set and get the processor abstraction, which in turn holds all 

the virtual processor abstractions. Thus all the paraML operations first retrieve the 

appropriate abstraction using the getvar operation, before performing data structure 

manipulation. When copying a message to send to another process, any mention in the 

paraML operations of these local processor and virtual processor abstractions will not 

involve copying them, since they are protected by access through the get var 

operation. 

9.5 Concurrency within processes 

Since SML/NJ provides continuations, it is possible for any paraML program to 

exhibit concurrency within the code executed by a process. ParaML does not itself 

address the issue of providing concurrency primitives in addition to its own process­

oriented primitives. However, for efficiency and safety reasons, it is sensible for 

paraML to incorporate support for multi-threading within processes. The level of 

support is only to provide hooks into the scheduling mechanisms. Thus someone who 

wishes to provide a concurrency package (say CML [Rep92] or the lower-level ML­

threads system developed by Morrisett and Tolmach [MT93]) will be able to do so 

without significant alterations to the paraML runtime system. 

The major potential problems to avoid are: 

• Interrupting call outs to the 1\1PI operations, since there are no current MPI 

systems which are re-entrant and thus they are not thread-safe. 

• Interrupting parts of the paraML runtime system code where it is manipulating 

VP/ process state. 

Either of these situations could result in total failure of a paraML system. The basic 

alteration required is for atomic regions in the paraML runtime system code, which the 

scheduling mechanisms respect. The existing implementation already provides support 

for interrupts on message arrival and timer-based signals. 

The other alterations are to provide queues for various of the data structures. 

Since there may be more than one thread within a process suspended waiting for a 
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message to arrive, it becomes necessary to guarantee fair access to these messages. For 
example, it makes sense to use queues of thread continuations for blocking port 
communications. The threads are inserted into the queue and will be satisfied in the 
order they made their blocking recv requests. Replies to control messages do not need 
to be queued in the same way, since control messages use uniquely-generated keys to 
discriminate between different VPs on the same paraML runtime system. These keys 
uniquely identify a continuation which represents the requesting computation, together 
with the VP identifier and thread identifier in the case of this additional concurrency 
support. Some additional changes are required to avoid an active thread receiving a 
message, whose .arrival had caused the message handler thread of the runtime system 
to move a descheduled thread back onto the runnable queue in the expectation of it 
receiving this new message. Simple solutions exist to tag messages in a port's queue to 
particular descheduled (but now-runnable) threads, or alternatively adjust the 
scheduling priorities so that the descheduled thread becomes the next active thread 
within the process. 

9 .. 6 MPI as a communication platform 

The earlier versions of paraML used communication primitives specific to the Fujitsu 
AP1000 for inter-PE message passing. 1One of the problems with using this approach 
was that the communications facilities in paraML were biased towards the 
characteristics of the architecture, rather than being designed in a principled manner. 
In the current version of paraML, the communications primitives have been redesigned 
without machine-specific considerations. The new design places few demands on the 
underlying communications platform. 

9.6 .. 1 Advantages 

lvIPI has been chosen as the basis for the underlying communications platform for a 
number of reasons. 

• High performanoe implementations of 1v1PI exist for virtually every parallel 
computer commercially available. 

• :MPI implementations also exist for networks of workstations, offering the 
ability to develop paraML systems on readily available hardware. 

• The programming model embodied by lvfPI mimics that of the physical 
machine model for paraML. 

• The :tv.IPI standard abstracts the communications and machine-attribute 
characteristics of a broad class of high performance computers. Portability of 
paraML systems between different architectures is thus made simpler. 

The current paraML system w as first implemented using the workstation version of 
CHINIP / MPI developed at the Edinburgh Parallel Computing Centre [BMS94]. 
ParaML was then ported to the Fujitsu AP1000+ using the MPI system developed at 
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the Australian National University [Sits95]. The porting took approximately half a 

day, of which around half an hour was due to MPI-related aspects. The ease with 

which the porting was accomplished reflects the success of standardising 

communication and machine-attribute operations in MPI. 

Another benefit of using :MPI is that it will perform optimised delivery of 

messages when the destination PE is also the sending PE. Instead of involving network 

communications, a message sent between two processes on the same PE will just 

involve copying the message into the MPI system's message queues. An alternative 

would be to directly transfer the me~sage within the paraML runtime system, once a 

marshalled copy of the original value had been made. As mentioned before, the future 

implementation of the marshalling operations will make this straightforward to 

perform. 

9.6.2 Disadvantages 

Despite the benefits of using MPI, it imposes certain restrictions. For paraML, there 

are three basic restrictions. The first is the lack in :MPI of any form of notification on 

message arrival. When a request or port message is delivered to a paraML runtime 

system, it always requires a response of some form to indicate whether or not the 

message can be incorporated at some later point. Thus to prevent delay of the sending 

process, it is highly desirable to know when a message arrives and to send the reply 

message immediately. Without any indication that a message has arrived, it becomes 

necessary to wait until the paraML runtime system schedules the message handling 

thread before a reply can be sent. 

A set of extension operations suggested for :MPI [SDV +94] includes one to 

manage just this type of situation, and this MPI_Hrecv operation has been 

implemented for the MPI system on the APl000+. The operation allows the 

programmer to install a Chandler routine to be executed on receipt of a message. Since 

the paraML runtime system is written in ML however, it is necessary to interrupt its 

execution in some manner to advise it of the message arrival. The obvious mechanism 

to achieve this is by generating a signal, since SML/NJ includes support for 

asynchronous signal handling [Rep90]. 

An operating system for the APl000+, AP /Linux [TMS+96], allows the current 

implementation to avoid such :MPI extensions altogether, since it is possible to send a 

signal directly to a remote PE. This mechanism is used by the sending PE to generate a 

signal in the destination PE after an l'V1PI message has been sent. A handler routine 

written in ML is installed for receipt of this signal (in the current implementation, 

SIGUSR2). When invoked, the signal handler in ML then causes a reschedule as soon 

as possible to the main message handling thread in the paraML runtime system. 

The second restriction arises in trying to optimise some of the derived operations 

in paraML. Ideally, all the group-based communication operations would make use of 

the collective communication facilities in MPI. A specific example helps to describe ·me 
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situation. If a group of processes has been created, and a group of ports has been 
created for that process group, then a new MPI communicator should be created for the 
port group. :WWI communicators allow efficient collective communication among 
members of the communicator. However, the problem is that for a new communicator 
to be created, all members of the parent communicator (in the first instance, 
MPI_COMM_WORLD which spans all the paraML runtime systems) must cooperate in 
the creation operation. Effectively then, this is a synchronising operation over all the 
paraML runtime systems, not just those which host the new paraML processes. 

In fact, collective communication within a communicator is only feasible with a 
broadcast operation, MPI_Bcas t. This operation requires that all members of the 
communicator call it and that there is a fixed message size to be delivered. The 
synchronising nature of the broadcast operation means that all paraML runtime 
systems must be advised first by normal point-to-point messages that a broadcast 
operation is to be performed before the broadcast routine can be called. It is also 
impossible for collective operations to be performed from outside a communicator .. 
Thus it would not be possible for a process to send a message using 11PI collective 
communication support to a port group unless the process was also a member of the 
underlying NIPI communicator. 

The third restriction involves matching buHer sizes in MPI_Send / MPI_Recv 

operations. This restriction is discussed in more detail in relation to the performanoe 
of NIPI communications when combined with paraML in §10..3. 

9. 7 Limitations of implementation_ 

The main discrepancy between the formal description of paraML in Part ill and the 
current implementation is with exceptions. The theoretical model for exceptions 
requires that exceptions are globally defined. However, the current implementation has 
minimised changes to the SML/ NJ runtime system and pervasive environment, with no 
changes to the compiler itself. Implementing a global name space for exoeptions would 
require that serious changes be made to the way exoeptions are created witlh.in the 
internals of the compiler. Avoiding such types of changes is highly desirable; 
minimising dif£culties in tracking compiler updates is one reason. Exoeptions may still 
be safely transmitted in messages between paraML processes,. vvith the follovving 
restrictions. If the process resides in a separate paraML runtime system, the ex:oeption 
must be declared prior to a call to the par aml operation v1hich initiates the root 
process of the paraML program. Any exoeption cieclared dynamically during the 
course of execution of para11L processes may only be used locally vvithin the declaring 
process. 

The current i:mp1ementation of paraML embodies the three layers of process 
modeL abstract machine model and physical machine model in software. Ideally, these 
different layers would be cleanly separated by defined interfaces for the operations 
permitted across the layers.. In order to provide efficient performance however, the 
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existing system exhibits a stronger level of coupling between these layers. This coupling 

is necessary to make use of knowledge about thread and virtual processor scheduling 

in the implementation of the paraML operations. It is also used in manipulating data 

structures associated with the virtual processor layer, particularly in message handling. 

Some of the changes outlined recently to the definition of Standard ML [SML96], 

particularly with respect to the inclusion of type definitions in signatures, could make 

stronger abstractions between layers more attainable. 

9.8 Conclusion 

The implementation of paraML reveals a number of strengths and weaknesses involved 

in using ML and MPI individually and in combination. The use of MPI goes a long way 

towards providing a degree of platform-independence essential in meeting the goal of 

portability, despite its other limitations. Similarly, using ML for building the paraML 

runtime system is effective at rnmimising operating system dependencies. The 

theoretical description of paraML provided an essential guide in building paraML to 

meet specifications. The resulting system is robust with respect to these specifications, 

with the exception of exceptions defined within process executable code. Unlike 

previous versions of paraML, discrepancies between the theoretical specification and 

the implementation are clearly identifiable. In the next chapter, the actual performance 

of various aspects of the current implementation of paraML is measured. 





10. Per£ ormance 

10.1 Introduction 

This chapter analyses the costs of the various components of the implementation of 

paraML: the MPI communication system; the ML runtime system; the paraML runtime 

system; and the paraML operations themselves. Examining the performance of these 

components determines how well the implementation meets its goals of scalability and 

efficiency. It also provides a useful insight into avoidable performance penalties with 

the current implementation and hence avenues for future optimisations. 

10.2 Multicomputer characteristics 

The current implementation has been tested primarily on the Fujitsu APl000+ 

[SKI+93], a 16-PE multicomputer running AP /Linux [TMS+96] installed at the 

Australian National University. Each PE is based around a 50 MHz SuperSPARC 

processor with 16 MB of memory. Attached to each PE is an additional option board 

connected to a 4 GB disk, which provides access to swap disk partitions and local 

filesystems. Custom-designed network chips interface the PE with the three 

communications networks. These networks are: 

1. a wormhole-routed point-to-point torus network; 

2. a broadcast network that allows one-to-all communications, and is also used 

as the interface to a host computer which connects to external networks; 

3. a synchronisation network, which can be used for fast global synchronisation. 

The networks provide low latency and high bandwidth communications between 

different PEs. The hardware also supports PUT and GET primitives, for remote PE 

memory access. These facilities are used in the implementation of the MPI system to 

optimise large message delivery. 

The AP/ Linux operating system is a multi-user, multi-process operating system 

for the APl000+, extended from the SPARC Linux operating system. In most respects, 

it behaves just like a normal UNIX operating system for a workstation. However, it 

has additional support for executing processes in parallel. This facility establishes one 

process on each of a subset (possibly maximal) of the available PEs of the APl 000+. 

These processes share the same context number on each node, and are scheduled for 

execution according to a simple gang-scheduling algorithm. 
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10.3 MPI performance 

The MPI implementation for the APl000+ was developed at the Australian National 
University [Sits95]. Different message protocols are used to support efficient message 
passing performance across a range of message sizes. The primary distinction is 

between small and large messages. 

1. Small messages are sent using standard mechanisms for communications on 
the torus network. The message is sent immediately, and stored in a system 

buffer at the destination. 

2. Large messages require a small information message to be sent first. On 
receipt, the MPI system directly fetches the message contents from the sender 
with the remote memory GET operation. 

The default crossover point between the two message sizes is at 600 bytes, but this can 
be altered in the initialisation phase of an MPI program execution. Latency 

measurements of the MPI system with AP /Linux are shown in Figure 10.1 and Figure 
10.2. The ping-pong benchmark used in these results sends a message from one cell to 
another, which receives the message and sends it back. The latency measured is 

between the initiation time of a send operation on one cell and the time at which it has 

been received into a user buffer on the destination cell. The :tvfPI sending mode used is 

standard mode. 

One of the drawbacks of MPI' s standard mode is the potential to introduce 
deadlocks without careful programming. Since a message sent with standard mode 
may not complete until the matching receive operation has been invoked (and in 

particular, a buffer for message receipt has been allocated), programs must ensure that 
blocking sends are not invoked until the corresponding receives have been invoked also. 

There are two major constraints in using MPI for paraML' s communications. The 
first constraint is that message sizes are not known in advance since they may be of 
arbitrary ML objects, and thus it is not possible to set up a receive operation prior to a 
send operation. The second constraint is that when control is returned to the paraML 
runtime system from a send operation in MPI, the message buffer must no longer be 
required by MPI. The reason for the second constraint is that the ML runtime system 
may at any time perform a garbage collection operation, which might invalidate any 
subsequent send from the message buffer. 

The solution to the first constraint is to send a header message initially, which 
encodes the size of the object to be sent. The main message containing the actual ML 
object is sent subsequently. However, both these 1v1PI send operations must be 
completed prior to any more paraML runtime system operations; other messages from 
the same PE with similar control information could cause confusion at the destination 
if this did not happen. The arrival of the header message will result in the paraML 
runtime system at the destination invoking its message handler code, which will 
allocate a buffer for the following message containing the object itself. 

I 
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Figure 10.2- Performance for large messages under 11PI. 

The solution to the second constraint is to use buffered mode sending of large 

messages. This mode involves an additional memory copy of the ML message buffer 

into an 11PI system buffer. However, on completion of this copy, control can be 

returned to the paraML runtime system because the original message buffer is free to be 

reused or garbage collected. The matching receive operation at the destination does not 

have to be invoked before this send operation completes, though the contents of the 

copied message will not be transferred until the receive buffer has been allocated. Use 

of buffered mode sending also eliminates the potential for deadlock, since the paraML 
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runtime system may now set up a receive operation involving buffer allocation for any 
large message whose header message may have arrived while performing its own pair 
of 1\1PI sending operations. In a language which used explicit memory management, 
non-blocking 1\1PI send operations could be used, and the original send buffers 
deallocated at some later time when the matching receive operation had been invoked. 
This mechanism cannot be used in paraML due to the second constraint, on immediate 
message buffer reuse. 

The semantics of paraML require that the status of any paraML operation is 
known before the operation completes. For example, send raises an exception if the 
message is unable to be delivered. The consequence of this property for operations 
involving two processes is that any request message must both be received at the 
destination paraML runtime system, processed, and a reply sent which encodes the 
success or failure of the request. The reply messages are always relatively small, but 
completion of inter-process paraML operations thus requires a total of four 1\1PI 
messages: a header message and main message (possibly large) for the request, and a 
header message and main message (always small) for the reply. The elapsed times for 
such patterns of message sending in :tvIPI are given in Figure 10.3 and Figure 10.4, so 
that the components due to the underlying :tvIPI implementation may be factored into 
analysis of the paraML operations. 

The results show that communications latency for large messages with the 
mechanisms required for paraML's runtime system implementation are roughly twice 
as slow as that achievable in standard mode sending for the ping-pong benchmark. 
For small messages, the performance of 1\1PI for the paraML-style messaging is fairly 
constant at around 340 microseconds, compared to the raw 1\1PI performance of 
between 35 and 84 microseconds. The extra time is due to both the increased number 
of messages being sent and the sending of a signal to the destination runtime system 
after the main message has been sent. The remote signal device is used in the paraML 
runtime system to make sure message arrival at a paraML runtime system is dealt with 
quickly by the message handling component. 

10.4 ML performance 

The main aspect of the SML/NJ system performance which it is useful to measure 
involves the marshalling operations. These figures report the time taken to marshal 
various objects into contiguous byte arrays and to unmarshal such arrays back into ML 
objects. When unmarshalling an object, it is sometimes necessary to perform an 
operation to increase the heap if there is not currently enough free space available to 
allocate a buffer for the object. All times are elapsed times in microseconds, recorded 
for the performance of the extended SML / NJ runtime system executing on one PE of 
the APl000+. Table 10-1 reports the times for a marshalling a variety of different 
objects, some of which are used in the performance testing of the paraML operations. 
The sizes of the objects in their marshalled format are also given; each marshalled 
object includes a 12-byte header. 

l 11 



§10.4 ML performance 167 

Average times for MP! sending small messages as for paraML 
1 ,......---,~--.-----.------.------.------.-----,-----,------, 

0.8 

-;;;- 0.6 
~ 
"' 

~ 

l 
e J :':5 

_§, 
QJ 

] 
& e 8 8 

~8 

I 
0.2 

0 ...___. _ ___._ ___ _._ ___ _.___ __ ___.~ __ _____. ___ ....._ ___ ....,__ __ ___ 

10 SO 100 200 300 400 500 600 700 
size of data (bytes) 

Figure 10.3-Performance for small messages under MPI for paraML. 

