
JOINT-SPACE RECIPES FOR MANIPULATOR ROBOTS

PERFORMING COMPLIANT MOTION TASKS:

TRAJECTORY-OPTIMIZATION, INTERPOLATION, AND

CONTROL

By

Yueshi Shen

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

AT

THE AUSTRALIAN NATIONAL UNIVERSITY

CANBERRA, AUSTRALIA

FEBRUARY 2006

c© Copyright by Yueshi Shen, February 2006

THE AUSTRALIAN NATIONAL UNIVERSITY

DEPARTMENT OF

INFORMATION ENGINEERING, RSISE

The undersigned hereby certify that they have read and

recommend to the Research School of Information Sciences and

Engineering for acceptance a thesis entitled “Joint-Space Recipes

for Manipulator Robots Performing Compliant Motion

Tasks: Trajectory-Optimization, Interpolation, and Control”

by Yueshi Shen in partial fulfillment of the requirements for the degree of

Doctor of Philosophy.

Dated: February 2006

Research Supervisor:
Dr. Knut Hüper

Examing Committee:
Prof. Fátima Silva Leite

Prof. Martin Buss

ii

THE AUSTRALIAN NATIONAL UNIVERSITY

Date: February 2006

Author: Yueshi Shen

Title: Joint-Space Recipes for Manipulator Robots

Performing Compliant Motion Tasks:

Trajectory-Optimization, Interpolation, and

Control

Department: Information Engineering, RSISE

Degree: Ph.D.

Permission is herewith granted to The Australian National University
to circulate and to have copied for non-commercial purposes, at its discretion,
the above title upon the request of individuals or institutions.

Signature of Author

THE AUTHOR RESERVES OTHER PUBLICATION RIGHTS, AND
NEITHER THE THESIS NOR EXTENSIVE EXTRACTS FROM IT MAY
BE PRINTED OR OTHERWISE REPRODUCED WITHOUT THE AUTHOR’S
WRITTEN PERMISSION.

THE AUTHOR ATTESTS THAT PERMISSION HAS BEEN OBTAINED
FOR THE USE OF ANY COPYRIGHTED MATERIAL APPEARING IN THIS
THESIS (OTHER THAN BRIEF EXCERPTS REQUIRING ONLY PROPER
ACKNOWLEDGEMENT IN SCHOLARLY WRITING) AND THAT ALL SUCH USE
IS CLEARLY ACKNOWLEDGED.

iii

To My Parents and Jane.

iv

Table of Contents

Table of Contents v

List of Figures viii

List of Symbols xi

Statement of Originality xiv

Acknowledgements xvi

Abstract xviii

1 Introduction 1

1.1 Compliant Motion Tasks of Robot Manipulators 1

1.2 Research Motivations and Contributions 3

1.3 Organization of This Thesis . 5

2 Newton’s Method for Constrained Variational Problems with Ap-

plications to Robot Path Planning 8

2.1 Background and Literature Review 9

2.1.1 Calculus of Variations . 9

2.1.2 Robot Path Planning . 15

2.2 Problem Description . 18

2.3 Discretization, Approximation, and Integration Scheme 22

2.4 Optimal Trajectory Planning under Motion Constraints 31

2.4.1 Numerical Trajectory Optimization 31

2.4.2 Interpolation . 34

2.5 Examples . 36

2.6 Summary and Future Work . 47

v

3 Smooth Interpolation of Orientation by Rolling and Wrapping for

Robot Motion Planning 49

3.1 Background and Literature Review 49

3.2 Problem Description . 53

3.3 Interpolation of SO3 by Rolling and Wrapping 54

3.3.1 Local Diffeomorphism . 54

3.3.2 Rolling Map . 57

3.3.3 Interpolation Algorithm . 60

3.4 Example . 63

3.5 Summary and Future Work . 68

4 A Joint Space Formulation for Compliant Motion Control of Robot

Manipulators 74

4.1 Background and Literature Review 75

4.2 Contact Model and Robot Closed-loop Dynamics 79

4.2.1 Geometry of Constrained Rigid Body (Robot) Systems 80

4.2.2 Equations of Motion . 84

4.3 Hybrid Motion/Force Control Scheme Formulated in Joint Space . . . 87

4.3.1 Open-loop Control Law Design and Dynamical Decoupling . . 87

4.3.2 Closed-loop Control Law Design and Stability Analysis 88

4.4 Simulation and Future Research Directions 94

4.5 Proposed Hybrid Motion/Force Control Experiment on WAM 99

4.5.1 RSISE Experimental Robot Manipulator: WAM 99

4.5.2 Purposes and Procedure of the Suggested Experiment 102

4.6 Summary . 104

5 Conclusion and Outlook 106

5.1 Conclusion . 106

5.2 Future Research Directions . 108

A Proof of Convergence 112

A.1 Solution of the Discretized System . 112

A.2 Convergence Proof . 113

B Derivation of Rolling Map for SO3 122

B.1 Group Action, Rolling Curve, and Its Development 122

B.2 Rolling Map without Slipping or Twisting 123

vi

C Experimental Work Performed on WAM and Peripheral Devices 127

C.1 Identification of Motor Torque Ripple 127

C.2 Kalman Filter for Motor Velocity Estimation 133

C.3 Dynamics Calibration of JR3 6-DOF Force Sensor 136

Bibliography 141

vii

List of Figures

1.1 Different types of motion tasks for robot manipulators: a) free motion

task; b) compliant motion task (courtesy of J.J. Craig) 2

2.1 Compliant motion task example . 19

2.2 Overview of Newton’s method for constrained variational Problems . 24

2.3 Midpoint rule . 27

2.4 Trapezoidal rule . 28

2.5 Blue: cubic spline; Red: computed discrete points 37

2.6 Numerical error for situations with different numbers of points: Red,

9; Blue, 19; Green: 29 . 38

2.7 Computed intermediate discretized points on the sphere. 40

2.8 4-DOF robot manipulator WAM . 41

2.9 WAM moves its end-effector on a sphere 42

2.10 Discretized points and interpolating joint trajectory: a) joint 1; b) joint 2 44

2.11 Discretized points and interpolating joint trajectory: a) joint 3; b) joint 4 45

2.12 End-effector path calculated from joint trajectory in Figs.2.10, 2.11.

Black: sphere normal, red: WAM’s last link 46

3.1 Constrained motion of robot’s end-effector: a) 5-DOFs, b) 4-DOFs, c)

3-DOFs (courtesy of O. Khatib) . 50

3.2 Geometry of manifold SO3, affine tangent space T aff
R0

SO3 at R0, and

the embedding Euclidean space R3×3 53

viii

3.3 a) initial orientation R0, angular velocity ω0, b) intermediate orienta-

tion R1, c) final orientation Rn, angular velocity ωn 64

3.4 Snapshots of the interpolation curves: γ(0), γ(T
14

), γ(T
7
), γ(3T

14
), γ(2T

7
).

Left: φ used, Right: φGS used . 69

3.5 Snapshots of the interpolation curves: γ(5T
14

), γ(2T
7

), γ(T
2
), γ(4T

7
), γ(9T

14
).

Left: φ used, Right: φGS used . 70

3.6 Snapshots of the interpolation curves: γ(5T
7

), γ(11T
14

), γ(6T
7

), γ(13T
14

),

γ(T). Left: φ used, Right: φGS used 71

4.1 Block diagram of generic hybrid motion/force control scheme 76

4.2 Tracking performance of WAM’s shoulder joint: a) operational-space

control law, b) joint-space control law 78

4.3 Commutative maps connecting operational, constraint, joint, and joint-

constraint Spaces . 81

4.4 Block diagram of joint-space hybrid motion/force control scheme . . . 88

4.5 Division of Mq and M6 for kinematic projector setup 91

4.6 Compliant motion task for WAM’s simulation 94

4.7 Trajectory of joint 1: a), and 2: b). Blue: desired; Red: actual 96

4.8 Trajectory of joint 3: a), and 4: b). Blue: desired; Red: actual 97

4.9 Trajectory of contact force. Blue: desired; Red: actual 98

4.10 WAM’s cable-drive transmission system, and its custom-made end-

effectors . 100

4.11 Overall hardward/software structure of WAM and peripheral devices

for the proposed dual-contact experiment 101

4.12 Proposed dual-point contact hybrid motion/force control experiment

for WAM . 103

C.1 The original motor torque identification: a) raw data; b) averaged and

filtered data (courtesy of Barrett Technology Inc.) 129

ix

C.2 The modified motor torque identification: a) raw and filtered data

of motor velocity; b) convergence of torque ripple by iterative feed-

forward compensation . 132

C.3 Joint velocity estimation from encoder measurement 135

C.4 JR3 force sensor with dumbbell end-effector 137

C.5 Recursive least square estimation result: a) mass; b) mass × CoMx-part 139

C.6 Recursive least square estimation result: a) mass × CoMy-part; b) mass

× CoMz-part . 140

x

List of Symbols

â 6-dim rigid body acceleration

C Constraint function

C Coriolis and gravitational force of robot manipulator

E Configuration space, or embedding Euclidean space

f̂ 6-dim wrench (generalized force)

F6 Operational space, force

F q Joint space, force

h Time step size

H Joint-space inertia matrix of robot manipulator

Ho Operational-space inertia matrix

i Index of constraint functions

I Identity matrix

j Index of robot joints, or of Cartesian coordinate’s dimensions

J Cost function

J Jacobian matrix of robot manipulator

k Index of discrete time

l Number of inequality constraints

L Lagrangian function

m Number of equality constraints

M Manifold

M6 Operational space, motion

xi

xii

Mq Joint space, motion

n Number of time partitions

N ,N ′ Subspaces of F6

Nj,N ′
j Subspaces of F q

O Zero matrix

p Number of Euclidean space’s dimensions

p, ṗ, p̈ Element of E , with its first and second derivative; in particular, rigid body’s

linear position, velocity, and acceleration

p̂ Configuration of a rigid body in 3-dim Euclidean space

Ph Discretization operator with time step size h

q Number of robot manipulator’s joints

q, q̇, q̈ Joint position, velocity, and acceleration of a robot manipulator

r Rolling map

r Projected rotation matrix

R Rotation matrix of a rigid body

TpM Tangent space of M at p ∈ M

T aff
p M Affine tangent space of M at p ∈ M

t0, tn Initial and final time

T , T ′ Subspaces of M6

Tj, T ′
j Subspaces of Mq

v̂ 6-dim rigid body velocity

V Affine tangent space, e.g., T aff
p M

y 1-dim resulting curve of some variational problem

y p-dim resulting curve of some variational problem

α Rolling curve

αdev Development of α

β Interpolation curve in V

γ Interpolation curve on M

η Projected initial or final velocity

xiii

κ Forward kinematic map

µ Lagrange multiplier

ξ Initial or final velocity

τ Joint torque of a robot manipulator

φ Local diffeomorphism

Φ Dynamic projector

Ψ Kinematic projector

ω Angular velocity of a rigid body

Ω Element of so3

Statement of Originality

I hereby declare that this submission is my own work and that, to the best of my

knowledge and belief, it contains no material previously published or written by

another person nor material which to a substantial extent has been accepted for the

award of any other degree or diploma of the university or other institute of higher

learning, except where due acknowledgement is made in the next.

Most of the technical discussions in this thesis are based on the following publi-

cations:

• Y. Shen, K. Hüper, and F. Silva Leite, Smooth interpolation of orientation by

rolling and wrapping for robot motion planning, Accepted by the 2006 IEEE

International Conference on Robotics and Automation (ICRA), Orlando, USA,

May 2006.

• Y. Shen and K. Hüper, A joint space formulation for compliant motion control

of robot manipulators, Proceedings of The 2005 IEEE International Conference

on Mechatronics and Automation (ICMA), Niagara Falls, Canada, Jul 2005.

(the Best Student Conference Paper Award of the IEEE ICMA 2005.)

• Y. Shen and K. Hüper, Optimal trajectory planning of manipulators subject

to motion constraints, Proceedings of The 12th International Conference on

Advanced Robotics (ICAR), Seattle, USA, Jul 2005.

• Y. Shen and K. Hüper, Optimal joint trajectory planning for manipulator robot

performing constrained motion tasks, Proceedings of The 2004 Australasian

xiv

xv

Conference on Robotics and Automation (ACRA), Canberra, Australia, Dec

2004.

• Y. Shen and R. Featherstone, The effect of ill-conditioned inertial matrix on

controlling robot manipulator, Proceedings of The 2003 Australasian Conference

on Robotics and Automation (ACRA), Brisbane, Australia, Dec 2003.

• Y. Shen and R. Featherstone, Computer simulation of robot closed-loop dynam-

ics for force control study, Proceedings of The 2002 Australasian Conference on

Robotics and Automation (ACRA), Auckland, New Zealand, Nov 2002.

Acknowledgements

Dr. Knut Hüper has been my supervisor and very good friend. His rigorous math-

ematical reasoning greatly influences my attitude on research and life. The work

described in this thesis was mostly born from the lively meetings and intense discus-

sions with Knut.

I am greatly indebted to Prof. John Moore, the head of our department, for his

kind and timely helps saving me from several difficulties. In my mind, the model of

a great scientist has been established from his preeminent research achievements and

respectable personality.

My sweetheart, Jane, dedicated tremendous love, support and consolation. All of

the calorie letting me think about hard questions came from the delicious food that

she prepared for my daily meals.

My family gave me endless care and encouragement, and it’s time for me to

contribute something back. My parents put a great deal of effect to let me receive

the best available education throughout the years I grew up. They provided me the

financial support and bore the pain of their only child being away, so that I can come

to Australia for the postgraduate study that I was dreaming of.

Special thanks to my Ph.D. advisors: Dr. Alex Lanzon and Dr. Robert Mahony

whose advices on control or robotics were very inspirational.

Also, I would like to express my deep gratitude to Dr. Rui Cortesão who hosted

and supervised me at the Institute of Systems and Robotics of the University of

Coimbra, Portugal, in June 2005. Rui has introduced me his practical experience of

hybrid motion/force control, which is of great use to guide me for future research on

robotic manipulation.

The Department of Information Engineering is a big family with a lot of warm-

hearted members, and I feel so lucky to work with you during my Ph.D. study. Here

xvi

xvii

I would like to thank Jochen Trumpf (for your clever brain helping me solving those

tough math problems); Danchi Jiang and Robert Orsi (for your suggestions on control

and optimization); Hongdong Li (for our cooperation in research and our friendship

among you, your wife, Jane and me); Roy Featherstone (for your close guidance in the

previous two years); David Austin, Nick Barnes, and Lars Petersson (for your helps

on various robotics things and kind words after my first mid-term review); Chris

Webers (for your help on VxWorks, and those interesting chats on either technique

or politics); James Ashton and Shaun Press (for your helps on resolving all those

tricky computer and network troubles); Jason Chen and Luke Cole (for your hours of

skillfully making the hardware that I need for my experiment); Rosemary Shepherd

(for your kind help on a lot of things that are too many to be listed here); and a lot

more.

I have had countless associations within and outside ANU who are not named here

but whose contribution are of great importance to my thesis. Thank you so much.

Finally, I wish to thank the following: Kaiyang Yang and Pei-Yean Lee (so good

to have females who can speak Chinese with in our department); Felix Schill (so nice

to be your cubic mate for so long, and to have lots of interesting chats during these

several years); Shahab Kalantar (thanks for your help on Active Contour Models);

Chanop Silpa-Anan (sorry I still haven’t joined your Latin dance club yet); Jochen

Heinzmann (thanks for your very useful tips on fighting with WAM); Grant Grubb

and Leanne Matuszyk (so nice to go to Sweden and go skiing with you); Rowel Atienza

(how are you in Manila? WAM is not broken yet); Luis Machado (thanks a lot for

your host in Coimbra); Meiting Yue and Mark Killow (look forward to our reunion

in US or Canada next year); Lin Pan and Chie-Ann Lim (very nice to travel to Alice

Spring with you couple); Amy Wu, Jenny Sun, Oakio Teerapong, and Mark Tao (for

our friendship started in Sydney).

Abstract

This thesis reports research results on three different topics under the theme of the

automatic execution of compliant motion tasks for robot manipulators: numerical

trajectory optimization, smooth interpolation of orientation, and control algorithm

design. The major purpose of this research is to present a comprehensive joint-space

solution for robot’s hybrid motion/force control, which we believe is more general and

robust than the conventional operational-space ones.

Firstly, a two-step motion planning scheme for robots subject to motion con-

straints is proposed. The underlying mathematical foundation of our path optimiza-

tion method is calculus of variations, for which an iterative algorithm is designed to

calculate the intermediate points of the resulting curve without solving a correspond-

ing Euler-Lagrange equation.

In the following chapter, we move to the next topic of smooth interpolation of

orientation, i.e., the Special Orthogonal Group SO3, which is a smooth submanifold

embedded in R3×3. The novelty of our approach lies in its combination of rolling and

wrapping with the existing pull back/push forward technique, which further yields

several remarkable features appropriate for real-time applications.

The dynamics and control aspects of the compliant motion task execution are stud-

ied lastly. We will raise a brand-new joint-space formulation of hybrid motion/force

control, motivated from difficulties experienced in practical experimentations on a

real robotic system. Issues such as contact geometry, closed-loop dynamics, and con-

trol algorithm will all be derived in the joint-space. We believe such a melioration

xviii

xix

gives two major advantages over the conventional operational-space approach: bet-

ter applicability on general robots; and more robust performance against joint-level

disturbances.

Chapter 1

Introduction

The first industrial robot Unimate was online in a General Motors automobile factory

in New Jersey in 1961, since then numerous robot manipulators have been widely

installed in various manufacturing industries. Nowadays, robotic techniques have

spread into many areas across manufacturing, defence, medical service, bio-industry,

entertaining, and a lot more.

On the other hand, the study of robotics can be traced back to long time before

its actual commercialization which took place in 1956 when the world’s first robot

company Unimation was formed. Ideas of automated machine have been recorded in

many sources around the world, e.g., the first known design for a robot is commonly

believed to be ”the Leonardo’s robot”, which is a mechanical knight designed by

Leonardo da Vinci around 1495.

1.1 Compliant Motion Tasks of Robot Manipula-

tors

Industrial robots have been broadly used in many manufacturing processes of repet-

itively transferring objects from one location to another. Typical applications of

1

2

(a)

(b)

Figure 1.1: Different types of motion tasks for robot manipulators: a) free motion
task; b) compliant motion task (courtesy of J.J. Craig)

3

this kind include packaging, warehouse loading and unloading, assembly of electronic

boards, etc. In general, these tasks can be described as ”pick and place”, i.e., robots

pick up an object, move it in space along some pre-defined path, then release it.

Since robots can in principle move freely within its work space during the transfers,

we classify this category of tasks as ”free motion tasks” (Fig.1.1a).

On the other hand, robot making contact with parts, tools, or work surfaces is of

great importance for many other real-world applications, e.g., screwing, deburring,

grinding, etc. These type of tasks are called ”complaint motion tasks” and will be

mainly focused on in this thesis. In contrast with free motion tasks, robot’s end-

effectors are now restrained to some work surface, e.g., a wall in Fig.1.1b. Also,

because robots interact with environments, the dynamics analysis in this situation

becomes significantly different as the conventional rigid-body one.

Obviously, special concern on motion planning should be made under the cir-

cumstance of robots performing compliant motion tasks because of the extra motion

constraints. Moreover, a force feedback is usually introduced to actively maintain

the contact, because the environment’s kinematic model in practice cannot be cali-

brated 100% accurate, which further results pure position control schemes can cause

excessive forces to build up at the contact or contact to be lost with the surface.

1.2 Research Motivations and Contributions

We are aware that the majority of existing research results on robot’s compliant

motion control are formulated in the operational space, i.e., the 3D Cartesian task

space [25, 37, 44, 48, 54, 65, 66, 69]. The major reason accounting for such a choice is

that the environmental objects that robots interact with are naturally easier described

4

in the operational space. In fact, most of papers regard a robot to be a 6-degree-

of-freedom rigid body by assuming the mapping from the operational space to the

joint space is straightforward and invertible. Apparently, the reference trajectories

for such operational-space complaint motion control laws should also be provided in

the operational space.

Operational-space control schemes already have quite a few successful implemen-

tations reported in the literature. Nevertheless, we reckon there exist weaknesses of

this approach with respect to the following several aspects

1. Applicability to general robots;

If a robot does not have 6 degrees of freedom, the implementation of operational

space analysis becomes a bit awkward. More specifically, the operational-space

inertia does not exist for constrained robots; while for redundant robots, the

pre-optimized information in the Jacobian’s null space will be wiped out by the

operational-space filtering process.

2. Optimal trajectory planning;

Ideally, trajectory optimization should aim at some comprehensive optimality

with regard to motions of both robot’s joints and its end-effector. However,

considering robot’s kinematic model in the operational-space brings a lot of

inconveniences for robot motion planning.

3. Robustness against joint-level disturbances.

Most of disturbances in robot’s control are originated at the joint level, e.g.,

motor torque ripples, joint friction, etc. From our experimental experience,

5

operational-space control algorithms are not so capable to overcome those dis-

turbances in general, especially when robot’s inertia matrix is ill-conditioned

[59].

The major goal of this thesis is to bring a new methodology of robot manipula-

tor’s compliant motion control with respect to both planning and dynamics/control.

In short, a joint-space solution will be presented in contrast with the conventional

operational-space ones. The detailed scientific contributions of this thesis are

1. A two-step optimal joint trajectory planning scheme for robot manipulators

subject to general motion constraints;

2. A smooth interpolation algorithm for rigid-body’s orientation, i.e., the rotation

group SO3;

3. A joint-space formulation for robot manipulator’s hybrid motion/force control.

1.3 Organization of This Thesis

Apart from the introduction and conclusion parts (Chapter 1 and 5), the main contri-

butions of this thesis are presented in Chapter 2, 3, and 4. Although all of them are

under the basic scheme of joint-space complaint motion control, each chapter is self-

contained and deals with an individual research topic. Readers can focus on whatever

topics that most interest you and need not worry about an unexpected dependence

of one chapter on another.

Briefs of chapter 2, 3, and 4 are provided as follows:

6

Chapter 2 In this chapter we first present an iterative algorithm solving for vari-

ational problems with holonomic constraints whose Lagrangian function may

contain derivatives up to second order. The novelty is to directly calculate the

intermediate points of the boundary value path, instead of solving a correspond-

ing nonlinear implicit Euler-Lagrange equation.

Furthermore, a novel optimal joint-trajectory planning algorithm for manip-

ulator robots performing compliant motion tasks is proposed based on our

theoretical discoveries. In general, a two-step scheme is deployed to find the

optimal robot joint curve. Some numerical examples are shown at the end of

this chapter, including a motion planning exercise for our 4-degree-of-freedom

experimental robot WAM.

Chapter 3 This chapter investigates a novel procedure to calculate smooth interpo-

lation curves of the rotation group SO3, which is commonly considered as the

standard representation of rigid-body’s orientations. The algorithm is a com-

bination of rolling and wrapping with the pull back/push forward technique,

yielding a few desirable features appropriate for real-time applications. Also, a

numerical example along with some visualization results are presented at the

end of this chapter.

Chapter 4 This chapter presents a joint space formulation for robot manipulator’s

hybrid motion/force control. Contact geometry and closed-loop dynamics will

be derived in this chapter, also a joint-space hybrid control scheme will be

proposed. Some simulation results are shown to verify the applicability of our

theory on a constrained (4-degree-of-freedom) robot WAM. At the end of this

7

chapter, we suggest a compliant motion control experiment of WAM performing

a 2-DOF motion and 2-DOF force task.

Chapter 2

Newton’s Method for Constrained
Variational Problems with
Applications to Robot Path
Planning

In this chapter we first present an iterative algorithm solving for variational problems

with holonomic constraints whose Lagrangian function may contain derivatives up to

second order. This research is an extension of the recent work of Levin et al. [40].

The novelty is to directly calculate the intermediate points of the boundary value

path, instead of solving a corresponding nonlinear implicit Euler-Lagrange equation.

In appendix A, we give a proof that the result of our iterative calculation scheme will

converge to the result of the Euler-Lagrange equation as the time difference h inclines

to 0.

