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Abstract 

There is much current interest in developing all-optical switching devices for 

applications in photonics. One direction of research, being pursued at the Laser Physics 

Centre at the Australian National University, is the development of organic conjugated 

polymer waveguides for this application. 

Poly(p-phenylenevinylene) (PPV) is a conjugated polymer with a high third order 

nonlinearity, making it a possible candidate for all-optical switching devices, but it also 

has high optical losses. These losses can be reduced when PPV is combined with a host 

matrix of poly(vinyl pyrrolidinone) (PVP) which has much better waveguiding 

properties. 

To make a practical all-optical switch, both high nonlinearity and low losses are 

necessary. The work presented here was motivated by the need to identify the cause of 

the optical losses in PPV-doped waveguides - whether being due to absorption, an 

intrinsic characteristic of the material, or due to extrinsic causes such as scattering or 

waveguide irregularities. Since the polymer films are generally very thin (::::: 1 micron), 

standard spectrophotometer measurements are not able to resolve the absorption levels 

which are important even at the level of O. lcm-1
• 

This dissertation presents the preparation of a photodeflection spectroscopy 

system, able to measure the absorption in these films independently of other sources of 

waveguiding losses like scattering. This technique was used to measure the absorption 

spectra of thin films of PPV, PVP, and composites of PPV with PVP, determining that 

the absorption losses in the composite films were much smaller than the total losses which 

had been measured for waveguided light propagating in the films. Thus, the losses in the 

material are not limited by absorption, and so further attention to the extrinsic sources of 

loss may yield material suitable for the production of nonlinear optical devices. 
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1. Introduction 

In this dissertation I describe the development and use of a photodeflection 

spectrometer (PDS) for measuring the absorption spectra of thin, weakly absorbing films. 

The system has been used to characterise the absorption of some composite polymer films 

which are intended for use in all-optical switching. The conjugated polymers, in particular 

those containing poly(p-phenylenevinylene) (PPV), have a high third order optical 

nonlinearity and thus have potential for photonic switching in structured waveguides. In 

this application it is essential that the waveguides have low propagation losses. By using 

photodeflection spectroscopy, the contribution of the material absorption to the total 

propagation losses can be measured, and this determines whether absorption or other loss 

mechanisms, such as scattering, are the limiting factors. Whilst excess material 

absorption could focus our materials research on factors such as the role of doping on 

optical absorption or towards alteration of the molecular structure of the polymers in an 

attempt to reduce absorption at the wavelength of interest, other sources of loss such as 

scattering could imply a different approach since, for example, scattering caused by the 

presence of impurities or irregularity in composition due to aggregation ( crystallization) 

would direct attention to the chemical processing used in the creation of the polymers. 

1.1 Nonlinear Optical Switches 

In recent years, optical fibres have become a preferred means of transmitting large 

amounts of information over long distances, replacing the lower bandwidth electronic 

copper cables. However, no commercially viable optical equivalent of the transistor has 

been developed, and so all switching and processing of the information carried by optical 

fibres has to be performed electronically or opto-electronically. 

Electronic switching is limited to about 20Gbit/s by circuit capacitance.1 
•
2 In 

contrast photonic switches, which have potential advantages of a broad bandwidth and 

potentially dense integration because of the lack of cross-talk, can reach picosecond 

speeds since there is no electronic drive. 3 

To make a..n optical switch requires having a material in which the presence of one 

stream of photons affects the passage of other photons through the material. This is so for 

a material in which the polarisation is a nonlinear function of the electric field of the 

incident light. 
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In general, the polarisation of a medium in which there is an applied electric field 

E due to the incident light, will be 

p = to (Xo)E + x <2)E2 + x<3)E3 + ... ) 

( 1.1 ) 

where the higher order terms represent the nonlinear effects; x<l) is the linear 

susceptibility, x<2
) is the second-order susceptibility, and so on. In centrosymmetric 

materials, xc2) =0 and hence the lowest order nonlinear term which can be used for all­

optical switching is that proportional to x<3). Materials research has therefore been 

focussed on optimising this third order nonlinearity. Recently it has been recognised that 

xC2
) can also be used for all-optical switching using the so called "cascading" process and 

hence there has been a renewed interest in non-centrosymmetric materials.4 In this work 

we concentrate on x<3) materials based on conjugated polymers. 

For centrosymmetric materials, the nonlinear refractive index n2 is related to the 

optical Kerr susceptibility x<3) = x<3)(-ro;co,-co,co) by5 

3x<3) 
n2 = 

4cE0ni 

( 1.2 ) 

and the total refractive index n can be described by 

n = n0 + n2 I 

( 1.3 ) 

where c is the speed of light in a vacuum; t 0 is the vacuum permittivity; n0 is the linear 

(low-power) refractive index; and I is the intensity of the light. 

Physically, optical nonlinearities can originate from the distortion of the electron 

distribution around molecules in the material (electronic nonlinearities); from the creation 

of excited states (e.g. optical pumping); due to thermal effects; or due to more complex 

processes such as the photorefractive effect. However, long-lived excited states, slow 

thermal effects, and the photorefractive effect (which depends on movements of charges 

within the material) will not provide the switching rates around 1 OOGbit/s rates that are 

required. 

All-optical switching devices ideally should be compact, and operate at low 

average powers. Thus for 1 OOGbit/s switching rates, using 5ps duration pulses, and an 

average optical power of 100m W it would be necessary to switch with around 1 pJ of 

pulse energy. This will only be achieved using any conceivable third order nonlinearity 
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when the pulse energy is concentrated into a channel waveguide with a small cross­

sectional area. Ideally the dimensions of these waveguide should also compatible with the 

optical fibres by which the switching device is linked into the transmission network ( cross 

sectional area 10-6-10-7cm-2
). 

Several different configurations of photonic switch using structured channel 

waveguides have been proposed including nonlinear directional couplers ;6 nonlinear 

grating devices;7 switches based on a Mach-Zehnder interferometer design;8 and soliton 

based switches. 9
'
10

•
11

·
12 

Nonlinear directional couplers consist of two optical waveguides in close 

proximity, with the same propagation constants, so that at low power in a length known 

as the half-beat length, the power couples across from the first waveguide into the other. 

If the waveguides continue in proximity the light will periodically couple across and back, 

as described by coupled mode theory. At high intensities though, if the material has an 

optical nonlinearity, the propagation constant of the first waveguide will be altered by the 

high intensity, and the coupling between the two waveguides will be detuned, and the 

amount of light coupled across into the second waveguide in the original interaction length 

will be reduced. This detuning may be caused by the intensity of the signal pulse or as a 

result of a co-propagating probe pulse. 6 

Nonlinear effects relying on grating coupling have also been observed in 

polymeric waveguides, for example the study of Crook et al. into the nonlinear optical 

behaviour of a grating coupled poly[5,7-dodecadiyn-1 , 12-diol-bis(n-butoxycarbonyl­

methyl-urethane )] (P4BCMU) waveguide. P4BCMU has a x<3) nonlinearity; Crook et al. 

obtained a shift in coupling angle of 0.10° when changing from 1 µJ to 1 OµJ pulses from 

a Nd3+:YAG laser, with a concurrent change in coupling efficiency from 95% to 76%.7 

A "push-pull" switch has been proposed by Ironside et al, based on a Mach­

Zehnder interferometer and using a cascaded second-order. 8 It involves using gratings of 

different periods in each ann of the interferometer, to give nonlinear phase shifts with 

different signs to the parts of the beam travelling down the two arms. The phase-shifts 

are dependent on the beam intensity. 

Solitons also have potential application in all-optical signal processing. Temporal 

solitons in fibres are pulses of light in which the nonlinear effect balances the temporal 

dispersion to create pulses which propagate without changing shape. They exhibit 

particle-like behaviour, and can interact with each other elastically.9 They have been 

applied to optical switching using mechanisms such as the soliton dragging gate. 10
,
11 In 

the spatial domain, solitons form paths of light in which the nonlinear (self-focussing) 

effects exactly balance diffraction. Since the nonlinear effect changes the refractive index 
13 



of the medium near the soliton, it can be thought of as creating a waveguide in the 

medium, which can be used to steer or guide other signal carrying beams. 12 These soliton 

induced waveguides can be switched on or off, or steered in various ways as the basis of 

an all-optical switch. The same principle can be applied to soliton induced waveguides 

createdinself-def ocussing nonlinear optical materials. 12 

Polymer waveguides are a possible building block for such switches. Polymers 

are generally inexpensive to produce, and can be subjected to a certain amount of 

"molecular engineering" - the lengths of conjugated chains, and the atoms and functional 

groups attached to the chains can be varied, thus altering the polarisability and nonlinear 

optical properties. Whilst polymers can be susceptible to degradation by heat or abrasion, 

they do offer a great deal of processing flexibility. Some polymers may be spin-coated 

into place (by solvent evaporation); other polymers may be injection moulded or set in 

place by thermal or photochemical curing. 13 

Polymers with aromatic rings, double or triple bonds alternated with single bonds 

between neighbouring carbon atoms are referred to as conjugated polymers: poly(p­

phenylenevinylene) (PPV) is an example of such a conjugated polymer (see Figure 1.1).14 

These polymers have a hyperpolarisability which is dependent on the length of the 

conjugated system; 15 and the 1t-bonded electron system can be distorted strongly by the 

presence of an optical field. 

Poly(p-phenylenevinylene), which is the main material being investigated here, 

has a non-linear refractive index which can be described by equation ( 1.3 ). It has been 

the subject of considerable investigation as a potential organic polymer for active optical 

devices. 16
'
17 It has been shown to have a high nonlinearity (n2 > 10-11 cm2/W at 800nm), 

and a two photon figure of merit (see below) T < 0.6. 16 

However, pure PPV has been found to be extremely lossy, and furthermore, it is 

highly anisotropic (due to preferential alignment of the rod-like PPV molecules in the 

plane of the films) leading to a large TE-TM mode birefringence and high TE-mode 

refractive index. 18 The need to lower the TE-index to bring it closer to that of silica glass 

fibre, and reduce the birefringence motivates the development of composite materials 

where PPV is used as a dopant in a lower index host material. As an example PPV can be 

incorporated in a matrix with poly(vinyl pyrrolidinone) (PVP), which has high 

transparency and a small nonlinearity, and then spun into waveguiding films with 

relatively low losses. The structure of PVP is also shown in Figure 1.1. By making 

composite PPV /PVP films, it is hoped to make films with high nonlinearity and low 

losses with optical properties closer to those required for a practical planar waveguide. 

Whilst preparing composites might be thought to simply "dilute" the nonlinearity due to 
14 
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Figure 1.1 The Structures of PPV and PVP. 

the PPV at the same time as lowering the losses, control of the matrix and conversion 

procedures may result in an improvement of the figures of merit. 18 

Various merit factors have been used to rate materials for all-optical switching 

based on their nonlinearity, time response and losses. The nonlinear response must 

obviously be large enough for the device to "switch" and this in general means that a 

sufficiently large nonlinear phase change must accumulate on the beam as it propagates 

through the switch. However, both linear and nonlinear propagation losses cause the 

beam intensity to decay and this can limit the total phase change integrated along the beam 

path that may be achieved, preventing complete switching. Thus two figures of merit 

prove to be the most useful and these parameterize the nonlinear phase change achievable 

over a distance equal to a single or two-photon absorption length. 

Regarding the linear absorption losses, Wong et al. used the ratio of the nonlinear 

refractive index n2 to the linear absorption coefficient a as a figure of merit, when 
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comparing the third-order nonlinearities in various conjugated polymers ( a is defined as 

per equation ( 1.7 )). 19 Stegeman used the factor W, where 

W = fulmax 
al 

( 1.4 ) 

where ~ is the maximum change in refractive index, and A is the wavelength, so 

W = n2(ar 
al 

( 1.5 ) 

where Isat is the intensity at which the change in refractive index saturates.2° For a 

waveguide device such as we are considering, the requirement is at least 

W>2 

( 1.6 ) 

the exact requirement depending on the device configuration. 

When working at high intensities within waveguides two photon absorption 

(TP A) can also be important. This absorption can be described by 

di = -al - /312 
rk 

( 1.7 ) 

where I is the effective laser beam intensity as a function of distance traversed in the 

medium z, a is the linear absorption coefficient and ~ is the TP A coefficient. Mizrahi et 

al. have made a study of the limitation that TPA places on optical switching devices.21 

They show that for an operable switching device the criterion to be satisfied is 

2T = 2/3A < a 
n2 

( 1.8 ) 

where a is of the order unity, and depends on the specific device design. 

The third order nonlinearity of the polymer samples can be measured by 

techniques such as time-resolved degenerate four-wave mixing (DFWM), 16
•
19

•
22

•
23 Kerr 

ellipsometry, 24 the Z-scan technique, 25 etc, and from the data both real and imaginary 

components must be obtained allowing evaluation of the ''T'' merit factor. From work on 

PPV our own group has established that PPV has T<l at 800nm which indicates the 
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material has nonlinear properties which satisfy this merit factor for all optical switching. 

Although the W factor can be W>2, the loss coefficient is generally unacceptably high 

implying a very high switching intensity. Hence this study of linear losses in PPV doped 

waveguides is required to provide information to guide attempts at loss reduction. 

The propagation losses in a waveguide can be measured by the decay in the 

scattered light, or propagating light, with distance from the in-coupling point. However, 

the total losses in a waveguide are due to more than just absorption. Losses can also be 

caused by scattering due to2
~ 

• Inhomogeneities - which can be present in amorphous polymers, wherein the 

refractive index varies through the material; 

• Crystallinity - small domains of crystalline structures; 

• Contamination, by salts which may precipitate as the solvent is evaporated, dust, 

bubbles or umeacted ingredients; 

• Surface irregularities. 

If the losses in the polymer are caused by, for example, scattering from 

contaminants, then they could possibly be reduced by altering the polymer processing 

conditions and purification methods. However if the losses are due to absorption of the 

material, they may be more difficult to combat; changes to the chemical composition or 

conjugation length may shift the position of absorption bands but may have only limited 

effect on lowering the absorption floor. 

