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Abstract 

This thesis deals with the control of a pendulum using extended Kalman filtering. In 

particular, it considers the tracking control of the pendulum using estimated states, for 

which a discrete extended Kalman filtering approach based on the tensor techniques 

is proposed. Three sensors, an encoder, a rate-gyro and a tilt-sensor are analysed for 

providing the 1neasurements for the estimation of the states of the pendulum and the 

feasibility of employing these sensors, subject to various factors such as cost, estimation 

accuracy etc. is discussed. The estimation approach developed is more nu1nerically 

efficient than the standard extended Kahnan filtering approach. A linear Kalman 

filtering approach is also developed based on a linearised model of the pendulum and it 

is shown that the extended Kalman filtering approach is to be preferred both in terms 

of estimation and control accuracy. 
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Chapter 1 

Introduction 

1.1 Background and Motivation 

The field of robotics combines the traditional engineering disciplines of mechanical engi­

neering, electrical engineering and computer science. It is a highly multidisciplinary ap­

plication in the areas of controls, computers (both the hardware and software aspects), 

measurement technology (i .e., sensors), pattern-recognition techniques and hard ware 

(e .g ., vision systems) and various aspects of 1nechanical engineering, including statics, 

dyna1nics, kinematics and 1nechanical design. This follows from the four major com­

ponents contained in most robotic systems today namely the manipulator, the power 

conversion unit, the sensory devices and the computer control system [K+ 89]. 

The present-day performance and stability requirements on robotic systems has neces­

sitated the design of control methods that take into account the full nonlinear model 

dynamics . In the early days, the mechanical construction in robotic systems was over­

designed in the sense that heavy, and consequently, rigid links together with high-gear 

trans1nission mechanisms were employed. These old-fashioned robot systems do not 

satisfy the requirements of today for two main reasons: First, to achieve reasonable 

velocities, these heavy systems need high power actuation which is unattractive both 

fro1n the economic and environmental point of view. Second, the need for high-gear 

1 



I 

.I 
I, 

j .. 

"' 

Chapter 1. Introduction 2 

transmissions introduces many parasitic effects such as flexibility, friction and backlash, 

which impose severe li1nitations on performance and accuracy among other factors. To 

overcome these deficiencies, there has been a need to develop light-weight robot con­

structions actuated by direct-drive motors. The dynamics characterising such systems 

are, however, highly nonlinear. So for good motion control over the complete operation 

space, one has to take into account the nonlinear effects that are either directly, or 

consequentially associated with the dynamics of the system under consideration. 

In order to determine whether or not a system is performing properly, and ultimately 

to control the syste1n performance, the behaviour of the syste1n at any given instant of 

ti1ne must be known, or in other words, the states of the system must be known. For 

example, in robotics, the state usually consists of position an.cl velocity of the robotic 

arm under consideration. In order to determine the state or states of a system, a 

measuring device or devices called sensors which collect measurements (observations) 

of the system are required . Sensory devices may monitor position, speed, acceleration 

or torque. Typically, the sensor is connected to the actuator shaft. However, it could 

also be coupled to the output of the transmission. Sensory devices are elements that 

inform the robot controller about the status of the manipulator. This can be done con­

tinuously or only at the end of the desired motion. For instance, in some robots, the 

sensors provide instantaneous position, velocity and possibly acceleration information 

about the individual links that can be fed back to the control unit to produce the proper 

control of the mechanical system. More simply, the controller can be informed only 

when the individual links of the manipulator have reached the desired end positions. 

These sensory devices are normally corrupted by noise by the electronic and 1nechan­

ical components associated with the measuring device. The problem of determining 

the states of a system from noisy observations is called state estimation. It is of great 

importance in engineering since the states are not always directly accessible. So with 

the available states, it may be possible to reconstruct the missing states. This is the 

case in most of the industrial applications today, though theoretically it is possible to 

assign sensors to measure a particular state but it may not be a viable option in the 
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sense that, it might increase the cost and time constraints by a significant factor. So 

estimation of states is almost imperative both from a practical and a theoretical point 

of view (in that it might not be feasible to assign sensors for measuring all the states). 

The correct execution of the end effector motion is entrusted to the control system 

which will provide the joint actuators of the manipulator with the commands consis­

tent with the desired motion trajectory. Control of end effector motion depends on an 

accurate analysis of the characteristics of the mechanical structure, actuators and sen­

sors. The control methods may be classified according to the objective that is defined 

for the end-effector of the robot. One frequently encountered objective in robot control 

is point-point-control, also known as regulation, though this objective is rather restric­

tive. For this reason, the trajectory tracking or motion control objective for robots 

has become increasingly popular, since it significantly extends the application area of 

robots [Ber94]. For instance, current applications like welding, painting and grinding as 

well as future applications like sea-mineral processing and space station repair require 

1notion control. For the proper control of the robot, either the states or at least the 

estimated states should be available for designing the proper control scheme that will 

help in achieving the desired goal. Since the dynamics of a robot are highly nonlinear, 

the estimation approach is not as simple as in the linear case. Though linearisation of 

the nonlinear system for a particular operating point is acceptable, no linearisation that 

is valid for all regions can be found. Therefore it is important that if the nonlinearity 

can be included in the system model, and the approach that is employed for the state 

estimation takes into consideration this nonlinearity. 

Motivated by these considerations, this thesis deals with the control of a pendulum 

which takes into consideration the nonlinearity in the model when estimating the states. 

Tracking control of the pendulum is then accomplished using the estimated states. 
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1.2 Problem Formulation 

This thesis concentrates on one specific but important class of nonlinear systems that 

arises when modelling a pendulum . A large number of mechanical syste1ns approxi­

mately fall into this category. For example, a single-link of a robot can be modelled 

as a pendulum with the mass concentrated at a point. The pendulum is considered in 

the down position ( as opposed to the upright position whose equilibrium point is un­

stable) corresponding to its stable equilibrium position. The pendulum system can be 

equipped with different sensors for the position and velocity (angular) measurements. 

Particular sensors that can be used for this purpose are the encoder, the rate-gyro and 

the tilt-sensor. Five distinct combinations of sensors are considered as follows: 

1. Pendulum model with measurements fro1n an encoder, 

ii. Pendulum model with measurements from a rate-gyro, 

111. Pendulum model with measurements from an encoder and a rate-gyro, 

1v. Pendulum model with measurements fro1n a tilt-sensor and 

v. Pendulum 1nodel with measure1nents from a rate-gyro and a tilt-sensor. 

The best choice of sensor configuration will depend on various considerations such as 

cost, estimation accuracy and feasibility of e1nploying a particular sensor with respect 

to a particular application. Based on the foregoing considerations, the objectives of 

this thesis are threefold: 

Firstly, the pendulum (one link robot manipulator) is to be modelled as a mech­

anism that is instrumented with a sensor ( either the encoder or the tilt-sensor) 

to measure the joint angle or the joint velocity (rate-gyro) or both ( either the 

encoder and rate-gyro combination or the tilt-sensor and rate-gyro combination) 

and an actuator. Models that provide an accurate representation of the sensors 

are essential if the information provided by the sensors is to be used effectively. 

To 1nake best use of the sensing system, it is important to have a detailed un­

derstanding of both the physics of the devices and the sources of error associated 

with the operation of the sensors . The values of the parameters associated with 
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the pendulum and the combined pendulum and tilt-sensor models are also usually 

unavailable, and therefore have to be determined. 

Secondly, having adequately modelled the pendulum and having determined the 

factors that influence the operation of the sensors and the actuator, the problem 

of estimating the states of the pendulum with the measurements provided by each 

of the possible sensor combination will be considered and the necessary estima­

tion approaches will be developed for each case. As indicated earlier, nonlinear 

estimation strategies are more complex and involved than in the linear case. The 

extended Kalman filtering extends the principles for the design of a linear Kalman 

filter to a nonlinear problem. In particular, two types of filtering, the standard 

extended Kalman filtering and the developed discrete extended Kalman filtering 

will be compared with respect to the numerical efficiency of the approaches. Also 

a linear Kalman filtering approach will be considered based on a linearised pen­

dulum 1nodel. The two types of extended Kalman filters will then be compared 

with the linear Kalman filter in order to quantify the improvement in estimation 

accuracy at higher swing-angles. 

Finally, it will be shown how the estimates that are obtained using the various 

estimation schemes discussed, can be employed in an effective way to achieve 

desired robotic control. In particular, it will be shown that the discrete-estimator 

based controller using a nonlinear pendulum model will not require any hardware 

modifications nor significant increase in computational power. 

1.3 Contributions of the Thesis 

The Thesis deals with the modelling, estimation and control of a simple pendulu1n 

about its stable equilibrium position. The state estimation and control are achieved 

and demonstrated via a simulation study. The states are estimated by employing a 

linear Kalman filter and three extended Kalman filters using measurements obtained 

from various sensor inputs. The sensors considered for this purpose are the encoder, 
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the rate-gyro and the tilt-sensor. The nonlinearity of the pendulum is modelled by 

using the Volterra series approximations. Control of the pendulum is then effected by 

using the internal model principle and the feedback linearisation technique, where the 

estimated states obtained by the proposed methods are employed. The whole discrete 

estimator based controller has the advantage of increased computational speed and 

does not demand any additional hardware configurations. 

The Volterra functional representation has very often been used in the identification of 

nonlinear systems. The class of systems to which this has been successfully applied is 

one in which an analytical nonlinearity is interposed between two linear systems that 

are connected in cascade, and is referred to as the extended generalised Wiener model 

structure. However, to the author's knowledge, though the Volt erra series and the ten­

sor theory have been utilised in the analysis and identification of systems arising in 

communication and control, no significant attempt has yet been made to use them in 

conjunction with the discrete extended Kalman filtering algorithm for the state estima­

tion of a nonlinear time-invariant system with emphasis on reducing the computational 

complexities. 

This thesis demonstrates the versatility of the tensor techniques when combined with 

the Volterra series and the discrete extended Kalman filtering approach in estiinating 

the states of a nonlinear model. The method developed is a general method applicable 

to models of any order and it uses the state space representation and thus can be 

easily implemented on a digital computer. The pendulum and the combined pendulum 

and tilt-sensor models serve as good examples demonstrating the advantages of the 

developed approach. This approach will be shown to be more numerically efficient 

than the standard extended Kalman filtering approach by a significant factor. 
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1.4 Organisation of the Thesis 

Chapter 2 considers the modelling aspects. The equation describing the motion of the 

pendulum and the physics of the sensors and the actuator are discussed. Reasons for 

e1nploying nonlinear analysis instead of the linearisation techniques are discussed, and 

it is shown how the inclusion of the nonlinearity of the pendulum is important for 

higher-swing angles of the pendulum. A parameter estimation algorithm is developed 

for identifying the pendulum and the tilt-sensor parameters. The concept of vector 

homogenous forms is introduced next and the ZOH equivalence of polynomic nonlinear 

systems is presented. The Volterra series representations of both the pendulum model 

and the combined pendulum and tilt-sensor models are derived. The experiments with 

the sensors and the actuator are also presented. 

Chapter 3 presents the state estimation problem. It starts with a general introduction 

to Kalman filtering. A discrete-time linear Kalman filter, LKF, is em ployed for the state 

esti1nation of the pendulum and the results corresponding to the linear filtering case are 

presented. A general introduction to nonlinear filtering using the standard extended 

Kalman filtering approach and the difficulties associated with the nonlinear filtering 

are discussed next. An extended Kalman filter, EK Fl, is then used for the state esti­

mation where the involved computations in the implementation of this approach and 

the associated co1nputational burdens are discussed. This is followed by the develop­

ment of input-output relationships for polynomic nonlinear systems at discrete-time 

instants and the development of discrete extended Kalman filtering (EKF2 and EKF3) 

approaches based on such input-output relationships. It is then demonstrated how this 

approach can reduce the co1nputational burden and so result in an increase in the com­

putational speed. The results are presented for each sensor case. When the tilt-sensor 

is included, the combined model becomes a third-order model because of the tilt-sensor 

dynamics. The EKF2 and EKF3 approaches are then extended to the third-order case 

and thus it is shown that this approach can be extended to models of any order with 

the appropriate inclusions. A thorough treatment of the computations involved in the 
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implementation of the EKF2 and EKF3 approaches are presented and the results are 

compared with the standard EKFl approach. The corresponding simulation and the 

estimation error variance results are also included. 

Chapter 4 deals with the tracking control of the pendulum. Using the estimates ob­

tained by the techniques developed in Chapter 3, the output of the pendulum model is 

made to track a pre-specified, time-varying reference trajectory. The control strategy 

( as opposed to the strategy for state estimation) is based on the feed back linearisation 

technique which attempts to cancel the nonlinearity of the model using the esti1nates 

obtained by the state estimator. An application of the internal model principle for 

linear control design provides the structure for the generation of the reference signals. 

The corresponding simulation results and the tracking error variances are also provided. 

Chapter 5 summarises the results along with directions for further research. 

1.5 Notations 

The following notations are used in this thesis. 

Bold-faced quantities 

Vectors and matrices are denoted by small and capital bold-faced letters respec­

tively. For example, x denotes a vector whereas X denotes a matrix. 

Matrix notations 

Transpose 

xT and xT denote the transpose of the vector x and the matrix X respec­

tively. 

Inverse 

x-1 indicates the inverse of the non-singular square matrix X. 

Identity matrix 

In denotes an identity matrix of order n. 
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For example, the identity matrix of order 2 is given by 

12 = ( ~ ~ ) 
Mathematical notations 

Dot notation for derivatives with respect to time 
. .. 

f (t) and f (t) are used to denote the first two derivatives off with respect 

to time, t. Alternatively, the first derivative is also denoted by ft(!). 

Partial derivative 

aax indicates the partial derivative of x with respect to X1. 
X1 

Approximation 

~ means approximately equal to. 

Not equal to 

#- means not equal to. 

Equivalent to 

means equivalent to. 

Mathematical expectation 

~ indicates the mathematical expectation operator. 

Random variable notation 

The notation x r-v N ( m, P) indicates that x is a Gaussian ( normal) random 

vector with mean m and covariance P. For example, a one-dimensional 

random process x with mean m and standard deviation a is denoted by 

x r-v N(m, a 2
). 

For all 

V means for all. For exa1nple, xj = 3 V j and k means xj = 3 for all values 

of j and k. 

If and only if 

iff indicates if and only if. 
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Norm 

1 lxll denotes the 2-norm of x. 

Vector homogenous form 

x[P] represents a vector homogenous form of degree p such that 

llx[P]II§ = llxll;P. 

For example, if x = ( :: ) , then x[3l = 

Kalman filter abbreviations 

LKF 

x3 
1 

vf2xtx2 

vf2x1X§ 

x3 
2 

10 

This is a linear discrete-time Kalman filter. The plant model is continuous 

and the measurement model is discrete. 

EKF1 

This is an extended Kalman filter with a continuous-time plant model and a 

discrete-time measurement model where the nonlinearity in the plant model 

is a sinusoid. Both the state estimate and error covariance propagations are 

done once in every ~Ts instants. 

EKF2 

This is an extended Kalman filter with a continuous-time plant model and a 

discrete-time measurement model where the nonlinearity in the plant model 

is approxiinated. Both the state estimate and error covariance extrapolations 

are done once in every sampling interval. 

EKF3 

This EKF is an approximated version of EKF2. 
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Modelling 

A mathe1natical description that provides the system's dynamic characteristics is called 

a 1nathematical model. By applying physical laws to a specific system, it is possible 

to develop a mathematical model that describes the dynamics of the system. Such a 

1nodel may include unknown parameters, which must be then be evaluated by some 

procedure. In such a procedure, the system is subjected to a set of known inputs and 

from the corresponding outputs, these unknown parameters are obtained. The objec­

tive of modelling mechanical systems is to provide a way to mathematically express 

the relationships between input variables (such as applied torque) and output variables 

( such as the physical positions of various components). A well developed mathematical 

representation of a model provides the basis for further development and analysis. 

The successful control of most robots depends on being able to obtain information 

about the joint(s) and/or end effector. It is therefore necessary to have devices (trans­

ducers) that provide such information which can be readily utilised. In particular, 

position, velocity and/ or acceleration ( or at least analog or digital representations of 

these quantities) must be measured to ensure that the robotic manipulator moves in a 

desired manner (e .g., a straight line) with little or no oscillation (i.e., overshoot) at the 

final position. These so-called internal state sensors must not only permit the required 

11 
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degree of accuracy to be achieved, but they 1nust also be cost-effective since each of 

the robot's axes will normally utilise such devices. As a consequence, the sensor selec­

tion and the decision to place it either on the load side or on the output of the joint 

actuator itself is influenced by such factors as overall sensor cost, power needs for a par­

ticular joint, maximum permissible size of the actuator, sensor resolution, the factors 

that influence the resolution and the need to monitor directly the actions of the joint. 

The data gathered by these sensors can then be utilised by the robot's controller to 

modify or adapt to a given situation. Of course, the particular application will largely 

influence the type, construction and cost of such sensors and actuators. These ideas 

fonn the backbone of this chapter along with the operation of the sensors and actuator 

themselves as applied to the control of the pendulum. 

The physics of the sensors and the actuator considered are discussed briefly. The 

sensors that are considered are the encoder, the rate-gyro and the tilt-sensor. The 

operation of the sensors, their specifications and other significant points are presented. 

Next, the equation of motion of the pendulum is derived and the pendulum model 

with different combinations of sensors is introduced where it is shown how each sensor 

can be employed for 1neasuring the states of the pendulum. In addition to the three 

cases pertaining to the measure1nents provided by the individual sensors, two additional 

cases with the combination of encoder and rate-gyro and tilt-sensor and rate-gyro are 

also considered. A parameter estimation algorithm is developed for estimating the 

parameters of the linearised pendulum model and the simulation results are given. Then 

the ZOH equivalence of polynomic nonlinear systems is presented where the concept 

of vector homogenous forms is introduced along with the relevant properties. The 

Volterra series representation of the pendulum and the combined pendulum and tilt­

sensor models are derived next. The results of the experiments are also provided for 

each of the above sensor and the actuator. 
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2.1 Sensors and Actuator 

2.1.1 Encoder 

One of the most commonly encountered position sensors is the optical encoder. This 

device has a resolution that is usually more than adequate for robotic applications. 

Accurate digital encoders have to be attached to the motor shafts to detect the position 

of the pendulum-arm. The explicit encoders considered were the Hewlett Packard 

REDS-series encoders. The REDS-series [Pac95] is a high performance, low cost, optical 

encoder module. When operated in conjunction with a code wheel, this module detects 

the rotary position. The module consists of a lensed Light Emitting Diode (LED) 

source and a detector IC enclosed in a small C-shaped plastic package. Due to a highly 

colli1nated light source and a unique photo-detector array, the module is extremely 

tolerant to mounting misalignment. 

Operation of the encoder 

The REDS-series encoder is a C-shaped emitter/detector module. Coupled with a code­

wheel, it translates the rotary motion of a shaft into a two-channel digital output. The 

module contains a single LED as its light. source. The light is collimated into a parallel 

beam by means of a single lens located directly over the LED. Opposite the emitter is 

the integrated detector circuit. This IC contains of 1nultiple sets of photo-detectors and 

the signal processing circuitry necessary to produce the digital waveforms. 

The code-wheel rotates between the emitter and the detector, causing the light beam 

to be interrupted by the pattern of spaces and bars on the code-wheel. The photo­

diodes which detect these interruptions are arranged in a pattern that corresponds to 

the radius and design of the code-wheel. These detectors are also spaced such that 

a light period on one pair of detectors corresponds to a dark period on the adjacent 

pair of detectors. The photo-diode outputs are then fed through the signal processing 
- -

circuitry resulting in signals A and A and B and B. Two comparators receive these 

signals and produce final outputs for channels A ·and B. Due to this integrated phasing 
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technique, the digital output of channel A is in quadrature with that of channel B 

(90° out of phase). The encoder output can be used to find the direction of rotation, 

position and to count the number of rotations. 

Specifications 

Some of the important specifications of the HEDS-9100 encoder are presented in Table 

2.1. The REDS-series encoders provide sophisticated motion detection at a low cost, 

making them ideal for high volume applications. Typical applications include printers, 

plotters, tape drives and factory automation equipment. 

Table 2.1: Specifications of the encoder 

Supply voltage 5 V ± 10% 
Rise time 200 Ifs 
Fall time 50 ns 
Number of channels 2 
Counts per turn 500 
Operating temperature -20 to +100°c 
MI of code wheel < 0.6 gm2 

Max. acceleration 250 000 rad 
' <:2 

Max. output current per channel 5 mA 
Phase shift 90°e ± 45°e 
Dimensions 41 mm x 30 mm x 18.3 1n1n 

Weight 20 g 

2.1.2 Rate-gyro 

Operation of the muRata rate-gyro 

The particular model considered was the muRata gyrostar ENV-05S. As illustrated in 

Figure 2.1, this device has a triangular metal prism fixed at two points. This prism 

is forced to vibrate by the piezoelectric ceramic at 7 kHz [Wei93]. With no rotation 

around z axis, each of the other two piezoelectric ceramics detect a large equal signal. 

When the prism is turned, it gets twisted such that the detectors receive different 
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signals. This signal difference is examined by internal analog circuits and brought out 

as a voltage proportional to the angular velocity ( B). 

Specifications 

Piezocerami 
vibrator 

Direction 
of vibration 

Mounting 
points 

Figure 2.1: Rate-gyro 

Piezoceramic 
detectors 

~ 
'C.7 

Direction of 
rotation 

y 

I .. X 

The specifications of the rate-gyro are shown in Table 2.2. Some tests and compensation 

sche1nes have to be done for the successful use of this device. The following points are 

worth noting [Wei93] 

1. Noise due to its own vibration at 7 kHz can be suppressed (see section 2.5.2). 

ii. Over time, self-heating induces error in offset drift. 

111. Device is highly linear. At 21 °C, deviations are < 0.05° / sec from ideal line. 

1v. Scale factor is 22 1n V / 0 
/ sec ± 0.15% and offset is 0.5° / sec/ °C. 
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Table 2.2: Specifications of the rate-gyro 

Supply voltage 5.0 V DC, 2.5 V DC (Vref .) 
Supply current 7 mA 
Maximum angular velocity ± 90 ° /sec 
Scale factor 0.8 m V / 0 /sec± 20% 
Output Vo = Vref ± 500 m V at angular velocity = 0 

V0 ± 72 m V DC ± 20% at max. angular velocity 
Linearity within± 5% 
Sea le factor offset within +10% -20% at working temp. range 
Working temp. range -10° to +60° C 

Dimensions I 20 mm X 13 mm X 7 mm I 
Weight 3.5 g 

2.1.3 Tilt-sensor 

In this section, the operation of the tilt-sensor, its advantages and disadvantages are 

discussed. The partuclular 1nodel considered was the Spectron electrolytic level-sensor. 

