A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:
http://wrap.warwick.ac.uk/107547/

Copyright and reuse:

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to cite it.
Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

warwick.ac.uk/lib-publications

Expected Length of
Longest Common
Subsequences

Viadimir Dancik

A thesis submitted for the
Degree of Doctor of Philosophy

Department of Computer Science
University of Warwick

September 1994

Contents

1 Introduction

2 Notation and preliminaries

21

2.2

2.3

2.4

3.1

3.2

3.3

3.4

4.1

4.2

4.3

4.4

4.5

4.6

Notation and basic definitions......

Longest common subsequences......

Computing longest common subsequencesccccovvieiiinnennnn.

Expected length of longest commonsubsequences

Lower Bounds

Css machines......cccooeviiiiiiiiiiien,
Analysis of css machines...............
Design of css machines..................

Labeled css machines.....................

Upper bounds

Collations...ccooviiiiiiiiicceeeas

Previous upper bounds..................

Simple upper bound (binary alphabet)......ccooiiiins

Simple upper bound (alphabet size
Upper bounds for binary alphabet

Upper bounds for larger alphabets

<0 TR

10

14

20

20

26

31

38

45

45

51

55

59

66

71

5 Related problems 79

5.1 Several SEQUENCES cuu it iii ettt e e aeas 79
5.2 Super-, nonsub-, and NONSUPErSEqUENCESveuuriurienaennaenaennen 84
5.3 Adaptability . 93
5.4 Longest common SUDSTIiNgGS . ..oouiiiiiiiii e 100
6 Conclusion 106
A Css machine with 931 states 108
B Recurrences for L., TE52(i0) 118
C Css machine for adaptability 120
Notation 122
Index 125
Bibliography 127
|

List of Figures

21

2.2

2.3

2.4

2.5

31

3.2

3.3

3.4

3.5

3.6

3.7

3.8

4.1

4.2

4.3

4.4

Computing LCSS using dynamic programming....

Graph corresponding to LCSS computation..........

Algorithms computing LCSS

Random strings of length one million

Diagonal longest common SUDSEqUENCEe......c.viiiiiiiiniiiiiiaeaeanns

Css machine with 11 states

A css machine 91 that yields the lower bound 0.7368

Algorithm € for expanding css machines........cocooviiiiinienen.

Procedure ‘cut’
Deken’s matching algorithm
One cycle of Deken’s algorithm
Labeled css machine for k = 4

Lower bounds for 7%

Upper bounds for the expected length of a LCSS
Upper bounds for alphabet size k= 2,..., 15
The containments between the sets 7<i(i, m) and

The containments between the sets 5, A4, and £

v

11

13

17

18

24

30

37

39

40

41

46

52

57

61

4.5

4.6

51

52

53

54

55

5.6

The containments among the sets

The upper bounds for 7% .

The tournament algorithm for common supersequences

An algorithm producing a common SUPEerseqUEeUCE.c.uuen.
Bounds for the expected length of SCSS ...,
Maximal adaptability for K= 2and n= 1,.... 14 ...c.cevvvvenn.ns
Maximal adaptability for K= 2,..., 1 5 .coiiiiiiiiiiieeieeeeeees

Diagram for EH (I, S) tiioiieiiiiiieeeeeiiiee e ee e e e e e e eeee e e eeeaneeaeees

Acknowledgements

Without the help of my supervisor Mike Paterson this work would never
have grown to the present shape. His comments were extremely helpful and
his suggestions have improved this thesis in many directions. | have learnt a
lot from his approach to tackling problems. He deserves special thanks for his

patience when correcting definite and indefinite articles in all my texts.

During my studies at Warwick | had very useful discussions on various
topics with many colleagues from and outside the Computer Science Depart-
ment. Many people made my stay at Warwick very pleasant and | have found

a lot of friends here. My thanks goes to all of them.

These three years were very hard-for my wife Jurika and | am very obliged

to her. Her love was the best support for me.

| was supported by an East European Scholarship from the University of
Warwick, an ORS Award from the CVC'P, and the ESPRIT Il BRA Pro-

gramme of the EC under contract 7141 (ALCOM 1I).

Vi

Declaration

This thesis is submitted to the University of Warwick in fulfilment of the
requirements of the degree of Doctor of Philosophy. No part of the thesis has
been submitted in support of an application for another degree or qualification
of this or any other institution of learning. Some parts of the thesis have
appeared in the following papers in which my own work was that of frill

pro-rata contribution.

1. Vlado Dancik and Mike Paterson, Upper bounds for the expected length
of a longest common subsequence of two binary sequences. In Proceedings of
11/ Annual Symposium on Theoretical Aspects of Computer Science, Lecture

Notes in Computer Science 775, Springer-Verlag, 1994.

2. Mike Paterson and Vlado Dancik, Longest common subsequences. In
Proceedings of 19th International Symposium on Mathematical
Foundations of Computer Science, Lecture Notes in Computer Science, Springer-

Verlag, 1994.

V. Dancik September 27, 1994

Vi

Summary

A longest common subsequence of two sequences is a sequence that is
a subsequence of both the given sequences and has largest possible length.
It is known that the expected length of a longest common subsequence is
proportional to the length of the given sequences. The proportion, denoted by
7*, is dependent on the alphabet size k and the exact value of this proportion
is not known even for a binary alphabet.

To obtain lower bounds for the constants 7*, finite state machines comput-
ing a common subsequence of the inputs are built. Analysing the behaviour
of the machines for random inputs we get lower bounds for the constants 7
The analysis of the machines is based on the theory of Markov chains. An
algorithm for automated production of lower bounds is described.

To obtain upper bounds for the constants 7*, collations pairs of sequences
with a marked common subsequence - are defined. Upper bounds for the
number of collations of ‘small size’ can be easily transformed to upper bounds
for the constants 7*. Combinatorial analysis is used to bound the number of
collations.

The methods used for producing bounds on the expected length of a com-
mon subsequence of two sequences are also used for other problems, namely
a longest common subsequence of several sequences, a shortest common su-

persequence and a maximal adaptability.

viii

Chapter 1

Introduction

Many different problems, when described in the terms of sequences, be-
come independent of disturbing influences and are easier to handle. Very often
sequences can capture many, if not all, interesting features.

One such abstract problem is the sequence alignment problem. Given two
input sequences of symbols we have to find an output sequence that occurs
in the input sequences. We can demand that the symbols involved in the
output must form a continuous block within the input sequences. The contin-
uous alignment problems lead to common substring problems. The alignment
problems that do not require the continuity condition correspond to common
subsequence problems.

The alignment problem arises in various situations in different fields. As
typical within computer science we can mention the string edit problem. Imag-
ine we have a terminal connected through a very slow line. Then when the
screen of the terminal has to be upgraded, it might be much more efficient
to send editing Iinstructions instead of the full screen of information. Thus,
given two sequences, we want to find a shortest sequence of editing stops

that transforms one sequence into the other. The length of such a sequence

1 Introduction 2

is called the edit distance of the two sequences.

In the pattern matching problems we have to find one or all occurrences
of a pattern in the image. There are cases when we would be satisfied with
occurrences of similar patterns. For example, if we are searching in a database
of names and we do not remember the name properly, or when recognizing a
handwritten text or fingerprints.

Molecular biology is an important area where alignment problems appear
quite often. Both proteins and nucleic acids can be treated as sequences of
symbols. In molecular biology it is common to search for homologies the
parts of macromolecules that have only minor differences.

Chromatography is other field creating alignment problems. The pres-
ence of certain elements in burning gas can change the colour spectrum of
the light produced. The results of such experiments can be described by chro-
matograms and comparing chromatograms can be seen as an alignment prob-

lem.

In this thesis we shall focus on the longest common subsequence problem.
The structure of the thesis is as follows. Basic notation is given and main
terms are defined in the first section of Chapter 2. Then we shall describe
the longest common subsequence problem and will give a small survey of
algorithms for solving this problem. In the last section of the chapter the
expected length of a longest common subsequence is defined and its basic
properties are shown.

We know that the expected length of a longest common subsequence is
linear with respect to the length of the sequences, however we are not able
to determine their exact ratio. Bounds on the expected length of a longest

common subsequence are the topics of the next two chapters.

1 Introduction 3

In Chapter 3 will be given lower bounds based on analysis of Markov
chains. An algorithm for producing better and better lower bounds will be
described. Special treatment is required for lower bounds over general alpha-

bets of size k.

In Chapter 4 collations - pairs of sequences with marked matches - are
described. Upper bounds for the number of collations based on combinatorial
analysis are given. From these, upper bounds for the expected length of a

longest common subsequence can be obtained.

Some problems related to the longest common subsequence problem will
be described in Chapter 5. We shall apply the methods from the previous
chapters when investigating the maximal adaptability, the shortest superse-
quence, and the longest subsequence problems for more sequences. The chap-

ter is closed with a small survey of the longest common substring problem.

Chapter 2

Notation and preliminaries

2.1 Notation and basic definitions

Let E = {0,1,..., K—1} be a fixed alphabet of size k. Let E" be the set

of all sequences of length n over the alphabet E. We can define E" recursively

by:

E°

{A},

En+tl = SxE", for n > 0,

here A is the empty sequence, i.e. a sequence consisting of no symbols. Se-
quences are also commonly called strings. If sequence uis from E'\ we shall say
that the length of sequence u is n and write Ju] = n. The number of different
symbols that occur in the sequence u will be denoted by |Ju]l]. The set of all se-
a a
guences is E* = L:JOE" «m| the set of all nonempty sequences is E+ = (JI E".
n n=
Concatenation is a basic operation over sequences. If u= (uj,..., um) 6 E"™

and v = (tq....... t»,) € E", then cat(u,Vv) = (m,........ um,v,........ V,,) € Emn

is the concatenation of sequences u and v. To simplify the notation we shall

2.1 Notation and basic definitions 5

write U = W eeeum instead of a = (u\,... ,um) and u.v or uv instead of
cat(w, v).

Sequence U is a subsequence of sequence v, if ucan be obtained by deleting
some symbols from v, the notion of subsequence is given formally in Defini-

tion 2.1

Definition 2.1 Sequence u = W\-eeumis called a subsequenceofv = Vj eeevy,

(u C v), if there are m indices ii < eee< imsuch that u\ um= Vim.

Note that A is a subsequence of every sequence and that every sequence
is a subsequence of itself. If u is a subsequence of v, we shall also say that v

is a supersequence of u. We shall write ug v if uis not a subsequence of v.

Similar, but not the same, is the notion of substring. Sequence u is a
substring of v, if there are sequences x and y such that xuy = v. If v = W\ eeeyn,
we shall sometimes denote the substring of v beginning at the i-th position
and ending at the j-tli position by v(i ..j). We shall say that it is a prefix
of v (u<v), if there is an index j such than it = r(1..j). Sequence u is a
proper prefix of v (u<lv) ifit< vand u ™ v.

The set of all natural numbers {0,1,...} will be denoted by N. The set
of all real numbers will be denoted by R. While describing sequences we use
€ to denote the membership of an element in a set. We also use U to denote
the union of sets and x to denote the product of sets. Other symbols used to
denote operations and relations on sets are n for intersection, \ for difference,
C for subset, ar|1d C for proper subset. The set of all elements r having
property P is denoted by {.r : P(x)}. Instead of {y : there is X such that y —

/(.r) and P(x)} we shall write {f(x) : P (t)}.

2.1 Notation and basic definitions 6

For a (linearly) ordered set M we denote the maximal element of M by
max M. Similarly min M is the minimal element of M and inf M is an infimum
of M. Sometimes we use max f(x) instead of max{/(x) : P(x)}, especially

P(x)

when P (x) is simple. Similarly for min and inf.

We use & to denote the conjunction of logical propositions. For disjunc-
tions we shall use the symbol V, for implications =>, and for equivalences

<=>. The negation of a proposition is denoted by

We shall intensively exploit generating functions. Let 00,..., a,,... be
an infinite sequence of numbers, then a(z) — ;CO a,z' is the corresponding
(ordinary) generating function. For example, the generating function corre-
sponding to the sequence 1,1,...,1,... is yzT- The addition of generating
functions corresponds to the addition of sequences and the multiplication of
generating functions corresponds to the convolution of sequences. Knowing

the generating function for a nonnegative sequence, we can bound the ele-

ments of a sequence by

~ lei ' i2-1)
00
where Z is the set of all positive :G K such that a(z) = 1£:0042* converges.