Average times for MP! sending as for paraML 

10 -----....... ---------~--------------------, 

8 

-;;;- 6 

1 
l 

QJ 

._§ 
4 

2 

0 .__ ___ __,_ ____ ....__ ___ ___. ____ __,_ ____ ....__ ___ ___. _ ____, 

0 20000 40000 60000 80000 100000 120000 
size of data (bytes) 

Figure 10.4 - Performance for large messages under MPI for paraML. 

The two functions are chosen deliberately to illustrate characteristics of the 

marshalling operations in the SML/NJ runtime system. The first function, 

f n ( ) => ( ) , is the most minimal function possible. The second function, 

fn () => (self_ id () ; () ) , represents a minimal function that a paraML 

process might execute. The enormous difference in sizes between the paraML process 

executable function and the null function is due to copying of the entire paraML 

runtime system structure. The sizes for these same marshalled functions using the 

interpreted system, rather than the batch compiler, were 620 bytes and 689604 bytes 
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object szze elapsed elapsed 
marshal unmarshal 

1 24 436 10 

"hello world" 40 260 11 

array(l,0) 32 340 11 

array(l0,0) 68 500 11 

array(l00,0) 428 525 21 

array(l000,0) 4028 2078 148 

array(lOOOO,O) 40028 6832 1420 

fn ( ) => ( ) 3732 442 13 

fn ( ) => 112916 16951 1057 
(self id();()) 

Table 10-1 - Object marshalling and unmarshalling; size in bytes, times in µsecs. 

respectively. All performance figures in these tests were measured using the batch 
compiler, because the costs of m.arshalling and send.mg objects 680KB in size are 
prohibitively large. Since each paraML runtime system contains exactly the same code, 
it should not be necessary to copy the paraML runtime system structure at all. 
However, such optimisations require alternative mechanisms to be employed in the 
marshalling code, which are discussed later in §10.8. 

While the time taken to unmarshal most objects is relatively small, the times 
taken to marshal them are far more significant. In particular, marshalling large objects 
such as the 10000-element integer array and the paraML process executable function 
take approximately 6.8 and 17 milliseconds respectively. The impact these costs have 
on performance, particularly with respect to the execute and send operations, are 
discussed later in §10.6.7 and §10.6.8. 

10.5 ParaML nintime system 

Most of the paraML runtime system concerns handling of request and reply messages 
generated by the paraML operations. The process scheduling behaviour must interact 
with the message handling component in a manner which avoids unnecessary blocking 
of runnable processes. Similarly the support for potential multi-threading within 
processes requires some careful manipulation within processes to avoid blocking other 
runnable threads. Hence there are various mechanisms for de.scheduling of 
processes / threads to match the different prerequisite data requirements for continued 
execution of the current operation. 

The measurement of these alternative mechanisms is implicitly bound up with the 
measurements of the various paraML core operations}' and thus is not separated out 
here. All of the measurements are performed by executing the operations a number of 
times, so that the probe effects of the timing routines are minimised by taking an 
average. The tests are also repeated over a number of runs.. It is useful to know the 
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loop ( ) I deschedule / 
reschedule 

0.12 31.89 

0.00 0.11 

0.00 3.57 

0.12 I 35.57 

0.13 I 35.58 

Table 10-2-Times in µsecs for function loop and process descheduling and 

rescheduling, averaged over 1000 000 repetitions. 
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cost just of performing a function call to loop through a number of iterations. Since 

many of the operations also involve repeated descheduling and rescheduling of 

processes, timing of a generic deschedule / reschedule is also given. The average times 

for function loops and process de/ rescheduling are reported in Table 10-2. The times 

are broken down into user, system (sys), and garbage collection (gc) times measured 

using the System. Timer facilities in SML/NJ. The sum of these three times is also 

given, together with an elapsed wallclock time measured using gettimeofday (). 

The tests were measured mostly without interference from other users of the machine; 

however, other AP /Linux processes are occasionally scheduled, and thus the elapsed 

time is perhaps the fairest measure of performance. Note that the per-process times 

are measured on the basis of an MPI process, effectively the paraML runtime system, 

not on an individual paraML process basis. 

In CML, Reppy reports that the cost of thread switching on a SP ARC 2 

computer averages 22 microseconds. The performance difference with paraML' s 

process descheduling/rescheduling (effectively a process switch) is due to the different 

architecture and to the increased overheads in paraML. Performing a process 

deschedule requires saving both the current thread continuation and identifier as well 

as updating the suspended process information, whereas CML only requires the thread 

continuation and identifier to be saved. There are similar overheads on rescheduling. 

In the times reported, the test program does not need to do any checking for messages, 

and thus these times do not include times for performing the message arrival check and 

handling operations. The additional costs for such operations are those for setting 

atomic regions around a block of code and performing an :rvfPI probe. These are of the 

order of 50 microseconds. 

10.6 ParaML operations 

The most interesting things to measure are the paraML operations themselves. Some of 

the operations, such as probe, require no communication with remote paraML runtime 

systems. The results for these operations are thus reported in table form, because they 

are independent of the number of processes in the system. Other operations, such as 

execute, are dependent on various aspects of the current system state. For instance, 
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time self id probe recv self_port -
user 2.00 + 4.00 14.00 + 8.00 52.00 + 8.72 113.00 + 13.45 

gc 2.00 + 4.31 11.00 + 8.31 5.00 + 6.71 12.00 + 09 .80 

system 0.00 + 0.00 0.00 + 0.00 4.00 + 4.90 43.00 + 11.87 

sum I 4.oo + 4.9o 25.00 + 5.00 61.00 + 3.00 168.00 + 04.00 

elapsed 110.80 + 7.74 30.80 + 2.56 66.20 + 2.96 172.10 + 02.55 

Table 10-3 -Times and(+) standard deviations in µsecs for self _id, probe, recv 

and self _port operations, averaged over 1000 repetitions, 10 runs. 

if a remote PE is heavily loaded with executing processes, it can delay the time taken 
to satisfy requests which involve communications with that paraML runtime system. 
The results for these operations are reported as graphs, where the number of processes 
in the system is the independent variable. 

10.6.1 self id 

The self _id operation is very low-cost, since it involves only finding the current VP's 
data structure and retrieving the process name object. The times for the operation are 
given in Table 10-3. Considerable variation in the times between runs is observable, 
and there is a big relative difference between the elapsed time and the sum of process 
time, which may be due to other users of the computer at the time the test was being 
performed. No interactions with other processes are necessary. 

10.6.2 probe 

The times for probe are given in Table 10-3, and are relatively low-cost again because 
there is no inter-process communication required. The operation needs to examine the 
state of the queue associated with the port name, which requires slightly more data 
structure manipulation than for self_id. Note that this operation does not call the 
MP I_ Probe operation, since it is the internal paraML data structures that must be 
checked, not the MJ?I message queues which are manipulated only by the message 
handling component of the paraML runtime system. The operation must also do some 
error checking, since a process may attempt to probe a port that does not belong to it, 
and this error condition returns an exception. 

10.6.3 recv 

The rec v operation is roughly twice as slow as the probe operation, as shown in 
Table 10-3. It too is a low-cost operation as measured in this test, because no inter­
process communication is required. The test program initially sends 1000 messages to 
the port, and then sends a start message to a different port on the same process. Thus 
the times being measured do not require the rec v operation to block at all, since it 
blocks on the start message, and then there are 1000 messages to be received on the 
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time I naive self port 

user I 1200.00 + 071.49 

gc 514.44 + 052.30 

system 887.78 + 062.50 

sum I 2602.22 + 084.82 

elapsed I 7060.44 + 228.64 

Table 10-4 -Times and(+) standard deviations in µsecs for naive translation of 

self_port operation, averaged over 1000 repetitions, 10 runs. 
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other port. It would be meaningless to measure blocking times, since they may be 

arbitrarily long. The performance of recv is not affected by the size of the message. 

The reason that recv takes twice as long as probe is that it must do roughly 

twice as much work. Firstly, it has to check to see whether the port queue is non­

empty. If the queue is empty, thread suspension mechanisms are put in place to 

reschedule the thread when a message has arrived that may be received by the thread 

(there may be other threads currently suspended as well). If the queue is not empty, 

then the first message may be dequeued and returned. Similar error checking to the 

probe operation must be performed to prevent processes attempting to receive 

messages from ports not owned by them. 

10.6.4 self _port 

An interesting contrast to the times for the port operation discussed later in §10.6.6 

are the times for a derived operation, self _po rt, given in Table 10-3. The semantics 

of self _port are given simplistically as port (self_ id () ) . The operation is 

very useful for a process to create its own ports, which is often done in order to 

advertise to other processes a willingness to receive data. The operation is also used in 

constructing various of the derived communications operations, which involve creating 

a local port (usually used only once), sending its name to another process, and then 

receiving the data sent by it. The p l ace and retrieve operations are implemented 

in this fashion. 

Since this operation is used regularly, it is sensible to optimise its 

implementation. The act of creating a new local port is much the same as that for 

creating a new remote port, but there are no inter-process messages required. This 

dramatically reduces the elapsed time, and there are also no process rescheduling 

overheads involved. The operation is still around three times as expensive as the 

recv operation, primarily due to the need to create new data structures and insert 

them into existing ones, rather than just looking up existing values. 

To demonstrate the clear advantages of creating such optimised 

implementations, the times for a naive translation of the semantics, albeit with only a 
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Figure 10.5 - Times for process operation with differing numbers of processes. 

single use of the se l f _ i d operation, are shown ip Table 10-4. The code used for the 
test was as fallows: 

l e t v a l rny_id = se l f i d () 
in 

p or t rny_ i d (* 1000 repea t s of th i s l ine timed*) 
e n d 

The massive increase in elapsed time is due to the extra overheads of sending messages 
to the process via the :MPI communications library, and the additional process 
rescheduling and message handling required. For reasons of simplicity, the current 
paraML runtime system implementation does not try to avoid :tv1PI send operations 
when the destination is on the same PE. Significant overheads could be avoided 
clearly, but major changes to the mechanisms for marshalling objects would be required 
also. These changes are foreshadowed for newer versions of the SML/NJ compiler. 

10.6.5 process 

The test program for the pro c es s operation is the first requiring communications 
between different paraML runtime systems. Since the times will be partially 
dependent on the overall load among the collection of runtime systems, the times were 
measured with increasing numbers of processes involved. In each case, the creating 
processes performs 15 process operations, and average the times to give a result for 
just one operation. The number of processes involved in doing these tests ranged from 
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1 to 32, with 10 runs of the program performed for each new process number. Thus, 

for one creating process, 10 runs were performed, and the times are an average of these 

10 runs. For 32 creating processes, 10 runs were performed again, but the times are an 

average of the results reported by each of the processes across these runs. Thus the 

standard deviation shown for the elapsed time reports the range of times for a normal 

distribution across all processes in a system. This seemed a more valid measurement 

to make, since what is interesting is the variation among processes in any particular 

program, not just between runs. 

The results are shown in Figure 10.5, plotted on log-log scales, with the number of 

processes performing the operation on the x-axis. Standard deviation is shown only 

for the elapsed times, since it is fairly negligible, and the log scale distorts minor 

deviations for the garbage collection and system times. The elapsed and user times are 

almost the same, with relatively minor contributions played by the garbage collection 

and system times. Consequently, the sum of the user, gc and system times is not 

shown in the results for this operation and subsequent tests. The elapsed times vary 

from 4.8 to 8.0 milliseconds across the differing numbers of processes. This result 

indicates that the message handling component of the paraML runtime system does 

not cause unnecessary delays in dealing with new process creation requests. It should 

be noted that where there are 32 processes involved, there will be 2 creating processes 

on each of the paraML runtime systems, since it is only a 16-processor APl000+. 

Examining the graph of :MPI performance for small messages in Figure 10.3 illustrates 

that only around 0.35 milliseconds of the overall time of the operation is due to :MPI. 

Another 1 millisecond will be taken up by the marshalling and unmarshalling of 

messages in ML. The bulk of the remaining time is due to the creation of new VP data 

structures for storing information about the new process, setting up handlers for port 

and execute requests, and the usual process rescheduling. 

10.6.6 port 

The times for performing the port operation are measured in identical ways to that 

for the process operation. Again, the times are relatively constant across the range 

of processes measured, gradually increasing from 1.8 to 2.6 milliseconds. The increase 

in time arises due to the increased load across the paraML runtime systems. The 

greater the load, the greater the probability that a paraML runtime system will be 

involved in processing some other request when a new request arrives, and thus the 

new request will be blocked until completion of the earlier one. The :MPI messaging 

costs remain the same, at roughly 0.35 milliseconds. Since there is virtually no 

processing to be performed at the destination paraML runtime system, the marshalling 

overheads of roughly 1 millisecond account for the remaining bulk of this operation's 

cost. 
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10.6.7 execute 

The times for the execute operation are reported in Figure 10.7. The garbage 

collection times are so neglible relative to the other times that they are not shown. 

Again, the way these times were measured was basically identical to that for the 

process and port operation results. However, since the cost of execute is so 

much larger than these others, only 5 operations were performed, rather than 15. Thus 

each process performing the test would create 5 processes. Once all the processes had 

been created, then all processes started to perform execute operations on the 5 

processes it had created. The average of the times for these operations is reported. 

The code to be executed by each new process was the function given in Table 10-1, 

fn () => ( self id () ; () ) . Note that the size of this function is 

approximately 110 Kb, due to the manner in which SML/NJ marshals objects. The 

large size is due to inclusion of the self_ id operation in the function, which thus 

requires the entire paraML runtime system structure to be copied. 

The average elapsed times increase progressively from approximately 38 to 72 

milliseconds. The time required to send 110 Kb messages in 11:PI is given in the graph 

for large messages in Figure 10.3, and is approximately 9.2 milliseconds. The 

overheads of marshalling and unmarshalling such large messages plus the replies 

account for an additional 19 milliseconds. Network contention is probably the major 

factor in the increase in times as the number of processes increases. Since the physical 

network cannot carry two messages simultaneously through the same piece of wire, the 

communications for an execute operation may be blocked for greater periods of time 

while other communications are being completed. Another factor that comes into play 

more frequently with messages of this size is the occasional need to perform heap re­

sizing prior to message buffer allocation. For large messages, there is an increased 

probability that the current available space in the heap will be insufficient. Increasing 

the heapsize also involves a garbage collection operation. 

The cost of the execute operation is the dominant factor in the overheads of 

using processes in paraML. If the marshalling mechanism could be altered to avoid 

copying the paraML runtime system structure ( or indeed other structures that do not 

alter between paraML runtime systems), the time for the operation would be much 

reduced. The same execute test program run with the null function instead of the 

function which performs self_ id, reports only 4.6 milliseconds for the operation. 

The reason for the order of magnitude improvement in times is due to the decreased 

copying overheads. Unfortunately, such reduced copying is not currently available for 

useful process executable functions. 

Although it is relatively difficult to provide meaningful comparisons with 

alternative systems, it is interesting to note the times for process creation in AP/ Linux. 

Executing a trivial program (such as /bin/hostname) with the prun operation 

(which establishes a set of processes, in this case 1, running the given program on a 

subset of the PEs of the APl000+) takes 160 milliseconds. Various sockets and inter­

PE communications must be performed for a prun operation. In contrast, the fork of a 
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Figure 10.8- Elapsed sending times for one process and different message sizes. 

null process in the Linux benchmark suite for AP /Linux takes approximately 4.3 
milliseconds. 

10.6.8 send 

A number of tests were performed for the send operation, since performance varies 
according to two factors: first, the amount of data being sent, and second, the overall 
load across the paraML runtime systems. 