Thus it is necessary to distinguish the source of the losses in the PVP/PPV films 

under investigation. · Further, the losses must be measured for the films in a waveguide 

configuration, since the losses in a bulk sample are likely to be different to the losses in 

situ in a thin film; spin-coating the thin film can have an effect on the orientation of 

molecules in the film and may affect their agglomeration, and waveguide losses from 

surf ace irregularities are relevant to the investigation. 

The total losses for the polymers have been measured by using a CCD camera to 

photograph the scattering of light out of the waveguide as a function of distance from the 

point at which light is in-coupled (usually here by prism coupling). Assuming that the 

scattering is uniform and not too large ( or dominated by isolated scratches or waveguide 

non uniformities), the local intensity of the scattered light can be assumed to be 

proportional to the intensity of the light in the guide, and thus the decay in the intensity of 

the light with propagation distance can be measured. A modification of this method 

involved doping the polymer with a dye such as phloxine-B which can be optically 

pumped by a propagating beam with wavelength lying in a transmission band of the 

PPV. Up-conversion flourescence from the phyloxine-B can be distinguished from 
17 



scattered light at the pump wavelength and the decay in the fluorescent light measured as a 

function of distance. 

An investigation was made into the use of grating in-coupling for these 

measurements. This involved etching gratings into the substrates before spinning on the 

polymeric waveguides, with the specific advantage over prism coupling that coupling 

could still be achieved when a cladding layer was added over the top of the polymeric 

waveguide. Brief results of the grating coupling method are presented in section 2. 9, 

however prism in-coupling was finally used for all of the samples presented here, which 

were unclad. 

1 .2 Measuring Low Absorption Losses 

Standard spectrophotometers,27 which measure the drop in transmission due to 

reflection and absorption, are able to measure optical densities up to al :::: 5.0, with a best 

absorbance resolution of 0.002. For a 1 micron film, this represents absorptions up to 

5xl04cm-1 measured through the plane, with an absorption coefficient resolution of 20cm-

1 at best. The absorption coefficient of poly(p-phenylenevinylene) ranges from > 105cm-1 

at Amax=430nm, to <lcm-1 at A>900nm. The low absorption range is particularly critical 

for wave guiding applications, and poses difficulties for the spectrophotometer which 

registers small losses against a bright transmitted beam. Spectrophotometers are also 

sensitive to losses from both reflection and scattering, and can have further problems with 

interference fringes developing with high index thin films (see for example Figure 3.10). 

Hence a technique is needed which can measure the absorption of a thin film of 

material over a large wavelength range, and be only weakly affected by scattering, 

reflection or interference. Photodeflection spectroscopy, as first developed by Boccara, 

Fournier and Badoz28 and used for thin film purposes by others [references 

29,30,31,32,33] is well suited to this purpose. A photodeflection spectroscopy system 

has been constructed to determine the contribution of absorption to the losses in the 

polymeric films under investigation. 

Photodeflection spectroscopy (PDS) involves irradiating a sample with chopped, 

monochromatic pump light. As the sample absorbs the light, in the absence of significant 

fluorescence, the sample exhibits periodic heating in proportion to the absorption of the 

sample at the wavelength of the pump. As the sample is periodically heated, the medium 

immediately above the sample also develops a periodically varying temperature gradient. 
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The medium above the sample may be air, or another fluid with a strongly temperature 

dependent refractive index, such as carbon tetrachloride. The periodically varying 

temperature gradient causes a varying refractive index profile in this medium, and a probe 

laser beam propagating just above the sample surf ace will be deflected in a manner 

analogous to that which occurs with a mirage. The magnitude of the periodic deflection 

of the beam thus gives a measure of the absorption of the sample. A schematic diagram 

of a typical PDS apparatus is shown in Figure 1.1. 

The primary advantage of PDS over spectrophotometers is that it is not a 

transmission technique; zero absorption should give a zero signal (in the absence of 

noise), rather than 100% as for a spectrophotometer. Furthermore, since the probe beam 

does not pass through the sample, the PDS results are independent of scattering, unlike 

the transmission measurements and measurements which involve propagation of light 

through the waveguide. Questions of the linearity, dynamic range and the absolute 

calibration of the absorption data obtained using a PDS are important and are treated in 

chapter 2 (especially section 2.7). 

One of the serious alternatives to PDS is photoacoustic spectroscopy. 34
·
35 As 

pointed out by Murphy and Aamodt, 36 PDS has a significant advantage over 

photoacoustic spectroscopy in that rather than detecting only the small fraction of the total 

thermal energy which is converted into a propagating acoustic wave, here the spatial 
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gradient of the temperature rise associated with the absorption is detected. Furthermore, 

for PDS enclosed sample cells are not necessary when the deflection medium used is air. 

PDS has been used for many applications since it was originally proposed, a few 

of which are mentioned in section 2.1. Recently, Halvorson and Heeger have used 

Photothermal deflection spectroscopy to measure linear and non-linear optical absorption, 

using a pulsed tuneable laser for the pump beam. 37 

Seager et al., also interested in the nonlinear optical properties of organic 

polymers, used PDS to obtain the linear absorption spectra for several materials, 

including poly(p-phenylenevinylene).31 They found that the limitation on the 

transparency of the polymers they measured came from the low energy tail of the 

absorption edge, rather than absorption from overtones. The results obtained here are in 

agreement with that conclusion as far as absorption is concerned. Other PDS 

measurements of polymer films have been reported by So et al., 33 although their films 

were free-standing and between 40-120 microns thick - far thicker than is appropriate for 

the waveguide configuration. 

My intention in this work has been to develop and use a photodeflection 

spectroscopy system to measure the absorption in thin films of PPV and PPV /PVP 

composites, comparing the losses in polymers prepared under different processing 

conditions, and to determine whether the losses in such waveguides are dominated by 

absorption or other processes. 

Some of the theoretical modelling on which the photodeflection spectroscopy 

system is based is presented in Chapter 2, with numerical simulations which were used to 

determine the best set of parameters for working with thin polymeric films on glass 

substrates. The experimental design and construction of the system is then discussed. 

Chapter 3 presents the results of measurements of slides of PPV and PVP, from 

which the most suitable samples and preparation conditions were chosen for use in the 

composite PPV /PVP films. The studies of the composite films show that the linear 

absorption of the films is not the dominant factor in the propagation losses recorded in the 

films as waveguides. Rather, the losses are most likely dominated by scattering from 

impurities present in the PPV after conversion or from crystalline domains. As these may 

be reduced by altering the polymer processing, PPV in composite films has been shown 

to be worth continued study as a material for all-optical switching devices. 
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2. Theory and Experimental Design 

In this chapter the design of the photodeflection spectroscopy apparatus is 

discussed. Since the proposal of photodeflection spectroscopy for absorption 

measurements in 1980,28 many contributions have been made towards the complete 

understanding of the mechanisms involved in the technique, and the optimal design 

parameters ( such as pump beam chopping frequencies, detection sty le, etc.) for different 

purposes. After a survey of this work, the numerical simulations used to check some of 

the parameters for measuring thin polymer films will be discussed, and the design of the 

apparatus built for this purpose. 

The films to be studied are of the order of 1 micron thick, with absorptions of less 

than lcm·1 at wavelengths between 600nm and 1.5µm. The photodeflection spectroscopy 

system was constructed so as to be sensitive enough to be able to measure this. The 

various elements of the system are discussed in the second half of this chapter, and the 

approach to calibration is discussed in section 2. 7. The preparation of the polymers for 

the waveguiding films is discussed in section 2.8, and in section 2.9 the technique for 

obtaining the total propagation losses for light in the waveguiding films is presented. 

2 .1 Studies of Photodeflection Spectroscopy 

2.1.1 Theoretical Considerations 

Jackson, Amer, Boccara, and Fournier presented the first detailed description of 

the theory of photodeflection spectroscopy. 38 They considered both collinear and 

transverse photodeflection spectroscopy arrangements; in the collinear arrangement, the 

probe beam must also pass through the sample, rather than passing parallel to the medium 

adjacent to the sample as used in the transverse arrangement shown in Figure 1.1. They 

derived formulae for the temperature distribution and its effect on the propagation of a 

Gaussian probe beam, including the influence of the angle between the pump and the 

probe beam. In an analysis of the detector responses, they concluded that whilst the 

signal given by lateral position sensors depends on the distance between the sample and 

the detector, for their approximately 1cm length detectors both these and quadrant position 
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sensors gave results with similar sensitivity. They reported experimental verification of 

the signal falling exponentially with increasing chopping frequency, the signal being 

inversely proportional to the pump beam radius, and the dependence of the signal on 

pump and probe beam offsets and angles. The experiments here were performed using a 

zero tilt angle for the probe beam (parallel to the sample surface) for the best results. The 

other parameters will be commented on in the discussion which follows. 

Jackson et al. also compared photothermal deflection spectroscopy (PDS) with 

thermal lensing (TL), which probes the curvature rather than the gradient of the 

temperature field. They concluded that PDS and TL have almost the same sensitivity, but 

PDS is far less sensitive to probe laser intensity fluctuations ( although pointing noise still 

contributes to both systems), as well as being easily applicable to opaque or scattering 

samples.39 

Murphy and Aamodt, like Jackson et al., showed that the acoustic wave gives a 

signal which is very much smaller than the thermal effect, and so can be neglected. 40 

Rousset, Charbonnier and Lepoutre showed that convective and radiative effects can still 

dominate the deflection of the probe beam, but only with a high pump power ( 1 OW /cm2
) 

and sample temperatures reaching 400-SOOK - higher for the radiative effects.41 For the 

pump powers used in the experiments here (the order of 3mW at the sample), the thermal 

effect dominates. 

Unlike Jackson et al., Murphy and Aamodt were interested in considering other 

forms of sample heating such as resistance heating, and not just an impinging modulated 

light beam such as is necessary for this purpose. Murphy and Aamodt further discussed 

how both the phase and amplitude of the optical beam deflection vary with offset, incident 

angle and frequency, the best response corresponding to zero beam off set and tilt angle, 

as used here. They also compared the beam deflection technique with photoacoustic 

spectroscopy (PAS), finding that PDS is less frequency dependent than is PAS, and has 

advantages for making in situ measurements without necessarily requiring elaborate 

sample cells. 

Other authors have considered the effects of DC heating, interferometry and wave 

optics, and the relative positions of the pump and probe beams.42
•
43

•
44

•
45 

Photodeflection spectroscopy is thus now a well known technique, having been 

explored and used in many different ways. 
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2.1.2 Alternative Designs and Uses 

Various proposals have been made for the use of the principles of photodeflection 

spectroscopy in novel designs; for the measurement of the absorption spectra of thin 

films, solids, liquids or gases, in situ; for measuring other thermal parameters; or for 

imaging. 38 PDS has also been used for detecting trace gases,46 monitoring laser heating 

of surfaces,47 and for measuring optical and transport properties and Silicon and solid 

state materials.48
·
49 Thin films of carbon 60 have been studied using this technique.50 

Techniques which involved the probe beam being almost collinear with the pump 

beam were suggested early.51 Chen and Zhang have suggested using interferometry, in 

particular for use with strongly light-scattering samples such as powders (see also ref. 

43);52 and Charbonnier and Fournier developed a compact modular structure less than 

20cm in length, which can be used both for spectroscopy and for imaging, wherein the 

sample can be scaiµ1ed beneath the pump and probe beam.53 Manning et al. considered a 

reverse geometry, where the probe beam is on the opposite side of the sample to the 

illuminating pump light. 54 Horita et al. suggested a double pass method, which increases 

the sensitivity for films of absorbance much less than 1 ;55 this is not necessary in the 

current situation. 

For the purpose considered here, with a thin polymer film on a fused silica 

substrate, a transverse probe beam which can sample the temperature gradient above a 

small region of the film is preferred to a probe beam collinear with the pump beam and 

having to pass through the sample, being affected by surf ace irregularities and scattering. 

Having the probe beam incident on the other side of the sample to the pump beam would 

be unhelpful, only serving to reduce the pump intensity on passing through the substrate. 

A reasonably compact structure with readily interchangeable samples and automatic 

operation is required. 

2.2 Numerical Simulations 

A one-dimensional numerical simulation of the periodically varying thermal 

gradient ( and hence refractive index profile) in the fluid above the periodically heated 

sample surf ace was constructed in order to help to chose the deflecting medium ( air or a 

higher thermal conductivity solvent); to confirm that the deflection would increase linearly 
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with the absorption in the sample; and to detennine what range of absorptions would be 

measurable for a given set of experimental parameters. 

A one-dimensional model was sufficient because for the experimental conditions, 

the pump beam spot size on the sample is larger than the distance of the probe beam above 

the surface of the sample, and so heat flow parallel to the sample surface could be 

neglected in the region of the probe beam. A finite difference approach was taken,56 and 

the program written in FORTRAN. 

2.2.1 Computational Method 

In the one-dimensional version of the program, two arrays of temperatures were 

constructed. Each array was divided into three, representing the layers of air, polymer 

and substrate; additional divisions could be added as necessary. Each number in the array 

represented the temperature at that point in the system. This scheme can be depicted as in 

Figure 2.1. 

To 

deflecting t T1 l medium Ll~uid 
T2 

I - Tp-1 ____________ .J.... ______________ 

polymer 1 TP 

Tp+1 l Llxpolynrr 
Tp+2 

I 

s:~s~~e- ------y Y, - - --r-~:,~b~~" 
I Ts+1 

- Tbase 

Figure 2.1 Representation of node structure 
for finite difference technique. 

The simulation proceeded according to the time dependent heat conduction 

equation 
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dT(x,t) _ J_(k dT(x,t)J + g(x,t) 
pc dt - dx dx 

( 2.1 ) 

where T(x,t) was-the temperature at position x and time t, k was the thermal conductivity, 

p was the density and c was the specific heat of the material at constant pressure. g(x,t) 

was the rate of energy generation per unit volume, from the absorption of light in the 

material. 