AL
We shall also use exponential generating functions /1(c) = fé%)a#’;c-For ex-
ample, the generating function corresponding to the sequence 1,1,...,1,...
is rr. We can transform exponential generating functions into ordinary gen-

erating functions using

0(2) = J/O“ e~*A(zx)dx. .2)

|
The addition of exponential generating functions corresponds to the addi-

tion of corresponding sequences. The product of the exponential generating

2.2 Longest common subsequences

00 i
functions A(c) = 1F:Oan%r and Z?(c) = is the exponential generating

function C(z) = 51 c¢c”, where
i=0 e

a:i§C)“'p

More about generating functions can be found in [Rio78] or [Liu85].
We shall use standard O-notation. For functions f(n) and g(n) we say
that /7 is O(g) (/ is tt(g)) if there is a constant C such that /(n) < Cg(n)
(/(n) > Cfi(n) respectively) for sufficiently large n. We say that / is o(g) if

lim) = 0.

2.2 Longest common subsequences

We shall work with pairs of sequences. The set of all pairs of sequences
will be denoted by If = E* x E*. The total length of a pair is the sum of the
lengths of the sequences from the pair, /(“) = |(“)] — Jul + |vl. Let 1and b
be the projections of a pair (“) to its members: t(") —u and 6(“) = v. Let
cat(p,g) — be the concatenation of pairs p,q. The definitions of

concatenation, projections, and length are naturally extended to sequences of

pairs:
cat(pi,pi....... Pn.Pn+i) = cat(cat(p,,p2 ...,p n),pn+j),
f(Pi-P2......... P,) m t(cat(pi,p2.......... p,,)) = t(pi)---t(p.),
b(Pi,P2, --,pn) = 6(cat(pi,pj...c...- p.)) = b(pt) mmb(p,,),
I(Pi,P2......... Pn) = /(cat(pltp2.......... pn)) = |pi] + =+ |p.l-

A sequence w is a common subsequence of u and v if it is a subsequence
of both ii and v. A longest common subsequence is a common subsequence

of maximal possible length.

2.2 Longest common subsequences 8

Definition 2.2 Let u,v € E*. Sequence w € E* is a longest common subse-

quence if

1. wOuand wC v,

2.VW 6 E* (W C it& w C v ==> W] < |w]).

We shall denote the length of a longest common subsequence of sequences
it and v by L (u,v). While two sequences can have several different longest
common subsequences, L(it, v) is unique. Sometimes we use CSS as an ab-
breviation for a common subsequence and LOSS for a longest common sub-

sequence.

Example 2.1 Let u = 10023211022233101 and v = 01113330212110121.
Common subsequences of it and v are for example 1321211 or 0113301. Both
011022101 and 102211021 are longest common subsequences and L(u,v) = 9.

(0]

Now we shall describe the basic properties of the length of longest common

subsequences. The following lemma shows the invariant properties of L(it, v).

Lemma 2.1 For permutation & : E — E let S,,(u) denote the sequence ob-
tained from sequence it after substitutions defined by n. For u = iq eee«,, let

utt = it, eeit] be the reversed sequence. Then for every it,v € E'

1 L(it,») = L(\ it),

2. L(it,v) = L(uH, vR),

S, L(tt,t») = L(5,(«),5,(n)).

2.2 Longest common subsequences 9

Proof. This lemma is a simple consequence of Definition 2.2. O

The following lemma about the monotonicity of L(u, v) is also a simple

derivation from the definition of longest common subsequences.

Lemma 2.2 For eveiy u,v, U, Vv' e E*,
1. ifviC uandvf C v, thenL («',«') < L(u, V),

2. L(u,Vv) + L(u', V') < L(u«', vv').
The basic recurrences for computing L(m,v) are given by Lemma 2.3.

Lemma 2.3 For every u,v € E* and a,b € E,
1. ifa= b then L(wo, vb) = L(m,v) + 1

2. ifa”~ b then L(ua,vb) = max{L(wn, v), L(n, vb)}.

Proof. 1. Let w = uq ***wm be a longest common subsequence of ua and va.
Then for W = wi eee«’,) we have W' C u and w' C v. Therefore, using the

previous lemma, part 2, we get
L(u,v) + 1= L(w,V) + L(a,b) < L(ua, vb) = [te] = W]+ 1< L(w,v)+ 1.

2. Let w = nll mmmtvm be a longest common subsequence of ua and vb. If the
last symbol of wis a, then wC v and |in] < L(«n, v). If the last symbol of «; is
not a, then w C « and Jo] < L(u,i;6). Hence |¢] < max{L(«, V). L(u, vb)).

The opposite inequality is a consequence of Lemma 2.2, part 1. 0O

Part 2 of the previous lemma can be generalized in the following manner.

Lemma 2.4 If u v € E* are such that L(it, v) = 0 then for every «/, V' € E*

we have L (ini', vw]) = max{L(uu', v), L(u,vv")}.

2.3 Computing longest common subsequences 10

2.3 Algorithms for computing longest com-

mon subsequences

Finding a longest common subsequence is a widespread problem. There is
strong motivation for finding efficient algorithms to compute longest common

subsequences.

The algorithm presented by Wagner and Fischer [WF74] belongs now
among classical dynamic programming methods. It is based on the recursive
computation of L (t,y) for every x<u and y< v. This can be described by
the matrix D = {r/.j}, where dij = L(u(l ..7),t(1..j)). Clearly d§ = 0
and d,o= 0 foralli=(),..., Mandj = 0,..., |v]. For i,j >0 we have the

following recurrence based on Lemma 2.3.

4-1j-1 +1 if u(i) =v(j),
«ij 1
m ax{dj_ij, if u(i) /7 t>(j).
The time and space complexity of this algorithm is O(mn), where n = |y

and m = |v].

Example 2.2 Matrix D computed by the dynamic programming algorithm
for input sequences u = 10023211022233101 and v = 01113330212110121 is

given in Figure 2.1. (@)

Hirschberg [Hir75] gave a variation of the dynamic programming algo-

rithm, that computes D using only linear space.

|
Hunt and Szymanski [HS77] have improved the dynamic programming

algorithm by computing only those entries of matrix D that correspond to

2.3 Computing longest common subsequences 1

100 2 3 2 1 102 2 2 3 3 101
0O 0 1 1 1 1 1 11 1 1 1 1 1 11 1
le 11 11 5 m@2 2 2 2 2 2 2 2 2 2
111111 4% 2@m 3 3 3 3 3 3 3 3 3
11 1 1 1 1 i 2 3 3 3 3 3 3 30© 4 4
3 11 1 1@ 2 2 3 3 3 3 344 4 4 a4
3 1 1 1 12 2 2 3 3 3 3 3 4(0B)s 5 5
3 1 1 1 1 2 2 2 3 3 3 3 3 4 5 5 5 5
0 1@ 2 2 2 2 2 30 4 4 4 4 5 50 6
2 1 2 238 3 3 3 3 4(55)5 5 5 5 5 6 6
1 1 2 2 3 3 3¢ 4 4 5 5 5 5 50 6®
2 1 2 2 3 34 4 4 4 50 6 G o6 6 6 7
1 1 2 2 3 3 4(5)5 5 5 6 6 C 6@ 7 7
1 1 2 2 3 3 450 6 Ge66 6 Gse 7 70
0 1 2@3B)3 3 45 6 7 7 7 7 7 70 8
1 1 2 3 3 3 45 6 7 7 7 7 7 7® 80
2 1 2 3@¢ 4 4 5 6 7© 8 8 8 8 8 8 9
1 1 2 4 4 4 5 6 8 8 8 8 8© 99

Figure 2.1: Computing longest common subsequence using dynamic program-

ming.

matches between symbols from u and v. These are typeset in bold in Fig-
ure 2.1.

Hirschberg [Hir77] concentrates on dominant matches. A match a <» b is
dominant, UL(ua, vb) > max{L(u, v), L(na, v), L(u, vb)}. Dominant matches
are circled in Figure 2.1.

An algorithm with the best worst-case complexity is given by Masek and
Paterson [MP80]. Their approach is based on the Four Russians’ algorithm for
computing transitive closure. We can split matrix D into small submatrices
of size O(log n). These submatrices can be precomputed and the relevant part

of matrix D recovered in time C)(v2/log n).

Ukkonen [Ukk85] formulates the problem of finding longest common sub-

2.3 Computing longest common subsequences 12

I\)

N
U
mNJJJJJ

Figure 2.2: Graph corresponding to longest common subsequence computa-

tion.

sequences in terms of directed graphs. The graph corresponding to a pair of
sequences is an oriented mesh with diagonals in place of matches (Figure 2.2).
Computing L thus can be seen as finding the shortest path in the directed
graph corresponding to pair (“).

There are many improvements and variations of these algorithms. A list
of some of them is in Figure 2.3. More detailed description of basic algorithms
together with algorithms for other string problems can be found in [Ste92].
Problems of practical implementations of the longest common subsequence
algorithms is in [Sim89]

A lot of effort have been made over the years to search for quick algorithms
computing longest common subsequence. Despite this there is still quite a
large gap between lower and upper bounds. The trivial lower bound is il(ri).
In the case of an unknown (infinite) alphabet Masek-Paterson’s algorithm
has complexity 0(n2(log log n)2/log»). Hirschberg [Hir78] has shown lower

bound Q(n log n) for the number of less than equal greater than queries

2.3 Computing longest common subsequences

13

Time Space
Wagner Fischer [WF74] o(mn) 0 (mn)
Hirschberg [Hir75] 0 (mn) O(n)
Hunt-Szymanski [HS77] O((n -FR) log n) O(R + n)
Hirschberg [Hir77] O (Ln + nlogn) O(Ln)
Hirschberg [Hir77] O(L(m —L) log n) O((m —L)2+ n)
Masek-Paterson [MP80] 0 (nmax{l, m/ logn}) 0(n 2/ log n)
Nakatsu at al. [NKY82] (0] N 0(m2)
Hsu-Du [HD84, Apo87] O(Lm log(n/L) + Lm) O(Lm)
Ukkonen [Ukk85] O(Ern) O(E min{m. E})
Apostolico [Apo86] O(n + mlogn+ D log(jnn/D)) O(R +n)
Kumar-Rangan [KR87] o(n(m - L)) 0 (n)
Apostolico-Guerra [AG87] O(Lm 4-n) O(D +n)
Wu at al. [WMMM90] o B 0(n)
Chin-Poon [CP90] O(n + min{€>, L m}) O(D +n)
Apostolico, at al. [ABG92] 0O(n (m - L)) 0 (n)
Apostolico at al. [ABG92] O(Lm O(n)
Eppstein at al. [EGGI92] O(n + D log log min{€>, mn/D}) O(D + m)

Figure 2.3: Time and space complexity of algorithms computing LCSS. Here

m= |n,n =], m < n, R is the number of matches, L is the length of a

longest common subsequence, E = m + n —2L is the edit distance, and D is

the number of dominant matches.

over infinite alphabet. Wong and Chandra [WC7G] consider a restricted model
for deriving lower bounds. They have shown, that every algorithm over an
infinite alphabet using only equal unequal queries requires O (n2) operations.

Lin, Lu, and Fang [LLF91] gave a parallel algorithm (CREW PRAM) with
complexity O(log2m log logm) using mn/ log2m log log m processors when
log2niloglogm > logn and with complexity O(logn) using mn processors
otherwise. This improves the algorithm of Lu [Lu90], that has complexity
O(log L log2n) and uses R processors. For implementations of longest com-

mon subsequence algorithms on other parallel models see [And86, ITH92].

We can extend the dynamic programming algorithm to compute the length

2.4 Expected length of longest common subsequences 14

of a longest common subsequence of /sequencest i j , T h e taskis then to
compute an /-dimensional array and the algorithm complexity is O(n'). This
is an exponential algorithm in terms of /and there is little expectation of an
polynomial algorithm, since Maier [Mai78] has shown this problem to be NP -
complete. However, there are algorithms for finding L («i,..., iq) with better
complexity than O (nl) (but still exponential in /) [HD84, 1F92, HI92, BY91].

A slightly different aproach is needed for the approximate string matching
problem. In such case we have to compute longest common subsequences of

many short sequences [HD80, CL92],

2.4 Expected length of longest common sub-
sequences

We can use the length of the longest common subsequence as a measure
of similarity of two sequences. Essential for a decision, as to whether two
sequences are similar or not, is knowledge of the expected length of a longest

common subsequence.

Definition 2.3 The expected length EL, of a longest common subsequence
is the average value of the longest common subsequences over all pairs of

strings of the same length n, i.e.,
EL" —-07 E L("-p). (2.3)
K uweE'

Chvatal and Sankoff [CS75] were the first who investigated the properties
of the expected length of a longest common subsequence. They have computed
values of EL, for n = 1,...,5and k= 1....... 15. They also showed that EL,,

L . EL
is linear in n and gave bounds on

2.4 Expected length of longest common subsequences

Theorem 2.1 For every k > 2 there is 7* such that
7t = lim = su e p nh>ag\ 2.4
Jim P pi »- (2.4)

Before we prove the theorem, we shall show some basic properties of EL,,

The expected length of a longest common subsequence is superadditive in the
following sense.