Furthermore, a novel optimal joint-trajectory planning algorithm for manipulator

robots performing compliant motion tasks is proposed based on our theoretical dis-

coveries. In general, a two-step scheme is deployed to find the optimal robot joint

curve. Firstly, we approximate the functional and use Newton’s iteration to numer-

ically calculate the joint trajectory’s intermediate discretized points. Secondly, we

8

9

interpolate these points to get the final joint curve in a way such that the motion

constraints will always be sustained throughout the movement.

Some numerical examples are shown at the end of this chapter, including a motion

planning exercise for our 4-degree-of-freedom experimental robot WAM.

2.1 Background and Literature Review

2.1.1 Calculus of Variations

The classical calculus of variations was originated about 300 years ago in connection

with mechanical problems. The so-called brachistochrone problem,

min
y(x)

∫ xn

x0

√
1 + ẏ(x)2

√
y(x)

dx, (2.1.1)

is probably one of the earliest variational problem in the history of mathematics. It

was firstly formulated and solved by Johann Bernoulli with cycloid in 1696. ”Brachis-

tochrone” is Greek for ”shortest time”, and the brachistochrone problem is to find

the curve that will yield the shortest possible time for the descent of an object from

rest and accelerated by gravity without friction [61].

Generally speaking, calculus of variations looks for a curve for which a given

integral attains a stationary value (for physical systems, it is often a minimum or

maximum).

E.g., the so-called ”simplest problem of variational calculus” is defined as

P2.1 Minimize the integral

J(y) =

∫ tn

t0

L
(
t, y(t), ẏ(t)

)
dt (2.1.2)

10

with respect to the class of C2-smooth curves y : [t0, tn] → R, t 7→ y(t), which

satisfies the boundary conditions (for boundary problems)

y(t0) = y0, y(tn) = yn, (2.1.3)

or the initial conditions (for initial problems)

y(t0) = y0, ẏ(t0) = ξ0, (2.1.4)

and the integrand L (often called the Lagrangian function) here is defined as

L : [t0, tn]× R× R→ R,
(
t, y(t), ẏ(t)

) 7→ L(t, y, ẏ).

The solution of P2.1 satisfies a differential equation, namely the so-called Euler-

Lagrange equation,

∂L

∂y
− d

dt

(∂L

∂ẏ

)
= 0. (2.1.5)

Showing Eq. 2.1.5 is the necessary condition for the minimal curve y(t) involves

using a mathematical theory named calculus of variations. Here we only briefly show

a few key steps of the derivation procedure. For more details on variational calculus,

please refer to [61, 62, 67].

Suppose we have found a C2-curve y∗(t) which renders J(y) a minimum value.

Now perturb y∗(t) by another smooth curve z : [t0, tn] → R, t 7→ z(t) with z(t0) =

z(tn) = 0. Namely let y(t) = y∗(t) + εz(t), where ε ∈ R is a small parameter. Having

written y(t) in this way, we can define J̃ : R → R, ε 7→ J(y∗ + εz), and the real

function J̃(ε) has a minimum value at ε = 0. By using elementary calculus, we know

that dJ̃/dε = 0 when ε = 0.

We will see dJ̃/dε = 0 is equivalent to Eq. 2.1.5 from the expansion below. The

chain rule is used to go from the second equation to the third, whose middle term

11

will disappear because z(t0) = z(tn) = 0.

dJ̃

dε

∣∣∣
ε=0

=
d

dε
J̃
(
t, y + εz, ẏ + εż

)∣∣∣
ε=0

=

∫ tn

t0

∂L

∂y
z dt +

∫ tn

t0

∂L

∂ẏ
ż dt

=

∫ tn

t0

∂L

∂y
z dt +

∂L

∂ẏ
z
∣∣∣
t=tn

t=t0
−

∫ tn

t0

z
d

dt

(∂L

∂ẏ

)
dt

=

∫ tn

t0

z

(
∂L

∂y
− d

dt

(∂L

∂ẏ

))
dt = 0. (2.1.6)

In Eq. 2.1.6, as z can be any arbitrary smooth curve as long as it satisfies the boundary

conditions, so the only possibility for the whole equation to be zero is that the terms

inside the big parentheses equal 0, which is exactly Eq. 2.1.5.

Ideally, we can get a closed form of y(t) from the Euler-Lagrange equation Eq. 2.1.5

together with conditions Eq. 2.1.3 or Eq. 2.1.4. However, it is in general very difficult

to solve a differential equation symbolically. For P2.1, nonlinearity of the Lagrangian

function L will merge into the Euler-Lagrange equation, which makes the differential

equation very tricky to handle. Miele and Pritchard [50] proposed an iterative ap-

proach which keeps updating y(t)’s symbolic expression with a tiny displacement (the

scaled solution of a differential equation) until the overall cost function J reaches some

acceptable small value. With sufficiently small step size at each iteration, the integral

of the Lagrangian function is forced to decrease. However, the actual implementation

is expected to be very tough as y(t)’s form will get more and more complicated as the

iteration goes on. Elnagar et al. [22, 23] approximated the resulting curve as a multi-

order Lagrange polynomial, then applied some Newton-type methods to determine

the coefficients of such prior-structured model. Comparing with the first method, this

approach is more realistic, but there are still a quite big number of parameters for

12

the optimizer to calculate, which may make such an algorithm fall into ”the curse of

dimension”.

In some cases, it’s good enough to know the value of the optimal curve only at

a bunch of discrete time instants, for example, if we are asked to design reference

tracking trajectories for discrete control systems. Under this circumstance, we can

try numerically solving the differential equation as an alternative way to tackle vari-

ational problems. Leok [39] and Lew et al. [41, 42] presented the variational time

integration algorithms which can numerically solve the initial problem (Eq. 2.1.4) by

propagating the discretized configuration curve y(tk) along the time axis according to

the discretized Euler-Lagrange equation. Such techniques are very useful in studying

dynamics of mechanical systems.

Comparatively, boundary problem is much more complicated. Gregory and Yang

[28] showed the discretized Euler-Lagrange equation for computing the resulting

curve’s intermediate discretized points, and the equation is derived through pick-

ing a special perturbation function z(t) whose integral and derivative’s integral is

known. Levin et al. [40] obtained similar results as what Gregory and Yang have got,

but their analysis is done by representing the whole cost function with the discretized

y(t) (with which ẏ(t) is approximated), then apply the Gauss-Newton algorithm to

perform the optimization process (they somehow convert the overall cost function

into a summation of plenty of quadratical forms).

Considering more general situations, we can extend P2.1 in two directions. Firstly,

the Lagrangian function may contain second order derivatives (i.e., L upgrades to

[t0, tn]× R× R× R→ R,
(
t, y(t), ẏ(t), ÿ(t)

) 7→ L(t, y, ẏ, ÿ)).

13

P2.2 Minimize the integral

J(y) =

∫ tn

t0

L
(
t, y(t), ẏ(t), ÿ(t)

)
dt (2.1.7)

with respect to the class of C4-smooth curves y(t) which satisfies the boundary

conditions

y(t0) = y0, y(tn) = yn, ẏ(t0) = ξ0, ẏ(tn) = ξn. (2.1.8)

Similar as getting Eq.2.1.5, we can derive the corresponding Euler-Lagrange equa-

tion for P2.2 by using variational calculus as below

∂L

∂y
− d

dt

(∂L

∂ẏ

)
+

d2

dt2

(∂L

∂ÿ

)
= 0. (2.1.9)

Secondly, we may restrain the resulting curve with some holonomic constraints

(referring to no occurrence of y(t)’s derivatives). Often such constraints can be ex-

pressed explicitly.

P2.3 Similar to P2.2, find a smooth curve y(t) minimizing Eq.2.1.7 under the bound-

ary conditions Eq.2.1.8, besides y(t) is further subject to

C
(
y(t)

)
= 0, ∀t ∈ [t0, tn]. (2.1.10)

E.g., if the constraint is a unit sphere in a 3D Cartesian coordinate system: S2 =

{y2
1 + y2

2 + y2
3 = 1}, then

C
(
y(t)

)
= y2

1(t) + y2
2(t) + y2

3(t)− 1 = 0, ∀t ∈ [t0, tn]. (2.1.11)

To solve constrained variational problems, one possible approach is to introduce a

new coordinate system, sometimes called ”Lagrange coordinates of the second kind”

[67], so that the side conditions, such as C(y) in Eq.2.1.11, are automatically fulfilled.

14

E.g., seek for an optimal curve on a 2D plane with regard to

min
y(t)

∫ tn

t0

√
ẏ2

1(t) + ẏ2
2(t) dt, (2.1.12)

y1(t0) = y10, y1(tn) = y1n, y2(t0) = y20, y2(tn) = y2n, (2.1.13)

with the side condition

y2
1(t) + y2

2(t) = 1, ∀t ∈ [t0, tn]. (2.1.14)

If we let

y1 = cos(θ), y2 = sin(θ), (2.1.15)

we can obtain a 1-D variational problem without the side constraint,

min
θ(t)

∫ tn

t0

√
sin2

(
θ(t)

)
+ cos2

(
θ(t)

)
dt, (2.1.16)

cos
(
θ(t0)

)
= y10, sin

(
θ(t0)

)
= y20,

cos
(
θ(tn)

)
= y1n, sin

(
θ(tn)

)
= y2n.

(2.1.17)

The above approach makes it possible to employ analytical results of general man-

ifolds in differential geometry. However, in the meantime, the optimization process

utilizes abstract concepts and the Lagrange coordinates are highly dependent on the

geometrical properties of the manifold described by C(y), therefore the implementa-

tion may become tricky sometimes. Comparatively, the Lagrange multiplier technique

is a more straightforward and widely used method for solving constrained variational

problems. For P2.3, we can introduce a function (i.e., the Lagrange multiplier)

µ : [t0, tn] → R, and the original variational problem is equivalent to

P2.4

min
y(t),µ(t)

∫ tn

t0

(
L

(
t,y(t), ẏ(t), ÿ(t)

)
+ µ(t)C

(
(y(t)

))
dt (2.1.18)

15

with y(t) satisfying the boundary conditions

y(t0) = y0, y(tn) = yn, ẏ(t0) = ξ0, ẏ(tn) = ξn. (2.1.19)

The corresponding Euler-Lagrange equation system for P2.4 is

∂L

∂y
− d

dt

(∂L

∂ẏ

)
+

d2

dt2

(∂L

∂ÿ

)
+ µ

dC

dy
= 0,

C
(
y(t)

)
= 0.

(2.1.20)

Ahlbrandt et al. [4] and Crouch et al. [17] looked at some particular constrained

variational problems. They both succeeded in eliminating the Lagrange multiplier

function and establishing the Euler-Lagrange equation explicitly for their specified

cost function and constraints, on which numerical approaches can further be applied.

However, in more general cases, such an Euler-Lagrange equation in y(t) turns out to

be an implicit differential equation, e.g., the example on robot path planning shown

in Section 2.5.

2.1.2 Robot Path Planning

Generally speaking, the task for a motion planner is to specify a motion to be exe-

cuted by actuators. Properly planned motion can have advantages with respect to

different aspects, e.g., obstacle avoidance, work efficiency optimization, better track-

ing performance, etc. More specifically, for multi-link robotic systems, the reference

trajectory generation can be divided into the following two subproblems.

Pr2.1 For a given robot and task, plan a path for the end-effector connecting two

or more specified configurations (may include both position and orientation).

Such a path should satisfy either equality (e.g., robot’s end-tip is required to

16

move on a working surface) or inequality (e.g., obstacle avoidance) constraints;

in the meantime, it may optimize a performance index.

Pr2.2 For a given end-effector path expressed in the operational space (which usu-

ally coincides with the Cartesian space), find its corresponding joint trajectory

through inverse kinematics. Similarly, some performance index can be opti-

mized in case of a redundant robot, namely, the robot has more degrees of

freedom (DOFs) than necessary to perform the given task.

The conventional strategy for robot path planning often requires Pr2.1 and Pr2.2

to be resolved separately. The necessity of individually solving Pr2.1 comes from the

facts that:

1. the geometrical shape of end-effector path is very important for the automatic

task execution,

2. some optimization criterions or constraint conditions are naturally easier de-

scribed in the operational space, e.g., the presence of obstacles [56].

For Pr2.1, it is a widely researched topic to design a collision-free configuration

path for a single rigid object travelling in a crowded environment, and most of such

algorithms can be found in Latombe’s work [38].

However, the drawback of the above approach is its computational difficulties

or inefficiencies artificially introduced by the isolated processing in the operational

and joint spaces. Firstly, it may be cumbersome to generalize the end-effector’s

path planning algorithm described in [38] on a multi-rigid-body manipulator due to

the robot’s feasible configuration space constrained by its nonlinear kinematics and

17

joints’ mechanical stops. Secondly, as the robot’s kinematic model is usually ignored

at the end-effector path planning stage, the resulting joint motion may contain some

unpredictable behaviors, e.g., when the robot is in the neighborhood of a singularity

[15].

Recently, authors have adopted the methodology of solving Pr2.1 and Pr2.2

in one attempt by casting a robot path planning problem as an optimal control

problem [60, 64], some even seek for the optimal time history of joint torques [12, 45].

Most of these papers are aiming towards the minimum execution time under the

constraint of drive torque limit (some consider obstacle avoidance as well). Since

the path planning is directly performed in the joint space, such an approach will

automatically eliminate the necessity of calculating the feasible configuration space

for the manipulator. However, path optimization incorporating robot dynamics will

often end up with a suboptimal result. The reason is that apart from the multi-rigid-

body model, some dynamics factors which are either difficult to model (e.g., motor

torque ripple) or not necessarily smooth functions (e.g., Coulomb friction) are usually

beyond the scope of optimization.

Based on our iterative algorithm for constrained varitational problems to be pre-

sented in the next section, here we study the optimization of a robot path in the

joint space (also solving Pr2.1 and Pr2.2 at the same time) with regard to some

synthetical geometric performance index for the motions of both robot’s joint and

end-effector as well. The idea is to optimize not only the joint trajectory but also its

resulting end-effector path in the eye of the joint space, since the motion of robot’s

end-effector is ultimately driven by that of its joints through a surjective forward

kinematic map, for which a fairly accurate model is usually possible to obtain. Our

18

’lump-sum’ path planning approach will have the advantage on achieving such a syn-

thetical optimality, as the anterior step of the conventional strategy is usually blind

to the final joint trajectory’s optimality.

Furthermore, rather than the free space motion, we consider the situation that

the robot’s end-effector is subject to some motion constraints. A typical example is

that the manipulator is performing a compliant motion task, i.e., its end-effector is

only allowed to move on some working surface. The extreme case in this category is

that the end-effector path is totally determined before we carry out the path planning.

Then our trajectory-optimization algorithm will downgrade to a solver for only Pr2.2

as in [3, 47], except that we allow the cost function to contain second order derivatives

and we avoid solving the Euler-Lagrange differential equation.

The rest of the chapter is organized as follows: Section 2 gives the formulation

of the constrained variational problem we consider for robot path planning applica-

tions; Section 3 and 4 present the mathematical foundations as well as the two-step

trajectory-optimization algorithm; Section 5 shows several numerical examples of

applying the algorithm on both theoretical variational problems and practical robot-

motion-planning exercises. The attached CD contains some videos of both animations

and experiments of the 4-DOF robot manipulator WAM.

2.2 Problem Description

This section gives the mathematical formulation of our optimal robot path planning

problem, which can be classified as a variational problem presented in Section 2.1.1.

First of all, we are considering the situation that a robot is performing some

19

compliant motion task, i.e., the manipulator is subject to l end-effector constraints

(with respect to linear position and orientation)

Ci

(
p(t),R(t)

)
= Ci

(
κp

(
q(t)

)
, κR

(
q(t)

))
= 0, i = 1, · · · , l, (2.2.1)

where q : R → Rq, t 7→ q(t) is the q-dim joint curve, p : R → R3, t 7→ p(t) is

the path of end-effector’s linear position, and R : R → SO3, t 7→ R(t) is the path

of end-effector’s orientation. Moreover, κp : Rq → R3, q(t) 7→ p
(
q(t)

)
and κR :

Rq → SO3, q(t) 7→ R
(
q(t)

)
are the manipulator’s forward position and orientation

kinematic maps, respectively.

x

z

n

y

p

Cartesian manipulator

Environment: 2D−plane

Figure 2.1: Compliant motion task example

For example, suppose the manipulator’s end-effector is required to move on a

2D plane in R3 (Fig.2.1), e.g., the manipulator is wiping a flat window. Then the

20

corresponding motion constraint can be expressed as

C
(
q(t)

)
= κp

(
q(t)

)>
n

= p(t)>n = 0
(2.2.2)

where n ∈ R3 is the plane normal.

Another situation is that the path of the end-effector is directly determined by

the given task itself, e.g., the robot performs cutting, welding, and so on. Then the

motion constraints may be given as





C1

(
q(t)

)
= κp

(
q(t)

)−pd(t) = 0

C2

(
q(t)

)
= κR

(
q(t)

)−Rd(t) = 0
(2.2.3)

where pd : R→ R3, t 7→ pd(t) and Rd : R→ SO3, t 7→ Rd(t) are the desired path of

end-effector’s linear position and orientation, respectively.

With the end-effector constraints, our robot path optimization problem is given

as

Pr2.3 (A combination of Pr2.1 and Pr2.2)

Over the set (named SC) of sufficiently smooth curves subject to the motion

constraints and boundary conditions:

Ci

(
q(t)

)
= 0, ∀t ∈ [t0, tn], i = 1, · · · , l, (2.2.4)

q(t0) = q0, q(tn) = qn,

q̇(t0) = ξ0, q̇(tn) = ξn,
(2.2.5)

find a joint trajectory q : [t0, tn] → Rq minimizing the cost function J : SC →
R, q 7→ J(q):

J(q) =

∫ tn

t0

(
L

(
q(t), q̇(t), q̈(t)

))
dt, (2.2.6)

21

where

L
(
t,q(t), q̇(t), q̈(t)

)
= L1

(
t,q(t), q̇(t)

)
+ L2

(
t,q(t), q̈(t)

)
, (2.2.7)

L1 : [t0, tn]× Rq × Rq → R,
(
t,q(t), q̇(t)

) 7→ L1(t,q, q̇),

L2 : [t0, tn]× Rq × Rq → R,
(
t,q(t), q̈(t)

) 7→ L2(t,q, q̈).

The reason for splitting the integrand of J into the sum of L1+L2 will be explained

in later sections. Nevertheless, besides q(t) and its first or second order derivatives,

the above optimization objective stereotype can also represent the end-effector’s static

linear position p(t) ∈ R3 or orientation R(t) ∈ SO3 and its linear ṗ(t) ∈ R3 or angular

ω(t) ∈ R3 velocity by using Eqs.2.2.8,2.2.9.

p(t) = κp

(
q(t)

)
, R(t) = κR

(
q(t)

)
, (2.2.8)

[
ω(t)

ṗ(t)

]
= J

(
q(t)

)
q̇(t) +

[
0

ω(t)× p(t)

]
, (2.2.9)

where J(t) : Rq → R6, q̇(t) 7→ v̂(t) is the Jacobian matrix whose symbolic expression

in q(t) is easy to derive [24], and v̂(t) is the rigid body velocity [51] of robot’s end-

effector expressed in the inertial frame.

Again, if we introduce Lagrange multiplier functions µi : [t0, tn] → R, i = 1 · · · l,
with which Pr2.3 can be established equivalently as

Pr2.4 Find a sufficiently smooth curve q satisfying the boundary conditions (Eq.2.2.5)

and a set of curves µi, such that the following function J̃ attains a minimal value.

J̃(q, µi) =

∫ tn

t0

(
L1(q, q̇) + L2(q, q̈) +

l∑
i=1

µiCi(q)
)

dt (2.2.10)

22

Using calculus of variations, we know that the optimal joint curve for the above

path planning problem satisfies the Euler-Lagrange equation system





∂L1

∂q
− d

dt

(∂L1

∂q̇

)
+

∂L2

∂q
+

d2

dt2

(∂L2

∂q̈

)
+

l∑
i=1

µi
dCi

dq
= 0

Ci = 0, i = 1, · · · , l.

(2.2.11)

Eq.2.2.11 is in general quite difficult to handle. The problem is that the resulting

differential equation in q may be implicit, even if we are able to eliminate the Lagrange

multipliers µi. This happens for example if the motion of the end-effector is also

within the scope of our trajectory optimization, meaning L1 incorporates robot’s

nonlinear kinematic model. In face of the difficulties of solving (even numerically)

an implicit differential equation, we propose a two-step path planning scheme which

firstly computes q’s discretization and then interpolates the corresponding points to

obtain an approximate solution curve of Eq.2.2.11. The next section will present the

mathematical foundations of the first step’s calculation, and the overall path planning

algorithm will be given in Section 2.4.

2.3 Discretization, Approximation, and Integration

Scheme

First of all, we repeat the variational problem studied in this thesis.

P2.5

min
y

J(y) =

∫ tn

t0

L1

(
t,y(t), ẏ(t)

)
+ L2

(
t,y(t), ÿ(t)

)
dt (2.3.1)

23

with respect to the class of sufficiently smooth functions y : [t0, tn] → Rp, t 7→
y(t), which satisfies the boundary conditions

y(t0) = y0, y(tn) = yn, ẏ(t0) = ξ0, ẏ(tn) = ξn, (2.3.2)

and the holonomic constraint (for simplicity, we let l = 1)

C
(
y(t)

)
= 0, ∀t ∈ [t0, tn]. (2.3.3)

As we know, if a Lagrange multiplier µ(t) is introduced, P2.5 is equivalent to

min
y(t),µ(t)

J̃(y, µ) =

∫ tn

t0

(
L1

(
t,y(t), ẏ(t)

)
+L2

(
t,y(t), ÿ(t)

)
+µ(t)C

(
y(t)

))
dt, (2.3.4)

whose solution satisfies the Euler-Lagrange equation system

∂L1

∂y
− d

dt

(∂L1

∂ẏ

)
+

∂L2

∂y
+

d2

dt2

(∂L2

∂ÿ

)
+ µ

dC

dy
= 0,

C
(
y(t)

)
= 0.

(2.3.5)

To solve for P2.5, we will propose a Newton-like algorithm, which can be sum-

marized into the following four steps and the overall data-flow structure is illustrated

in Fig.2.2.

1. y(t) and µ(t) are discretized with the discretization results respectively denoted

by yk, and µk, as at this stage we are only interested in knowing the values of

the resulting optimal curve at discrete time instants.

2. Use the neighbor points to approximate the first and second derivatives of y.

Note that ẏ and ÿ will be treated under different time schemes, which accounts

for separating L as L1 and L2.

24

µ
k,k

y

µ
k,k

y ,k
y

opt
Approximation Scheme

Discretization Scheme

Integration Scheme

Newton’s Method

y(t), µ(t)

y,k k
y*
. ..

µ
k

opt

J’
~

()

Figure 2.2: Overview of Newton’s method for constrained variational Problems

3. The cost function J̃ can further be represented by yk, ẏ∗k (ẏ∗k will be defined in

the next page), ÿk, and µk. Therefore, the infinite-dimensional variational prob-

lem has finally been converted into a finite-dimensional optimization problem.

The dimension of which is directly governed by the time step size.

4. Apply some developed technique (e.g., the Newton’s method) to solve for the

optimization problem.

It is non-trivial that the characteristics of the original variational problem get

preserved through this processing, in other words, as we discretize y(t) and µ(t) with

an infinite number of points, the result from applying Newton’s method converges to

the solution of the Euler-Lagrange equation. Technical details for each step will be

revealed gradually next, and the convergence proof is given in Appendix A.

Consider a regular partition of the time interval [t0, tn],

tk = kh , k ∈ {0, 1, · · · , n− 1, n}, (2.3.6)

where h = (tn − t0)/n is the step size.