The first set of results, Figure 10.8, report the elapsed times to perform sending of 
messages of varying sizes. These times are averaged as usual over a number of send 
operations, and over 10 runs. The standard deviation represents the difference 
between runs, since there is only one process involved. Mostly this standard deviation 
is negligible. The messages being sent are integer arrays, ranging in size from 1 to 
10000. The overall size in bytes of a selection of these different arrays is given in Table 
10-1. Effectively, there is a 12 byte overhead for the header, plus a 16 byte overhead 
for the array, plus 4 bytes for each integer. The times are given for sending to a port on 
a remote process and a port on the local process. The local sending is actually slightly 
more expensive than the remote sending, which is probably due to the additional 
memory copying involved in the MPI implementation for local sending. Again, this 
demonstrates a potential for optimising performance by avoiding any interaction with 
the MPI system for operations that involve only the local paraML runtime system. The 
times are roughly four to six times as slow as the equivalent MPI times reported in 
Figure 10.3 and Figure 10.4. The difference is explained by the increased times for 
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Figure 10.9-Sending times for differing numbers of processes. 

marshalling and unmarshalling messages and the message handling times to queue 

messages into the destination ports. The times for ML-style messaging in :MPI plus the 

marshalling/ unmarshalling overheads account for roughly 1.1 of the 1.5 millisecond 

total elapsed time for arrays less than 100 integers long. At the 10000 integer array 

point, the :tv'WI and marshalling/ unmarshalling costs account for approximately 12 of 

the 15.5 milliseconds elapsed time. 

The next set of results, sending 1 integer arrays to ports on remote processes, is 

presented in four different ways. The times are averaged over 100 sends and 10 runs, 

with the number of processes involved in sending ranging from 1 to 32. While there are 

16 or fewer processes, only one process is executing on each paraML runtime system. 

After this, every paraML runtime system has at least one process executing, and 

sometimes two; at 32 processes there are two processes on each paraML runtime 

system. 

The first graph in this series, Figure 10.9, measures standard deviation in the 

same way as for the process, port and execute graphs, being the variation in 

times any individual process may expect when the total number of processes is set. 

The times when the number of sending processes is equal to or less than 16 are all fairly 

uniform in the range 1.5 to 2.0 milliseconds, with little variation at all in the elapsed 

times. Immediately the number of processes rises to 17, with one paraML runtime 

system now executing two processes, there is both a rise in the times, and a noticeable 

jump in the standard deviation. The times gradually increase as the number of 

processes increases, from around 2.0 to 3.3 milliseconds. 
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Figure 10.10- Sending times with standard deviation between runs. 

The next graph plots the same results, but instead of being the average from each 
of the processes across all the runs for any particular number of processes, it is now an 
average across the average from each run. Standard deviation is thus measuring the 
differences between runs. Unlike the previous graph, almost no deviation is observed, 
which probably arises due to an absence of other users of the machine when the tests 
were run. 

The final two graphs in the series examine the sending times from a per-process 
basis. In Figure 10.11, the average elapsed times from each process are plotted as a 
scatter graph. In the range 1 to 16 processes, the finishing times are all clumped 
together reasonably densely. Again, as soon as 17 processes are involved, differences 
emerge with three distinct clumps, which coalesces into two main clumps for the results 
for 20 and 24 processes. For the final two data points of 28 and 32 processes, it splits 
again into 3 distinct clumps of finishing times. In the range 17 to 32 processes, there is 
still a clump of processes whose elapsed time for completion is the same as that in the 
first range of 1 to 16, suggesting that the first process on each paraML runtime system 
takes much the same time as before. 

The second scatter plot examines the average user times for each of the processes 
involved, as shown in Figure 10.12. These results show almost uniform scattering of 
times, without distinct clumping at all. These results may reflect the iterated starting 
times, since each process must receive a message to commence their timing, and thus 
each later process will commence timing when there is slightly increased load across the 
paraML runtime systems, thus delaying the time to complete its own test. 
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Figure 10.13-Times for Mandelbrot with differing numbers of processes. 

10. 7 Mandelbrot benchmark 

The SML/NJ version 0.93 distribution inc~udes a benchmark suite of applications. 
Any set of benchmarks is open to debate about whether the applications are 
representative of real-world programming or not. Instead of examining each of the 
applications, I have used only the Mandelbrot benchmark to illustrate both potential 
advantages and disadvantages of paraML and the pitfalls in such analysis more 
generally. The Mandelbrot benchmark implements Mandelbrot's equation. Completion 
time depends on the size of the initial configuration. Partitioning of the problem is 
straightforward, simply by breaking up the initial configuration's data points into 
chunks and allocating them in a round robin fashion to different processes. The 
sequential implementation without any paraML overhead is used as the base case 
against which the process-based solutions are measured. 

In Figure 10.13, the elapsed times for the Mandelbrot program are reported. 
Standard deviation between runs is almost non-existent. There are five curves: for the 
sequential program, and then for 2, 4, 8 and 16 process solutions. Both axes are 
plotted on log scales, with the size of the initial Mandelbrot configuration as the 
independent variable. The times reported include the time taken to establish processes 
and commence their execution. As can be seen from the results, the sequential solution 
is fastest for a problem of size 64. Subsequently, doubling the problem size requires a 
doubling in the number of processes to achieve the optimal completion time, up to size 
2048 and larger, where 16 processes provides the fastest time to completion. 
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Effectively, for a given problem size, walking along a curve joining the lowest points on 

the graph shows which number of processes will be required for the fastest solution. 

Since there is no inter-process communication once all processes have started 

executing, other than the final collation of partial results, the algorithm is (what is often 

referred to as) ✓/embarrassingly parallel." 

Before getting carried away with the apparent utility of having multiple processes 

to solve problems faster, consideration of the costs involved is also essential. Figure 

10.14 illustrates that at size 64 for the Mandelbrot problem, more processes are 

actually a disadvantage. The reason for this is that in the current implementation of 

paraML, process creation/ execution costs are proportional to the number of processes 

being created. The sequential time for the solution negates any benefit of dividing such 

a small problem into pieces. Note that the one process solution is actually the 

sequential solution, and that the ideal speed line plotted is the speed for the sequential 

solution multiplied by the number of processes available. 

In contrast, Figure 10.15 shows that when the problem size is 8192, process 

creation/ execution overheads have been almost completely amortised. Thus the 

speedup graph is almost perfectly linear. With 16 processes, it is just detectable that 

the speed is not quite 16 times the sequential speed. This kind of variation 

demonstrates why benchmarks for any parallel program must be treated carefully. 
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Figure 10.15 - Speed for Mandelbrot at size 8192. 

operation I time percentage 

self_port 0.17 0.38% 

process 4.8 10.78% 
, 

send I 1.5 3.37% 

execute I 38 85.32% 

recv I 0.066 0.15% 

total I 44.536 100% 

-

Table 10-5 - Costs of paraML operations per process in Mandelbrot program; 
times in milliseconds 

The paraML operations involved for each process in the Mandelbrot program are 
a single one each of self _port, process, execute, send and recv. From the 
times reported earlier, the costs of each operation can be approximated. These are 
given in Table 10-5, illustrating yet again that the execute operation dominates 
overall overheads in the current implementation, with 85% of the time due to paraML 
operations. Since the sequential solution at size 64 takes approximately 120 
milliseconds to complete, it is not suprising that a two-process solution takes longer, as 
each process requires 44.5 milliseconds of paraML overhead, plus at least half the 
sequential solution time (adding another 60 milliseconds). The elapsed time for this 
version will be minimally the time at which the last process commences execution, plus 
half the solution time. When the size of the Mandelbrot is 8192 however, the 16 x 44.5 
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milliseconds overhead for paraML is dwarfed by the solution time, which 1s 

approximately 212 seconds for the sequential version. 

10.8 Optimisations 

The Mandelbrot program demonstrates that the most crucial thing to optimise would 

be the overheads in the execute operation, particularly for groups of processes. 

Ideally, any group operation should only take of the order log(n) as long as a single 

operation, where n is the size of the group. On the APl000+, with its hardware 

broadcast network this should easily be achievable with some modifications to the 

paraML runtime system implementation. The primary restriction to improved 

performance using an MPI_Bcast operation instead of MPI_Send is the synchronous 

nature of the broadcast primitive. Thus all paraML runtime systems would need to 

participate in a group operation, even if the group did not span all the nodes. The 

implementation could be tuned to select either a MPI_Bcast or create a tree 

broadcast from MPI _ Sends according to the size of the group. 

More generally, a huge saving in time could be achieved by altering the manner in 

which marshalling of objects is performed in the SML / NJ system. Since the paraML 

runtime system code, represented in a single structure, never changes, t.1-iere is no need 

to copy the structure when marshalling a function that uses paraML operations. All of 

the data structures in the paraML runtime system are protected from copying by 

isolating them with the setvar / getvar primitives. A substantial modification to 

the marshalling code could have the desired effect, thereby reducing the size of 

execute requests from ll0Kb to only a few kilobytes at most. The overheads in 

process creation/ execution would be dramatically reduced, thus reducing the point at 

which process overheads would be amortised by the potential speedup. This 

observation is borne out by the comparison of execute times with the null function 

versus the paraML executable function involving self_ id, which gave an order of 

magnitude improvement. 

Two other less major contributors to optimisation would be multi-port creation 

operations and use-once ports. Since every port operation requires a request/ reply 

communication with a remote paraML runtime system, if these could be bundled 

together into a single request, large savings would be made. The marginally increased 

size of data would be completely offset by the reduction in repeated message latencies. 

Use-once ports occur quite frequently in the implementation of several of the derived 

operations. In these operations, a port is created solely for the purpose of receiving an 

answer, and it is thrown away at the end of the operation. Instead of paying the price 

of the self _port operation each time, use-once ports could be allocated as needed, 

and then their data structures placed on a free list for reuse once the operation has 

finished with them. The concept is somewhat limited, since they could not be made 

available to the user due to their generic System. Unsafe . obj e ct typing, and the 

associated cast operations required to preserve the type-safe communications in 

paraML. 
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10.9 Conclusion 

The degree to which the paraML system meets the efficiency aspects of its stated goal 
of supporting safe and efficient high performance programming is moot. Ultimately, 
high performance is judged by the ability to deliver better performance than a 
sequential system and also by an ability to deliver scalable performance in the face of 
increasing system resources for a broad range of applications. There remains 
considerable scope for optimisation 'of aspects of the current implementation to 
achieve better performance. Nevertheless, the existing system demonstrates that 
process-oriented computing for distributed address spaces in an ML language 
framework is practicable and need not be inefficient. The basic construction of the 
system illustrates acceptable scalability for the paraML operations as the number of 
processes increases. For problems that do not require large amounts of inter-process 
communication during their execution, the existing implementation allows process­
based solutions to provide appreciably faster performance once sequential execution 
time grows beyond a few seconds. 
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11. Future research 

11.1 Introduction -

This thesis has explored in depth the design, theoretical specification, and practical 

application and implementation issues for a process-oriented programming language. 

The same framework is used in discussing avenues for future research. 

11.2 Design 

The design of paraML provides a close-to-minimal set of extensions for process­

oriented programming. A characteristic of these operations is that they involve at most 

two processes and/ or one port. The benefit of this characteristic is that theoretical 

specifications of the extensions are relatively straightforward. Two obvious avenues 

for future research are collective operations and the replacement of a choice primitive 

for the probe operation. Both would break the simplicity of having at most two 

interacting processes to an operation. 

It is clear that for practical parallel programming, the ability to specify collective 

operations over a set of processes or communication ports is highly desirable. The 

difficulty arises in finding an appropriately minimal set of such collective operations 

and specifying them theoretically. Krumvieda' s work with Distributed ML and its 

multi.ports provides an example of one possible option [Kru93]. The approach taken 

in this thesis of specifying collective operations as derivations from the core paraML 

operations, while utilitarian, may lead to some undesirable performance 

characteristics. Finding collective operations that are as flexible and powerful for 

building abstractions as the paraML core operations, yet as straightforward to model 

in the context of dynamic process and port creation, would be an interesting challenge. 

The decision to use probe rather than a choice primitive was made primarily 

because of the ML type system. Had the primitives been intended for an untyped 

language such as Lisp, or a language with dynamic typing at runtime such as Scheme, a 

choice primitive might have been selected instead. In either case, it would be possible 

to construct lists of communication ports where the type of objects to be received on 

each port might differ, and then choose one port non-deterministically. It would be an 

intriguing exercise to apply the paraML extensions to a language providing similar high 

level facilities to ML, and analyse which choices would be different. 

The other obvious future work would be to incorporate shared address space 

concurrency extensions along the lines of CML into the language. The desirability of 
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such a two-level approach to the provision of concurrency (that is, those which operate 
in a shared address space environment and those which operate in the context of a 
distributed address space) has been argued earlier. The practical implementation of 
such a system is relatively straightforward, but to achieve a clean integration of this at 
the design level and in the theoretical specification is more challenging. 

11.3 Theory 

The theoretical specification of the semantics of the paraML language is valuable for 
building an implementation of paraML. One of the other advantages of this style of 
semantics was the inclusion of references and exceptions in the sequential calculus. 
The major contribution of the theoretical work has been to show how values in the 
calculus, including references and exceptions, are transmitted between distributed 
address space evaluation environments. However, the style of semantics adopted 
makes no provision for reasoning about equivalence between different programs. 
ParaML shares this limitation with CML since I have adopted the style used by Reppy 
in his dissertation. Program fragment equivalence can be particularly useful in 
determining possible classes of optimisations. The work on providing an alternative 
theoretical model for CML by Ferreira et al [FHJ95], equivalent to Reppy' s semantics, 
provides an example approach to developing such a semantics. Alternatively, the L TS 
style adopted for Facile [TLG92] could be used. The inclusion of locality modelling in 
the Facile semantics is particularly attractive. 

11.4 Practice 

Although earlier versions of paraML had users other than the author involved in 
developing applications, the current system has had less testing. Various 
improvements were made to the earlier versions as a result of user-feedback, which 
ultimately led to the complete redesign of the language. Additional feedback would 
assist in critical analysis of the efficacy of the current system's design and 
implementation choices. 

It would be desirable also to complete any future implementation on top of the 
latest versions of the SML/NJ compiler (version 1.09 and later), since they support the 
newly-standardised library modules and provide better foreign language interfaces. 
Various other changes in the SML/NJ compiler would assist in making the 
implementation of paraML more portable and robust. For instance, the 
standardisation of interfaces to POSIX definitions would make the provision of a low­
level concurrent I/ 0 library more portable. Alternatively, the Objective ML system 
could be used [RV96]; its smaller memory footprint might optimise aspects of the 
performance. Similarly, some of the techniques for making use of type information at 
runtime demonstrated in the TIL compiler [Mor95, TMC +96] hold some intriguing 
possibilities for optimising communications. 
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An interesting experiment involves exploring alternative scheduling policies and 

implementations of the different layers in the programming model. Such an experiment 

would require providing clearer abstractions between the different layers in the 

paraML runtime system. The STING system uses a similar approach to experiment 

with virtual processor scheduling UP92]. Alternatives such as gang scheduling for 

process groups might be particularly appropriate if stronger support for the derived 

operations in paraML were thought desirable. 

Another experiment would be to explore garbage collection of data structures for 

uncontactable processes and ports. At present, a process either executes forever (at 

least until the root process terminates) or terminates. Since the type system guarantees 

that the result from a process is the unit value, any data structures created by the 

process can be garbage collected on termination. There is also some state managed by 

the paraML runtime system for the process and its ports, which can be garbage 

collected on process termination. However, if the process is still executing/ it would be 

elegant to garbage collect the entire process if it is uncontactable by other processes 

and it is incapable of contacting processes in its own right. In CML, this is readily 

achievable since garbage collection is performed over the entire set of threads and 

channels. Any thread which becomes disconnected from the active part of the system 

will be identified as garbage (since it will be attempting to perform blocking 

communication on a channel that no other thread knows about) . In paraML, this 

situation is significantly more complex. The only case where it would be acceptable to 

garbage collect a process would be when all threads within the process were 

attempting to perform blocking communications on ports, and none of the associated 

port names existed in the remainder of the system. Since the system is distributed, 

identification of the non-existence of these port names becomes a global garbage 

collection problem. Significant changes to the existing garbage collection algorithm 

would be required in order to identify both the execution state of processes and the 

distributed knowledge of port names. 

Load balancing of paraML systems might be a more useful experiment in the 

context of achieving high performance. The evaluation state of a process can be 

captured with continuations, and simple data structures represent the state associated 

with the process and its ports. If the system detected cases of serious load imbalance, 

these data structures and the evaluation continuation could be shifted to a less heavily 

loaded paraML runtime system. Forwarding information would need to be left at the 

old runtime system to make sure that any messages were correctly delivered to the new 

location. The data structures used to represent process names and port names could 

be updated on information that a process had been moved from one paraML runtime 

system process to another. 