(model# L211U) 

Operation of the Spectron tilt-sensor 

These tilt-sensors can be broadly classified into two major categories namely 

1. High sensitivity sensor and 

11. Wide angle sensor. 

A high sensitivity sensor resembles the glass vial in a carpenter's level. A wide angle 

sensor resembles a thick glass lens filled with a diameter of approximately one centime­

tre. They are both hermetically sealed, glass vials with three electrodes. Each glass 

vial is partially filled with an electrically-conductive fluid. When a sensor is at its zero 

( or null) position, the electrical resistance of the fluid from the centre electrode to each 

outside electrode is equal. Tilting the sensor disturbs this balanced condition, and the 

resistances change, in proportion to the angle of tilt. It should be recognised that the 

centre of gravity of the volume of fluid remains fixed, and the glass vial, with electrodes, 
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ved about it. 

terms, the electrolytic tilt-sensor is a liquid potentiometer, with the wiper 

mid-point, when in level (horizontal) position. For the system designer, the 

tilt-sensor may be termed as a single-axis sensor that indicates the direction 

acceleration vector. A sensor will always respond to the acceleration of the 

y vector and, in addition, respond to sustained and low-frequency a1nbient 

s. In general, all respond to low-frequency inputs, some up to 10 Hz. 

high-frequency inputs (vibration) is controlled by use of a unique, inverted 

cross-section. Spectron vertical sensing electrolytic potentiometer L-211 U 

h housing 557 A is a single axis unit providing linear voltage output when 

ilted about the horizontal axis. 

ons 

important characteristics of the Spectron L-211 U tilt-sensor are given in 

Table 2.3: Specifications of the Spectron electrolytic tilt-sensor 

Tilt angle range ± 60° 
Output 7 .2 ± 20% 1n V / 0 /volt excitation 
Total null 2 1n V at 3 V 400 Hz 
Repeatability at any angle 0.03° 
Null repeatability 0.03 
Linearity 5 % of full scale 
Time constant 0.1 ± 25% seconds 
Excitation voltage 0.5 to S-V AC (20 to 20,000 Hz) 
Operating temp. range -40° to +80° C 
Dimensions 14 mm x 13 mm X 13 mm 
Weight 2g 

r signal-conditioner 

sor signal-conditioner is required for 
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the important specifications of this signal-conditioner (SA40012) are given in 

[TA94] . 

Table 2.4: Specifications of the tilt-sensor signal-cond it ioner 
-

Power requirement 5 V DC to 15 V DC 
Supply current 0.5 mA at 5 V DC; 0.9 mA at 15 V DC 
Sensor excitation 380 m V peak-peak square wave 
Input impedance 5 Megohm . 
Output signals 50 mV < Vaut < Vnn -1.5 V DC 
Time constant 30 ms 
Offset adjustment ± 45 mV DC 
Output ripples 0.35% of output voltage 
Temperature coefficient 0.2/°C at 1.0 V output 
Operating temp . range -25° to + 70°C 
Resistor gain adjustment RG 10k-+ oo 

-

Actuator 

d Motors 

or considered for analysis was the Precision DC motor (model# RS718-981) 

These motors are based on an iron-less rotor, combined with a commutation 

sing precious metals for the brush gear . The active rotor part simply consists 

drical skew winding, requiring no support. Because of the absence of an iron 

or inertia is very low and there is no cogging. The rotor will stop in any posi­

e running speed is not limited by iron losses but depends only on the supply 
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voltage and load torque. The stator part consists of a cylindrical two-pole permanent 

1nagnet that fits inside a steel tube closing the 1nagnetic circuit. This construction 

leads to distinct advantages in numerous applications, where high performance drive 

and servo systems are required. 

Minimum friction and very small dynamic losses result in very high efficiency. For the 

electrical-to-mechanical energy transfonnation, only I 2 R losses have to be considered. 

At breakaway, the only obstacle to overcome is friction of the brush-gear and the 

bearings. Due to the s1nall dimensions of these parts, the rotor already starts moving 

with only fractions of a volt at its terminals, a major advantage in a position servo 

loop. 

Advantages 

1. High acceleration, excellent resistance to shocks and vibration and short mechan­

ical ti1ne constant. 

ii. Very high efficiency. The low losses (both electrical and mechanical) do not 

require extra power to be dissipated and do not increase temperature. 

n1. Very low torque ripple, excellent dynamic balance and stability. 

1v. Smooth and regular movement even at very low speed. No saturation, high peak 

torques without any risk of demagnetising the stator magnet. 

v. Very low speed-dependent losses, high peak speeds, very low starting voltage and 

very little electrical noise during commutation. 

Specifications 

The important specifications of the motor (RS718-981) are shown in Table 2.5. For 

further details see [Mot92]. 
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Table 2.5: Specifications of the actuator 

Measuring voltage 36 V 

Average no-load current 3 mA 

No-load speed 7200 rpm 

Back-emf constant 4.9 i6oo rpm 
Rotor inductance 7 mH 

Torque constant 46.8 m11m 
Rotor inertia 2 X 10-7 kgm2 

Mechanical time constant 20 ms 

2.2 System Description 

In this section, the equation of motion of the pendulum which incorporates the different 

sensor combinations is derived using Newton's second law of motion and the importance 

of the nonlinear analysis as opposed to linearisation is discussed. 

2.2.1 Pendulu1n model 

The dyna1nic equation of a pendulum relates forces and torques to positions, velocities 

and accelerations. That is, given forces and torques as input, this equation specifies 

the resulting 1notion of the pendulum. A single-link of a robot can be modelled as a 

pendulum with all the 1nass concentrated at a point. The torque applied to the shaft 

of the joint is a function of the inertia, the joint friction and gravity. 

Derivation of the equation of motion 

Consider the pendulum shown in Figure 2.2 which rotates about a pivot at one end 

where 1!. indicates the length of the massless rod and m the mass of the bob. Let e 
denote the angle subtended by the rod and the vertical axis through the pivot point. 

The pendulum is free to swing in the vertical plane. The bob of the pendulu1n moves 

in a circle of radius 1!. . The pendulum is considered in the down position ( corresponding 

to the equilibriu1n position). Figure 2.3 shows the stable and unstable equilibrium 

positions. 
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Figure 2.2: ( a) Pendulum model (b) Partial diagram to determine 

the torque produced by the weight ( c) Free-body diagram showing 

all torques about the pivot point 
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Figure 2.3: ( a) Stable equilibrium position (b) Unstable equilibriu1n 

position 
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To write the equation of motion of the pendulum, first the forces acting on the bob are 

to be identified. There is a downward gravitational force equal to to mg where g is the 

acceleration due to gravity. There is also a frictional force resisting the 1notion, which 

is proportional to the speed of the bob with a coefficient of friction 1(1 (see Figure 2.2). 

The objective is to obtain an input-output differential equation relating the angular 

displacement B to the applied torque T(t). Using Newton's second law of motion, the 

equation of motion of the pendulum can be written as 

.. . 
JB(t) + l(1B(t) + l(o sin B(t) = GoT(t) + wo(t) 

where 

J 

1(1, l(o = mgf, Go= Ko 

m 

g 

f 

T 

B 

wo(t) 

inertia of the pendulum [kgm2
] 

are constants associated with the pendulum 

mass of the pendulum bob [kg] 

acceleration due to gravity [ m 2 J 
sec 

length of the pendulum [m] 

control torque [Nm] 

angle measured from the vertical [ rad] 

actuator noise 

(2.1) 

As it is evident, the pendulum model is nonlinear due to the presence of the factor sin B. 

It can be noted that for lower swing-angles, less than 30°, sin B ~ B, since sin 30° = 0.5 

and 30° = 0.5236 radians. Consequently, the quality of this approximation is reasonably 

good for JBJ < 0.5 radians. This is indicated by the fact that when B = 0.5 radians, 

the deviation of B from sin Bis only ~ 5%. Thus for small values of B, (2.1) can be 

approximated by the linearised model equation 

.. . 
JB(t) + K 1B(t) + KoB(t) GoT(t) + wo (t) (2.2) 

Thus , when nonlinearities are not severe, local linearisation may be employed to arrive 

at linear models which are approximations of the nonlinear equations in the neighbour­

hood of an operating point. Unfortunately, this pendulu1n model (like 1nost problems 
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in robotics) is not well suited to this approach since the effect of nonlinearities becomes 

severe at larger swing-angles, and consequently the sin () term 1nust be included in the 

model description. 

2.2.2 Pendulum model with different sensors 

Case 1: Model with encoder only 

The model and measurement equations and the corresponding state-space equations 

are given for the case when only the encoder is available for the measurements. 

.. . 
JB(t) + I<1B(t) + J{0sinB(t) 

Y1(tk) 

Gor(t) + wo(t) 

() ( t k) + Vo ( t k) 

(2.3) 

where w0 (t) is the process (actuator) noise and v0 (tk) is the sampled measure1nent 

(encoder) noise with appropriate covariances and tk denotes the sampling time instant 

during which the measurements are obtained. 

Let x1 
6 

() and x2 
6 iJ be the state variables. Then the state-space representation of 

the above equations is 

X1 X2 (2.4) 

X2 ( Ko) (I<1) (Go) ( 1) - J sin(xi) - J x2 + J r(t) + J wo(t) 

Y1(tk) X 1 ( t k) + Vo ( t k) 

Case 2: Model with rate-gyro only 

The model and measurement equations and the corresponding state-space equations 

are given for the case when only the rate-gyro is available for the measurements. 

.. . 
JB(t) + I<1B(t) + KosinB(t) 

Y2 ( tk) 

Gor(t) + wo (t) 

B(tk) + V1 (tk) 

(2.5) 
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where w0 (t) is the process (actuator) noise and v1(tk) is the sampled measure1nent 

(rate-gyro) noise with appropriate covariances. 

Let x 1 
6 e and x 2 

6 
iJ be the state variables. Then the state-space representation of 

the above equations is 

. 
X1 X2 

. 
X2 _ ( ~o) sin (xi) - ( ~

1
) x2 + ( ~o) r ( t) + G) w0 ( t) 

Y2(tk) x2(tk) + v1(tk) 

Case 3: Model with encoder and rate-gyro 

The model equation for this case is 

.. . 
JB(t) + K1B(t) + I<osinB(t) GoT(t) + wo(t) 

and the 1neasurement equations are 

Y1 ( tk) 

Y2(tk) 

8 ( t k) + Vo ( t k) 

B(tk) + V1 (tk) 

(2.6) 

(2.7) 

(2.8) 

where w0 (t) is the process (actuator) noise and v0 (tk) and v1 (tk) are the sampled 1nea­

surement ( encoder and rate-gyro) noises with appropriate covariances. 

Let x1 
6 e and x2 

6 
iJ be the state variables. Then the state-space representation of 

the above equations is 

X1 X2 (2.9) 

. 
X2 (Ko) . (I<1) (Go) ( 1) - T sin(x1) - T x2 + J T(t) + J w0 (t) 

Y1(tk) X 1 ( t k) + Vo ( t k) 

Y2(tk) x2(tk) + v1(tk) 
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Case 4: Model with tilt-sensor only 

When only the tilt-sensor is included for the measurements, due to the tilt-sensor dy­

namics, an additional state z is introduced and thus the order of the model becon1es 

equal to three. 

The model equations pertaining to this case are 

JB(t) + K 1B(t) + K0 sinB(t) Gor(t) +wo(t) (2.10) 

i(t) == -O!ts z(t) + f3ts B(t) 

and the 1neasurement equation is 

Y3 ( t k) == Z ( t k) + V2 ( t k) (2.11) 

where O:ts and f3ts are constants associated with the tilt-sensor and the subscript ts 

indicates the tilt-sensor. w0 (t) is the process (actuator) noise and v2 (tk) is the sa1npled 

measurement (tilt-sensor) noise with appropriate covariances. 

Let X1 L,. B, X2 L,. 8, X3 L,. Z be the state variables. Then the state-space representation 

lS 

. 
X1 X2 (2.12) 

X2 (I<o) . (K1) (Go) ( 1) - T sin(x1) - T x2 + T r(t) + J w0 (t) 

X3 -O!ts X3 + f3ts X1 

Y3 ( tk) X 3 ( t k) + V2 ( t k) 

Case 5: Model with tilt-sensor and rate-gyro 

The model equations corresponding to this case are 

JB(t) + K 1B(t) + 1{0 sinB(t) Gor(t) + wa(t) (2.13) 

z(t) == -ats z(t) + f3ts B(t) 
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and the measurement equations are 

Y2(tk) 

y3(tk) 

B(tk) + V1 (tk) 

Z ( t k) + V2 ( t k) 
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(2.14) 

where w0(t) is the sampled process (actuator) noise and v1(tk) and v2(tk) are the sam­

pled measurement ( rate-gyro and tilt-sensor) noises with appropriate covariances. 

Let x 1 
6 

B, x2 
6 iJ, X3 

6 
z be the state variables. Then the state-space representation 

lS 

X1 

X2 

X3 

Y2(tk) 

Y3 ( tk) 

X2 

-(Ko) (K1) (Go) (1) - J sin(xi) - J x2 + J r(t) + J wo(t) 

-CTts X3 + f3ts X1 

x2(tk) + v1(tk) 

X 3 ( t k) + V2 ( t k) 

2.3 Parameter Estimation 

(2.15) 

A significant problem in systems theory is to determine the dynamics of a system from 

a history of its input and output 1neasurements. After detennining the structure of the 

dyna1nical systems, one must then esti1nate the various parameters in the particular 

structure. Choosing the proper representation of the system helps estimate the param­

eters . The equation of motion of the pendulum derived in section 2.2 provides such a 

representation . 

The tilt-sensor model can be represented by a first order model and the pendulum by 

a second order linearised model for purposes of parameter estimation. A parameter 

estimation procedure is developed to identify the parameters associated with the pen­

dulum and the tilt-sensor models. The estimation of the parameters is by using the 

Least-Squares (LS) algorithm . Figure 2.4 shows the combined pendulum and tilt-sensor 
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model and the associated parameters where PRBS indicates a Pseudo-Random Binary 

Sequence which is used as the input signal. 

u (PRES)~ Go () f3ts z 
r . 

Js 2 + I<1s + I<o S + Ctts 

Figure 2.4: Transfer function representation of the pendulum and tilt-sensor 1nodel 

Pseudo-random binary sequence 

Pseudo-random sequences of various types have been extensively used for system iden­

tification purposes for many years. Among the specialised system test signals, one of 

the most widely used is the Pseudo-Random Binary Sequence (PRBS) [PM82]. As well 

as being easy to generate in a digital computer, PRBS is attractive for both software 

and hardware correlations as its binary nature removes the need for time consuming 

multiplications [NG69]. PRBS is a member of a broader class of odd-level maximal 

length sequences used for identification [DFC71 J. 

2.3.1 Discretisation of continuous-time systems 

Zero order hold 

The process of converting digital samples to an analog signal that connects those sam­

ples is called reconstruction [Vac95]. A device that performs this reconstruction is called 

a digital-to-analog or D / A converter (DAC). The most common form of reconstruction 

used in practice is a Zero-Order-Hold (ZOH) reconstruction. A ZOH reconstruction of 

a sequence of sa1nples produces a constant output value that is proportional to a given 

input sa1nple for a fixed a1nount of tiine. Then the output changes to a new constant 

value that is proportional to the value of the next sample. The term zero order means 

that the sample points are interpolated by polynomials of degree zero (constants). D / A 
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converters which i1nplement the zero-order-hold are most commonly used in practice. 

The discrete-time models of linear, continuous-time plants that result based on a 

piecewise constant input are not approximations but are exact representations of the 

continuous-time plants at sampling instants. This special form of the plant input makes 

it possible to derive an exact discrete-time model called the ZOH equivalent model for 

the plant. The ZOH 1nodel is sometimes called a sampled-data model for the plant. 

Discretisation using a ZOH 

Consider a continuous time-invariant plant given by 

x(t) Ax(t) + bu(t) (2.16) 

y(t) = Cx(t) + du(t) 

with state x(t) E Rn, measured output y(t) E R and the control input u(t) E R. 

For digital control purposes, it is desired to define a discrete time index k such that 

t = kTs where Ts is the sampling interval. The piecewise constant input u(t) is to be 

switched at times t = kTs, k = 0, 1, · · ·. Then, the continuous plant input u(t) is given 

by u(t) = u(kTs); kTs < t < (k + l)Ts where u(t) is switched at times kTs so that it is 

continuous from the right. An A/D device (ADC) generates the samples y(kTs) ( of the 

output vector) and x( kTs) ( of the state vector). The ZOH sampling technique provides 

an exact discretised equivalent of the continuous plant for which discrete controls can 

be designed. For simplicity, the explicit dependence on Ts is omitted and we write, 

x(k) 
I:). I:). I:). 

= x(kTs); u(k) = u(kTs); y(k) = y(kTs) 

Variation of constants formula 

The solution of (2.16) is given by [Wil91] 

x(t) = eA(t-to)x(to) + ft eA(t-to) b u(a) da; t > to 
lto 

(2.17) 
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It is possible to use this solution to obtain the solution of the corresponding discrete­

time system and it is desired to use this solution over one sample period to obtain a 

difference equation. Let t == (k + l)Ts and t0 == kT8 • Then the corresponding discrete­

time version of (2.17) is 

{(k+l)Ts 
x(k + 1) == eATsx(k) + }k eA((k+l)Ts-o-) b u(a) da; 

kTs 
(2.18) 

This result is not dependent on the type of hold, since u is specified in terms of its 

continuous time history u(t) over the sample interval. Then assuming a zero-order­

hold with no delay, i.e., 

u(t) == u(kTs), kTs < O" < (k + l)Ts, 

the corresponding discrete-time representation of (2.16) is then given by, 

where 

x(k + 1) Fx(k) + gu(k) 

F 

H 

y(k) == Hx(k) + ju(k) 

{Ts 
eATs; g == lo eAT b dT 

C· J. == d · 
' ' 

(2.19) 

(2.20) 

(2.21) 

It is important to note that the discretised plant matrix F is always nonsingular. Also 

note that C and d remain unchanged on discretisation. 

2.3.2 Theory of least-squares 

The (detenninistic) input-output relationship of an ARX model can be described by a 

linear difference equation of the form 

y(t) + a1y(t - 1) + · · · + anaY(t - na) b1u(t - 1) (2.22) 

+ · · · + bnb u(t - nb) 

where AR refers to the autoregressive part and X to the extra input [Lju87]. Linear 

regression 1nodel structures are useful in describing basic linear and nonlinear systems. 
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The linear regression em ploys a predictor of the form 

y ( t I Bes) = 'lj; T ( t) Bes (2.23) 

that is linear in Bes where the subscript Cs refers to least-squares and 'lj; is the vector of 

regressors and is given by 

'lf;(t) = [-y(t - 1) - y(t - 2) · · · - y(t - na) u(t - l) .. · u(t - nb)]T 

The prediction error can be written as 

E(t, Bes) = y(t) - y(tJBes ) = y(t) - 'lj;T (t)Bes 

A batch of data is collected from the system whose parameters are to be identified. This 

information will be used in estimating the parameters of the system under consideration. 

zN = [y(l),u(l),y(2),u(2), .. · ,y(N),u(N)J 

and the Least-Squares (LS) criterion for the linear regression in (2.23) is given by the 

fallowing expression 

N 
N l ~ 1 [ T ]2 VN(Bes, Z ) = N ~ 

2 
y(t) - 'lj; (t)Bes 

t=l 

(2.24) 

Also a weighted criterion could be introduced to weight the measurement data according 

to the needs. One pragmatic approach is to replace the least-squares criterion of (2.24) 

with 

N 
N l ~ N t l [ T ]

2 
VN(Bes, Z ) = - ~ A - - y(t) - 'lj; (t)Bes 

N t=l 2 
(2.25) 

where A is a parameter such that O < A < l. The parameter A is called forgetting factor 

or discounting factor. The loss function of (2.25) implies that a time-varying of the 

data is introduced. The most recent data is given unit weight, but data that is n time 

units old is weighted by An. The method is called exponential forgetting or exponential 

discounting. A detailed treatment of the properties of the least-squares estimate (LSE) 

can be found in [AW89, Lju87]. 
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2.3.3 Pararneter estimation 

a. Parameter estimation of the pendulum model 

u --+ () algorithm 

The theory for the estimation of the parameters of the pendulum model is developed 

in this section. The transfer function representation of the linearised pendulum model 

is shown in Figure 2.5 and the parameters to be estimated are K 1 , J and G0 ( Ko = 

mgf is a constant). 

u(PRBS) Go e 
Js 2 + I<1s + I<o 

Figure 2.5: Transfer function representation of the linearised pendulum model 

Consider the discretisation of the continuous-time system (2.16). For a small sampling 

interval, e ATs ~ I+ ATs where I is the identity matrix of appropriate order. The 

corresponding discrete-time relationship is given by (2.20) and the discretised system 

matrices in (2.21) by 

F - I+AT· g-bT· H-C· - s, - s, - ' 

The discrete transfer function is then given approximately by 

H(z) = H(zl - F)- 1g 

TsC [(z - l)I - ATs]-1 b 

GoT2 
__ s_ 

J H(z) 
z2 + ( K)Ts _ 2) z + ( 1 _ KJTs + K~T}) 

which in terms of (2.22) gives, 

b1 

a1 

. b _ GoT; 
0, 0 - J 

K1Ts K1Ts KoT; 
- 2; ao = 1 - T + T ; 

(2.26) 

(2.27) 

(2.28) 
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b. Parameter estimation of the tilt-sensor model 

u ---+ z algorithm 

The transfer function representation of the linearised pendulum model is shown in 

Figure 2.6. The parameters to be estimated are CTts and f3ts with the knowledge of the 
"' "' "' " 

already estimated pendulum parameters K 1 , J, G0 and !{0 where" indicates the LSE. 

e f3ts z 

s + ats 

Figure 2.6: Transfer function representation the tilt-sensor model 

The discrete transfer function for this case is 

H( z) = H(zl - F)- 1g 

TsC [(z - 1)1 - ATs]- 1 b 

pta 

z3 + pt1 z2 + pt2z + pt3 

0 1 

(2.29) 

where A _Ko _K1 
J J 

0 

0 h=(o, of;c=(1 o o); 
f3ts 0 - CT ts 

and pta 
6 Gof3tsT} 
--

J 
6 ( K1Ts ) pt1 - J + CTtsTs - 3 -

6 [ _ T ( K 1 , ) (Ko + K 1 CT ts) y2] pt2 - 3 2 s J + Ots + J s -

6 [ K oCTts y3 _ (Ko + K 1 CT ts) y2 + ( K 1 + ) T _ 1] pt3 -- J s J s J CT ts s 

From (2.28) and (2.29), the required parameters are determined. 
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2.3.4 Numerical results 

In this section, the results of the parameter estimation of the pendulum and the tilt­

sensor models are presented. A sampling interval of 0.02 is chosen. The original system 

is simulated to generate the data vector which serves as the measurement vector (Z) 

for purposes of simulation. The system identification and the control system toolboxes 

of MATLAB [Lju89, c+94J are used for the implementation of the algorithm. 