25

Let

yk := y(tk) , k ∈ {0, 1, · · · , n− 1, n}, (2.3.7)

and

µk := µ(tk) , k ∈ {0, 1, · · · , n− 1, n}. (2.3.8)

In this thesis, yk or µk is called ”the discretized point” of y(t) or µ(t). Also, we define

two discretization operators Pn+1
h and Pn−1

h . Feeding a p-dim vector function y(t)

into Pn+1
h or Pn−1

h , the output is respectively an (n + 1)×p or (n− 1)×p matrix, i.e.,

Pn+1
h

(
y(t)

)
=




y0

y1

...

yn−1

yn




, (2.3.9)

Pn−1
h

(
y(t)

)
=




y1

...

yn−1


 . (2.3.10)

Meanwhile, we define t∗k as

t∗k := kh +
h

2
, k ∈ {0, 1, · · · , n− 1}. (2.3.11)

Similar as above, we can have

y∗k := y(t∗k) , k ∈ {0, 1, · · · , n− 1}, (2.3.12)

whose corresponding discretization operator P∗n
h maps p-dim y(t) into an n×p matrix

P∗n
h

(
y(t)

)
=




y∗0
y∗1
...

y∗n−1




. (2.3.13)

26

Now consider representing y∗k and ẏ∗k by yk,

y∗k ≈ yk +yk+1

2
, (2.3.14)

ẏ∗k ≈ yk+1−yk

h
, (2.3.15)

and ÿk by yk, ξ0 and ξn,

ÿ0 ≈ 2y1− 2y0

h2
− 2

h
ξ0,

ÿk ≈ yk−1− 2yk +yk+1

h2
, (2.3.16)

ÿn ≈ 2yn−1− 2yn

h2
+

2

h
ξn.

Rewrite Eqs. 2.3.14, 2.3.15, 2.3.16 in matrix forms, we get

P∗n
h

(
y(t)

) ≈ APn+1
h

(
y(t)

)
, (2.3.17)

P∗n
h

(
ẏ(t)

) ≈ BPn+1
h

(
y(t)

)
, (2.3.18)

Pn+1
h

(
ÿ(t)

) ≈ CPn+1
h

(
y(t)

)
+D, (2.3.19)

where

A =




1
2

1
2

1
2

1
2

.

1
2

1
2



∈ Rn×(n+1), (2.3.20)

B =




− 1
h

1
h

− 1
h

1
h
.

− 1
h

1
h



∈ Rn×(n+1), (2.3.21)

27

C =




− 2
h2

2
h2

1
h2 − 2

h2
1
h2

.

1
h2 − 2

h2
1
h2

2
h2 − 2

h2




∈ R(n+1)×(n+1), (2.3.22)

D =




− 2
h
ξ0

0
...

0

2
h
ξn




∈ R(n+1)×p. (2.3.23)

The approximation schemes Eqs. 2.3.17, 2.3.18, 2.3.19 satisfy several interesting

properties which are critical for the numerical stability. For details, please refer to

the convergence proof in appendix A.

t0
* . . .

. . .

. . .t1
* t2

* t3
* * tn−2

* tn−1
*

n−3t

L1(t)

Figure 2.3: Midpoint rule

28

With the help of P∗n
h

(
y(t)

)
and P∗n

h

(
ẏ(t)

)
, we can further approximate the integral

of L1 by using the Midpoint Rule [29] (Fig.2.3),

∫ tn

t0

L1

(
t,y(t), ẏ(t)

)
dt ≈

n−1∑

k=0

L1(t
∗
k,y

∗
k, ẏ

∗
k) h (2.3.24)

t0 . . .t1 t2 t3 tnn−1n−2t t

. . .

L2(t)

Figure 2.4: Trapezoidal rule

Also, we can apply the Trapezoidal Rule [29] (Fig.2.4) to approximate the integral

of (L2 + µC) with Pn+1
h

(
y(t)

)
, Pn+1

h

(
ÿ(t)

)
and Pn+1

h

(
µ(t)

)
,

∫ tn

t0

(
L2

(
t,y(t), ÿ(t)

)
+ µ(t)C

(
y(t)

))
dt

≈ L2(t0,y0, ÿ0)
h

2
+

n−1∑

k=1

(
L2(tk,yk, ÿk)h

)
+ L2(tn,yn, ÿn)

h

2

+ µ0C(y0)
h

2
+

n−1∑

k=1

(
µkC(yk)h

)
+ µnC(yn)

h

2
(2.3.25)

By plugging the approximated first and second derivative Eqs. 2.3.17, 2.3.18, 2.3.19

into Eqs. 2.3.24 and 2.3.25, the total cost function J̃(y, µ) can be expressed as a

function of the discretized positions and Lagrange multipliers. Here we assume both

29

y0 and yn comply with the constraint C.

J̃(y, µ) =

∫ tn

t0

(
L1

(
t,y(t), ẏ(t)

)
+ L2

(
t,y(t), ÿ(t)

)
+ µ(t)C

(
y(t)

))
dt

≈
n−1∑

k=0

L1(t
∗
k,y

∗
k, ẏ

∗
k) h

+ L2(t0,y0, ÿ0)
h

2
+

n−1∑

k=1

(
L2(tk,yk, ÿk) h

)
+ L2(tn,yn, ÿn)

h

2

+ µ0 C(y0)
h

2
+

n−1∑

k=1

(
µk C(yk) h

)
+ µn C(yn)

h

2

≈ L1

(
P∗n

h(t),APn+1
h

(
y(t)

)
,BPn+1

h

(
y(t)

))
h

+L2

(
Pn+1

h (t),Pn+1
h

(
y(t)

)
, CPn+1

h

(
y(t)

)
+D

)
h

+L3

(
Pn−1

h

(
y(t)

)
,Pn−1

h

(
µ(t)

))
h

= J̃ ′(yk, µk), (2.3.26)

where

L1

(
P∗n

h(t),P∗n
h

(
y(t)

)
,P∗n

h

(
ẏ(t)

))
=

n−1∑

k=0

L1(t
∗
k,y

∗
k, ẏ

∗
k), (2.3.27)

L2

(
Pn+1

h (t),Pn+1
h

(
ẏ(t)

)
,Pn+1

h

(
ÿ(t)

))
=

1

2
L2(t0,y0, ÿ0) +

n−1∑

k=1

(
L2(tk,yk, ÿk)

)
+

1

2
L2(tn,yn, ÿn),

(2.3.28)

L3

(
Pn−1

h

(
y(t)

)
,Pn−1

h

(
µ(t)

))
=

n−1∑

k=1

µkC(yk). (2.3.29)

Based on Eq. 2.3.26, the original infinite-dimensional constrained variational prob-

lem with boundary conditions (P2.5) is eventually converted into a finite-dimensional

optimization problem in free space (P2.6). The unknowns to be computed are the

intermediate discretized points of the optimal curve and the Lagrange multiplier func-

tion, i.e., {yk, µk}, k = {1, · · · , n− 1}.

30

If we let

Q =
[
y1,1 , · · · , yn−1,p , µ1 , · · · , µn−1

]>
∈ R(n−1)(p+1), (2.3.30)

Qy =




y1,1 · · · y1,p

...
. . .

...

yn−1,1 · · · yn−1,p


 ∈ R(n−1)×p, (2.3.31)

Qµ =




µ1

. . .

µn−1


 ∈ R(n−1)×(n−1), (2.3.32)

where yk,j is the jth element of yk, then the optimization problem can be formulated

as

P2.6 Find a vector Q minimizing the function L(Q), where

L(Q) := L1(Q) +L2(Q) +L3(Q). (2.3.33)

To solve P2.6, one of the most common methods is to apply Newton’s iteration

(A2.1).

A2.1 (Newton’s method)

1. Pick a reasonable guess of Q.

2. Update Q by the following law:

Qi+1 = Qi−H−1

J̃ ′ (Qi)∇J̃ ′(Qi), (2.3.34)

where Qi is the ith iterate of Q, ∇J̃ ′ is the gradient of J̃ ′ with respect to Q,

and HJ̃ ′ is the square matrix (Hessian) of second-order partial derivatives of J̃ ′

with respect to Q.

Keep applying step 2 until the norm of ∇J̃ ′ gets small enough.

31

The result of the discretized system (Q such that ∇J̃ ′(Q) = 0) will converge

to the result of the Euler-Lagrange boundary problem (Eq.2.3.5), as the time step

size h goes to 0. Levin et al. [40] give the proof of the above proposition for ”the

simplest problem of calculus of variations”. It can be shown that our approximation

(Eqs.2.3.17,2.3.18,2.3.19) and integration (Eqs.2.3.24,2.3.25) schemes are ’consistent’

in the sense of numerical analysis [68], therefore the proof in [40] can be extended to

the constrained variational problem containing second order derivatives (i.e., P2.5).

Please refer to Appendix A for the detailed proof.

At the moment, we require ẏ and ÿ to be discretized under two time partition

schemes (Eqs.2.3.6,2.3.11) and such a ’discrimination’ on ẏ and ÿ results in decom-

posing the integrand of J into L1

(
t,y(t), ẏ(t)

)
and L2

(
t,y(t), ÿ(t)

)
.

2.4 Optimal Trajectory Planning under Motion Con-

straints

2.4.1 Numerical Trajectory Optimization

To accomplish path optimization numerically, an usual approach in the robotics liter-

ature is to approximately represent the resulting curve by a finite number of parame-

ters. One choice is to use the discrete joint positions, velocities, and accelerations (or

drive torques), so that the overall problem can be cast as an optimal control problem

[60, 64]. However, as redundancies exist among the above three physical proper-

ties (which are in fact correlated by the robot dynamic model), this representation

scheme requires the optimizer to handle an extra nonlinear equality constraint and

more variables.

32

Alternatively, we can assume the resulting curve matches a particular pattern,

e.g. a cubic or B-spline [63]. Such a scheme contains much less unknowns, and the

value of the curve function and its derivatives at any time instants can be calculated.

However, to make the whole pre-modelled curve comply with motion constraints will

be a quite difficult (or impossible) job.

Based on the thought described in the previous section, we instead represent the

curve by its discrete positions only, from which reasonable approximations of velocity

and acceleration can be obtained as long as we’ve got enough points. Namely, for the

cost function J̃(q, µi) in Pr2.4, we let

∫ tn

t0

L1

(
q(t), q̇(t)

)
dt ≈

n−1∑

k=0

L1

(qk +qk+1

2
,
qk+1−qk

h

)
h, (2.4.1)

∫ tn

t0

(
L2

(
q(t), q̈(t)

)
+

l∑
i=1

µi(t)Ci

(
q(t)

))
dt

≈ L2

(
q0,

2q1− 2q0

h2
− 2

h
ξ0

)h

2
+

n−1∑

k=1

L2

(
qk,

qk−1− 2qk +qk+1

h2

)
h

+ L2

(
qn,

2qn−1− 2qn

h2
+

2

h
ξn

)h

2
+

l∑
i=1

n−1∑

k=1

µi,kCi(qk)h.

(2.4.2)

Therefore,

J̃(q, µi) ≈ J̃ ′(Q), (2.4.3)

in this case,

J̃ ′ := R.H.S. of Eq.2.4.1 + R.H.S. of Eq.2.4.2, (2.4.4)

Q :=
[
q1,1 , · · · , qp,n−1 , µ1,1 , · · · , µl,n−1

]>
. (2.4.5)

We may try our luck to solve for minQ J̃ ′(Q) by applying A2.1. However, the

classical Newton’s iteration usually only enjoys local convergence properties, so a good

33

choice of Q’s initial value is necessary. To make such a ’guess’ more efficient, we can

gradually increase the number of time partitions n, then the previously converged

result can be utilized to form the initial value for the next round of the Newton’s

iteration.

A2.2 (Newton’s method, modified)

1. Pick a small n which makes Q easy to converge, and pick an initial guess of Q.

2. (Inner loop) Update Q by the following law until it converges.

Qi+1 = Qi− δ H−1

J̃ ′ (Qi)∇J̃ ′(Qi) (2.4.6)

The step size δ ∈ (0, 1] has been introduced here to improve the numerical

stability. δ should satisfy the Armijo condition [8], and can be calculated by

the backtracking line search [9].

3. (Outer loop) Double n, the value of newly introduced elements is initially set

as the mean of their calculated left and right neighbors. With the expanded

vector Q, go to step 2.

Extension: Besides equality constraints such as Eq.2.2.1, robots are usually sub-

ject to inequality constraints as well, e.g., joint position/velocity limit or obstacle

avoidance, which can eventually be converted into a bunch of constraints on the

discrete joint positions C ′
i(Q) < 0, i = l + 1 · · ·m by using approximation schemes.

To deal with the inequalities, we propose to use the interior point (IP) method

[9], which relaxes the constraints C ′
i < 0 by inserting a convex, smooth ’barrier’

function φ in the cost function J̃ ′. An example for φ is given as below. In practical

34

implementations, the initial value of Q should be picked to satisfy all of the inequality

constraints.

φ(Q) =





−
m∑

i=l+1

log
(− C ′

i(Q)
)

all C ′
i(Q) < 0

+∞ otherwise

(2.4.7)

Apart from applying the above IP method, an easier way to avoid violating the

joint velocity constraint is to linearly scale the execution time. Similar time scaling

methods can sometimes also be employed for drive torque limit (e.g., the dynamic

scaling technique [56]).

2.4.2 Interpolation

After having computed the intermediate discretized points, the next step is to find a

sufficiently smooth joint trajectory q(t) such that

q(tk) = qk, (2.4.8)

Ci

(
q(t)

)
= 0, ∀t ∈ [t0, tn]. (2.4.9)

To ensure the resulting joint curve satisfies both two conditions (Eqs.2.4.8,2.4.9),

we design a 3-step calculation scheme (A2.3) as follows:

A2.3 (Interpolation)

1. Interpolate the previously computed discretized points {q0,q1 · · ·qn−1,qn} by

a cubic spline called qorg.

2. Interpolate pk = κp(qk) and Rk = κR(qk) by curves p and R with the motion

constraints Ci satisfied, or directly use the pre-determined pd,Rd in Eq.2.2.3 if

available.

35

3. Adjust the joint trajectory qorg to fit the end-effector path p,R by repeatedly

applying the following law. Set qold(t) = qorg(t) initially.

qnew(t) = qold(t) +J′
(
qold(t)

) †


(
log

(
κR

(
qold(t)

)>
R(t)

))∧−1

p(t)− κp

(
qold(t)

)


 , (2.4.10)

where

(a) † denotes the pseudo-inverse operation;

(b) log denotes the matrix logarithm, uniquely defined in an open neighbor-

hood of the identity matrix;

(c) J′(t) : Rp → R6, q̇(t) 7→
[

ω(t)

ṗ(t)

]
can be regarded as J(t) (the Jacobian)

transformed into another coordinate system, here I3 is the 3 × 3 identity

matrix;

J′(t) =

[
I3 0

p̂(t)> I3

]
J(t) (2.4.11)

(d) ̂: R3 → so3, x 7→ x̂ is as




x1

x2

x3


 7→




0 −x3 x2

x3 0 −x1

−x2 x1 0


 (2.4.12)

with obvious inverse ∧−1 : so3 → R3, x̂ 7→ (
x̂
)∧−1

= x.

(e) the upper element in the square bracket is the rotation vector in canonical

coordinates extracted from two rotation matrices, whose closed form has

been revealed by Rodrigues’ Formula [51].

Sometimes only the tracking of p is feasible (or necessary) due to the robot’s kinematic

constraints (or the demand of motion task). A pull back/push forward technique with

36

rolling and wrapping for smooth interpolating curves on a manifold was proposed re-

cently [31] and it can be used to compute p. One remarkable feature of this technique

is that it is a coordinate-free approach. Extension of this particular smooth interpo-

lation approach to orientation (namely SO3) has been done, and the next section will

present the details of that work.

Eq.2.4.10 is a Newton-Raphson-like root-finding algorithm. Using the pseudo-

inverse of the Jacobian is to fine-tune the robot pose so that the end-effector configu-

ration will get closer to the desired configuration {p(t),R(t)} with minimum change

in joint position, i.e., 4q(t) = qnew(t)− qold(t). Here we assume we’ve already have

enough discretized points, in other words, {p(t),R(t)} and {κp

(
qorg(t)

)
, κR

(
qorg(t)

)}
are sufficiently close to each other.

2.5 Examples

Example 2.1 (Cubic spline)

Find a C4-smooth curve y : [0, 1] → R, such that the integral of the square of its

acceleration d2y(t)/dt2 is at stationary value,

min
y(t)

∫ 1

0

ÿ(t)2 dt,

s.t. y(0) = y0, y(1) = y1, ẏ(0) = ξ0, ẏ(1) = ξ1.

(2.5.1)

Now derive the Euler-Lagrange equation for the above problem, here ε, z are

defined as in Section 2.1.1 on page 10.

d

dε

∫ 1

0

(
ÿ(t) + εz̈(t)

)(
ÿ(t) + εz̈(t)

)
dt

∣∣∣
ε=0

=

∫ 1

0

2
(
ÿ(t) + εz̈(t)

)
z̈(t) dt

∣∣∣
ε=0

= 2

∫ 1

0

ÿ(t)z̈(t) dt

37

= 2
(
ÿ(t)ż(t)

∣∣∣
t=1

t=0
−

∫ 1

0

ż(t)
...
y (t) dt

)

= 2
(
ÿ(t)ż(t)

∣∣∣
t=1

t=0
− ...

y (t)z(t)
∣∣∣
t=1

t=0
+

∫ 1

0

z(t)
....
y (t) dt

)

= 0. (2.5.2)

The first and second term in the bracket will disappear because z(t0) = z(tn) = 0,

ż(t0) = ż(tn) = 0. Also, as z can be any arbitrary smooth curve as long as it satisfies

the boundary conditions, the only possibility for the whole equation to be zero is that

....
y (t) equals 0, which leads to the Euler-Lagrange equation (Eq. 2.5.3),

....
y (t) = 0 (2.5.3)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

0

2

4

6

8

10

12

Time

X

Figure 2.5: Blue: cubic spline; Red: computed discrete points

Therefore, the solution of the above problem is a cubic spline y(t) = at3 + bt2 +

ct + d, whose coefficients are uniquely determined by the boundary conditions, i.e.,

38

by solving a linear system.

Fig. 2.5 shows the points computed through our algorithm in contrast with the

real curve (here y0 = 0, y1 = 10, ξ0 = −10, ξ1 = −10). Their difference is not obvious,

as in this example the error of yk is within 0.1% of the real cubic spline function y(t).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

Time

E
rr

o
r

Figure 2.6: Numerical error for situations with different numbers of points: Red, 9;
Blue, 19; Green: 29

Fig. 2.6 shows the numerical error for different numbers of intermediate discretized

points. We can see that more points will give rise to better accuracy, such a phe-

nomenon complies with our convergence result proved in Appendix A.

Example 2.2 (Curve with minimum tangential acceleration on 2-sphere)

Find a curve y : [0, 1] → S2, such that the integral over the squared norm of its

39

acceleration projected to the tangent plane attains a minimum,

min
y(t)

∫ 1

0

ÿ(t)T
(
I − yyT

yTy

)
ÿ(t) dt,

s.t. y(t)Ty(t) = 1 ∀t ∈ [0, 1], y(0) = y0, y(1) = y1, ẏ(0) = ξ0, ẏ(1) = ξ1.

(2.5.4)

The Euler-Lagrange equation of the above problem is implicit (for which an ex-

plicit formula has been derived in [17]) but no closed-form solution has been derived

yet. We apply our algorithm with initial value of equal-distance points along the

geodesics, the result is illustrated in Fig. 2.7 (here y0 = [0 0 1], y1 = [0 1 0], ξ0 = [2

-2 0], ξ1 = [1 0 -1]). This is the similar problem that Crouch et al. considered in [17].

Their approach is different from ours and the comparison between both are not yet

considered.

40

P0

P1
P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

P13

P14

P15

Pn

Figure 2.7: Computed intermediate discretized points on the sphere.

41

Example 2.3 (Trajectory optimization for WAM performing a compliant motion

task)

Joint 1

Joint 3

Joint 2

Joint 4

Figure 2.8: 4-DOF robot manipulator WAM

WAM is a 4-joint robot manipulator with human-like kinematics (see Fig.2.8).

Viewed in the Cartesian space, WAM’s 4-DOFs correspond to its end-effector moving

to an arbitrary 3D position within its reachable space and rotating about vector p(t)

(1-DOF in orientation).

Now suppose the robot is required to move its end-effector on some working sur-

face, for instance, a sphere (see Fig.2.9). Given the initial and final joint positions,

now the challenge is to find a joint trajectory yielding a comprehensive optimality

with respect to the following four aspects:

1. WAM’s last link is as perpendicular to the spherical surface as possible, i.e., θ

42

Xs

Os
Ys

Xr

Zr

Yr

r

p

o

Working Environment: Sphere

Robot: WAM

Or

joint 4

joint 3

joint 2

joint 1

θ
n

P0

PnZs

Figure 2.9: WAM moves its end-effector on a sphere

should be minimal;

2. The end-effector traverses minimum distance;

3. The joints traverse minimum distance;

4. The joints yield minimum curvature.

In addition, the joint position limit must be satisfied throughout the movement.

Summarily, the overall path planning problem for WAM can be described as fol-

lows.

Pr2.6 Find a sufficiently smooth 4-dim joint curve q subject to

qmin ≤ q(t) ≤ qmax, ∀t ∈ [t0, tn], (2.5.5)

‖r + p(t)‖ = R, ∀t ∈ [t0, tn], (2.5.6)

q(t0) = q0, q(tn) = qn,

q̇(t0) = ξ0, q̇(tn) = ξn,
(2.5.7)

43

such that the following cost function J has a minimal value,

J =

∫ tn

t0

(
cos(π − θ) + α ṗ>ṗ + β q̇>q̇ + γ q̈>q̈

)
dt, (2.5.8)

cos
(
π − θ(t)

)
=

o(t)>(r+p(t))

‖o(t)‖‖(r+p(t))‖ , (2.5.9)

where o(t) ∈ R3 is the z-axis of link 4’s local coordinate viewed in the inertial

frame {or,xr,yr, zr}.

o(t) = R(t)




0

0

1


 = κR

(
q(t)

)



0

0

1


 (2.5.10)

r ∈ R3 is the vector from the center of sphere to the base of WAM, and o(t), p(t),

r are all as Fig.2.9 illustrates. α, β and γ are the weights of their corresponding

terms, their values can be chosen according to customer’s preference. R is the

radius of the sphere, and ‖x‖ =
√

x>x.

Figs.2.10,2.11 show the result of implementing our path planning method for P6,

the second step of interpolation is only carried out for p by using the pull back/push

forward technique with rolling and wrapping. Here α = 0.5, β = 2.5 × 10−4, γ =

5× 10−7, R = 0.3, r = [−0.6, 0, 0], all data about WAM’s kinematic model including

qmin,max are as in [6]. WAM’s initial and final poses are arbitrarily chosen, but they

both satisfy the motion constraints. Fig.2.12 illustrates the resulting end-effector

path, from which we can see the equality constraint (Eq.2.5.6) has been fulfilled

throughout the entire movement. The black and red straight lines in Fig.2.12 are

respectively the sphere normal and direction of WAM’s last link, and the lower curve

are the only places where WAM’s last link can be perpendicular to the spherical

surface, so the path of end-effector looks like to be ’attracted’ towards that region.

44

0.2 0.4 0.6 0.8 1
Time

-1

-0.5

0.5

1

Position of joint 1 HradL

(a)

0.2 0.4 0.6 0.8 1
Time

-1.2

-1

-0.8

-0.6

-0.4

-0.2

Position of joint 2 HradL

(b)

Figure 2.10: Discretized points and interpolating joint trajectory: a) joint 1; b) joint
2

45

0.2 0.4 0.6 0.8 1
Time

-1.5

-1

-0.5

0.5

1

Position of joint 3 HradL

(a)

0.2 0.4 0.6 0.8 1
Time

-2.25

-2.2

-2.15

Position of joint 4 HradL

(b)

Figure 2.11: Discretized points and interpolating joint trajectory: a) joint 3; b) joint
4

46

Figure 2.12: End-effector path calculated from joint trajectory in Figs.2.10, 2.11.
Black: sphere normal, red: WAM’s last link

47

The attached CD contains a Java 3D visualization demo (3dAnimation.mpg) and a

motion control experiment video (Experiment.mpg), implementing our path planning

algorithm on the real robot manipulator WAM. The experiment’s setup is exactly as

in Fig.2.8.