Lemma 2.5 For every m,n € N, m,n > 1,
EL,, ~xEL, ELm+,
Proof. From Lemma 2.2 we have

L(w,v) + L(u', v') < L(mu', vv').

For the expected length we then have

EL,, + EL, —E(L(m,v)+ L(m',Vv')) < ELM+, ,

Corollary 2.1 For everym,n 6 N. m,n > 1.
n/EL, ™ EL,,,

Proof. By induction on m. For m = 1we have EL, < EL,. For m > 1 we

have

/

mEL, = (to—1)EL, + ELNn< EL(m.i),, + EL, < EL,,,

Now, using superadditivity of EL, we can prove Theorem 2.1

2.4 Expected length of longest common subsequences 16

Proof of Theorem 2.1. Let 7* be sup j :n6 N,n> o}. Let s> 0 be any
real number. Since 7[—supE—L there ism e N such that EL,,, > (7*—e)m.
Now let n be any natural number such that en > ELm. We can express n
as am + bwhere a,b € N and 0 < b < m. Then, using Lemma 2.5 and

Corollary 2.1, we have

EL, fiEL.i EL,,
lk >
n n
(n '(.z>)ELm
«in
EL EL,,
> 7k~
. . FT . . .
This means that |I%— a exists and its value is 71.. I
= n

Exact values of the constants 7* are not known even in the case k = 2.
Upper and lower bounds on 7* will be described in the forthcoming chapters.
However, it is possible to generate pairs of pseudo-random sequences and to
compute the lengths of their longest common subsequences. In Figure 2.4
are shown values of ~ for successive prefixes «, v of four pairs of binary
sequences of length one million. To interpret this data we use the following

estimate about the convergence behaviour of EL, due to Alexander [Ale92]:
7*n - O(\Jnlogn) < EL, < 7*7L

The best fit method used with the data from Figure 2.4 gives the function
0.8123757» —0.07188530» log n. That suggests that 72 is likely to lie in the
interval (0.8120,0.8125).

For large k we can see that 7* — 0 as k —»00. Deken [Dek79] has shown,

that the speed of this convergence is not smaller than 1/s/K\ more precisely

kI|_rr(}o‘yks/k > 1.

2.4 Expected length of longest common subsequences 17

EL.,

0.8125

0.8120

0.8115

Figure 2.4: Random strings of length one million.

An upper bound of Chvatal and Sankoff [CS75] leads to following estimate:

lim 7kVk < e,
k—bo.

while Sankoff and Mainville [SK83] conjecture that

. * _
Iil_r*go7 vT 2.

When using the dynamic programming algorithm to compute L(w, v), we
actually compute L(.r, y) for all prefixes x < u and y< v. We can grou]> these
prefixes according to diagonals.

Let Dm{u,v) be the set of all pairs (') of total length m such that x< u
and y<v. If m = min{]»], le]}, we shall omit the index and simply write

D(u,v). Now we can define a 'diagonal' longest common subsequence.

2.4 Expected length of longest common subsequences 18

Figure 2.5: Diagonal longest common subsequence.

Definition 2.4 Let u,v 6 E*. We define a diagonal longest common subse-

quence by

D(«, V) = max |1 (x,Y) : (*) € D(u,v)]|.

The expected length of a diagonal longest common subsequence, ED,,,
is defined analogously to (2.3). When computing L (u,v) we have to ‘hit’ the
opposite corner, but to compute D (w, V) it is enough to achieve an entry some-
where on the diagonal of the matrix computed by the dynamic programming

algorithm.

The D(m,v) and D (un,v") are the maxima on diagonals, but if a match
from a longest common subsequence appear exactly on the main diagonal,
it contributes neither to D(u, v) nor D (uR,vn) (illustrated in Figure 2.5).

Therefore L(u, v) < D(u, &+ D(//w,rw) + 1 and this gives '2ED,, + 1 as an

2.4 Expected length of longest common subsequences 19

upper bound for EL,,. A lower bound for EL, in the terms of ED,, is given

by Alexander [Ale92].

Lemma 2.6 (Alexander [Ale92]) There is a constant a such, that for all n

Combining Lemma 2.6 and Theorem 2.1 we immediately get the following

theorem.

Theorem 2.2 For every k there is 6* such that

Moreover 26* = 7*.

This theorem will be helpful when analyzing the EL,,. It means that we can
omit the condition |Ju]l = |r] = n, it is enough if 1 and v satisfy |+ Jr] = 2n.
The variance Var(L,) is another value describing the properties of the

length of longest common subsequences,

Var(L,) = ii r £ (L(u,t>) —ELN)2.
n

N .cri

Chvatal and Sankoff [C'S75] conjecture that Var(L,) is 0(n23). Steele [Stc82]
has shown that Var(L,) < (\/n+ 1)2. Later, in [Ste86], he improved his bound

to

Var(L,) < (1 -\)n.

Both bounds are based on the Effron-Stein inequality.

Chapter 3

Lower Bounds

In the last section of the previous chapter we have defined the expected
length EL, of a longest common subsequence and the constants 7*. |11 Sec-
tion 2.3 we have described algorithms computing L (m,v) but unfortunately
we are not able to analyse the behaviour of these algorithms for a random
input. Thus the constants 7* remain unknown yet. In this chapter we shall
derive new lower bounds for 7 Also we can achieve previously known lower

bounds for 7* using a different approach.

3.1 Css machines

The basic idea for obtaining lower bounds is quite simple. Let C be any
algorithm such that for input u,v € D* it computes w€ E* some common
subsequence of a and v. If we denote C (u,v) =] then C(u,v) < L(u,V)
and EC, < EL,, where EC,, is the expected length of C («,(') for random
inputs U, v € C

Tinl main problem is to design an algorithm <€ in such wav that we are

able to analyse it for a random input. As a model for algorithms computing

3.1 CSS MACHINES 21

common subsequences we choose finite state machines. Their analysis will
rely on methods developed to analyse finite Markov chains. Our finite state

machines will have two input tapes and a counter as output.

Definition 3.1 A finite state machine 971 is a 5-tuple 971 - (S, E,7, T, O),
where 5 is a finite set of states, E is a set of input symbols, | :S — {|,]} isa
tape switch function, T : S'x E —»S is a transition function, and O : SxS —+N

is an output function.

Every state s € S and symbol a € E determine a transition s “* T(s,a).
We sometimes also write s T(s,a) when the value of output function
is important.

In one step of the computation we decide which tape to read according
to the value of the tape switch function in the current state. We read one
symbol from the tape and advance the input head of the tape. The transition
function determines a new state of the machine and the output counter is
advanced by a value given by the output function.

Suppose we start computation in the state s with u and v being the
contents of the tapes. The state of the machine after m steps of computation
determines the value of an extended transition function T"* : Sx E* x E* — S.

For m = 0 we define T°(s,u,v) = 8and for m > 0 and a € E we define

T™(s, \,v) not defined it /70) =1,
Tm(s,au,v) = Tm~xT(s,a),u,v) if 7(s) =1,
T"(s,u,\) not defined if /7(») =i,
Tm(s,u,av) = T"~I(T(s,a),u,v) if 7() =] .

We shall write T*(s,u,v) instead of u, v).

3.1 CSS MACHINES 22

A computation on machine 9Hyields a function Cgn(s, u, v, rn). Informally
Cot(s,m, Vv, m) is the value of the output counter after an m-step computation

on 91 when starting in state s and sequences U and Vv are on the input tapes.

Definition 3.2 The computation function of machine Q1= (S,£,1, T, O) on

input u, v starting in state s is the function C.~ :S x S* x V" —4 N defined

recursively:
C®i(s,u,v,0) = 0
C®[(s,A,vym) = 0 if Hs)=T.

Cnn(s, au, v, m) Can(T(s, a), u,v,tn —1) 4-0(s, a) if /(*) =T.

Am) = 0 if 1(s) =i

u,an, m) Cm(T(s,a),u,v,m—1) + O(s, a) if I(s) =i

We shall omit the index 911 when there is no ambiguity. To obtain lower
bounds we need an analysable machine computing the length of some common
subsequence of input sequences. To get such a machine we have to impose
some more constraints on the definition of finite state machine.

The states of a machine will be represented by two sequences. The se-
quences consist of symbols already read from the input tapes but not used

for producing a common subsequence yet.

Every transition appends the symbol just read to the corresponding se-
quence from the state. Some transitions can also match some symbols and
thus reduce the ‘size’ of the state. This is done by cutting off prefixes and
adding the length of a longest common subsequence of the prefixes to the
output counter. In some favorable states we can leave the decision about the
matching for the future. Such states have the form (‘**), where Jrf]= 41> 0

and L(x, p) = 0. The validity of such a move is supported by Lemma 2.4.

3.1 CSS MACHINES 2

A computation on machine OT yields a function C m(s, u, v, rn). Informally
Cot(s, u,Vv, m) is the value of the output counter after an m-step computation

on OT when starting in state s and sequences U and Vv are on the input tapes.

Definition 3.2 The computation function of machine 9Ji= (5, E, I, T, O) on

input u, v starting in state s is the function Cot : S x E* x E* —% N defined

recursively:
Cm(s,u,v,0) = 0
Cm(s, = o0 if i(s) =1t,
Cot(s,au,v,m) = C<m(T(s,a),u,v,m—1)+ 0(s,a) if I(s) =j,

Cot(«>«, A, m) 0 if /(s)=1,

Cm(s,u,av,m) Cm(T(s, a),u,v, m —1)+ 0(s,a) if I(s) =]

We shall omit the index 991 when there is no ambiguity. To obtain lower
bounds we need an analysable machine computing the length of some common
subsequence of input sequences. To get such a machine we have to impose
some more constraints on the definition of finite state machine.

The states of a machine will be represented by two sequences. The* se-
quences consist of symbols already read from the input tapes but not used

for producing a common subsequence yet.

Every transition appends the symbol just read to the corresponding se-
quence from the state. Some transitions can also match some symbols and
thus reduce the ‘size’ of the state. This is done by cutting off prefixes and
adding the length of a longest common subsequence of the prefixes to the
output counter. In some favorable states we can leave the decision about the
matching for the future. Such states have the form (~ “), where |ij = WA> 0

and L(r,y) = 0. The validity of such a move is supported by Lemma 2.4.

3.1 CSS MACHINES 23

Definition 3.3 A finite state machine 4 = (5, T..l.T, O) is called a css
machine if S ¢ E* x E*. (*) ¢ 5, and for every S = (“) € s and a € E
at least one of the following three conditions is satisfied. We denote v! —ua,

viil(s)=f, and ul= u, vl= va if I(s)

V'

1 T(s,a) = (“/), and O(s,a) = 0,

2. T(a,a) = (*<), and O(s.a) —L(x,y), where .r.r' = iy = vl
3. T(s,a) = (yy)<and O(s,a) = |z — M > 0O, where yxx’ — Xyy' = V',
L(x,y) = 0,

Transitions of the form 1 and 3 are called saturated. State s G S is satu-

rated if transitions s A T(s,a) are saturated for every a 6 E.

Example 3.1 A css machine with 11 states is described by the table in

Figure 3.1. (e}

A css machines are designed to produce the length of a possible common

subsequence of its inputs.

Lemma 3.1 Let. DI be a css machine and C its computation function. Then

for everys= (") € Sandm 6 N
C(.s,u, v.in) < L(ww', :z"),

where w' < u (~ < v) is the sequence of symbols that are lead by 911 from the

first (second) tape while computing C(s, u,v,m).

3.1 CSS MACHINES 24

S I(s) T(s,o0) o¢(s.o0) T(s, 1) 0O(s, 1)

«1 -

© O
(¢
o2

«3 =

n
N
I
e YD)
N
N
o
<]
R

>
©

»4 -

|
o
~N—
-
~
o
N
o
o

s5 = (i 1 0

s =L, | ©G) 1
G

7 = |

S8 = | 0
s9 = T © 1
©
.
»10 = |
©

Figure 3.1: Css machine with 11 states.

SIX YN

—
o

Proof. By induction on in. If m = 0O, then we have C(s,u,v,m) = 0 <
L(ww, zz'). Now let m > 0 and let C(s,u,v,m — 1) < L(ww'zz") for
all u,v,a. Without loss of generality we can suppose /(a) =f. We have
C(s,A,v,m) = 0 < L(ww'zz"). While considering C(a,au,v,m) we have
the following cases:

1 T(a,a) C(T(s,a),u,v,m —1) <

1
o
b
2
1
o
O
o
o
c
=
3
1

L (watu, zz').
2. T(a,u) = (jy), 0(8,a) = L(.r,y), where sx' = iva, yy' — z. Then we

have

C(a,an,v,m) = L(x,y)+ C(T(a,a),u,v,m—1)

3.1 CSS MACHINES s

< L(x,y)+ L(x'u/,y'z")

< L(xx'wlyy'z') = L(waw', zz").