The simulation results are shown in Figures 2.7 to 2.10. The estimated value of the 

coefficients, obtained using (2.28) and (2.29), is shown in Table 2.6 where LSE indicates 

the Least Squares Estimate. 

OUTPUT#1 Actual output: pendulum 
3 ..-----,------,---,----,------,---,----,------,-----,,-----, 3..-----..-----..-----..-----..-----..-----..-----..-----..-----,------, 

2 

0 

- 1 

2~ 

-1 

-2 -2~-~--~--~-~--~--~--~-~--~-~ 

0.5 

0 

- 0.5 

- 1 

0 50 100 150 200 250 300 350 400 450 500 0 50 1 00 150 200 250 300 350 400 450 500 

INPUT #1 Estimated output: pendulum 
3 ---..-----..-----..-----..-----..----- ..---- -..-----..-----..------ -~ ~ ~ ~ ~ 

- - - ', 

2r .. ... .. .... /' · 
.: I /1 

~ .. ·· /.:··· \· : i .. I • .· ..... .,\ ........... ,./.\········· ... ;\ . 

1
· ' i I I . I :_I I I \ :_I I ; ' I : I 

Or ··· \ · ... , ... : .;. .. · -, \. ... ) .. 1· ... , ... :. -:- .. ~ •. /. .. 1 r. ·' · . /. · 1 · ···
1 

. ' I '. ' · I ·, -~ \ . . I \ / '. ..... ·' : \ I \ I 

-1 r · .. \J - _: \_, · \): .. \/. ·· \ .'·· · ··1·./-
,· 

0 50 100 150 200 250 300 350 400 450 500 - 2 o 50 100 150 200 250 300 350 400 450 500 

Figure 2.7: Output-input data (pendu- Figure 2.8: Actual and estimated outputs 

lum) (pendulum) 

From Table 2.6, a0 = 0.9625 and from (2.28) 

ao 
K1Ts KoT; 

1- - + (2.30) 

Note that the notation a0 has been retained instead of a0 in (2.28) for notational 

si1nplicity with respect to equation (2.22), though it indicates the estimate. Equating 

(2.30) and its value, we have 

0.9625 
K1Ts KoT; 

1- J +-J-
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0.1 OUTPUT #1 Actual output: pendulum & tilt-sensor 
0 .1 ~--~--~--~--~--~--~--~--~--~--~ 

0 .05 

0 ............. ~· ... 

-0.05 

-0.1 ~-~--~--~--~-~--~--~--~-~--~ 
0 so 100 150 200 250 300 350 400 450 500 

-0.1 '----'-----'----'-----'---'-----'----'-----'---'----' 
0 so 100 150 200 250 300 350 400 450 500 

INPUT #1 Estimated ou1pu1: pendulum & tilt-sensor 
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' / 
0 .05 I- · · ·· ·· .; ·· · ··· ···· .. ·. · · · · · · · · .·. · · · · r·· -x <· · · · · · · · ·/ - · - -,:;:,-- · \ · · · ·, ; ··-·, 

1 · , I ~. I \ 1· 
\ I : '. / 

0 I- " \ ;' \i/ ~. 
:\ / . - ' ' 

0 .5 

-0.5 -0.0SI- ·· :, ./ ... , .... /:. 

' · / 
-1 ~ L.JJ~LU wu ~ u 

1
1 uu LLI 

1
u 1w w~u I uu

1 
1uuuu 

1
u LIJ u u~1 uT , 

-0.1 ~-~--~--~-~~-~--~--~-~~-~--~ 
0 so 100 150 200 250 300 350 400 450 500 0 so 100 150 200 250 300 350 400 450 500 

Figure 2.9: Output-input data (pendulum Figure 2.10: Actual and estimated out-

and tilt-sensor) 

Si1nilarly, a1 

puts (pendulum and tilt-sensor) 

Table 2.6: Estimated coefficients 

LSE Estimated value 
A 

0.9625 ao 
A -1.9512 a1 
bo 0.0112 

b1 0.0000 

ao -0.9586 
A 2.9059 a1 
A -2.9472 a2 

bo 0.2248 X 10-4 

b1 -0.0000 X 10-4 

b2 0.0000 X 10-4 

-1.9512 and from (2.28), 

-1.9512 I<1Ts _ 2 
J 

Solving (2.30) and (2.31) for J, we obtain, 

J I<oT'; = 0.0306 
0.0113 

Substituting this value of Jin (2.31), we arrive at 

I<1 (-1.9512 + 2)J = 0.0747 

(2.31) 

(2.32) 

(2.33) 
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A 

From Table 2.6, b0 = 0.0112 and from (2.28) 

bo = 

and thus solving for G0 , we obtain 

GoT; 
J 

Go= 0.0112J = 0.8568 
' L, 

s 

35 

(2.34) 

(2.35) 

Now to obtain the constants associated with the tilt-sensor, we proceed as follows: 

Note that pt1 
6 

CL2 and pto 
6 

bo. From (2.29) and using the values of K 1 and J 

detennined from (2.33) and (2.32) respectively, 

lrts 

and 

pt1 + 3 - K1Ts 
J T = 0.1988 

f3ts = 

s 

ptoJ = 0.1004 
T3 0 s 

(2.36) 

(2.37) 

Thus from (2.32) , (2.33), (2.35), (2.36) and (2.37), the esti1nated para1neter values are 

obtained and are tabulated in Table 2.7. 

Table 2.7: Estimated parameters 

Parameter Description Associated model Value 

J inertia pendulu1n 0.0306 
I<1 constant pendulum 0.0747 

Go constant pendulum 0.8568 

lrts constant tilt-sensor 0.1988 
f3ts constant tilt-sensor 0.1004 
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2.4 ZOH Equivalence of Polynomic Nonlinear Systems 

2. 4.1 Mathe1natical preli1ninaries 

a. Uniform pulse amplitude modulation 

The discretisation procedure was detailed in section 2.3.1. Let the digital to analog 

conversion tiines be equally spaced. Then 

where 

00 

u(t) L U (kTs) p (t - kTs) 
k=- oo 

p(t) = { ~ V O < t < Ts 

otherwise 

(2.38) 

(2.39) 

This type of input signal is called the Pulse Amplitude Modulated (PAM) signal and 

along with the ZOH, it gives an exact discrete representation of the continuous-time 

system. 

b. Vector homogenous forms 

The concept of vector homogenous forms is a natural extension of tensor theory. The 

ele1nents of the vector quantity x[P] are homogenous forms of degree p of the elements 

of the vector x E Rn. The necessary properties are introduced. 

Definition 2.1 x[P] is defined as follows: 

Let x = (x1 X2 X3 · · · Xn )T (2.40) 

Then x[P] denotes a lexicographical listing of the N;-tuple in (2.41). 

The number of linearly independent p-degree (p > 1) [Mac46] terms in the n-variables 

x1 , x 2 , x 3 , · · · , Xn [Bro73] is given by the following definition: 

Definition 2.2 The number of linearly independent p-degree terms is 

Nn = p -

(n + p - 1) ! 
(n-l)!p! 

(2.41) 
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Definition 2.3 The set of elements 

( 
P ) ( P - P1 ) ... ( P - P1 - · · · - Pn-1 

P1 P2 Pn 
) x1;1 x~2 

••• x~" 

n 

Pi nonnegative integers such that L Pi = p 
i=l 

forms a basis for the set of p-forms of n-variables. 

37 

(2.42) 

Property 2.1 Although the lexicographic order is arbitrary the choice of normalising 

coefficients in (2.42) is such that 

c. Properties of x[P] 

Property 2.2 If 

where 

llxll;P 

where llxll 

x(t) 
d 
dt x[P](t) 

llx[P]II~ 
1 

(x,x)2 

Ax(t), then 

A[p] X[p] ( t) 

A[p] = lim ! [(I+ hA)[P] - INn] 
h-+0 h P 

Note that A[P] is also such that 

6 (ax[PJ ) T A[p]x[P](t) = fJx Ax(t) 

where 8;:
1 is an n x N; 1natrix whose ( i, j)-th element is 

8
8~Pl and Xi[P] 

J 

element of x[P] and X j is the j-th element of x. 

(2.43) 

(2.44) 

(2.45) 

is the i-th 

Property 2.3 Let <I> A(t) denote the transition matrix that satisfies the matrix differ­

ential equation 

ti> ( t) = A <I> ( t) ; <I> o = In 
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Then [ q> A ( t) ip] is the transition matrix of the differential equation 

i(t) = A[P]'ll(t) 

The exposition essentially follows that of [Bro73] although for the sake of completeness, 

a number of proofs are different for which the reader is referred to [San77]. 

d. Homogenous system 

Consider a linear time invariant system 

x(t) = Ax(t) (2.46) 

where x(t) E nn, followed by a polynomial nonlinearity of the type as shown in Figure 

2.11. 
-------

X 
1 y 

H(s) I f (-) I 

L ______ I 

Figure 2.11: Homogenous polynomic nonlinear system 

The nonlinearity is of the form 

m 

f(.) I: /JpX[p] 

p=l 

y = /Jp [cTxfp] 

where y(t) E nm and C is the output matrix. Then 

X[p] 

y 

e. Non-homogenous system 

A[ ] x[P] · p - l 2 · · · m · 
p ' - ' ' ' 

/Jp c[p]T X[p] 

Consider a linear time invariant system with the forcing term u(t) 

x(t) 

u(t) 

Ax(t) + bu(t) 

0 

(2.4 7) 

(2.48) 

(2.49) 

(2.50) 
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followed by a polynomial nonlinearity of the type as shown in Figure 2.12 and as in 

(2.47). 

-------
u(t) X 

1 

I 

i f (-) I 

y 
H(s) 

L ______ I 

Figure 2.12: Non-homogenous polynomic nonlinear system 

where x(t) E R n, y(t) E nm, u(t) E R f and H(s) = C(sl-A)-1b and C is the output 

1natrix. 

As described in section 2.3.1, the continuous input u(t) is given in terms of the discrete 

input u(kTs) by 

u(t) = u(kTs); kTs < t < (k + l)Ts (2.51) 

where u(t) is switched at discrete time instants kT8 • 

Writing the aug1nented system, 

( : ) = ( : : ) ( : ) ; kTs < t < ( k + 1) Ts (2.52) 

b . h · · · 1 d' · ( x(k) ) su Ject to t e 1n1tia con 1tions . 
u(k) 

(2.52) is of the form 

. 
X 

-Ax (2.53) 

where 

X 
6 

(:) 
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A 6 (: : ) 

From property (2.2), 

d 
dt (x) = ArpJ5c[pJ 

Assuming A -l exists, the discrete input-output relationship is given by 

y(k) 

x(k + 1) 

5c[p] ( k + l) 

CT x(k) + C[P]T 5c[P] (k) where 

eATsx(k) + u(k )A -l [ eATs - In] b 

e.A[p]Ts 5c[p] ( k) 

where In is the identity matrix of order n and Ts is the sampling interval. 

2.4.2 Input-output representation via Volterra series 

Volterra series 

40 

(2.54) 

Considerable effort has been expended in attempts to find exact solutions for nonlinear 

feedback systems excited by random inputs [Van79]. Many physical systems exhibit 

a nonlinear behaviour that requires a more accurate analysis than that afforded by 

the linearisation of the system model. The Volterra series provides a powerful way of 

portraying the input-output relationship of a nonlinear model which has the following 

advantages: 

1. All input-output relationships are explicit thus eliminating the need for solving 

complicated (nonlinear) differential equations. 

ii. It facilitates easy and straightforward analysis. Random and detenninistic inputs 

and disturbances can be included. 

Functional representations of single-valued nonlinear functions were first introduced 

by Volterra and they provide a generalised non-parametric method of expressing the 

response of a nonlinear system [Geo59]. The Volterra series representation to be ob­

tained is not only an explicit nonlinear representation of the system response but also 



Chapter 2. Modelling 41 

affords insight into the system operation. Contributions to the theory of input-output 

models for nonlinear systems, from a Volterra-type view-point, have been made by 

[Bro 76, Gil78] a1nong others. For further details , see [Rug81 J in addition to the cited 

references. A Volterra model can describe nonlinear behaviour such as assymetric out­

put changes in response to symmetric changes in the input. A controller based on this 

model can yield improved performance over a linear model-based controller [M+96]. 

a. Pendulum case 

Using the power series expansion of sin B, (2.1) becomes, 

8(t) + ( ~1
) O(t) + ( ~0

) (o(t) -
113?) + 

11:~i) = (~
0

) u(t) 

+ G) wa(t) 

where u(t) r(t) is used for notational simplicity. 

Considering (2.1) and writing a Volterra series expansion as in [Van79], 

CX) 

B(t) = B1(t) + B2(t) + · · · = I:Bi(t) 
i=l 

(2.55) 

(2.56) 

where B1 (t) is defined as the output of the linear system, B2 (t) as the output of the 

second-order system, and so forth. Substituting (2.56) into (2.1), expanding sin B(t) 

and equating the equal-order terms of B(t) with the relevant substitutions leads to 

[ 81 (t) + 82 (t) + 83(t) + · · ·] + ( ~1) [ri1 (t) + 02(t) + 03(t) + .. · ] 

+ (~) (~) J [B1(t) + B2(t) + B3(t) + · · ·] -
3
!J [B1(t) + B2(t) + B3 (t) + ... J3 

+ (!;) [111 (t) + 112 (t) + ll3(t) + · · · ]5 = (~
0

) u(t) + G) wa(t) 

Equating terms of the same order, 

·· (K1) · (Ko) B1 (t) + J B1 (t) + J B1 (t) (~
0

) u(t) + G) wa(t) 

·· (K1) · (Ko) B2(t) + J B2(t) + J B2(t) 0 
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.. (K1) · (Ko) B3(t) + T B3(t) + T B3(t) (Ko) er(t) 
3!J 

·· (K1) · (Ko) B4(t) + T B4(t) + T B4(t) 0 

·· (K1) · (Ko) Bs(t) + T Bs(t) + T B5 (t) ( Ko) 5 (Ko) 2 - s!J B1 (t) + 3,J 3e1 (t)B3(t) 

All higher order even terms are equal to zero. The closed fonn expressions for the linear 

and the non-linear (cubic) part with the additive measurement noise up to the third 

order are 

01 (t) = - ( ~o) 01 (t) - ( ~
1) B1 (t) + (~0

) u(t) + G) wo(t) 

(Ko) ( K1) · (Ko) 3 B3(t) = - T B3(t) - T B3(t) + 
3
,J e1 (t) 

B(t) ~ B1(t) + B3(t) 
. . 

B(t) ~ B1(t) + B3(t) 

This representation is shown in Figure 2.13. 

B1 83 

u( t) G n 
(j r--

!SJJ.. 
J s 2+ K 1 s+ Ko L _ 6..1. 

G_0_ 
y - - -, z 

(J3 __ ,-
Js2 + K 1 s+ Ko 

8-­
! 
e 

Figure 2.13: Volterra series representation of the pendulum model 

b. Pendulum and tilt-sensor case 

The model equation of the tilt-sensor is given by 

i (t) = -O:t s z (t) + f3t s B(t) 

Writing z (t) as 

CX) 

z (t) Z1 ( t) + Z2 ( t) + · · · = I: Zi ( t) 
i=l 

(2.57) 

(2.58) 

(2.59) 

(2.60) 
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Substituting (2.60) into the model equation of the tilt-sensor yields, 

[i1(t) + z2(t) + z3(t) + ... J -G:ts [z1 (t) + z2(t) + z3(t) + · · ·] 

+ f3ts [B1 (t) + B2(t) + B3(t) + · · ·] 

43 

Proceeding as in the pendulum case, the expressions for the linear and the non-linear 

( cubic) part with the additive measurement noise up to the third order are 

B1 (t) (Ko) (K1)· (Go) (1) - - T B1(t) - T B1(t) + T u(t) + J w0 (t) -

z1 (t) - -G:ts Z1 (t) + f3ts B1 (t) -

83 (t) (Ko) ( K1) · (Ko) 3 - - T B3(t) - T B3(t) + 
3
!J e1 (t) -

z3(t) - -G:ts Z3(t) +f3ts B3(t) -

z(t) ~ z1(t)+ z3(t) (2.61) 

2.5 Sensor and Actuator Experiments 

The experimental work required the static calibration of the tilt-sensor. In addition, 

the tilt-sensor was tested for its operational accuracy by comparing it with the encoder 

operation. It was found that the tilt-sensor has an inherent ti1ne delay in its operation. 

Two tilt-sensors were considered to account for repeatability and two runs for each 

tilt-sensor were done. The variances of the noise associated with the encoder and the 

rate-gyro were also computed. 

Experimentation environment 

The setup that is used for the experiments exists in the automated systems labo­

ratory. The experimental data is collected using the real-time Vx- Works operating 

system which differs from a standard UNIX operating system in that the Vx- Works is a 

real-time operating system. Compiled programs are downloaded to a Motorola 68040 

microprocessor which is located on a VME board. The pendulum and the system setups 

are shown in Figures 2.14 and 2.15 respectively. 

~ 
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di 
encoder 

Motor 
~ 

, , 

p 

Disc 

Timing 
belt 

< Disc 
encoder 

Figure 2.14: Side-view of the pendulum setup 

SUN 
W ork Station 

// 
-[ AID 

converter VME-Board l 
-------- ~ ----------------------- · --------, ---------------------------------

Analog 
sensors 

(filt-seruor & Rate-gyro) 
[Encoders] 

D 

Motor 
D 

Pendulum 
'--------------------------------------------------------------------------------

Figure 2.15: Experimental setup 
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The pendulum consists of an arm that can swing in a circle of radius r. On one 

end of the arm is a disc that can be rotated by a motor through a timing-belt. By 

accelerating the disc, a torque is imparted to the pendulum-arm which enables it to 

swing in a circular fashion and eventually reach the inverted (balanced) position. The 
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angle the pendulum makes with the vertical axis is denoted by {3. For further details, 

the reader is referred to [Akb94], [Jen96]. 

2.5.1 Encoder experiments 

Error in the encoders 

The error in the measurement of the encoder readings is due to the quantisation noise 

which is described below. 

Quantisation noise 

Quantisation noise is due to the digitisation of an exact signal value Vt = v(t) cap­

tured at sampling time T8 by an A/D converter [Dor93]. The binary representation 

is bn- lbn_ 2 · • • b1b0 (an n-bit word). The n-bit word digitisation has 2n different 

values possible, from O to 2n-l. Let the voltage range be R. Then the resolution is 

dv = t;i. Any voltage Vt is coded into the nearest lower binary value Xb, where the 

error e = Xt - Xb satisfies O < e < dv. Thus the errors e are distributed over the in­

terval [O, dv] in an equally likely fashion that implies the uniform distribution on [O, dv]. 

The expected value (mean) of e = et = e(t) at any time t is 

µe 

and the variance is 

µe 2 

dv 

2 

dv 2 

12 

(the variance of a uniform distribution on an interval [a,b] is a= (b~;)
2

). 

Calculation of error 

The encoder quantisation for 360° can be written as 

~ = 
360° 

resolution 
(2.62) 

Two possibilities for two's complement arithmetic are roundoff and truncation. Ignor­

ing the LSB (least significant bit) in a two's complement representation is equivalent 

..... 
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to implementing truncation [Wil91]. It is observed that the HEDS-series encoders use 

truncation. Thus the error lies in the range [O, ~]. 

Furthermore, the mean and the variance are calculated using the relations, 

mean (µ) 

variance ( cr 2
) 

~ 

2 
~2 

12 

(2.63) 

(2.64) 

Thus the variance of different encoder models are calculated and are tabulated in Table 

2.8. 

Table 2.8: Encoder variances 

Encoder model # Resolution per 360° Quantisation error Mean Variance 
HEDS 9100A 2000 0.1800 I 0.0900 0.0027 
HEDS 9100G 1440 0.2500 0.1250 0.0052 
HEDS 550K 384 0.9375 0.4688 0.0732 
HEDS 550( 400 0.9000 0.4500 0.0675 
HEDS 5500 768 0.4688 0.2344 0.0183 
HEDS 550E 800 0.4500 0.2250 0.0169 
HEDS 550F 1024 0.3516 0.1758 0.0103 
HEDS 550H 1600 0.2250 0.1125 0.0042 
HEDS 5501 2048 0.1758 0.0879 0.0026 

2.5.2 Rate-gyro experiments 

Error in the rate-gyros 

Fro1n Table 2.2 in section 2.1.2, it can be seen that the error in the measurement of the 

angular velocity by the gyro is introduced in the following ways: 

1. Linearity : ± 2 m V 

ii. Temperature offset : ± 2 m V 

111. Drift: ± 2 mV 

1v. Output noise : \Vithin 10 m V RMS 



Chapter 2. Modelling 47 

The error given above in m V translates to 0.27° / sec due to linearity, temperature offset 

and drift. But the error due to output noise is 10 * v'2 = 14.1 m V. The full scale voltage 

output corresponds to 2.5 V DC and the maximum angular velocity is ± 90°. Thus the 

error due to the output noise is ( 2~6o) x 90 = 0.5040° / sec. Therefore it can be seen 

that the error due to the output noise contributes the most towards the error and thus 

has to be accounted for. 

G aussian distribut ion 

Gaussian distribution, or Normal distribution, is probably the most extensively used 

probability distribution in engineering applications. Apart from its simplicity, another 

justification for its widespread use is provided by the Central Limit Theorem. 