As with all systems constructed from processes, debugging facilities are 

inadequate for paraML. As yet, no breakthrough has been achieved in making such 

parallel debugging systems as easy to use as their sequential counterparts. The 
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challenges faced in a system like paraML with dynamic process and port 
communication make this problem doubly hard. 

Lastly, it would be valuable to explore implementation of paraML on other 
multicomputer platforms and also to include shared address space computers such as 
the SGI PowerChallenge. One of the dangers of developing a language such as paraML 
on a single platform is that the language can start to reflect particular biases in the 
underlying architecture and operating system. The major bias that implementation on 
the Fujitsu APl000+ is likely to have caused is an assumption of well-balanced 
communication performance (with low-latency and high-bandwidth characteristics) 
relative to computation performance. A conscious effort has been made to avoid 
additional biases due to the hardware. This effort stands in contrast to the earlier 
versions of paraML, which optimised the implementation using machine-specific 
hardware characteristics such as a separate broadcast network. Another way of 
avoiding such biases has been to use :MPI as the underlying communication platform, 
and to restrict use of the MPI primitives to a fairly minimal set that are efficient on any 
platform. 
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12. Conclusion 
Computing environments that encompass distributed address spaces are ever more 

prevalent. Programming languages for distributed address space computation are 

emerging rapidly. Similarly, researchers are placing increasing emphasis on finding 

effective and high-level solutions to the problems of partitioning programs. Research 

into systems which combine these interests with language mechanisms that are both 

safe and efficient has been relatively rare. In this thesis, I have proposed that the 

concept of process-oriented programming facilities can be used to provide an effective 

solution to some of the problems. The developments outlined in the thesis address the 

areas of interest in novel ways, particularly with respect to the transmission of mutable 

values between processes in distributed address spaces. 

The context for these developments is the language paraML, an extension of ML, 

which provides a process-oriented programming framework. The design of paraML, 

described in Part II, captures the key concerns of distributed address space 

computation, and mechanisms for partitioning and coordination of program 

components. The extensions to ML carry the safe aspects of programming in that 

language into a process-oriented model. The paraML operations are also used in 

developing various alternative forms of communication and synchronisation. 

The ability to formally model the ideas embodied by paraML is critical. In 

Part III, an operational semantics is developed for an untyped A-calculus, called Apv. 

This calculus models the evaluation of programs with processes and ports in the 

context of a distributed address space. The sequential aspects of the calculus closely 

resemble ML, including exceptions and references. The formal modelling of 

transmission of such values among different processes is new. An ability to formally 

describe evaluation with transmitted values will be critical in emerging languages which 

permit computations that may be globally distributed. A polymorphic type discipline 

for Apv is also presented, which is again similar to the type system of ML. The typing of 

\,vis proved sound with respect to its operational semantics. To my knowledge, this is 

the first proof of type soundness for a polymorphic process-oriented language with 

communications involving non-shared mutable values across a distributed address 

space. 

The paraML language has been implemented, and used for various alternative 

programming paradigms and applications, as described in Part IV. The 

implementation of the language and the requirements for building similar systems in the 

framework of multicomputer architectures are described in detail. Performance 

measurements of the system-level aspects of the implementation are presented and 

discussed. These experiments characterise the overheads in using process-oriented 

constructs and demonstrate that paraML is a useful and scalable system for safe and 

efficient high performance programming on distributed address space computers. 

191 





I 

~ .Yi 

i 
~ 

'1 

i 
1 

-"!1 ( 

! 

' I 
I 

APPENDICES 

GLOSSARY 

REFERENCES 

193 



J 



t 
~ • I 

I Ii 

·1., 

Appendix A -1 
Proofs from Chapter 5 

This appendix contains proofs of the lemmas in Chapter 5. Many of the proofs utilise 

partial results from the work of Reppy [Rep92] and Wright and Felleisen [WF91]. 

Proof of Lemma 5-6 

Lemma 5-6 If TE + {x H er} f- e : -rand er'>- er, then TE + {x H er'} f- e : -r. 

Proof. The proof of this lemma is by induction on the height of the typing 

deduction of TE+ {x H er} f- e : -r, and case analysis on the shape of e for the last step. 

Remember that x is not bound in e by the variable convention. 

The cases which are interesting are those which possibly affect the typing 

environment TE's variable component. These cases are: e = x', e = Ax'(e'), e = let x' = 
· ' l ' · ' · /• ' d 0' Allbt v in e, e = et x = e1 in e2, e = : = x, e = exception x in e, an e = p .e. u 

the last three are proven by Reppy for Acv (Lemma A.2 proof, pp.179-180 [Rep92]), 

whose sequential components are effectively identical to Acv. Thus the cases for : = x', 

exception terms and p-bound expressions are the only ones given here. The case for 

the term : = x' follows from the rules for ( -r-app) and ( -r-assign). In this proof, the case 

is shown, but for future lemmas which follow similar strategies using these rules, the 

details will be ignored. 

Case e = : = x'. 

Rule (-r-assign) applies: 

TE + {x H er} I- : = : l/f ref• l/f• l/f and TE + {x H er} I- : = x' : -r 

such that -r = l/f• l/f, then by rules (-r-app) and (-r-var): 

TE + {x H er} I- x' : l/f ref 

By the induction hypothesis: 

TE+ {x H a'} I- : = : l/f ref• l/f• l/f and TE + {x H a'} I- x' : l/f ref 

And by ( -r-a pp) again, 

TE + {x H a'} I- : = x' : -r 

Case e = exception x' in e'. 

Rule (-r-exn) applies: 
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TE + { x H cr, x' H lfl exn} re' : r 
TE+{x H cr} rexception x' in e': r 

By the induction hypothesis: 

TE+ {x Ha', x' Hlfl exn} re': r 

And applying ( r-exn): 

TE+ {x H er'} r exception x' in e' : r 

Case e = p0.e'. 

Rule ( r-rho) applies: 

TE+ {x H Ci, X1 H lf/1 ref, ... , Xn H l/fn ref} re': 'r 

TE±{x H Ci, X1 H lf/1 ref, ... ,Xn H l/fn ref} rV; : lf/; 

TE+ { X H (j} r p(x1, v1) ... (xn, Vn).e': 'r 

By the induction hypothesis: 

TE+ {x Ha', X1 Hlf/1 ref, ... , Xn Hl/1,l refl re': "r 

If x~ FV(vJ, Lemma 5-5 means TE+ { x1 H 1/fi ref, ... , xn H l/1,1 refl rvi: lfli 

and again means TE + { x H a', x1 H lf/1 ref, ... , x,1 H l/1,1 refl r vi : lfli 

Otherwise, if xEFV(vJ, by the induction hypothesis: 

TE + {x H a', X1 H lf/1 ref, ... , Xn H l/1,l refl r vi : lf/i 

And by ( r-rho): 

TE+{x H cr', Xt H lf/1 ref, ... ,Xn H lf/n ref} re': 'r 

TE±{x H cr', X1 H lf/1 ref, ... ,Xn H l/fn ref} rV;: lf/; 

TE+ {x H cr'} r p0.e': r 

Thus the lemma is proved. 

Proof of Lemma 5-7 

• 

Lemma 5-7 (Substitution) If x ~ FV(v), TE r v: r, and TE+ {x H \ia1 ••• \ia11 .cr} r e:-r', 
with {£Xi, ... ,an}nFTV(TE) = 0, then TE r {v/x}e: -r'. 

Proof. Just as in the previous lemma, the proof of the substitution lemma is by 
induction on the height of the typing deduction, and case analysis on the shape of e for 
the last step. Let TE= (VT,ET), VT'=VT + {xH \7'£Xi ... \ian'-r}, and TE'= (VT',ET) in 
the following cases. As in Lemma 5-6, many of the cases are proven by Reppy for Acu 
(Lemma 8.5 proof, pp.181-184 [Rep92]) . Reppy remarks that Wright and Felleisen 
also provide proofs for many of the cases. This situation holds true here also, and 
various of the cases involving references will refer the reader to either their work 
(Lemma 5.3 proof, pp. 28-29 [WF91]) or Reppy's proof. 
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Proof of Lemma 5-7 

Cases e = c, x', Ax' (e'), e1 e21 (e1 • e2), and let x' = v' in e'. See [Rep92] . 

Cases e = Y, ref, !, : =, let x' = e1 in e21 and p0.e'. See [WF91]. 
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Case e = : = x'. Follows from the cases for : = and x' by the rules for ( r-app ), 

( r-assign) and ( r-var). 

Case e = ex. 

Rule ( r-ex) applies, thus ET(ex) = r. 
Since {v / x}ex = ex, ( r-ex) can be applied to get TE I- {v I x}ex: r. 

Case e = exception x' in e'. 

Rule ( r-exn) applies: 

TE' ±{x' H lp"exn} re': r' 

TE/ L • / • / I ,exceptionx ine :r 

By the variable convention, x' ~ FV(v ), so Lemma 5-3 gives: 

TE + { x' H 1P" exn} I- v : r. 

Thus, by the induction hypothesis and rule ( r-exn): 

TE± { x' H lp" exn} r { v Ix }e' : r' 
TE r exception x' in { v Ix }e': r' 

and therefore, TE I- {v I x}(exception x' in e'): r. 

Case e = raise. 

Rule (r-raise) applies, thus TE' I- raise: r where r = lp"exn• lp"• t', for any TE'. 

Hence TE I- raise : r'. Also, since { v Ix} r a i s e = raise, TE 1- { v Ix} r a i s e : r. 

Case e = e' handle. 

Rule ( r-handle) applies, so: 

TE' re': r" 

TE' re' handle : r' 
such that r = lp"exn• (lp"• t') • t'. 

By the induction hypothesis and rule (-r-handle): 

TE r { v Ix }e' : r" 

TE r { v Ix }e' handle : r' 

Therefore, TE I- {v I x}(e handle): r. 

Case e = [ex,v'J. 

The typing rules for raised exceptions gives TE' I- ex : l/f exn and TE' I- v' : l/f, where 

TE' I- [ex,v'J: r'. By the induction hypothesis, TE I- {v/x}ex: l/fexn and TE I- {v/x}v': lp". 

Hence, TE I- {v / x}[ex,v'J : t. 

Thus the lemma is proved. • 
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Proof of Lemma 5-8 

Lemma 5-8 (Type preservation) For any type environment TE, expression e1, and 
type r, such that TE I- e1 : r, if e1 ~ e2 then TE 1- e2 : r. 

Proof. Let E[e] = e1 and E[e'] = e2, and assume that TE' I- e: r' with TE'=(VT',ET'). 
Then by Replacement (Lemma 5-4), it is sufficient to show that TE' I- e': r'. This is 
done by case analysis of the definition of~-

As in Lemma 5-7, many of the cases are proven by either Reppy for Acv (Theorem 
8.7 proof, pp.181-184 [Rep92]) or by Wright and Felleisen (Lemma 4.3 proof, p. 15, 
and Lemma 5.2 proof, pp. 26-28 [WF91]). 

Cases E[c v] ~ E[8(c,v)], E[Ax(e) v] ~ E[{v/x}e], 
E[let x = v in e] ~ E[{v I x}e]. See [Rep92]. 

Case E[Y v] ~ E[v (Ax(Y v) x)]. See [WF91]. 

Case X, E[exception x in e] ~ x+ex, E[{ex/ x}e] ex e:x. 

Then there is a TE = (VT,ET) and types r' and l/f, such that: 

TE±{x H l/fexn} 1-x,e: r' 
TE 1-X, exception x in e: r' 

Let ex be a new exception name (hence exe:x) and define ET'=ET+{ex H l/f exn}; 
obviously ET c ET'. Then by Lemma 5-3: 

TE' I- X, exception x in e : r'. 

By Replacement (Lemma 5-4) and Substitution (Lemma 5-7), TE' I- x+ex,{ex I x}e: r'. 

Case x+ex,E[raise ex v] ~ x+ex,E[[ex, vJ]. 

By rules ( r-raise), ( r-ex) and ( r-app ): 

TE' I- raise: (l/f exn • l/f • r') TE' I-ex: l/f exn 
TE' I-raise ex: l/f • r' 

TE' I-raise ex v: r' 

And thus TE' I- x+ex, [ex,vJ : r' . 

Case x+ex,E[v handle ex v'] ~ x+ex,E[v]. 

Rules ( r-handle) and ( r-app) apply: 

TE' 1-v: r' 
TE' 1-v handle: l/f exn • (l/f • r') • r' 

And thus TE' I- x+ex, V : r'. 

TE' 1-v: l/f 

Case x+ex,E[[ex, v] handle ex v'] ~ x+ex,E[v' v ]. 

Rules ( r-handle), ( r-ex) and ( r-app) apply: 
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TE' f- [ex, v]: r' 

TE' f- [ex, v] handle: l{lexn • (lfl • r') • r' TE' f-ex: l{lexn TE' f-v: lf/ 

TE' f- [ex, v] handle ex: ( 1/f • r') • r' TE' f-v': lf/ • r' 

TE' f- [ex, v] handle ex v': r' 

Th 
TE'f-v':(lfl • r') TE''rv:lfl 

us 
TE' f-v' v: r' 

Case x+ex 1+ex21E[[ex1,v] handle ex2 v'] ~ x+ex1+ex21 E[[ex1,v1] ex 1:;t ex2 • 

Rules ( r-handle), ( r-ex) and ( r-app) apply: 

TE' f- [ex1, v]: r' 

TE' 'r [ex 1, v] handle: lfl' exn • ( lfl' • r') • r' TE' 'r ex2: l/1
1 

exn 

TE' f- [ex 1, v] handle ex2: ( lfl' • r') • r' TE' 'r v': lfl' • r' 

TE' f- [ex 1, v] handle ex2 v': r' 

Thus TE' r x+ex1+ex2t [eX1,V] : -r'. 

Case E[exn e] ~ E[exn]. 
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Rule ( r-app) applies, but due to the way exceptions propagate, the type of the 

expression exn e is also the type of the exception packet exn. 

TE' f-exn: r' TE' f-e: r 

TE' f-exn e: r' 

Cases E[v exn], E[(exn. e)], E[(v. exn)], E[let x = exn in e], E[raise exn e], 

E[raise ex exn], E[e handle ex' exn] ~ E[exn]. 

These cases all follow by similar arguments to that used in the previous case. 

Cases R[ref v] ~ R[p(x,v).x], p8(x,v).R[ ! x] ~ p8(x,v).R[v], 

p8(x,v1).R[: = x v2] ~ p8(x,v2).R[v2], R[p81-P82.e] ~ R[p8182.e]. See [WF91]. 

Case R[p8.e] ~ p8.R[e]. 

The assumption gives TE' r R[p8.e] : -r', so the way to proceed is by induction on the 

st..ructure of R to show TE' r p8.R[e]: r'. 

Cases R = [], (R' e"), (v R'), let x = R' in e". See [WF91]. 

Case (R' . e"). 

Then TE' r (R'[p8.e] . e") : -r', 

and by rule ( r-pair), where r' = rix rz, 

TE' r p8.R'[e] : r 1 and TE' re" : r 2• 

By the induction hypothesis, TE' r p8.R'[e]: r1, and thus TE' r (p8.R'[e]. e"): r'. 

Case (v . R'). 

Similar to the previous case. 
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Case (raise R' e"). 

Then TE' r raise R'[p0.e] e" : r', 

and by rules ( r-raise) and ( r-app ), 

(1) TE' rR'[p0.e]: lflexn 
and TE' r e" : lJI. 
By the induction hypothesis on (1), 

TE' r p0.R'[e]: lfleXn 

And by rules ( r-raise) and ( r-app) again, 

TE' r raise p0.R'[e] e": r'. 

Case (raise ex R'). 

Similar to previous case. 

Case (R' handle ex v). 

Then TE' r R'[p0.e] handle ex v: r', 

and by rules ( r-handle) and ( r-app) twice, 

(2) TE' r R'[p0.e] : r' 
TE' r ex: lf/ exn 
TE' r v : lfl • r1 

By the induction hypothesis on (2), 

TE' r p0.R'[e] : r' 
And by rules ( r-handle) and ( r-app) again, 

TE' r p0.R'[e] handle ex v: r'. 

Case (e" handle ex R'). 

Similar to previous case. 

Thus the lemma is proved. 