2.6 Summary and Future Work

In this chapter, we present a two-step path planning approach for numerically cal-

culating a joint trajectory for a manipulator subject to motion constraints yielding

some synthetical geometrical optimality. This calculation scheme is based on an it-

erative algorithm solving for variational problems. A convergence proof is given in

Appendix A which ensures that the curve calculated from our algorithm will converge

to the resulting curve of the Euler-Lagrange equation as we let the time step in the

discretization scheme go to zero. Some examples including a motion planning exercise

for a 4-DOF robot WAM performing a compliant motion task has been given at the

end of this chapter. It shows our method can generate quite satisfactory results for

an actual robotic system with a fairly complicated optimization objective.

The current time partition schemes (Eqs.2.3.6,2.3.11) for q̈ and q̇ result in the in-

tegrand of J under the form of L1

(
q(t), q̇(t)

)
+L2

(
q(t), q̈(t)

)
. The limitation of such

a decomposition is its inability of representing any optimization objective simultane-

ously relevant to q, q̇ and q̈. Therefore, it will be worthwhile to find ’consistent’ [68]

approximation schemes for q̇(tk) and q̈(tk) discretized under a unique time partition

scheme. Then the scope of our path optimization can be extended to some dynamic

properties such as joint drive torque or end-effector acceleration.

48

Moreover, we are interested in extending our trajectory-optimization algorithm

to robotic systems subject to non-holomonic constraints (i.e., those constraints con-

tain first-order derivatives and are not integrable). Some typical applications are for

example, docking of mobile robots, path planning for aircrafts, and so on.

Chapter 3

Smooth Interpolation of
Orientation by Rolling and
Wrapping for Robot Motion
Planning

This chapter investigates a novel procedure to calculate smooth interpolation curves of

the rotation group SO3, which is commonly considered as the standard representation

of rigid-body’s orientations. The algorithm is a combination of rolling and wrapping

with the pull back/push forward technique. Remarkable advantages of this approach

include 1) it is coordinate-free; and 2) interpolation curves will be given in closed

forms, which brings convenience for implementations on real-time control systems. A

numerical example along with some visualization results is presented as well at the

end.

3.1 Background and Literature Review

Smooth interpolation in Euclidean spaces has many applications in robot motion

planning (e.g., interpolation of end-effector’s linear position, or of joint traversing

49

50

points, for free motion tasks), and has been well studied ever since the outset of

robotics research. The usual approach for solving this category of problems is to apply

cubic splines or even higher order polynomials, whose coefficients can be calculated

through a linear system [15, 56].

Figure 3.1: Constrained motion of robot’s end-effector: a) 5-DOFs, b) 4-DOFs, c)
3-DOFs (courtesy of O. Khatib)

On the other hand, smooth interpolation in non-Euclidean spaces has compara-

tively attracted less roboticists’ attentions, although it is in fact an interesting the-

oretical problem with applications to path planning for mechanical systems whose

configuration spaces contain components which are Lie groups or symmetric spaces.

For instance, robot manipulators’ end-effectors are subject to motion constraints due

51

to given tasks as illustrated in Fig.3.1. In contrast to the free motion situation (i.e.,

E = R3×SO3), the configuration spaces of the gripper in Fig.3.1a, Fig.3.1b, Fig.3.1c,

and of WAM’s ’pawn’ end-effector in example 2.3, are R2 × SO3, R2 × S2, R2 × S1,

and S2 × SO3 respectively.

Recall the robot motion planning scheme in the previous chapter, A2.3 involves a

preliminary step of interpolating both p (linear position) and R (orientation), which

hasn’t been talked too much about at that time. Actually, we only performed the

interpolation of p on S2 in the example 2.3, since WAM has less than 6 degrees of

freedom anyway. Nevertheless, smooth interpolation of end-effector’s orientation is

worthwhile for general robots. With respect to those orientations subject to motion

constrains as in Fig.3.1b and Fig.3.1c, their corresponding configuration spaces are

just 1- or 2-sphere whose interpolation can be treated similarly as with the linear

position in the example 2.3.

However, interpolation on the entire rotation group SO3 is much more difficult,

on the other hand it is particularly useful in robotics (e.g., motion planning of rigid

body); computer graphics (e.g., animation of 3D objects); satellite attitude control;

and so on. Although being a smooth submanifold embedded in R3×3, the Special

Orthogonal group SO3 is not a simple geometric object. It brings difficulties in

directly engrafting smooth interpolation algorithms on orientation, and this chapter

will deal with extending the interpolation technique used in the example 2.3 to SO3.

As far as we notice, most of the existing literature on SO3 curve design can be

classified into two major methodologies:

1. extension of the De Casteljau algorithm;

52

2. coordinate parametrization.

The first class of work focuses on generalization of Bézier curves for Lie groups. Park

and Ravani show how the De Casteljau algorithm can be extended to Riemannian

manifolds, and the mathematical elegance of Lie groups is utilized for constructing

Bézier curves efficiently [52]. Later Crouch et al. suggest a modified De Casteljau

algorithm to generate cubic splines on connected and compact Lie groups. Details

for SO3 appear in [16].

However, De Casteljau-like algorithms are in general computationally expensive

and quite cumbersome for interpolation applications [36]. More recent research has

adopted a different approach for SO3’s interpolation, which first re-parameterizes

rotation matrices (by rotation axes and angles, for instance), then performs cubic

spline interpolation based on such representations. Kang and Park’s paper collects a

few popular SO3 interpolation algorithms of this class, also the trajectory distortion

caused by various coordinate parametrization schemes has been comparatively studied

and discussed [36].

To eliminate the distortion of interpolation curves introduced by local diffeomor-

phisms (i.e., by the process of simple pull back/push forward [46]), Hüper and Silva

Leite recently proposed a novel interpolation method combining pull back/push for-

ward with rolling and wrapping on smooth manifolds, in particular on S2 [31]. Al-

though many of the ideas in [31] can be directly applied here, contrary to the two-

sphere situation, as we said, the geometric intuition of SO3 is less obvious. Building

on [32], the scientific contribution of the work described in this chapter is to specialize

and examplify the previous research to SO3.

The rest of the chapter is organized as follows: Section 2 gives the mathematical

53

formulation of our SO3 interpolation problem; Section 3 introduces a few relevant dif-

ferential geometry concepts and then presents the major algorithm which calculates

an interpolation curve of SO3, given in an explicit form; Section 4 shows a numer-

ical example of interpolating three orientations, and some visualization results are

attached at the end of this chapter.

3.2 Problem Description

As we know, SO3 can be considered as a smooth 3-dim submanifold of R3×3. There-

fore, for all R ∈ SO3, the affine tangent space T aff
R SO3 can be considered as an affine

subspace of R3×3 (see Fig.3.2).

kR

nR

SO3

0R r 0()
(η

0)0ξ

η
n

r n

3 3
R

r kSO3T
aff

R
0

nξ

γ
α

rolling

αdev

β

Figure 3.2: Geometry of manifold SO3, affine tangent space T aff
R0

SO3 at R0, and the
embedding Euclidean space R3×3

P3.1 Now, we wish to find a C2-smooth curve γ : [0, T] → SO3 interpolating a set

54

of given intermediate points Rk ∈ SO3, such that

γ(tk) = Rk, 1 ≤ k ≤ n− 1, (3.2.1)

where

0 = t0 < t1 < · · · < tn−1 < tn = T, (3.2.2)

in addition, subject to the boundary conditions

γ(0) = R0 ∈ SO3,

γ(T) = Rn ∈ SO3,

γ̇(0) = ξ0 ∈ TR0SO3,

γ̇(T) = ξn ∈ TRnSO3.

(3.2.3)

3.3 Interpolation of SO3 by Rolling and Wrapping

This section starts with a brief review of the pull back/push forward technique, for

the particular manifold SO3. Next, the key component in our calculation scheme,

the rolling map, will be introduced and explained in detail. In the last part of this

section, the major smooth interpolation algorithm is presented in steps and the closed

form of the resulting C2-smooth curve on SO3 is given at the end.

3.3.1 Local Diffeomorphism

Pull back/push forward is one possible approach for smooth interpolation on mani-

folds [46]. The basic idea is to project data points from a manifold M onto its affine

tangent space (at a point p0 ∈ M), hereafter denoted by V ; then perform smooth

55

interpolation there; finally project the interpolation curve back onto M . Most of the

algorithms recorded in [36] can be classified into this category, although the concept

of the affine tangent space has not been explicitly raised in that paper.

Several pull back (i.e., projection from M to V) and push forward maps (i.e.,

inverse of pull back) have been established for SO3 already. The most noticeable one

is probably the exponential map, for simplicity, considered here only at the identity.

Let U ⊂ SO3 such that

U := {R ∈ SO3|R /∈ {



−1 0 0

0 −1 0

0 0 1


 ,



−1 0 0

0 1 0

0 0 −1


 ,




1 0 0

0 −1 0

0 0 −1


}} (3.3.1)

then

φ : U → T aff
I3

SO3,

R 7→ I3 + log(R),

φ−1 : T aff
I3

SO3 → U ,

r 7→ e(r−I3),

(3.3.2)

defines a diffeomorphism. Here for all R ∈ U ,

log(R) =





cos−1
(

tr(R)−1
2

)

2 sin

(
cos−1

(
tr(R)−1

2

)) (R−R>), R 6= I3

O3, R = I3,

where I3 is the 3×3 identity matrix, O3 is the 3×3 zero matrix, and tr(R) :=
∑3

i=1 Rii;

and for all Ω = −Ω>,

eΩ =





I3 + Ω
‖Ω‖ sin(‖Ω‖) + Ω2

‖Ω‖2
(
1−cos(‖Ω‖)), ‖Ω‖ 6= 0

I3, ‖Ω‖ = 0,

56

where ‖Ω‖ = ‖




0 −z y

z 0 −x

−y x 0


 ‖ :=

√
x2 + y2 + z2.

An alternative diffeomorphism, being attractive due to its simple implementation,

is related to the QR-decomposition or the Gram-Schmidt(GS) orthonormalization

process of a square matrix. If the matrix to be QR-decomposed has positive de-

terminant, the decomposition into a product of a special orthogonal matrix and an

upper-triangular matrix can be made unique by requiring the diagonal entries of the

upper-triangular matrix to be positive. Moreover, in this case, this decomposition

can be shown to be a local diffeomorphism as well. Again, for simplicity, we only

present the formulas at the identity. Let

SO3 ⊃ Q := {R ∈ SO3 |R = etΩ, t ∈ [0,
π

2
) ,

Ω = −Ω>, ‖Ω‖ = 1},
(3.3.3)

then

φGS
−1 : T aff

I3
SO3 → Q,

I3 + Ω 7→ (I3 + Ω)U−1,
(3.3.4)

where I3 + Ω = QU is the unique decomposition of I3 + Ω into a special orthogonal

matrix Q and an upper-triangular matrix U with positive diagonal entries. Note that

det(I3 + Ω) > 0 holds for all Ω = −Ω> and therefore det(Q) = 1 always. Moreover,

φGS : Q → T aff
I3

SO3,

R 7→ φGS(R) = I3 +




0 −z y

z 0 −x

−y x 0


 ,

(3.3.5)

57

where x, y, z can be uniquely computed by

x =
R32(R

2
11 + R2

21)−R31(R11R12 + R21R22)

R11(R11R22 −R12R21)

=
R32(1−R2

31) + R2
31R32

R11(R11R22 −R12R21)

=
R32

R11(R11R22 −R12R21)
,

y = −R31

R11

,

z =
R21

R11

.

(3.3.6)

The derivation of x utilizes the properties of special orthogonal matrices, i.e., R2
11 +

R2
21 + R2

31 = 1 and R11R12 + R21R22 + R31R32 = 0.

As we know, the QR-decomposition is less computationally intensive and numer-

ically more stable than the exponential map. It can be shown that for any matrix

R ∈ Q, R11 > 0 and R11R22 −R12R21 6= 0 hold always.

3.3.2 Rolling Map

Compared with De Casteljau-like algorithms, interpolation schemes based on local

diffeomorphisms are easier to implement. One important reason is due to the fact

that the former requires the solution of nonlinear implicit matrix equations. In order

to make interpolation processing coordinate-free, a new thought of combining a rolling

map with the simple pull back/push forward technique was recently proposed [31].

The novelty is that the manifold will be firstly rolled (without slipping or twisting)

as a rigid body, then the given data including positions and velocities are unwrapped

onto the affine tangent space.

Next we will introduce the concept of rolling maps and present the formulation

58

for rolling SO3 in detail.

As we know, rigid body motion in Rn can generally be described as the usual

action of the Euclidean group

SEn = SOn nRn (3.3.7)

acting on Rn. Here, as usual, the symbol n denotes the semi-direct product of the

groups (SOn, (·)) and (Rn, (+)). Therefore, since the embedding Euclidean space

for SO3 is R3×3 ∼= R9, any rigid body motion of SO3 is given by a curve in SE9, i.e.,

by

r : [0, T] → SE9 = SO9 nR9,

t 7→ r(t) =
(
R(t), s(t)

)
,

(3.3.8)

with

R : [0, T] → SO9,

s : [0, T] → R9.
(3.3.9)

The group SE9 acts on any point p ∈ R9 in the conventional way

r(t) ◦ p = R(t)p + s(t). (3.3.10)

Rolling maps describe how a manifold M rolls along a given smooth curve α :

[0, T] → M on its affine tangent space V at p0 ∈ M , such that α(0) = p0. If r above

is a rolling map, then the following conditions need to be satisfied.

C1 (The rolling condition)

For all t ∈ [0, T] it holds

(i) r(t) ◦ α(t) ∈ V ,

(ii) Tr(t)◦α(t)

(
r(t) ◦M

)
= Tr(t)◦α(t)V .

59

The curve αdev : [0, T] → V, t 7→ r(t) ◦ α(t) is called the development of α on V .

C2 (The no-slipping condition)

For all t ∈ [0, T] it holds

ṙ(t) ◦ r(t)−1 ◦ αdev(t) = 0,

C3 (The no-twisting condition)

For all t ∈ [0, T] it holds

(i) (Tangential part)

ṙ(t) ◦ r(t)−1 ◦ Tαdev(t)V = R(t) R(t)> ◦ Tαdev(t)V ⊂ (Tαdev(t)V)⊥,

(ii) (Normal part)

ṙ(t) ◦ r(t)−1 ◦ (Tαdev(t)V)⊥ = R(t) R(t)> ◦ (Tαdev(t)V)⊥ ⊂ Tαdev(t)V .

It can be proven that C1 -C3 are the necessary and sufficient conditions for the

existence and uniqueness of such a rolling map (without slipping or twisting), with

given rolling curve [58].

In [32], it has been shown that for rolling the compact manifold SO3 as a rigid

body in the space R3×3, the rotational and translational components of the original

Euclidean group SE9 turn out to be SO3 × SO3 and R3×3, respectively. Therefore,

the rolling map r in this case can be simplified as

r : [0, T] → SO3 × SO3 nR3×3,

t 7→ r(t) =
(
U(t), V (t), X(t)

)
,

(3.3.11)

with
U : [0, T] → SO3,

V : [0, T] → SO3,

X : [0, T] → R3×3.

(3.3.12)

60

The group action on p ∈ R3×3 is defined as

r(t) ◦ p = U(t)pV (t)> + X(t). (3.3.13)

As we are only interested in the rolling map without slipping or twisting, r must

satisfy both C2 and C3. Consequently, we will get a system of ordinary differential

equations (the kinematic equations), whose solution is the rolling map:

Ẋ(t) = Ω(t)R0,

U̇(t) = −1

2
U(t) Ω(t),

V̇ (t) =
1

2
V (t)R>

0 Ω(t)R0,

(3.3.14)

where Ω : [0, T] → so3 = {Ω ∈ R3×3 |Ω = −Ω>} describes the rolling curve α.

If we choose Ω(t) = Ω, i.e., the manifold SO3 rolls at a constant angular velocity,

then the solution of the kinematic equations becomes

X(t) = tΩR0,

U(t) = e−tΩ
2 ,

V (t) = R0
> e tΩ

2 R0.

(3.3.15)

The derivation of Eq.3.3.14 and the proof of Eq.3.3.15 to be the rolling map

without slipping or twisting for SO3 are provided in Appendix B.

3.3.3 Interpolation Algorithm

This subsection presents a calculation scheme (A3.1) for smooth interpolation of

orientation, i.e., our proposed solution for the question described in section 2. Most

of the symbols below (denoting spaces, curves, points, and so on) are illustrated in

Fig.3.2.

The calculation of A3.1 proceeds as follows:

61

1. Set up the local diffeomorphism between SO3 and the affine tangent space

T aff
R0

SO3, e.g., by using the exponential map,

φ : U → T aff
I3

SO3,

R 7→ I3 + log(R),

φ−1 : T aff
I3

SO3 → U ,

r 7→ e(r−I3);

(3.3.16)

or by using the Gram-Schmidt orthonormalization,

φGS
−1 : T aff

I3
SO3 → Q,

I3 + Ω 7→ (I3 + Ω)U−1,

φGS : Q → T aff
I3

SO3,

R 7→ φGS(R).

(3.3.17)

Certainly, both diffeomorphisms, φGS as well as φ, have to be adapted from I3

to R0.

2. Calculate a rolling curve α, e.g., the geodesic on SO3 connecting R0 and Rn,

α : [0, T] → SO3,

t 7→ etΩR0,
(3.3.18)

where

Ω =
log(RnR

>
0)

T
. (3.3.19)

3. Set up the rolling map with the above defined rolling curve,

r : [0, T] → SO3 × SO3 nR3×3,

t 7→ r(t) =
(
U(t), V (t), X(t)

)
,

(3.3.20)

62

where

U : [0, T] → SO3,

t 7→ e−tΩ
2 ,

V : [0, T] → SO3,

t 7→ R0
>etΩ

2 R0,

X : [0, T] → R3×3,

t 7→ tΩR0.

(3.3.21)

The group SO3 × SO3 nR3×3 acts on any p ∈ R3×3 as

r(t) ◦ p := U(t)pV (t)> + X(t),

r(t)−1 ◦ p := U(t)>
(
p−X(t)

)
V (t).

(3.3.22)

4. Then the development of α on the affine tangent space T aff
R0

SO3 can be given as

αdev : [0, T] → T aff
R0

SO3,

t 7→ R0 + tΩR0.
(3.3.23)

5. Unwrap the initial/intermediate/final orientations and initial/final angular ve-

locities into the affine tangent space T aff
R0

SO3, by combining the rolling map

with pull back/push forward (i.e., the local diffeomorphism),

r0 = φ
(
r(0) ◦R0 − αdev(0) + R0

)
+ αdev(0)−R0

= R0,

rk = φ
(
r(tk) ◦Rk − αdev(tk) + R0

)
+ αdev(tk)−R0,

rn = φ
(
r(T) ◦Rn − αdev(T) + R0

)
+ αdev(T)−R0

= αdev(T),

(3.3.24)

63

η0 = r(0) ◦ (ξ0 + R0)

= ξ0 + R0,

ηn = r(T) ◦ (ξn + Rn).

(3.3.25)

6. Interpolate the mapped data r0, rk, rn, η0, ηn with a C2-smooth curve, e.g., a

cubic spline β : [0, T] → T aff
R0

SO3, such that

β(0) = r0,

β(tk) = rk,

β(T) = rn,

β̇(0) = η0,

β̇(T) = ηn.

(3.3.26)

7. Wrap β back onto the manifold, the closed form of the resulting C2-smooth

curve on SO3 is given as

γ(t) = r(t)−1 ◦
(
φ−1

(
β(t)− αdev(t) + R0

)
+ αdev(t)−R0

)
.

3.4 Example

This section presents a numerical example of implementing the above interpolation

algorithm for designing a rotation curve of a rigid body (e.g., the Galileo Satellite

here).

Suppose the satellite’s initial/final orientations, as well as its initial/final angular

64

y

z

x

0
ω

(a) (b)

y

z

ωn

x

(c)

Figure 3.3: a) initial orientation R0, angular velocity ω0, b) intermediate orientation
R1, c) final orientation Rn, angular velocity ωn

velocities are given as below (see Fig.3.3a,3.3c)

R0 =




1 0 0

0 1 0

0 0 1


 , ω0 =




5

0

0


 ,

ξ0 = ω̂0R0,

Rn =




0 −1 0

1 0 0

0 0 1


 , ωn =




0

0

5


 ,

ξn = ω̂nRn,

(3.4.1)

where R3 → so3 is defined same as in Eq.2.4.12.

Moreover, the satellite is required to traverse an intermediate configuration R1

(in our case at T/ 2, see Fig.3.3b), where

R1 =




√
2

2
0

√
2

2

0 1 0

−
√

2
2

0
√

2
2


 . (3.4.2)

The smooth interpolation algorithm works out as follows:

65

1. A neat way to produce the rolling curve α : [0, T] → SO3 connecting R0 and

Rn can be calculated as

α(t) = eΩt, (3.4.3)

where

Ω =




0 −π
2

0

π
2

0 0

0 0 0


 . (3.4.4)

2. The rolling map is constructed with

U(t) = e−tΩ,

V (t) = etΩ,

X(t) = tΩ.

(3.4.5)

3. α’s development αdev : [0, T] → T aff
I3

SO3 is given by

αdev(t) =




1 0 0

0 1 0

0 0 1


 + tΩ. (3.4.6)

4. The projected initial/intermediate/final orientations and initial/final angular

velocities by using the exponential map are

r0 =




1.0 0.0 0.0

0.0 1.0 0.0

0.0 0.0 1.0


 ,

r1 =




1.0 −0.0416 0.8051

0.0416 1.0 0.0

−0.8051 0.0 1.0


 ,

rn =




1.0 −1.5708 0.0

1.5708 1.0 0.0

0.0 0.0 1.0


 ,

(3.4.7)

66

η0 =




1.0 0.0 0.0

0.0 1.0 −5.0

0.0 5.0 1.0


 ,

ηn =




1.0 −6.5708 0.0

6.5708 1.0 0.0

0.0 0.0 1.0


 .

(3.4.8)

While the corresponding values by using the Gram-Schimdt orthonormalization

are

r0 =




1.0 0.0 0.0

0.0 1.0 0.0

0.0 0.0 1.0


 ,

r1 =




1.0 0.5350 1.4292

−0.5350 1.0 0.8372

−1.4292 −0.8372 1.0


 ,

rn =




1.0 −1.5708 0.0

1.5708 1.0 0.0

0.0 0.0 1.0


 ,

η0 =




1.0 0.0 0.0

0.0 1.0 −5.0

0.0 5.0 1.0


 ,

ηn =




1.0 −6.5708 0.0

6.5708 1.0 0.0

0.0 0.0 1.0


 .

(3.4.9)

5. The interpolation curve β : [0, T] → T aff
I3

SO3 by using the exponential map ends

up with

β(t) =

{
β1(t), t ∈ [0, T

2
]

β2(t), t ∈ [T
2
, T]

, (3.4.10)

67

where

β1(t) =




1.0 −2.1881 −12.8810

2.1881 1.0 −15.0

12.8810 15.0 1.0


 t3 +




1.0 0.9276 9.6608

−0.9276 1.0 17.5

−9.6608 −17.5 1.0


 t2

+




1.0 0.0 0.0

0.0 1.0 −5.0

0.0 5.0 1.0


 t +




1.0 0.0 0.0

0.0 1.0 0.0

0.0 0.0 1.0


 ,

β2(t) =




1.0 −4.6703 12.8810

4.6703 1.0 5.0

−12.8810 −5.0 1.0


 t3 +




1.0 4.6508 −28.9823

−4.6508 1.0 −12.5

28.9823 12.5 1.0


 t2

+




1.0 −1.8616 19.3215

1.8616 1.0 10.0

−19.3215 −10.0 1.0


 t +




1.0 0.3103 −3.2202

−0.3103 1.0 −2.5

3.2203 2.5 1.0


 .

While the interpolation curve β : [0, T] → T aff
I3

SO3 by using the exponential

map ends up with

β(t) =

{
β1(t), t ∈ [0, T

2
]

β2(t), t ∈ [T
2
, T]

, (3.4.11)

where

β1(t) =




1.0 −11.4136 −22.8667

11.4136 1.0 −28.3950

22.8667 28.3950 1.0


 t3 +




1.0 7.8467 17.15

−7.8467 1.0 27.5462

−17.15 −27.5462 1.0


 t2

+




1.0 0.0 0.0

0.0 1.0 −5.0

0.0 5.0 1.0


 t +




1.0 0.0 0.0

0.0 1.0 0.0

0.0 0.0 1.0


 ,

68

β2(t) =




1.0 4.5552 22.8667

−4.5552 1.0 18.3950

−22.8667 −18.3950 1.0


 t3 +




1.0 −16.1066 −51.45

16.1066 1.0 −42.6387

51.45 42.6387 1.0


 t2

+




1.0 11.9767 34.3

−11.9767 1.0 30.0925

−34.3 −30.0925 1.0


 t +




1.0 −1.9961 −5.7167

1.9961 1.0 −5.8487

5.7167 5.8487 1.0


 .