The heat conduction equation was discretised ( see 

Figure 2.1 ), so that position x = rru1x and time t = i~t, where m = 0, 1,2 ... ,M; i = 
0, 1,2, ... With T mi = T(x,t), and the thermal diffusivity a given by 

k 
a=-

pc 

the heat conduction equation ( away from boundaries) became 

or 

with 

Ti+1 -Ti Ti + Ti _ 2Ti gi 
m m = a m-1 m+l m + _!!!... 

~t (&)2 pc 

Ti+t = r(Ti + Ti ) + (1 - 2 )Ti + g~~t 
m m-1 m+l r m 

r = afit 
(&)2 

pc 

At nodes on the boundary between different materials equation ( 2.4 ) becomes 

( 2.2 ) 

( 2.3 ) 

( 2.4 ) 

( 2.5 ) 

. . [ k . i k+ i i ] 2~t + g b~t 
r;,+

1 
= T/, + ~ (TL1 - 1;, )+ Llx+ (i;,+1 - 1;,) (p_c_Llx_ + P+c+Llx+) P+c+ 

- ( 2.6 ) 
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where one medium is represented with the subscript ( + ), the adjacent medium with the 

subscript (-), and assuming that absorption occurs only in the former medium. 

It was assumed that the pump light, with incident intensity I0 is absorbed only in 

the polymer layer. If a is the absorption coefficient, then the heating term for equation ( 

2.4 ), in wm-2, is 

gm= I exp(-arruix) [exp(a~2) - exp(-a~2)] 

( 2.7 ) 

At the upper and lower boundaries of the array a constant temperature was 

assumed. The distances to these points were very large in comparison to the thermal 

diffusion length in the materials. 

It was assumed that because the pump beam is broad compared with the width of 

the probe beam and with the thermal diffusion length, the heat flow horizontally (if the 

array is considered vertical) was negligible, as the same heating was occurring throughout 

a region wider than the thermal diffusion length. 

The program stepped the temperature arrays forward in time. The size of the time 

steps were limited by numerical stability criteria, the basic criterion being that the 

parameter r ( equation ( 2.5 ) ), had to satisfy57 

0 < r < .!. - 2 

The time steps were thus limited according to the spatial step size. 

( 2.8 ) 

In the program, both heating and cooling cycles were simulated, and the 

temperature gradient in the deflecting medium at a particular height above the polymer was 

sampled. This was multiplied by a sine wave at the same phase as the simulated chopped 

light, simulating the phase-locked loop of the lockin amplifier. A similar result was 

obtained using a cosine, with the two results added in quadrature to obtain the total signal, 

which was then averaged over time. 

The program thus gave the time variance of the temperature gradient at a point 

above the sample surface for each given set of program parameters. 
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2.2.2 Parameters 

The values of the thermal conductivity k, the density p, and the specific heat at 

constant pressure c of the main materials used in the numerical simulations are given in 

Table 2.1. 

The values of k, p, and c used in the simulations for the polymer layer were based 

on general values for plastics, and may not exactly match the poly(p-phenylenevinylene) 

used in the experiments. Other values were trialed in the simulations, making little 

difference to the overall results. The value of the thermal conductivity shown in the table 

is high for plastics, representing the "worst case" in which the most heat could flow away 

from the deflecting medium. 

The values for quartz shown in the table were used for the substrate, to reflect the 

fused silica slides used for the majority of the samples. Polyethersulphone61 was also 

used as a substrate for the experiments in which air was used as a deflecting medium. 

This was because using a substrate of low thermal conductivity caused more of the heat 

from the absorbed light to flow in the direction of the deflecting medium ( the air) where 

the probe laser was propagating, rather than being lost through the substrate. 

Carbon tetrachloride was investigated as a deflection medium because of the 

strong temperature dependence of its refractive indt?x (dn/dT = -0.271).59 Importantly 

though, it does not have any major absorption in the wavelength region of interest (near 

UV to near IR), unlike chloroform for example which has a higher dn/dT (-0.598) but 

also a stretch absorption feature in the near IR. Importantly also, carbon tetrachloride did 

not chemically damage the polymers being studied here. 

Typical computational runs used step sizes of 50nm in the polymer, 25µm in the 

other media, and 5ns time steps; when very strong absorptions were investigated smaller 

step sizes down to 5nm were used in the polymer, requiring time steps of 0.05ns. 

Air58 

Carbon Tetrachloride59 

Polymer 

Glass (quartz)60 

Pol vethersulohone 61 

k 
(~m-1K-1) 

0.023 

0.099 

0.35 

1.381 

0.15 

p 

(kg m-1
) 

1.204 

1.5833xl03 

1.0xl03 

2.2xl03 

1.37xl03 

C 

(J kg-I K-1) 

1005.7 

850 

1.5xl03 

754 

l.5xl03 

Table 2.1 Values used in numerical simulations 
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Chopping frequencies of 14 and 30 Hz were used for most simulations in carbon 

tetrachloride and air respectively, but could be varied. 

2.2.3 Frequency dependence 

As the chopping frequency increases, the thermal diffusion lengthµ decreases as 

1 gf;k µ---
a pcm 

where a is the thermal diffusion coefficient, k, p and care as defined above, and ro is the 

frequency. 

At high frequencies , the diffusion length is smaller than the separation between the 

sample and the probe beam, and the modulations in the temperature do not travel to the 

probed region. Low frequencies are the ref ore the most desirable. For experiments 

performed under air, the lower limits on the frequency are given by the system reaching 

-E ---
~ 
-0 --C 
-0 

1---------------

0.1 
.1. • 0.01 --. 

0 .001 

0 .0001 
, 

0 .00001 · • ~ • 
0. 000001 --::t----+------+--------t------t 

0.0000001 -+-....,_....,.....-.-,..,._...., __ .,........,. ............. _-,-.,...~ __ ___,,..,..,..,...... 

1 10 100 1000 
Chopping frequency (Hz) 

• Carbon Tetrachloride, 50µm probe height 

+ Air, 200µm probe height 

10000 

Figure 2.2 Dependence of the refractive index gradient on the 
chopping frequency, for air and CCl4 as deflection media. 
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steady state after the peak in the temperature gradient when the sample is first irradiated; 

further limitations on the frequency are due to the low-frequency cut off in the electronics 

and the increasing 1/f noise, and the long integration times which become necessary for 

the lock-in amplifier. 

The results of numerical simulations are shown in Figure 2.2. The thermal 

gradient obtained from the simulations has been multiplied by dn/dT (the change of 

refractive index with temperature) to give the gradient of the refractive index (dn/dy, y 

being vertical distance). Since dn/dT for carbon tetrachloride is approximately 640 times 
0 

greater than that for air, carbon tetrachloride is the preferred medium. At the low 

frequencies in air, where dn/dy is seen to be depressed in Figure 2.2, the results have 

been affected by the size of the computational array which has limited the flow of heat 

from the system. 

A chopping frequency of 30 Hz was chosen for these experiments. This 

frequency is sufficiently low to take advantage of the improvement in signal with reduced 

frequency, but sufficiently high to be able to obtain good noise rejection with a lockin 

time constant of 3 seconds, without 1/f noise being a limitation. 

2.2.4 Probe beam height dependence 

Numerical simulations using air as a deflection medium, and in this case a 

chopping frequency of 50Hz, showed an exponentially decreasing signal with increasing 

probe beam height above the sample. This is plotted in Figure 2.3. 

To experimentally verify this relationship, a film of poly(vinyl alcohol) doped 

with chlorophyllin was placed in the sample holder. Chlorophyllin has a strong 

absorption peak at 630nm, which was measured with the photodeflection spectroscopy 

system. The sample holder, being on an adjustable height platform, could be adjusted for 

height using a micrometer screw. The sample was lowered away from the probe beam 

height, and the signal strength measured for steps of 0.5mm. Though the exact distance 

between the probe beam and the sample was not measured, the signal decreased as 

expected and the points have been plotted on Figure 2.3 to show a fit with the points from 

the numerical simulation. 

The best results are obtained for the closest possible approach of the probe beam 

to the sample surf ace. The samples were prepared on substrates with the width of a 

microscope slide (25mm), and so the closeness of approach of the probe beam was 
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Figure 2.3 Variation of signal with probe beam height above sample. 
The simulations were for air as the deflecting medium. The 
experimental points are from chlorophyllin doped poly(vinyl alcohol) 
slides in air, measured at the 630nm peak, with accurate spacing 
between probe beam heights but not absolute calibration. 

limited by its confocal parameter. The implications for the focussing of the probe beam 

are discussed further in section 2.4 below. 

2.2.5 Linearity with absorption 

The strength of the signal (the amount by which the probe beam is deflected due to 

the temperature and refractive index gradient) increases when the amount of energy 

deposited by the pump beam in the absorbing sample within a thickness of the order of 

the thermal diffusion length is increased. However, it is possible for the PDS signal to 

saturate once all the light is absorbed within this region. 

Figure 2.4 shows the results of simulations in which the thickness and absorption 

of the polymer layer of the sample were varied. The plot shows the magnitude of the 

time-varying temperature gradient for a series of samples of different thicknesses, for 

different magnitudes of the absorption coefficient. All other parameters are as indicated in 

Table 2.1, with air as the deflection medium in this case. 
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Figure 2.4 Simulations of varying absorption and sample thickness. The 
deflection medium is air, the probe height 0.2mm. 

It can be seen that the plots for the 1 to 10 micron thick films fall on the same line, 

showing that the signal is proportional to al (where a is the absorption coefficient and 1 is 

the film thickness). For films greater than 10 microns thick, the absorption of the pump 

beam occurring deeper into the (thick) film does not equally affect the strength of the 

signal. For films up to 10 microns thick, the signal strength is directly proportional to the 

thickness of the film (below saturation). 

The plot has been drawn as a function of optical density al to show the effect of 

saturation which occurs at an optical density of approximately 0.5. The signal varies 

linearly below that level and is hence directly proportional to the absorption of the film. 

Similar curves plotted for different probe beam heights indicate that saturation 

occurs at the same value of al, but at different absolute signal strengths (see section 

2.2.4). 
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2.3 Pump Beam Optics 

In this photodeflection system, large spectral brightness at the sample surface is 

required of the pump beam which should also be tuneable over a large range of 

wavelengths from the near ultra-violet, through the visible into the near infra-red. 

Halogen lamps provide relatively uniform spectral emission across this range, but have 

lower brightness compared with arc lamps of equivalent power. Xenon arc lamps also 

have a broad background spectral emission from 400 to 1500nm. Their disadvantage is 

that their emission also contains sharp spectral lines, however these can be compensated 

for by calibration. Hence the higher brightness of an arc lamp makes it the pref erred 

choice. 

The source chosen was the Oriel 300W Xenon Arc Lamp.62 This lamp has an 

effective arc size of 0.7 x 2.4mm, and a specified irradiance at 0.5m of approximately 40 

mwm-2nm-1 between 400 and 800nm, with peaks up to around 500 mwm-2nm-1 between 

800nm and 1 micron, and then dropping by an order of magnitude between 1 and 2 

microns. The calibration curve in section 2. 7 will show the throughput of the pump beam 

system. Higher powered Xenon lamps had larger arc sizes which gave them lower 

brightness, and hence were less suitable. 

The entire pump beam system is shown in Figure 2.5. 

The monochromator chosen was an Oriel 1/8m grating monochromator. This 

compact monochromator has a variety of gratings available, and was stepper motor driven 

for automatic operation. 

The grating for the monochromator had to be chosen for the best throughput over 

the whole spectrum being measured (300 or 400nm-1500nm). The grating chosen was 

Oriel catalogue number 77299, a 600 lines/mm ruled grating blazed at 1 µm. The grating 

is specified as useable between 400 and 2000nm, so the lower end of the spectrum is 

limited; however the major spectral features being studied were within the grating's 

operating range. 

The pump light had to be focused into the monochromator, matching its F-number 

(F/3.5) as closely as possible. The wide output of the arc lamp required a 69mm aperture 

condenser lens for collimation. An Oriel F/0.7 four element silica-borosilicate crown 

'Aspherab' lens was used to collimate the light from the arc source, and then an f 250mm 

lens selected to focus the light into the monochromator. This gave a magnification of 

3.5/0.7 = 5, so that the approximately 0.7 x 2.4mm arc was imaged at approximately 3.5 

x 12mm at the entrance slit of the monochromator. The monochromator had slits 12mm 

~gh, with variable widths. The entrance slit was generally kept slightly wide (4.3mm), 
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Figure 2.5 Pump Beam Optical System 

to allow as much light as possible through, at some expense to bandwidth, which is 

discussed below. 

The light is chopped before entry into the monochromator, typically at 30Hz (see 

section 2.2.3). 

A telescope and mirror arrangement was constructed to 1: 1 image the vertical 

monochromator slit onto the horizontal sample surf ace, with the probe beam propagation 

in the directions of the longer dimension of the image. Two 60mm achromats were used 

for this purpose. The length of the stripe, approximately 10mm, was appropriate for 

working with samples of microscope-slide dimensions. 

Prior to striking the· sample the pump beam is also passed through an 

interchangeable high-pass filter, to block the higher orders of diffraction from the grating 

monochromator. The filters are changed by a computer-controlled stepper motor. Below 

550nm, no filters are used, since the drop in ultra-violet transmission through the lenses 

is sufficient to prevent stray orders below that. The transmission spectra of the filters 

used between 550nm and 800nm, and above 800nm, are shown in Figure 2.6. 
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Figure 2.6 Filters used on the pump beam. The left line corresponds to 
the LG505 glass filter used above 550nm, and the line on the right 
corresponds to the infra-red filter used above 800nm. 