Proof of Lemma 5-9 

• 

Lemma 5-9 (Uniform evaluation) For closed expressions e, if no e' exists such that 
e ~ e' and e' is faulty, then either e1l' or e ~ * a where the answer a= {p0.} v I 
{p0.} [ex, v] with ex E X· 

Proof. By induction on the length of the reduction sequence. The proof requires 
that one of the following holds for any expression e: e is faulty, e ~ e' and e' is 
closed, or e is an answer a. 

As in the previous lemmas, many of the cases have been established in the work 
of Wright and Felleisen (Lemma 4-10 proof, p. 19 [WF91]). However, several of the 
cases require further induction on the structure of e, and thus all cases are given in full. 

Case e = c, Y, AX(e ). Then e is an answer a. 
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Case e = x or ex. Since e is closed, these cases cannot occur. 

Case e = let x = e1 in e2• Considering the possible cases for e1, the inductive 

hypothesis gives three situations. If e1 is faulty, then let x = e1 in e2 is faulty. If e1 = 

E1[e'] and e' ~ e", then e = E[e'] with E =let x = E1 in e:i; hence e ~ E[e"]. 

Lastly, if e1 is a value, then let x = e1 in e2 ~ {e1 / x}e2 . 

Case e = (e1 e2). The inductive hypothesis gives three possible situations, depending on 

the nature of e1. If e1 is faulty, then (e1 e2) is faulty. If e1 = E1[e'] and e' ~ e", then e = 

E[e'] with E = (E1 e2); thus e ~ E[e"]. Otherwise, e1 is a value Vv and then there are 

three subcases to consider with e2• If e2 is faulty, then (e1 e2) is faulty. If e2 = E2[e'] and 

e' ~ e'", then e = E[e'] with E = (v1 E2); thus e ~ E[e'"]. Otherwise, e2 is also a 

value, v2• In this instance, the possibilities can be summarised by the following: 

V2 I c AX(e) Y (v1.v2) x ex ref ! := := X 

Vt 

C 

Ax(e) 

y 

(v1 .v2) 

X 

ex 

ref 

:= X 

faulty or faulty or faulty or faulty or 
vr 
~ 

vr 
~ 

vr 
~ 

vr 
~ 

vr 
~ 

vr 
~ 

~ faulty or 

vr vr vr 
~ ~ ~ 

faulty faulty faulty 

X X X 

X X X 

vr vr vr 
~ ~ ~ 

vr 
~ 

faulty 

faulty 

X 

X 

vr 
~ 

X 

X 

X 

X 

X 

X 

X 

x faulty or faulty or faulty or 

X 

X 

X 

X 

X 

X 

vr 
~ 

vr 
~ 

vr 
~ 

vr 
~ 

vr 
~ 

vr 
~ 

faulty faulty faulty 

faulty faulty faulty 

X X X 

X X X 

vr vr vr 
~ ~ ~ 

faulty faulty faulty faulty faulty or x faulty faulty faulty 

faulty faulty faulty faulty 

X X X X 

vr 
~ 

X 

X 

X 

X 

faulty faulty faulty 

X X X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

Entries marked with a x cannot occur because the expression e is not closed. Entries 

with~ indicate that the expression reduces with E = []. 

Case e = (e1 • e2). The inductive hypothesis gives three cases to consider. If e1 is faulty, 

then (e1 • e2) is faulty. If e1 = E1[e'] and e' ~ e", then e = E[e'] with E = (E1 • e2); thus 

e ~ E[e"]. Otherwise, if e1 is a value, then there are three subcases to consider with 

e2• If e2 is faulty, then (e1 • e2) is faulty. If e2 = E2[e'] and e' ~ e"', then e = E[e'] with 

E = (v . E2); thus e ~ E[e'"]. Otherwise, if e2 is also a value, then (e1 • e2) is an answer 

(V1 . V2). 

Case e = exception x in e1• The inductive hypothesis gives three cases to consider. 

If e1 is faulty, then exception x in e1 is faulty. If e1 = E1[e'] and e' ~ e", then e = 

E[e'] with E = exception x in E1; thus e ~ E[e"]. Otherwise, if e1 is a value, then 

X,exception X in el~ x+ex,{ex/x}e1. 
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Case e = raise e1 e2• The inductive hypothesis gives three cases to consider. If e1 is 
faulty, then raise e1 e2 is faulty. If e1 = E1 [e'] and e' ~ e", then e = E[e'] with 
E = raise E1 e,; thus e ~ E[e"]. Otherwise, if e1 is a value (an exception name), then 
there are three subcases to consider with e2• If e2 is faulty, then raise e1 e2 is faulty. If 
e2 = E2[e'] and e' ~ e'", then e = E[e'] with E = raise ex E,; thus e ~ E[e"']. 
Otherwise, if e2 is also a value, then raise e1 e2 ~ [e1,e2]. 

Case e = e1 handle x e2• Similar to previous case. 

Case e = exn. Then e is an unhandled exception packet, which is an answer a. 

Case e = p0.e1• By the induction hypothesis, there are three cases to consider. If e1 is 
faulty, then p8.e1 is faulty. If e1 = E1[e'] and e' ~ e", then e = E[e'] with E = p0.E1; 

hence e ~ E[e"]. Lastly, if e1 is a value, then p8.e1 is an answer a. 

Thus the lemma is proved. • 
Proof of Lemma 5-10 

Lemma 5-10 (Faulty expressions are untypable) If e is faulty, then there are no TE 
and r such that TE I- e : r. 

Proof. It is sufficient to show that the subexpressions e' of e that cause e to be 
faulty are untypable. The proof proceeds by case analysis on the form of the 
subexpression e'. 

As in the previous lemmas, many of the cases have been established in the work 
of Wright and Felleisen (Lemma 4-11 proof, p. 20 and Lemma 5-6 proof, p. 30 
[WF91]). These cases are indicated, and the~ new cases are given in full. 

Case (c v) where 8(c,v) is undefined. See [WF91]. 

Case ( ( v 1 • v 2) v ). Assume that TE I- ( ( v1 . v2) v) : r. Then by rule ( r-app ), the type 
judgement TE I- (v1 • v 2 ) : r' • r is obtained. However, TE I- v 1 : r1 and TE I- v 2 : r21 
which together with rule ( r-pair) gives TE I- (v1 • v2) : '!jx 1;, which is a contradiction. 

Case ( ! v) where v ~ VAR. See [WF91]. 

Case (: = v) where v ~ VAR. See [WF91]. 

Case pe(x,v2).C[x vi]. See [WF91]. 

Case exception x in C[ ! x]. Assume that TE I- exception x in C[ ! x] : r. Then 
TE' I- C[ ! x] : r by rule (r-exn), where TE'(x) = lJI exn. Since TE" I-! x : ljl' where 
TE' (x) = TE" (x ), TE" I- x : lJI' ref by rules ( r-a pp) and ( r-deref). But this contradicts 
TE"(x) = 1/f exn. 

Case exception x in C[: = x]. Similar to previous case, but uses rule ( r-assign). 

Case exception x in C[x v]. Similar to previous case, but uses rule (r-app). 

~I 
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Case (raise v1 v2) where v1 e; VAR u EXNNAME. Assume that TE r raise v1 v2 : r. 

Then TE r v2 : 1/f and TE r v1 : 1/f exn by rules ( r-app) twice and ( r-raise). However, 

this implies that v 1 is either an exception name or a variable, contrary to the 

assumption. 

Case (e' handle v1 v2) where v1 e; VAR u EXNNAME. Similar to previous case, but uses 

rule ( r-handle). 

Case p0(x,v).C[raise x v']. Assume that TE r p0(x,v).C[raise x v'] : r. Then 

TE' r C[raise xv']: rby rule (r-rho), where TE'(x) = 1/f ref Since TE" rraise xv': 

r then by rules (r-app) and (r-raise), TE" rraise x : vl• r and TE" r x : vi exn 

where TE' (x) = TE" (x ). But this contradicts TE" (x) = vi ref. 

Case pe(x,v).C[e handle xv']. Similar to previous case, but uses rule ( r-handle). 

Thus the lemma is proved. • 
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Appendix A -2 
Proofs from Chapter 7 

This appendix contains proofs of the lemmas in Chapter 7 for Apv. The proofs follow 

the style developed in the work of Reppy [Rep92] and Wright and Felleisen [WF91]. 

Several of the lemmas are extensions of the equivalent proofs given in Appendix A-1. 

Proof of Lemma 7-::1 

Lemma 7-4 If TE+ {x H er} I- e: rand er'-;- er, then TE+ {x H a'} I- e: r. 

Proof. The proof of this lemma is by induction on the height of the typing 

deduction of TE+ {x Her} I- e: r, and case analysis on the shape of e for the last step. 

Remember that x is not bound in e by the variable convention. 

As in Lemma 5-6, the cases which are interesting are those which possibly affect 

the typing environment TE' s variable component. The two new cases which must be 

considerd are: e = proc x' in e' and e = prt x' on nine'. 

C I • I ase e = pro c x 1 n e . 

Rule ( r-proc) applies: 

TE± { x Her, x' H ProcessName} 1-e': r 

TE+{x Her} 1-proc x' in e': r 

By the induction hypothesis: 

TE+ {x H d, x' HProcessName} 1-e': r 

And applying ( r-proc): 

TE+ {x H er'} 1-proc x' in e': r. 

Case e = prt x' on nine'. 

Rule ( r-prt) applies: 

TE ±{x Her} 1-n: ProcessName TE±{x H er,x' H l/f PortName} 1-e': r 

TE+{x Her} 1-prt x' on nine': r 

By the induction hypothesis: 

TE+ {x H d, x' Hl/f PortName} 1-e': rand TE+ {x H a'} 1-n: ProcessName. 
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Thus applying ( r-prt) gives: 

TE+ {x H a'} rprt x' on nine' : r. 

Thus the lemma is proved. • 

Proof of Lemma 7-5 

Lemma 7-5 (Substitution) If x ~ FV(v), TE I- v: r, and TE+ {x H \ia1 ••• \iawa} I- e:r', 
with {exi, . .. ,an}nFTV(TE) = 0, then TE 1- {v/x}e: r' . 

Proof. Just as in the previous lemma, the proof of the substitution lemma is by 
induction on the height of the typing deduction, and case analysis on the shape of e for 
the last step. Let TE= (VT,ET,PT), VT'=VT + {xH\ia1 ••• \ia11 .r}, and TE' = 
(VT',ET,PT) in the following cases. The new cases to consider are those for the new 
expressions in Apv. 

Case e = n. 

Rule ( r-procvar) applies, thus TE I- n: r', where r' = ProcessName. Since {v I x}n = n, 
rule ( r-procvar) can be applied to get TE I- { v Ix} n : r'. 

Case e = </). 

Rule (r-prtvar) applies, thus PT(¢)= r'. Since {v/x}</J= </), rule (r-prtvar) can be 
applied to get TE I- {v / x}</J: r'. 

Case e = proc x' in e'. 

Rule ( r-proc) applies: 

TE'± { x' H ProcessN ame} re' : r' 
TE' rproc x' in e': r' 

By the variable convention, x' ~ FV(v), so Lemma 7-1 gives: 

TE+ {x' H ProcessName} I- v : r. 

Thus, by the induction hypothesis and rule ( r-proc): 

TE± { x' H ProcessN ame} r { v Ix }e' : r' 
TE rproc x' in {v!x}e': r' 

and therefore, TE I- {v / x}(proc x' in e'): r'. 

Case e = prt x' on nine'. 

Rule ( r-prt) applies: 

TE' r n: ProcessName TE'± { x' H 1/f PortName} re': r' 
TE' rprt x' on nine': r' 

~1' 
11 

ll 

t 



fl 

Proof of Lemma 7-5 

By the variable convention, x' ~ FV(v), so Lemma 7-1 gives: 

TE+ {x' H l/f PortName} f- v: r. 

Thus, by the induction hypothesis and rule ( r-proc): 

TE f- n: ProcessName TE± {x' H l/f PortName} f- { v Ix }e': r' 

TE f-prt x' on n in { v Ix }e': r' 

and therefore, TE f- {v / x}(prt x' on nine): r'. 

Case e = execute e'. 

Rule ( r-execute) applies: 

TE' f- n: ProcessName TE' f-v': unit • unit 

TE' f- execute (n. v'): unit 

By the induction hypothesis and rule ( r-execute): 

TE f-{ v Ix }n: ProcessName TE r { v Ix }v': unit • unit 

TE I-execute ({v/x}n. {v/x}v'):unit 

and therefore, TE f- {v / x}(execu te (n. v')): r. 

Case e = self id e'. 
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Rule (r-self_id) and rule (r-app) apply, so TE' f- self_id e': r', where r'= 

ProcessName, for any TE'. In particular, TE f- self _id e': r', and thus TE f- e': unit. 

By the induction hypothesis, TE f- {v/x}e': unit. Since {v/x}self_id = self_id, 

TE f- { v Ix}( s e l f i d e') : r' . 

Case e = send e'. 

Rule ( r-send) applies: 

TE' f-</>: l/f PortName TE' f-v': lfl .th , (t1-i ') d ,..., ·t 
w1 e = 'f' . v an " = unz . 

TE' f- send ( ¢. v'): unit 

By the induction hypothesis and rule ( -r-send): 

TE f-{ v Ix }<P: l/f PortName TE f- { v Ix }v': lfl 

TE f-send ({v/x}</J. {v/x}v'): unit 

and therefore, TE f- {v / x}(s end (¢. v')) : r'. 

, 
Case e = recv e · 

Rule ( r-recv) applies: 

TE' f- ¢: lf/ PortName withe' = </J and r = lfl. 
TE' f- recv </>: l/f 
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By the induction hypothesis and rule ( r-recv ): 

TE r{v/x}</J:l/f PortName 
TE rrecv {v/x}</J:l/f 

and therefore, TE r {v/x}(recv </>): r'. 

Case e = probe e'. Similar to previous case. 

Thus the lemma is proved. 

Proof of Theorem 7 -6 

• 

Theorem 7-6 (Sequential type preservation) For any type environment TE, 
expression e1, and type r, such that TE r e1 : r, if e1 ~ e2 then TE r- e2 : -r. 
Proof. Let E[e] = e1 and E[e'] = e21 and assume that TE' re: r' with 
TE'= (VT',ET',PT'). Then by the Replacement Lemma (Lemma 7-2), it is sufficient to 
show that TE' r e': r'. This is done by case analysis of the definition of ~, 
effective! y on the structure of e. 

In fact, since the sequential aspects of Af'V are almost identical to those of Aro, there 
is very little work to do. The case for the exception term reduction is no longer 
required since this is now part of the parallel evaluation relation. All cases other than 
that for the reduction R[pe.e] ~ pe.R[e] are identical to those given in Lemma 5-8. 
The proof for the Apv-Piift case is dependent on the structure of R. As R has been 
extended, this requires some new subcases. 

Case R[p0.e] ~ p0.R[e] . 

The assumption gives TE' r R[p0.e]: r', so the way to proceed is by induction on the 
structure of R to show TE' r p0.R[e]: r'. 

Cases R = [ ], (R' e"), (v R'), let x = R' in e", (R'. e"), (v . R'), (raise R' e"), 
(raise ex R'), (R' handle ex v), and (e" handle ex R'). See proof of 
Lemma 5-8. 

Case execute R'. 

Then TE' r execute R'[p0.e] : r', where r' = unit 

and by rule ( r-execute) and ( r-pair), 

(1) TE' r R'[p0.e]: ProcessName x unit • unit. 

By the induction hypothesis on (1), 

TE' r p8.R'[e] : ProcessName x unit • unit. 

And by rule ( r-execute) and ( r-pair) again, 

TE' r execute p8.R'[e] : r'. 

Case self id R'. 

Then TE' r self_id R'[pe.e]: r', where r' = ProcessName 
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and by rule ( -r-self_id) and (-r-app ), 

(2) TE' r R'[p0.e] : unit. 

By the induction hypothesis on (2), 

TE' r p0.R'[e] : unit. 

And by rule (-r-self_id) and (-r-app) again, 

TE' r self_ id p0.R'[e] : r. 
Case send R'. 

Then TE' r send R'[p0.e] : r, where r' = unit 

and by rule (-r-send) and (-r-pair), 

( 3) TE' r R '[p0.e] : lfl PortN ame x lfl. 

By the induction hypothesis on (3 ), 
TE' r p0.R'[e] : lfl PortName x lfl. 

And by rule (-r-send) and (-r-pair) again, 

TE' r send p0.R'[e]: r'. 