Theorem 2.1 Central Limit Theorem 

A random variable that is formed by summing a very large number of independent 

random variables takes Gaussian distribution in the limit. 

Since many engineering phenomena are consequences of numerous independent random 

cases, the assumption of normal distribution is justified in many cases. 

The Gaussian probability density function is given by 

J(x) ~ exp [- (x 
2
cr~)2] 

Note that only two parameters, meanµ and standard deviation a are required to de­

termine a Gaussian distribution completely. A closed-form algebraic expression cannot 

be given for the cumulative probability distribution function F( x) of a Gaussian dis­

tribution . It should be evaluated by numerical integration. Numerical values for the 

normal distribution curve are available in tabulated form, with the random variable X 

being normalised with respect to µ and a according to 

z = 
X-µ 

a 
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Furthermore, the probability density function of Z is 

f (z) 1 ( z
2

) -exp - 2 
What is usually tabulated is the area under the density curve f (z) of the normalised 

random variable Z for different values of z . The area under the curve is given by 

A = [ j(z ) dz 

A table where the area under the f ( z) curve of the normalised random variable Z, for 

different values of z , from O to z is available. Since the density curve is symmetric 

about the mean value (zero for the normalised case), values for negative z do not have 

to be tabulated. In Figure 2.16, a Gaussian curve with zero mean and unity variance 

is shown. 

Gaussian distribution with zero mean and unity variance 
0.4 

0 .35 

0.3 

0 .25 

0.2 

~ 
0.15 

0.1 

0.05 

-2 -1 0 2 3 
z 

Figure 2.16: Gaussian distribution 

Confidence intervals 

The probability that the value of a random variable would fall within a specified interval 

is called a confidence level. Considering a Gaussian random variable X that has mean 

µ and standard deviation a, it is denoted by 

X = N(µ, a 2
) 

~ 
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This is a random variable with zero mean and unity standard deviation. The probability 

P that the values of Z fall within ±zo is 

P ( - zo < Z < zo) = p 

Estimation of variance of the noise 

As noted earlier, the output noise is the major source of the error in the measurements 

of the rate-gyro. Consider a Gaussian distribution with zero mean and unity variance 

( and thus unity standard deviation is considered). The variance of the noise associated 

with the rate-gyro is calculated such that 

P( I Z I < 0.5) = 0.9 (2.65) 

which means that a confidence interval of 90% is assu1ned. (2.65) can be rewritten as 

P(-Z < 0.5 + Z) = 0.9 

and thus 

p(-0·~ - µ < z < _0._5_a_µ) 0.9 

But this is for the assumed zero 1nean and unity variance and therefore the new variance 

has to be found such that 

P(-~-5 < z < o}) 0.9 (2.66) 

For zero mean and unity variance, the area under the z curve is found to be 1.645. But 

for an unknown variance subject to (2.66), the standard deviation anew = / 6~5 X 1 = 

0.3040. Thus the variance of the noise associated with the rate-gyro, Vrg is found to be 

Result 2.1 

Vr9 
2 

anew= 0.0924. (2.67) 

~ 
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2.5.3 Tilt-sensor experiments 

Experiments were done with the existing set-up in the auto1nated systems laboratory 

using the real time Vx- Works environment and the data collection was done along with 

the arm encoder readings (As it will be seen, this will facilitate the comparison of the 

relative 1nerits and demerits of using one instead of the other). 

The tilt-sensor uses a tilt-sensor signal conditioner as detailed in section 2.1.3. First 

the experiments were done with the gain adjustment, sensor offset correction and the 

symmetry adjustment kept in an arbitrary position and the results were recorded and 

plotted. The results were recorded for a tilt-angle range of -90° to +90° and the cor­

responding average output voltage of the tilt-sensor, peak-peak noise amplitude and 

variance corresponding to a particular angle were calculated and tabulated. 

Uncalibrated 
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tilt-angle [deg] 

Figure 2.17: Static calibration curve of the tilt-sensor 

The static calibration curve is shown in Figure 2.17. The measurement data used for 

plotting this curve is shown for some angles in Figures 2.18 to 2.21. 

From Figure 2.17, it can be seen that the operable range of the tilt-sensor is [-50° 

+45°]. But this is less than the range the specification sheets advise (see section 2.1.3). 
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Figure 2.18: Tilt-sensor reading at 30° 
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Figure 2.19: Tilt-sensor reading at 60° 

-2.25~--~-~~-~--~--~--~--~--~--~ 

-2.3~ · 

-2.351- · .. ,.. .. ....... ,. 

-2.4r . 

-'§ -2.45~ 
2:.. 
<D 

-g -2.5 
·"' a. 
~ -2.55 

-2.61- .. 

-2.65r .. 

-2.7~ 

-2 .751- .. 

0 100 200 300 400 500 600 700 800 900 
data points 

Figure 2.20: Tilt-sensor reading at -30° Figure 2.21: Tilt-sensor reading at -60° 
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This could have been due to the improper settings of the gain adjustment, the sensor 

offset correction and the symmetry adjustment . Also it can be seen that the tilt-sensor 

characteristic is not exactly linear in the operable region. 

So the experiments were re-done with new settings for the gain adjustment, sensor offset 

correction and the symmetry adjustment and the results are plotted. The experiments 

now were performed with two different tilt-sensors (but of the same model). The 

experiments were done twice for each of the tilt-sensors (the corresponding results are 

plotted as runl and run2) . First the results of tilt-sensorl are discussed and then that 

of tilt-sensor2 . 
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Tilt-sensorl 

The experiments were performed in a way slightly different from the way they were 

done before because the experiments before were done manually and the tilt-sensor has 

to be stopped at each angle before the readings were taken. This is not desirable for 

at least two reasons: 

1. The tilt-sensor, when used in an application, (for instance, biped locomotion 

[KB93]) will not be allowed to come to a stand-still position, before its readings 

are utilised. The sensor is supposed to deliver the readings as and when the 

application-system moves. This is not the case when the experi1nents were done 

in the first case. 

ii. The first 1nethod was time consuming and the angles the sensor was used to 

measure were based on visual-alignment. So the readings are prone to error and 

thus not desirable. 

So, for these reasons, the readings were taken by mounting the tilt-sensors on the arm 

of the pendulum and the arm was slowly 1noved from +90° to -90° continuously for 30 

seconds and the readings were recorded, during runl and for 60 seconds during run2 

(The same time-limits were followed for tilt-sensor2 to preserve uniformity). It was 

found that the operable range increases. This is because of the new settings as de­

scribed earlier. Also it can be seen that in the operable range, the tilt-sensor is almost 

linear and this shows that linear characteristics can be obtained by proper settings of 

gain, sy1nmetry and offset adjustments. 

Runl The experiments were done for an angle range of [-90.575° 94.75°]. The static 

calibration curve is shown in Figure 2.22. 

Run2 The experiments were done for an angle range of [-90.500° 93.375°]. The static 

calibration curve is shown in Figure 2.23. The arm of the pendulum was allowed to go 

back to the initial (starting) position before the 60 seconds time limit. Accordingly, it 

can be seen that the tilt-sensor measurements trace the motion of the pendulum-arm. 
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Figure 2.22: Tilt-sensorl runl Figure 2.23: Tilt-sensorl run2 

Tilt-senso r2 

The runl and run2 were done for 30 and 60 seconds as in the tilt-sensorl case. 
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Runl The experiments were done for an angle range of [-93.675° 89.55°]. The static 

calibration curve is shown in Figure 2.24. 

R un2 The experiments were done for an angle range of [-93.825 84.70]. The static 

calibration curve is shown in Figure 2.25. 
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Figure 2.24: Tilt-sensor2 runl Figure 2.25: Tilt-sensor2 run2 

From Figures 2.22 to 2.25, it can be noted that the range of operation has increased 
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from [-50° + 45°J to [-60° + 60°J and correspondingly the voltage range has also 

increased from [-2.5 V to 1.5 VJ to [-2.5 V to 2.5 VJ. Thus it can be inferred that the 

tilt-sensor can be used to measure angles of a larger range with proper settings. Though 

the tilt-sensor has an inherent time delay, it responds very well to sudden changes as 

observed during run2 of tilt-sensorl (see Figure 2.23). 

Comparison with the encoder readings 

The encoder and the tilt-sensor readings were plotted together to compare the efficiency 

of operation of the tilt-sensor. The comparative plots for tilt-sensorl (runl and run2) 

are shown in Figures 2.26 and 2.27 and for tilt-sensor2 (runl and run2) in Figures 2.28 

and 2.29. It can be seen that there is a delay in the operation of the tilt-sensor as 

co1npared to the encoder operation. This delay is determined by the constants O:ts and 

f3ts · 

The tilt-sensor has an inherent delay in its operation as compared to the encoder 

operation when used to measure the position of the arm of the pendulum. This is clearly 

a disadvantage. But in applications like bipedal walking [KB93J, it is not feasible to 

use the encoder because of the size of the encoder that will make the design messier. 

So the use of the tilt-sensor becomes inevitable in such applications. 
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Calculation of the variance of the noise 
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For the angles shown between -90° and +90°, 900 data points were collected for each 

angle at a frequency of 300 Hz. Then the mean reading of each value was tabulated 

as the output voltage [volts], the maximum minus minimum value of the data was 

tabulated as the peak-peak noise amplitude [volts] and the variance at each angle was 

calculated using the MATLAB command cov( ) and tabulated against the corresponding 

angle. The variance of the noise associated with the tilt-sensor is obtained by averaging 

the values of the variance column in Table 2.9 and is found to be 

Result 2.2 

Variance of the tilt-sensor, vts CTis = 0.0017. (2.68) 

2.5.4 Actuator experiments 

Static nonlinearities 

Dead-zone, backlash and hysteresis are often called common or typical nonlinearities be­

cause they are ubiquitous in mechanical, hydraulic, magnetic and other types of system 

co1nponents. In most cases, they are treated as imperfections of component character­

istics. Dead-zone is a static memoryless nonlinearity which describes the component's 
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Table 2.9: Tilt-sensor variances 

Tilt-angle [0
] Output voltage [volts] PP noise amplitude [volts] Variance 

90.0000 1.5147 0.1343 0.0017 
80.0000 1.5148 0.1343 0.0017 
70.0000 1.5151 0.1368 0.0017 
65.0000 1.5145 0.1343 0.0017 
60.0000 1.5149 0.1343 0.0017 
50.0000 1.5144 0.1319 0.0017 
45.0000 1.5147 0.1319 0.0017 
40.0000 1.3982 0.1343 0.0017 
35.0000 1.2230 0.1319 0.0017 
30.0000 1.0408 0.1295 0.0017 
25.0000 0.8647 0.1295 0.0017 
20.0000 0.6847 0.1319 0.0017 
15.0000 0.5086 0.1290 0.0017 
10.0000 0.3356 0.1270 0.0016 
5.0000 0.1652 0.1295 0.0017 
0.0000 -0.0276 0.1295 0.0018 
-5.0000 -0.2751 0.1295 0.0017 
-10.0000 -0.5176 0.1295 0.0017 
-15.0000 -0.7767 0.1295 0.0017 
-20.0000 -1.0222 0.1319 0.0017 
-25.0000 -1.2800 0.1295 0.0017 
-30.0000 -1.5477 0.1319 0.0017 
-35.0000 -1.7943 0.1319 0.0017 
-40.0000 -2.0303 0.1343 0.0017 
-45.0000 -2.3106 0.1343 0.0017 
-50.0000 -2.5215 0.1343 0.0017 
-55.0000 -2.5212 0.1343 0.0017 
-60.0000 -2.5217 0.1343 0.0017 
-70.0000 -2.5214 0.1343 0.0017 
-80.0000 -2.5213 0.1343 0.0017 
-90.0000 -2.5217 0.1343 0.0017 

insensitivity to small signals. In addition to this type of insensitivity, backlash and 

hysteresis also include delays and are, in fact, dynamic. There are applications in 

which nonlinear characteristics are intentionally introduced, such as in heating-cooling 

systems, where a dead-zone is needed to prevent simultaneous heating and cooling. In 

some hydraulic valves an intentional dead-zone prevents flow of fluid when the valve is 
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inactive [TK96]. Whether intentional or not, dead-zone, backlash and hysteresis usually 

have undesirable effects on feed back loop dynamics and control system performance. 

Performance deterioration 

It is easy to see that the presence of a dead-zone, backlash or hysteresis adversely affects 

the static accuracy of feed back control systems. With a linear controller, the static 

accuracy is limited by the width of the dead-zone, backlash or hysteresis. Attempts 

to improve it by increasing the gain of the feedback loop lead to sustained oscillations 

which may cause rapid wear of the gear trains and other components. Backlash and 

hysteresis are also harmful for the dynamic performance because of their inherent phase 

lag. 

Dead zone 

Dead-zone is a static input-output relationship which for a range of input values gives 

no output. Once the output appears, the slope between the input and the output is 

a constant. The simple dead-zone model appears in numerous studies of wide variety 

of phenomena, not limited to man-made systems. A dead-zone is often caused by fric­

tion. In such applications, the simple dead-zone model serves as an aggregate static 

approximation of more complex microscopic dynamic phenomena. 

Thus for a corresponding change in the input voltage to the DC motor, if there were a 

dead-zone present, then the motor-shaft will not turn immediately or in other words, 

there will be a delay in the response of the motor to a subsequent change in the input 

starting voltage. The DC motor considered for analysis is tested for the presence of a 

dead-zone. Before proceeding further, a relationship between the motor voltage and 

the motor torque is developed as follows: 

The voltage equation of a DC motor is 

Vs Eb+ iaRa (2.69) 
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where Vs is the supply voltage [volts], Ra is the armature resistance [Ohms] and Eb is 

the back-emf [ volts J and ia is the armature current [ Amperes J. 

The back-emf can be written as 

Eb = kbWm (2.70) 

where kb is the back-emf constant [~:~c] and Wm is the rotor speed [:~~]. 

Note that the low inductance in the motor can be neglected. In SI units the torque con­

stant, kt is equal to the back-emf constant, kb and after some algebraic manipulations, 

an equation for the torque developed in terms of the rotor speed is obtained as 

Td c1[Vs - kwm] (2.71) 

6 6 6 k 
Where kt = kb = k and C1 = Ra. 

Experiments 

Experiments were done with the existing pendulum setup detailed earlier. The control 

input signal and the rotor speed were measured. In the case of the rotor-speed mea­

surement, the reading of the encoder mounted on the disc was used to obtain the disc 

position and thus the disc velocity was calculated which is directly proportional to the 

rotor-speed ( since the shaft of the motor is coupled to the disc). 

Thus with the rotor-speed and the input voltage, the motor torque can be calculated 

using (2. 71). The corresponding motor characteristics are shown in Figures 2.30 and 

2.31. It can be seen that the characteristics are linear. 

In the second part of the experiment, the control signal voltage to the motor was applied 

after a delay and the motor started immediately. This proves that the motor can be 

started at any tiine. If there were a dead band, the instant starting of the motor would 
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not have been possible. This proves that this motor (Precision DC motor RS718-981) 

has a very negligible amount of dead band. 

Effect of noise 

Noise comes into effect during commutation. But there is very little electrical noise 

present during commutation and thus the effects of noise are not pronounced much 

in the performance of the motor. So the noise need not be considered as a degrading 

factor in the performance of the Precision DC motor RS718-981. 

2.6 Summary 

In this chapter, the issues concerned with the modelling of the pendulum along with 

the possible co1nbinations of the sensors were presented. The sensors that were consid­

ered are the encoder (REDS series), the rate-gyro ( muRata ENV-05S) and the tilt-sensor 
·• 

(Spectron L211U) . Five combinations of the pendulum model and the above sensors were 

formulated and it was shown how these combinations can be employed for measuring 

the state or states of the pendulum model. A parameter estimation algorithm was 

developed for determining the parameters of the pendulum and the tilt-sensor models 

which was based on the assumption of small sampling intervals. The ZOH equiva­

lence of polynomic nonlinear systems was discussed next where the concept of vector 
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homogenous forms and the associated properties were introduced. Volterra series rep­

resentations of the pendulu1n and the combined pendulum and tilt-sensor models were 

derived. Experiments done with the sensors provided insight into the sources of error 

and it was found that the noise associated with the sensors was the main source of 

error. The variance of the noise associated with each sensor was calculated and these 

values will be used for simulation purposes from this point. Also the experiments with 

the actuator revealed that in the motor considered for analysis (Precision DC motor 

RS718-981), the effects of the dead zone were negligible and thus were not detrimental to 

its operation. The next chapter presents the estimation of the states of the pendulum. 



Chapter 3 

State Estim.ation 

In this chapter, the state estimation of the pendulum model is discussed. Four Kalman 

filters: LKF, EKFl, EKF2 and EKF3 are employed for this purpose. LKF is a linear 

discrete tin1e Kalman filter which is based on the linearised model of the pendulum. 

EKFl, EKF2 and EKF3 are discrete time extended Kalman filters. EKFl is based on 

a continuous time nonlinear model and a discrete time measurement model where the 

nonlinear term is a sinusoid associated with the pendulum model. EKF2 is based on 

a continuous time nonlinear model and a discrete time measurement model where the 

nonlinear term sine is approximated by the first two terms of the power series expansion 

of sin e, i.e., e - (B3 /6) and EKF3 is an approximated version of EKF2. The Volterra 

series representation of the pendulum model was derived in Chapter 2. It will be shown 

that this representation of the pendulum model falls into a special category called the 

extended generalised Wiener model structure. The structure of the extended generalised 

Wiener model is such that it has a linear subsystem followed by a polynomial type 

nonlinearity which is followed by another linear subsystem. It is demonstrated that t he 

EKF2 and EKF3 approaches serve as powerful tools for estimating the states of these 

systems based on the input-output relations developed at discrete instants of time. The 

results are then compared with the standard extended Kalman filtering approach (i.e., 

EKFl) and the EKF2 and EKF3 approaches are shown to be more numerically efficient 

61 
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than the standard approach for the pendulum model. All the possible combinations 

of the sensor-measurements are used for the estimation of the states of the pendulu1n 

and the corresponding state estimation error variances are provided along with the 

simulation results. 

3.1 Kalman Filtering 

State estimation can be broadly classified into three major types namely filtering, 

smoothing and prediction [Gel7 4]. When the time at which an estimate is desired 

coincides with the time of the last measurement, the problem is referred to as filtering; 

when the time of interest is before the last measurement, the problem is termed smooth­

ing; and when the time of interest occurs after the last measurement, the problem is 

called prediction. 

Let x(t) E Rn be a vector function of time representing the state of a process or plant. 

Then a function z ( x, t) of both the state x and time t is called an observation ( or mea­

surement) process. Suppose the observation z(x, t) is recorded for all t in the interval 

[O, t], then the filtering problem is to estimate x(t) using all the observations in the 

interval up to time t. Denote the estimate by x(t). 

If x(t) is selected so that the probability x(t) = x(t) is maximised , the estimate x(t) 

is called the maximum likelihood estimate of x(t). If x(t) is selected so that the co­

variance of the estimate ~{[x(t) - :x:(t)J[x(t) - x(t)JT} is minimised (where~ denotes 

the mathematical expectation operator), the estimate is called the minimum variance 

estimate. For a linear plant with additive Gaussian white noise, the state of the plant 

x(t) is a random process with a Gaussian distribution and any estimate of x(t) based 

on a linear function of x(t) with additive Gaussian white noise will also be a Gaussian 

rando1n variable. In this case, the maximum likelihood estimate and the 1ninimum vari­

ance estimate are equal [AM79, Pel70]. A minimu1n variance ( unbiased) estimate has 

the property that its error variance is less than or equal to that of any other unbiased 
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estimate. A consistent estimate is one which converges to the true value of x(t), as the 

nu1nber of observations increases. 

According to [Gel7 4], an optimal estimator is defined as follows: 

An optimal estimator is a computational algorithm that processes measure­

ments to deduce a minimum error estimate of the state of a system by util­

ising knowledge of system and measurement dynamics, assumed statistics 

of system noises and measurement errors and initial condition information. 

The Kalman filter is such an optimal estimator that can be characterised as an algo­

rith1n for computing the conditional mean and covariance of the probability distribution 

of the state of a linear dynamic finite-dimensional stochastic system with uncorrelated 

Gaussian process and measurement noise. The conditional mean is the unique unbiased 

esti1nate, and is propagated in feedback form by solving a system of linear equations. 

The conditional covariance is propagated by solving a nonlinear equation. 

3.1.1 Linear Kalman filtering 

Different types of Kalman filters are possible depending upon on the type of plant 

and measurement models. Before proceeding further, for completeness, the notations 

and the associated meaning of the Kalman filters that will be used hereafter in this 

thesis are summarised in Table 3.1. In particular, four types of Kalman filtering are 

considered for the state estimation of the pendulum model. When the factor sin e in 

the pendulum model equation is approximated by e, the model is linear and the linear 

Kalman filter, called LKF, is used for the state estimation of the pendulum. LKF uses 

a continuous time plant model and discrete measurements which are obtained at each 

sampling instant. In EKFl, the factor sin e is not approximated and it is based on a 

continuous time plant model and a discrete time measurement model. EKF2 is based 

on a continuous time plant model and a discrete time measurement 1nodel where the 

factor sin () ~ () - ( B3 /6) and EKF3 is based on an approximation of EKF2. 
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Table 3.1: Kalman filter notations 

Abbreviation Filter name Type Plant model Meas. model 

LKF Linear Kalman Filter Linear Continuous Discrete 
EKFl Extended Kalman Filter 1 Nonlinear Continuous Discrete 
EKF2 Extended Kalman Filter 2 Nonlinear Continuous Discrete 
EKF3 Extended Kalman Filter 3 Nonlinear Continuous Discrete 

Continuous-time Kalman filtering 

The continuous-time Kalman filter is summarised in Table 3.2 [AM91]. The notation 

x rv N(m, P) indicates that xis a Gaussian (normal) random vector with mean m and 

covariance P. For the model, x E Rn, u E R m and z E RP denote respectively the 

state, input and observation. The system matrices A, B and C are n x n , n x m and 

p x n respectively. The processes w(·) and v(·) are assumed to define zero mean white 

noise processes such that 

~{ ( :~:;) ( wT(s) vT(s))) ( 
Q S )8(t-s) 
gT R 

(3.1) 

where 8 ( ·) is the Dirac delta function, ~ indicates the mathe1natical expectation oper­

ator and R = RT > 0 and Q = QT > 0. The initial state x(t0) will be assumed to 

be a Gaussian rando1n variable, of mean x0 and covariance P 0 . The filtering prob­

le1n is to use the measurements to estimate x(t), denoted by x(t), so as to minimise 

~ {llx(t) - x(t)II}. The matrix P(t) 
6 

~{[x(t) - x(t)J[x(t) - x(t)]T} is given by the 

solution of the Riccati equation given in Table 3.2. 