3. T(s,a) = (yy>), 0(s,a) = X = /], where yxx' - wa and xyy' =
According to Lemma 2.4, then L(xx'w', yy'z') must be either L(xx'u/, y'z'")

or L(x'w', yy'z'). In the first case we have

C(s,au,v,m) — O(s,a) + C(T(s,a),u,v,m —1)

LG/, xy) + C(T(s, a),w, t5,to —1)

N

L(j/,xy) + L(xxV, yy'z") = L(j/,xy) + L(xx'te', y'z*)

< h(yxx'w\ xyy'z") = h(waw', zz").

In the second case we can prove that C (s,au,v, m) < L (waw', zz') in the

same way. O

In most cases we are interested in computations started in state sO = (\)

and we set C (m,v, m) = Cot(sO, m,v,m).

Corollary 3.1 Let 91 be a css machine and C its computation function.

Then for every input u, v the computation function satisfies

1. C(u,v, Ju+ Jr) < L(«,n),

2. C(«, v, min{Ju], Ir]}) < D(«, V).

Proof. 1. Let W\ Z' be the sequences read from the input tapes while comput-

ing C(u, v, |ul - lel)- Then

C(uv, PI+ Ith= C(Q), u,v, U+ 5D < L(w', z) < L(u,v),

3.2 Analysis of css machines 26

since W' is a subsequence of u and z' is a subsequence of v.

2. Let m - min{Ju], |v]}. Let w',z' be the sequences read from the in-
put tapes while computing C (m,v, m). During every step of the computation
machine 971 read exactly one input symbol. Moreover, m is sufficiently small
that we cannot run out of input symbols. So we have W] 4 \2\ = m and

("<) € D(u,v), therefore

C(u,v,m) = C((J),u,v,m) < L(u/,z'")
< max |1 (x,y) : () G =D (u,v).
O
Previous lower bounds for the expected length of a longest common sub-
sequence were derived using the first inequality of Corollary 3.1. To simplify
the analysis of a machine we shall use the second inequality in conjunction
with Theorem 2.2. After taking the average over all sequences of length m we

directly get the following theorem.

Theorem 3.1 Let 971 be a css machine and C.”~ its computation function.

Let

3.2 Analysis of css machines

To compute EC,,, we have to analyse the behaviour of css machines when a

random input is given. This analysis is similar to the analysis of finite Markov

3.2 Analysis of css machines 27

chains [KS60]. Changes of current states are described by the ‘transition’

matrix of the machine.

Definition 3.4 Let 9Ji = (5,E,|,T,0) be a finite state machine. Let T =

{Lj} be a matrix such that

(3.1)

where k = |S]. Then matrix Tis called the transition matrix of machine 9JL

We shall introduce ‘regular’ machines that are easier to analyse.

Definition 3.5 A finite state machine 9Ji with transition matrix T = {ttJ}
is called regular if there is n 6 N such that t*J > 0 for all i,j, where f*"*is

the (i,j)-th entry of matrix T".

It is not hard to see that a css machine WI is regular if and only if there is
some m 6 N such that for every two states s,t- € S there is an input u,v 6 S

such that Jul+ Ju= m and T*(s,u,v) = t.

Lemma 3.2 Let T be the transition matrix of a regular css machine. 9Ji. Let.

t\j be the (i.,j)-th entry of the n-th power of matrix T. Then

Definition 3.6 Let 9H = (5, E,/,T,()) be a finite state machine and let
s,t g S. We say, that state t is reachable from s if there are «, v € S* such

that T*(.s, a,v) —t.

3.2 Analysis of css machines 28

Lemma 3.3 Let9Jl= (S, E, I, T, O) be acss machine satisfying the following

conditions:
1. Every state s € S is reachable from Q),
2. (©) is reachable from every state s € S,
3. there are astate s€ S and a symbol a 6 E such that T(s, a) = s.

Then machine 9 is regular.

Proof. For s,t € S, t is reachable from s, and we denote by d(s, t) their

‘distance’, i.e.,

d(s.t) = min{]«] + U : T*(s,u,Vv) = t}.

Let n>i = nmx</((*), t) and m4 = inaxd(t, (*)). Now let &/ be the state whose
existence is guaranteed by condition 3. We put m2 = d((J), s<), m3 - d(si, (*)),

and we set m = mj + m2+ m3+ m4.

Let a,f € 5 be any two states of DJI. Let Ui,vi € E*, |d] + [bi] < »»l
be an inputsuch that T*(s,u\,v\) - (©). Let«2,e2 €E* ||+ V2] = m2
be an inputsuch that T*((j[), tt2,n2) — */. Letu3,e3 e E", W3]+ 11 = m3
be an inputsuch that T*(s/,n3,t3) = (). Let« 4114 € E*, |U4|4 4] < m4
lie an inputsuch that T*((J), «4,e4) = t. Leti = m — ¢§|«j| + Jez2)). If

>=
/(sj) =] we set U = Hi«a'«;)u4d and « = «iv2e3e4, otherwise « = ui«2u3u4
and v = tit'2't'3t4. Then |¢] + k] = m and T*(s,u,v) = / This guarantees
9Jl to be regular. O

From the theory of Markov chains [KSGO, FOIG8] we get the following

lemma.

3.2 Analysis of css machines 29

Lemma 3.4 Let T be the transition matrix of a regular css machine 971 with
| states. Let e = (ej € R(be any vector such that £ e; = 1 and let

C, = (Chyiverennn cnd) = eT". Then for everyj = 1........ /

r{i_qénc,,.i —di,

where d = (di,..., di) € Ri is the unique vector such that dT = d and
Zdt = 1.
The vector d = (r/],... ,d/) whose existence is guaranteed by Lemma 3.4

is called a stationary probability distribution of the regular css machine. For
state Si € S we define d{s,) = (/.. the stationary probability distribution of
machine 971 in the state s,. As an immediate corollary of Lemma 3.4 we get

following theorem.

Theorem 3.2 Let T be the transition matrix of a regular css machine 971
with | states. Let d = (</],..., df) be a stationary distribution of machine 971
Then the expected length of a common subsequence produced by css machine

971 is asymptotically <V(971)w, where

b'(9l) = A di a)e 3-2)

=l «es:

Example 3.2 Because of symmetries given by parts 1 and 3 of Lemma 2.1,
we can reduce the size of css machines. The machine from Example 3.1 after
reduction will have five states tu = [jj], li = [{], tj = [/], 18 = [*°], and
14 = [Y1]. The reduced machine 91 is described by the transition graph in

Figure 3.2. The value of the tape switch function is denoted by the symbol e,

3.2 Analysis of css machines 30

Figure 3.2: A css machine that, yields the lower hound 0.7368.

and the transitions for which the output function is 1 are marked by the

symbol +. The transition matrix defined by (3.1) is

(e 1 0 0 o\
1 1
5 0 5 00
_ 1
T = 000 5 5
1 1
0 5 0 5 0
1
kO 2 2 0o, v
Since

/i 5 3
8 16 8 4 16
5 m 1 3 1
P2 32 4 16 16
— 7 1 9 3 1
PR 4+ R 1B 1B
5 5 7 |
R 16 16 3R 8
3 1 1 r
II\T% 8 8 4 3

the machine SHis regular. The system of linear equations dT= d is

41= 2do, ido+da+di = 2di, d\+d*= 2dj, doi+di= 2da, dj = 2d\.

3.3 Design of css machines 31

Solving this system we get

) 3 , 6 , 4 4 2

0 19" 1 19" *'2 19’ '* 19" '4 19

From (3.2) we get

S(911) — -d\ + -d3+ dd= — .

and this yields the lower bound 72 > = 0.736842 @)

As we have seen in Example 3.2 we can use symmetries to decrease the
size of css machines. There is one symmetry between the top and bottom
sequences of states of machine. Another symmetry can be obtained by the
substitution of symbols according to some permutation & : £ —E as specified
by Lemma 2.1. Therefore we can split states of sequences into equivalence
classes, where two states are equivalent if we can get one from the other by
permutation of symbols and by exchanging the top and bottom sequence of

the state. We shall denote all states equivalent to state (“) by ["].

3.3 Design of css machines

For automated production of lower bounds we need stronger constraints
on css machines. Every new condition is natural and efficient css machines
are likely to satisfy it. We shall not allow sequences in any state to begin
with the same symbol as this match should be taken out before getting to
such a state. This corresponds to the first condition from Definition 3.7. If
one of the sequences from a state is empty, we should read a symbol from the
corresponding input tape, otherwise we could lose some matches (corresponds

to conditions 2 and 3). If we move from a state of the form [}',] to a ‘smaller’

3.3 Design of css machines 32

state, we could also lose some information (corresponds to conditions 4 and 5).
States that are not reachable from the initial state can be deleted from the
machine without any influence on the output of the machine (corresponds to

condition 6). Thus we get the definition of ‘strong’ css machines.

Definition 3.7 Let 971= (S,E, /, T, O) be acss machine such that for every
= []es

1 «(i) /7 v(i),

2. ifl(s) =f and u/ Athenv / A

3. if 1(a) =). and v jt Athen u ™ A,

4, ifu=a', v = a > 6, then I(s) =] and (T(a,a) = [£,] or
T(s,a) = s),
5. ifu=a', v /4, I(s) =T, and T(s,b) = [“] then | = t+ 1

Such a machine 971 is called a strong css machine.

Strong css machines automatically satisfy Lemma 3.3.

Lemma 3.5 Every strong css machine is regular.

Proof. Let 971= (S,E, /, T.()) be a strong css machine. Let us consider states
tj — T'(s,0i,0() for i = 0O where / = 151 is the number of states of
machine 971 Let 1 be the state with a repeated occurrence among

Since we are discarding symbols from the left and adding ones from the right,

the state t has to have the form / = [~]. Since we have to road from the

3.3 Design of css machines 33

tape corresponding to the empty sequence, there is some state [*] between
two occurrences of state t.

Let s be a state of the form [j*] with maximal i + j. Then according to
conditions 4 and 5 from Definition 3.7, T(s,c) must be s, where cis aor b
depending on I(s).

Hence from Lemma 3.3 we have that ©i is regular. 0O

The structure of strong css machines can be used for their automated
production. An algorithm (£ for such production can be found in Figure 3.3.

The basis of this algorithm is the function add(©i, s). The input of the
function ‘add’ is a machine ©l and a pair of sequences s. The output of the
function ‘add’ is an extension of the machine ©I that contains the pair s as
one of its-states. If pair s is already a state of ©t then the output is simply
©t. Otherwise for every symbol a € £, a transition T(s,a) is found and the
value of the output function O(s,a) is computed. If required, function ‘add’
is called recursively. Finally the pair s is added among the states of the ©l.
The new transitions are built so that the new state n automatically satisfies
conditions 2 5 from Definition 3.7 and every new state is reachable from s

The performance of the algorithm (£ is as follows. A nonsaturated tran-
sition that will be upgraded is selected. The new target of the transition is
added to the machine ©1. This can lead to the situation when* the old target
of the transition become unreachable from the initial state. In such a case
the old target is removed from the states of the ©1. The transition is then
upgraded.

This algorithm preserves the properties of strong css machines.

Theorem 3.3 Let procedure cut(in a, v; out x, y, /I") be .such that ex' = u,

yy' = v, i/(I) / £(l). and xy / A. Let reduce(iXR) be a maehine identical with

3.3 Design of css machines

algorithm £

input regular css machine 972= (5, E, /, 7\0)
output expanded css machine 972 = <§97)

function add(css machine 9)1, pair s = (J}))
begin
if] G S then
return 972,
if \\ < |r] then
exchange”, v);
for a G E do

if [“a] G5 then

*>,a] =
O[s,a] :=0
else if L(u,i'll) = 0& ti= aa...a then
X~Na] = s;
O[s,a] :=0

else if 3x,x,y,y' (u=yxx',va= 1y, Irl= iM>0,L(,y) = ()then
an :=add(an, («:));

fe'li
|

cut(u, va, x, x",y,y");
an := a<ui(an, (£'»;

X[.,,n] := [£];
O(s,a] := b(x,y)
endif

endfor;

S=5U][q;

return On

end add;
begin

select s = (“) 2 T(s,a);
if /L5 :=| then
an := add(an.(“?))

ris,«] =

else

an := add(an.(“,))
T\s,«] = (“a:
endif;
reduce(On);
Owa\:=0

end.