Case re cv R'. 

Then TE' r recv R'[p0.e] : r 
and by rule (-r-recv) and ( -r-app ), 

(4) TE' r R'[p0.e] : r' PortName. 

By the induction hypothesis on ( 4), 

TE' r p0.R'[e]: t PortName. 

And by rule (-r-recv) and (-r-app) again, 

TE' r recv p0.R'[e]: r. 
Case probe R'. Similar to previous case. 

Thus the theorem is proved. 

Proof of Theorem 7-7 
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• 

The second type preservation theorem states that parallel evaluation preserves 

configuration typing. Before setting out to prove this theorem, two subsidiary lemmas 

are required. These lemmas are required in the cases involving copying of values 

between different processes. 

The first lemma states that if there exists a closed expression consisting of a 

context E and a value v, the expression formed by the copy operation is also closed. 

This is effectively a refinement of Lemma 6-1. Recall that copy is defined in terms of 

mem, which produces a set of memory cells. 
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The formal definition of copy is copy(E,v) = p(mem(E,v)).v 

Lemma A-2-1. If E[v] is closed then copy(E,v) is also closed. 

Proof. The proof proceeds by induction on the structure of v and E, according to 
the definitions of copy and mem. 

Case v = c, Y, ex, n, </J, ref, ! , : =. In each case, v is closed and mem(E,v) = 0, hence 
copy(E,v) is also closed. 

Case v = x. By Lemma 6-1, if x is free, then either x is also free in E[x], which 
contradicts the assumption, or E = pe{x,v').E'. 

Then copy(E,x) = p((mem(p0.E',v'))u{(x,v')}).x. 

By the induction hypothesis, if p0.E'[v'] is closed, then p(mem(p0.E',v')).v' 1s 
also closed. Hence p((mem(p0.E',v'))u{(x,v')}).x = copy(E,x) is closed. 

If p0.E'[v'] is not closed, then it must be because there exists a vi E rng(0) with x 
part of vi (e.g. vi = x, vi = (x . v)) such that p0(x,v').E'[v'] is closed as otherwise 
Lemma 6-1 would not hold. (The situation is dealt with in the recursive definition of 
mem by the case where the evaluation context E does not contain a p-bound memory 
cell (x,v').) Hence p((mem(p0.E',v'))u{(x,v')}).v is closed. 

Thus copy (E,v) is closed when v = x. 

Case v = : = x. Follows by similar arguments to the previous case. 

Case v = lx(e). By Lemma 6-1, if x' is free in 11,x(e), then either x' 
E[11,x(e)], which contradicts the assumption, or E = p0(x',v').E'. 
arguments to the previous cases, copy (E,x') is closed. 

is also free in 
Using similar 

Since 11,x(e) may contain several free variables x/, such that i ranges from 
1 .. IFV(11,x(e))I, there may be several sets of memory cells ei produced by the mem 
operation. The generalised union operation in the definition of mem_gc ensures that 
duplicates are eliminated when combining these sets together to provide a single set of 
memory cells as the result of mem(E,h(e)). The consequence is that 

p( LJmem(E,x') ).11,x(e) = copy(E,11,x(e)) 
x'eFV(J..x(e)) 

1s closed, since any free variables from the 11,x(e) term are now bound in the p-
expression. 

Case v = (v 1 • v2 ). By the induction hypothesis, if E[v 1] is closed then 
p(mem(E,v1)).v1 is closed. Similarly for v2• 

Hence, since p(mem(E,vi)).v1 and p(mem(E,vi)).v2 are closed, copy(E,(v1 • v2)) = 
p((mem(E,v1 )) u (mem(E,v2))).(v1 • v2 ) = is also closed. 

Thus the lemma is proved. • 
The next lemma states that the type of the p-bound expression produced by the 

copy operation from a context and value is the same as the type of the value alone. 
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Lemma A-2-2. If TE' f- E[ v] : -r' and E[ v] is closed, then if there is some TE such that 

TE f- v : r, then TE f- copy(E,v): r. 

Proof. The proof proceeds by induction on the structure of v using the rule ( r-rho ) . 

Case v = c, Y, ex, n, ¢, ref, ! , : =. Since in each case v is closed, mem(E,v) = 0, 

and thus if TE f- v : r, then TE f- p0. v : r by rule ( r-rho ). 

Case v = x, Ax(e), (v 1 • v2), : = x. By Lemma A-2-1, since E[v] is closed, 

p(mem(E,v)).v is closed also. But Lemma 7-2 states that variables in the domain of 

the type environment TE which are not free in v can be ignored when typing v. 

Thus, since TE f- v : r, and p(mem(E,v)).v is closed, TE f- p(mem(E,v)).v : r by 

rule ( r-rho ); in other words, TE f- copy(E,v) : r. 

Thus the lemma is proved. • 

The Parallel type preservation theorem can now be proved. 

Theorem 7-7 (Parallel type preservation) 

with 

If a configuration X,'P is well-formed 

X,'P • X',P 

and, for some exception name typing ET and port name typing PT, 

ET, PT f- X,'P : CT 

Then there is an exception name typing ET', port name typing PT', and configuration 

typing CT', such that the following hold: 

• ETC ET', 

• PT C PT', 

• CT C CT', 

• ET', PT' f- x','P' : CT', and 

• ET', PT' f- X,'P : CT' 

Proof. The final property follows from the others. The proof of the first four 

properties proceeds by case analysis of the left hand side of the parallel evaluation 

relation •. 

Case ET,PT f- X,'P+(n; <1>; e) : CT 

If e ~ e', then, by Sequential type preservation (Theorem 7-7), 

( {},ET,PT) f- e' : CT(n) 

and hence 
ET,PT f- X,'P+(n; <1>; e') : CT 

Letting ET' = ET, PT' = PT, and CT' = CT satisfies the theorem. 
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Case ET,PT I- X,'P+(n; <P; E[exception x in e]): CT 

Then there is a type environment TE = (VT,ET,PT) and types rand l/1, such that 

TE ± { x H l/f exn} r- e : r 
TE r-exception x in e: r 

({},ET,PT) I- E[exception x in e] : CT(n) 

Let ex be the name of the new exception (hence ex ex) and define ET' = ET+{ exH lfl exn} 
(obviously ET c ET'). Then by Lemma 7-1, 

({},ET',PT) I- E[exception x in e]: CT(n) 

Thus, by the Replacement (7-2) and Substitution (7-5) lemmas, 

({},ET',PT) I- E[{ex/x}e]: CT(n) 

and therefore, ET',PT 1-x+ex,P+(n; <P; E[{ex/x}e]): CT. Letting PT'= PT, and CT'= 
CT satisfies the theorem. 

Case ET,PT I- X,'P+(n; <P; E[proc x in e]) : CT 

Then there is a type environment TE = (VT,ET,PT) and type r, such that 

TE±{x H ProcessName} r-e: r 
TE r-pro~ x in e: r 

({},ET,PT) I- E[proc x in e] : CT(n) 

Let n be the identifying name of the new process (hence 'It e PROCN ('P) ). Trivially by 
rule ( r-procvar), ET,PT I- n : ProcessName. Then by Lemma 7-1, 

({},ET,PT) I- E[proc x in e]: CT(n) 

Thus, by the Replacement (7-2) and Substitution (7-5) lemmas, 

({},ET,PT) I- E[{n' / x}e]: CT(n) 

and therefore, ET,PT I- X,'P + (n; <P; E[{n' / x}e]) + (n'; 0; E) : CT+ {n H unit}, (recall 
that the type of E is defined to be unit). Letting ET' = ET, PT' = PT, and CT' = 
CT+ {nH unit} satisfies the theorem. 

Case ET,PT I- X,'P+(n; <P; E[self _id ()]): CT 

Then there is a type environment TE= (VT,ET,PT) such that 

,, 
1l 
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TE f- n : ProcessN ame 

TE f-self_id: unit • ProcessName TE f-(): unit 

TE f- sel f_id ( ) : ProcessName 

({},ET,PT) I- E[self _id ()]: CT(n) 

Thus by the Replacement lemma (7-2), 

({},ET,PT) I- E[n] : CT(n) 

Letting ET'= ET, PT'= PT, and CT'= CT satisfies the theorem. 

Case ET,PT I- X,'P+(n; <P; E[prt x on n in e]) : CT 

Then there is a type environment TE = (VT,ET,PT) and types rand l/1, such that 

TE f- n : ProcessN ame 

TE ± { x H 1/f P ortN ame} f- e : r 

TE f-prt x on nine: r 

({},ET,PT) I- E[prt x on nine] : CT(n) 

213 

Let <// be the identifying name of the new port (hence </f e: PORTN('P)udom( <J>)) and 

define PT'= PT+{<// H 1/f PortName} (obviously PT c PT'). Then by Lemma 7-1, 

({},ET,PT') I- E[prt x on nine] : CT(n) 

Thus, by the Replacement (7-2) and Substitution (7-5) lemmas, 

( {},ET,PT') I- E[{ ¢' / x }e] : CT(n) 

and therefore, ET,PT' I- X,'P + (n; <!>+(¢' H ..l); E[{¢' /x}e]) : CT. Letting ET' = ET and 

CT'= CT satisfies the theorem. 

Case ET,PT I- X,'P+(n; <P; E[prt x on n' in e])+(n'; <J>'; es): CT 

Then there is a type environment TE = (VT,ET,PT) and types rand 1/f, such that 

TE f- n : ProcessN ame 

TE f- n' : ProcessN ame 
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TE±{x H 1/f PortName} f-e: r 
TE f-prt x on n' in e : r 

({},ET,PT) f- E[prt x on nine] : CT(n) 

Let q/' be the identifying name of the new port (hence </f' ~PORTN(P) udom(cI> u c1>')) 
and define PT'= PT+{¢" H 1/f PortName} (obviously PT c PT'). Then by Lemma 7-1, 

({},ET,PT') f- E[prt x on n' in e] : CT(n) 

Thus, by the Replacement (7-2) and Substitution (7-5) lemmas, 

({},ET,PT') f- E[{<p'' I x}e]: CT(n) 

and hence, ET,PT' f-X,P + (n; cI>; £[{¢" /x}e]) + (n'; c1>'+(q/' H _l_); es): CT. Letting ET'= 
ET and CT'= CT satisfies the theorem. 

Case ET,PT f- X,P+(n; cI>; £[execute (n'. v)]) +(n'; <tf; E]): CT 

Then there is a type environment TE = (VT,ET,PT), such that 

(1) 

TE f-n': ProcessName 

TE f- v : unit • unit 
TE I-execute (n'. v) : unit 

.~ 
({},ET,PT) f- £[execute ( n'. v)]: CT(n) 

Then by the Replacement lemma, 

(2) ( {},ET,PT) f- E[ ( ) ] : CT(n) 

By Lemma A-2-2 from (1), 

(VT,ET,PT) f- copy (E,v) : unit • unit 

and by Lemma A-2-1, copy (E,v) is closed, which means by Lemma 6-1 

( {},ET,PT) f- copy (E,v) : unit • unit 

Since CT(n') = unit (by virtue of the execution state E of rr), by applying rule ( r-app ), 
(3) ({},ET,PT) f- [(copy (E,v)) ()]: CT(rr) 

Hence, from (2) and (3), 

ET,PT f- X,P+(n; cI>; E[ ()]) +(n'; <P'; [(copy (E,v)) ()]): CT 

Letting ET' = ET, PT' = PT, and CT' = CT satisfies the theorem. 

~: 
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Case ET,PT f- X,'P+(n; <P; E[execute (n'. v)]): CT 

This case deals with the failure conditions, where it is not possible to request a process 

to execute. Then there is a type environment TE= (VT,ET,PT\ such that 

(4) 

TE I- n' : ProcessN ame 

TE 1-v: unit • unit 

TE I-execute (n'. v) : unit 

({},ET,PT) f- E[ execute ( n'. v) ] : CT(n) 

Both exception cases are considered to avoid repetition of the earlier part. The 

embedding of the exception names used in the surrounding context for a "Apv program 

means that both the following exist: 

and 

ET(NoSuchProcess) = ProcessName exn 

TE 1-NoSuchProcess: ProcessName exn 

ET(ProcessExecuting) = ProcessName exn 

TE 1-ProcessExecuting: ProcessName exn 

Then by rules ('r-raise) and ( -r-app) twice, 

(5) 

(6) 

({},ET,PT) f- raise NoSuchProcess n': unit 

({},ET,PT) f- raise ProcessExecuting n': unit 

By the Replacement lemma on (4) with (5) and (6) 

({},ET,PT) f- E[raise NoSuchProcess n'] : CT(n) 

({LET,PT) f- E[raise ProcessExecuting n']: CT(n) 

and thus either 

ET,PT f- X,'P+(n; <P; E[raise NoSuchProcess n']): CT or 

ET,PT f- X,'P+(n; <P; E[raise ProcessExecuting n']): CT 

Letting ET'= ET, PT'= PT, and CT'= CT satisfies the theorem. 

Case ET,PT f- X,'P+(n; <P+(</>'Hq'); E[send (¢'. v)]): CT 

Then there is a type environment TE = (VT,ET,PT) and type 1/1, such that 
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PT(</>')= l/f PortName 
TE I-</)': l/f PortName 

TE 1-v: l/f 
TE I- send ( </)'. v): unit 

({},ET,PT) r E[send ( </)'. v) ] : CT(n) 

Thus by the Replacement lemma, 

( {},ET,PT) r E[ ( ) ] : CT(n) 

and therefore ET,PT r X,P+(n; <JJ+(</>'Hq'@ copy(E,v ); E[ ()]) : CT. Letting ET' = ET, 
PT'= PT, and CT'= CT satisfies the theorem. 

Note that since TE r </l : l/f PortName, q' is of type lJI queue. By Lemma A-2-2, 
from TE r V : 1/f, 

(VT,ET,PT) r copy (E,v): l/f 

and by Lemma A-2-1, copy (E,v) is closed, which means by Lemma 6-1 that 

({},ET,PT) r copy (E,v): l/f 

Thus the arguments q' and copy (E,v) are of the correct type ( l/f queueand lJI) for the 
queue append operation@. 

Case ET,PT r X,P+(n; <JJ; E[send (</>" . v) ]),+(n'; <P'+(</l'Hq"); es)): CT 

Then there is a type environment TE = (VT,ET,PT) and type 1/1, such that 

PT(¢")= l/f PortName 
TE I-</)": l/f PortName . 

TEl-v:lfl 

TE I- send ( </) . v) : unit 

({},ET,PT) r E[send ( </)'. v)] : CT(n) 

Thus by the Replacement lemma, 

( {},ET,PT) r E[ () ] : CT(n) 

and thus ET,PT rx,P + (n; <JJ; E[ ()]) + (n'; <JJ'+(</>" H q"@ copy(E,v)); es)): CT. Letting 
ET'= ET, PT'= PT, and CT'= CT satisfies the theorem. 

Note that since TE r ¢" : l/f PortName, q" is of type lJI queue. By Lemma A-2-2, 
from TE r V : 1/f, 

(VT,ET,PT) r copy (E,v): l/f 

I ·" ' 
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and by Lemma A-2-1, copy (E,v) is closed, which means by Lemma 6-1 that 

({},ET,PT) r- copy (E,v): l/f 

Thus the arguments q" and copy (E,v) are of the correct type ( l/f queueand l/f) for the 

queue append operation@. 

Case ET,PT r- X,P+(n; <P; E[send ( ¢'. v)]): CT 

This case deals with the failure situation, when the owning process has terminated, as 

given in "-pv-send3. Then there is a type environment TE = (VT,ET,PT) and type l/f, 

such that 

(7) 

PT(¢') = l/f PortN ame 

TE 1-¢': l/f PortName 

TE -1-v: l/f 
TE I-send(¢. v): unit 

({LET,PT) r- E[send (¢'. v)]: CT(n) 

The embedding of the failure exception names used in the surrounding context for a "A,pv 

program means that the following exists: 

ET(NoSuchPort) = unit exn 

TE I- NoSuchPort: unit exn 

Then by rules ( r-raise) and ( r-app) twice, 

({},ET,PT) r- raise NoSuchPort () : unit 

By the Replacement lemma on (6) 

({},ET,PT) r- E[raise NoSuchPort ()] : CT(n) 

and thus ET,PT r- X,P+(n; <P; E[raise NoSuchPort ()]): CT. Letting ET' = ET, 

PT'= PT, and CT'= CT satisfies the theorem. 