LKF approach 

In this approach, the system model is continuous and the measurement model is dis­

crete. The measurements are made once in every sampling interval, T 8 • Suppose that 

a measurement has been 1nade at the discrete-time instant kTs , then the information 

that it provides is applied in updating the estimate of the state x of a stochastic system 

at the discrete-time instant kTs. The measurements are linearly related to the state. 
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Table 3.2: Summary of the continuous-continuous Kalman filter 

System model x(t) == Ax(t) + Bu(t) + w(t); w(t) rv N(O, Q) 
Measurement model z(t) == Cx(t) + v(t); v(t) rv N(O, R) 

. 
State estimate x(t) == Ax(t) + Bu(t) + K(t) [z(t) - Cx(t)] 

x(O) == xo 
Error covariance propagation P(t) == AP(t) + P(t)AT + Q 

-K(t)R(t)KT(t); P(O) == Po 
Kalman gain matrix K(t) == P(t)C'1 R 

This type of filtering is employed for the state estimation of the pendulum based on 

the linearised model presented in section 2.2 of chapter 2 and will be called the Linear 

Kalman Filtering (LKF) approach. The corresponding discrete-time system matrices 

are obtained by the discretisation procedure outlined in section 2.3.1. The LKF is 

su1nmarised in Table 3.3 where 

I denotes the identity matrix of appropriate order, 

Xk is the state at the discrete time instant kTs, 

Zk is the measurement made at the discrete time instant kTs, 

Vk is the sampled measurement noise at the discrete time instant kT8 , 

Xk ( - ) is the a priori estimate at the discrete time instant kTs 

(i.e., the estimate before the measurement zk), 

Xk ( +) is the a posteriori estimate at the discrete time instant kT8 using measure­

ments Zk 

(i.e., the estimate after the measurement zk), 

Pk ( - ) is the a priori covariance at the discrete time instant kTs 

(i.e., the error covariance matrix before the measurement zk), 

Pk ( +) is the a posteriori covariance at discrete time instant kTs using measure­

ments Zk 

(i.e., the error covariance matrix after the 1neasurement zk) and 

Kk is the Kalman gain matrix at the discrete time instant kTs, 
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All the above indicated notations are common to all the Kalman filters that will be 

mentioned from this point. 

Table 3.3: Summary of the continuous-discrete Kalman filter 

System model x(t) = Ax(t) + Bu(t) + w(t); w(t) rv N(O, Q) 
Measurement model ajvj(t) = -vj(t) +ru(t); j = 1,2. 

Zk = Hxk + vk; k = l, 2, · · · 
'TJ rv N ( 0, 1); V k = V ( kTs); 

State estimate propagation x(t) = Ax(t) + Bu(t); kTs < t < (k + l)Ts 
Error covariance propagation P(t) = AP(t) + P(t)AT + Q 

Kalman gain matrix Kk = Pk (-) HT [ HP k (-)HT+ Rk ]-
1 

Error covariance update Pk ( +) = [I - K k HJ Pk ( - ) 
State estimate update xk (+) = xk(-) + Kk [zk - Hxk (-)] 
Initial conditions Xo /"V N (xo, Po) 
Other assumptions ( { w(t)vl} = 0 V k and t 

3.1.2 Measurement noise model 

Many signals occur in physical processes that cannot be predicted in advance. Infor­

mally, such signals can be modelled as noise. They may occur either as exogenous 

inputs to the plant or as extraneous signals in the outputs of sensors. The former case 

can be modelled as the process noise and the latter as the measurement noise. The 

noise associated with the sensors was discussed in chapter 2. In many situations, a 

noise source can be adequately represented as the response of a linear system to white 

noise, as illustrated in Figure 3.1. 

white-noiseJ 1 I v(t) / { v(kTs) l 
1+ a f s 

Figure 3.1: Sampled measurement noise representation 

An anti-aliasing filter is used in the generation of the measurement noise as the sampled­

noise is utilised once in every Ts seconds. The covariance of the noise will change 

------·~ 
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according to the sampling. interval. The sampled white-noise is to be utilised in the 

Kalman filtering approaches and this in turn will affect the Kalman filter gain and thus 

the entire estimation process. Thus the relation between the covariance of the sampled 

noise and the sampling interval is to be determined. The frequency response of the 

anti-aliasing filter is shown in Figure 3.2. 

Anti-aliasing filter frequency response 
0 r--------,------,-~==~~r,----r---r----r--.------,---r-r--.--, 

Ill -5 ._ · 
-0 
C 
'iii 
CD 

-10 

.· . . · ... ...... . 

-15L...-~~~~~~~~~~~............,'---~~~~~~~~~~~-'--' 
102 103 104 

Frequency (rad/sec) 

OF=======-~~~:::T--~-~~~::::i 

Ol-30 
Q) 
-0 
Q) 

~ ii -60 

-90 

102 103 
Frequency (rad/sec) 

104 

Figure 3.2: Anti-aliasing filter frequency response 

Discrete measurement noise covariance 

Let Rk be the covariance of the sampled measurement noise sequence { v(kTs) }. Then 

[Wil91] 

Rk 0.5>..a- 1 ( e2aTs - 1) when a < 0 (3.2) 

where a = :~ and >.. is the covariance of the un-sampled white noise. Let w(t) be 

the white noise ( of unity covariance) and v(t) be the measurement noise (i.e., the 

measurement noise before sampling which is the output of the anti-aliasing filter). v(t) 

after sampling results in the sampled sequence { v(kTs) } as shown in Figure 3.1. For 

small sampling intervals (i.e., Ts small), e2aTs ~ 1 + 2aT8 and using this approxiination 

in (3.2), the desired relation between the covariance of the sa1npled measurement noise 
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and the sampling interval, Ts, is found to be, 

Rk = 

Then the covariance Rk of { v(kTs)} when 

Ts 
2 

O',J 

Ts= ~Ts, Rk1 

and at the sampling intervals Ts, Rk2 = 

68 

(3.3) 

~Ts (3.4) 
~ J 
Ts (3.5) 
0',2 

J 

Note that LKF and EKFl operate at ~Ts instants, where ~Ts = ~ is the Euler­

integration (to be discussed in section 3.2.1) step-size and n is the number of propaga-

tions in one sa1npling interval. 

Discrete process noise covariance 

The discrete representation of a continuous-time plant with { A, B , w(t)} is given by, 

Xk+l Fxk + G ·uk + Wk (3.6) 

F 
{ Ts 

e ATs ; G = Jo eAT B dr 

~ { Wkw~} 
{Ts T 

Q k 8 ( k - m); Q k = J
O 

eAT Q eA T d T (3 .7) 

where Q k is the discrete process noise covariance and Q is the continuous process noise 

covariance. Also Q k in (3.7) satisfies the continuous-Lyapunov equation [Wil91] 

AQk + Q kAT 

where Q 1 

-Qi 
{T" d 

- Jo " dr [eATQeATT] dr 

Q - eATs Q eA TTs 

(3.8) 

The Lyapunov equation for Q k has a unique solution if!,\+ Aj #- 0 V eigenvalues Aj 

of A. 

3.1.3 Application of LKF to the pendulu1n 1nodel 

The LKF is employed for the state estimation of the linearised pendulum model. All the 

five sensor combinations (that were discussed in section 2.2 of chapter 2) are employed. 
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The output matrix H changes according to the type of sensor employed. For instance, 

when only the encoder is employed, H = (1 0). In the case of the encoder and rate-gyro 

co1nbination and the rate-gyro and tilt-sensor combination, two anti-aliasing filters are 

employed, one for each sensor whereas in the individual sensor cases, one anti-aliasing 

filter is employed for the generation of the measurement noise. The matrices A and B 

for this approach are 

A ( ~ -J 

1 

K1 
- J 

);B=(o ,r 
The true state and its encoder measurement and the (transient) state estimation error 

plots (when the measurements are provided by the encoder) are shown in Figures 3.3 

and 3.4. A sampling interval of 0.2 seconds was chosen for the simulation study. It 

can be seen from Figure 3.3, that B (statel of the pendulum) is approximately in the 

range of± 60° and thus the nonlinearities are severe around these angles. This encoder 

measurement is the same for all the approaches considered. Also the noise sequences 

remain the same for all the simulations done and hence comparisons between different 

approaches are valid . 

Theta (state1) of the pendulum 
1.5--------~--~--~--~--~--~--~-~ 

2 4 6 8 10 12 14 16 18 20 

Encoder measurement 
4-----------r--~---~----------r--~----, 

-4'-----'----'------'---"'------'------'-----'----'----'-----' 
0 2 4 6 8 1 0 12 14 1 6 18 20 

sampling time [secs] 

Figure 3.3: True B of the pendulum and its encoder measurement 

• 



l 
'.ji 
I' 

Chapter 3. State Estimation 70 

True state1 True state2 
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Figure 3.4: LKF state estiination errors with encoder measurements 

0 bservability 

Observability questions relate to the problem of determining the values of the state 

vector knowing only the output y over some interval of time [Bro70]. 

Lemma 3.1 For a continuous-time system with system matrices A , B and C , for 

A and C constant and A n x n, the n dimensional linear constant system is called 

observable if the observability test matrix 

(C· CA· · · · · CAn-1
) 

' ' ' 
(3.9) 

is of rank n. 

For the linearised pendulum model with the rate-gyro, 

A== ( O 1, );c==(o 1) 
_Ko _R1 

J J 

Using (3.9), it can be seen that the rank of the observability test matrix is of rank 2 

and thus the system is observable. So from measuring the output e, it is possible to 

estimate the value of e of the pendulum. 
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Estimation error variance 

The error state e = x - x, which is the difference of the true state, x and the esti1nated 

state, x, describes the actual performance capabilities of the filter. This error is known 

as the estimation error. Since both the measurement and the filter models are driven 

by randomly generated noise, each individual run is expected to be different. Therefore, 

in order to generate error statistics, a given case is iterated many times, the iterations 

differing only in the rando1n number input sequences. The results of the iterations 

are then averaged to obtain the desired characteristics. Consequently, observing the 

ensemble statistics of several runs gives an indication of the filter's expected perfor-

1nance. Naturally, the more runs are made, the more reliable become the statistics. 

Each run produces a different sequence of random numbers to generate the samples of 

input white-noise processes. Sample error statistics are computed for each sampling 

time point using the equations 

µ est 

2 
a est 

1 L 
L ~ (xi - xi) 

i=l 

1 ~( 2 L 2) 
L - 1 ~ Xi - L - 1 µ est 

i=l 

(3.10) 

(3.11) 

where µ indicates the sample mean, a 2 indicates the sample variance, the subscript 

est indicates estimation and L is the number of computer runs. The estimation error 

variances for all the sensor combinations and for each state (separated by commas from 

the next state) are shown in Table 3.4. Also note that, when the tilt-sensor is employed, 

the tilt-sensor dynamics introduce a third state. 

Table 3.4: Estimation error variances in the LKF case 

Sensor Estimation error variance 

Encoder 0.0226, 0.3867 
Rate-gyro 0.0228, 0.3865 
Encoder & rate-gyro 0.0224, 0.3863 
Tilt-sensor 0.0230, 0.3868, 0.0003 
Rate-gyro & tilt-sensor 0.0228, 0.3867, 0.0003 
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3.2 Extended Kalman Filtering 

The optimal estimation problem for nonlinear systems is in general very complicated 

and is considerably more difficult when the system contains nonlinear elements because 

the probability density functions of signals and noise are altered as they are transmitted 

through these elements. Gaussian inputs cause non-Gaussian response and the criteria 

for best state estimates are not quite so obvious as in the linear case. The mean and 

standard deviation are incomplete descriptors of the probability density function and 

a state esti1nate based on the conditional mean may be different from one based on 

the mean or median. For a nonlinear plant and nonlinear observations, the probability 

density function of the estimate conditioned on all of the observations is not generally 

Gaussian. In this case, the maximum likelihood estimate will differ from the minimum 

variance estiinate [Pel70]. Thus the procedure used to solve the nonlinear filtering 

problems will differ from its linear counterpart depending upon which type of estimate 

is desired . 

Fortunately estimators for many nonlinear systems can be based on the Kalman-Bucy 

filters for linear systems [Ste86]. These modified linear-optimal estimators are useful 

when the stochastic effects are additive and small, either as a result of the original sys­

tem's structure or of reasonable assumptions regarding magnitudes of these stochastic 

effects. Details of specific probability density functions may not be well portrayed but 

the overall performance in state estimation can be satisfactory. As the nonlinear system 

is complicated by the fact that that the probability density function is not necessarily 

Gaussian, the 1nean and covariance may not completely describe it. In the general 

case, a countably infinite number of parameters are necessary to completely describe 

the filtered parameters. Because of this, approximations involving a finite number of 

para1neters are sought. In the case of nonlinear filtering theory, one approach is to ap­

proximate the expectation of a function by Taylor series truncated after the quadratic 

tenns which is equivalent to assuming certain higher order moments to be negligible 

which has the advantage of relative simplicity. 
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Extended Kalman filtering 

The (linear) Kahnan filter is a recursive data-processing algorithm in which at the 

update time, it combines all available measurements, plus prior knowledge about the 

system and the measuring devices, to produce an estimate of the state x(t) in such 

a manner that the mean square is minimised statistically. During propagation, it ad­

vances the estimate in such a way as to again maintain optimality. Thus the Kalman 

filter performs the above tasks for linear systems and linear measurements in which 

the driving and measurement noises are assumed to be 1nutually uncorrelated, white, 

zero-mean and Gaussian . In nature, however, most physical problems or processes are 

nonlinear. Consequently, the nonlinear systems must be linearised (that is approxi­

mated) before the linear filter theory can be applied. 

The idea of the extended Kalman filter, EKF, is to use the ideas of Kalman filtering for 

a nonlinear problem. The filter gain is computed by linearising the nonlinear model. 

The EKF, in contrast to the Kalman filter for linear systems, is not an optimal filter, 

since it is based on approximations. It retains the linear calculation of the covariance 

and gain matrices, and it updates the state estimate using a linear function of the fil­

ter residual; however it uses the original nonlinear equations for the state propagation 

( extrapolation in the discrete case) and the definition of the output vector. Thus the 

EKF assumes the validity of linearisation. 

When applying the extended Kalman filter to real-time applications, the requirement 

to recalculate the Jacobian matrices continually can impose a severe computational 

burden. The time-varying Jacobian matrices cannot be precomputed because they are 

functions of the state estimate. Therefore, as soon as a new state estimate is made, a 

new and better reference-state trajectory is incorporated into the estimation process. 

In this manner, the validity of the assumption, that deviations from the reference tra­

jectory are small enough to allow linearisation techniques to be employed with adequate 

results, is enhanced. Consequently the Kalman gain matrix also depends on the state 

• 
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estimate and all the filter calculations must be done in real-time. 

Improved esti1nates could be obtained from a second- or higher-degree filter that retains 

more terms in the Taylor series expansions and the accompanying filter derivations. 

Two variations of the conventional EKF used occasionally are the iterated EKF and the 

second-order filters. Both of these are higher-order filters. The approach in the former 

filter is to iterate within the linearisation step few times, thus improving the quality 

of the estimates; however, this results in an increase in the number of operations. The 

second-order filter, as the name implies, is obtained by including second-order terms in 

the expansion for the J acobians. 

EKFl approach 

If sampled-data measurements of a continuous process are available, a continuous­

discrete extended Kalman filter is most appropriate for state estimation [Ste86]. This 

EKF will be hereafter referred to as the EKFl. The EKFl is based on a continuous­

ti1ne plant 1nodel and a discrete-time measurement model. The EKFl is summarised 

in Table 3.5. 

For the propagation of the state estimates and the error covariance , some form of 

propagation scheme is to be employed. A discussion of various schemes is presented 

next. 

3.2.1 Numerical integration of nonlinear equations 

Numerical approximation of a continuous-time equation leads directly to a discrete­

time equation where the sequence of evaluation times is uniformly spaced. The general 

form of the dynamic equation of the model is represented by 

x(t) = f (x(t), u(t)) (3.12) 

Solving for x(t) in the finite interval [t i , t1J requires the integration of (3.12) which can 

.. 
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Table 3.5: Summary of the continuous-discrete extended Kalman filter 

Nonlinear system model x(t) = A 0 x(t) + b0 u(t) + d0 sin ( c 0 T x(t)) + w(t) 
x(t) = f (x(t), u(t)) + w(t); w(t) rv N(O, Q) 

Measurement model CYjVj(t) = -vj(t) + ru(t); j = 1, 2. 
Zk = Hxk + Vk; k = l, 2, · · · 

TJ rv N(O, 1); Vk = v(kTs); 
State estimate propagation x(t) = f (x(t), u(t)); kTs < t < (k + l)Ts 
Error covariance propagation P(t) = F1 (x(t)) P(t) + P(t)F1T (x(t)) + Q 

Kalman gain matrix Kk =Pk(-) HT [HPk (-)HT+ Rk ]-
1 

Error covariance update Pk ( +) = [I - K k HJ Pk ( - ) 
State estimate update xk (+) = xk (-) + Kk [zk - Hxk (-)] 

Definitions F 1 ( x ( t) ) = ar ( x ( t), u ( t)) I 
ox(t) x(t)=x( t) 

Initial conditions Xo rv N (xo, Po) 
Other assumptions ~ { w ( t) v T} = 0 \f k and t 

be expressed by 

ft! 
x(t) = x(to) + lti f [x(r), u(r)Jdr 

where the necessary quantities are assumed to be known in the finite interval and 

x(t) is instantaneously available to allow evaluation of f[l It is sufficient to tabulate 

x(t) at discrete instants of time, the integration algorithm could step from one instant 

of time to the next based on the previous result as an initial condition for the next 

time-increment . 

x(k) = x(k - 1) + rk f [x(t), u(t)J dt 
lk-1 

where k is the sampling index. The problem though the same as before, the time­

increment (k - (k - 1)) has been made arbitrarily small, allowing computational ap­

proxi1nations based on multiplication and addition to substitute for the operation of 

integration. 

Algorithms for numerical integration differ from each other in the way that f [·] is 

assu1ned to vary in the interval. There is a trade off to be made between the length 

-
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of the time increment and the precision with which the variation in f [·] is represented. 

If f [·] is described precisely in the interval, large time steps can be used; if not, small 

steps are required. 

Euler integration 

Euler integration ( also called as rectangular integration) provides the simplest repre­

sentation off[·] (and thus solving for x(t)) at discrete instants of time [Ste86]. With 

an integration step-size, b..T == (k - (k - 1)), 

x(k) == x(k - 1) + b..T f [x(k - 1), u(k- 1)] (3.13) 

This algorithm requires a single function evaluation - computation of f [·] with given 

values of x, u and t. 

Modified Euler integration 

Modified Euler or trapezoidal integration makes a correction based on the first function 

evaluation and the known variations in x, u and t to improve the result. Incremental 

changes in the state are calculated as 

b..x1 == b..T f [x(k - 1), u(k - 1)] 

b..x2 == b..Tf{[x(k-l)+b..x1],u(k)} 

and the final co1nputation of x(k) is 

1 
x(k) == x(k - 1) + 

2 
(b..x1 + b..x2) 

As two function evaluations are required, it doubles the computation per time step but 

the accuracy of the result is improved and the time interval can be increased. 

Runge-Kutta integration 

The idea of using interim calculations off[·] to improve the fit in the interval is gener­

alised in Runge-Kutta integration. For nth - order Runga-Kutta integration, n function 

.... 
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evaluations are made to produce n state increments; a weighted sum of the increments 

is used to update the state. The Euler and modified-Euler algorithms can be considered 

as Runga-Kutta methods of order one and two, respectively. The fourth-order algo­

rithm provides a good trade-off between accuracy and computation; it can be expressed 

as follows [Ste86]: 

£lx1 == £lT f [x(k - 1), u(k - 1)] 

~X2 = ~Tf{[x(k-l)+~;i],u(k-1)/2)} 

~x3 = ~T f { [x(k - 1) + ~;2
] , u (k - 1) /2)} 

£lx4 == £lT f {[x(k - 1) + £lx3J, u(k)} 

where (k - 1) /2 symbolises t == (k - 1) + £lT /2 and the final computation of x(k) is 

1 
x(k) == x(k - 1) + - (£lx1 + 2£lx2 + 2£lx3 + £lx4) 

6 

Based on the above discussion with respect to the numerical integration of state equa-

tions, the selection of a particular algorithm is a trade-off between accuracy and com­

putational burden. For the propagation of the state equations in the EKFl case, the 

Euler integration was selected because of its simplicity. 

3.2.2 Computational issues 

Kalman filtering is a real-ti1ne process, in the sense that the filter must do its work 

in the time between measurement inputs. One must then consider the amount of 

computation and thus the computational time required for each filter iteration. These 

computational requirements will, in turn, depend on the implementation method. 

Computational complexity 

The main computational burden in the EKFl algorithm is in the state estimate and 

error covariance propagations. The error covariance propagation involves computing 

the Jacobian, F 1 (see Table 3.5) using current estimates at each time instant. Also the 

state estimate propagation via Euler integration has to be done n times (where n being 

the number of propagations in each sampling interval). 

-
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Need for exact discrete-time filtering 

As the propagations are done every !}..Ts seconds, the number of propagations are much 

more than what would have been in the case of propagating every Ts seconds. Also 

the numerical complexity and thus the computational time is increased by a significant 

factor . To overcome this disadvantage, the state estimate extrapolation and the error 

covariance extrapolation are desired to be done every Ts seconds. If a closed-form 

input-output relation of the model at discrete time instants is obtained, then this is 

possible instead of propagating every !}..Ts seconds. 

Error covariance propagat ion 

For small and constant sampling period, i.e . Ts small, eATs ~ I + ATs (where I 

indicates the identity matrix of appropriate order) and the state transition matrix, 

<I> (k) ~ <I> (k!}..Ts, to); to= ko!}..Ts; <I> o = I; 

<l> ( k + l) ~ [I + !},,_ Ts F 1 ( k !}._Ts)] <l> ( k) 

P (t) = F1 (t) P (t)+ P (t) F1T(t)+ Q is the error covariance propagation to be computed. 