Several snapshots of the resulting interpolation curves are contained in Fig.3.4-3.6,

in which all of the orientations are shown at equally spaced time intervals. We can see

from Fig.3.4-3.6 that, being slightly different, both trajectories (left: φ used, right:

φGS used) achieve the boundary conditions as well as the intermediate orientation.

An M-PEG video, demonstrating the smooth interpolation result of the above Galileo

Satellite example (GalileoSatellite.mpg) is contained in the attached CD.

3.5 Summary and Future Work

This chapter investigates a novel algorithm to calculate smooth interpolation curves

of rigid-body’s orientations in R3, i.e.,interpolation curves on the rotation group SO3.

The contribution is to combine rolling and wrapping with the simple pull back/push

forward technique, so as to reduce the distortion of interpolation curves introduced

by local diffeomorphisms. Remarkable features of our interpolation scheme include:

1. the approach is coordinate-free;

2. resulting curves are given in closed form.

69

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 3.4: Snapshots of the interpolation curves: γ(0), γ(T
14

), γ(T
7
), γ(3T

14
), γ(2T

7
).

Left: φ used, Right: φGS used

70

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 3.5: Snapshots of the interpolation curves: γ(5T
14

), γ(2T
7

), γ(T
2
), γ(4T

7
), γ(9T

14
).

Left: φ used, Right: φGS used

71

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 3.6: Snapshots of the interpolation curves: γ(5T
7

), γ(11T
14

), γ(6T
7

), γ(13T
14

), γ(T).
Left: φ used, Right: φGS used

72

As a verification, a numerical experiment along with visualization results are pre-

sented at the end of this chapter.

In the future, we are interested in investigating the influences on interpolation

results and computational efficiency due to applying various pull back/push forward

maps. Moreover, a thorough comparison between different interpolation approaches

on SO3 with an optimal solution approximated by solving a Euler-Lagrange equation

numerically is under consideration.

In more detail, we intend to compare with respect to the performance index of

resulting curve’s angular acceleration

min

∫ T

0

‖dγ̇/dt‖ dt, (3.5.1)

and some candidate interpolation methods that we can think of at the moment are

as follows

1. interpolation with rolling and wrapping by using the local diffeomorphism of

the exponential map as described in this chapter;

2. interpolation with rolling and wrapping by using the local diffeomorphism of

the Gram-Schmidt orthonormalization (QR-decomposition) as described in this

chapter;

3. the Newton’s method on manifold [33] minimizing the following cost function

∫ T

0

‖dṘ/dt‖ dt, (3.5.2)

where R ∈ SO3, dṘ/dt ∈ so3 by right translation, and ‖‖ is as defined in page

56;

73

4. the numerical algorithm on constrained variational problem as presented in

Chapter 2, i.e.,

min
p

∫ T

0

tr(p̈>p̈) dt +

∫ T

0

tr
(
µ(p>p− I3)

)
dt, (3.5.3)

where p ∈ R3×3 and µ is the Lagrange multiplier.

Chapter 4

A Joint Space Formulation for
Compliant Motion Control of
Robot Manipulators

Continuing from numerical trajectory optimization and smooth interpolation, this

chapter studies the dynamics and control aspects of the automatic execution of com-

pliant motion tasks. More specifically, this chapter presents a joint space formulation

for robot manipulator’s hybrid motion/force control.

The motivations of this research come from 1) extending the previous work to

general (either constrained or redundant) robots; and 2) improving the robustness

against disturbances originated at the joint level. Contact geometry and closed-loop

dynamics will be derived in this chapter, also a joint space hybrid control scheme

will be proposed. Some simulation results are shown to verify the applicability of our

theory on a constrained (4-degree-of-freedom) robot WAM. At the end, we suggest

a compliant motion control experiment of WAM performing a 2-DOF motion and

2-DOF force task.

74

75

4.1 Background and Literature Review

As we mentioned already, there are many applications of robot manipulators requiring

the end-effector to keep contact with some external environment, e.g., polishing,

grasping etc. The general compliant motion control refers to those control schemes

that actively maintain the contact through an extra force feedback loop. Among them,

the hybrid motion/force control approach, which is firstly proposed by Raibert and

Craig [54], aims to simultaneously control not only the position in the unconstrained

degrees of freedom but the contact force in the constrained degrees of freedom as

well. In a conventional hybrid control system, the workspace is decomposed into

purely motion controlled directions and purely force controlled directions, and two

parallel feedback loops are accordingly constructed for the separate control of motion

and force.

The hybrid motion/force control has attracted roboticists a great amount of in-

terests since early 1980s and there is already a rich body of literature on this topic

referring to various issues including control algorithm [25, 37, 44, 48, 54, 65, 66, 69],

contact modelling [10, 11], kinematic consistency [2, 18, 21, 43, 57], kinematic stability

[5, 20, 27], dynamical decoupling [19, 26] etc. Fig.4.1 illustrates the generic structure

for most of the existing hybrid motion/force control schemes, which we think can

further be roughly divided into the following four categories.

1. Joint space servoing without inverse dynamics

This stereotype appears in the pioneer work of hybrid control [54, 69] (Block

B/C and E/F are swapped here). The desired motion/force trajectories are

76

+
+

+

Block A

Block C

Block F

Block D

contact force

linear/angular velocity

position/orientation

desired

desired

linear/angular velocity measured joint position, velocity

Robot

Motion Signal

Filtering

Kinematics

Forward

Feedforward Compensation of

Gravity, Coriolis, Friction etc.

Transformation

to Joint Space

Transformation

to Joint Space

Force Signal

Filtering

measured contact force

Servoing

Force

Servoing

Motion

Block B

Block E

Block Gmeasured position/orientation

Figure 4.1: Block diagram of generic hybrid motion/force control scheme

compared with the actual measurements, then further projected onto their re-

spective controlled subspaces through the so-called ”selection matrices” (Block

A,D). The filtered signals in the operational space will be transformed into

the joint space (Block C,F), where some PID-like controllers are implemented

(Block B,E), by using J−1 or J> (J is the manipulator Jacobian [51]).

2. Operational space servoing without inverse dynamics

2) is similar to 1) except that the servoing units operate before the transfor-

mations, thus are formulated in the operational space, i.e., the outputs of the

PID-like controllers are 6-dim wrenches, which will later be converted into the

joint drive torques [65].

3. Operational space servoing with inverse dynamics

77

3) is similar to 2) apart from Block B, in which the PID-like controller produces

a 6-dim acceleration instead, in other words, its parameters become time con-

stants rather than stiffness coefficients in 2). The calculated acceleration will

be multiplied by the robot’s operational space inertia matrix to ultimately get

the 6-dim drive wrench [37].

4. Constraint space servoing with inverse dynamics

4) deals with the filtering and servoing in a slightly different way as 1), 2)

and 3). The motion/force signals are mapped into their corresponding lower-

dimensional constraint spaces (also called the local spaces), and this process in

fact has the same effect as the projection step of other approaches. Accordingly,

the servoing is performed at the downgraded level, and the results will later

be transformed up to the operational space and eventually to the joint space

[44, 48, 66].

We find that most of the hybrid motion/force control algorithms in the literature

have implemented both the path planning and the signal filtering in the operational

space, which is clearly a reasonable choice because the contact is naturally easier

described there. However, if the robot does not have exactly 6 DOFs, the imple-

mentation of the operational space oriented analysis will become a bit difficult or

awkward, e.g., the operational space inertia doesn’t exist for constrained robots; or

for redundant robots, a natural question is how the pre-optimized information in the

Jacobian’s null space can be preserved through the filtering process?

Also, as we discovered from our experimentation experience, the operational-space

controller is not so capable to overcome those disturbances originated at the joint level,

78

0 5 10 15 20 25 30
−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

time (second)

jo
in

t
p

o
s
it

io
n

 (
ra

d
)

desired joint position
actual joint position

(a)

0 5 10 15 20 25 30
0

0.005

0.01

0.015

0.02

0.025

0.03

time (second)

jo
in

t
p

o
s

it
io

n
 (

ra
d

)

desired joint position
actual joint position

(b)

Figure 4.2: Tracking performance of WAM’s shoulder joint: a) operational-space
control law, b) joint-space control law

79

e.g., motor torque ripples, joint frictions etc, especially when the robot’s inertia matrix

is ill-conditioned [59]. Fig.4.2 compares the operational- and joint-space controllers’

position tracking performances of WAM’s joint 3 (see Fig.2.8) for a typical motion

control task, which is to compensate some tiny discrepancies in the shoulder joint

when the robot arm is fully stretching out.

Therefore, this chapter proposes to reformulate the hybrid motion/force control

law entirely in the joint space. As a result, Block C,F,G in Fig.4.1 will be abolished

in our new scheme, and the motion planning for compliant motion tasks is required

to be performed at the joint level so as to fully comply with the contact task and

the robot kinematics. The numerical optimal path planning method we developed

in Chapter 2 for robots subject to motion constraints can be used to calculate the

desired joint trajectories in this scenario.

The rest of this chapter is organized as follows: Section 2 formulates the contact

model and derives the robot closed-loop dynamics; Section 3 presents our joint space

hybrid control algorithm and discusses a few issues such as dynamical decoupling,

asymptotic stability etc; Section 4 shows the simulation results of applying our control

law on the 4-DOF experimental robot manipulator WAM; and Section 5 proposes an

dual-contact compliant motion experiment.

4.2 Contact Model and Robot Closed-loop Dynam-

ics

This section first reviews the concept of the dual vector spaces M6 (Mq) and F6

(F q), which respectively represent velocities/accelerations and forces in the rigid body

80

(robot) dynamics. Next we introduce the contact model, first formulated in the op-

erational space, then migrated to the joint space, and derive the robot manipulator’s

closed-loop dynamics. Our discoveries and the known results will be compared at the

end of this section.

4.2.1 Geometry of Constrained Rigid Body (Robot) Systems

Consider a single rigid body which can translate and rotate freely in a 3-dim workspace.

The configuration space [38] E for such an object is then the Euclidian group SE3.

By right translation, the tangent space to E at any p̂ ∈ E can be identified with the

Lie algebra se3, which is a 6-dim real vector space, denoted here by M6. The space

M6 consists of all possible rigid body velocity vectors v̂ of the free-flying object [51]

for a given configuration.

Meanwhile, we can introduce the dual space of M6, denoted by F6, which can

be identified with the set of linear functionals F : M6 → R. If we represent F as a

6-dim column vector f̂, then the canonical evaluation map F (v̂) is given as

F : M6 → R, v̂ 7→ f̂
>
v̂, (4.2.1)

where f̂ can be regarded as any 6-dim wrench (generalized force) [51] applied on or

by the rigid body object [44, 57].

Now suppose we have a q-joint robot manipulator constrained by mechanical stops,

i.e., the joint position q is an element of the direct product of q open intervals. Ideally,

the set of joint velocities q̇ can be identified with the q-dim real vector space Mq,

and any joint acceleration q̈ ∈Mq as well. Similar to the analysis above, Mq’s dual

space F q can be considered as the set of all joint torques τ .

81

J
T

N
j

TJ

6

M

6

F

m’

F

m

F

m

M

M

q

F

q

M
m’

N

T

N

N
j

H
j

b

H
o

#

H
o

b

2o

b

H
2j

b#

j
H H

#

H
2j

H
2o

#

Figure 4.3: Commutative maps connecting operational, constraint, joint, and joint-
constraint Spaces

Between the corresponding dual spaces, we can study a linear map, denoted by

H]
j : F q →Mq (the subscript j or o in this chapter stands for the joint or operational

space); and if it is invertible, we call the inverse H[
j. For example, we can choose the

robot inertia H as H[
j

H : Mq → F q, q̈ 7→ τ. (4.2.2)

The linear map H is well known to be symmetric and positive definite, in particular,

it is invertible. Likewise, we can define maps in the operational space, H]
o : F6→M6

or H[
o : M6→F6.

To relate these properties in the joint and operational space, we need to employ

the manipulator Jacobian, which is usually defined as the map from the joint to the

82

end-effector velocities. More specifically, if the above mentioned rigid body is the

end-effector of the q-joint robot manipulator, we have the following relationship

v̂ = J(q) q̇ , (4.2.3)

where J(q) ∈ R6×q : Mq →M6, q̇ 7→ v̂. By duality, the transpose of J can serve as

the map between the corresponding dual spaces, i.e.,

τ = J(q)> f̂ . (4.2.4)

Combining Eqs.4.2.3 and 4.2.4 with 4.2.2, we get H]
o = JH−1J>; and if J is

invertible, H[
o = J−>HJ−1 holds as well. However, we need to be aware that H[

o does

not always exist, e.g., if the robot has less than 6 DOFs or is at a singularity.

Next we model the force or motion constraints of the robot’s end-effector due to

the contact as

f̂ = Nα, N>v̂ = 0, (4.2.5)

where α ∈ Fm, and Fm is the so-called constraint space (or local space). The

matrix N ∈ R6×m has full column rank, representing the linear map from Fm to F6.

Moreover, it can be considered as a basis matrix for the m-dim subspace for all of the

achievable contact forces, denoted by N , in F6. Note that the constraint N>v̂ = 0

defines the (6 − m)-dim subspace T for all of the allowable velocities in M6 at a

given configuration. If T is a matrix representation of T , then N>T = 0 (called

reciprocity).

For example, the compliant motion task raised in Chapter 2 (Fig.2.1) requires

the manipulator’s end-effector to move on and maintain a single-point contact with

a 2-dim plane. Again, n ∈ R3 is the plane normal, p ∈ R3 is the linear position of

83

the end-effector, both expressed in the inertial frame. Using the cross product in R3,

in this situation,

N =

[
n

p× n

]
, α ∈ F1 = R . (4.2.6)

Combining Eq.4.2.5 with Eqs.4.2.3 and 4.2.4, we get

τ = J>Nα = Njα
′, N>Jq̇ = N>

j q̇ = 0 , (4.2.7)

where α′ ∈ Fm′
, m′ ≤m, Nj ∈ Rq×m′

also has full column rank. It happens that

m′<m if J>N is singular, i.e., Ker(J>)∩N 6= {0}. In this case, Nj can be obtained

by performing a singular value decomposition on J>N

J>N = UΣV>, (4.2.8)

and extracting those column vectors, m′ in number, in U corresponding to the m′

non-zero singular values. In the same way, Nj defines the subspaces Nj and Tj in F q

and Mq respectively.

Remember H being symmetric positive definite. The H−1-orthogonal subspace of

Nj, denoted by N ′
j , or the H-orthogonal subspace of Tj, denoted by T ′

j , can be given

as

N ′
j = {τ2 | τ>1 H−1τ2 = 0, τ1 ∈ Nj},

T ′
j = {q̈2 | q̈>1 Hq̈2 = 0, q̈1 ∈ Tj}.

(4.2.9)

The connections among those spaces and constraint sub-spaces are illustrated in

Fig.4.3.

According to Fig.4.3, we can build up the ”dynamical projectors” Φfj, Φ′
fj, Φ′

mj

and Φmj as follows (apart from j and o, the subscript m or f stands for motion or

84

force; and In denotes the n × n identity matrix). The meaning of this name will

become clearer in the next subsection.

Φfj : F q → Nj, Φfj = Nj(N
>
j H−1Nj)

−1N>
j H−1, (4.2.10)

Φ′
fj : F q → N ′

j , Φ′
fj = Iq − Φfj, (4.2.11)

Φ′
mj : Mq → T ′

j , Φ′
mj = H−1Nj(N

>
j H−1Nj)

−1N>
j , (4.2.12)

Φmj : Mq → Tj, Φmj = Iq − Φ′
mj, (4.2.13)

Φfj = HΦ′
mjH

−1, Φ′
fj = HΦmjH

−1. (4.2.14)

Because H is symmetric positive definite, it is easily seen that

Φ2
fj = Φfj , (4.2.15)

〈τ1, Φfjτ2〉H−1 = 〈Φfjτ1, τ2〉H−1 , (4.2.16)

where

〈 , 〉H−1 : F q ×F q → R, 〈τ1, τ2〉H−1 7→ τ1H
−1τ2 . (4.2.17)

Similar properties as Eqs.4.2.15,4.2.16 hold for three other dynamical projectors as

well, e.g., Φmj is an orthogonal projector being self-adjoint but with respect to 〈 , 〉H.

4.2.2 Equations of Motion

Recall the conventional robot dynamics equation together with the motion constraints

Eq.4.2.7, the robot closed-loop dynamics can be expressed as the system

H(q)q̈+C(q, q̇) + τc = τ ,

N>
j q̈+ Ṅ

>
j q̇ = 0 ,

(4.2.18)

85

where C(q, q̇) is the gravity combined with the Coriolis term. Moreover, τc = Njα
′

is the corresponding joint torque to the contact force applied from the robot to the

environment, and τ is the entire joint drive torque.

From Eq.4.2.18, we can solve for α′ and q̈ as

α′ = (N>
j H−1Nj)

−1
(
Ṅ
>
j q̇+N>

j H−1(τ −C)
)
,

q̈ = H−1
((

Iq −Nj(N
>
j H−1Nj)

−1N>
j H−1

)
(τ −C)

− Nj(N
>
j H−1Nj)

−1Ṅ
>
j q̇

)
.

(4.2.19)

After some algebraic manipulation, Eq.4.2.19 can be rewritten as

HΦmjq̈ = Φ′
fj(τ −C) ,

HΦ′
mjq̈ = Φfj(τ −C)− τc .

(4.2.20)

From Eq.4.2.20, we can see that by using the dynamical projectors Φfj, Φ′
fj, Φ′

mj

and Φmj, the closed-loop dynamics can be analyzed as two decoupled subsystems.

When J>N has full rank, Nj can be substituted by J>N, as a result, Eq.4.2.20

will transform into Yoshikawa’s formulation [66].

Furthermore, as we already mentioned before, if the robot manipulator has 6

DOFs and is free from singularities, i.e., J is invertible, there exist the following

transformations

H[
o = J−>HJ−1 = Ho, H]

o = JH−1J> = H−1
o , (4.2.21)

where Ho is called the operational space inertia matrix, and

C(q, q̇) = J>Co(p̂, v̂) +HJ−1J̇q̇ , (4.2.22)

where Co combines the operational space gravity and Coriolis term [37].

86

Plug Eqs.4.2.21, 4.2.22, Ṅ
>
j = N>J̇+Ṅ

>
J and â = Jq̈+J̇q̇ (â being the derivative

of v̂ with respect to time) into Eq.4.2.18, we then get a similar formulation of the

robot closed-loop dynamics but now formulated in operational space:

Ho(p̂)â+Co(p̂, v̂) + f̂c = f̂,

N>â+ Ṅ
>
v̂ = 0,

(4.2.23)

where f̂c is the contact force and f̂ is the 6-dim drive wrench.

The system response of Eq.4.2.23 can be brought to a similar form as Eq.4.2.20,

which is consistent with the Lagrangian formulation in [44]:

HoΦmoâ = Φ′
fo(̂f−Co) ,

HoΦ
′
moâ = Φfo(̂f−Co)− f̂c ,

(4.2.24)

where

Φfo : F6 → N , Φfo = N(N>H−1
o N)−1N>H−1

o , (4.2.25)

Φ′
fo : F6 → N ′, Φ′

fo = I6−Φfo, (4.2.26)

Φ′
mo : M6 → T ′, Φ′

mo = H−1
o N(N>H−1

o N)−1N>, (4.2.27)

Φmo : M6 → T , Φmo = I6−Φ′
mo, (4.2.28)

Φfo = HoΦ
′
moH

−1
o , Φ′

fo = HoΦmoH
−1
o . (4.2.29)

Again, N ′ and T ′ are defined by Ho and H−1
o in the same manner as in Eq.4.2.9.

Finally, if comparing Eqs.4.2.25-4.2.28 with Eqs.4.2.10-4.2.13, we will find

Φfj = J>ΦfoJ
−>, Φ′

fj = J>Φ′
foJ

−>, (4.2.30)

Φ′
mj = J−1Φ′

moJ, Φmj = J−1ΦmoJ . (4.2.31)

87

4.3 Hybrid Motion/Force Control Scheme Formu-

lated in Joint Space

Based on the robot closed-loop dynamics (Eq.4.2.20), we move on to the joint space

hybrid motion/force control scheme design in this section. The open-loop and the

closed-loop control laws will be proposed one after another, and a key component

called ”kinematic projector” will be introduced and explained in detail. Also, during

the development of our control algorithm, we will discuss two important issues of the

system response: dynamical decoupling and asymptotic stability.

4.3.1 Open-loop Control Law Design and Dynamical Decou-

pling

Assuming the robot dynamics model is available, now consider the following open-loop

control law

τ = Hq̈d + C + J>f̂cd , (4.3.1)

where q̈d and f̂cd are the desired joint acceleration and contact force, respectively.

If J>f̂cd ∈ Nj, inserting Eq.4.3.1 into Eq.4.2.20, we get

HΦmjq̈ = HΦmjq̈d ,

J>f̂c +HΦ′
mjq̈ = HΦ′

mjq̈d +J>f̂cd .
(4.3.2)

Eq.4.3.2 can be regarded as the joint space version of the existing result of dy-

namical decoupling analysis [19, 26], which shows the independence between the com-

ponent of â in T and f̂c in N attributed to an operational space hybrid control law

equivalent to Eq.4.3.1.

88

Now if we make J>f̂cd and q̈d both comply with the contact model, i.e., J>f̂cd ∈ Nj

and N>
j q̈d − Ṅ

>
j q̇ = 0 as well, then

N>
j q̈d = Ṅ

>
j q̇ = N>

j q̈ , (4.3.3)

which leads to

Φ′
mjq̈d = Φ′

mjq̈ . (4.3.4)

Finally, from Eqs.4.3.2,4.3.4, a ”genuine” dynamical decoupling form between

motion and force can be shown as

q̈ = q̈d ,

J>f̂c = J>f̂cd .
(4.3.5)

4.3.2 Closed-loop Control Law Design and Stability Analysis

+
+ Robot

Feedforward Compensation of

Inverse

Dynamics

joint position, velocity
desired

desired joint acceleration

measured joint position, velocity

+
Joint Space

Filtering

Gravity, Coriolis, Friction etc. +

+

measured contact force

+
Joint Space

Filtering
I Controllercontact force

desired
+

PD Controller

T
J

T
J

Figure 4.4: Block diagram of joint-space hybrid motion/force control scheme

As disturbances are usually inevitable in real life robotic systems, it is always es-

sential to implement some servoing mechanisms to improve a control law’s robustness.

89

Consider combining a motion PD-controller and a force I-controller with Eq.4.3.1, our

closed-loop control algorithm is finally designed as

τ = H
(
q̈d + ΨmjKv(q̇d − q̇) + ΨmjKp(qd − q)

)

+
(
J>f̂cd + Ψfj Ki

∫
J>(̂fcd − f̂c) dt

)
+C ,

(4.3.6)

where Kp, Kv and Ki are the (q×q)-dim coefficient matrices for the joint space PD/I-

controllers. Ψfj and Ψmj are named kinematic projectors (in contrast to dynamical

projectors, Eqs.4.2.10-4.2.13) which are used to filter out the noise incompatible with

the contact model from the original force or motion signal. Details will be presented

next. Fig.4.4 illustrates the general data flow of Eq.4.3.6. Comparing with other

hybrid motion/force control schemes, our design may be summarized as ”joint space

servoing, filtering with inverse dynamics”.

Recall how the dynamical projectors are derived in the last section, e.g., Φmj :

Mq → Tj (Eq.4.2.13), where Tj directly comes from the contact and robot kinematic

models (Eq.4.2.7), and its complement T ′
j is defined from Tj together with the robot

inertia H (Eq.4.2.9). The joint space dynamical projector can be transformed into

the operational space (Eqs.4.2.30,4.2.31) when the Jacobian J is invertible, in other

words, Ho exists.