Case ET,PT r- X,P+(n; <P+(</J'HI m1,m21 •• • ,mM l); E[recv ¢']) : CT 

Then there is a type environment TE = (VT,ET,PT) and type l/1, such that 

PT(¢')= l/f PortName 

TE 1-¢': l/f PortName 

TE I- recv ¢': l/f 

({},ET,PT) r- E[recv ¢'] : CT(n) 
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As established in the cases for send, if </l has type lf/ PortName then I m1,m21 ••• ,mM l 1s a 
queue of closed expressions of the form p0.v with type lfl. Thus 

( {},ET,PT) 1- m 1 : lfl 

By the Replacement lemma, 

({},ET,PT) I- E[m 1] : CT(n) 

and thus ET,PT 1-x,P+(n; <P; E[m1]) : CT. Letting ET' = ET, PT' = PT, and CT' = CT 
satisfies the theorem. 

Case ET,PT I- X,P+(n; <P; E[recv ¢']) : CT 

This case deals with the failure situation, when the port is not owned by the process, 
as given in Apv-recv2. Then there is a type environment TE = (VT,ET,PT) and type lf/, 
such that 

(8) 

PT(¢')= lfl PortName 
TE I- </J': lfl PortName 

TE I- recv </J': lfl 

({},ET,PT) I- E[recv ¢'] : CT(n) 

The embedding of the failure exception names used in the surrounding context for a ~ 
program means that the following exists: 

ET(PortNotOwned) = unit exn 
TE 1-PortNotOwned: unit exn 

Then by rules ( r-raise) and ( r-app) twice, 

({},ET,PT) I- raise PortNotOwned () : lfl 

By the Replacement lemma on (8) 

({},ET,PT) I- E[raise PortNotOwned ()] : CT(n) 

and thus ET,PT I- X,P+(n; <P; E[raise PortNotOwned ()]): CT. Letting ET' = ET, 
PT'= PT, and CT'= CT satisfies the theorem. 

Case ET,PT I- X,'P+(n; <P+(</J'~q'); E[probe ¢']) : CT 

This case deals with the situation where the probe operation returns either true or 
fa 1 s e, depending on the contents of the port's queue. These correspond to the 
parallel evaluation rules Apv-probel and Apv-probe2. So there is a type environment TE 
= (VT,ET,PT), a type l/1, and applying ( r-app ), such that 

,J 

Ii 

f ,· 

I 
't 

~ 
I 

I 
I 

!. 

!~ 11 

l'n, 
l 



1 

Proof of Lemma 7 -10 

PT(¢') = 1./f PortN ame 

TE f--¢': 1/f PortName 

TE f--probe ¢': bool 

({},ET,PT) r E[probe ¢'] : CT(n) 

219 

Since by definition of the constants true and false, their typing according to rule 

(-r-const) is: TE r true: bool and TE r false: bool. 

Thus by the Replacement lemma, either 

({},ET,PT) r E[ true] : CT(n) or 

({},ET,PT) r E[false] : CT(n) 

Hence, 

ET,PT r X,'P+(n; <!J; E[ true]) : CT and 

ET,PT r X,'P+(n; <JJ; E[false]): CT 

Letting ET'= ET, PT'= PT, and CT'= CT satisfies the theorem. 

Case ET,PT r X,'P+(n; <P; E[probe ¢']) : CT 

This follows by similar reasoning to that for Apv-recv2. 

Thus the theorem is proved. 

Proof of Lemma 7-10 

• 

Lemma 7-10 A process n with process state (n; <P; e) and e closed, is stuck if! e has 

one of the following forms: 

1. E[c v] 

2. E[v v'] 

3. E[ ! v] 

4. E[: = V] 

5. p8(x,v2).E[x v1] 

6. exception x in E[! x] 

7. exception x in E[:= x] 

8. exception x in E[x v] 

9. E[raise v1] 

10. E[e handle v 1 v2] 

where 8(c,v) is undefined 

where v has the form (v 1 • v2), ex, n, or¢ 

where v ~ VAR 

where v ~ VAR 

where v 1 ~ VAR u EXNNAME 

where v 1 ~ VAR u EXNNAME 
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11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21 . 

22. 

23. 
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p0(x,v).E[raise xv'] 

p0(x,v).E[e' handle xv'] 

E[prt x on v in e')] 

E[execute (v1 • v2)] 

where v e; VAR u PROCESSNAME 

where v1 e: VAR u PROCESSNAME or v2 has 
the form Y, (v1 . v2), ref, ! , : =, : = x, ex, 
n, or </J 

E[send (v1 • vi)] 

E[recv v] 

E[probe v] 

where v1 e: VAR u PORTNAME 

where v e; VAR u PORTNAME 

where v e; VAR u PORTNAME 

p0(x,v).E[proc x in e'] 

p0(x,v').E[prt x on v in e')] 

p0(x,v).E[execute (x . v2)] 

p0(x,v).E[send (x . v2)] 

p0(x,v').E[recv x] 

p0(x,v').E[probe x] 

Proof. 

(if) Let E[e'] = e, then if component of the if! is proved by case analysis on the 
possible forms of e'. 

Case e' = v. 
-

Then E[e'] = E[v], and thus n is not stuck. 

Case e' = v v'. 

This proceeds by analysis of the form of v: 

Case v = c. 

If o(c v) is defined, then n is not stuck, otherwise it is stuck and has form 1. 

Case v = x. 

By Lemma 6-1, either e is not closed, which is a contradiction, or E is of the 
form p0(x,v').E', and n is stuck and has form 5. 

Case v = Y, ref, ! , : =, : = x 

In these cases, n is not stuck. 

Case v = (v1 • v2), ex, n, or </J 

In these cases, n is stuck and has form 2. 

Case e' = l et x= v in e'' . 

In this case, n is not stuck. 
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Case e' = exception x in e". 

Letting e" = E'[e"'], this case proceeds by case analysis on the form of e"'. 

C Ill - I • -ase e - . x, . - x, or xv. 

In these cases, n is stuck and has form 6, 7 or 8 respectively. 

Otherwise. 

e"' is stuck precisely in those cases for which e' is stuck. 

Case e' = raise v. 

This case proceeds by analysis of the form of v. 

Case v = x. 
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In this case, if E is not of the form p8(x,v').E', then n is not stuck. 

Otherwise, it is stuck and has form 11. 

Case v = ex. 

In this case, n is not stuck. 

Otherwise. 

In the other cases, n is stuck and has form 9. 

Case e' = e" handle v. 

This case proceeds by analysis of the form of v. 

Case v = x. 

In this case, if E is not of the form p8(x,v').E', then n is not stuck. 

Otherwise, it is stuck and has form 12. 

Case v = ex. 

In this case, n is not stuck. 

Otherwise. 

In the other cases, n is stuck and has form 10. 

Case e' = exn. 

Then E[e'] = E[exn], and thus n is not stuck. 

Case e' = p8.e". 

Then E[e'] = E[p8.e"], and thus n is stuck precisely when e" is stuck. 

C I • II asee =procxine. 

Then E[e'] = E[proc x in e"]. If E does not have the form p8(x,v').E, then n is 

stuck precisely when e" is stuck. Otherwise n is stuck and has form 18. 

Case e' = self id e". 

Then n is stuck precisely when e" is stuck. 
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Case e' = prt x on vine". 

This case proceeds by analysis of the form of v. 

Case v = n'. 

Then E[e'] = E[prt x on n' in e"]. If E does not have the form p0(x,v').E', 
then n is stuck precisely when e" is stuck. Otherwise n is stuck and has form 19. 

Case v = x'. 

Then E[e'] = E[prt x on x' in e"]. If E does not have the form p0(x,v').E' 
or p(Xx',v').E', then n is stuck precisely when e" is stuck. Otherwise n is stuck and has 
form 19. 

Otherwise. 

Then n is stuck and has form 13. 

Case e' = execute (v1 • v2). 

This case proceeds by analysis of the form of v 1• 

Case v1 = n' . 

Then E[e'] = E[execute (n' . v2)]. If v2 has form Y, (v1 • v2), ref, ! , 
: = x, ex, n, or </J, then n is stuck and has form 14. Otherwise n is not stuck. 

Case v1 = x'. 

• I 

Then E[e'] = E[execute (x'. v2)]. If E has the form p0(x',v').E', then n is 
stuck and has form 20. 

Otherwise. 

Then n is stuck and has form 14. 

Case e' = send (v1 • v2). 

This case proceeds by analysis of the form of v1• 

Case v = </J. 

Then E[e'] = E[send (</J. v2)] and n is not stuck. 

Case v = x'. 

Then E[e'] = E[send (x' . v2)]. If E has the form p0(x',v').E', then n is stuck 
and has form 21. Otherwise n is not stuck. 

Otherwise. 

Then nis stuck and has form 15. 

Case e' = recv v. 

This case proceeds by analysis of the form of v. 

Case v = </J. 

Then E[e'] = E[recv </J] and n is not stuck. 
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Case v = x'. 

Then E[e'] = E[recv x']. If E has the form p8(x',v').E', then n is stuck and 

has form 22. Otherwise n is not stuck. 

Otherwise. 

Then n is stuck and has form 16. 

Case e' = probe v. 

This case proceeds by analysis of the form of v. 

Case v = ¢. 

Then E[e'] = E[probe ¢] and n is not stuck. 

Case v = x'. 

Then E[e'] = E[probe x']. If E has the form p(Xx',v').E', then n is stuck and 

has form 22. Otherwise n is not stuck. 

Otherwise. 

Then n is stuck and has form 16. 

(only if) This direction of the if! follows directly from the definitions. 

Thus the lemma is proved. • 

Proof of Lemma 7-11 

The final lemma to prove establishes that stuck configurations are untypable. 

Lemma 7-11 (Stuck configurations are untypable) If n is stuck in a well-formed 

configuration X,P, with ft = (n; <P; e) then there do not exist ET E EXNNAMETY, 

PT E P0RTNAMETY and CT E C0NFIGTY, such that 

({},ET,PT) ~ e : CT(n) 

In other words, x.,P is untypable. 

Proof. Let n be stuck in X,P, with (n; <P; E[e']) E P, and assume that there exist 

ET E EXNNAMETY, PT E P0RTNAMETY and CT E C0NFIGTY, such that ({},ET,PT) ~ 

E[e'] : CT(n). It suffices to show that e' is untypable, which is a contradiction. Let r 

be the type of e'; that is, TE' ~ e' : r, for some TE'. Note that since X,P is well-formed, 

E[e'] is closed; and thus Lemma 7-10 gives the possible forms of e'. The proof 

proceeds by case analysis on the form of the subexpression e', showing that e' is 

untypable in each case. 

Case e' = v v'. 

(1) 

Rule ( r-app) applies: 

TE'f-v:(r' • r) TE'f-v':r' 

TE' f-v v': r 
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There are six subcases, depending on the structure of v: 

Case v = c, with 8(c,v') undefined. 

By the 8-typability restriction, 8(c,v') is defined, which contradicts n being 
stuck. 

Case v = x. 

By Lemma 6-1, since E[e'] is closed, it must have the form p8(x,v').E'[e']. 
Then there must exist a TE", such that by rules (r-app) and (r-ref), 

TE" I-ref: lfl • lflref TE" 1--v': lf/ 
TE" I- ref v': lflref 

And by Sequential type preservation (Theorem 7.6) 

TE" I- p8(x,v').x : lfl ref 

Rule ( r-rho) requires that TE"+{x H lfl ref} I- x : lfl ref, but this contradicts the first 
premise of (1), and thus e' is untypable. 

Case v = (v1 • V2). 

Rule ( r-pair) requires that TE' 1- (v1 • v2) : ( i-1 x i-2), where TE' I- vi : ril which 
contradicts the first premise of (1), thus e' is untypable. 

Case v = ex. 

Rule ( r-ex) requires that ex have the type lfl exn, for some lf/, but this 
contradicts the first premise of (1), thus e' is untypable. 

Case v = n. 

Rule ( r-procvar) requires that n have the type ProcessName, but this 
contradicts the first premise of (1), thus e' is untypable. 

Case v = </J. 

Rule ( r-prtvar) requires that </J have the type lfl PortName, for some lfl, but 
this contradicts the first premise of (1), thus e' is untypable. 

Case e' = exception x in e". Rule ( r-exn) applies: 

(2) TE'± {x H lflexn} 1--e": r 
TE' I-exception x in e": r 

Letting e" = E'[e'"], this case proceeds by case analysis on the form of e'", where 
e"' has type r'. 

Case e"' = ! x. 

Rule ( r-app) and rule (-r-deref) require that TE' I- x : r' ref, but this 
contradicts the requirement in (2) that TE'+{x H lflexn}, which gives 
TE'+{x H lflexn} I- x: lJlexn. Thus e"' is untypable. 
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Case e'" = : = x. 

Similar to previous case, but using rule ( r-assign). 

Case e"' =xv. 

Rule ( r-app) requires that TE' f-- x : r-rt', but this contradicts the 

requirement in (2) that TE' +{x H lfl exn}, which gives TE' +{x H lfl exn} f-- x : lfl exn. 

Thus e"' is untypable. 

Otherwise. 

e"' is untypable precisely in those cases for which e' is untypable. 

Case e' = raise v. Rules (r-app) and (r-raise) apply: 

(3) 
TE' r-raise: (lflexn • lfl • r') TE' r-v: ljfexn 

TE' r- raise v: lfl • r' 

This case proceeds by analysis on the form of v. 

Case v = c. 

with r= lfl~r'. 

Rule ( r-const) and the second premise of (3) require that c has type lfl exn, 

but there are no constant exceptions, and thus e' is untypable. 

Case v = x. 

If E[e'] has the form p8(x,v').E'[e'], then there must exist a TE", such that 

by rules ( r-app) and ( r-ref), 

TE" r-ref: lf/ • ljlref TE" r-v': lf/ 

TE" r- ref v': ljlref 

And by Sequential type preservation (Theorem 7.6) 

TE" f-- p8(x,v') .x : lf/ ref 

Rule ( r-rho) requires that TE"+{x H lfl ref} f-- x : lfl ref, but this contradicts the second 

premise of (3), and thus e' is untypable. 

Cases v = Y, (v 1 • vi), AX(e), ref, ! , : =, : = x, n, and ¢. 

In each of these cases, the rules (r-Y), (r-pair), (r-abs), (r-ref), (r-deref), 

( r-assign), ( r-assign) with ( r-app ), ( r-procvar), and ( r-prtvar) apply respectively to 

contradict the second premise of (3), and thus e' is untypable. 

Case e' = e" handle v. 

This case proceeds by analysis of the form of v, in a similar fashion to the 

previous case, but with rules ( r-app) and ( r-handle) applying instead. 

Case e' = p8.e". 

Then E[e'] = E[p8.e"], and thus e' is untypable precisely when e" is untypable. 
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Case e' = proc x in e". Rule (r-app) applies: 

(4) TE'± { x H ProcessName} 1-e": r 
TE I • II 1-proc x in e : r 

If E has the form p0(x,v').E', then there must exist a TE", such that by rules 
( r-app) and ( r-ref), 

TE" I- ref: 1/f • 1/f ref TE" 1-v': 1/f 
TE" I- ref v': 1/f ref 

And by Sequential type preservation (Theorem 7.6) 

TE" I- p0(x,v').x : 1/f ref 

Rule ( r-rho) requires that TE"+{x H 1/f rej} I- x : 1/f ref, but this contradicts the premise 
of ( 4), and thus e' is untypable. 

Otherwise e' is untypable when e" is untypable. 

Case e' = self id e". 

Then e' is untypable precisely when e" is untypable. 

Case e' = prt x on v in e". Rule ( r-prt) applies: 

(5) 
TE' 1-n': ProcessName TE'± {x H 1/f PortName} 1-e": r 

TE, I- , . ,, prt x on n in e : r 

This case proceeds by analysis of the form of v. 

Case v = n'. 

If E has the form p(Xx,v').E', then there must exist a TE", such that by rules 
( r-app) and ( r-ref), 

TE" I- ref : 1/f • 1/f ref TE" 1-v': 1/f 
TE" I- ref v' : 1/f ref 

And by Sequential type preservation (Theorem 7.6) 

TE" I- p0(x,v').x : 1/f ref 

Rule ( r-rho) requires that TE"+{x H 1/f ref} I- x : 1/f ref, but this contradicts the second 
premise of (5), and thus e' is untypable. 

Otherwise e' is untypable precisely when e" is untypable. 

Case v = x' . 

Similar to previous case. 