2.3.1 Bandwidth 

The bandwidth through the system is a function of the slit width, and is limited by 

the size of the lamp arc and its image at the entrance aperture of the monochromator. The 

dispersion of the grating was 13.0nm/rnm. Reducing the size of the slits also reduces the 

pump power incident at the sample, which is undesirable for samples less than a micron 

thick with absorptions of the order of O. lcm-1
• Since the shape of the lamp arc means that 

its image imperfectly fits the entrance aperture of the monochromator, narrowing the 

entrance slit has a large effect on the power throughput. 

The actual bandwidth of the pump light at the sample has been measured using an 

optical fibre to gather light from the location of the sample, to take it to another 

monochromator attached to a spectral imaging system. The power in the pump beam was 

measured using a Newport power meter, averaged over the chopped pump beam at 

900nm. 

For 1.0mm entrance and exit slits, the fibre at any one location in the pump beam 

measured the full-width half-maximum bandwidth of 14nm, but over the whole of the exit 

slit image a total bandwidth of 32nm. The measured power at the sample was 7m W. For 

0.5mm slits, the power was 2mW. 
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Increasing the entrance slit to 2.5mm, the total bandwidth (and power) for a 

0.5mm exit slit was 45nm (9mW), for a 1.0mm exit slit 46nm (17mW) and for a 3.0mm 

exit slit 63nm (53m W). For a fully open 4.3mm entrance slit, a 0.5mm exit slit gave a 

bandwidth of 58nm (14mW average power); a 1.0mm exit slit gave 63nm (28mW), and a 

3.0mm exit slit gave 93nm (82m W). These are the bandwidths over the whole of the exit 

slit; the probe beam, with a width of approximately lOOµm (section 2.4) would see a 

slightly smaller bandwidth, and indeed is more dependent on the input than the output slit. 

Even though setting the entrance slit at 4.3mm meant a poorer · bandwidth 

performance, most measurements used this configuration, giving improved power at the 

sample and, through the bandwidth, protection against wavelength calibration errors 

which could arise from backlash or stepping errors in the stepper motor driver of the 

monochromator, or from variations in the sample surface's intersection with the pump 

beam (relative to the intersection of the reference black sample with the pump beam - see 

section 2.7.1). This then minimised errors which could arise in regions where the 

calibration curve for the pump beam power had large slopes or peaks. The exit slit was 

usually set at Imm width, the 1: 1 image of which, incident on the sample, was still much 

wider than the probe beam sampling the medium immediately above it. 

2.4 Probe Beam Optics 

The probe beam system, which has to satisfy requirements of stability, sensitivity 

and a close approach between the probe beam and the sample, is shown in Figure 2.7. 

The probe beam was required to make a close approach to the sample surf ace, and 

not be broadened too much by diffraction upon reaching the detector. It could not be 

refocussed after the sample since that would also reduce the absolute deflection of the 

probe beam at the detector. The probe beam also had to be stable from power 

fluctuations, and needed good pointing stability. For this reason diode lasers were 

rejected, and a polarised laser chosen. A Helium:Neon 632.8nm laser was chosen as 

satisfying these requirements, as well as having a wavelength suitable for detection. The 

laser was a lOmW Melles Griot laser, from which the beam emerged from with a l/e2 

diameter or 0.68µm, and a divergence of 1.18mrad.63 Those figures were the given 

specifications, and were consistent with measurements by a Spiricon beam analysis 

system. 
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Figure 2.7 Probe Beam Optical System 

to computer 

The beam had to be focused to a small diameter waist over the sample surf ace, but 

in order to obtain a close approach to the surface, a sufficiently large confocal-parameter 

was required. For convenience the samples were based on the width of a microscope 

slide - 25mm. By using an 88.3mm lens situated 200mm from the laser's exit aperture, a 

waist of 102µm diameter was obtained 91mm from the lens, with a confocal parameter 2b 

= 26mm. Measured with the Spiricon beam analysis system, the waist was found to be 

106µm in diameter, at a distance of 92+4mm. 

When Carbon Tetrachloride was used as the deflection medium, it was kept within 

a sealed stainless-steel cell with glass windows on every side. The cell was placed on a 

special mount on the adjustable-height stage, which ensured that the position and angle of 

the cell was repeatable (see section 2.6.2). The cell was at a slight angle to the probe 

beam, so that the reflections from the glass faces did not enter the detection system, or 

were backreflected into the laser, causing interference. The length of the beam path 

through the cell was 50mm. With a refractive index of 1.459,64 the probe laser system 

had to be adjusted by 7mm to account for the shift in the beam focus. 

The probe beam was set at a fixed height, but the sample platform could be raised 

to obtain the closest possible approach to the beam without causing significant diffraction. 

After passing over the sample, the beam was reflected by an adjustable mirror onto the 
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detector. This mirror also turned the beam away from the monochromator stand, as 

shown in the diagram of the complete setup, Figure 2.11. 

The detector was 180mm from the sample, struck by a 1.4 mm spot. 

A 633nm line filter and an infra-red blocking filter were used to prevent any stray 

light from the arc lamp from striking the detector. All of the optical elements were slightly 

mis-aligned, to prevent back-reflections and interference, and thus preventing spurious 

noise from stray reflections back into the laser destabilising it. 

2 .5 Detection System 

2.5.1 Photodiode 

The deflection of the beam by the thermal gradient above the sample surface had to 

be measured. The distance of the detector from the sample was kept small so as to reduce 

the diffraction broadening of the beam and minimise the possibility of drafts or air-borne 

dust from disturbing the beam path. 

A bi-cell detector could be used to measure the deflection, the deflection being 

determined by the variation in the relative power striking the different halves of the 

detector. Simple knife-edge schemes, wherein a single photodetector measures the 

variation of the power in the beam which passes by a knife edge, have also been 

proposed.28
'
38 Various groups have used knife edges,65 bi-cells ,50

•
66 quadrant detectors33 

and continuous detectors.47 

Figure 2.8 The knife-edge detector measures the deflection 
of the beam by how much of the beam gets past the knife 
edge just in front of the detector. 

Using a linear position sensor has the advantage that the reading is a direct linear 

measurement of the position of the centre of the spot on the detector; this linearity is 

typically correct to 0.5% over the central 25% of the active are of the detector.67 There is 

37 



no gap in the centre of the detecting area, as with bi-cells. The resolution of bi-cells may 

be better, but linear position sensors have a high signal-to-noise ratio.67 

The photodiode chosen for use here was the UDT Super Linear Position Sensor 

SL3-2, which is a single axis position sensor. It acts like two photodiodes with a 

common cathode. Current flows down the arms of the photodiode in proportion to the 

position of the centre of the laser spot along the axis. The photodiode has a typical inter­

electrode resistance of 40k.Q, and a responsivity at 632.8nm of about 0.44 A/W. 

The linearity of the photodiode was experimentally verified. Figure 2.9 shows a 

plot of the signals from the two anodes of the photodiode versus the position of the beam. 

The drop of the signals at large distances from the centre of the photodiode is a result of 

the beam extending beyond the end of the photodiode. Within the central region, over a 

distance of 4mm, the signal from one anode increases and from the other decreases as the 

beam moves along the detector. The difference between the signals has also been plotted 

on Figure 2. 9, and within that central region can be fitted to a straight line with 
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Figure 2.9 Linearity of position sensitive photodiode with position. 
The circles show the difference between the signals measured on the 
two anodes (.1. and V), with the filled circles fitted to a straight line 
with r2 = 0.9999. 

38 



1"' 

correlation coefficient r such that r2 = 0.9999. 

Because of the relatively high internal impedance of this detector it was necessary 

to reduce the laser power using a neutral density filter to 0.56m W at the detector. This 

resulted in a 0.25mA current flowing through the internal resistance and the external 

20k.Q load resistors. Voltages of the order of 5V were thus developed at the inputs to the 

first operational amplifier (AD549JK), well within its range and within the rails (see 

circuit description below). 

2.5.2 Circuit 

Figure 2.10 shows the circuit used for the photodetector. Two 4. 7µF capacitors 

back-to-back form provided the (bipolar) AC coupling into the amplification stage, with 

the 1 Ok.Q resistor, giving a knee in the frequency filtering below 1 OHz. 

Since the AC signals from the photodiode were significantly less than a millivolt 

and were shot noise limited (see below), the signal had to be preamplified to prevent noise 

pick-up in the cables. This signals also had to be brought into a suitable range for the 

lockin amplifier, which could take signals up to 1 V.68 

An AC gain of approximately 1000 was obtained from the amplification stage. 

The signal was then carried in a shielded coaxial cable to a Krohn-Hite band-pass filter, 

with a pass band between 5 and 1 OOHz, to remove the DC component prior to the lockin 

detector. It was then passed into the lockin amplifier, which was referenced to the 

chopping frequency. With a time constant of 3 seconds, the bandwidth of the lockin was 

~f = 26mHz. 

Any DC component of the signal from the photodiode, which could be caused by 

a probe beam offset from the centre of the photodetector, was passed from the second arm 

of the photodiode through the positive input of the operational amplifier. This allowed the 

possibility of monitoring the average offset of the beam. 

Signals at the lockin amplifier were then in the range of 100µ V to 1 V. 

39 



9V 

r------

I 
I 
I 
I 

1< >' 
L - - _ j _ - - - - J - - - - _I 

Photodiode 

2.35µF 

20kQ 

ov ov 

lOkQ 

lOMQ 

AD549 JH 

(+9V rails) 

Figure 2.10 Circuit used for photodetector 

2.5.3 Electronic Noise 

Out 

The components of the noise generated in the detection circuit at the chopping 

frequency limit the small-signal resolution of the system. Shot noise and Johnson 

(thermal) noise are analysed below. 

Shot noise results from the statistics of photons striking the photodiode to produce 

the photo-electrons which make up the current. It can be calculated from the relation 

lsn = -J2cif ( /-Jfu) 

where I is the photocurrent and q is the charge of an electron. 

A photocurrent of I = 0.25mA is generated by 0.56m W of laser power incident on 

the photodiode, operating at an efficiency of 0.44A/W. This gives a shot noise of Isn = 

8.9pA/"Hz. 

The Johnson ( or thermal) noise through the load resistors on the anodes of the 

photodiode is given by 

Ith = ~ 4~T ( /-Jfu) 
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where T is the temperature, k is Boltzmann's constant and R is the resistance. With a 

minimum load resistance of 20kQ, this gives Ith = 0.90pA /../Hz which is much smaller 

than the shot noise. Jackson et al. also found shot noise to be the dominant noise 

source.38 

The shot noise current of 8.9pA/../Hz develops a voltage of 0.18µV over the 20kQ 

anode resistor, which through the 1000 times gain of the pre-amplification circuit gives 

180µV/../Hz. With the lock-in operating at a bandwidth of 26mHz, this is around 30µV 

of noise. 

The dark current from the photodiode was, according to the specifications of the 

device, typically 5nA but up to a maximum of 50nA. 5nA represents 0.002% of the 

photocurrent generated by the laser. 

Other sources of noise could include pick-up in the cables, and pointing noise 

from the laser. The peak to peak noise level seen on the lock-in amplifier was 

approximately 50µV, consistent with close to shot-noise limited behaviour. 

2.6 Overall Environment 

2.6.1 Vibration Isolation 

The PDS had to be protected from air-drafts and vibration, which would introduce 

spurious movements of the laser beam on the detector. In order to do this, the optical 

system was built on an optical vibration-isolated table. Furthermore, since the arc lamp 

has a cooling fan, and the monochromator a stepper motor driver, the laser, sample and 

detector were mounted on a second optical table top supported by vibration isolators on 

the first table. The second table top was completely enclosed in a wooden box to prevent 

drafts, with a opening for the pump beam from the monochromator to enter, and a hatch 

through which samples could be exchanged. These are shown in Figure 2.11 . 
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Figure 2.11 Photodeflection Spectroscopy Apparatus Side View 

2.6.2 Sample Mounting 

For operation under air, the samples were mounted in a spring-clip arrangement, 

such that the top of the sample was always held by springs against two clips at the same 

height. The whole stage could however be adjusted for height so as to obtain a close 

approach to the probe laser beam. 

For operation under CC14, a glass-sided stainless steel cell was used, in which the 

samples could be held in place with springs. The cell was filled completely with CC14 and 

sealed, so that there were no bubbles at the top of the cell which might introduce extra 

reflections of the pump beam and increase sensitivity to vibration. The cell fitted onto the 

adjustable height stage, in such a way that the position and angle to the probe beam was 

repeatable; the probe beam was incident at just off 90° to the window of the cell, so that 

reflections from the glass did not interfere with the light striking the detector and did not 

reflect back into the laser. 
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2.6.3 Computer Control 

The control software was written in Visual Basic. 

The lockin amplifier was under computer control via a GPIB interface, allowing 

the time constants and filtering options to be set from the computer. 

There are two stepper motors, one for changing the wavelength of the 

monochromator, and the other to switch between the filters on the pump beam. A PCL-

838 Stepper Motor Control Card69 was used for the computer interface. The calls from 

the Visual Basic program (titled 'PDS.EXE') to change the wavelengths and filters 

involved shelling to executable files written for those purposes; those files were written 

using Turbo Pascal. 

The system was built to collect raw data automatically. The parameters could be 

changed by the user ( eg. wavelength range and step size, integration and pause times, 

etc). When the system is run, it steps through the wavelengths, at each point waiting for 

the lockin to settle and then recording the lockin output. Filters are changed automatically 

when necessary. At the end of a run, the data is saved to a file. It can be calibrated for 

the power of the pump beam by dividing by a power spectrum obtained by running the 

system on a black absorber (see section 2.7.1 below). 

A practical description of how to use the apparatus is included in the Appendix. 

2.7 Calibration 

2.7.1 Calibration for lamp power 

The strength of the deflection signal depends not only on the level of absorption in 

the sample, but also the amount of power in the pump beam incident on the sample. The 

pump beam power varies over the spectrum, due to the variation in the power output from 

the arc lamp, the diffraction efficiency of the grating in the monochromator, and the 

throµghput of the optical system. Thus the variations in the pump beam power incident at · 

the sample must be measured, and used to calibrate the data. 