Figure 3.3: Algorithm (f for expanding css machines.

3.3 Design of css machines 35

71 ex@ept. that all states not reachable from () are deleted. If 3)1 is a strong

css machine, then <g971) is also a strong css machine.

Proof. The total length of the pair s does not increase in recursive calls of

procedure ‘add’. Therefore algorithm (£ finishes after a finite number of steps.

Let 971 be a strong css machine. Procedure ‘add’ preserves properties 1 G
from Definition 3.7. Newly added states satisfy conditions 2-5. The satisfiabil-
ity of condition 1is guaranteed by the properties of procedure ‘cut’. Procedure
‘reduce’ causes the resulting machine to satisfy condition 6. Therefore (£0971)

is a strong css machine. O

Algorithm (£ for extending strong css machines carries two heuristic fea-
tures. The first one is selecting a transition that will be upgraded. The second
one is the decision how to create transitions for newly added states. It is not
difficult to create a sequence of strong css machines 971i,... over the alphabet

of size k such that 971,+i - (£971,) and 2b'(9Jl,) —7<s as i — 00.

To achieve this we select a nonsaturated transition s A T(s,a) with min-
imal |s] and set procedure cut(u, v,x,X\'y, y') to return Xx —u, X' = A, y =V,
?2/ — A. The machines 971 can be seen as (almost) complete balanced A'-ary
trees. State Q) corresponds to the root of the tree, saturated states are the
internal vertices of the tree and nonsaturated vertices are the leaves of the
tree. From every leaf there are nonsaturated transitions to the root. However,
there are exceptions in this structure caused by part 3 Definition 3.3 and by
Definition 3.7. We do not have transitions of the form s — [*®], these transi-

tions rather have the form s [7]. Also transition [*#] A ["] will be rather

3.3 Design of css machines 36

Although ¢'(9Jl,) converges to 7*, the convergence is slow. To get a faster
convergence we shall change the heuristics. We shall describe an improved
heuristic for the alphabet S = {0,1}. When selecting the transition to be
upgraded, we shall choose such a transition that is likely to make a large
increment of the lower bound produced. There are two factors contributing
to the decision of selecting which transition to upgrade. The first factor is the
‘quality’ of a transition and the second one is the ‘quality’ of a state.

For every transition we can estimate how many matches we lose when

using this transition. For transition

(3.3)

this loss' will occur when

L(«a.r,vy) > L(u'r, Vv'y) + O(s, Q)

for some x,y € £*. A failure ratio for depth j for the transition (3.3) is then

defined by

From (3.2) we can see that the contribution of every state is proportional
to the value of the stationary probability distribution in this state. Therefore
when extending css machines we shall select the transition « A T(a,a) with
the largest value of the product d(s)Rj(a, a).

When adding a new symbol a to machine 911 we have to built new tran-
sitions s= [“] A T(a,a) for every a 6 £. Some of these are determined by
properties of strong css machines, but in the most cases we are not bound

when choosing T(a,a). We shall match as few symbols as possible. This will

3.3 Design of css machines 37

procedure cut(u, v;x,x".y,y");

input U,v € S*
output x,x"y,y' € E* such that xx' = u, yy' = v, u(l) 7 t(l), amixy /7 A

begin

| := fuid.firstfu, t'(l));

iff < 0o then
34 := eoimiioii-pi‘cfix(u(t .. Ju]), i;
*o:=u(l..t- 1+ |iO];
H == »(Ji/o] + 1meIt'D;
xi) m=u(t + o «< ul)

endif

b := fimLfirst(r, «(1));

if h< oo then

xi := coniinon_prcfix(u, v(b . . [ix]));
21 :=»@1 b~ 1+ ko]);
= «(kii]+ 1 eeuly

J0:=t(6+ ol meItD;
ift<o00o ¢'(addfOT.K.iZi))) > i'add(lOT, (x\,y\))) then

. return(x0, Zo.io-Sfo)
endif

endif
return(xi, 2L, x\ y\\
end:

Figure 3.4: Procedure ‘cut’ from algorithm <€ Function fiiuLfirst(w, a) returns
the first position of symbol a in sequence a or 00 if a % it. Function com-
inon.prefix(w, v) returns the common prefix of sequences u and v.

allow us to make further matchings dependent on symbols not yet read. Since
k = 2and w(l) /7 t'(l), then either //(1) or t'(l) must be involved in the next
match. Out of two possible matches we shall choose the one which yields a
better lower bound. The corresponding piece of code can be found in Figure

3.4.

We have used these heuristics to produce larger and larger css machines
and gain better and better lower bounds for 7 The actual depth used for

computing the failure ratio wasj = G The best machine we have created has

3.4 Labeled css machines 38

931 states and gives us a lower bound of 0.773911 < 72. It can be found in
Appendix A. If I(s,n) is nonzero, it appears in column T(s,a) as a number
after the name of the state T(s,a). 11 the column d(s) is the value of the

stationary probability distribution of the state multiplied by 103.

3.4 Labeled css machines

Deken [Dek79] describes and analyses algorithms for obtaining common
subsequences. The best of these algorithms is given in Figure 3.5. He also
observed that describing this algorithm by finite css machine requires a large
number of states. However, we shall introduce a variant of css machines, that
allows us to describe Deken’s algorithm by a machine with a small number
of states.

The basic idea of Deken’s algorithm is as follows. We have two markers,
one for each tape. The algorithm starts with markers marking the beginning
of the input tapes. In one step the algorithm reads symbols from one of the
input tapes until a new symbol, with respect to symbols between the marker
and input head, is read. If this symbol matches a symbol on the other tape
(again in the area between the marker and the input head), we copy the
symbol to the output, move the markers to the matched symbols and new
scanning starts from the markers. We continue in this manner and alternate

the tape from which the input is read. This is illustrated in Figure 3.G.

Tin* analysis of the algorithm is based on the fact that the numbers of
symbols scanned between matches are independent. Therefore if EN is the

expected number of symbols scanned between two matches, then 7* > 2/EN.

Example 3.3 State diagram O corresponding to Deken's algorithm for al-

3.4 Labeled css machines

algorithm D

input «,v € E*
output w € E* - common subsequence of u,v and css = ¥

begin
n, ;= 1;
ns ;= 1;
css ;= 0; ,
TopPos|[1,..., it := 0;
BotPos]l...... it] := 0;
loop
while Toi>Pos[u(nt)\ 7 0 do
nt:=n, + 1;
if nt > |4 then
return css
endif
endwhile:

TopPos[u(nt)\:= n(;

if BotPos[u(«()] O then
css = css+ 1,
output it(n,);
ns := BotPos[u(tit)] + 1,

7opPosll...... it] :=0;
BofPosIl....... it] :=0
endif:

nt:=n, + 1;

while BotPos\v(its)] /7 0 do
nsS:=ns+ 1;
if /it > g then

return css

endif

endwhile

Z?ofPos[«(nt)] := lit;

if TopPos[v(ns)] / O then
css :=css+ 1
output «(/Zit);
ii, := To]tPos[v(ns)] + 1L
TopPoal\....... it] :=0;
BotPos[l...... it :=0

endif:

ns:=lit+ 1

cndloop
end.

Figure 3.5: Dekcn's matching algorithm.

3.4 Labeled css machines 40

Figure 3.6: One cycle of Deken'’s algorithm.

phabet {(), 1,2,3} can be found in Figure 3.7. There are five states [**], [".].
[1*]" [I-]> [13*] with < signalling where the next symbol will be read. One
step of Deken’s algorithm corresponds to a movement from one state to a
different state. Finding a match corresponds to a transition leading to

and one cycle of the algorithm corresponds to a path from [~ back to [?].
We shall analyse machine Q in two steps. First we shall not consider loops

and multiple transitions will be seen as one transition.
Let P(s,a) be a probability of a transition s A T(s,n) where T(s,a) /7 ».

We have

undefined if T(s,a) ~ s,

P (.50 1 tor-El. EL
e tor-EMA.
2 f,r* = [13] «

For every state a / [*] there is a unique path from [*] to «. Let U(n) be
the probability of moving along this path and let p(s, a) be the probability

of moving from [to sand then to T(a,a) = []. It is p(s,a) = P (s,«){/(«)

3.4 Labeled css machines 11

Figure 3.7: Labeled css machine for k - 4.

and
B=i Wo=J
= f m i) « h = i.
~([?2) = \ p(*1.0) = p([H,2) = U - s*
NIPED = i (M) = p(P1]13) =y =
We put p(s,a) = 0 if T(s,a) / soi i.e., transition s A T(s,a) <loes not

correspond to a match. Thus p(s, a) is the probability distribution of matches

and Hp(s,«) = 1.

3.4 Labeled css machines 42

y + (y)2+ eee= 1 Therefore the mean progress to collect the first symbol
on one tape is VF(1) = 1, for the second symbol it is 11'(2) = 2], and for the

third symbol it is 3) = 4]. For g(s,a) we now have

3i

</(U°) = 1Vv(1)+ 1F(1)

2 <?[?e], 1) = W(2)+ W (I)

0) 1F(1) + IF(2) 3] fir(R2], 2) W(2) + \V(2) = 48§

2(?1*], 1) = 17(3) + VF(l)

5] </([?7%,3) = W(3) + \V(2) = 68§

Having found p(s,a) and q(s,a), we can now compute the expected num-
ber of symbols read between two matches EN = Yl 2Z) p(s,a)q(s,a) =)3/

tes aes
This yields the lower bound yy = 0.545454.... (@)

We can build a css machine 971 that simulates the behaviour of Deken’s
algorithm for any alphabet E = {0,..., kK —1}. Because of the symmetries
(Lemma 2.1, part 3) we can suppose that symbols read on the top tape are

even and in the order 0,2,... and symbols on the bottom tape are odd and

in the order 1,3...... Machine 971 will have k + 1 states Sq = [*], «i = [],
roi ro2 ...2«- 2i. ro2 ... 21-22 c
$2 = lij.un.... «2.= U3 ...2-1j" s2+l = li3d...2-1 J........ For the taPe

switch function of the machine 971 we have /(s2i) =T and /(a2i+i) =1- The

appropriate transition function is given by

»0 fora= 1,3,..¢>2?2 —1
T(S'n,a) = < ;5 fora= 0,2,.. ,2»- 2
»2i+l for a > 2i
fora = 0,2,.. 2%
T(s2i+x,a) = < yo41 for« = 1,3,..+,2»—1

1 »2i+2 fora> 2/+ 1

3.4 Labeled css machines 43

For the output function, we have

1 ifT(s,a) = sq

0 otherwise

To compute EN. we shall introduce a value function V : S x E —E. If
T(s, a) = sO, we define V/s, a) = p(s, a)q(s, a), where p(s, a) is the proliability
of matching using the transition s A sO and q(s, u) is the expected number
of symbols read to achieve this transition. If T(s, a) / so, we put V (s, a) = 0.

Clearly

EN = £ £ v («,b).

.€S oeE

To evaluate V(s,a) we shall introduce the functions U (j) and IT(j). U(j)
is the probability of achieving the j-tli state of the machine 971 and IT (j) is
the expected length of a sequence read until j different symbols appear in
the sequence. For t/(l) we have t/(1) = 1. To express U(i + 1) in the terms
of U(i) we can observe that for k — \i/2\ symbols the transition leads out of
the state .s,. In k —i cases this is transition s, A sl+l and in \i/2] cases it is

transition s, A 0. Therefore U(i + 1) = ~(*)jfirj7yjj- This gives ns

and

where a is such that T(.s, it) = 0.

Since the waiting time for the (j+1)-th symbol, having already collected

j symbols, is | + ~+ (™M)2+ ...= A-, we have

_ Kk
w(j) = (th- r

3.4 Labeled css machines 44

Alphabet Lower Alphabet Lower Alphabet Lower

size bound size bound size bound
2 0.77391 7 0.44502 12 0.35899
3 0.61538 8 0.42237 13 0.34737
4 0.54545 9 0.40321 14 0.33687
5 0.50615 10 0.38656 15 0.32732
6 0.47169 1 0.37196

Figure 3.8: Lower bounds for 7*.

Therefore
g(siia) = W(L*/2j) + W (\a/2\),

where again a is such that T(s,a) = sO-

All this together gives us the following lower bound:

Theorem 3.4 For every k >2 we have

K> iyray s 1 i1 1 i1 L1
S S (S~ +isFTi) A- L/2In A- L/
Actual lower bounds for k= 2,..., 15 can be found in Figure 3.8

Functions U (j) and W (j) can be seen as labels on the states and func-
tions p(s,a) and can be seen as labels on the transitions. So machines

described in this section can be called labeled css machines.