Cases v = Y, (v 1 • v2), Ax(e ), ex, ref, ! , : =, : = x, and ¢. 

In each of these cases, the rules ( ,z--Y), ( r-pair), ( r-abs ), ( r-ex), ( r-ref), 
( r-deref), ( r-assign), ( r-assign) with ( r-app ), and ( r-prtvar) apply respectively to 
contradict the second premise of (5), and thus e' is untypable. 
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Case e' = execute (v1 • v2). Rule (r-execute) applies: 

(6) 
TE' 1-n': ProcessName TE' l-v2: unit • unit 

TE' I-execute (n'. v2): unit 

This case proceeds by analysis of the form of v 1• 

Case v 1 = n'. 

Then there are various subcases to consider on the form of v2 • 

Case v 2 = c. 
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If TypeOf(c) -t= unit • unit, then this contradicts the second premise 

of (6) and e' is untypable. 

Case v2 = x. 

If TE' f- v 2 : r', such that r' -t= unit • unit, then this contradicts the 

second premise of (6) and e' is untypable. 

Case v2 = : = x. 

If TE' f- v2 : r', such that r' -t= unit • unit, then this contradicts the 

second premise of (6) and e' is untypable. 

Case v2 = Ax(e"). 

If TE' f- v2 : r', such that r' -t= unit • unit, then this contradicts the 

second premise of (6) and e' is untypable. 

Cases v 2 = Y, (v3 • v4), ex, ref, ! , : =, and ¢. 

In each of these cases, the rules ( r-Y), ( r-pair), ( r-ex), ( r-ref), 

( r-deref), ( r-assign), and ( r-prtvar) apply respectively to contradict the second 

premise of (6), and thus e' is untypable. 

Case v1 = x'. 

If E has the form p0(x',v').E', then there must exist a TE", such that by rules 

( r-app) and ( r-ref), 

TE" I- ref: lfl • l/f ref TE" 1-v': l/f 

TE" I-ref v': l/fref 

And by Sequential type preservation (Theorem 7.6) 

TE" f- p8(x',v').x' : lfl ref 

Rule ( r-rho) requires that TE"+{x' H l/f re.fl f- x' : lfl ref but this contradicts the first 

premise of (6), and thus e' is untypable. 

Otherwise e' is untypable in the same situations as in the previous subcase of 

V1 = n'. 

Cases v1 = Y, (v 1 • v2 ), Ax(e), ex, ref, ! , : =, : = x. 

In each of these cases, the rules ( r-Y), ( r-pair), ( r-abs), ( r-ex), ( r-ref), 

( r-deref), ( r-assign), and ( r-assign) with ( r-app ), apply respectively to contradict the 

first premise of (6), and thus e' is untypable. 
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Case e' = send (v1 • v2 ). Rule ('r-send) applies: 

(7) TE' 1-</J: 1/f PortName TE' l-v2: 1/f 
TE' I- send ( </J. v): unit 

This case proceeds by analysis of the forms of v1 which cause n to be stuck. 

Case v1 = x'. 

If E has the form p(Xx',v').E', then there must exist a TE", such that by rules 
( r-app) and ( r-ref), 

TE" I-ref: 1/f • 1f1ref TE" 1-v': 1/f 
TE" I- ref v': 1/f ref 

And by Sequential type preservation (7.6) 

TE" r p0(x',v').x': 1/f ref 

Rule ( r-rho) requires that TE" +{x' H 1/f ref} r x' : 1/f ref, but this contradicts the first 
premise of (7), and thus e' is untypable. 

Cases v1 = Y, (v1 • v2), Ax(e), ex, ref, ! , : =, : = x, and n. 

In each of these cases, the rules ( r-Y), ( r-pair), ( r-abs ), ( r-ex), ( r-ref), 
( r-deref), ( r-assign), ( r-assign) with ( r-app ), and ( r-procvar) apply respectively to 
contradict the first premise of (7), and thus e' is untypable. 

Case e' = recv v. Rule ( r-recv) applies: 

(8) TE' 1-</J: r PortName 
TE' I- recv ¢: r 

This case proceeds by analysis of the form of v. 

Case v = c. 

But there are no constants of type r PortN ame, so this contradicts the 
premise of (8) and thus e' is untypable. 

Case v = x'. 

If E has the form p(Xx',v').E', then there must exist a TE", such that by rules 
( r-app) and ( r-ref), 

TE" I-ref: 1/f • 1/f ref TE" 1-v': 1/f 
TE" I- ref v': 1/f ref 

And by Sequential type preservation (7.6) 

TE" r p0(x',v').x' : 1/f ref 

Rule ( r-rho) requires that TE"+{x' H 1/f rej} r x' : 1f1ref, but this contradicts the premise 
of (8), and thus e' is untypable. 

I ,-
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Cases v 1 = Y, (v 1 . v2 ), lx(e), ex, ref, ! , : =, : = x, and n. 

In each of these cases, the rules ( r-Y), ( r-pair), ( r-abs), ( r-ex), ( r-ref), 
( r-deref), ( r-assign), ( r-assign) with ( r-app ), and ( r-procvar) apply respectively to 

contradict the premise of (8), and thus e' is untypable. 

Case e' = probe v. 

This is essentially identical to the last case, with rule ( r-probe) applying instead. 

Thus the lemma is proved. • 





Glossary 
acceptable a trace of process configurations that results in all processes 

being complete or awaiting; Def. 6-12, p. 117 

address space an integer range; individual memory locations are identified by 
values within the range 

applicative applying or capable of being applied, as in functions 

algorithmic skeletons system to abstract details of parallelism in an algorithm from a 
user; see §8.2 

answer 

asynchronous 

awaiting 

bandwidth 

blocked 

blocking 

.broadcast 

either a closed value or an unhandled exception; Def. 6-1, p.104 

actions happen independently of others; thus in message 
passing, a sender continues immediately once the message has 
been sent 

status of a paraML process if it is yet to execute any code; 
Def. 6-7, p. 116 

the quantity of data which may be transferred between 
different locations in a fixed period of time, often measured in 
MB Is (Megabytes per second) 

status of a paraML process if it is trying to receive a message 
which is yet to be sent; Def. 6-7, p. 116 

actions halt until data is available with which to proceed 

a message passing form where all entities must participate 

buffer some memory which is used to store values 

central processing unit (CPU) the core unit of a computer which executes machine code 
instructions; also ref erred to as a processor or chip 

channel a message buffer, usually allowing any entity to send or receive 
from it 

client-server 

closed 

closure 

code 

coherency 

communicator 

model of programming where one or more processes are 
specialised to act as server resources for computation or data, 
passing results to clients which request the service 

no free variables are present in the expression or value 

an expression ( usually for a function) which carries bindings for 
all the free variables of the expression 

the programming language text of a process or program, in 
executable form 

mechanisms for guaranteeing the integrity of data when multiple 
entities can access and alter the data 

a communications layer private to a group of processes, and 
distinct from other communicators (which may span the same 
group of processes); defined in MPI 
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complete 

computation 

concurrent 

configuration 

consistency 

constant 

context 

converge 

coordination 

coordination system 

critical region 

CSP 

deadlock 

disjoint memory 

Glossary 

a trace of a process configurations where all processes have 
either terminated or are awaiting a request to execute code; 
Def. 6-8, p. 116 

a trace of process configurations that is either infinite or finite 
with the final configuration complete; Def. 6-9, p. 116 

the description of a problem as a set of cooperating entities, 
whose execution overlaps each entity 

a set of unique exception names and a set of unique process 
states; Def. 6-4, p. 114 

the ordering and outcome of a set of operations on some data 
that may be shared among different computation components 
is agreed to by each component 

a value that does not change and is defined independently of 
any name binding environment 

mechanism for describing the current expression evaluation, by 
splitting the expression into a context and redex; typically used 
to control order of evaluation; see §5.4.2 

an evaluation that eventually produces an answer; Def. 6-11, 
p. 116 

mechanisms to achieve relative ordering of actions among a 
number of processes 

a system to achieve coordination, usually among distinct 
programs in a distributed computer environment 

a part of a program that must not be executed by two processes 
concurrently 

Communicating Sequential Processes; a formalised model of 
processes with synchronous communications between them 

situation in which two or more processes cannot proceed due to 
interdependencies which cannot be resolved (e.g. both 
processes waiting to receive a message before sending one) 

multiple memory modules, each with its own address space 
distributed address space 

a computing environment with multiple disjoint address spaces 
distributed memory multiple memory modules 

distributed shared memory (DSM) 

distribution 

diverge 

dynamic 

a software mechanism for constructing a shared address space 
from distributed memory 

the issues that arise when computing resources are distributed 
physically, including failure of communication links for 
example; also used to describe how data or processes are 
assigned to a processor topology 

an evaluation that never produces an answer (e.g. infinite loop); 
Def. 5-8, p. 98 and Def. 6-11, p. 116 

happens during a program's execution 

l.i 
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efficiency 

efficient 

enabled 

evaluation 

evaluation state 

exception 

explicit 

fairness 

faulty 

function 

handle 

hole 

imperative 

implicit 

irreducible 

isoefficiency 

A (lambda) cal cul us 

latency 

locality 

lock 

mailbox 

Glossary 233 

the inverse of speedup; measures the percentage of a program 
that has been successfully parallelised; see §3.3.2 

can support programming without undue performance penalties 

a paraML process that is able to perform a transition according 
to the parallel evaluation rules; Def. 6-8, p. 116 

execution of a program 

a component of the state of a process which captures where in 
the evaluation the process is and what will execute next; see 
§6.3.2 

a language mechanism typically used to indicate an error 
condition 

requiring direct user control of an action 

condition of the progression from configuration to configuration 
in a program trace such that no process is unnecessarily 
prevented from execution; Def. 6.12, p. 117 

evaluation state which approximates a attempts to perform an 
illegal action; Def. 5-7, p. 97 

similar to procedures or subroutines, but with a strong 
mathematical basis; accepts a single argument, evaluates, and 
returns a single result 

a memory pointer or other language mechanism for identifying 
some data object 

marks t.1-ie split between a context and redex partitioning of an 
expression 

permits computation with mutable data; reference variables in 
ML are an example 

some aspect of program control or action that happens without 
user intervention; typically inserted by the compiler or by the 
runtime system 

unable to reduce any further according to the evaluation rules, 
usually because the expression is now a closed value 

a model for calculating relative performance of an algorithm on 
different parallel computer systems; see §3.3.2 

a calculus, based on mathematical functions, which encodes 

computation by expression reductions from applying functions 
to arguments 

the time taken between initiating an event (often a 
communication) and the first data from the event arriving at the 
destination 

measurement of the latency in accessing values or memory 

protection mechanism for indicating some computation 1s 
accessing a data value 

communication mechanism equivalent to a port, with multiple 
senders but only one receiver 
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marshal 

:MIMD 

message passmg 

ML 

monitor 

multicast 

multicomputer 

multi processor 

multi-threading 

name 

network 

node 

object store 

parallel 

Glossary 

mechanism for representing arbitrary data values as a 
contiguous array of bytes for communication 

Multiple Instruction, Multiple Data; part of Flynn's taxonomy 
of parallel computers, referring to the number of instruction 
streams and data access streams that may be managed 
simultaneously 

a mechanism for communicating data by sending messages 
between processes 

the mostly functional programming language, based on the call­
by-value A calculus 

a programming mechanism that associates shared variable 
access operations with procedures to prevent more than one 
process accessing a variable concurrently 

message passing construction which has a single sender and 
multiple receivers 

a generic form of parallel computer, consisting of multiple 
processing elements connected by a communications network 

typically refers to a parallel coµ1puter with multiple CPUs but 
only a single shared memory 

the situation of having multiple threads executing or used for 
programming a system 

a variable or other value that uniquely identifies another other 
value 

physical communication hardware for connecting different 
computers or processing elements; and associated software 
protocols 

processing element 

a shared address space model of programming with objects 

simultaneous execution of concurrent entities; also used to refer 
to the superset of concurrent/ parallel/ distributed computing 
systems; also used for hardware which permits simultaneous 
execution 

parallel evaluation relation 

partitioning 

n (pi) cal cul us 

pipeline 

polymorphic 

port 

a set of rules used to model the evaluation in paraML; Def. 6-5, 
p. 114 

breaking up a program into various distinct actions 

a calculus of concurrency consisting of processes, channels and 
messages, where computation is expressed by message passing 

description of data movement through processes, so that at any 
one time, multiple data values are in the pipe 

possessing or capable of acting on more than one type of value 

a communications buffer, which any entity may send to but 
only one entity may receive from 



portability 

process 

processing element 

program 

ready 

receive 

redex 

reduction 

reference 

rule 

safe 

shared memory 

SIMD 

scalability 

semaphore 

Glossary 235 

the ability to execute some program on more than one form of 
computer; porting is the act of converting a program to run on 
another computer 

a generic term for a computing entity; used in this thesis to 
indicate an entity with a self-contained evaluation environment 
and memory, and capable of communications through ports 

(PE) the building block of a multicomputer, comprising the 
essence of a computer: a CPU, memory, and interfaces to the 
interconnection communication network. Sometimes referred to 
as node, processor, cell. 

programming language code which describes some algorithm, 
and when executed performs the algorithm 

a process which is capable of applying one of the parallel 
evaluation relation rules to continue execution; Def. 6-7, p. 116 

action of accepting a message communicated by another 
process 

an expression which is the term currently being evaluated in a 
context/ redex pair according to some reduction rule; see §5.4.2 

a formalism that models evaluation by means of syntactically 
rewriting an expression, ultimately producing an answer 

the address of a memory cell whose value may be changed 

specification of an evaluation step, with some preconditions 
and before and after evaluation states 

a property of a programming language that does not allow 
statically detectable or avoidable errors, and provides ways of 
recovering from errors that occur at runtime 

a single memory module ( or multiple clustered memory 
modules) with a single address space 

Single Instruction, Multiple Data; part of Flynn's taxonomy of 
parallel computers, referring to the number of instruction 
streams and data access streams that may be managed 
simultaneously 

the ability for a program or system's performance to increase as 
the number of PEs increases 

a two-state data structure used to prevent access to some other 
data structure 

send action of communicating a message from one process to another 

sequential evaluation relation 
a set of rules used to model sequential evaluation in paraML; 
Def. 5-2, p. 89 

shared address space a single address space, regardless of whether the underlying 
memory is distributed or not 

speedup an increase in performance, specifically an increase as the 
number of PEs increases 
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SPMD 

static 

status 

stuck 

substitution 

synchronous 

task 

terminated 

text 

thread 

trace 

transaction 

typability 

type 

type environment 

type judgement 

type scheme 

unit 

unmarshal 

variable 

virtual memory 

virtual processor 

well-formed 

well-typed 

Glossary 

Single Program, Multiple Data; a single program executable is 
executed on all PEs, but with different data values for each 

determined prior to or at the commencement of execution 

a property of a process with relation to other processes in a 
configuration; Def. 6-7, p. 116 

a process whose evaluation state results in the process being 
unable to proceed with evaluation due to a syntactic error; 
Def. 7-2, p. 125 

replacement of a variable with an expression throughout some 
other expression 

actions that happen only when two (or more) entities 
collaborate; in message passing, a send only completes when 
the matching receive has also completed 

alternative name for a process 

paraML process that has produced an answer; Def. 6-7, p. 116 

the written form (in some programming language) of an 
algorithm for a program 

an alternative name for a process; usually denotes a lighter 
weight component, often executing in a shared address space 

a series of transitions between process configurations according 
to the rules of the parallel evaluation relation; Def. 6-9, p. 116 

a programming mechanism for a series of accesses to an 
object(s)'s data, which must either succeed or fail in entirety 

the ability of the typ~ system to infer a type for an expression; 
in particular, 8-typability which abstracts details of the result 
of applying function constants to arguments; Def. 5-5, p. 93 

a language mechanism for discriminating between different 
kinds of data values or objects 

mapping from variable names to types; see §5.4.3.1 and §7.1.1 

sentences which can be inferred from a type system according 
to the rules and with respect to some type environment 

an abstract form of type, used for polymorphic type systems 
where one type may have several instantiations 

the null value in ML, written ( ) ; also the type of this value 

accepts a contiguous array of bytes and assembles an ML value 

a name which may be bound to some value 

a system for providing a logically contiguous address space, 
independent of the physical availability or location in memory 

(VP) an abstract form of a physical processing element 

having certain defined properties, which are required in order to 
make other statements about evaluation; Def. 6-4, p. 114 

possesses certain defined properties with respect to typing 
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