The kinematic projectors on the contrary are sourced from kinematic models only.

Ψfj and Ψmj in Eq.4.3.6 are actually derived from the operational space projectors,

e.g., ”selection matrices” [54] or ”kinestatic filters” [43], and function in a similar way

as them but in the joint space.

Let’s repeat the original analysis of the motion constraints (Eq.4.2.5): when the

end-effector is in contact with the environment, M6 or F6 consequently splits into T
and T ′ or N and N ′, whose matrix forms are T, T′, N and N′ respectively. Different

90

from Eq.4.2.9, T ′ or N ′ here are not the dual subspaces of N or T in M6 or F6

respectively with regard to the linear map of H]
o or H[

o, but are the constrained

subspaces of v̂ or f̂ due to the contact. T, T′, N and N′ will satisfy [19]

N>T = 0, N′>T′ = 0 , (4.3.7)

N′>T = I6−m, N>T′ = Im . (4.3.8)

Since T and T′ are not necessarily In-orthogonal, neither are N and N′ [21], the

operational space kinematic projector Ψmo : M6 → T need to be given as [49]

Ψmo = [T |T′]

[
I6−m 0

0 0

]
[T |T′]−1. (4.3.9)

Now we will try to find Ψmo’s equivalent Ψmj in the joint space. Firstly, we define

J̃ : Ker(J)⊥ → Image(J), such that

J̃q̇ = Jq̇, ∀ q̇ ∈ Ker(J)⊥, (4.3.10)

and J̃ is a bijection. Also, we name

M1 := T ∩ Image(J), M2 := T ′ ∩ Image(J), (4.3.11)

Q1 := J̃
−1

(M1), Q2 := J̃
−1

(M2). (4.3.12)

M1,M2, Q1 andQ2 are vector spaces, and Image(J) = M1⊕M2, Ker(J)⊥ = Q1⊕Q2

(see Fig.4.5).

Theorem: The projector Ψmj mapping Mq onto Q1 ⊕ Ker(J) along Q2 and its

complementary projector Ψ′
mj with the property that

1. Ψmj(q1 + q0) = q1 + q0, ∀q1 ∈ Q1, ∀q0 ∈ Ker(J);

91

J
~

J
~

6

M
q

M

Image(J)

Ker(J)

Ker(J)

1Q

2Q

J

−1

Image(J)

1M

2M

Figure 4.5: Division of Mq and M6 for kinematic projector setup

2. Ψmjq2 = 0, ∀q2 ∈ Q2;

3. Iq −Ψmj = Ψ′
mj.

can be given as

Ψmj = J†ΨmoJ+ (Iq −J†J), (4.3.13)

Ψ′
mj = J†Ψ′

moJ, (4.3.14)

where Ψ′
mo = I6−Ψmo is Ψmo’s complementary projector, and † stands for the Moore-

Penrose pseudo-inverse.

Proof :

1) Ψmj(q1 + q0) = (J†ΨmoJ)q1 + (Iq − J†J)q1 + q0

= J†Jq1 + (Iq − J†J)q1 + q0 = q1 + q0.

The first step is because q0 ∈ Ker(J), i.e., Jq0 = 0. The second step comes from

q1 ∈ Q1, so that Jq1 = J̃q1 ∈M1 ∈ T , and Ψmo(Jq1) = Jq1.

2) Ψmjq2 = (Iq − J†J)q2

= 0 .

92

The first step is the result of q2 ∈ Q2, then Ψmo(Jq2) = 0. The second step is because

q2 ∈ Ker(J)⊥ and (Iq − J†J) projects Mq onto Ker(J) along Ker(J)⊥.

3) Iq −Ψmj = Iq −J†ΨmoJ− (Iq − J†J)

= J†(I6−Ψmo)J

= J†Ψ′
moJ = Ψ′

mj . ¤

The force kinematic projectors can be constructed in the same way as Ψmj, Ψ′
mj.

Here we present their expressions straightaway without proof.

Ψfj = J>Ψfo(J
>)† +

(
Iq −J>(J>)†

)
, (4.3.15)

Ψ′
fj = J>Ψ′

fo(J
>)†, (4.3.16)

where Ψfo = [N |N′]

[
Im 0

0 0

]
[N |N′]−1, and Ψ′

fo = I6 −Ψfo.

An and Hollerbach [5] discovered that the traditional hybrid control scheme [54]

without the robot dynamics compensation will become unstable in certain cases. In

a later paper, Fisher and Mujtaba [27] imputed the instability to the joint space

projectors, and proposed a substitutional formulation as

Ψmj = (JΨmo)
†(JΨmo). (4.3.17)

This idea was followed by Doulgeri et al. [20].

Obviously, Eq.4.3.17 is not equivalent to Eq.4.3.13, and we suggest to employ the

following simple example to make a comparison between those two expressions.

Suppose we have a Cartesian robot as in Fig.2.1 with a spherical wrist installed

at its end-tip, then the Jacobian is simply a 6× 6 identity matrix. Obviously, in this

situation, Ψmo and Ψmj should be identical. Plug J = I6 into Eqs.4.3.13,4.3.17, we

93

get

Ψmj (Ours) = I†6ΨmoI6 + (I6− I†6I6) = Ψmo , (4.3.18)

Ψmj (Fisher′s) = (I6Ψmo)
†(I6Ψmo) = Ψ†

moΨmo

= VΣ†U>UΣV>

= V

[
I6−m 0

0 0

]
V>.

(4.3.19)

The second step in deriving Fisher’s projector utilizes a singular value decomposition

where U,V are orthogonal matrices. As we can see, Fisher’s formulation drifts away

from the original Ψmo (Eq.4.3.9) and ends up with an artificial orthogonal projector.

Now back to our hybrid control law (Eq.4.3.6). Ψmj or Ψfj is included so as to

project the position displacement/velocity or force onto its own allowable degrees of

freedom. Consequently, we will have

N>
j

(
ΨmjKv(q̇d − q̇) + ΨmjKp(qd − q)

)
= 0, (4.3.20)

(
Ψfj Ki

∫
J>(̂fcd − f̂c) dt

)
∈ Nj . (4.3.21)

Moreover, if the desired motion and force trajectories are planned wisely in a sense

of fitting the contact model, then

N>
j q̈d = Ṅ

>
j q̇d ' Ṅ

>
j q̇ , (4.3.22)

J>f̂cd ∈ Nj . (4.3.23)

As a result, the overall feedback control input meets the requirement of realizing

the dynamical decoupling (Eq.4.3.5), and the system response will ultimately become

q̈ = q̈d + ΨmjKv(q̇d − q̇) + ΨmjKp(qd − q),

J>f̂c = J>f̂cd + Ψfj Ki

∫
J>(̂fcd − f̂c) dt .

(4.3.24)

94

Define em := qd − q and ef := J>f̂cd − J>f̂c, the above equation can further be

rewritten as

ëm + ΨmjKvėm + ΨmjKpem = 0,

ef + ΨfjKi

∫
ef dt = 0.

(4.3.25)

As long as ΨmjKp, ΨmjKv and ΨfjKi are chosen to be positive definite, both

motion and force subsystems will enjoy asymptotic stability.

4.4 Simulation and Future Research Directions

y

z

x

Figure 4.6: Compliant motion task for WAM’s simulation

WAM is a 4-joint robot manipulator with human-like kinematics (see Fig.2.8).

95

Now suppose WAM is required to move its end-effector on a horizontal plane (see

Fig.4.6), then such a single-point contact will divide WAM’s workspace into a com-

bination of 3-DOF motion and 1-DOF force, i.e., in the compliance (task) frame [11]

{x,y, z}, 2-DOF translation in the x-y plane plus 1-DOF rotation; and a linear con-

tact force along z-axis. For example, the compliant motion task illustrated in Fig.4.6

makes WAM’s end-tip to traverse an S-shape path with its body swinging back and

forth; in the meantime, a fluctuant magnitude contact force can possibly be applied

against the environmental surface as well. A similar task of WAM drawing the NICTA

logo is demonstrated by a short video clip NictaLogo.mpg contained in the attached

CD.

A simulation on WAM of applying our joint space hybrid control algorithm for

the proposed single-point contact task has been performed by using Matlab 7.0 (The

MathWorks, Inc. 2004), whose results are shown in Figs.4.7-4.9. The relatively

poor tracking performance of the force controller as we see in Figs.4.7,4.8 and 4.9 is

intrinsically due to the varied characteristics of the motion and force subsystems, i.e.,

disturbances of joint drive torques (simulated as white noises here) have more direct

destructive effect on the eventual output of the contact force than that of the joint

positions.

Furthermore, another reason accounting for the jagged force response is the envi-

ronment has been assumed as fixed in the closed-loop dynamics simulation and hybrid

control algorithm here. In the future, we wish to incorporate the contact dynamics

as it is a critical factor for the controller’s capacity to reject the force disturbance

[55]. Also, we will be interested in looking at the stability issue due to the transition

between free and constrained motion, e.g., to reduce the influence of the impact force

96

0 0.2 0.4 0.6 0.8 1

−0.4

0

0.4

0.8

Time

P
o

s
it
io

n
 o

f
J
o

in
t
1

 (
R

a
d

)

(a)

0 0.2 0.4 0.6 0.8 1

−1

−0.9

−0.8

−0.7

Time

P
o

s
it
io

n
 o

f
J
o
in

t
2
 (

R
a

d
)

(b)

Figure 4.7: Trajectory of joint 1: a), and 2: b). Blue: desired; Red: actual

97

0 0.2 0.4 0.6 0.8 1
−0.8

−0.4

0

0.4

0.8

Time

P
o

s
it
io

n
 o

f
J
o

in
t
3

 (
R

a
d

)

(a)

0 0.2 0.4 0.6 0.8 1

−2

−1.8

−1.6

−1.4

Time

P
o

s
it
io

n
 o

f
J
o
in

t
4
 (

R
a

d
)

(b)

Figure 4.8: Trajectory of joint 3: a), and 4: b). Blue: desired; Red: actual

98

0 0.2 0.4 0.6 0.8 1
2

6

10

14

18

Time

C
o

n
ta

c
t

F
o

rc
e

 (
N

e
w

to
n

)

Figure 4.9: Trajectory of contact force. Blue: desired; Red: actual

99

on the dynamical instability etc.

4.5 Proposed Hybrid Motion/Force Control Ex-

periment on WAM

4.5.1 RSISE Experimental Robot Manipulator: WAM

As mentioned in Section 2.5 and Section 4.4, WAM (Whole Arm Manipulator) is a 4-

DOF experimental robot manipulator (Fig.2.8), which was purchased in 1997 from the

Barrett Technology Inc, USA. One distinguished design of the robot is its advanced

cable-drive system (Fig.4.10) which yields several remarkable characteristics such as

zero backlash, low friction, high bandwidth, high force fidelity, and so on. With these

advantages, WAM can be considered as a suitable platform for research on advanced

force control [6].

Two end-effectors, the ”Dumbbell” and ”Pawn” probes (Fig.4.10), have been made

for single or dual contact force control experiments on WAM. The main body of the

”dumbbell” is a Nylon beam which is designed for absorbing a majority of impact force

when a hard contacts takes place. Its dimensions (length and radius) are optimized

with regard to small deflection and good distinguishablity of the two contact forces,

by using MDSolids 1.5 (Timothy A. Philpot, Murray State University. 1995). The

end-tip spheres are chosen to be made of Teflon (DuPont), since this material has

very good rigidity and exceptionally low frictional coefficient.

The robotic system is equipped with several JR3 6-DOF force sensors (the blue

metal block with JR3 logo in Fig.4.10), which are capable of measuring force and

torque on three orthogonal directions. By the electronic system contained within

100

"Dumbbell" Probe

"Pawn" Probe

Cabled Transmission

Figure 4.10: WAM’s cable-drive transmission system, and its custom-made end-
effectors

the sensor, the strain gage signal is amplified and converted to digital data, which

can further be accessible from computers via the JR3 communication boards with

interfaces of ISA or PCI. The drivers for both JR3 ISA-bus and PCI-bus adaptor

boards have been written under VxWorks, a real-time operating system which will

be introduced next. The drivers’ source code in C++ is available on request.

WAM is controlled by a 500MHz Pentium III PC named Nozomi at a sampling

rate of 1000Hz. Nozomi runs a real-time operating system, VxWorks 5.5 (Wind River

Systems, Inc. 2001). One distinguishing feature of VxWorks is that its development

is done on a ”host” machine running UNIX or Windows, while cross-compiling target

software to run on various ”target” CPU architectures.

Fig.4.11 shows the overall structure of the WAM robotic system and the general

101

VxWorks Host: Rhea

WAM & ’Dumbbell’ Probe

Control Cabinet

Environment

VxWorks Targets: Nozomi & Teiko

(power supply units, amplifers etc.)

(with JR3 force sensor)

(with JR3 force sensors)

Remote Data Receiver: Io

(acting as a data recorder and online visualizer)

(with ServoToGo and JR3 adaptor boards)

Position and Force Data from WAM

CONTACT

Control Signal (Drive Torque)

Force Data from Environment

Loop
Control

Figure 4.11: Overall hardward/software structure of WAM and peripheral devices for
the proposed dual-contact experiment

dataflow for the proposed dual-contact force control experiment. The VxWorks target

Nozomi runs the major control software (developed in C++), and is supported by the

host computer Rhea, a Sun-Solaris desktop where VxWorks binaries and software IDE

Tornado reside. A motion control board (ServoToGo 8-axis ISA-bus Servo IO card,

Servo To Go, Inc.) and a JR3 ISA-bus communication board are installed in Nozomi,

interfacing the incoming data of WAM’s motion and applied force, and the motor-

torque control signals calculated by the control loop. For verification purposes, two

extra JR3 6-DOF force sensors are mounted in the ”V-shape” environment, and the

102

contact force data goes into two JR3 PCI-bus boards installed in another VxWorks

Target PC Teiko. Furthermore, an online Java 3D visualizer demonstrating WAM’s

motion operates on a Windows PC Io, which is connected with Nozomi via the local

ethernet.

4.5.2 Purposes and Procedure of the Suggested Experiment

The purposes of the experiment is to further verify the claims made in the theory

sections of closed-loop dynamics analysis and joint-space control law design. These

claims can be summarized as follows.

1. Applicability on general robots;

As explained in the very beginning of this chapter, for robot manipulators al-

ready subject to kinematic constrains (e.g., the 4-DOF WAM), our joint-space

control algorithm, even may not be the only available choice, has several advan-

tages over the conventional operational-space ones. The trajectory optimization

scheme in Chapter 2 can be applied here for performing the corresponding joint-

level motion planning.

2. Dynamic decoupling of force and motion spaces.

We have derived in Section 4.3 the decoupling between the system responses

(q̈ and J>f̂c), provided that 1) the desired trajectories (q̈d and J>f̂cd) are

planned carefully in terms of fully complying with the contact task, which can be

guaranteed if our two-step path planning scheme is applied; and 2) the robot’s

dynamics is sufficiently compensated in the control law.

103

We intend to apply our joint-space control algorithm on WAM to perform a multi-

contact 4-DOF compliant motion task (Fig.4.12). The dumbbell end-effector will be

making contact with two perpendicular walls, also moving vertically along with an

in/outward twist. The contact can be considered as frictionless, since both the spheres

and the plates are made of Teflon (some lubricant may also be applied during the

experimentation if necessary).

f 1

^

f 2

^

v1

^

v2

^

Figure 4.12: Proposed dual-point contact hybrid motion/force control experiment for
WAM

The subtlety of modelling the dual-contact action is its time-variance, namely

it can not be formulated by the conventional ”Task Frame Formalism” [11]. The

kinematic projectors Ψmj and Ψfj based on dual motion/force spaces are delibrately

designed on a different theoretical basis as the well-known ”Selection Matrices” [54],

104

and are able to cope with general contact modelling such as the situation here. More-

over, the kinematic stability issue arising from joint-space filtering will be tested in

the experiment as well.

Values of the hybrid motion/force variables can be chosen as

z = zoffset + zmag sin(zfreq t),

θ = θoffset + θmag sin(θfreq t),

f1 = f1offset + f1mag sin(f1freq t),

f2 = f2offset.

(4.5.1)

where z is the vertical position of the center of rod, θ indicates the rotation angle

of the in/outward twist, and zfreq = θfreq = 1.25 f1freq. Note that the force control

performance of f1 and f2 will be independently measured by two JR3 force sensors

installed in the ”V-shape” environment. Also, the purpose for setting z/θ and f1 un-

der different frequencies is to later analyze the dynamical decoupling of motion/force

sub-systems by looking at the cross-coupling between the force/motion reference tra-

jectories and the actual tracking errors.

Due to several hardware problems of the robot, the suggested experiment has not

yet been implemented on WAM. Some completed experimental work is recorded in

Appendix C.

4.6 Summary

This chapter presents a new scheme for the hybrid motion/force control of robot

manipulators. Our contribution is to redo the formulation in the joint space so as to

make the closed-loop dynamics analysis and the control algorithm design applicable

105

to general robots. Also, the joint space control law allows us to implement different

suitable control gains for each robot joints, which we think is a more practical and

robust approach for real robotic systems whose disturbances are mainly originated at

the joint level. An example of the compliant motion control for a 4-DOF robot WAM

along with some simulation results are presented, and a hybrid motion/force control

experiment is proposed at the end of the chapter.

Chapter 5

Conclusion and Outlook

5.1 Conclusion

The major goal of this thesis is to bring a new thought of robot manipulator’s com-

pliant motion control concerning both planning and control aspects. Due to the

natural easiness of describing motion constraints and the simplified treatment of

robot’s kinematic/dynamic models, operational-space is taken for granted as the de-

fault coordinate frame of robot’s hybrid motion/force control formulation, especially

after Khatib’s historic work [37]. However, we believe joint-space is in fact a better

choice in terms of global optimization, robust performance, and general applicability.

Apart from these desirable benefits, the corresponding price of introducing joint-space

processing is its computational complicity, as the robot manipulator’s kinematic or

dynamic features are now considered in reference trajectory and control algorithm de-

signs. To cope with such technical difficulties, we have proposed numerical trajectory-

optimization, interpolation, and control algorithms, which have been presented in the

previous chapters.

The mathematical foundations of robotics research results recorded in this thesis

can be traced back to our two major theoretical contributions in variational calculus

106

107

and differential geometry. More specifically, they are

1. A convergence-proved iterative algorithm solving for variational problems sub-

ject to boundary conditions with Lagrangian functions containing up to second-

order derivatives;

2. A smooth interpolation algorithm on manifold combining rolling and wrapping

with the pull back/push forward technique.

Based on these mathematical research achievements, the contributions on the

engineering aspect of this thesis mainly focus on three topics of robot manipulator’s

compliant motion control, which are

1. Numerical trajectory optimization;

A two-step calculation scheme planning optimal joint trajectory for robot sub-

ject to equality and inequality constraints has been proposed. The motion

planner aims to some comprehensive optimization objective with regard to both

joint trajectory and its resulting end-effector path as well.

2. Smooth interpolation of orientation;

A novel procedure to calculate smooth interpolation curves of the rotation group

SO3 has been investigated. The suggested approach has two remarkable features

appropriate for real-time applications: 1) coordinate-free; 2) resulting curves

given in closed form.

3. Joint-space formulation of dynamics and control.

108

The general contact geometry and robot’s closed-loop dynamics have been re-

formulated in joint space, moreover, a corresponding joint-space hybrid mo-

tion/force control algorithm has been proposed. Some theoretical discoveries

with regard to system responses include dynamical decoupling and asymptotic

stability.

5.2 Future Research Directions

In this thesis, a new methodology of robot’s complaint motion control is presented,

and our research results on several aspects of this theme are shown. Future research

projects are being considered either to eliminate limitations of the algorithms we pro-

posed or to apply our theoretically idealized research outcomes on practical robotics

applications.

On the mathematical part, firstly, we intend to expand the scope of the optimiza-

tion objective of our Newton-like method for constrained variational problems. In

more detail, the Lagrangian function of the improved iterative algorithm now can be

any general function of position, velocity, and acceleration. Moreover, the resulting

trajectory may be subject to non-holonomic motion constraints. Therefore, instead

of P2.5, we are further interested to solve

P5.1

min
y

J(y) =

∫ tn

t0

L
(
t,y(t), ẏ(t), ÿ(t)

)
dt (5.2.1)

with respect to the class of sufficiently smooth functions y : [t0, tn] → Rp, t 7→
y(t) satisfying the boundary conditions

y(t0) = y0, y(tn) = yn, ẏ(t0) = ξ0, ẏ(tn) = ξn, (5.2.2)

109

and the holonomic constraint

C
(
y(t)

)
= 0, ∀t ∈ [t0, tn], (5.2.3)

or the non-holonomic constraint

C
(
ẏ(t)

)
= 0, ∀t ∈ [t0, tn]. (5.2.4)

As we mentioned before, the key technical difficulty is to find a unified and numerical

consistent approximation scheme for ẏ and ÿ.

Secondly, a thorough study will be performed to investigate the influences on SO3

curve design due to applying various local diffeomorphisms in smooth interpolation by

rolling and wrapping, and to compare different interpolation approaches with respect

to the performance index of minimum angular acceleration, i.e.,
∫ tn

t0
γ̈(t)>γ̈(t) dt.

Furthermore, motivated by practical applications such as optimal control of satel-

lite’s attitude, we also plan to modify our SO3 interpolation algorithm incorporating

dynamics consideration. Based on P3.1, the new interpolation task can be formulated

as

P5.2 Find a C2-smooth curve γ : [0, T] → SO3 interpolating a set of given interme-

diate points Rk ∈ SO3, such that

γ(tk) = Rk, 1 ≤ k ≤ n− 1, (5.2.5)

where

0 = t0 < t1 < · · · < tn−1 < tn = T, (5.2.6)

110

subject to the boundary conditions

γ(0) = R0 ∈ SO3,

γ(T) = Rn ∈ SO3,

γ̇(0) = ξ0 ∈ TR0SO3,

γ̇(T) = ξn ∈ TRnSO3.

(5.2.7)

Now we suggest the revised interpolation process aims to design the resulting

curve towards the following optimization objective

min
γ

∫ tn

t0

γ̈(t)> I γ̈(t) dt, (5.2.8)

where I is the moment of inertia.

Since the metric has been redefined, the rolling map as well as rolling curve

(usually the geodesics) need to be modified correspondingly.

Back to the robotics aspect, the very first thing to consider for our future research

is definitely the hybrid motion/force control experiment, whose procedure and pur-

poses have been proposed in Section 4.5 already. Apart from those completed work

recorded in Appendix C, other critical issues that will probably be encountered in the

practical experimentation are

1. Torque ripple compensation;

Further attempts should be made to properly identify the motor torque ripples

of WAM. If the feed-forward compensation method again turns out to be unsuc-

cessful eventually, we probably have to think about introducing some inner loop

as an alternative way to discard the motor torque ripple disturbance. Usually,

111

this lower-level loop is set to be 3 to 4 times faster than the main control loop

and it will involve installation of motor torque sensing devices.

2. Control law design;

We have presented the asymptotic stability analysis of our joint-space hybrid

motion/force control algorithm in Section 4.3.2. Nevertheless, proper PID co-

efficients need to be chosen to achieve satisfactory tracking performance. From

control theory’s point of view, tuning PID gains here is exactly a state-feedback

pole-placement problem. We will consider techniques which are reported to be

successfully implemented on robot force control applications in the literature,

such as ”Ackermann’s formula” [14],[53].

3. Force sensing.

As robots will be making contact as well as moving in typical hybrid mo-

tion/force control procedures, noisy force data becomes another very critical

component for system’s stability in practice. Therefore, implementing some on-

line filter is very necessary for rejecting the high-frequency noises. The observer

design we are considering is the AOB (active observer), which was invented

by Cortesão [13] and has been verified to be very effective in robot compliant

motion control experimentations [14],[53].

Appendix A

Proof of Convergence

The proof of convergence here shows the correspondence between P2.5 and P2.6,

in other words, as h goes to 0, the solution of the discretized system of P2.6 will

converge to the solution of the Euler-Lagrange equation system of P2.5.

A.1 Solution of the Discretized System

Firstly, we will make some analysis on the solution of the discretized system. As we

know, the necessary condition of the solution of P2.6 is its cost function L stays at

some stationary value, namely ∇L(Q) = 0. Also, this is the result that the Newton’s

method (A2.1 or A2.2) will eventually converge to (if it can converge).