So far, all attempts to push this approach further break clown on the

independence condition for numbers collected between matches.

Chapter 4

Upper bounds

In this chapter we shall describe a new method for obtaining upper bounds
for the expected length of a longest common subsequence. First we shall
outline the method and define collations pairs of sequences with marked
matches. Then we shall describe simpler versions of the new method and

finally full versions of the method will be given.

4.1 Collations

Let. jF(i, n) be the set of all pairs of sequences, both of length /, with a

longest common subsequence of length i, i.e.
F(i,n)={u,veE": L(u,i> = t}.

The number of elements in set F(i, n) will be denoted by F(i,n). Since
U F(i,n) = D" x E", we have
1=0
|
+F(i,n) = K\ (4.1)

4.1 Collations 46

0 7k yn n

Figure 4.1: Upper bounds for the expected length of a longest common su-

persequeuce.

This allows us to rewrite the definition of the expected length of a longest

common subsequence in the following way:

(4.2)

is very small compared with A2', then pairs with a longest common subse-
quence larger than yn do not really contribute to the average and therefore
the expected length must be smaller than yn.

This is the basic idea of the first upper bound given by Chvatal and
Sankoff [C'S75] and also the basic idea of all further upper bounds. It is

illustrated in Figure 4.1 and formally proved in Lemma 4.1.

Lemma 4.1 (Chvatal and Sankoff [C-S75]) Let F(i, n) he the number of pairs

of strings of length n over the alphabet of size k with a longest common

4.1 Collations 47

subsequence of length i. Let H(i,n) be an upper bound for F(i,n), i.e.,

F{i,n) < H(i, n) for all i, n. Ify is such that

£ H(i,n) = o(kin) (4.3)
*=fynl

then 7* < y.

Proof. We can split the summation in (4.2) into two parts, from 0 to yn and

from yn to n. We get

For the first sum we have i < fj/n] —1 < yn and for the second sum we have

i < n. Hence

F(i,n)+ n

»= 1/l
We can use (4.1) to evaluate the first sum and (4.3) to estimate the second

one. We get

(ynfcin + no(k2n)) = y+ o(l).

For n —* 0o this gives 7% = lini & < y. O

To obtain upper bounds for F(i,n) we shall concentrate on the relation
between F(i, n) and F (i+ 1,n). We shall try to observe the changes of F(i. n)
when increasing To realize it we introduce the notion of a match a pair of
sequences that have the same last symbol, and a collation a pair of sequences

with a marked common subsequence.

4.1 Collations 48

Definition 4.1 Let u= U\- *eu,, and v = Vt mmmvn be two sequences. We say
that pair (“) is a match, if um = v,,. The set of all matches will be denoted

by A. For match (“) € A we denote [(")] = (U).

Given two sequences U and v and their common subsequence tv, we can
chop u and v just behind the corresponding symbols from w. Every piece we
get (except the last one) is a match and such a chopped pair of sequences will
be called a ‘collation’. The sum of the positions of w(i) in the input sequences

u and V is the *-th entry of a ‘collation key’.

Definition 4.2 A sequence p = pi,pi,.=*-,p,,pP,+1 of pairs is called a colla-
tion of order n if the pairs pi,P2, mme.pn are matches. We say that collation
Pi,P2,---\pn,pn+i generates the pair (“) if cat(p,,p2....... P,,P,.+1) = (“)e

The positions of pairs of matching symbols form the collation key L (p), where

¢(P) = I(pi). {pi.PD)........ /(PLP2.... Pn)-

We shall use LH(p) to denote the reverse of collation key L (p). Let '-<’ be
the lexicographical order on integer sequences. We shall introduce the notion
of dominance. Informally, having two ways of cutting the sequences we shall
prefer it when the cuts appear as soon as possible. We shall say that a collation

is ‘dominated’ when symbols in the collation are not matched optimally.

Definition 4.3 We say that collation p dominates collation q. if p and q
have the same order n > 1, generate the same pair, and LH(p) < LK(q).
Collation q = q of order n > 0 is dominated if there exists a

collation p such that p dominates g or if L(</,1+]) > O.

The following example illustrates the definitions.

41 Collations 49

Example 4.1 Let E = {0,1}. Pairs (q), (°J), (¢ii) are matches, pairs ("j)
and (¢ i) are not. Collation (°i)(oi)(a) generates the pair (j,1}) and its
collation key is 3, G. Another collation generating pair (hi!) is (io)(!)(a) and
its collation key is 3,5. When we compare these collation keys, we observe
that (io)(i)(a) dominates (01)(oi)(a) Th,ls (°i)(oi)(a) is a dominated

collation. (0]

If a collation is dominated, it remains dominated after any permutation
of symbols from E. There is another symmetry between the top and bottom
sequences of a pair. Therefore we can split pairs of sequences into equivalence
classes, where two pairs p and q are equivalent if we can get q by permutation
of the symbols in p or |_p]. We shall denote all pairs equivalent to pair (“) as
["]. These equivalences (and notations) are naturally extended to matches,
collations and sets of collations. Reversing is a third symmetry, that works for
longest common subsequences, however this symmetry does not make sense
for matches or collations.

Let C(m) be the set of all collations generating a pair of total length in.
The set. of all collations will be denoted by C = (JO C(m). Let Af(i) be the set

m=
of all nondominat.ed collations of order i. Let Af(i, in) = Ai(i) nC(m) be the

set of all nondominated collations of order i generating a pair of total length

m. These sets of collations can serve us as upper bounds for F(i,n).

Lemma 4.2 For every /,n € N
F(i,n) < W¥/(i,2n)]

Proof. This lemma is a simple consequence of a fact that for every pair (")
|
with longest common subsequence of length i there is at least one nondomi-

nated collation of order /generating pair (). O

4.1 Collations 50

We are still unable to count the number of elements in n) orin Ai(i, n).
But we can define sets of collations H(i,n) which contain all nhondominated
collations and are easier to handle.

Suppose we have expressed the number of elements in 'H(i, n) in terms
of the generating functions n%)O\H(i'n)\Z"' Theorem 4.1 gives us conditions
when we can transform upper bounds for these generating functions to upper

bounds for 7*.

Theorem 4.1 (Dancik and Paterson [DP94]) Let 'H(i), i > 0. be sets of
collations of order i such that every nondominated collation of order i is
in H(i). Let A(,)(s) - 7{5)_}() [H{i) Q\C(m)\zm be the generating functions for

H(i, m) = H (i) C\C(m). Suppose the h”~(z) satisfy
h(i\z) < p(z)q(i)(X(z)Y (4.4)

where p(z) and X(z) are functions independent ofi and g(i) is a nondecreasing

polynomial. If zO £ (O,) is such that A(;0) < 1 then

2 jog kz0

- log A(zO)
Proof. We shall denote |H(i) DC(m)] by //(?,rn). The set Af(i, m) is a subset
of the set W (i)nt’(w) and therefore H(i,2n) is an upper bound for F(i,n)
according to Lemma 4.2. Let Z be the set of all ; € (0. ~-j-) such that A(;) <

1 Foreveryy > > 0 from (2.1) we get

From (4.4) and from the fact that 51linf < inf 51 we have

" "op@)a(i)(X(2)

4.2 Previous upper bounds 51

Since A(s) < 1, we get (A(c))' < (A(5))th for i > yn. Hence

n p{z)ng(n)(\{z)»"

and from the properties of infimum for we get

n n

Y H(* 2n) < p(zOng(n) m

For y we have (A(c0))y < k2;,, and therefore YL H(i,2n) = o(k2n). Finally
i=r»"i
Lemma 4.1 gives us 7* < y for every y > O

The numerical computations are performed with the help of Mathematica.

The actual command used to compute the upper bound y is

FindMinimum[2*Log[k*z]/Log[lambda[k,z]],{z,0.-5/k>]

4.2 Previous upper bounds

In this section we shall show how older upper bounds for the expected
length of a longest common subsequence fit into the new framework given by
Theorem 4.1. These upper bounds for alphabet size k = 2,.... 15 together
with upper bounds developed later in this chapter are given by the table in
Figure 4.2.

The first upper bound flue to Chvatal and Sankoff [CS75] corresponds to

sets of all collations '"H(i) of the form

for some FC S. The generating function for the number of sequences of tho

form ua, for some u € E*, is , having k choices for n we get the generating

4.2 Previous upper bounds 52

k New results Deken Chvatal Sankoff Chvatal Sankoff
[Dek83] [CSs83] [CS75]

2 0.83763 0.85750 0.86660 0.90512

3 0.76581 0.77682 0.78648 0.82999

4 0.70824 0.71810 0.72971 0.77291

5 0.66443 0.67323 0.68612 0.72767

6 0.62932 0.63721 0.65099 0.69056

7 0.60019 0.60731 0.62172 0.65932

8 0.57541 0.58189 0.59676 0.63250

9 0.55394 0.55987 0.57508 0.60909

10 0.53486 0.54052 0.55598 0.58841

11 0.51785 0.52331 0.53895 0.56995

12 0.50260 0.50786 0.52363 0.55331

13 0.48880 0.49387 0.50973 0.53820

14 0.47620 0.48112 0.49704 0.52440

15 0.46462 0.46942 0.48538 0.51172

Figure 4.2: Upper bounds for alphabet size k= 2,..., 15.
function for the number of matches A(c) = . The generating function

for the number of collations in 'H(i) then is (A(z))’p(z), where />(}) is the
generating function for the number of matches of form We then
can use Theorem 4.1 to produce upper bounds. Analysing these upper bound

for k — oo we get the following theorem.

Theorem 4.2

lim ~icVT < e
k—e0

Proof. This is a consequence of the more general Theorem 5.2. 0O
|
Chvatal and Sankoff [C'S83] have observed that if n is the matching symbol,

then E* can be replaced by (E\ft)*. They have improved their upper bounds

4.2 Previous upper bounds 53

using collations of the form

As\ «)o«,"W (s \«2)*«2\ Ae
I(S\ «m)*«,; \(S \a2*a2y \(E

The generating function for the number of matches of this new form then is
= (I-(A-1)cp-
Deken [Dek83] goes further in the elimination of dominated collations. His

approach involves ‘minimall matches matches with only one possibility of

matching symbols.

Definition 4.4 The match p is minimal if there is no match g such that

p = cat(/,r) for some r € li with I(r) > 0.

For example, in the binary alphabet the only minimal matches are in
(° > (0*1)e (* g all(l (i*o)e F°r alphabet {(), 1,2,3}, matches (012) and
C*17-}) aro minimal while (j323) and (pjo) are not. The usefulness of minimal

matches is supported by the following lemma.
Lemma 4.3 All matches in a nondominated collation are minimal.

Proof. Let p = pi,...,p,1+ be a collation such that p, is not a minimal
match. We have p, = gqr where g is a match and I(r) > 0. Collation p is then

dominated by collation p\,... ,Pt-i,q, rp,+i,... ,p,,+1. O

Now we set 'H(i) to be the set of all collations consisting of minimal
matches. To evaluate the generating function for the number of collations in
'H(i) we shall need the generating function p(d. z) for the number of sequences

using exactly d given symbols.

4.2 Previous upper bounds 5%

For every sequence using exactly <l symbols we can mark the first oc-
currence of the last used symbol. We have d choices for the symbol and its
contribution to generating function is dz. The sequence before the marked
symbol (exclusive) uses exactly <7— 1 symbols and the generating function
for the number of these is p(d - 1,z). After the marked symbol can be any
sequence and the corresponding generating function is m 1. . For p(d,z) we

then get
< -)=Y~jZz Pd~ 2)

which leads to

(4.5)

Every minimal match has the form ('“) where a € E, u,v € E*, and
L(ua,v) —L(u,va) = 0. Let T be the set of all symbols that occur in u, then

u€ r*and v € (S \(f U«)*. The size d of T can range from 0 to k —1

symbols from T is given by the generating function p(d,z), for the number of
sequences over E\ (fU a) we have the generating function |—(k—t|—|)" ikl
the contribution of the matching symbol is kz2. The generating function for

the number of minimal matches then is

The generating function for the number of collations in the sets 'H(i) then is

(A(2))'p(z), where p(z) is the generating function for the number of matches

4.3 Simple upper bound (binary alphabet) 55

4.3 Simple upper bound (binary alphabet)

In this section and Section 4.5 we shall work with the binary alphabet
D = {0,1}. Previous methods for an estimate of F(n,i) counted the number
of all possible pairs that have a specific sequence as a common subsequence.
To improve the upper bound we must avoid counting any one pair too many
times. To do so we shall use the dominance partial order. We shall not count
a pair (“) in association with subsequence w when we know that there is
some subsequence W' of (“) such that the collation based on W dominates
that of w.