The variation in the power of the pump beam with respect to wavelength can be 

obtained by making a photodeflection measurement of a black absorber; that is, an 

absorber for which there is total absorption over the entire wavelength range. Some black 
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Figure 2.12 Measurements of the power in the pump beam using a black 
absorber as the sample. 

paints are suitable; soot-covered microscope slides have proven to be the best for 

measurements under air, though it is necessary to lower the pump power, the stage, or the 

detector amplification since the signal is so large. Different black objects have been used 

to ensure true "blackness" over the spectrum. In the carbon tetrachloride cell carbon 

pellets were found to be suitable for making calibrations. 

Figure 2.12 shows the results so obtained from a soot slide with air as the 

deflection medium. On the same graph a measurement of the power made with a 

thermopile is shown. The two spectra are consistent -except for wavelengths below 

400nm where there was insufficient power for the thermopile. The actual power at the 

peak of the spectrum (900nm), under a chopped pump beam, was 28m W. 

The spectrum is dominated by the peaks around 900nm, from the Xenon arc 

lamp. Below 650nm the grating efficiency drops below 50%, and the power from the arc 

lamp also drops. Beyond 1 micron, the lamp power drops away slowly but the grating 

efficiency drops away more quickly. 

Also on Figure 2.12 is a measurement of the spectrum made under carbon 

tetrachloride using a carbon pellet. It is easily re-measured, and it was re-measured if the 

conditions of the pump beam were ever altered (eg. the monochromator slit widths). The 
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bandwidth of the monochromator system for the spectra shown here was approximately 

50nm (see section 2.3.1). 

2.7.2 Calibration with samples of known absorption 

To check that the photodeflection spectroscopy system was accurately measuring 

the absorption over a reasonable range, samples of poly(vinyl alcohol) (PV A) doped with 

different levels of chlorophyllin were prepared. Chlorophyllin has two absorption peaks, 

at 410 and 630nm, with maximum absorptivities a of 39200cm-1 and 4980cm-1 

respectively. Thus, as well as ensuring that the signal varied linearly as a function of 

chlorophy llin concentration in the different films, the internal consistency of the spectra 

could be checked - that the two chlorophyllin peaks were in the correct ratio after lamp 

power calibration. 

Heavily doped PV A samples were very viscous whilst being prepared at 20% 

concentration in water (see polymer preparation section 2.8.3), so a series of thick films 

were prepared. The concentration of chlorophyllin ranged from 0.0009% to 21 o/o in 

PVA.70 The films were all approximately 400µm thick, and the sample stage was kept at 

1 0 ~ + 630nm peak 

@ I I (8) 410nm peak 

1 J I I I•~ I s -::s 
ctS -
ctS 
C 0.1 
0) 
C/) 

(f') 
0 
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Figure 2.13 Absorption signals for PV A slides with various levels of 
chlorophyllin doping. Note the saturation above al = 0.5 (see section 
2.2.5). 
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the same position for the measurements; air was used as the deflection medium. The 

signals measured by photodeflection spectroscopy are shown in Figure 2.13 as a function 

of the absorbance as obtained fro~ measurements using the spectrophotometer. 

2.7.3 Absolute Calibration for each sample 

Each sample may have a different thickness and surf ace profile, affecting the 

separation between the probe beam and the sample surf ace. The sample stage height is 

adjusted to bring each sample close to the beam, but it is difficult to guarantee the same 

sample - probe beam separation each time. Also, the total absorbance of the film depends 

on the film thickness. For these reason it is not possible to give a general calibration of 

the PDS signal to give the absolute absorption for all samples. Each sample has to be 

calibrated for absolute absorption using known features in the spectra. 

There are two possible techniques for this, for the PPV and PVP films being 

studied here. 

The first possibility is that the calibration could be performed at the short 

wavelength end of the spectrum, where the absorption is sufficiently strong that the 

spectrophotometer is able to measure it in the thin film; the PDS spectra could then be 

matched with the absorption measurements there. However, in that part of the spectrum 

the pump beam power in the photodeflection apparatus is small and rapidly changing, and 

so the PDS spectra there are susceptible to noise and errors from the steep slope of the 

spectra. Furthermore, the films fluoresce in that region, so that not all of the absorbed 

light causes heating and the photodeflection measurement will be an underestimate of the 

full absorption (although the error is estimated to be only about 10% ).71 Most importantly 

though, many of the films also reach saturation for the PDS measurements in that region, -

with the absorption multiplied by the thickness being greater than 0.5 (see section 3.2). 

An alternative calibration can be made using peaks in the spectrum whose absolute 

absorption coefficients are known. Within the 400nm to 1500nm range, there are 

overtones from the C-H stretch and the 0-H stretch (water). For measurements of 

PPV /PVP systems, the overtones at 1200nm and 1450nm are distinct. The 1450nm peak 

is strongly influenced by the presence of water. The peak at 1200nm can be used for 

calibration for these samples.. This will be discussed in greater detail in the experimental 

results section 3 .2. 

A possible future modification of the system would be to extend the range to cover 

the stronger overtone peaks above 1500nm~ 
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2.8 Preparation of Materials 

2.8.1 Preparation of Poly(p -phenylenevinylene) (PPV) 

Poly(p -phenylenev~ylene) films were prepared by first making a precursor 

polymer, which could be spun or doctor-bladed onto a substrate and subsequently 

converted into PPV by heating. This is a necessary route because the PPV cannot be 

readily dissolved and spun itself. PPV precursor polymers used for preparation of the 

films studied here were synthesised by Dr. M. Woodruff, and most of the chemical 

processing of the precursor films was carried out by Dr. A. Samoc and Mrs. R.M. 

Krolikowska in the Laser Physics Centre at the Australian National University. 

The preparation procedure was based on references 72, 73, 74, 75 and 76, and the 

chemical route is shown in Figure 2.14. Wherever possible the preparations were carried 

out in an inert (Nitrogen) atmosphere. The bis-sulfonium salt monomer was prepared 

from a,a-dichloro-p-xylene and tetrahydrothiophene, kept at 50° to 55°C for 24 hours. 

The monomer was polymerised in basic conditions, in a water:methanol solution. In 

different experiments the details were varied, but a representative procedure used a 50:50 

water:methanol solution and sodium hydroxide giving 0.9 mol equivalent of base; some 

experiments used tetrabutylammonium hydroxide (n-Bu4NOH) as the base. The polymer 

was dialysed against deionised water ( or when noted, methanol) with Spectra/Par 3 

dialysis tubing with a molecular weight cut off of 3500Da, in order to remove any salts. 

In some cases another step of dilution with methanol, filtering and re-concentration with a 

rotary evaporator was applied. 

Precursor films were spin-coated onto fused silica or other microscope slides at 

spin speeds of between 200 and 500rpm, sometimes for up to 15 minutes to allow 

preliminary drying.77 This was done under a constant flow of Nitrogen. Other (thicker) 

samples were prepared by doctor-blading the precursor onto the slides. 

The slides were kept under gently flowing Nitrogen until they had begun to dry, 

and then heated in a programmable (dynamic) vacuum oven to between 130° and 200°C, 

depending on the experiment, for 3-5 hours. The warming up time was usually 2 hours; 

the vacuum was usually of the order of 5x 1 o-3mmHg. Films in which the precursor had 

been mixed with poly( viny 1 pyrrolidinone) were also heated to various temperatures 

between 130° and 200°C. 18 The heating enabled the conversion of the non-conjugated 

precursor into the rigid-rod, n-electron conjugated polymer PPV. Composite films were 
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prepared in such a way as to achieve PPV concentrations after conversion of close to 

2.5%, 5%, 10%, 20%, 50% and 100%.18 

The conversion conditions have been found to be critical for the length of 

conjugation in PPV obtainable during the conversion reaction, the degree of crystallinity 

in the samples, and the degree of "incipient" doping and absorption induced by the 

products of the conversion reaction - see reference 78 for a review, and the literature cited 

there. 

Experiments in which different preparation procedures were used are noted in the 

text where relevant (see especially section 3.3). 

2.8.2 Preparation of Poly(vinyl pyrrolidinone) (PVP) 

Poly(N-vinyl-2-pyrrolidinone) films were usually prepared from Sigma 40,000 

molecular weight PVP, dissolved to 30% in 1-methyl-2-pyrrolidinone (NMP). Variations 

are noted in section 3.4 . Films were spin coated onto slides at between 500 and 

5000rpm, and then placed in a (dynamic) vacuum oven and heated to 120° for 24 hours to 

dry. For certain experiments the PVP was be doped with phloxine-B and other dyes. 

PVP films tend to be of good optical quality, in comparison to pure PPV films, in 

which it can be difficult to achieve waveguiding. 

2.8.3 Preparation of Poly(vinyl alcohol) (PVA) 

Poly(vinyl alcohol) films were made from Sigma 9,000-10,000 molecular weight, 

80% hydrolysed PV A, dissolved in water at around 20% concentration. Different 

concentrations of dopants such as chlorophyllin were used as for the linearity checks for 

the photodeflection apparatus (section 2.7.2). The slides were warmed at 45°C for 45 

hours to allow them to dry. 
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Figure 2.14 Preparation of Poly(p-phenylenevinylene) (PPV) 
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2.9 Total Loss Measurements 

The aim of this project was to determine whether the propagation losses in these 

polymeric waveguides were dominated by losses intrinsic to the material, ie. absorption, 

or by extrinsic causes such as scattering and waveguide surface irregularities. Hence, as 

well as measuring the absorption losses by photodeflection spectroscopy, which is not 

sensitive to the other causes of losses, the total losses in polymer films in waveguide 

configuration had to be measured. 

Essentially, the approach was to couple light into a planar waveguiding film, and 

measure the decay in the intensity of the light with propagation distance. Lasers at 

632.8nm and 810nm were used for the majority of these measurements. 

To measure the decay in the intensity as a function of distance, several approaches 

could be used: 

1. The cut back method, in which the waveguide is progressively physically cut 

back, and the amount of light which couples out of the end of the guide is measured. 

Being destructive of the sample, this method was avoided. 

2. Other methods involved the measurement of out-coupling at various distances: 

This is not practical with gratings etched into the substrate for out-coupling, since the 

distances are then fixed. Prism coupling would be a possibility, except for the difficulty 

off orming repeatable contacts between the prism and the film at a range of distances close 

to the incoupling location. 

3. The waveguide material could be doped with a dye such as Phloxine-B, in 

which up-conversion of the pump beam leads to fluorescence at a different wavelength, 

which escapes the waveguide and can be photographed with a CCD camera - the decay in 

the intensity of the fluorescence can be measured as a function of distance from the 

incoupling location. Some measurements of Phloxine-B doped poly(vinyl pyrrolidinone) 

( concentrations of around 1 o-3
) were made in this fashion, using a Titanium:Sapphire 

laser at 801nm as the pump, however it was desirable to measure the losses without the 

presence of other dopants which might themselves contribute excess losss and so these 

measurements were not pursued for the results discussed here. 

4. Working on the assumption that the light which was scattering from the 

waveguides was scattering from small, uniformly placed scattering centres, the decay in 

the scattered light could be measured as a function of distance from the in-coupling 
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location. Indeed, abnormal scattering locations (like surface scratches) could be avoided, 

and this method provided the necessary information. 

The light had to be coupled into the films, and again there were several possible 

alternatives: 79 

1. Endfire coupling, which requires good edges on the waveguides. At this 

stage, using polymers spun onto the substrates, the edges were not of sufficient quality. 

2. Grating coupling was investigated extensively, particularly for its usefulness 

when a cladding layer is laid over the top of the polymer film, which would prevent the 

use of prism coupling (see below). Grating coupling was first reported by Dakss et. al.80 

has been used efficiently in polymer films by Moshrezadeh et. al.81 By etching a grating 

into the substrate before the polymer film is spun into place, possible damage to the 

waveguiding layer by the use of photoresists etc. is avoided. To prepare the gratings, 

Hoechst AZ 5206E positive photoresist which had been filtered by a 0.2 micron teflon 

filter was diluted in a 1 :5 ratio with acetone, and spun onto the substrate with a Headway 

Research Inc. spin coater at a spin speed of 7000 rpm for 120 seconds, and dried at 50 

degrees for 20 minutes. This gave a suitably thin film of photoresist. Using the 

arrangement shown in Figure 2.16, the photoresist was exposed by the interference 

pattern from a 441.6nm Helium:Cadmium laser,82 for 3 minutes with lmWcm-2 of power 

incident on the mirror and substrate. After developing for 30 seconds with Hoechst AZ 

524 MIF Developer, the substrate was washed with distilled water and then the parts of 

the substrate which were thus exposed were etched with a CF4 plasma, by Andrew Perry 

in the Plasma Research group in the Research School of Physical Sciences and 

Engineering at the A.N.U. (The etching was performed under 1.34mTorr of pressure, 

for an average of 2 minutes, with 800W source power and 1 OW bias power, meaning that 

the sample was being bombarded with ions with an energy of about 32eV.) After 

etching, and Oxygen plasma was run (2.5minutes at 4mTorr, 800W, no bias) to clear the 

remaining photoresist from the samples. 

These gratings were found to provide 25-30% coupling efficiencies and permitted 

both in-coupling and out-coupling via a pair of speced gratings. However since clad 

waveguides were not necessary for these and some problems in achieving a suitable 

aspect ration for these short period gratings (approx. 800 1/mm), this approach was 

abandoned in favour of the simpler Prism Coupling method. 
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Figure 2.15 Images showing the decay in scattered 
light intensity with distance from the in-coupling point 
for waveguiding PPV-PVP films. The images were 
captured with a CCD camera, at 800nm. The 
concentrations of PPV in the films are indicated. 
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Figure 2.16 Schematic diagram of grating writing system. A 10° 
angle between the incident beam and the mirror gave a grating period 
of 1.27µm. 