Expand ∇L(Q) = 0, we will get

Ã ∂L1

∂yj

(
P∗n

h(t),AQ̃y,BQ̃y

)
+ B̃ ∂L1

∂ẏj

(
P∗n

h(t),AQ̃y,BQ̃y

)

+
∂L2

∂yj

(
Pn−1

h (t),Qy, C̃Qy

)
+ C̃ ∂L2

∂ÿj

(
Pn+1

h (t), Q̃y, CQ̃y +D)

+Qµ

∂C

∂yj

(Qy) = 0 ∈ Rn−1, j ∈ {1, · · · , p},

(A.1.1)

C(Qy) = 0 ∈ Rn−1, (A.1.2)

112

113

where

Q̃y =




y0

Qy

yn


 ∈ R(n+1)×p, (A.1.3)

Ã =




1
2

1
2

1
2

1
2

.

1
2

1
2



∈ R(n−1)×n, (A.1.4)

B̃ =




1
h
− 1

h

1
h

− 1
h

.

1
h

− 1
h



∈ R(n−1)×n, (A.1.5)

C̃ =




1
h2 − 2

h2
1
h2

.

1
h2 − 2

h2
1
h2


 ∈ R(n−1)×(n+1). (A.1.6)

A.2 Convergence Proof

In this section, we will prove that as h goes to 0, the solution of the discretized system

(Eqs. A.1.1, A.1.2) will converge to the solution of the Euler-Lagrange equation system

(Eq. 2.3.5). The proof here follows the general principle of proving convergence for

difference methods (Page 195-199, [68]).

Firstly, we make two assumptions, which will be respectively used to prove lemma A.2.1

and theorem A.2.2.

1. Existence and uniqueness: Eq. 2.3.5 has a unique solution {y(t), µ(t)} and

Eqs. A.1.2, A.1.1 have a unique solution {Yh ∈ R(n−1)×p, Mh ∈ Rn−1}.

114

2. Stability: there exist positive constants s and γ such that

‖ [V−U] ‖s ≤ γ‖Eh(V)−Eh(U)‖, (A.2.1)

where V,U ∈ R(n−1)×(p+1), and the operator Eh is defined as

Eh : R(n−1)×(p+1) → Rn−1,


y1,1 · · · y1,p µ1

...
. . .

...
...

yn−1,1 · · · yn−1,p µn−1


 7→ LHS of Eq. A.1.1. (A.2.2)

Next, we will prove lemma A.2.1 which is the key step to approach the finial

convergence result.

Lemma A.2.1. With the approximation schemes Eqs. 2.3.17, 2.3.18, 2.3.19 and

assumption 1, there exists a positive constant α such that

∥∥∥Eh

([
Pn−1

h

(
y(t)

)
Pn−1

h

(
µ(t)

)])∥∥∥ ≤ αh (A.2.3)

for sufficiently small h.

Proof.

Step 1: Show the consistency of the approximation schemes.

APn+1
h

(
y(t)

)
= P∗n

h

(
y(t)

)
+ φ(h)h2, (A.2.4)

ÃP∗n
h

(
y(t)

)
= Pn−1

h

(
y(t)

)
+ φ̃(h)h2, (A.2.5)

BPn+1
h

(
y(t)

)
= P∗n

h

(
ẏ(t)

)
+ ϕ(h)h2, (A.2.6)

−B̃P∗n
h

(
y(t)

)
= Pn−1

h

(
ẏ(t)

)
+ ϕ̃(h)h2, (A.2.7)

CPn+1
h

(
y(t)

)
+D = Pn+1

h

(
ÿ(t)

)
+ ψ1(h)h + ψ2(h)h2, (A.2.8)

C̃Pn+1
h

(
y(t)

)
= Pn−1

h

(
ÿ(t)

)
+ ψ̃2(h)h2, (A.2.9)

115

where

φ(h) =




· · · ÿj

(
(0 + θ1j1

1
2
)h

)
+ ÿj

(
(1

2
+ θ1j2

1
2
)h

) · · ·
...

...
...

· · · ÿj

(
(k − 1 + θkj1

1
2
)h

)
+ ÿj

(
(k − 1

2
+ θkj2

1
2
)h

) · · ·
...

...
...

· · · ÿj

(
(n− 1 + θnj1

1
2
)h

)
+ ÿj

(
(n− 1

2
+ θnj2

1
2
)h

) · · ·




/16∈ Rn×p,

φ̃(h) =




· · · ÿj

(
(1

2
+ θ̃1j1

1
2
)h

)
+ ÿj

(
(1 + θ̃1j2

1
2
)h

) · · ·
...

...
...

· · · ÿj

(
(k − 1

2
+ θ̃kj1

1
2
)h

)
+ ÿj

(
(k + θ̃kj2

1
2
)h

) · · ·
...

...
...

· · · ÿj

(
(n− 1− 1

2
+ θ̃nj1

1
2
)h

)
+ ÿj

(
(n− 1 + θ̃nj2

1
2
)h

) · · ·




/16∈ R(n−1)×p,

ϕ(h) =




· · · ...
y j

(
(0 + ϑ1j1

1
2
)h

)
+

...
y j

(
(1

2
+ ϑ1j2

1
2
)h

) · · ·
...

...
...

· · · ...
y j

(
(k − 1 + ϑkj1

1
2
)h

)
+

...
y j

(
(k − 1

2
+ ϑkj2

1
2
)h

) · · ·
...

...
...

· · · ...
y j

(
(n− 1 + ϑnj1

1
2
)h

)
+

...
y j

(
(n− 1

2
+ ϑnj2

1
2
)h

) · · ·




/48∈ Rn×p,

ϕ̃(h) =




· · · ...
y j

(
(1

2
+ ϑ̃1j1

1
2
)h

)
+

...
y j

(
(1 + ϑ̃1j2

1
2
)h

) · · ·
...

...
...

· · · ...
y j

(
(k − 1

2
+ ϑ̃kj1

1
2
)h

)
+

...
y j

(
(k + ϑ̃kj2

1
2
)h

) · · ·
...

...
...

· · · ...
y j

(
(n− 1− 1

2
+ ϑ̃nj1

1
2
)h

)
+

...
y j

(
(n− 1 + ϑ̃nj2

1
2
)h

) · · ·




/48∈ R(n−1)×p,

116

ψ1(h) =




· · · ...
y j

(
(0 + ι1j)h

) · · ·
· · · 0 · · ·
...

...
...

· · · 0 · · ·
· · · ...

y j

(
(n− 1 + ι(n−1)j)h

) · · ·




/3∈ R(n+1)×p,

ψ2(h) =




· · · 0 · · ·
· · ·

y j

(
(0 + λ2j1)h

)
+

....
y j

(
(1 + λ2j2)h

) · · ·
...

...
...

· · ·
y j

(
(n− 2 + λ(n−1)j1)h

)
+

....
y j

(
(n− 1 + λ(n−2)j2)h

) · · ·
· · · 0 · · ·




/24∈ R(n+1)×p,

ψ̃2(h) =




· · ·
y j

(
(0 + λ̃2j1)h

)
+

....
y j

(
(1 + λ̃2j2)h

) · · ·
...

...
...

· · ·
y j

(
(n− 2 + λ̃(n−1)j1)h

)
+

....
y j

(
(n− 1 + λ̃(n−2)j2)h

) · · ·




/24∈ R(n−1)×p,

θkj1, θkj2, θ̃kj1, θ̃kj2, ϑjk1, ϑkj2, ϑ̃kj1, ϑ̃kj2, ι1j, ι(n−1)j, λkj1, λkj2, λ̃kj1, λ̃kj2 ∈ (0, 1).

Eqs. A.2.4 − A.2.9 are derived through Taylor expansion. φ(h), φ̃(h), ϕ(h), ϕ̃(h),

ψ(h), ψ̃(h) are their Lagrange remainders, they are all bounded in some neighborhood

of {h : |h| < ε} of zero.

The reason for us to restrain the Lagrangian function L(t,y, ẏ, ÿ) into the sum-

mation of L1(t,y, ẏ) and L2(t,y, ÿ), which is obviously less general, is that we are

117

at the moment unable to find a consistent approximation scheme for ẏ and ÿ under

one single discretization scheme (currently ẏ(t∗k) and ÿ(tk) are discretized differently).

As a conjecture, we guess the cross-coupling between velocity and acceleration will

lead to some particular pattern in the differential equation of the variational problem,

which may be beyond the reach of the conventional discretization approaches we have

used.

Step 2: Expand Eh

([
Pn−1

h (y(t)) Pn−1
h (µ(t))

])
.

Eh

([
Pn−1

h (y(t)) Pn−1
h (µ(t))

])

= Ã ∂L1

∂yj

(
P∗n

h(t),APn+1
h

(
y(t)

)
,BPn+1

h

(
y(t)

))

+ B̃ ∂L1

∂ẏj

(
P∗n

h(t),APn+1
h

(
y(t)

)
,BPn+1

h

(
y(t)

))

+
∂L2

∂yj

(
Pn−1

h (t),Pn−1
h

(
y(t)

)
, C̃Pn+1

h

(
y(t)

))

+ C̃ ∂L2

∂ÿj

(
Pn+1

h (t),Pn+1
h

(
y(t)

)
, CPn+1

h

(
y(t)

)
+D

)

+ diag
(
Pn−1

h

(
µ(t)

)) ∂C

∂yj

(
Pn−1

h

(
y(t)

))

= continue at next page ...

118

= Ã ∂L1

∂yj

(
P∗n

h(t),P∗n
h

(
y(t)

)
+ φ(h)h2,P∗n

h

(
ẏ(t)

)
+ ϕ(h)h2

)

+ B̃ ∂L1

∂ẏj

(
P∗n

h(t),P∗n
h

(
y(t)

)
+ φ(h)h2,P∗n

h

(
ẏ(t)

)
+ ϕ(h)h2

)

+
∂L2

∂yj

(
Pn−1

h (t),Pn−1
h

(
y(t)

)
,Pn−1

h

(
ÿ(t)

)
+ ψ̃2(h)h2

)

+ C̃ ∂L2

∂ÿj

(
Pn+1

h (t),Pn+1
h

(
y(t)

)
,Pn+1

h

(
ÿ(t)

)
+ ψ1(h)h + ψ2(h)h2

)

+ diag
(
Pn−1

h

(
µ(t)

)) ∂C

∂yj

(
Pn−1

h

(
y(t)

))

= ÃP∗n
h

(∂L1

∂yj

(
t,y(t), ẏ(t)

))

+ B̃P∗n
h

(∂L1

∂ẏj

(
t,y(t), ẏ(t)

))

+Pn−1
h

(∂L2

∂yj

(
t,y(t), ÿ(t)

))

+ C̃Pn+1
h

(∂L2

∂ÿj

(
t,y(t), ÿ(t)

))

+Pn−1
h

(
µ(t)

∂C

∂yj

(
µ(t),y(t)

))

+ Ã
(

∂2L1

∂yj∂ẏj

(
P∗n

h(t),P∗n
h

(
y(t)

)
+ ε · φ(h)h2,P∗n

h

(
ẏ(t)

))
φ(h)h2

+
∂2L1

∂yj∂ÿj

(
P∗n

h(t),P∗n
h

(
y(t)

)
,P∗n

h

(
ẏ(t)

)
+ ε · ϕ(h)h2

)
ϕ(h)h2

)

+ B̃
(

∂2L1

∂yj∂ẏj

(
P∗n

h(t),P∗n
h

(
y(t)

)
+ ε · φ(h)h2,P∗n

h

(
ẏ(t)

))
φ(h)h2

+
∂2L1

∂yj∂ÿj

(
P∗n

h(t),P∗n
h

(
y(t)

)
,P∗n

h

(
ẏ(t)

)
+ ε · ϕ(h)h2

)
ϕ(h)h2

)

+
∂2L2

∂ÿ2
j

(
Pn+1

h (t),Pn+1
h

(
y(t)

)
,Pn+1

h

(
ÿ(t)

)
+ δ · (ψ1(h)h + ψ2(h)h2

))

(
ψ1(h)h + ψ2(h)h2

)

+ C̃ ∂2L2

∂ÿ2
j

(
Pn+1

h (t),Pn+1
h

(
y(t)

)
,Pn+1

h

(
ÿ(t)

)
+ δ · (ψ1(h)h + ψ2(h)h2

))

(
ψ1(h)h + ψ2(h)h2

)

119

where ε, ε ∈ Rn×p and δ ∈ R(n+1)×p whose elements εij, εij, δij ∈ (0, 1), and · is the

elementwise (Hadamard) matrix multiplication. The first step is just repeating the

definition A.2.2, and the next one is derived by plugging Eqs. A.2.4, A.2.6, A.2.8 in.

The third step uses Taylor expansion with Lagrange remainders in the same way as

getting Eqs. A.2.4 − A.2.9.

Let X be the last five terms in Eh(), we can see that all terms in X has the

common factor h, so that X can be expressed as Y h, where Y is bounded.

X := Ã
(

∂2L1

∂yj∂ẏj

(
P∗n

h(t),P∗n
h

(
y(t)

)
+ ε · φ(h)h2,P∗n

h

(
ẏ(t)

))
φ(h)h2

+
∂2L1

∂yj∂ÿj

(
P∗n

h(t),P∗n
h

(
y(t)

)
,P∗n

h

(
ẏ(t)

)
+ ε · ϕ(h)h2

)
ϕ(h)h2

)

+ B̃
(

∂2L1

∂yj∂ẏj

(
P∗n

h(t),P∗n
h

(
y(t)

)
+ ε · φ(h)h2,P∗n

h

(
ẏ(t)

))
φ(h)h2

+
∂2L1

∂yj∂ÿj

(
P∗n

h(t),P∗n
h

(
y(t)

)
,P∗n

h

(
ẏ(t)

)
+ ε · ϕ(h)h2

)
ϕ(h)h2

)

+
∂2L2

∂ÿ2
j

(
Pn+1

h (t),Pn+1
h

(
y(t)

)
,Pn+1

h

(
ÿ(t)

)
+ δ · (ψ1(h)h + ψ2(h)h2

))

(
ψ1(h)h + ψ2(h)h2

)

+ C̃ ∂2L2

∂ÿ2
j

(
Pn+1

h (t),Pn+1
h

(
y(t)

)
,Pn+1

h

(
ÿ(t)

)
+ δ · (ψ1(h)h + ψ2(h)h2

))

(
ψ1(h)h + ψ2(h)h2

)

= Y h

120

Continue our journey of expanding Eh().

Eh

([
Pn−1

h (y(t)) Pn−1
h (µ(t))

])

= Pn−1
h

(∂L1

∂yj

(
t,y(t), ẏ(t)

))
+ φ̃(h)h2

−Pn−1
h

(∂L1

∂ẏj

(
t,y(t), ẏ(t)

))− ϕ̃(h)h2

+Pn−1
h

(∂L2

∂yj

(
t,y(t), ÿ(t)

))

+Pn−1
h

(∂L2

∂ÿj

(
t,y(t), ÿ(t)

))
+ ψ̃(h)h2

+Pn−1
h

(
µ(t)

∂C

∂yj

(
µ(t),y(t)

))

+X

= 0 + φ̃(h)h2− ϕ̃(h)h2 + ψ̃(h)h2 +X

=
(
φ̃(h)h− ϕ̃(h)h + ψ̃(h)h +Y

)
h

≤ α h

Step 1 comes from one property of our approximation schemes Eqs. A.2.5, A.2.7, A.2.9,

and step 2 is because {y(t), µ(t)} is the only solution of Eq. 2.3.5.

Lastly, we present the main convergence proposition and its proof.

Theorem A.2.2. With the approximation schemes Eqs. 2.3.17, 2.3.18, 2.3.19 and

assumptions 1,2, there exists positive constants α, s and γ such that

∥∥∥
[

Yh Mh

]
−

[
Pn−1

h

(
y(t)

)
Pn−1

h

(
µ(t)

)]∥∥∥
s

≤ αγh (A.2.10)

121

Proof.

∥∥∥
[

Yh Mh

]
−

[
Pn−1

h

(
y(t)

)
Pn−1

h (µ(t))

]∥∥∥
s

≤ γ
∥∥∥Eh

([
Yh Mh

])
−Eh

([
Pn−1

h

(
y(t)

)
Pn−1

h

(
µ(t)

)])∥∥∥

= γ
∥∥∥Eh

([
Pn−1

h

(
y(t)

)
Pn−1

h

(
µ(t)

)])∥∥∥

≤ αγh

The first step uses the stability assumption, then the next step is because {Yh, Mh}
is the unique solution of Eqs. A.1.2, A.1.1. Lastly, lemma A.2.1 is employed at step

3 to finalize the whole proof.

Of course, Yh fulfills the constraint C (Eq. A.1.2). From theorem A.2.2, we will

see as h → 0, the computed result from algorithm A1.1 converges to the discretized

value of the Euler-Lagrange equation’s solution curve.

Appendix B

Derivation of Rolling Map for SO3

The section derives the kinematic equations (Eq.3.3.14) from the no-slipping and no-

twisting conditions (C2, C3 in page 59). Contrary to the sphere case, we now lose

geometric intuition. Therefore, instead of having an idea of manifold’s rigid-body

motion initially (as for S2 in [31]), the derivation of the SO3’ rolling map involves

quite a bit of abstract mathematical reasoning.

B.1 Group Action, Rolling Curve, and Its Devel-

opment

As mentioned in Section 3.3.2, we define the group G = SO3 × SO3 n R3×3 acts on

R3×3 via
G× R3×3 → R3×3

(
(U, V, X),p

) 7→ UpV > + X,
(B.1.1)

where G acts on itself via

(U2, V2, X2) ◦ (U1, V1, X1) :=
(
U2U1, V2V1, U2X1V

>
2 + X2

)
. (B.1.2)

Now let R0 be an arbitary point in SO3, and [0, T] → α(t) = U(t)>R0V (t) a

curve on SO3 starting at R0 at t = 0. We will show that, under some restrictions,

122

123

the map

r : [0, T] → G = SO3 × SO3 nR3×3

t 7→ r(t) =
(
U(t), V (t), X(t)

) (B.1.3)

is a rolling map along

α(t) = U>(t)R0 V (t), (B.1.4)

with development

αdev = r(t) ◦ α(t)

= U(t) α(t) V >(t) + X(t)

= R0 + X(t).

(B.1.5)

B.2 Rolling Map without Slipping or Twisting

As we know, if r is a rolling map, the following two conditions need to be satisfied

C2 (The no-slipping condition)

For all t ∈ [0, T] it holds

ṙ(t) ◦ r(t)−1 ◦ αdev(t) = 0,

C3 (The no-twisting condition)

For all t ∈ [0, T] it holds

(i) (Tangential part)

ṙ(t) ◦ r(t)−1 ◦ Tαdev(t)V ⊂ (Tαdev(t)V)⊥,

(ii) (Normal part)

ṙ(t) ◦ r(t)−1 ◦ (Tαdev(t)V)⊥ ⊂ Tαdev(t)V .

124

For the rolling map defined in Eq.B.1.3, the no-slipping condition can be written

as

ṙ ◦ r−1 ◦ αdev = 0 ⇔ ṙ ◦ αdev = 0

⇔ U̇αV > + UαV̇ > + Ẋ = 0

⇔ U̇U>R0V V > + UU>R0V V̇ > + Ẋ = 0

⇔ U̇U>R0 + R0V V̇ > + Ẋ = 0.

(B.2.1)

If we assign

U̇U> =: −ΩU/2 ∈ so3,

V V̇ > =: −ΩV /2 ∈ so3,
(B.2.2)

the no-slipping condition C2 becomes

Ẋ =
ΩU

2
R0 + R0

ΩV

2
. (B.2.3)

Now let’s deal with the no-twisting condition. From C3, we know that if we let

∀ρ ⊂ Tαdev
V and ∀% ⊂ (Tαdev

V)⊥, the followings must hold

(
U̇ , V̇ , Ẋ

) ◦ (
U>, V >,−U>XV

) ◦ ρ =
(
U̇ , V̇ , Ẋ

) ◦ (
U>ρV

)

= U̇U>ρV V > + UU>ρV V̇ >

= U̇U>ρ + ρV V̇ > ⊂ (Tαdev
V)⊥,

(B.2.4)

and, similarly,

(
U̇ , V̇ , Ẋ

) ◦ (
U>, V >,−U>XV

) ◦ % = U̇U>% + %V V̇ > ⊂ Tαdev
V. (B.2.5)

Moreover, ∀ρ ⊂ Tαdev
V is of the form ρ = R0Ωρ for some Ωρ ∈ so3. Therefore,

Eq.B.2.4 is equivalent to requiring the matrix R>
0

(
U̇U>R0Ωρ+R0ΩρV V̇ >)

symmetric,

125

∀Ωρ ∈ so3. Namely,

R>
0

(
U̇U>R0Ωρ + R0ΩρV V̇ >)

=
(
R>

0

(
U̇U>R0Ωρ + R0ΩρV V̇ >))>

⇔ R>
0 ΩUR0Ωρ + ΩρΩV =

(
R>

0 ΩUR0Ωρ + ΩρΩV

)>

⇔ R>
0 ΩUR0Ωρ + ΩρΩV = Ω>

ρ R>
0 Ω>

UR0 + Ω>
V Ω>

ρ

⇔ R>
0 ΩUR0Ωρ − Ω>

V Ω>
ρ = Ω>

ρ R>
0 Ω>

UR0 − ΩρΩV

⇔ R>
0 ΩUR0Ωρ − ΩV Ωρ = ΩρR

>
0 ΩUR0 − ΩρΩV

⇔ (
R>

0 ΩUR0 − ΩV

)
Ωρ = Ωρ

(
R>

0 ΩUR0 − ΩV

)
.

(B.2.6)

We can see that R>
0 ΩUR0−ΩV commutes with Ωρ, ∀Ωρ ∈ so3, and the only possibility

for such circumstance is that R>
0 ΩUR0 − ΩV is a zero matrix, i.e.,

ΩV = R>
0 ΩUR0. (B.2.7)

On the other hand, ∀% ⊂ (Tαdev
V)⊥ is of the form % = R0S% for some symmet-

ric matrix S%, and Eq.B.2.5 is equivalent to requiring the matrix R>
0

(
U̇U>R0S +

R0SV V̇ >)
is skew-symmetric, ∀S = S>. After some similar derivation, we can also

end up with Eq.B.2.7.

Plug Eq.B.2.7 into Eq.B.2.3, now we can finally derive the kinematic equations

for the rolling motion of SO3, where Ω(t) := ΩU(t),

Ẋ(t) =
ΩU(t)

2
R0 + R0

ΩV (t)

2
⇔ Ẋ(t) = Ω(t)R0,

U̇(t)U>(t) = −ΩU(t)/2 ⇔ U̇(t) = −1

2
U(t) Ω(t),

V (t)V̇ >(t) = −ΩV (t)/2 ⇔ V (t)V̇ >(t) = −1

2
R>

0 Ω(t)R0

⇔ V̇ (t)V (t)> = −1

2
R>

0 Ω>(t)R0

⇔ V̇ (t)V (t)> =
1

2
R>

0 Ω(t)R0

⇔ V̇ (t) =
1

2
V (t)R>

0 Ω(t)R0.

(B.2.8)

126

As mentioned in Section 3.3.2, if we choose Ω(t) = Ω, the answer for the kinematic

equations become

X(t) = tΩR0,

U(t) = e−tΩ
2 ,

V (t) = R0
> e tΩ

2 R0.

(B.2.9)

As the result, the rolling curve is given as

α(t) = U>(t)R0 V (t)

= etΩ
2 R0 R0

>e tΩ
2 R0

= e tΩR0,

(B.2.10)

which is used in the second step of A3.1 in Section 3.3.3.

Appendix C

Experimental Work Performed on
WAM and Peripheral Devices

This section records our endeavors to achieve a good position tracking performance

on WAM for the future hybrid motion/force control experiment. Some analytical and

experimental work has been performed to identify dynamics properties of the WAM

robotic system and its peripheral devices. Although some of our attempts turn out to

be unsuccessful eventually, they can still be considered as useful experience for later

experimentations on general real-time-controlled electro-mechanical systems.