The state space representation of the pendulum model is given by 

±1(t) = x2(t) 

. (Ko) . (K1) (Go) x2(t) = - J sin x1(t) - J x2(t) + J T(t) 

+ G)wa(t) 
which can be written simply as 

x(t) = f (x(t)' u(t)) + w(t) 

and the Jacobian is given by 

F 1 (x(t)) 
8f ( X ( t) , U ( t)) 

8x(t) lx(t)=x(t) 

( -ES°- c:SX1 ( t) -~) 

I 
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Thus F 1 (t) and Q are available. It is desired to solve for P . Using the Euler approxi­

mation and the state transition matrix, cl> , this can be done as follows: 

Consider the matrix differential equation 

<i> (t, to) A(t) cI> (t, to) 

The solution of (3 .14) leads to 

P ( t) = - t [ <T> (ta, er) Q (er) <T> T (ta, er)] der 
lto 

At discrete instants of time, this can be written as 

P (k + 1) 

P (k) 

(3.15) - (3.16) gives, 

P (k + 1) - P (k) 

P (k + 1) 

r k+l 
- J k [ <T> ( k, er) Q (er) <T> T ( k, er)] der 

-1~
1 

[<I> (k,er) Q(er) <T>T(k,er)]der 

r k+l 
- J k [ <T> ( k, er) Q (er) <T> T ( k, er)] der 

P (k) - llTs [cI> (k - 1, k) Q(k) cI>T(k - 1, k)] 

(3 .17) is used for the error covariance propagation in the EKFl approach. 

3.2.3 Application of EKFl t o the pendulum model 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

The EKFl is employed for the state estimation of the pendulum model and the results 

are presented for all the possible combinations of the sensors discussed in chapter 2. 

As indicated earlier, the noise sequences and the measurements are the same for this 

case as in the LKF case. Also note that this EKF works with the full nonlinear model. 

i.e., the nonlinearity sin B is not approximated. 

The (transient) state estimation error plots (when the measurements are provided by 

the encoder) are shown in Figure 3 .5 . Also the estimation error variances for each 

sensor combination are calculated and are tabulated in Table 3.6. A sampling interval 

of 0.2 seconds and an Euler integration step-size of 0.01 seconds were chosen for the 

simulation . 
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EKF1 error state1 
0.5 

0 

-0.5 

-1 
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EKF1 error state2 
4 

21-f · I· . 

0 

-2 
0 2 4 6 8 10 12 14 16 18 20 

sampling time [secs] 

Figure 3.5: EKFl state estimation errors with encoder measurements 

Table 3.6: Estimation error variances in the EKFl case 

Sensor Estimation error variance 

Encoder 0.0218, 0.3267 
Rate-gyro 0.0219, 0.3113 
Encoder & rate-gyro 0.0217, 0.3082 
Tilt-sensor 0.0220, 0.3269, 0.0000 
Rate-gyro & tilt-sensor 0.0220, 0.3113, 0.0000 

3.3 Extended Kalman Filtering of Polynomic Systems 

In this section, the extended Kalman filtering of polynomic nonlinear systems subject 

to PAM control is considered. The nonlinear input-output equations are developed at 

discrete-time instants kTs for the pendulum model. The results are then extended to 

the case where the model includes the tilt-sensor in which case the order of the combined 

1nodel becomes equal to three. The EKF2 and EKF3 approaches are proposed for the 

state estimation of the pendulum and the combined pendulum and tilt-sensor models 

based on the afore-mentioned discrete-tiine equations where it is shown that these 

approaches are numerically efficient than the EKFl approach. The results are provided 

for each sensor and are compared with the corresponding EKFl case with respect to 

estimation accuracy and computational speed. In the EKF2 and EKF3 approaches, 

-
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both the state estimate and the error covariance extrapolations and the measurement 

updates are done once in every Ts seconds. This discrete extended Kalman filter is 

summarised in Table 3. 7 [GA93] where the meaning of the associated terms remain the 

same as described in section 3.1.1 and W denotes the Jacobian. 

Table 3.7: Summary of the discrete extended Kalman filter 

Nonlinear system model x(t) = Aox(t) + bou(t) 

+ do ( CoT x(t) - (cor;(t) )
3

) + w(t) 

x(t) = f1 (x(t), u(t)) + w(t); w(t) rv N(O, Q) 
Measurement model GjVj(t) = -vj(t) +ru(t); j = 1,2. 

Zk = Hxk + vk; k = l, 2, · · · 
77 rv N(O, 1); Vk = v(kTs); 

State estimate extrapolation -sck (-) = f1 (xk-1(+), uk-1) 
Error covariance extrapolation Pk(-)= wk-1Pk-1 (+) wI-1 + Qk 

Kalman gain matrix Kk =Pk (-) HT [ HP k (-)HT+ Rk ]-
1 

Error covariance update Pk ( +) = [I - K k HJ Pk ( - ) 
State estimate update xk (+) = xk(-) + Kk [zk - Hxk (-)] 
Definitions w = ofi(xk-l) 1 k-1 ox A ( ) x=xk-l -

Initial conditions Xo rv N (xo, Po) 
Other assumptions ( { w ( t) v I} = 0 \I k and t 

3.3.1 Extended generalised Wiener model 

It has been shown that [SP78] practically all algorith1ns designed to identify separable 

nonlinear systems could be classified as follows: 

1. a nonlinear element followed by a linear element (NL-L), 

11. a linear element followed by a nonlinear element (L-NL) or 

111. a linear element followed by a nonlinear element which is in turn followed by 

either the same or another linear element (L-NL-L). 

The first of these is often referred to as a Hammerstein model and the second as a Wiener 

model. The last case may be thought of as a generalised Wiener model [PM82]. The 

analysis and estimation of a large class of nonlinear systems that arise in control and 

-
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communication networks can be represented as the interconnection of linear subsystems 

and polynomial type nonlinearities and is dependent on a mathematical description 

between the system input and the output. Such systems fall under what is called the 

extended generalised Wiener model [San77] structure. These systems constitute a class 

of nonlinear systems admitting finite Volterra series representation. In estimating the 

states of such nonlinear systems, the tensor techniques along with the Volterra series 

and the discrete extended Kalman filtering serve as a powerful tool. These systems can 

be modelled from the input-output point of view as a combination of a linear system 

H ( s) followed by a polynomial-type nonlinearity and another linear system G ( s). A 

case where the nonlinearity is a cubic law is shown in Figure 3.6 which has the following 

state-space representation: 

xi (t) 
,(t) 

x2(t) 

y(t) 

A1x1 (t) + B1 u(t); a(t) = C1 T X1 (t) 

d3a[3](t) 

A2x2(t) + B2,(t) 

C1 T X1 (t) + C2T X2 (t) 

(3.18) 

(3.19) 

where x1(t) E Rn, x2(t) E Rm, u(t) E R e, ,(t) E Rr, a(t) E Rq, y(t) E Rk, 

H(s) = C 1 (sl- A 1 )- 1 B 1 and G(s) = C2 (sI-A2 )- 1 B2 and the matrices have appro­

priate dimension and without loss of generality constitute minimal realizations of H ( s) 

and G ( s). The term e7[3] represents a vector homogenous form. 

u 
I I 

a I I 1 
H (s) I I ~, d3a[3 l 1,.... ---+1 G(s) 

L - - - - - -1 

y 

Figure 3.6: Extended generalised Wiener model representation 
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Such systems arise as a natural extension to work done previously by other authors 

[Gar73], [BR75], [SJ75], [San77] and [Van79]. For the input-output modelling of physi­

cal processes, this form of representation allows various types of cross-couplings between 

system variables to be included in the model. Also this model provides a low-order 

open-loop approximation to certain classes of nonlinear systems of infinite Volterra or­

der [SW78]. There exists a nonlinear difference equation from y --+ u in terms of u( k) 

where u(k) is a PAM signal (see section 2.4). This equation will then simplify the state 

and error covariance extrapolations in the discrete extended Kalman filtering (EKF2 

and EKF3) approaches. 

In Figure 3.6, the nonlinearity is 

r1(t) d3C1 [3]T X1 [3] (t) 

g[3]T X1 [3] (t) 

[3]T 6 d C [3]T g - 3 1 

(3.20) 

Writing the augmented system over the time interval kTs < t < (k + l)Ts and utilising 

(2.51), 

i1(t) = A x1(t) 

where x1(t) 
6 

( 
x1 (t) ) ; A L. ( A1 B1 ) 
u(t) 0 0 

Thus from property (2.2), 

:t ( xrl(t)) A[3J x~3J(t) (3.21) 

h ... [3] ( ) -nN N (n+2)! w ere x 1 t E ,~ ; = 1 , \ ,...,, • 

Fro1n (3.19) and (3.20), 

x2(t) = A2x2(t)+B2g[3]TX1[3](t) 
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x2 (t) A2X2 (t) + B2 h[3]T :x:~3] (t) 

h[3]T X~3](t) 6. g[3]T X1 [3](t) 

Combining (3.21) and (3.22), 

z(t) F z(t) 

where 

z(t) 
6 :x:1 (t) 6 A[3] O 

( 

[3] ) ( ... ) 

x2(t) ; F = B2h[3JT A2 

The solution of (3.23) at discrete-time instants t = kTs is given by 

z(k + 1) = eFTsz(k) 

where eFTs has the fonn 

eFTs 
( 

eA(s]Ts O ) 

. M(Ts) eA2Ts 

for some m X N matrix M(Ts). Thus, assuming A 11 exists, 

x2(k+l) 

X1 (k + 1) 

y(k) 

eA2Tsx2(k) + M(Ts)x~3](k) 

eA1Tsx1(k) + u(k)A1-l [eA1Ts - In] B1 

C1 T x1 (k) + C2T x2(k) 

define the behaviour of (3.18) and (3.19) at the time instants t = kT8 • 

An illustrative example 
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(3.22) 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

Consider the system shown in Figure 3.7 with u(t) subject to (2.51) and x1 E R and 

x2 E R to be the states. 

Then 

... _ ( X 1 ) . ... [3] (k) 
X1 - ' Xl 

u 

xi(k) 

v'3xr(k)u(k) 

v'3x 1 (k)u 2 (k) 

u3 (k) 
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-------1 
u a = Xl( 0[3] I I ~ 

s+\1 I ~ _ - - - - -' 

y 

, 
1 

s+>- 2 

Figure 3.7: An illustrative example 

and for some M(Ts) of the form, 

( m1 m2 m3 m4) 

the discrete input-output relationship is 

X2 

e->-1Tsx1(k) + u(k) (1- e->-1Ts) 

e->-2 Tsx2(k) + m1xi(k) + m4u3 (k) 

+ V3m2xi(k)u(k) + V3m3x1 (k)u2(k) 

y(k) = X1 (k) + X2(k) 

x1(k + 1) 

x2(k+l) 

Digital computer implementation 
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The vector :xJP] and the matrix A[p] can be calculated numerically. The computation 

of 5c[p] and the associated linear transformation become significant for large n and/ or p 

and in these cases the dimension of these quantities precludes hand computation. An 

ordering algorithm which generates a standard lexicographical order for 5c[P], x E Rn 

and an algorithm for the generation of the matrix A[P], for A n x n can be found in 

[San77]. 

It can thus be seen that the pendulum model has the same type of nonlinearity that 

was considered in this section. The Volterra series representation of the pendulum was 

derived in section 2.4 of chapter 2. It can be clearly seen that an approximate model of 

the pendulum has the extended generalised Wiener model structure. To avoid solving 
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for (2.57) and (2.58), the tensor techniques are e1nployed. But before proceeding any 

further, it will be shown that direct integration is infeasible and cumbersome. 

A comparison with direct integration 

The Volterra series representation of the pendulum model was derived in section 2.4 of 

chapter 2. The associated variables technique [Geo59] is cumbersome. Direct integra­

tion is generally impractical and this will be demonstrated for the pendulum case as 

follows: 

In (2.57), consider the deterministic linear part. i.e., 

·· (I<o) (I<1) · (Go) B1 (t) == - T B1 (t) - T B1 (t) + J u(t) 

6 L,.· 
Let x11 (t) == B1 (t) and X12(t) == B1 (t). Then 

±11 (t) 

i12(t) 

X12(t) 

(I<o) (K1) - T X11 (t) - T x12 (t) + u(t) 

for which the state space matrices are, 

A e == ( O 
K -~ 
J 

1 

K1 
- J 

) ; Be = ( O 9f f 
Using the variation of constants formula, (see section 2.3.1), 

x1(a) == eAe(o--kTs)x1(k) + fo- {eAe(o-- , ) Be u(,1)} d,1 
jkTs 

and with a PAM input signal, 

X1 (Ci) 

x1(k+l) 

eA, (o--kT, ) x 1 (k) + u(k) 1" eA, (o--"I) dr 
kTs 

eA, (o--kT, ) x 1 (k) + u(k) eA, o- 1" ( e-An Be) dr 
kTs 

eAe(o--kTs) x1(k) + u(k) eAeo- (-Ae-1) e-Ae, 1:T B e 
s 

eAe(o--kTs) x1(k) + u(k) (-Ae-1) { 12 - eAe(o-- kTs)} B e 

eAe(o--kTs) x1(k) + u(k)Ae- 1 (eAe(o--kTs) - 12) B e and thus 

eAeTs x1(k) + u(k)Ae- 1 (eAeTs - 12) B e 

(3.27) 
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where A e and B e are 2 x 2 and 2 x 1 matrices as defined in (3.27) and 12 is an identity 

matrix of order 2. 

In (2.58), consider the deterministic nonlinear part. i.e., 

.. (Ko) (K1) · (Ko) [ T ]3 B3(t) = - J B3(t) - J B3(t) + 
6

J C x1 (a) da 

where x 11 (a) has been written as cTx1(a) and cT = (1 0). 

l:::. l:::. • 
Let X31(t) = B3(t) and X32(t) = B3(t). Then 

x31(t) 

±32 ( t) 

Ane 

X32 ( t) 

- ( ~o) X31(t) - ( ~
1

) X32(t) + (:;) [ cT X1 (a) J3 

( ~ -~ 
J 

~); 
- J 

Bne = ( 0 l[J r 
Proceeding as with the linear part, 

x3(k + 1) = eAnt(cr-kTs)x3(k) 

for which 

{(k+l)Ts { 3} + jkT, eAn, (kT, +T, -a)Bne [cTx1(a)] da 

First evaluate xf 1 (a) 

xf 1 (a) {cTx1(a)}
3 

{cT [eAg(cr-kTs) x1(k) +u(k)Ae-1 (eAt(cr-kTs) -12) Be]}3 

T{ + T{ + 3T[T2 + 3T1T] 

where 

T1 = cT eAnt(cr-kTs) X1 (k) 

T2 = cT u(k)Ane- 1 (eAnt(cr-kTs) - 12) Bne 

Let 

Ji = lk+i)T, { eAn, (kT, +T, -a)Bne ( T{ + T} + 3T{T2 + 3T1T])} da 
kTs 

(3.28) 

(3.29) 
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Solving for (3.29) involves the computation of the integral I 1 . It can be atte1npted to 

compute the integral I 1 by either integration by parts or by some other method but 

this becomes tedious and cumbersome as it is evident. Also as the order of the model 

increases, such integrals get too complicated to solve. Thus the versatility of the tensor 

theory approach that was developed becomes evident. The advantage of this method, 

in addition to the applicability to models of higher order and reduced complexity, is 

that it uses state-space representation and thus can be easily implemented on a digital 

computer (for the digital computer implementation, see the beginning of this section). 

3.3.2 Application of EKF2 and EKF3 to the pendulum model 

Discrete extended Kalman filtering algorithm 

a. Pendulum case 

For this case, n = p = 3 and from (2.41), 

N3 
3 

D, (3 + 3 - l) ! = 10. 
(3 _ 1) ! 3 ! 

From definition 2.42, the p sets in the appropriate order are 

Define 

{ 
{3, 0, O} {2, 1, O} {2, 0, 1} {1, 2, O} {1, 1, 1} } 

{1,0,2} {0,3,0} {0,2, 1} {0,1,2} {0,0,3} 

Xi = ( ~l ) = ( Xn ) 

B1 X12 

X 2 = ( ~
3 

) = ( X2l ) 
83 X22 

(3.30) 

where in (3.30), {3, 0, O} means xr1 and {1, 1, 1} means X11X12U and so on. The choice 

of normalising coefficients is governed by (2.43). 
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Therefore from (3 .24), 

xf l ( k) 

I [31 1 I \1'3xf 1 (k)x12 (k) 

xu(k) \1'3xf 1 (k)u(k) 

\1'3x 11 (k)xf 2 (k) 

X12(k) v6x11(k)x12(k)u(k) 

z(k) I I - \1'3x 11 (k)u2(k) - u(k) - -
xf 2(k) 

X2 1 ( k) I I 
\1'3xf2 (k)u(k) 

V3x 1 2 (k)u2(k) 

X22 ( k) J I 
u 3 (k) 

X21 (k) 

x22 ( k) 

where in (3 .18), (3 .19) 

A1 - A2 = ( O ~ ); (3.31) -
_Ko -~ 

J J 

B1 - ( a 'r; B2 = ( 0 &r -
6J 

h[3]T - ( 1 0 0 0 0 0 0 0 0 a); -

C1 T - C2 T = ( 1 1 ) ; -

and thus B 2 h[3]T is of order 2 x 10. M(Ts) is a 2 x 10 matrix as indicated in section 

2.4 which has the following structure 

\ T 
m1 , 1 m 2 ,1 

M (Ts) 
m1,2 m2 ,2 

(3.32) 

l 
m1 ,10 m2 ,10 

The A and the F matrices for the pendulum model are 

0 1 0 
"' A Ko K1 Go 

- J - J J 

0 0 0 
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0 V3 0 0 0 0 0 0 0 0 0 0 

-V3Ko K1 Go 
2 0 0 0 0 0 0 0 0 J --y- -y-

0 0 0 0 ../2 0 0 0 0 0 0 0 

0 -2.!5..ll. 
J 0 -2~ 

J ..fi~ 0 V3 0 0 0 0 0 

0 0 -..fiKO 0 K1 V2Go 0 V2 0 0 0 0 J --y- J 

F I 0 0 0 0 0 0 0 0 1 0 0 0 --
-V3Ko -3 K1 V3Go 0 0 0 0 0 0 0 0 0 J J J 

0 0 0 0 -..fi.!5..ll. 
J 0 0 -2~ 

J 
2~ 

J 0 0 0 

0 0 0 0 0 Ko 0 0 K1 ../JG/ 0 0 --y- --y-

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 1 
Ko Ko K1 
6T 0 0 0 0 0 0 0 0 0 --y- --y-

EKF3 approach 

The M(Ts) matrix is dependent on the sampling time, Ts (the argument Ts is used to 

indicate the explicit dependence of M(Ts) on Ts). Components of M(Ts) which are 

small relative to others can be neglected in order to reduce the number of nonlinear 

terms. The exclusion of these terms may have little effect on the estimation but results 

in a significant increase in the speed of the algorithm. For example, if only the six 

elements { m1,1, m1,2, m1,3, m2,1, m2,2, m2,3} of the M(Ts) matrix are considered instead 

of the twenty elements and the value of the other elements are set to zero, the Ma matrix 

is obtained where the additional subscript a indicates the approximated matrix such 

that 

T 

m11 
' 

m2,1 \ ( xf 1 (k) 

Ma(Ts):x{3J ,....., I m1,2 m2,2) l \/'3xi1 (k)x12(k) ,....., 

m13 m23 vf3xr1 (k)u(k) 
' ' 

( M21 M22 )T (3.33) 

When the Ma matrix is employed for the estimation, this type of discrete extended 

Kalman filtering will be termed as the EKF3 approach. The justification for exclusion 

of certain elements of the M(Ts) matrix is based on the selection of a small sampling 

interval. To make the distinction much clearer, the values of each element of the M(Ts) 

1natrix, for the particular sampling interval Ts considered for simulation, are tabulated 

in Tables 3.8 and 3.11 respectively. Note that the pendulum is considered in the down 

position only, whose equilibrium point is stable and not in the upright position whose 
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equilibrium point is unstable. 

The results are tabulated, for comparison purposes, for two other sampling intervals 

in Tables 3.9 and 3.10 , for the pendulum only case and in Tables 3.12 and 3.13, for 

the combined pendulum and tilt-sensor case. From the Tables 3.8, 3.9, 3.10, 3.11, 3.12 

and 3.13, the justification for the exclusion of certain elements of the M(Ts) matrix is 

evident. A word of caution here would be that if the sampling interval becomes large 

enough to cause significant changes in the elements of the M(Ts) matrix, care should 

be exercised in excluding the elements. 

Table 3.8: Elements of the M(Ts) ma­

trix in the pendulum case for Ts = 0.2 

Element Value 

m11 0.0565 
' 

m12 0.0056 
' 

m13 0.0077 
' 

m14 0.0005 
' 

m15 0.0012 
' 

m16 0.0017 
' 

m17 0.0000 
' 

m18 0.0001 
' 

m19 0.0002 
' 

m110 0.0003 
' 

b. Pendulum and tilt-sensor case 

For this case, n = p = 4 and from (2.41), 

Element Value 

m21 0.3359 
' 

m2,2 0.0559 

m23 0.1101 
' 

m24 0.0072 
' 

m2 5 0.0235 
' 

m2 6 0.0416 
' 

m2 7 0.0006 
' 

m2s 0.0028 
' 

m29 0.0074 
' 

m210 0.0118 
' 

NJ L. (4+4-1)!=35. 
(4-1)!4! 
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From definition 2.42, the p sets in the appropriate order are 

{4,0,0,0} {2, 1, 1,0} {2,0, 1, 1} {0,2, 1, 1} 

{0,0, 1,3} {0,0,4,0} {3,1,0,0} {3,0, 1,0} 

{3,0,0, 1} {1,3,0,0} {2,2,0,0} {1,0,3,0} 

{2,0,0,2} {0,3, 1,0} {0,2,2,0} {O, 1,3,0} 

{0,3,0, 1} {0,2,0,2} {2, 1,0, 1} {0,0,3, 1} 

{1,2, 1,0} {1, 1, 2,0} {1,2,0, 1} {1, 1,0,2} 

{1,0, 1,2} {O, 1,2, 1} {O, 1, 1,2} {1, 1, 1, 1} 

where {1, 1, 1, 1} denotes x11 x12 x13u and so on. Define 

I 

X1 - I -

Xz 

Therefore from (3.24), 

z(k) - I -

81 \ I xu 

B1 J - l X12 

Z1 X13 

83 
. 