3. Prism Coupling. By placing a high index prism in direct contact with the 

waveguiding film, the propagation vector of a beam from a laser striking the prism-film 

interface at an appropriate angle of incidence can be matched to the propagation vector of 

the waveguide modes allowing power to flow from the beam into the excited mode. A 

Metricon Prism Coupler83 makes this a very straightforward procedure, and this was 

used for all of the measurements reported here. 

Figure 2.15 shows some examples of CCD camera photographs of light scattering 

from polymer waveguides. A wide range of samples were characterized using this 

technique although the images shown here which are the most relevant to the PDS data 

presented later were actually recorded by a colleague in the Laser Physics Centre, Dr. A. 

Samoc, and published in ref. 18. These images were analysed using National Institute of 

Health (USA) Image software to measure the decay of the intensity of the scattered light. 

The results are cited in section 3.5.3. 
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3. PDS Investigations of PPV and PVP 

3.1 Introduction 

The aim of this project was to use photodeflection spectroscopy (PDS) to 

detennine whether material absorption dominates the losses in films of poly(p­

phenylenevinylene ), and in composite films of poly(p-phenylenevinylene) and poly(vinyl 

pyrrolidinone ), by comparison of the absorption measurements with measurements of the 

total propagation losses in the waveguiding films. 

In the previous chapter, the design and construction of the photodeflection 

spectroscopy system was discussed, as well as the preparation of the materials and the 

experimental techniques used for obtaining these measurements. In this chapter the 

measurements obtained by photodeflection spectroscopy on these polymeric films are 

presented. 

As discussed in section 2.7.3, each film must be calibrated individually to obtain 

absolute absorption values, since all of the films have different thicknesses, thermal 

conductivities, and surface qualities. The chapter starts with a discussion of how the 

spectral overtones in the 400nm to 1500nm wavelength region were used for calibrating 

the absorprtion of individual films (section 3.2). 

Section 3.3 presents a comparison of spectra obtained from PPV films prepared 

under different processing conditions. From this, the precursor to be used for the 

composite PPV /PVP films was chosen. 

PVP, the non-conjugated polymer which was to form a matrix for the PPV, is the 

subject of study in section 3 .4, with particular attention to the drying temperatures for the 

films. It is apparent that some form of impurity introduced during the preparation of the 

PVP affected the absorption characteristics of a number of the films. 

The investigation of the complete PPV /PVP composite films are reported in 

section 3 .5. Three series of films are reported, each of which involved a series of 

different concentrations of PPV in PVP, with each series having been dried (with the 

conversion of the precursor into PPV) at different temperatures. Their different 

characteristics are presented, with the comparison of the absorption measurements with 

the measurements of the total propagation losses in the films for light at 633nm and 

810nm. This leads to the conclusion that the absorption losses are well below the level of 

the total losses; losses extrinsic to the material itself dominate. 
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3.2 Spectral Absorption Calibration 

Figure 3.1 shows an absorption spectrum from a film of 2.53% PPV in PVP, 

which was spun onto a fused silica slide and then placed in a vacuum oven. The oven 

was brought up to 150°C over two hours and held there for three hours, to allow the PPV 

to be converted from the precursor and dried. The resulting film was 5 .2µm thick. The 

spectrum was obtained in a cell filled with carbon tetrachloride as the deflection medium. 

In that spectrum, several features can be seen. There is an absorption edge at 

around 515nm, typical for PPV films, and with a shoulder in the spectrum extending to 

wavelengths beyond 550nm. This shoulder cannot be seen on measurements made by the 

spectrophotometer for this thin a film because the spectrophotometer's absorbance 

resolution is limited to al = 0.001, which for a 5 .2 micron film represents an absorption 

limit of 1.9 cm-1
• Figure 3.2 shows how the photodeflection system is able to distinguish 

absorption features more than an order of magnitude lower than the spectrophotometer, 

for this sample. 

At the short wavelength end of the spectrum, the system is saturated and hence 

gives a low reading. The saturation has occurred because the film has a maximum 
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Figure 3.1 2.53% PPV in PVP, spectrum obtained by 
photodeflection spectroscopy. 
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absorption of 7000 cm-1 seen in the spectrophotometer measurement. This absorption 

multiplied by the thickness of the film (5.2µm = 5.2xl04 cm) is 3.6, which is greater than 

the saturation level ( z 0.5; see sections 2.2.5, 2. 7 .2). 

In this part of the spectrum, the films also show some fluorescence, so some of 

the absorbed energy goes into fluorescence rather than heating the film, and is not 

measured by the photodeflection system. Kopping-Grem et al. measure a 5% 

photoluminescence quantum efficiency in PPV prepared by a sulphonium salt precursor 

route, for 400nm excitation, and believe that efficiencies greater than 10% could be found 

at other wavelengths. 84 A third effect in this region is that the energy in the pump beam 

drops sharply (see section 2.7.1). The steepness of the power spectrum combined with 

the absorption edge of the film in the same region, convoluted with the large bandwidth of 

the system, contribute to the error here. Thus, it is very difficult to calibrate the absorption 

spectrum accurately against the spectrophotometer data in this region; rather, the other 

absorption peaks in the spectrum have to be used for the calibration. 

Four peaks are visible in the PDS spectrum (Figure 3.1): at 910nm, l.Oµm, 

l.19µm and 1.46µm. These are close to overtone peaks in the spectrum of poly(methyl 

methacrylate) (PMMA), and are due to contributions from overtones of the C-H stretch, 

as seen in PMMA, and the 0-H stretch from the presence of water. 

Figure 3 .3 shows the absorption spectrum of PMMA, measured in a thick 

( 16mm) piece of perspex using the spectrophotometer. It is consistent with results 

reported in the literature results, including spectra obtained by measuring the transmission 

-E 
u ---C 
CD 
·u 
:E 
CD 
0 
u 
C 
0 

·.;::; 
Q. 
~ 

0 
Cl) 

.0 
<( 

10000 

V ~ 
1000 -

-

\ --
. 

100 
-

10 

II,._ 

~ L/' .... ....... 
I....'"~ I - ~ 

. . 
~ - --.... l 

1 

0.1 

\ ,,...-... 

\~ 

- ( u 
...., 

'-..rl 

0.01 , ' ' ' ' ' 

200 400 600 800 1 000 1200 1400 1600 1800 2000 2200 
Wavelength (nm) 

Figure 3.2 2.53% PPV in PVP, as measured by 
thespectrophotometer (upper line) and PDS (lower line). 
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loss over a long length of Pl\1MA fibre. 85 Others have also used photodeflection 

spectroscopy in combination with UV-VIS spectrophotometer data to measure the C-H 

stretching overtone in this part of the spectrum.31
•
86 Skumanich et al. identify the 1.2µm 

peak as being the second (n=3) overtone of the C-H vibration; the 0.9µm peak as the third 

(n=4) overtone, and the 1.4µm and 1.0µm peaks as the 2+ 1 and 3+ 1 combination bands 

respectively. 85 

The spectrum obtained by the photodeflection spectroscopy system for a Pl\1MA 

film is also shown in figure 3.3. The noise floor at an absorption of 0.02 cm-1 influences 

the lower peaks, but the position and relative intensities agree within experimental error. 

Thus in principle the PDS can be calibrated against the known absorption strength of the 

various overtone peaks provided these are clearly identifiable above any background 

absorption in the film being studied. 
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Figure 3.3 Absorption spectrum of PMMA (perspex), showing the 
C-H stretch overtones. 
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The relative strength of the 0-H overtones were assessed from the absorption 

spectrum of water as shown in Figure 3.4, measured using a Imm cuvette in the 

spectrophotometer against a reference of spectroscopic grade carbon tetrachloride. The 

measurement saturates at al= 5.0, seen in the peaks at wavelengths longer than l.9µm ; 

below al = 0.01 (absorption coefficient O. lcrrf1
) the resolution is limited. Significant 

peaks can be seen at 975, 1198 and 1456nm, with absorption coefficients of 0.21, 0.56 

and 13.7 cm-1 respectively. These overtones could influence the peaks measured in the 

PPV/PVP spectra. However, it can be seen that the l.45µm "water peak" is a factor of 

23 higher than the l.20µm peak, whereas the corresponding peaks in the PPV/PVP 

spectrum have a ratio of only 3:1 (Figure 3.1). Thus even if the longer wavelength peak 

is strongly affected by water, the contribution to the l.2µm peak in PPV/PVP must be 

less than 13% of the observed level, or at most 0.05cm-1 in Figure 3.1. 

The peak just below lµm is a factor of 12 smaller than the l .45µm peak in 

PPV /PVP, and a factor of 45 smaller for the corresponding peaks in water. Thus, if 

water dominated the 1.45µm peak in the PPV/PVP, it could contribute up to 27% to the 

lower peak. The 1.19µm peak in the PPV /PVP spectrum is therefore the least influenced 
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Figure 3.4 Absorption spectrum of water, as measured by the 
spectrophotometer using a 1mm cuvette, with spectroscopic grade 
carbon tetrachloride as the reference. 
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by water. 

The 1.17µm overtone in PMMA can be identified with the C-H stretch, 86
•
86

·
31 and 

has an absorption of 0.4 cm-1
• It is assumed that the overtone in PPV /PVP has a similar 

origin.32 

1-methyl-2-pyrrolidinone (NMP) is similar in structure to PVP, and can be used 

in fluid form in the spectrophotometer. Figure 3.5 shows the absorption spectra of NMP, 

as well as benzene and l-vinyl-2-pyrrolidinone (VPN), which has both aromatic and 

olephinic C-H stretch overtones. Benzene shows a sharp aromatic peak at 1.14µm for 

which there would be a corresponding peak in PPV, and the NMP shows the aliphatic 

stretch overtones, with a broad aliphatic peak centred at 1.I8µm. Given the large 

bandwidth being used with the photodeflection apparatus (section 2.3.1) the differences 

between these spectral structures would not be apparent ( apart from a significant 

wavelength shift) and each would contribute to an absorption band with a strength of 0.4 

+ O.lcm-1 near 1.18µm. Even the presence of up to 10% water (which has an absorption 

peak at 1.2µm of 0.6cm-1
) does not significantly change this peak in NMP (as anticipated 

from arguments above) although at longer wavelengths water has a greater effect: the pure 

water peak at 1.46µm has an absorption of 13.7 cm-1, while the 1.38µm peak in the 

spectrum of NMP has a maximum absorption of only 0.44 cm-1
• 

Thus, for the PPV/PVP samples studied here, the 1.19µm peak (Figure 3.2), 

which is the least affected by water, has been used as a calibration with an assumed 
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Figure 3.5 Benzene, NMP and VPN, measured against spectroscopic 
grade CCl4 in the spectrophotometer, showing the aromatic and 
aliphatic C-H stretch overtones at 1140nm and 1180nm. Note that 
the peaks appear sharper here than in the previous figures, which 
were plotted against a logarithmic scale. 
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absorption of 0.4 cm-1
• 

3.3 Absorption of PPV films from different precursors 

The exact characteristics of films of poly(p-phenylenevinylene) depend on the 

preparation conditions, which can affect the length of the conjugated chains and the 

presence of salts and impurities. Before proceeding to an analysis of composite films of 

PPV and poly(vinyl pyrrolidinone ), a number of different films of pure PPV prepared 

under slightly different conditions were compared in an effort to find the conditions for 

the lowest possible absorption and highest possible nonlinearity. 

The general precursor route used for the preparation of PPV was presented in 

section 2.8.1, though here a variety of solvent and base conditions were examined. 

Pre-

cursor-'1 

A 

B 

C 

D 

E 

Polymerisation Dialysis Amax rangeb Slide Thickness 

(nm) number (µm) 

water, water 453-458 Al 4 

inorganic basec 

water, water 453-458 Bl 4 

inorganic base 

50:50 water 420-430 Cl 3 .1 

water:methanol ( doctor-bladed 

inorganic base not spun) 

20:80 20:80 water: 428-430 Dl 0.85 

water:methanol methanol 

organic based 

methanol, methanol 380-400 El 4.1 

anhydrous 

inorganic base 

aLaboratory codes for precursors and slides are given in endnote 87
• 

bFrom the measurements of a series of films on the spectrophotometer. 

csodium hydroxide, NaOH 

dTetrabutylammonium hydroxide, n-Bu4NOH 

Table 3.2 Summary of different preparation conditions for PPV films. 
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These are shown in Table 3 .1, with the range for the absorption peak wavelengths of 

PPV films which were made from each precursor. On that table specific films which 

appear on Figure 3.6 and their thicknesses are also listed.88 

Figure 3.6 shows the PDS absorption spectra of PPV slides made from the 

different precursors listed in Table 3.1 . A feature of the spectra is the change in the slope 

of the absorption edge at about 540nm, as observed by Seager et al, 32 although this is less 

distinct in the polymers prepared with the water sol vent. Precursors prepared with water 

as a solvent also tend to give rise to PPV with a longer wavelength UV absorption peak 

(see Table 3.1 ). The PPV prepared using methanol alone as a solvent had the shortest 

wavelength "-max. It has been shown that the nonlinearity of the polymer measured at 

800nm decreases as the "-max decreases. 16
•
89 

The spectra shown in Figure 3.6 were calibrated for the absolute absorption 

coefficient using the 0.4cm-1 1190nm peak. With the pure PPV slides, this peak is not 

always distinct, as the background absorption is at least equal to that peak height, so the 

calibrations of some of the films in Figure 3.6 in which the peak is not extremely distinct 

may be low (but see the more distinct results in section 3.5). The 1190nm peak is most 

distinct in the films for which the precursor was prepared using methanol, in particular 

films C l and El. Seager et al. claimed a much higher absorption value at this peak - 7cm-

1, at least lcm-1 above the background absorption - and reported a minimum absorption 

value of 6cm-1
•
32 However, they did not discuss how their data was calibrated, and it 

appears that the data in question may have been calibrated using the short wavelength end 

of the spectrum (see discussion in section 3.2), even though for other of their 

measurements (figure 2 in their paper) overtones were used for the calibration. 