We shall take advantage of the following idea. The collation (°J)(oi)(0)
generates a pair (Voio) and has the collation key 3,6,8. But having the
match (°J) followed by the match (0{) is not optimal, because it is possible

to arrange matches in a better way, namely (!*{) (1) (1>)’ wi,h tM> collation

key 3,5,8. This idea is generalized and made precise in the following Lemma.

Lemma 4.4 If collation p contains matches of the form |[((I })(0+})J then

p is dominated.

Proof. Let p - pi,...,p,+i be a collation such that p- = (° j) and pi+l =

(,+1" ' < "mThen p is dominated by the collation

............. <Pi+a-"°,pn +1°

These inefficient collations from Lemmas 4.3 and 4.4 are said to be rejected.
Collations that are not rejected, are accepted.

For i > O let be the set of all accepted collations p of order i

generating pairs of total length m and let be the number of pairs in

4.3 Simple upper bound (binary alphabet) 56

the 7i(i,m). For i = 0 we put H(O,m) = Ai(0, m). Let 7i(i) = (JO
m=
Every dominated collation is accepted and therefore H(i) can be used for

obtaining lower bounds through Theorem 4.1.

To count H(i,m) we can split i > 1, into two sets and
Ti.2(i,m) such that all collations beginning with a match of type [jj] will form
Wi(i,m) and all collations beginning with a match of type [* jj] will form
?f2(i, in). For i = O we set Wi(0, m) - Ti.(O, m) and ?f2(0, m) —O.

We build the sets 7i\(i,m) and W2(i,m) by induction on i. All the colla-
tions of order O (forming the set 7ii(0, m)) are those in U [j+]. Now
let us suppose we have the sets 'H\(i — 1, m) and W2(t —I,m) for all m. To
get all accepted collations from 7i(i,m') we shall extend the collations from
H(i —1,'m) to the left by one match. The extensions by the matches from
[} form 7it(i, m'). The situation in the case of extensions by the matches
from g is a bit more complicated. When the collation from 4i2(i — 1, m)
begins with a match from (1 jj), the extension by a match from (j+q) does
not create an accepted collation. Therefore W2(i, m") is formed by the exten-
sions of collations from 'H\(i —1,m) by the matches from [* j{], and by the
extensions of collations from W2(i —1, m) beginning with a match from (1 i{)
by matches from (1 jj) U(° }) U(0+}), and similarly for the symmetric cases.
The containments between the sets ') and W2(t,m) can be described

by the diagram in Figure 4.3.

Let Hj(i,m) be the number of collations in j = 1,2. From the

definitions of Wi(0,m) and W2(0,m) we have

//.(0,0) = 1,
//,(0om) = 2m+l+ 2m - 2 form > O,
/72(0,bm) = 0.

4.3 Simple upper bound (binary alphabet)

L) (1)

Figure 4.3: The containments between the sets and m).

For convenience we take H\(i, m) = m) = 0O form < Oand all i > 0.

Now we can transform the containments from the diagram into the following

recurrences.
H\(i,m) = 2H\(i—1Lm—2)+ 2Ht(i —1, m —2),
m m
= 4A~FFi(i-1,m-j) + 3~/Fi(i-1,m-,j).
j=3 j=3

We can express these recurrences more compactly in terms of the generat-
ing functions h~\z) = £ Ht(i, rh)zm, h~\z) = £ HZi,tn)zm, and h"(z) =
h[’\z) + hj\z) = £ H(i,m)zm. The contribution of each pair from (jj) is

z2 and the total contribution of the pairs from (1 jj) is ttt- For H\(0) =

+ 77
PO]9&*'} u [1+J we have generating function Rz o2 . The resulting re-
currences are the following.
c 1+2; , 2;J
- 1-2; + (TMIF -
/400 = o,

= 2z2M\i-,) + 2z2h{~X
<-D , 3;3,(=-
4-° & + 1-Z (2
To solve the system of the linear recurrences we can use the following well-

known lemma.

4.3 Simple upper bound (binary alphabet) 58

Lemma 4.5 Let {x(,) = Qx(,-1);x(0) = (xjO> ... ,xj.0))T} be a system ofr
linear recurrences. Let Ai,..., Aj be the characteristic values of the matrix Q
and letei,... ,ei be their multiplicities. Then there are constants sm , ..., sr&,

such that, for sufficiently large i,

—57 (sO> + s<P*+ - stjejir’ l<t<r.
i=i

Proof. Let Q = PR P 1 he a decomposition of Q into Jordan normal form.

Therefore x(i>= Q'x(@ = P R P x {), w ere

<B\ O o 1 (B\ 0 cee ()
0 B, 0 0 B2 mm O
R = , R1
o O B, , vO o eee B\ /
and
fa 1 O 0\
0 A 1 O
Bj —
oo - A1l
1» ad O »)
Hence for i > ej we have
fA (,/—»)A_‘p_'EI-\
0 A (DA*-1 (@)A~H2
B) =
0 o0 ,g (N
~Q 0 Aj
Putting all this together, gives us x\I] in e required form. O

Lemma 4.5 gives us upper hounds in the form required by Theorem 4.1

4.4 Simple upper bound (alphabet size 3) 59

Corollary 4.1 Let {x ('"*(;) = Q(c)x(,_1(.j); x(O(c) - (x\O)....... xi.0')7} be a
system of r linear recurrences. Let Ai(z),..., \t(z) be the characteristic val-
ues of the matrix Q(z) and let \(z) = maxJAj(2)]. There is some s(z),

independent of i, such that

XN (z)<rirs(z)(X(z)Y.

For the system of linear recurrences (4.6) we have

2c2 202\
Q(2) 4c3 3c3
1-7 1-j >
with characteristic values
"Alc) = A,c) (2+ -+ V/@2—~)2+73) .,
aZ(~) ETA 2+ z- rj(2-2)(2 + 72)) .

From Corollary 4.1 we get
(0(x) < s(M)(AX))

for some s(z). Theorem 4.1 then yields an upper bound 72 < 0.853173, with

cO = 0.185199 and A(c0) = 0.0974715.

4.4 Simple upper bound (alphabet size 3)

In the case of a three-letter alphabet we shall proceed in a way similar

to the case of the binary alphabet. Let P be the set of all minimal matches.
1+0 - . .

/> = u 240 - We can divide P into the sots of ‘short’” minimal

matches, S = [{{l, ‘medium’ minimal matches M — [* ij] U [2+Q end ‘long*

4.4 Simple upper bound (alphabet size 3) (e0)
minimal matches L = [r’{2'1’1*2+1+(()li1 However, without loss of generality we
can suppose that if p is from M then it has form (i,.y) and similarly for 5
and L.

We need something that corresponds to Lemma 4.4. We define O\ (0 2) to
be the set of all minimal matches p — (") such that any symbols 0,1 always
appear in the order O1 in v (symbols 0,1,2 always appear in the order 012 in

V respectively). So

and

From the definition of the set O, we know that if p€ P \0O\ and g€ M (or
p € P\ Oi and g € L) then collation pq(\) is dominated. Using the following
construction we are able to eliminate collations containing such patterns and
thus get better upper bounds.

Let Qi.i,..., Q33 be the following sets of matches:

A\=S, Qit—Snoi, Qa=Sno0?,
Qi.i= A/, Q2i=MnOf, Q23=M nO02,

(3l =Li Q32=Ln0\, (,33=¢n

We shall define pairwise disjoint sets 'Hi(i), and 'Hi(i) recursively
according to First we define W] (0) as the set of all nondominated collations
of order 0. Clearly these collations are exactly the collations that consist of
one pair with ho match. Moreover we define 'Hj(O) = Hs(0) = W For /> O,

the set Hr(i) is formed by all collations of the form pq, where p € (¢,., and

4.4 Simple upper bound (alphabet size 3) 61

Figure 4.4: The containments between the sets A4, and C

q € 'H,(i —1), for r,s € {1,2,3}. We shall give mnemonic names to the
sets 'Hj(i), namely 'Hi(i) will be S{i), H'i(i) will be M (i) and will be
£(/"). Finally we define 'H(i) —S (i) U M (i) U C(i). These recurrences can be
described by the diagram in Figure 4.4

Now we shall introduce a more sophisticated technique to show that every
nondoininated collation of order i is in the set H(i). This will mean that the
sets 'H(i) can Ix* used to produce upper bounds for the expected length of a
longest common subsequence as given by Theorem 4.1. We also redefine sets

Qi.i,..., Q33 to get better upper bounds.

From Lemma 4.4 we already know that if the first match of collation p

has the form (*[J) then the collation (io)p > dominated. We shall capture

4.4 Simple upper bound (alphabet size 3) 62

such collations p in the set «(10). For general m, we shall define the set U{u).

Definition 4.5 For every u € E*, let

«(u) = {p : V(") € A (L(u,w) > 1=> (")p isdominated)}.

These sets possess the following properties analogous to Lemma 4.4. With

every property there is also shown a pattern illustrating it.

P.l (o)p €«10), Q Q ,

P2 O p e«(210), (2})(2lo),

P.3 if p € «(10) then (g)p €«(01) , (0})Q Q

P.4 if p €«(210) then (g)p € «(021) , (02)(0)(2lo)-

P.5 if p € «(210) then (})p 6 «(12) , (il)(1)(21S)e

Using the sets «(a) we can extract the significant properties from the
collations. The equivalence relation for pairs of strings is naturally extendable
to collations. The set of all collations equivalent to some collation from «(a)
is denoted by «[«].

Clearly, if a collation p starts with a match from M then p is in «[10]
(property P.l1), and if p starts with a match from L then p € «[210] (prop-
erty P.2). Because of the significance of the sets «[10] and «[210] we shall
denote them by U.m and «/, respectively. Let Us be the set of all collations.

These sets were designed to satisfy Lemma 4.6.

Lemma 4.6 For nwry /7€ N,

S(i) CUs, M(i) CUM, C()C «,..

4.4 Simple upper bound (alphabet size 3) 63

Before proving this lemma we shall use the remaining properties of the U'a
to improve the upper bounds further. Let be the set of all matches from P
having 1 as a matching symbol. According to property P.5, if p e C(i) then
collation (j)p can be put in A4(t + 1) instead of S(i + 1). This allows us to

redefine the Q'a.

0i,3 = Qi3\Pii —Q23U(Qi3n Pi), Qr, —Q, 3 otherwise.

Let PQbe the set of all minimal matches with matching symbol 0. We
shall use properties P.3 and P.4, which for p € M (i) put (jJ)p into .Vf(/ + 1)

and for p € C(i) put (jij)p into C(i +1). 1 hus wo got the final refinement, of

the Q's.
Q'i.z = Q4,.2\ Po, Qh = Q'2a u(Q.,2nPo),
Q23 = Q23\a., QZs = Q33u ((h3nft),
Q"., = Qr,. otherwise.

Now let the sets S(i), M (t), and C(i) be constructed using the Q"'s instead

of the Q'a. We can now return to,the proof of Lemma 4.G.

Proof (of Lemma 4.6). Since Us is the set of all collations, the first inclusion
is trivial. We prove the second inclusion by induction on i.
For i = O we have ,Vf(0) = (t C /Y(10). For i > O let p = /.q be a collation

from M (i). The following cases are based on the construction of the set M (/).

Case 1. o€ QJ, = A/, q € S(i —1). From P.l we can conclude that p € Um.

Case 2 p € Qi2= (A/n()\) U500\ n /»), q 6 ,Vf(/ —1). Without loss
of generality we can suppose g € fY(10). If p € M fl)\ then we can

|
conclude p 6 Um using P.I. If p€ Sn O\ PI PO then, from P.3, we gel

P € Mm -

4.4 Simple upper bound (alphabet size 3) 64

Case 3. p £ Q-ps — (I f~"*2\"0)C(S,n02n/#\/:0)) *1L £ £(t—1). Ifp £ A/002
then we again conclude g € UM using P.I. If p 6 S n 02H P x, we get

q £ U\i from P.5.

The third inclusion can be proved in the same way as the second. O

To get upper bounds for 7* we need to show that the sets 'H(i) cover all

nondominated collations.

Theorem 4.3 If p is a nondominated collation of order i then p £ "H(i).

Proof. We use induction on the order of the collation p. The base of the
induction holds since H(0) is exactly the set of all nondominated collations
of ordef 0. Now let p be a nondominated collation of order i > 0. We can
express p as pq where p is a match and g is a collation of order i —1. Since p
is nondominated, p must be a minimal match and g must be a nondominated
collation. Hence g £ H(i —1) = S(i —1)UM (i —1) U C(i —1), and we can

consider the following three cases.