83 

Z3 

I 

xu(k) 

x12(k) 

X13(k) 
u(k) 

X21 

X22 

X23 

[3] 

X21 ( k) 

X22 (k) 

X23(k) 

{0,4,0,0} 

{2,0,2,0} 

{1,0,0,3} 

{O, 1,0,3} ~ 
{0,0,2,2} 

{1,0,2, 1} 

{0,0,0,4} 

92 

(3.34) 

(3.35) 
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where in (3.18), (3.19) 

A1 A2 = I 

B1 ( 0 Go 
J 

xf 1 (k) 

v'l2xi1(k)x12(k)x13(k) 
v'12xi1(k)x13(k)u(k) 
v'l2xi2(k)x13(k)u(k) 

xf 2 (k) 

V4x13(k)u3(k) 
xf3 (k) 

v'4xf 1 (k)x12(k) 
V4xf 1 (k)x13(k) 
v'6xi1 (k)xi3(k) 
V4xf 1 (k)u(k) 

V4x11 (k)xf2(k) 

v'6xi1 (k)xi2(k) 
V4x 11 (k)xf 3 (k) 

v'4xn (k)u 3 (k) 

v'6xi1 (k)u2 (k) 

V4xf 2 (k)x13(k) 
v'6xi2(k)xi3(k) 
V4X12(k)xf3(k) 
v'4x12 (k)u3 (k) 

J4xf2(k)u(k) 

v6xi2(k)u2(k) 
v'l2xi1(k)x12(k)u(k) 

J4xf 3 (k)u( k) 

v6xi3(k)u2(k) 
v-Ux11 (k)xi2(k)u(k) 

v'l2x11(k)x12(k)xi3(k) 
v'l2x11(k)xi2(k)u(k) 
v'l2x11(k)x12(k)u2(k) 
v'6x11(k)xi3(k)u(k) 

v'12x11(k)x13(k)u2(k) 
v'l2x12(k)xi 3 (k)u(k) 

v'l2x12(k)x13(k)u2(k) 
v'24x11(k)x12(k)x13(k)u(k) 

u 4 (k) 

x21 (k) 

x22 (k) 

X23 (k) 

0 1 0 

_Ko _K1 0 J J 

f3ts 0 -ats 

0 ) T; B2 = ( 0 

C1T C2T = ( 1 1 1 ) 
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(3.36) 
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Ko of 6J 
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h [3JT is of order 1 X 35 and thus B 2 h [3]T is of order 3 x 35 . The A matrix for the 

co1nbined pendulum and tilt-sensor model is 

0 1 0 0 

_ Ko _ K1 0 Go 
"" I J J J A --

f3ts 0 - O!ts 0 

0 0 0 0 

and the F 1natrix is of order 38 X 38 and the corresponding M (Ts) matrix is a 3 x 35 

matrix as indicated in section 2.4 which has the following structure 

T 
\ 

m1,1 m2,1 m3,1 

M(Ts ) II 

m1,2 m2,2 ffi3,2 

J 

(3 .37) --

m1,3s m2,3s m3 ,35 

As in the pendulum case, consider only the following twenty seven elements of the M 

matrix 

, 
m(l, 1) m(l, 8) m(l, 11) 

m(l, 15) m(l, 16) m(l, 20) 

m(l, 22) m(l, 29) m(l, 35) 

m(2, 1) m(2, 8) m(2, 11) 

m(2, 15) m(2, 16) m(2, 20) ~ (3.38) 

m(2, 22) m(2, 29) m(2, 35) 

m(3, 1) m(3, 8) m(3, 11) 

m(3, 15) m(3, 16) m(3, 20) 

m(3, 22) m(3, 29) m(3,35) 

instead of the 105 elements. By employing this EKF3 approach, the computational 

burden is greatly reduced and the numerical efficiency is increased by a significant 

factor. 

Results 

The extended Kalman filters, EKF2 and EKF3 are em ployed for the state estimation 

of the pendulum model. The same measurements and noise sequences as in the LKF 
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Table 3.9: Elements of the M(Ts) ma­

trix in the pendulum case for Ts = O.l 

Element Value Element Value 

m11 0.0197 m21 0.3441 
' ' 

m12 0.0011 m2 2 0.0287 
' ' 

m13 0.0008 m23 0.0278 
' ' 

m14 0.0001 m24 0.0018 
' ' 

m15 0.0001 m2 5 0.0028 
' ' 

m16 0.0000 m26 0.0023 
' ' 

m17 0.0000 m2 7 0.0001 
' ' 

m1 s 0.0000 m2s 0.0002 
' ' 

m1 g 0.0000 m29 0.0002 
' ' 

m110 0.0000 m210 0.0001 
' ' 

Table 3.10: Elements of the M(Ts) ma­

trix in the pendulum case for Ts = O.Ol 

Element Value Element Value 

m11 0.0002 m21 0.0462 
' ' 

m12 0.0000 m2 2 0.0004 
' ' 

m13 0.0000 m23 0.0000 
' ' 

m14 0.0000 m24 0.0000 
' ' 

m15 0.0000 m2 5 0.0000 
' ' 

m16 0.0000 m26 0.0000 
' ' 

m17 0.0000 m2 7 0.0000 
' ' 

m1 s 0.0000 m2s 0.0000 
' ' 

m19 0.0000 m29 0.0000 
' ' 

m110 0.0000 m210 0.0000 
' ' 

95 

and EKFl cases are used for the simulation. The estimation error plots (when the 

1neasurements are provided by the encoder) for both the EKF2 and EKF3 approaches 

are shown in Figure 3.8. The estimation error variances for all the sensors are shown in 

Table 3.14. Comparing these results with that of the EKFl (see section 3.2.3), it can be 

seen that the EKF2 and EKF3 perform as well as the EKFl but the main difference is the 

computational speed (see section 3.3.3) and thus these approaches have the advantage 
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Table 3.11: Elements of the M (Ts) matrix in the pendulum 

and tilt-sensor case for Ts = 0.2 

Element Value Element Value Element Value 

m11 0.0491 m21 0.1961 m31 0.0004 
' ' ' 

m1 2 0 m2 2 0 m3 2 0 
' ' ' 

m13 0 m23 0 m33 0 
' ' ' 

m14 0 m24 0 m34 0 
' ' ' 

m1 5 0 m2 5 0 m35 0 
' ' ' 

m16 0 m26 0 ffi36 0 
' ' ' 

m17 0 m2 7 0 m37 0 
' ' ' 

m18 0.0074 m28 0.0801 m38 0.0000 
' ' ' 

m19 0 m29 0 m39 0 
' ' ' 

m110 0 m210 0 m310 0 
' ' ' 

m111 0.0108 m211 0.1731 m311 0.0000 
' ' ' 

m112 0 m212 0 m312 0 
' ' ' 

m113 0 m213 0 m313 0 
' ' ' 

m114 0 m214 0 m314 0 
' ' ' 

m115 0.0002 m215 0.0071 m315 0.0000 
' ' ' 

m116 0.0019 m216 0.0396 m316 0.0000 
' ' ' 

m111 0 m2,17 0 m317 0 
' ' 

m118 0 m218 0 m318 0 
' ' ' 

m119 0 m219 0 m319 0 
' ' ' 

m1,20 0.0000 m2 20 0.0008 m3 20 0.0000 
' ' 

m1 21 0.0000 m2 21 0.0001 m3 21 0.0000 
' ' ' 

m1 22 0.0000 m2 22 0.0003 m3 22 0.0000 
' ' ' 

m1,23 0.0007 m2 23 0.0145 m3 23 0.0000 
' ' 

m1 24 0 m2 24 0 m3 24 0 
' ' ' 

m1,25 0 m2 25 0 m3 25 0 
' ' 

m1 26 0 m2 26 0 m3 26 0 
' ' ' 

m127 0 m2 27 0 m3 27 0 
' ' ' 

m1,28 0.0000 m2 28 0.0011 m3 28 0.0000 
' ' 

m1 29 0.0002 m2 29 0.0043 m3 29 0.0000 
' ' ' 

m130 0 m2 30 0 m330 0 
' ' ' 

m131 0 m2 31 0 m3 31 0 
' ' ' 

m132 0 m2 32 0 m3 32 0 
' ' ' 

m133 0 m233 0 m333 0 
' ' ' 

m134 0 m2 34 0 m334 0 
' ' ' 

m135 0.0000 m2 35 0.0012 m335 0.0000 
' ' ' 
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Table 3.12: Elements of the M(Ts) matrix in the pendulum 

and tilt-sensor case for Ts = 0.1 

Element Value Element Value Element Value 

m11 0.0192 m21 0.3240 m31 0.0001 
' ' ' 

m12 0 m2 2 0 m3 2 0 
' ' ' 

m13 0 m23 0 m33 0 
' ' ' 

m14 0 m2 4 0 m34 0 
' ' ' 

m1 5 0 m2 5 0 m35 0 
' ' ' 

m16 0 m2 6 0 m36 0 
' ' ' 

m17 0 m2 7 0 ffi37 0 
' ' ' 

m18 0.0013 m2 8 0.0353 m33 0.0000 
' ' ' 

m19 0 m2 9 0 m39 0 
' ' ' 

m110 0 m210 0 m310 0 
' ' ' 

m111 0.0009 m211 0.0347 m311 0.0000 
' ' ' 

m112 0 m212 0 m312 0 
' ' ' 

m113 0 m213 0 m313 0 
' ' ' 

m114 0 m214 0 m314 0 
' ' ' 

m115 0.0000 m215 0.0002 m315 0.0000 
' ' ' 

m116 0.0001 m216 0.0043 m316 0.0000 
' ' ' 

m117 0 m2 17 0 m317 0 
' ' ' 

m118 0 m218 0 m313 0 
' ' ' 

m119 0 m219 0 m 3 19 0 
' ' ' 

m1 20 0.0000 m2 20 0.0000 m3 20 0.0000 
' ' ' 

m1 21 0.0000 m2 21 0.0000 m 3 21 0.0000 
' ' ' 

m122 0.0000 m2 22 0.0000 m3 22 0.0000 
' ' ' 

m1 23 0.0000 m2 23 0.0015 m 3 23 0.0000 
' ' ' 

m124 0 m2 24 0 m3 24 0 
' ' ' 

m125 0 m2 25 0 m 3 25 0 
' ' ' 

m1 26 0 m2 26 0 m3 26 0 
' ' ' 

m127 0 m2 27 0 m 3 27 0 
' ' ' 

m128 0.0000 m2 28 0.0001 m3 28 0.0000 
' ' ' 

m1 29 0.0000 m2 29 0.0002 m 3 29 0.0000 
' ' ' 

m1 30 0 m2 30 0 m330 0 
' ' ' 

m1 31 0 m2 31 0 m 3 3 1 0 
' ' ' 

m1 32 0 m2 32 0 m3 32 0 
' ' ' 

m1 33 0 m2 33 0 m 3 33 0 
' ' ' 

m1 34 0 m2 34 0 m 3 34 0 
' ' ' 

m1 35 0.0000 m2 35 0.0000 m 335 0.0000 
' ' ' 
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Table 3.13: Elements of the M(Ts) matrix in the pendulum 

and tilt-sensor case for Ts = 0.01 

Element Value Element Value Element Value 

m11 0.0002 m21 0.0462 m 3 1 0.0000 
' ' ' 

m12 0 m2 2 0 m 3 2 0 
' ' ' 

m1 3 0 m2 3 0 m 33 0 
' ' ' 

m14 0 m24 0 m 34 0 
' ' ' 

m15 0 m2 5 0 Trl3 5 0 
' ' ' 

m16 0 m2 6 0 m 36 0 
' ' ' 

m17 0 m2 7 0 m 3 7 0 
' ' ' 

m18 0.0000 m28 0.0005 m 38 0.0000 
' ' ' 

m19 0 m29 0 m 39 0 
' ' ' 

m110 0 m210 0 m 3 10 0 
' ' ' 

m111 0.0000 m2 11 0.0000 m 3 11 0.0000 
' ' ' 

m112 0 m212 0 m 3 12 0 
' ' ' 

m113 0 m213 0 m 3 13 0 
' ' ' 

m114 0 m214 0 m 3 14 0 
' ' ' 

m115 0.0000 m21 5 0.0000 m 3 15 0.0000 
' ' ' 

m116 0.0000 m216 0.0000 m 3 16 0.0000 
' ' ' 

m117 0 m2 ,17 0 m 3 17 0 
' ' 

m118 0 m218 0 m 3 18 0 
' ' ' 

m119 0 m219 0 m 3 19 0 
' ' ' 

m120 0.0000 m2 20 0.0000 m 3 20 0.0000 
' ' ' 

m1 21 0.0000 m2 21 0.0000 m 3 21 0.0000 
' ' ' 

m1 22 0.0000 m2 22 0.0000 m 3 22 0.0000 
' ' ' 

m123 0.0000 m2 23 0.0000 m 3 23 0.0000 
' ' ' 

rri1 24 0 m2 24 0 m 3 24 0 
' ' ' 

m125 0 m2 25 0 m 3 25 0 
' ' ' 

m1 26 0 m2 26 0 m 3 26 0 
' ' ' 

m127 0 m2 27 0 m 3 27 0 
' ' ' 

m128 0.0000 m2 28 0.0000 m 3 28 0.0000 
' ' ' 

m129 0.0000 m2 29 0.0000 m 3 29 0.0000 
' ' ' 

m130 0 m2 30 0 m 330 0 
' ' ' 

m1 31 0 m 2 31 0 m 3 31 0 
' ' ' 

m1 32 0 m2 32 0 m 332 0 
' ' ' 

m1 33 0 m 2 33 0 m 333 0 
' ' ' 

m1 34 0 m 2 34 0 m334 0 
' ' ' 

m1 35 0.0000 m2 35 0.0000 m 335 0.0000 
' ' ' 
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of increased computational speed. Also note that in EKF2 and EKF3, the nonlinearity 

sin e ~ e - (83 /6) whereas in EKFl, the nonlinearity is not approximated. 

EKF2 error state1 EKF2 error state2 
0.5 ,...,.---~--~--~---, 4~--~--~--~-~ 

0 2u.1 .. 

-0.5 O• 

-1 ~-~--~--~-------' -2~-~--~--~-------' 
0 5 10 15 20 0 5 10 15 20 

EKF3 error state1 EKF3 error state2 
0.5~--~--~--~-- 4~--~---r-----,----, 

Of/I~ ~ 2•+• · 

-0.5 O• 

-1 "---~--~--~---' -2'-----~--~--~-------' 
0 5 10 15 20 0 5 10 15 20 

sampling time (secs] sampling time (secs] 

Figure 3.8: EKF2 and EKF3 state estimation errors with encoder measurements 

Table 3.14: Estimation error variances in the EKF2 and EKF3 cases 

Sensor Est. error variance [EKF2] Est. error variance [EKF3] 
Encoder 0.0219, 0.3287 0.0229, 0.3296 
Rate-gyro 0.0220, 0.3115 0.0232, 0.3200 
Encoder & rate-gyro 0.0217, 0.3114 0.0220, 0.3120 
Tilt-sensor 0.0222, 0.3268, 0.0000 0.0232, 0.3298, 0.0000 
Rate-gyro & tilt-sensor 0.0220, 0.3114, 0.0000 0.0231, 0.3200, 0.0001 

3.3.3 Co1nputational issues 

EKF2 gain in the pendulum case 

To compute the Kalman gain, the Jacobian \JI is to be computed. Define 

M:x:[3] 
1 ( Mu M12 ) T 

when all the elements of the M matrix are considered. 
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Thus 

where 

'lp31 

'lp32 

'lp 41 

'lp 42 

Wk+1 

a 
(1VI11) 

X11 

a [ X1 (k) l 
ax Xz (k) 

a 
ax 

r ; 
x11(k) 

X12(k) 

X21 ( k) 

X22 (k) 

eA1Ts 0 

fx [ Mu M 12 ] T eA2T, 

eA1Ts 0 

( 
'lp31 'lp32 ) eA2 Ts 

'lp 41 'lp 4 2 

3m1,1 Xi1(k) +2V3m1,2 x11(k)x12(k) +2V3m1,3 x11(k)u(k) 

+ V3m1,4 Xi2(k) + V6m1,5 x12(k)u(k) + V3m1,6 u2(k) 
a 

(M11) 
X12 

V3m1,2 Xi1(k) +2V3m1,4 x11(k)x12(k) +V6m1,5 x11(k)u(k) 

+ 3m1,7 Xi2(k) + 2V3m1,8 X12(k)u(k) + V3m1,9 u2(k) 
a 

(M12) 
X11 

3m2 ,1 Xi1(k) +2V3m2,2 x11(k)x12(k) +2V3m2 ,3 x11(k)u(k) 

+ V3m2,4 Xi2(k) + V6m2,5 X12(k)u(k) + V3m2,6 u2(k) 
a 

(M12) 

V3m2,2 Xi1(k) + 2V3m2,4 x11(k)x12(k) + V6m2,5 x11(k)u(k) 

+ 3m2,1 Xi2(k) + 2V3m2,s x12(k)u(k) + V3m2,9 u2(k) 

100 

where the corresponding matrices are defined in (3.31) and thus the Kalman gain can 
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be determined. To compute the Jacobian '¥ in the EKF3 case (i.e., with Ma matrix), 

(3.33) is utilised. 

EKF2 gain in the pendulum and tilt-sensor case 

Define 

MX{3l(k) = ( M1 M2 M3 ) T 

when all the elements of the M(Ts) matrix are considered in the combined pendulum 

and tilt-sensor model. Thus 

where 

7P41 

7P51 

7P61 

Wk+1 - ~ [ X1 (k) l -
ax x2(k) 

r / 
xu(k) 

X12(k) 

a \ X13(k) 
-ax I X21(k) 

X22 (k) 

X23(k) 

eA1Ts 0 

fx [ M1 M2 M3r 
eA2Ts 

eA1Ts 

7P41 7P42 7P43 

7P51 'lf52 7P53 

7P61 7P62 7P63 

a a 
(Mi); 'lf42 = a (Mi); 

X11 X12 
a a 

(M2); 'lf52 = a (M2); 
X11 X12 
a a 

(M3); 1P62 = a (M3); 
X11 X12 

0 

e A2Ts 

a 
'lf43 = Q (M1) 

X13 
a 

'lf53 = Q (M2) 
X13 
a 

7P63 = Q (M3) 
X13 
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where the corresponding matrices are defined in (3.36) and thus the Kalman gain can 

be detennined. To compute the Jacobian W in the EKF3 case (i.e., with Ma matrix), 

(3.38) is utilised. 

State estimate extrapolation in the EKF2 case 

The state estimate extrapolation in the discrete extended Kalman filtering case is done 

as follows: 

Define s(k) 
6 

s(k + 1) 

( 
x1(k) ) 

x2(k) 

f1 [s(k), u(k)] + w(k) 

( 

eAiTsx1(k) + u(k)A1-l [eAiTs - I] B1 + w(k) ) 

eA2 Tsx2(k) + Mx~3](k) 

(3.39) 

(3.39) is used for the state estimate extrapolations for both the pendulum and the 

tilt-sensor cases. Note that the matrices A 1 , A 2 , B 1 and B 2 pertaining to each of 

these cases are different and are defined in (3.31) and (3.36) respectively. Also note 

that Mx:~3
] is different for both the cases and w ( ·) indicates the process noise that is 

added to the linear part. 

Performance of the extended Kalman filters 

In estimating the time required by matrix computations, it is traditional to estimate 

the number of multiplications. The computational co1nplexities of numerical algorithms 

can also be expressed in terms of flops, which are roughly the numbers of multiply­

and-accumulate operations required for execution. It gives a rough idea of the relative 

co1nplexities of alternative algorithms. The complexities will be functions of the prob­

lem size, which can be represented by the dimensions of the matrices involved. 

The number of multiplications are used as a measure of the computational speed for the 

co1nparison of two filters. The following rules were observed in calculating the number 

of 1nultiplications: 
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1. The number of multiplications denoted by n(muls), in multiplying two square 

matrices of order n x n is n3 . 

ii. In 1nultiplying two matrices of order n x n and n x 1, n(muls) = n 2 . 

ii. In 1nultiplying a constant and a matrix of order n x n, n(muls) = n 2 . 

ii. In 1nultiplying a constant and a matrix of order n X 1, n(muls) = n. 

ii. n(muls) = l, when multiplying two constants. 

Following the rules outlined above, the number of multiplications in the EKFl, EKF2 

and EKF3 approaches are calculated and tabulated in Tables 3.15 and 3.16. For the 

state estimate extrapolation, (3.39) is utilised and from Table 3.7, the error covariance 

extrapolation can be computed with the Jacobian W being computed as outlined in 

section 3.3.3. In the EKF3 case, (3.33) is utilised and thus the computational burden 

is brought down by a significant factor. For the EKFl approach, the error covariance 

propagation is computed as indicated in section 3.2.2. From Tables 3.15 and 3.16, it 

can be seen that the EKF2 is faster than the EKFl by a factor of 4. 7 and EKF3 is faster 

than the EKFl by a factor of~ 6. 

Table 3.15: Comparison of computational speed 
in the EKFl and EKF2 cases 

Type of nonlinear filter Required no. of muls. 
EKFl 906 
EKF2 192 
RATIO 4.7188 

Table 3.16: Comparison of computational speed 
in the EKFl and EKF3 cases 

Type of nonlinear filter Required no. of muls. 
EKFl 906 
EKF3 152 
RATIO 5.9605 
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Linear versus nonlinear estimation 

Comparing the estimation error variances that were tabulated in Tables 3.4, 3.6 and 

3.14, it can be inferred that the extended Kalman filters perform far better than the 

LKF . This is very much so at higher swing-angles of the pendulum for reasons that were 

discussed in section 2.2 of chapter 2. This can also be seen from Figures 3.4, 3.5 and 3.8. 

EKF2 performs as good as EKFl as demonstrated by the estimation error variances. 

EKF2 and EKF3 are to be preferred to EKFl because of its numerical efficiency as shown 

in Tables 3.15 and 3.16. 

3.4 Summary 

This chapter presented the state estimation problem. Using the tensor techniques, 

relevant results were developed for the state estimation of a class of nonlinear systems 

that fall under the extended generalised Wiener model structure which showed that 

the tensor techniques and the discrete extended Kalman filtering can serve as powerful 

tools in the state estimation for such classes of nonlinear systems. Four Kalman filters, 

LKF, EKFl, EKF2 and EKF3 were employed for the state estimation of the pendulum. 