The lowest absorption is seen in the slide of PPV from precursor E, which was 

prepared with methanol. It was also found that the in preparing PPV with a combination 

of methanol and water as the solvent, solutions prepared using the inorganic base gave 

rise to films with specks of salts in them, and those from an organic base did not. 
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However, although the PPV prepared with methanol showed lower absorption, 

and also appeared to contain fewer scattering centres possibly because fewer salts 

recrystallise, with the much shorter Amax it also has a lower non-linearity. The precursor 

used to make composites with PVP for the analysis that follows in section 3.5 was a 

compromise: precursor D was used, with a 20:80 water:methanol ratio. 
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Figure 3.6 Absorption spectra of PPV slides prepared from different 
precursors. 
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3.4 Absorption characteristics of PVP 

Composites of poly(vinyl pyrrolidinone) with poly(p-phenylenevinylene) yield 

films which are thicker and have better optical clarity than films of pure PPV. Such films, 

with different concentrations of PPV, are the subject of the measurementsin the next 

section. In this section the characteristics of the films of pure poly(vinyl pyrrolidinone) 

(PVP) are reported, with particular attention being paid to material with different average 

molecular weights and different preparation conditions. Two studies are presented here: 

the first involving a number of PVP films which have been subject to a range of different 

environmental conditions; the second involving a series of films all prepared at the same 

time and in the same way, except for being dried under vacuum at different temperatures. 

3.4.1 Various PVP films subject to different conditions 

Samples of PVP with average molecular weights of 40,000 and 360,000 from 

Sigma-Aldrich and Fluka were studied. Table 3.2 summarises the information about the 

PVP films characterised in the first part of these tests. In each case the PVP was 

dissolved in 1-methyl-2-pyrrolidinone (NMP), spun on a Headway spin-coater, and then 

dried in a vacuum oven (refer to section 2.8.2, Preparation of PVP). 

Figure 3. 7 shows the absorption spectra for these slides, measured by 

photodeflection spectroscopy with carbon tetrachloride as the deflection medium. All 

spectra were calibrated as per the discussion in section 3.2, assuming that the 1.2 micron 

peak is due to the C-H stretch. It can immediately be seen that some of the slides ( 519, 

1010 and 1011) have the same spectra, but several of the slides have an increased 

absorption. The calibration of slides 908,479 and 907 has been shifted upwards to take 

into account the additional contribution of the background absorption to the peak at 1.2 

microns (the additional background being approximately 0.3cm-1 for slide 908 and O.lcm-

1 for slides 479 and 907). 

Figure 3 .8 shows the same absorption spectra plotted against a linear scale, which 

makes some of the features discussed below easier to discern. 
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slide PVP Ave. Cone Date of Spin Sub- Temp Thick-

number source Mol. 1Il prepar- speed strate (OC) ness 

4345 

479 

519 

907 

908 

1010 

1011 

1011B 

weight NMP1 ation 

Sigma 360,000 18% 2.11.93 

Sigma 40,000 30% 9.12.93 

Sigma 40,000 30% 18.1.94 

Fluka 40,000 30% 9.6.95 

Sigma 360,000 8% 9.6.95 

Sigma 40,000 30% 17.1.96 

Sigma 40,000 30% 17.1.96 

Sigma 40,000 30% 17.1.96 

1Solvent NMP = 1-methyl-2-pyrrolidinone 
2Silica = Fused silica substrate 
3Fisher = Fisher glass microscope slide 

(rpm) (µm) 

1500 Silica2 100 1.91 

2000 Silica 100 5.3 

2000 Silica 100 8 

400 Fisher3 210 16.5 

400 Fisher 210 1.3 

1500 Silica 110 6 

2000 Silica 110 4 

2000 Silica 110 4 

+2104 

4After 10 hours at 110°, half of the sample was re-heated to 210° for 2 hours 
5Subsequently dried again for 15 hours under vacuum at 110° on 21.4.94, 

and again for 26 hours under vacuum at 105° on 2.6.94. 

Table 3.2 Preparation conditions of PVP films. 

There appear to be two effects increasing the absorption of some of the samples. 

Firstly, the ultraviolet absorption edge has shifted towards longer wavelengths for some 

samples, most obviously in the part of slide 1011 which was heated to 210°. The 

measurement of the other part of slide 1011 does not show the same shift in the 

absorption edge. The shift in the absorption edge appears to be related to the drying 

temperature, as will be confirmed below. 
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Figure 3.7 Absorption spectra of the PVP films listed in the table 
above, calibrated for the 0.4 cm·1 absorption peak at 1190nm. 
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Figure 3.8 Linear plot of the PVP absorption spectra, showing an 
increased absorption floor on some of the samples. 
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Secondly, there is an background absorption level which is seen to rise in some samples, 

in the region between 0.8 and 1.1 microns. On the linear scale (Figure 3.8) it appears that 

the shape of the absorption features is essentially the same for all slides, but some of them 

are at higher levels. The two freshest slides, 1010 and 1011 , do not show the increased 

background absorption, and nor does slide number 519 which was prepared in the same 

way. The lowest absorption levels are repeatable within a particular batch. Slide 479, 

which was of a different batch prepared in the same way shows some increased 

absorption, suggesting contamination. Increased absorption was seen in the Fluka 

40,000 average molecular weight PVP heated to 210°, the Sigma-Aldrich 360,000 

molecular weight films heated to 210° and, to a lesser extent, the 360,000 average 

molecular weight film heated to 100°C. 

The effect of heating on the absorption spectrum is the subject of the next series of 

experiments reported below. PVP from Sigma-Aldrich with an average molecular weight 

of 40,000, which showed the lowest levels of absorption in the 600-900nm wavelength 

range, was selected for use for the further experiments reported here and for the 

preparation of PPV /PVP composite films. 

3.4.2 PVP films heated to different temperatures 

Following the results reported above for PVP slides prepared under a variety of 

conditions, further experiments were performed to measure the specific effect of drying 

temperature on PVP films. The glass transition temperature for anhydrous PVP is 

reported in the literature as being 17 5°C, and decreasing with water content ( at 10% water 

by weight, Tg:::: 80°C).90 

The films for this series of experiments were prepared from Sigma-Aldrich PVP 

with an average molecular weight of 40,000. The polymer was dissolved in NMP to a 

30% concentration by weight, filtered with a 0.2µm PTFE (teflon) filter, 91 and spun onto 

Fisher glass microscope slides on the Headway Spin Coater at 2000rpm for 40 seconds in 

air. All were dried in the oven under vacuum at 100°, and then one film was removed.92 

The remainder were heated for a further 2 hours at 130° under vacuum, and then another 

film was removed. A third was removed after heating to 160° for 2 hours; a fourth after 

beating to 190°, and a fifth after heating to 210°. Using the Metricon Prism Coupler, 

these films were all found to be approximately 3.1 + 0.1 µm thick.93 
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Figure 3.9 Absorption spectra from a series of PVP films dried at 
different temperatures. 

Figure 3.9 shows the results from the second series of films, calibrated in the 

same way as in section 3.4.1. 

All of this batch of films show a broad high absorption in the 0.7µm to 1.4µm 

region. 

The ultraviolet absorption edge was essentially constant for the 130° and 160° 

slides, but the short wavelength absorption tail increased progressively for the slides 
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Figure 3.10 Spectrophotometer measurements of the absorption spectra 
of PVP films dried at different temperatures. 
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heated to 190° and 210°, above Tg = 175°C. The spectra for the lower temperature slides 

show noise since the absorption was small and the PDS pump lamp power is low in this 

region. Figure 3 .10 shows the difference between these films as measured by the 

spectrophotometer, though since the films are so thin (3. lµm) only the region of stronger 

absorption at wavelengths shorter than those reached by the photodeflection spectroscopy 

system is clear. 

The large background absorption is perhaps due to some impurity common to this 

series of samples. All had been kept under the same conditions, out of the light and in a 

nitrogen rich atmosphere, in the 2 months between preparation and measurement. A 

repetition of the measurement of slide 1011 from the previous series of measurements 

showed that it still had a low background absorption after 11 months of being kept in 

darkness but in air. 

Overall, the results from section 3.4.1 indicate the absorption of Sigma-Aldrich 

PVP with an average molecular weight of 40,000 can have absorption as low as 0.01 cm-1 

in the 800nm region. Some batches of films of PVP show an increased background 

absorption, which is most likely related to contamination. The absorption in the tail from 

the ultra-violet absorption edge is sensitive to the drying temperature used for the films, 

increasing with temperature above around 175°. However, in general, PVP should have 

sufficiently low absorption to be an excellent low loss waveguide material and host for 

PPV. 

3.5 Measurements of PPV / PVP composites. 

3.5 .1 Introduction 

Pure poly(p-phenylenevinylene) (PPV) is difficult to prepare for waveguides the 

order of 1 micron thick, and whilst it has a high third-order nonlinearity,16 it has 

propagation losses at 633nm and 810nm of the order of 5dB/cm. However, by taking 

advantage of the precursor route which allows it to be blended with another matrix 

polymer, poly(vinyl pyrrolidinone) (PVP), the physical and optical properties can be 

improved ( see the Introduction, section 1.1). 

The PPV precursor which was used for these measurements was prepared using 

20:80 ratio of water:methanol during the polymerisation and tetrabutylammonium 
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hydroxide as the base, as shown in section 3.3 (precursor D). The PVP used was from 

Sigma-Aldrich, with average molecular weight 40,000 (section 3.4). In this section, 

photodeflection spectroscopy measurements of the absorption spectra of PPV /PVP 

composite materials are presented, and compared with the total waveguide losses for 

those materials. It was found that the waveguide losses are dominated by factors other 

than material absorption. 

Three series of composite films were prepared, each having a series of different 

concentrations of PPV in PVP. The first series of films were heated under vacuum in a 

vacuum oven which was brought up to 130°C over 2 hours, and then kept at 130°C for 3 

hours, to allow for conversion of the PPV and drying. The second series was heated to 

150°C over the same time span, and the third to 200°C. 

All of the photodeflection spectroscopy measurements reported here were made 

using carbon tetrachloride as the deflection medium. 

3.5.2 Photodeflection Spectroscopy Results 

Figure 3 .11 shows the absorption spectra of the series of PPV / PVP films which 

were heated to 130°C. Calibration was made using the 1. l 9µm peak; as discussed in 

section 3.2, both PPV and PVP make approximately equal contributions to the peak at 

1. l 9µm, and the 0-H stretch overtone for water can give an error of at most 13 % to that 

peak, even if the 1.45µm peak is dominated by water. 

It can be seen that the tail from the ultra-violet absorption increases with increasing 

content of PPV. The film containing a 4 7 .2 % concentration of PPV in PVP has a large 

background absorption from that tail around the 1.19µm peak, which must be accounted 

for in the calibration: the 1.19µm peak will be higher than 0.4cm-1 because of the 

contribution of the tail to the absorption there. Thus that spectrum, and others similarly in 

Figures 3.11, 3.12 and 3.13 are calibrated at above the 0.4cm-1 peak. 

The absorption increases with increasing concentration of PPV in PVP. For the 

films of pure PPV, the 1.19µm peak is no longer distinguishable, and so a calibration 

cannot be made. The pure PPV spectra are therefore not precisely calibrated, but 

positioned by extrapolation of the increasing absorption in the 0.6 - 1.0µm region. Some 

of the spectra saturate at different levels in the short wavelength region of the spectrum, as 

a result of the films having different thicknesses (see section 2.2.5). The absorption 
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spectra for the series of films heated to 150°C and 200°C are shown in Figure 3 .12 and 

Figure 3 .1 3 respectively. 

A general feature of all these data is the presence of an absorption minimum 

around 1100nm. In samples dried at the lower temperatures the losses in this region are 

only z 0.1 cm-1 for PPV contents of up to 10%. This is a promising result, if films 

dominated by absorption losses alone could be prepared, especially since separate 

measurements of the optical nonlinearity of PPV /PVP composites indicate that at doping 

levels of 5-40% PPV, these composites have favourable nonlinear optical properties (best 

at around 20% ). 18 
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Figure 3.11 PPV in PVP series heated to 130 degrees. The legend is 
in the same order as the lines appear on the graph. 
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Figure 3.13 PPV in PVP series heated to 200 degrees. 
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3.5.3 Comparison with Total Loss Measurements 

The total waveguiding losses in the above films were measured by coupling light 

at 633 and 810nm into them, and 1neasuring the decay in the scattering of the light from 

the waveguide with distance from the in-coupling point. The preparation for this method 

was discussed in section 2.9. The data used here for the total losses were measured by 

Dr. A. Samoc of the Laser Physics Centre at the A.N. U. These measurements are given 

in Table 3.3-Table 3.5. On the same tables are recorded the absorption losses as 

measured by photodeflection spectroscopy above at the same wavelengths. The results 

are plotted in the following graphs. 

Note that propagation could not be achieved in all films; and hence loss 

measurements were not obtained for all films. The photodeflection spectroscopy 

measurements of the absorption of the 100% PPV films have been omitted from the tables 

because of the difficulty in calibrating the absorption spectra when the 1.19µm peak is not 

distinct. Some data are not available due to shortages of precursor. 

The comparative loss data is graphed in Figures 3 .14-16, showing for each series 

the total losses and the absorption losses at 633nm and 810nm, as a function of 

concentration of PPV in PVP. The data are graphed as losses in dB/cm rather than as 

absorption in cm-1
• 
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PPV inPVP Total loss Absorption loss Total loss Absorption loss 

Cone.(%) 633nm (dB/cm) 633nm (dB/cm) 810nm (dB/cm) 810nm (dB/cm) 

0 .44 .37 

2.53 2.8 .35 

3 .1 2.3,2.2 2.4 2.7 .39 

4.96 9 5.8 3.6 1.6 

10 28.7,30.3 11 6.3 1.8 

19 27 3.9 

47 48 8.9 

Table 3.3 Loss data for films heated to 130 degrees. 