C.1 Identification of Motor Torque Ripple

Precise position tracking is critical in many robotic applications, such as arc welding,

laser cutting, NC machining, etc. Moreover, it is also the necessary foundation for a

successful implementation of any hybrid motion/force control algorithm. For cable-

drive robots like WAM, the advanced transmission system on one hand yields desirable

features such as zero-backlash, near-zero friction, backdrivability, etc. On the other

hand, high-frequency disturbances originated from motors will also be noticeable at

the output, therefore an adequate compensation of motor torque ripple is critical for

127

128

achieving satisfactory tracking performances [6].

General speaking, motor torque ripple of brushless DC motor is caused by

1. the electromagnetic torque fluctuation, which is a function of motor current and

rotor position;

2. the reluctance torque, i.e., the cogging torque, which is a function of rotor

position only. [30, 34, 35]

Namely, motor torque ripple can be roughly modelled as

τripple = τfluctuation + τcogging

= f1(θ) I + f2(θ),
(C.1.1)

where θ is the rotor position, and I is the drive current (i.e., the load).

We have noticed from our experimentation experience that the motor torque ripple

in WAM can sometimes be as large as 10 per cent of commanding torque. As a result,

the motor torque ripple becomes as the second biggest disturbance besides the gravity

for motion control of WAM, especially when the robot moves in a slow speed.

A dynamical calibration and a gravity compensation experiment have been suc-

cessfully performed on WAM, whose video clip (ZeroGravity.mpg) can be found in

the attached CD. The result of our gravity compensation is satisfactory: WAM can

stay still in most of situations, except for a little bit drift of the shoulder joints 2 and

3 when the robot is in some particular poses.

However, during the course of the zero-gravity experiment, strong torque fluctu-

ation can be obviously felt at the end-effector side, which we reckon is exactly the

effect of motor torque ripple. More specifically, when the amplifier is switched off,

129

(a)

(b)

Figure C.1: The original motor torque identification: a) raw data; b) averaged and
filtered data (courtesy of Barrett Technology Inc.)

130

almost no cogging torque is noticeable. Nevertheless, quite large torque ripple imme-

diately appears, as long as the amplifier is powered on, even if zero torque has been

commanded.

The existing torque ripple compensation is based on an identification procedure

suggested in WAM’s user manual [6]. The idea is to measure the steady state torque

required to hold the unloaded motor splindle at each of its 4096 discretely measurable

position (in practice, move the shaft at a very slow speed). The ripple data needs

to be collected in both the forward and the reverse motor directions (Fig.C.1a), then

averaged and filtered to finally form the look-up table (Fig.C.1b).

The effect of the torque ripple compensation under the above described scheme is

in practice not good. Two obvious weaknesses of such an approach are:

1. A large proportion of the recorded commanding torque (i.e., the output of the

high-gain closed-loop PID controller) is actually consumed for overcoming the

static friction, which can not be eliminated by the off-line averaging and filtering

processing;

2. A unified look-up table regardless of motor’s load is applied for the later ripple

compensation, however, the drive current is in fact a critical factor determining

the magnitude of the motor torque ripple.

Instead, we choose to use an open-loop method for identifying the motor torque

ripple. The experiment proceeds as follows:

1. Get a PID controller with fairly good performance on motor position tracking.

131

2. Drive only one motor with a constant commanding torque, let it move for a few

shaft revolutions then stop the controller. Meanwhile, the positions of other

three motors are forced to be kept fixed. Record the motor position for later

off-line analysis.

3. Differentiate the motor position to get the unfiltered motor velocity. Apply

Gaussian filter to discard the high frequency quantization noise (Fig.C.2a). The

velocity ripple is assumed to be caused by the motor torque ripple.

4. Further differentiate the smooth motor velocity signal once more to get the mo-

tor acceleration, multiply by the nominal motor inertia to get the final identified

motor torque ripple.

5. Apply a small fraction of such a ripple model as a feed-forward compensation

term. Repeat from 2 until the identified motor torque ripple converges to a

reasonable low magnitude.

Fig.C.2b shows one result of the iterative process. We can see that the magnitude

of the identified torque ripple has been exaggerated, which may be caused by inaccu-

rate estimation of the motor acceleration, or some dynamics model error. Therefore,

in the experiment, we decide to feed only a small fraction of the identified torque

ripple into the next iteration. As shown in Fig.C.2b, the compensation seems to be

working, as the motor torque ripple has been suppressed by almost 80%. Nevertheless,

the improvement is not significant when we introduce our torque ripple compensation

into the feed-forward zero-gravity control.

We consider our effort on this issue to be a failure and abandon the feed-forward

compensation method. In later experiments, the motor torque ripple is treated as a

132

(a)

(b)

Figure C.2: The modified motor torque identification: a) raw and filtered data of
motor velocity; b) convergence of torque ripple by iterative feed-forward compensation

133

disturbance and is supposed to be rejected through the output feedback. It will be

interesting to investigate why the iteration approach works well in one configuration,

but fails under other situations. One problem that we can think of is with regard

to our incomplete understanding of the motor amplifiers’ mechanism. We assume

them as current amplifiers according to the manual, however, that doesn’t explain

why torque ripple can be felt when the amplifiers are switched on while zero motor

torque is commanded.

C.2 Kalman Filter for Motor Velocity Estimation

Another attempt to achieve a good position tracking performance that we made

is to introduce a velocity feedback into the control loop. The major snag is that

WAM is not equipped with any tachometer or accelerometer, and the only motion

sensing is through the simulated shaft encoder measurement from resolver. Before,

the motor velocity was obtained by directly differentiating the position signal, so that

the resulting velocity data became quite noisy and the derivative-control was of very

little use.

The high-frequency quantization noise of the velocity data is due to the limited

encoder resolution and high sampling frequency. More specifically, suppose a mo-

tor is equipped with an encoder system with an interpulse angle of θm, and Ts is

the sampling interval of control system, then the motor velocity estimate by finite

encoder-driven shaft-position difference will be θm/Ts. For WAM, θm = 0.09 deg

(as the encoder resolution is 4096 per revolution), the sampling time interval Ts is

0.955 millisecond, and the motor velocity resolution becomes 94.24 deg/sec, which is

unacceptably low.

134

Conventional digital low-pass filter can be implemented to obtain smoother veloc-

ity data. For example, Gaussian filters have been used in the off-line motor torque

identification as described in the previous section, and the filtering effects are quite

satisfactory. However, digital low-pass filters will inevitably introduce some time

delay, which can bring instability to real-time controlled system therefore are unap-

propriate for WAM.

An alternative and better solution is to apply Kalman filters, which are deliber-

ately invented for online filtering, and computationally cheap as well. Quite a few

Kalman filter designs for estimating angular velocity from only encoder measurement

are available in literature, and we have chosen Belanger et al.’s work [7] because of

its easy implementation.

This particular filter design models the acceleration (if only velocity is supposed to

be estimated) as being driven by a white noise (later will be considered as the process

noise in the Kalman filtering formulation); and the quantization error is considered

as the measurement noise, which is further assumed to be uniform distributed. In

short, the canonical state description of system model can be shown as in follows

[
ẋ

v̇

]
=

[
0 1

0 0

][
x

v

]
+

[
0

1

]
w, (C.2.1)

y =
[

1 0
] [

x

v

]
+ e, (C.2.2)

where w is a white noise (whose covariance Q is chosen empirically, indicating the

intensiveness of motor acceleration’s change), and e is the quantization error whose

covariance is 1
3
θm.

135

The corresponding discrete Kalman iteration is given as

P(t+1|t) = Ad P(t|t)A>
d + Bd, (C.2.3)

kd = P(t|t−1)

[
0

1

] ([
1 0

]
P(t|t−1)

[
0

1

]
+

1

3
θm

)−1

, (C.2.4)

P(t|t) =
(
I2 − kd

[
1 0

])
P(t|t−1)

(
I2 − kd

[
1 0

])>

+kd (
1

3
θm)k>d , (C.2.5)

where

Figure C.3: Joint velocity estimation from encoder measurement

136

Ad ≈ I2 +

[
0 1

0 0

]
0.000955 , (C.2.6)

Bd ≈ 0.000955 Q

[
0

1

] [
1 0

]
. (C.2.7)

Fig.C.3 shows the velocity estimation of WAM’s 4th joint (which is driven by a DC

motor through a straight transmission) against its position. The result seems to be

good as almost no phase shift is noticeable and the velocity configuration reasonably

fits with the position trajectory. However, no matter how we tune the parameters

in the Kalman filter, there are still some amount of high-frequency ripples in the

estimated velocity curve. To ultimately solve this problem, we probably need to

install either higher-resolution encoders or some velocity sensors.

C.3 Dynamics Calibration of JR3 6-DOF Force

Sensor

For the proposed compliant motion control experiment, a JR3 6-DOF force sensor

and a custom-made dumbbell end-effector are mounted at the end-tip of WAM’s link

4. The JR3 6-DOF force sensors are capable of measuring force and torque on three

orthogonal directions, and the reference point is the geometric center of the sensor

(Fig.C.4).

Feedback of contact force will go into the control loop when the experiment runs.

However, the total force reading is polluted by the gravity of the dumbbell and the

sensor’s working surface. To cancel the effect of gravity, a few parameters with regard

to the dynamics properties of the force sensor and the end-effector need to be identified

through experimentation.

137

mg

Origin of force sensing

x

y z

Centre of mass

Figure C.4: JR3 force sensor with dumbbell end-effector

The generalized 6-D force of gravity is given as

f̂ =




E




0

0

−mg




CoM× E




0

0

−mg







=




mE




0

0

−g







0 −mCoMz mCoMy

mCoMz 0 −mCoMx

−mCoMy mCoMx 0


E




0

0

−g







(C.3.1)

where m is the mass, g is the gravitational acceleration, CoM ∈ R3 is the center of

mass, and E ∈ R3×3 is the rotational matrix representing the orientation of the force

138

sensor.

Obviously, the unknowns for the identification is m and the 3×3 matrix (denoted

H) in the second row of f̂, which further include four parameters of m, CoMx, CoMy,

and CoMz. As E can be calculated through the forward kinematics of WAM given

robot’s joint position, we can apply least-square algorithm to estimate the values of

the unknowns from force readings at various robot poses. During the experiment,

WAM moves very slowly, so that the effect of Coriolis force can be neglected.

We have used the recursive least square estimation algorithm [1], and the conver-

gence of the dynamics parameters is shown in Figs.C.5,C.6. Finally, these values are

identified as

m = 0.200 (C.3.2)

mCoMx = 0.000 (C.3.3)

mCoMy = 0.000 (C.3.4)

mCoMz = 0.00405 (C.3.5)

139

0 500 1000 1500 2000 2,500

0

0.4

0.8

1.2

Number of iteration

M
a
s
s
 (

k
g

)

from f
x

from f
y

from f
z

(a)

0 500 1000 1500 2000 2500

−0.02

−0.01

0

0.01

0.02

Number of iteration

M
a
s
s
*X

−
p

a
rt

 o
f

C
o

M
 (

k
g

*m
)

from H
32

from H
23

(b)

Figure C.5: Recursive least square estimation result: a) mass; b) mass × CoMx-part

140

0 500 1000 1500 2000 2500

0

0.04

0.08

0.12

Number of iteration

M
a
s
s
*Y

−
p

a
rt

 o
f

C
o

M
 (

k
g

*m
)

from H
13

from H
31

(a)

0 500 1000 1500 2000 2500

0

0.04

0.08

0.12

Number of iteration

M
a
s
s
*Z

−
p

a
rt

 o
f

C
o

M
 (

k
g

*m
)

from H
21

from H
12

(b)

Figure C.6: Recursive least square estimation result: a) mass × CoMy-part; b) mass
× CoMz-part

Bibliography

[1] K.J. Åström and B. Wittenmark, Computer-controlled systems: Theory and de-

sign, Prentice Hall, Inc., 1990.

[2] A. Abbati-Marescotti, C. Bonivento, and C. Melchiorri, On the invariance of

the hybrid position force control, Journal of Intelligent and Robotic Systems 3

(1990), no. 3, 233–250.

[3] O.P. Agrawal and Y.S. Xu, On the global optimum path planning for redundant

space manipulators, IEEE Transactions on Systems Man and Cybernetics 24

(Sep 1994), no. 9, 1306–1316.

[4] C. Ahlbrandt, G. Benson, and W. Casey, Minimal entropy probability paths be-

tween genome families, J. Math. Biol. 48 (2004), no. 5, 563–590.

[5] C.H. An and J. Hollerbach, The role of dynamic models in cartesian force control

of manipulators, International Journal of Robotics Research 8 (Aug 1989), no. 4,

51–72.

[6] Barrett Technology Inc., Barrett arm BA4-300 user manual, version 1.0, 1998.

[7] P.R. Belanger, P. Dobrovolny, A. Helmy, and X. Zhang, Estimation of angular

velocity and acceleration from shaft-encoder measurements, International Journal

of Robotics Research 17 (Nov 1998), no. 11, 1225–1233.

141

142

[8] J.F. Bonnans, J.C. Gilbert, C. Lemaréchal, and C.A. Sagastizábal, Numerical

optimization, Springer-Verlag, 2003.

[9] S. Boyd and L. Vandenberghe, Convex optimization, Cambridge University Press,

2004.

[10] H. Bruyninckx, S. Demey, S. Dutre, and J. De Schutter, Kinematic models for

model-based compliant motion in the presence of uncertainty, International Jour-

nal of Robotics Research 14 (Oct 1995), no. 5, 465–482.

[11] H. Bruyninckx and J. De Schutter, Specification of force-controlled actions in

the ”Task Frame Formalism” - a synthesis, IEEE Transactions on Robotics and

Automation 12 (Aug 1996), no. 4, 581–589.

[12] A.J. Cahill, M.R. James, J.C. Kieffer, and D. Williamson, Remarks on the appli-

cation of dynamic programming to the optimal path timing of robot manipulators,

International Journal of Robust and Nonlinear Control 8 (May 1998), no. 6, 463–

482.

[13] R. Cortesão, Kalman techniques for intelligent control systems: Theory and

robotic experiments, Ph.D. thesis, University of Coimbra, Portugal, 2003.

[14] R. Cortesão, J. Park, and O. Khatib, Real-time adaptive control for haptic manip-

ulation with active observers, Proceedings of the 2003 IEEE/RSJ International

Conference on Intelligent Robots and Systems, October 2003, pp. 2938–2943.

[15] J.J. Craig, Introduction to robotics: Mechanics and control, second ed., Addison-

Wesley Publishing Company, 1989.

[16] P. Crouch, G. Kun, and F. Silva Leite, De Casteljau algorithm for cubic poly-

nomials on the rotation group, Proceedings of CONTROLO’96, 2nd Portuguese

Conference on Automatic Control (Porto, Portugal), Sep 1996, pp. 547–552.

143

[17] , Generalization of spline curves on the sphere: A numerical compari-

son, Proceedings of CONTROLO’98, 3rd Portuguese Conference on Automatic

Control (Coimbra, Portugal), Sep 1998, pp. 447–451.

[18] K.L. Doty, C. Melchiorri, and C. Bonivento, A theory of generalized inverses

applied to robotics, International Journal of Robotics Research 12 (Feb 1993),

no. 1, 1–19.

[19] Z. Doulgeri, N. Fahantidis, and A. Konstantinidis, On the decoupling of position

and force controllers in constrained robotic tasks, Journal of Robotic Systems 15

(Jun 1998), no. 6, 323–340.

[20] Z. Doulgeri, N. Fahantidis, and R.P. Paul, Nonlinear stability of hybrid control,

International Journal of Robotics Research 17 (Jul 1998), no. 7, 792–806.

[21] J. Duffy, The fallacy of modern hybrid control theory that is based on ”Orthogonal

Complements” of twist and wrench spaces, Journal of Robotic Systems 7 (Apr

1990), no. 2, 139–144.

[22] G.N. Elnagar and M.A. Kazemi, Numerical solvability of nonlinear problems of

the calculus of variations, Numer. Func. Anal. Opt. 17 (1996), no. 5-6, 563–575.

[23] G.N. Elnagar and M. Razzaghi, An alternative method for a classical problem in

the calculus of variations, Math Method Appl. Sci. 19 (1996), no. 13, 1091–1097.

[24] R. Featherstone, Robot dynamics algorithms, Kluwer Academic Publishers, 1987.

[25] , Modeling and control of contact between constrained rigid bodies, IEEE

Transactions on Robotics and Automation 20 (Feb 2004), no. 1, 82–92.

[26] R. Featherstone, S.S. Thiebaut, and O. Khatib, A general contact model for

dynamically-decoupled force/motion control, Proceedings of the 1999 IEEE In-

ternational Conference on Robotics and Automation, May 1999, pp. 3281–3286.

144

[27] W.D. Fisher and M.S. Mujtaba, Hybrid position force control: A correct formula-

tion, International Journal of Robotics Research 11 (Aug 1992), no. 4, 299–311.

[28] J. Gregory and G. Yang, A c-infinity numerical method for the basic problem in

the calculus of variations, Utilitas Mathematica 56 (1999), 79–95.

[29] G. Hämmerlin and K. Hoffmann, Numerical mathematics, Springer-Verlag, 1991.

[30] D.C. Hanselman, Minimum torque ripple, maximum efficiency excitation of

brushless permanent-magnet motors, IEEE Transactions on Industrial Electron-

ics 41 (Jun 1994), no. 3, 292–300.

[31] K. Hüper and F. Silva Leite, Smooth interpolating curves with applications to

path planning, Proceedings of the 10th Mediterranean Conference on Control

and Automation (Lisbon, Portugal), Jul 2002.

[32] K. Hüper and F. Silva Leite, On the geometry of rolling and interpolation curves

on Sn, SOn and Graßmann manifolds, Tech. Report SISSA 56/2005/M, Inter-

national School for Advanced Studies, Trieste, Italy, 2005.

[33] K. Hüper and J. Trumpf, Newton-like methods for numerical optimization on

manifolds., Proceedings of the 38th Asilomar Conference on Signals, Systems

and Computers (California, USA), Nov 2004.

[34] S.M. Hwang and D.K. Lieu, Design techniques for reduction of reluctance torque

in brushless permanent-magnet motors, IEEE Transactions on Magnetics 30

(Nov 1994), no. 6, 4287–4289.

[35] , Reduction of torque ripple in brushless dc motors, IEEE Transactions

on Magnetics 31 (Nov 1995), no. 6, 3737–3739.

[36] I.G. Kang and F.C. Park, Cubic spline algorithms for orientation interpolation,

International Journal for Numerical Methods in Engineering 46 (Sep 1999), no. 1,

45–64.

145

[37] O. Khatib, A unified approach for motion and force control of robot manipulators

- the operational space formulation, IEEE Journal of Robotics and Automation

3 (Feb 1987), no. 1, 43–55.

[38] J.-C. Latombe, Robot motion planning, Kluwer, 1991.

[39] M. Leok, Foundations of computational geometric mechanics, Ph.D. thesis, Cal-

ifornia Institute of Technology, 2004.

[40] Y. Levin, M. Nediak, and A. Ben-Israel, A direct newton method for calculus

of variations, Journal of Computational and Applied Mathematics 139 (2002),

no. 2, 197–213.

[41] A. Lew, J.E. Marsden, M. Ortiz, and M. West, An overview of variational inte-

grators, Finite Element Methods: 1970’s and Beyond (2003).

[42] , Variational time integrators, Int. J. Numer. Meth. Engng. 60 (2004),

153–212.

[43] H. Lipkin and J. Duffy, Hybrid twist and wrench control for a robotic manipulator,

Transactions of ASME, Journal of Mechanisms, Transmissions, and Automation

in Design 110 (Jun 1988), no. 2, 138–144.

[44] G.F. Liu and Z.X. Li, A unified geometric approach to modeling and control of

constrained mechanical systems, IEEE Transactions on Robotics and Automation

18 (Aug 2002), no. 4, 574–587.

[45] C.G. Lo Bianco and A. Piazzi, Minimum-time trajectory planning of mechanical

manipulators under dynamic constraints, International Journal of Control 75

(Sep 2002), no. 13, 967–980.

[46] A. Marthinsen, Interpolation in Lie groups, SIAM Journal of Numerical Analysis

37 (1999), no. 1, 269–285.

146

[47] D.P. Martin, J. Baillieul, and J.M. Hollerbach, Resolution of kinematic redun-

dancy using optimization techniques, IEEE Transactions on Robotics and Au-

tomation 5 (Aug 1989), no. 4, 529–533.

[48] N.H. McClamroch and D. Wang, Feedback stabilization and tracking of con-

strained robots, IEEE Transactions on Automatic Control 33 (May 1988), no. 5,

419–426.

[49] C.D. Meyer, Matrix analysis and applied linear algebra, SIAM, 2000.

[50] A. Miele and R.E. Pritchard, Numerical solutions in the simplest problem of the

calculus of variations, SIAM Rev. 14 (1972), no. 3, 385–398.

[51] R.M. Murray, Z. Li, and S.S. Sastry, A mathematical introduction to robotic

manipulation, CRC Press, 1994.

[52] F.C. Park and B. Ravani, Bézier curves on Riemannian manifolds and Lie groups

with kinematics applications, ASME Journal of Mechanical Design 117 (1995),

no. 1, 36–40.

[53] J. Park, R. Cortesão, and O. Khatib, Multi-contact compliant motion control for

robotic manipulators, Proceedings of the 2004 IEEE International Conference on

Robotics and Automation, April 2004, pp. 4789–4794.

[54] M.H. Raibert and J.J. Craig, Hybrid position-force control of manipulators,

Transactions of ASME, Journal of Dynamic Systems, Measurement, and Control

103 (1981), no. 2, 126–133.

[55] J. De Schutter, H. Bruyninckx, W.H. Zhu, and M.W. Spong, Force control:

A bird’s eye view, Proceedings of IEEE CSS/RAS International Workshop on

”Control Problems in Robotics and Automation: Future Directions” (San Diego,

CA), Dec 1997.

147

[56] L. Sciavicco and B. Siciliano, Modeling and control of robot manipulators, The

McGraw-Hill Companies, Inc., 1996.

[57] J.M. Selig and P.R. McAree, A simple approach to invariant hybrid control,

Proceedings of the 1996 IEEE International Conference on Robotics and Au-

tomation, Apr 1996, pp. 2238–2245.

[58] R.W. Sharpe, Differential geometry, Springer-Verlag, New York, 1996.

[59] Y. Shen and R. Featherstone, The effect of ill-conditioned inertial matrix on con-

trolling robot manipulator, Proceedings of Australasian Conference on Robotics

and Automation (Brisbane, Australia), Dec 2003.

[60] S.K. Singh and M.C. Leu, Manipulator motion planning in the presence of ob-

stacles and dynamic constraints, International Journal of Robotics Research 10

(Apr 1991), no. 2, 171–187.

[61] B. van Brunt, The calculus of variations, Springer-Verlag, 2004.

[62] F.Y.M. Wan, Introduction to the calculus of variations and its applications,

Chapman and Hall, 1995.

[63] C-Y.E. Wang, W.K. Timoszyk, and J.E. Bobrow, Payload maximization for open

chained manipulators: Finding weightlifting motions for a puma 762 robot, IEEE

Transactions on Robotics and Automation 17 (Apr 2001), no. 2, 218–224.

[64] D. Wang and Y. Hamam, Optimal trajectory planning of manipulators with col-

lision detection and avoidance, International Journal of Robotics Research 11

(Oct 1992), no. 5, 460–468.

[65] T. Yabuta, Nonlinear basic stability concept of the hybrid position/force control

scheme for robot manipulators, IEEE Transactions on Robotics and Automation

8 (Oct 1992), no. 5, 663–670.

148

[66] T. Yoshikawa, Dynamic hybrid position force control of robot manipulators - de-

scription of hand constraints and calculation of joint driving force, IEEE Journal

of Robotics and Automation 3 (Oct 1987), no. 5, 386–392.

[67] E. Zeidler, Nonlinear functional analysis and its applications, vol. 3, Springer-

Verlag, 1985.

[68] , Nonlinear functional analysis and its applications, vol. 2a, Springer-

Verlag, 1985.

[69] H. Zhang and R.P. Paul, Hybrid control of robot manipulators, Proceedings of

the 1985 IEEE Conference on Decision and Control, Mar 1985, pp. 251–259.