Using the Volterra series, the pendulum was modelled to have the extended generalised 

\Viener model structure as shown in chapter 2 and thus it was demonstrated how these 

results could be utilised for the state estimation of the pendulum model and extended 

to the co1nbined pendulum and tilt-sensor model. The corresponding estimation error 

variances were calculated which showed that, when the nonlinearities are severe, the 

extended Kalman filtering is to be desired to the linear Kalman filtering. Also in 

the nonlinear case , EKF2 and EKF3 are to be preferred to EKFl because of the distinct 

advantage of increased computational speed. It was shown that EKF2 is 4.7 times faster 

than EKFl and EKF3 is ~ 6 times faster than EKFl. In the next chapter, the estimates 

that were obtained using LKF, EKF2 and EKF3 will be employed in the tracking control 

of the pendulum model. 
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Chapter 4 

Tracking Control 

In this chapter, the tracking control of the pendulum is considered. The estimates that 

were obtained using the estimation strategies discussed in chapter 3 are em ployed for 

this purpose. Both linear and nonlinear estimates are employed and the corresponding 

results are presented. The linear estimates are provided by the LKF approach and the 

nonlinear estimates by the EKF2 and EKF3 approaches. The feed back linearisation 

technique and the internal model principle are employed for achieving tracking of the 

reference signals. Also steady-state tracking and estimation error variances for both 

the linear and nonlinear cases are provided along with the corresponding simulation 

results. 

4.1 Preliminaries 

4.1.1 The internal model principle 

The problem of controlling a fixed plant in order to have its output track a reference 

signal is one of the most important problems in control theory [IB90]. The work of 

[F-\iV76] has shown that, in the case of error feedback, any regulator which solves the 

problem in question, incorporates a model of the dynamical system generating the ref­

erence signal which must be tracked. This property is commonly known as the internal 
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model principle. Several authors, [HW84], [AD87], [Ben96] and [JR88], have considered 

the corresponding problem in a nonlinear setting. These ideas are used in the tracking 

of the nonlinear pendulum model in which, the plant output is made to track a time­

varying (periodic) reference signal in the presence of sensor and actuator noise sources . 

Consider a continuous-time plant governed by 

xp(t) 

y(t) 

Apxp(t) + bpup(t) + wp(t) 

Cpxp(t) 

(4.1) 

(4.2) 

where Xp(t) E nnp is the state vector, up(t) E nmp denotes the input, y(t) E R.(!_P is 

the output which is required to track a reference trajectory r and wp(t) represents the 

process noISe. 

The internal 1nodel principle [FW76] is used for achieving tracking which possibly 

involves the design of a pre-compensator. If the plant ( 4.1) does not contain all the 

1nodes of the reference signal, a pre-compensator is added which is represented by 

xa(t) Aaxa(t) + bau(t) (4.3) 

up(t) = Caxa(t) 

where Xa(t) E nna is the state vector, up(t) E nma. The combined plant and pre­

co1npensator can be represented as 

( 
xp(t) ) ( Ap hpCa ) ( xp(t) ) ( 0 ) ( wp(t) ) = + u(t) + (4.4) 
Xa(t) 0 Aa Xa(t) ha 0 

y(t) = ( Cp O ) ( xp(t) ) 
Xa(t) 

This can be written more succinctly as 

x(t) Ax(t) + bu(t) + w(t) (4.5) 

y(t) = Cx(t) 

where the definitions of A, b , C and w(t) follow fro1n (4.4). 
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Control objective 

The desired objective is to make the output of the pendulum model follow a pre­

specified reference trajectory in the presence of sensor ( measure1nent) additive white 

noises in the system. For this simulation study, a ramp reference trajectory is used. 

This trajectory is chosen as it generates a profile through which a robot link moves and 

also as this kind of reference trajectory closely emulates the kind of trajectory that is 

used in industrial robots, for example, a welding robot in a car assembly line. 

Reference model 

The reference signal r can be modelled as the response of 

The solution of ( 4.6) is 

xr(t) 

r(t) 

Xr(t) 

r(t) 

Axr(t); xr(O) E Rn 

Cxr(t) 

eAtxr(O) 

CeAtxr(O) 

subject to which the initial conditions are calculated. 

4.1.2 Selection of control gains 

(4.6) 

(4.7) 

(4.8) 

When an error occurs between reference and feedback, the control law calculates the 

energy that has to be applied to the system to eliminate the error. The robot joint 

response to a commanded position change is generally required to be critically damped 

and fast. In a linear setting, this can be easily attained by selecting the controller gains 

in a suitable way and sufficiently large. In addition to this, it is normally desirable 

to have a high disturbance rejection ratio or high stiffness which also requires a large 

proportional gain. 
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In theory, these design constraints can always be satisfied since one is allowed to select 

the controller gains arbitrarily large. The actual choice of these gains, is, however 

limited by practical considerations [Ber94]. For instance, sensor noise generally upper 

bounds the allowable derivative gain [KK88]. Furthermore, the presence of un-modelled 

high-frequency dynamics, such as link flexibility, restricts the control system bandwidth 

and, consequently, the feedback gains. Therefore, in practice, several compromises have 

to be 1nade in the selection and tuning of the controller gains. Another import ant aspect 

to deal with is the possibly highly nonlinear nature of the error dynamics of controlled 

robotic systems. 

Pole-placement technique 

For a closed-loop continuous-time linear system with system matrices Ac and he where 

Ac is n X n and a gain matrix K, the resulting closed-loop characteristic equation is 

given by 

det [sl - (Ac - hcK)] = 0 (4.9) 

where det refers to the determinant. The control law design consists of picking the 

gains K so that the roots of ( 4.9) are in desirable locations. Let the desired locations 

be s = s1, s2, s3, · · · and then the corresponding desired control characteristic equation 

IS 

O:c ( S) (s - s1) (s - s2) · · · (s - sn) = 0 (4.10) 

Hence the required elements of K are obtained by matching coefficients in ( 4.9) and 

( 4.10), thus forcing the system-characteristic equation to be identical with the desired 

formula [F+91 J. 

4.1. 3 Feed back linearisation 

The first step in designing a control system for a given physical plant is to derive a 

meaningful model of the plant. i.e., a model that captures the key dynamics of the 

plant in the operational range of interest. Models of physical systems come in various 
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fonns, depending on the modelling approach and assumptions. These issues were ad­

dressed in chapter 2. Some forms, however, lend themselves more easily to controller 

design. Feedback linearisation deals with techniques for transforming original system 

1nodels onto equivalent models of a simpler form [SL91 J. 

Feedback linearisation is a method of designing control for a class of feedback linearis­

able nonlinear systems [Kha92, SL91 J. It can be used as a nonlinear methodology. The 

basic idea is to first transform the nonlinear system ( either completely or partially) into 

a linear system, and then use the well-known and powerful linear design techniques to 

complete the control design for the class of nonlinear systems. This approach has been 

used to solve a number of practical nonlinear control problems. The main advantage of 

feedback linearisation over point-wise linearisation is that once such a control is found, 

linearisation is achieved independently of the operating point. The conditions under 

which a nonlinear system is feedback linearisable are complicated, that is, the nonlin­

ear feed back control and the nonlinear coordinate transformation may be very difficult 

to find. Fortunately, feedback linearisation can often be easily achieved for robotic 

systems [QD96]. 

Controller-estimator design via feedback linearisation 

Consider the pendulum model equation 

.. . 
JB(t) + I{1B(t) + !{0 sin B(t) == u(t) + w(t) 

where u(t) refers to the control torque applied to the pendulum. Let 

u(t) J{0 sin B(t) + V(t) ( 4.11) 

where B(t) refers to the estimate obtained by either the LKF or the EKF2 or the EKF3 

approach and V(t) to the control law to be proposed. Substituting (4.11) into the 

pendulum 1nodel equation, 

.. . 
JB(t) + K 1 B(t) +Kosin B(t) !{0 sin B(t) + V(t) + w(t) 

where V(t) -k1 (B(t) - Br (t)) - k2 (iJ(t) - Or (t)) . 
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Br (t) and Br (t) are generated by the reference model based on the internal model prin­

ciple which generates the necessary reference signals and k1 and k2 are the controller 

gains to be determined. 

A 

Assuming that B(t) = B(t), the pendulum equation beco1nes 

JB(t) + K 1B(t) = V(t) + w(t) 

The structure of the pendulum model after feedback linearisation is shown in Figure 

4.1. Only one integrator is required since the plant itself possesses an integrator. 

V 1 
s 

w 

1 
s(Js+l) 

B 1 
s 

B 

Figure 4.1: Pendulum model structure after feedback linearisation 

The assumption B(t) = B(t) is not always satisfied since there is an estimation error. But 

it holds good as the estimation error is not very large. The state-space representation 

after feed back linearisation is as follows 

x(t) = Ar x(t) + hr V(t) + dr w(t) 

Ar 

0 

0 

0 

1 

-K1 
J 

0 

0 

1 
J 

0 

hr= 

A model for the constant ramp function is 

Yr (t) = 0!2t 

0 

0 

1 

dr = 

0 

1 
J 

0 

(4.12) 
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The initial conditions of the ramp reference signal, xr(O) E R 3 subject to ( 4.8) are 

0 

Xr(O) -0'.'2 (4.13) 

-a2K1 
Control gains 

The characteristic control equation after feedback linearisation is 

det [sl - (Ar - hr Kr)] == 0 (4.14) 

where the subscript f indicates that these matrices pertain to that after feedback 

linearisation defined in ( 4.12) and Kr indicates the controller gain matrix and is such 

that Kr== (k1 k2 k3 ). (4.14) yields 

3 (I<1) 2 (k2) (k1) s + - s + - s+ -
J J J 

== O; k3 == O; (4.15) 

fron1 which the the gains were calculated using the pole-placement technique as 

k1 == 10; k2 == 2.5; (4.16) 

4.2 Results for the pendulum model 

The structure of the discrete-estimator based controller structure is shown in Figure 

4.2. w(t) and v(tk) refer to the process noise and the sampled measurement noise re­

spectively, as discussed in chapter 3. The gains were selected using pole-placement 

technique as indicated. 

The encoder is the sensor that is used for the measurement of the output ( B) of the 

pendulum system which is to be tracked. LKF, EKF2 and EKF3 are employed for 

providing the estimates for the tracking control. The corresponding error variances 

are tabulated which provides a basis for analysing the errors associated with both 

the tracking and the estimation. The estimation error is also a means by which the 
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k3 

k2 

. . 
B - Br 

1 
s 

w(t) 

V + u 

k1 
B - Br 

Br 

REF . MODEL 

.. . 
JB + J{1 B + K 0 sinB = u 

+ 
v(tk) 

I{osin B 

B 

Kalman Filter 

B 

Br 

Figure 4.2: Controller-estimator based tracking control structure 
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B 

effectiveness of the proposed feedback linearisation can be studied. The estin1ation 

error is the error that has occured due to the usage of e ( t) instead of e ( t). 

Reference signals 

Two reference ramp signals, r 1 (t) and r 2 (t) are employed for the tracking control. Note 

that both of these reference trajectories are periodic. i.e., ri(t + Ti) == ri(t), i == 1, 2 

where Ti is the period of the corresponding trajectory. 

{ 

a2t; 

r1 (t) = -a,z (t - 2T1); 

0 < t < 20 sampling seconds 

20 < t < 60 sampling seconds 
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r2(t) = l a2t; 

-a2 (t - 2T2); 

0 < t < 40 sampling seconds 

40 < t < 120 sampling seconds 

113 

The results are presented for both the reference signals. Note that r 1 (t) varies with 

time, twice as fast as r2 ( t). 

Estimation and tracking error variances 

The error variances are calculated in the steady-state since the transient error vari­

ances are of little relevance. For the reference signal r 1 ( t), the error variances are 

calculated for the range [25 - 55] sampling seconds and for the reference signal r 2 ( t), 

for [50 - 110] sampling seconds. 

The estimation and tracking error variances are computed using the formulae 

µest 

µtr 

2 
a est 

2 
atr 

1 L1 

£
1 
~ (oi - Oi) 

1 L1 

L
1 
~ (Bi - Bri) 
i=l 

1 ~ ( 2 L1 2 ) - ~ Bi - L _ 1µest 
i=l l 

_1 _ ~ (e? _ L1 2 ) 
~ i L _ 1µtr 
i=l l 

( 4.17) 

(4.18) 

where L 1 is the number of sampling points considered, µ refers to the sample mean, a 2 

refers to the sample variance. The subscripts est and tr refer to estimation and tracking 

respectively. 

Tracking control of the pendulum model using LKF 

The LKF is employed for the estimation of the states of the pendulu1n and these es­

ti1nated states are used for the tracking control. Note that the plant model is still 

nonlinear, but only the estimates are obtained by the LKF. This will be of help in 
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comparing the efficiency of the tracking control with nonlinear estimates to that with 

linear estimates. The results for the tracking control with LKF and for the reference 

signals, r1(t) and r2(t), are shown in Figures 4.3 to 4.8 and the tracking and estimation 

error variances are tabulated in Table 4.1. 
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Figure 4.5: Tracking control for r2 ( t) with 

LKF 

Figure 4.6: Magnified view 

Tracking control of the pendulum model using EKF2 and EKF3 

The results for the tracking control for the reference signals, r 1 (t) and r 2 (t), with the 

nonlinear estimates are shown in Figures 4.9 to 4.20 and the estimation and tracking 
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Figure 4. 7: Errors for r 1 ( t) with LKF Figure 4.8: Errors for r 2 (t) with LKF 

Table 4.1: Error variances for the tracking control with LKF 

Reference signal Est. error variance Tr . error variance 

r1 0.0021 0.0027 
r2 0.0016 0.0026 

error variances are tabulated in Tables 4.2 and 4.3 . The EKF2 and EKF3 estimates are 

e1nployed for the tracking control of the pendulum. 

Linear versus nonlinear estimation for cont rol 

From Tables 4.1, 4.2 and 4.3, it can be seen that the tracking control with the estimates 

from the nonlinear EKF2 and EKF3 approaches perform much better than that with 

the linear estimates from the LKF. Also when EKF3 is employed instead of EKF2, 

the tracking is equally good and EKF3 greatly increases the speed of the estimation 

algorithm . The estimation error variance is very small which demonstrates the efficiency 

of the feedback linearisation approach. Thus the tracking control with the nonlinear 

estimates is to be preferred to the tracking control with linear estimates. 
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Figure 4.12: Magnified view 

Table 4.2 : Error variances for the tracking control with EKF2 

Reference signal Est. error variance Tr. error variance 

r1 9.5997 X 10-5 2.2774 X 10-4 

r2 7 .5406 X 10-5 1.5585 X 10-4 

4.3 St1mmary 

70 80 

This chapter presented the tracking control of the pendulum model. The estimates 

obtained from the LKF, EKF2 and EKF3 approaches were employed for this purpose. 
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Figure 4 .13 : Errors for r1 (t) with EKF2 Figure 4.14: Errors for r 1 (t) with EKF3 
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Figure 4.15: Tracking control for r2 (t) 

with EKF2 

Figure 4.16: Magnified view 

Table 4 .3: Error variances for the tracking control w ith EKF3 

Reference signal Est . error variance Tr . error va ri ance 

r1 1.0773 X 10-4 4.1290 X 10-4 

r2 9.9043 X 10-5 2.3775 X 10-4 

140 160 

The estin1ates from either EKF2 or EKF3 are to be preferred to that from the LKF as 

demonstrated by the estimation and tracking error variances. EKF3, when employed 

instead of EKF2, increases the computational speed to a significant extent, though the 

error variances are smaller with EKF2 . Thus the trade-off is between the estimation 
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Figure 4.17: Tracking control for r 2 (t) 

with EKF3 
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accuracy and the computational speed. The whole discrete-estimator based tracking 

control is clearly a good method of tracking, in the presence of process and measure­

ment noises, as demonstrated by the tracking error variances. Also the whole discrete 

estimator based controller has the advantage of increased computational speed and 

does not demand any additional hardware configurations. Thus the tracking control of 

the pendulum was accomplished. The next chapter provides the conclusions. 
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Conclusions 

Control schemes that take into account the nonlinearities associated with the model 

under consideration, perform appreciably better than the schemes that deal with a 

linearised representation of the model. The control of a pendulum was considered in 

this thesis, in which the nonlinearity, sin B associated with the pendulum model was 

taken into consideration in achieving the desired goal. As the states associated with a 

particular model are not always available, estimation of such states becomes inevitable 

where the missing states are reconstructed from the measurements (provided by a sen­

sor or sensors which are usually corrupted by noise) of the model whose states are to be 

estimated. Three sensors, the encoder, the rate-gyro and the tilt-sensor, were analysed 

for providing the measurements for the estimation . 

The selection of a particular sensor is dependent on many factors. In a practical setting, 

no single sensor satisfies all the requirements and criteria as certain sensors are suitable 

for certain applications . The conclusions are presented under the following categories: 

Application ty pe 

As discussed in section 2.3, in certain applications like biped locomotion, the 

encoder is not a feasible option since it complicates the design of the biped with 

the added weight, which makes the already complicated design [KB93] messier. 

119 
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The tilt-sensor is ideal in situations like these, as it is compact and provides 

comparable readings. 

Cost 

The encoder is much cheaper as compared to the tilt-sensor as the tilt-sensor 

involves a signal-conditioner as indicated in section 2.1.3. The typical cost of an 

encoder (REDS series), a rate-gyro ( muRata ENV-05S) and a tilt-sensor with the 

signal-conditioner (Spectron L211U and SA40012) are $25.00, $350.00 and $650.00 

respectively. Th us from a financial point of view, the encoder is the best sen­

sor and with accurate digital encoders, precise position measurements can be 

obtained. 

Operational accuracy 

The tilt-sensor has an inherent delay associated with its operation as compared to 

the encoder. This was demonstrated by means of experiments in section 2.5.3. So 

the tilt-sensor is not a suitable sensor when instantaneous outputs are required. 

The encoder is the favourable choice in this situation. Also with the rate-gyro, 

noise tends to corrupt the measurements much more than compared to the other 

sensors (see section 2.5.2). 

Estimation accuracy 

Referring to the estimation error variances that were tabulated in Tables 3.4, 3.6 

and 3 .14, if a choice is to be made between the encoder and the tilt-sensor, the 

encoder is to be selected. 

E1nploying the combination of two sensors depends on each of the sensors subject to 

the conclusions derived under the above categories. Also note that the combination 

of two sensors is obviously unattractive from a financial point of view as two sensors 

increase the cost factor significantly. The encoder and rate-gyro combination is the 

best sensor in this category. 
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The unknown parameters associated with the pendulum and tilt-sensor models were 

obtained by the parameter estimation algorithm that was developed in chapter 2 (see 

section 2.3). This algorithm was based on the assumption of small sampling intervals. 

The factors detri1nental to the operation of the sensors were analysed and it was found 

that the noise associated with the sensors is the major source of error. The variance 

of the noise associated with each sensor was determined. The actuator was tested for 

the presence of dead zone and it was found that the actuator considered for analysis 

(Precision DC motor RS718-981) has a negligible amount of dead zone. 

The Kalman filter (linear) is an optimal estimator that can be em ployed for the state 

estimation of a linear model. Unfortunately, nonlinear estimation approaches are more 

complex as compared to the linear estimation approaches. The extended Kalman filter­

ing is a nonlinear estimation approach in which the linear Kalman filtering techniques 

are extended to the nonlinear case. When the model is continuous and the measure­

ments are discrete, the standard extended Kalman filtering approach, EKFl , is the most 

co1nmonly employed. The main computational burdens in this approach are the state 

estimate propagation and the error covariance propagation. A linear Kalman filter, 

LKF, and three extended Kalman filters, EKFl, EKF2 and EKF3 were employed for 

the state estimation of the pendulum model. A class of nonlinear systems that can 

be represented by the extended generalised Wiener model structure have the form in 

which, a linear system H ( s) is in cascade with a polynomial type nonlinearity followed 

by another linear system G ( s). By using the Volterra series and the approximation 

sine~ e - (B3 /6), the approximate pendulum model was represented in such a form 

for which H ( s) G ( s). General discrete extended Kalman filtering results for models 

that fall under this model structure were developed and these results were extended to 

the pendulum and the combined pendulum and tilt-sensor models. In EKF2 and EKF3 , 

as opposed to the EKFl approach, the extrapolations are done once in every sampling 

interval and thus this type of approach has the distinct advantage of increased co1npu­

tational speed . This was demonstrated for the nonlinear case and the corresponding 

results were given in Tables 3.15 and 3.16. EKF2 and EKF3 perform as good as EKFl 
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which was demonstrated in terms of both the estimation accuracies (see Tables 3.4, 

3.6 and 3.14) and simulations (see Figures 3.4, 3.5 and 3.8). Comparing the results of 

the linear Kalman filtering approach with that of the extended Kalman filtering ap­

proaches for the pendulum model, it was inferred that, at higher swing-angles where 

the nonlinearities are severe, the nonlinear filtering approaches have to be followed. 

The feedback linearisation technique which attempts to cancel the nonlinearity associ­

ated with the pendulum was employed and with the help of the estimates generated 

by the discrete filtering approaches, the tracking control of the pendulum was accom­

plished. Both linear and nonlinear estimation approaches were considered. For the 

tracking control of the pendulum with linear estimates, the estimates generated by the 

LKF were employed and for the tracking control with nonlinear estimates, the EKF2 

and EKF3 estimates were employed. From the tracking error variances tabulated in 

Tables 4.1, 4.2 and 4.3, again it was found that the nonlinear tracking control is much 

superior to the linear tracking control. 

Further research 

The approximation of sin B can be extended to include an additional higher order term, 

namely ~~. This essentially complicates the analysis using the Volterra series ( due to 

the addition of a kernel) and thus deriving the corresponding input-output relations 

using the tensor techniques get more involved. Variants of the extended Kalman filter, 

the iterated EKF and the second-order filters (see section 3.2) can also be employed for 

state estimation. With such inclusions, the computational burden would be increased 

significantly. But the bright side of the inclusion 1nay be that this could result in much 

better estimates, the trade-off being increased accuracy to increased complexity filter 

algorithms. 

Based on the techniques developed in this thesis, it is possible to extend the estimation 

strategies to a multi-link robot arm by following the derived results (with the appropri-
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ate changes) which could prove to be advantageous in the estimation of the associated 

states and thus would lead to a numerically efficient control algorithm. 
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