PPV inPVP Total loss Absorption loss Total loss Absorption loss 

Cone.(%) 633nm (dB/cm) 633nm (dB/cm) 810nm (dB/cm) 810nm (dB/cm) 

2.53 5.4 ,6.4 4.1 3.2,4 .9 .94 

4.96 18.9,19.1 3.4 8.1 ,8.6 .90 

10 44.5 ,45 10 

19 24 18.5 ,21 ,27,27.5 4.7 

47.2 110 21 

Table 3.4 Loss data for films heated to 150 degrees. 

PPV inPVP Total loss Absorption loss Total loss Absorption loss 

Cone. (%) 633nm (dB/cm) 633nm (dB/cm) 810nm (dB/cm) 810nm (dB/cm) 

3.1 3.4 5.5 1.3 1.4 

4.96 8.8 2.5 

19 28 46 11 

47 70 23 

Table 3.5 Loss data for films heated to 200 degrees. 
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Figure 3.14 Absorption and Total Losses in 130 degree series of PPV/PVP 
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Figure 3 .13, which shows the absorption and total losses for the series of 

PPV/PVP films heated to 130°C, shows that both at 633nm and at 810nm, the 

absorption losses are much lower than the total losses found in propagation in the 

waveguide - by a factor of approximately 2. Thus the losses in the waveguides are 

dominated by factors other than absorption. However, the total losses nevertheless 

increase with the concentration of PPV in PVP, which implies that they are caused by 

scattering from impurities associated with the PPV or from crystalline scattering centres. 

The films dried and converted at 150°C, for which the results are graphed in 

Figure 3.14, also show total losses much greater than the absorption losses, as do the 

films prepared at 200°C. The total losses for the 150° series are generally higher than for 

the 130° series, although the absorption losses are not much different particularly for 

lower concentrations of PPV in PVP. The 200° series appears to have lower losses than 

the 150° films, but the films heated to 200° tended to be much thinner ( especially for 

greater than 20% concentration of PPV) and so the data has more noise, was more 

difficult to calibrate, and fewer waveguiding measurements of the total propagation losses 

were possible. 

The conclusion from the films prepared at each of the above temperatures is that 

the losses in the composite PPV /PVP films have a greater contribution to their total loss 

from scattering from impurities or crystallinity associated with the PPV, rather than 

material absorption of the PPV itself. The ratio of total losses to absorptive losses ranges 

betwen a factor of 2 to around one order of magnitude depending on the PPV 

concentration. As a result, factors which influence scattering losses within PPV-PVP 

composities will be the subject of further study with the aim of improving the quality of 

these materials for waveguide applications. Factors within the precursor preparation 

process such as the creation of insoluble impurities have subsequently been identified 

which may lead to these large scattering losses. 
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4. Conclusion 

Poly(p-phenylenevinylene) has been the subject of much interest since its high 

third order nonlinearity makes it a potential candidate for nonlinear optical switching 

devices. It is being studied as a composite with a host matrix of poly(vinyl 

pyrrolidinone ), for the better wave guiding properties that the latter provides. A limiting 

factor in the development of this material into useful devices is the amount of loss in the 

material: this thesis documents the use of photodeflection spectroscopy to determine 

whether the losses in PPV /PVP wave guiding films were dominated by absorption losses 

intrinsic to the material, or other causes such as scattering which may be alleviated by 

attention to the physical conditions under which the material is prepared. 

With a photodeflection spectroscopy apparatus constructed for this purpose, 

measurements were made of PPV, PVP and composite films. The PPV films were 

prepared by the sulfonium salt precursor route. Measurements made by photodeflection 

spectroscopy, as well as measurements of the nonlinearities performed by other members 

of the group at the Laser Physics Centre, determined that the precursor prepared using a 

20:80 ratio of water:methanol as the solution in which the bis-sulfonium salt monomer 

was polymerised was the best one for continued study. 

Studies of PVP showed that some batches suffered from contamination, but 

absorptions as low as O.Olcm-1 in the 800nm region were recorded for the PVP chosen 

for use in the composites. It was found that heating the films above about 175°C resulted 

in an increase in the absorption in the 400-600nm region by up to an order of magnitude, 

though that increased absorption is still at least 2 orders of magnitude lower than the 

absorption of PPV in that region. 

Measurements of the absorption characteristics of composite PPV /PVP films of 

different concentrations, having been converted and dried at different temperatures, 

showed that the absorption losses in the films were much lower than the total losses for 

633nm and 810nm light propagating in the waveguiding films. The total losses 

nevertheless depend on the concentration of PPV in the composite, and so appear to be 

due to scattering from impurities associated with the preparation of PPV or from 

crystalline centres formed during the conversion process; the latter has indeed been the 

focus of a number of recent papers. 94 

A useful direction for further work with the photodeflection spectroscopy system 

would be the extension of its wavelength range to include longer wavelengths, enabling 

films to be calibrated with the stronger overtones which are found there. This would be 
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particularly useful for measurements of films of pure PPV, for which the base absorption 

was at least as high as the 1.19 and 1.45µm overtones, and which thus usually had to be 

calibrated by extrapolation from the films of lower concentrations of PPV. 

Finding that the losses in the composite PPV /PVP films are dominated by causes 

other than absorption shows that the direction for further investigation of loss reduction in 

these films will be in attention to the PPV preparation process, and means that loss 

reductions may be achieved to make this a material suitable for practical nonlinear optical 

waveguide device purposes. 

82 

l 
Ji 

' ~ 

l,' 
j 



I 

I 
, 1 

' 
I 

i 
I 

I ,-
1,, 

Iii 

/,, 

I,, 

Appendix A. 

Operating and Maintenance Guide for the 
Photodeflection Spectroscopy apparatus 

1 

Xe Arc Lamp 

HeNe Laser 

Stepper Motor 
Controller 

Chopper Monochromator 

Sample 

Position sensitive detector 

_____ _.. D ..._____. 

Computer 
Control 

Lock-in Amplifier 

Schematic Diagram of Photodeflection Spectroscopy System. 

System Preparation 

1. 1 The system requires power for the following items: Xenon arc lamp, 

chopper, stepper motor, laser, detector (with battery recharger), Krohn­

Hite band-pass filter, CRO, lockin amplifier, computer. A schematic 

diagram of the system is shown above (the Krohn-Hite and CRO can be 

inserted between the detector and the lockin amplifier). 

1. 2 Turn on power supply to chopper. This should be running at 30 Hz. 

1. 3 With the chopper on, turn on power supply to Xenon arc lamp, and ignite 

it. The power level should be adjusted to 300W. The lamp should not be 

operated far from the 300W level for any extended period. 
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1. 4 Tum on power supply to stepper motor control box. Ideally this should 

never be turned off, so that wavelength calibration cannot accidentally be 

lost. 

1. 5 Tum on the laser. 

1.6 Tum on CRO, Lockin-amplifier, and computer. 

1. 7 Tum on the detector. 

1. 8 Launch the application "PDS version 2" on the computer. If an error 

comes up regarding wavelength calibration, choose 

MONOCHROMATOR under the SETUP menu, click the CALIBRATE 

button, and enter the correct current wavelength passing through the 

monochromator. 

Sample Preparation 

2. 1 Air-mounted samples 

2.1.1 Fasten the spring-clip stand on top of the height-adjustable stage. 

2.1.2 Samples the size of microscope slides (l"x3") can be mounted and 

held by the spring clips. 

2. 1. 3 Raise the sample until the laser beam barely begins to visibly 

diffract on the top of the sample, as seen on the detector. 

2. 1. 4 Adjust the mirror to ensure that the laser spot is near the centre of 

the detector. 

2. 2 CC14 mounted samples 

2. 2. 1 Fasten the correct mount to the adjustable-height stage. 

2.2.2 Place the cut sample in the CC14 sample-mounting container, secure 

it in place, and fill with CC14, taking care with respect to fumes and 

spillages (see safety data sheets). Shake or move the mounted 

sample to release any trapped air-bubbles beneath the sample. 

2. 2. 3 Place the container in the platform. The mounting clamps ensure 

that the angles of the windows prevent interfering reflections at the 

detector. 

2.2.4 Adjust the mirror, if necessary, to ensure that the laser spot is near 

the centre of the detector. 

2. 2. 5 Raise the sample stage until diffraction of the laser beam from the 

top surface of the sample can be seen on the detector, and then drop 

back slightly. 

3 Adjustments 
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3.1 Under the SETUP menu on the computer, the Start Wavelength, Stop 

Wavelength and Wavelength step size can be selected and changed. They 

can also be changed by double-clicking on the corresponding displays on 

the screen (you must double-click, and not just select the display. A 

dialogue box will appear asking for the change). 

3.2 

3.3 

Press the LOCKIN button on the screen ( or select LOCKIN under the 

SETUP menu) to obtain information about the Lockin-amplifier setup. 

The time constant should be set at around 3 seconds. 

Under the SETUP menu, the Pause-Time can be adjusted. This is the time 

for which the program waits after the monochromator has moved to a new 

wavelength before the data is recorded. This allows for the settling time of 

the Lockin-amplifier. The Pause-Time should be set for at least 8 times the 

lockin time constant. 

3.4 The DIRECTION of the data collection run, either from short to long 

wavelength or in reverse, can also be set under the SETUP menu. 

3. 5 Checking the signals: 

3. 5.1 To move the monochromator to look at a particular wavelength, 

either (a) double click on the wavelength display, or (b) click on the 

MONOCHROMATOR button, and then click on the GOTO button. 

Either way will bring up a window asking which wavelength to 

move to. After entering the wavelength, wait while the computer 

makes the adjustment. It may take several separate movements of 

the stepper motors. 

3.5.2 To adjust the gain of the lockin, click the "A" button or the ' 'V' 

button to raise or lower the gain, or the LEVEL button for the gain 

to adjust itself into a suitable range. This may take a few seconds. 

4 Collecting Data 

4.1 Press the START button. 

4. 2 The collection is now automatic, including gain adjustments on the lockin -

amplifier. 

4.3 The program can be interrupted by pressing the PAUSE button. Changes 

can then be made to any of the display or setup features (the display may 

not appear fully changed until another data point is collected.) The 

program can be then made to continue by clicking ST ART, or abandoned 

altogether by clicking RESET. 
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4.4 While the computer is waiting for the lockin to settle between collecting 

data points, a "Pause" window is shown on the screen. There is a button 

on that window which can be clicked to cut short the pause and collect the 

current data-point immediately, and another button to extend the pause in 

case the detector or lockin is disturbed. 

4. 5 If the lockin registers an error during the pause before collecting a data 

point, such as a noise spike, that particular point of data is rejected and the 

system is paused again to allow the lockin to re-settle and make another 

reading. 

4. 6 Once the data collection is finished, a reminder will appear to save the data. 

The data can be saved to disk by selecting SA VE under the FILE menu. 

Data can be saved in either ASCII format (useful for transfer to other 

graphics programs) or BINARY format (when disk space is low). 

4. 7 ASCII files are given the extension .PDA; binary files the extension .PDS. 

5 Calibration 

5. 1 If there is a data file made by collecting the data from a "black absorber," 

use the method outlined in 5 .3 below; the following point outlines how to 

create such a file. 

5. 2 Calibrating a run of data with a "black absorber" data file 

5.2.1 Under the NORMALISE menu, several files are named. If you 

wish to calibrate with one of those files, choose it. 

5.2.2 If you wish to calibrate with a different file, select "Calibrate for 

Lamp Power by File" under the NORMALISE menu, and then 

enter the name of the file by which to calibrate. 1 

5.2.3 The calibration is then done automatically. It amounts to dividing 

the data collected by the particular sample by the data collected on a 

black absorber, so that the differenced in the illuminating power 

from the Xenon lamp through the optical system at different 

wavelengths can be accounted for. 

5.2.4 Calibrated data can then also be saved to disk (choose SA VE). 

5. 2. 5 To display both calibrated and uncalibrated data at once, see the 

instructions under "Display" 

5. 3 Creating a "black absorber" data file 

1 The file "CarbonD4.PDS" is the latest version for use at the time of printing. 
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5.3.1 Use as a sample a microscope slide (or PES slide) covered with 

soot. Black carbon pellets are suitable for use under carbon 

tetrachloride. 

5. 3. 2 Follow the standard collection procedure outlined above, but taking 

care that the signal is not so strong as to overload the lockin input. 

The signal strength can be lowered by lowering the sample stage 

with respect to the laser, or by slightly reducing the lamp power. 

5. 3. 3 Save the data file as usual. It can then be used to calibrate data as 

above. 

Display 

6.1 The graphs can be shown in either logarithmic or linear plots (under 

STYLE on the GRAPH menu). 

6.2 The data points can be either all shown on the graph, or suppressed 

(choose either POINTS AND LINES or LINE GRAPH under STYLE on 

the GRAPH menu. 

6.3 The Wavelength range of the graph can be adjusted under the RANGE 

option. 

6. 4 Loading graphs: Choose LOAD under the file menu. Files with a .PDS 

extension are automatically assumed to be binary files, and files with a 

.PDA extension are assumed to be ASCII files. 

6. 5 Overplotting graphs: To show several graphs at once, choose OVERPLOT 

to plot another graph over the top of previous graphs shown. Up to five 

graphs can be shown at once. 

6. 6 New data is always collected into the last opened channel. Thus if one 

graph is shown on the screen, it is written over ( on the display) by a new 

data collection run. If two graphs are shown on the screen, the second 

graph is overwritten by any new collection of data. 

6. 7 To go back to a single graph on the screen, select CLEAR and REPLOT 

under the GRAPH menu. 

6.8 Graphs can be multiplied by constant factors under the NORMALISE 

menu. 

6. 9 Raw data which is loaded for display can be calibrated after loading under 

the NORMALISE menu in the way described for calibration above. 

6. 10 Graphs can be printed by selecting PRINT under the graph menu. The 

computer may be set up to print graphs to disk, or directly to a printer . 
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