Case 1. q € S(i —1). We have p £ P —SUMUL. Ifp£5 Q" , then

pq £ S(i), ifp £ M = Q" 1then pqg £ M (i), ifp £ L Q", then

pq £ C(i). Hence p = pg £ H(i).

Case 2. q € .V((i —1) C ¢/[10]. Again without loss of generality we can
suppose q £ /Y(10). Collation pg is nondominated and p must be from
O] Since Q\2U Q'i:A U 2 = Ci the construction of the sets S (i),

M (*) and C(i) guarantees that p = pq € "H(i).

Case 3. q £ C(i —1) C ¢/[210]. This case is similar to Case 2, and so we have

PE€02= iUQj3u Qss HI<lp = pg € W(t). O

4.4 Simple upper bound (alphabet size 3) 65

This recursive construction allows us to derive upper bounds for the
number of collations in 'H(i). Let g"&az) be the generating functions for
the number of elements in Q",, i.e., q"a(z) = mY—o \Q’sH P(m)\~n, where
P(m) = {(*) : /(“) = m} is the set of all minimal mz_itches with total length m.

Let sb>(r), "\z), h”~(z) be the generating functions for the num-
ber of collations in S(i), M (*), C(i), and 7Y(*), i.e.,

= £ |5@(nCm)]*.m<I>*) = £ \M(i) nC(m)]*"t

m=0 m=0

I"\z)= Y. \C(i)nC(m)\zm,
m—0

h(i)(z) = s(i>(z) 4- +IW(z) = Y IW(i) n C(m)\zm.
m=0
The recursion defining the sets S(i), Ai(i), and C(i) gives the following

recurrence equations for s''\z), m(,)(z), and

s(i>(2) = + g 2Az)m(i~1)(z) +
m(@i)(z) = 9il(zy <1)(2)+ 4,J2)m<<,)(i) + 9"3(2)/<< 1)(2), (4.7)
H{i\z) = qldzW ™iz) + ql2zym~~I\z) + ql3(z)I(z).

The corresponding matrix is

/ 3z1 2z2 J2
Q(-) = 123, 64 *2 . ID3 | 54 . + 34
1-i T (1-)D2 ~ 1145 1 (1=)2 2+ KL X ATy
12.-4 = . 8c4 2, 23, 4 6;4
(1-2i) (1-1) (1-i)3 ~ (1-2i)(I-c) (1—=)*

Let, Al(c), \2(z), A2(z) be the characteristic values (possibly repeated or
complex) of matrix Q = {</"} . Let A(z) = max{]ALs)], |A(c)], IA3(c)]}.

Solving the system of recurrence equations (4.7) gives us

h(,)(z) < s(z)i3(\(2)Y.

4.5 Upper bounds for binary alphabet 66

This allows us to use Theorem 4.1 to get upper bounds for 73. We get
the best results if we set ;0 = 0.145256. Then Ai(io) = 0.114253, Xi(~0) =

0.022959 + 0.002789*, A3(z0) = 0.022959 - 0.002789* and 73 < 0.765803.

45 Upper bounds for binary alphabet

To improve the upper bound for the binary alphabet we can find other
cases where specific collations are not efficient enough, for example, when p

is a collation containing any of the following patterns:

Again, in each case, the collation p is dominated. To capture such patterns
we have to split set into more than just two sets. We also refine the
classification of matches into 10 sets: (,,), ({), (*0), (10). (°i). (01). (1+1Q)
(i+iq), (° °{), (o+o0i)- We have to redefine the sets U(u) as well. First we
strengthen the definition of the dominance relation. A collation generating

will be ‘«-dominated’ if it can be dominated by a collation that does not

involve U to make matches.

Definition 4.6 Let « 6 S’'.The collation q is u-dominated, if there is a col-

lation p = pi,... ,pn+i that dominates q and u C v < t(p1) for some v€ S’.

For uuw€ S’ and m € N we shall denote by A',,(«, w) the smallest suffix
v of u such that L (v,w) = rn. Let A'm(«, w) be the remaining prefix, i.e.

u= N\m(u,w)Nm(u,w). We will omit the index m when L(*t, w) = m.

4.5 Upper bounds for binary alphabet 67

Definition 4.7 For every u G E* and i G N we define

Ut(u,i) - {p : V(") GA (L(a,w) >1i=> (")p is A',+i(u, wO-dominated)}.

and

Ub(u,i) = {p : [pi €If(u,i)}.

If collation (”)p is A’,+1(u, »-dominated then collation (/v,+1(i,,u)P >s also

A','+i(u, w)-dominated and L(u, Ni+i(w, «)) = i + 1. Therefore

Ut(u,i) = {p : V(i) GA (L(u,w) =i+ 1=> (u)p is A'(it, to)-dominated)}.

These sets are monotone in the following sense.

Lemma 4.7 Foreveryi,j GN and u,v G E*
1 Ifi<j thenU(u,i) C U(u,j),
2. ifuC v thenU(v,i) C U(u,t),
3. ifi< k|]thenU(u,i) = C,

where IA is either If or If, and C is the set. of all collations.

Proof. 1. Let p GU(u, i) and let (&) G A be such that L(u, w) >j > i. Since
p GU(u,i) and L (u,w) > i, there is a collation q that A\+i(w, u/)-dominates
p. For i < j we have A'J+l («, w) < A"1+) («, w) and therefore collation g also
N\J+i(u, (c)-doininates p. Hence p G U (u,j).

2. Let p GU(v, i) and let (*) G A be such that L(u, w) > i. Since u C v,
then also L(r, w) > i and (j'r)p is A'i+i(v, w)-domiuat.ed. For u C v we have

A’j+i(u, w) C A'j+i(r, ui) and therefore (*)p is A',+i(w, w)-dominated.

4.5 Upper bounds for binary alphabet 68

3. If i < [f(] then it can never happen that L («, w) > i, and therefore every

collation is in U(u, i).]

The main properties of these sets are captured by the following theorem.

Theorem 4.4 Letx,y, w be sequences from E* such that (#) is a match.
1 If p is any collation, then (J,)p 6 £v<(r, 1) fl Uh(y. 1),

2. if p is a collation from U,(w, i), i > 1, and u, v are sequences from E*

such that, uv —xw, then (™)p € Ut{u, i —L (v,y) + 1).

Proof. 1 Let ((],) € A be a match such that L(.r, w) > 2, hence there is a
collation (u,) o] f order 2 that generates (*). Collation (jj)(™)p =
(.e)(y)pi - Pn+l is then dominated by {J 'y8p\))p2-m-Pn+i and
therefore from Definition 4.7 we have (#p € Ut(x, 1)- In the same manner

we can prove that (~)p € Ub(y, 1).

2. It is sufficient to prove that (1)(")p is /v(«, i*-dominated for all (r) €
A such that L(«,z) = i —L(v,y) + 2. Let u' = N(u,z) be the smallest
suffix of a such that L(u,z) = L(U.z), then L(u',z) + L(V,y) = *+ 2.
Since L(u'v, zy) > i + 2 there is a collation q = qg\....... gi+3 of order i + 2
generating (“.”). Since t{q\....... i/Ai+3) = U'V is a substring of UV = Xw, then
either t(q\)t(qj) is a substring of X or a.t(q3, ..., q,+:i) is a substring of tv where

1 is the matching symbol from gj.

If t(<l1)t(<h) is a substring of x, say t(q\)t(ql) = x(j'.. j), then collation

(z'h'(u,2)t(gX\ (t(g-2\ (rU+1 eekDt(Pi)\ ,. ,
\Y4 b(g,)Jd \b(g3)d { b@3..q.,+a>y) 12 1"H

A’(m, c)-dominates collation (I)(~)p because i > 1 and b(g3..qi+3) ~ A

4.5 Upper bounds for binary alphabet 69

If a.t(q3, ..., gi+3) is a substring of w then L(w,b(q2, ..., qi+3)) > i. Let

j be the order of collation p. Since p € ¢(¢(w,»), there is a collation r =

ri,..., rJ+2 of order j + 1 that A’ +1(w, 6(92,..., g,+3))-dominates collation

(b(@-2...... i7+3))P- Let x> be SUch that
AT, ~)t(qi)x' = xA'i+t(w, b(g2, ..., qi+3))rt

. Sequence X' is nonempty becouse it contains symbol a. The collation

O

Again we can extend the equivalence relation from collations to the sets
Uii,(u,i). Then U[u,i\ = U, [«, /] = ¢4[u, t] will lie the set of all collations
equivalent to some collation from ¢¢ (m,i).

Now we split set into the eight sets "W|(*, m),..., Wg(i, m) (pair-

wise disjoint) in such way, that

CWIA,0), W2(*,m)= VI0 C ¢/[10, 1],

« 1(1, m)
n3i,m)=v"° c ¢/[no,1], nAi,m) = w Mc ¢/[110,2],

= via C 1V[101,1], C [e¢(11, hniZ*(01,1)],

W7(i,m) - V"* C M[011,1], «(/,»0 = MiS ¢ [¢¢(01,1) D¢4(10,1)],

where V*,... are more meaningful names for H\(i,in),... ,H3i,in). Using
Lemma 4.7 and Theorem 4.4 we can establish containments among the sets
Wi(i, m),... ,'Ws(t, m) as shown in Figure 4.5. For example if p € VIUC
¢¢ (10, 1), then we get (0))p € ¢¢(11,1) using part 2 of Theorem 4.4 with
u= 11, r = 0,w= 10,x = 1,y = 01, and i = 1 But according to part

1 of the theorem also (0j)p € ¢4(01,1). Hence (O[)p can be put into V,J.

45 Upper bounds for

A% v A
yl0 y (].
yuo you
w v A
ylO 1 yol
yoO Il yyool
Vo' Vo
Figure 4.5:

yl0

ylo1

ylOo 1

ylol

Voo

yl0O

binary alphabet

(18

V.,o

v ft

(°1)
yoOl

yoOl

yoll

yoOl

yolIo

yolo

yolo

0y
Vol;l.
Voll

Vo,

Vo,o

(

o
yI,O

y 1A
ylo1

yllo

ylio

yllo

The containments among the sets

70

o 00 (1,

1 vO OV
yooi
V'oo
vee! v
yoi
Voo,
yooi
Voo,
y°io X
X V0,0
yolo X
yol0o M
. W8(i, m).

Symbol X in row V and column (“) denotes the case when collations (") V

are dominated by Definition 4.7 and we can exclude such collations from

further extension.

Hence we can create a system of eight linear recurrences

where

xH(c)

({rff+ ~S]j.0,0,0,0,0,0,0)/ ,

222 0
4c3 C+1i3
. 2i*
1-j -
0 i2
0 3
O .3
0] o
0 0

w o o o

4.6 Upper bounds for larger alphabets 71

Let X(z) be the maximal characteristic value of matrix Q(s). Using Theo-
rem 4.1 and Corollary 4.1 with Zo = 0.228424, we get A(z0) = 0.155602 < 1
and 72 < = 0.842166. However, for the best bound we have achived so far,
we split Ti(i, m) into 52 sets, build a system of 52 linear recurrences and use
Theorem 4.1 with ;o0 = 0.252652. As a result we get X(zo) = 0.195960 < 1
and 72 < g — 0.837623. The transition diagram and description of sets
Hi(i, m),..., 'Ws2(i, m) are given in Appendix B. There is a special con-
tainment between sets H25 and Hu- Since C U\\110,3], every collation
(i+no)P- P e 25, is dominated. Therefore only the match (, (1) can create a

nondominated collation and the contribution of this match is only z4 instead

4

4.6 Upper bounds for larger alphabets

S, A/, and L were the sets of minimal matches used to obtain lower bound
for the expected length of a longest common subsequence in case k = 3.
We can interpret these sets as S = {p € P : |l = 1}, M = {p € P
IHI = 2> L = {p € P : lIdl = 3}, where for a pair p = (“) we define

Kl = ma{]l«ll. llil}- For larger alphabets we can set two boundaries

integers m and in' such that 0 < m < in' < k, and redefine S, A/, and
LbyS ={p€P :0< pl<m}A=1{pPpSP :m=< bl < ml
L= {p €P :in" < |l < k). Sets corresponding to O\ and 0 2 will be
the sets Om and , where Om is defined as the set of all minimal matches

p = (“) such that symbols 0,1,..., m appear in increasing order in v.

4.6 Upper bounds for larger alphabets 72

Let Qi.i,.... (¢3,3 be the following sets of matches:

Q.i =s, (@12 —snom, (,3=Sn O
@1 =M, g2Z=Mnom 23=Mnom,

C3l =L, (¢32 —L HOmM> (.33 —L AO0Omi.

We need to express the number of matches in Q,., in terms of generating

functions. First we introduce some auxiliary generating functions.

From 4.5, for the generating function for the number of sequences using

exactly d given symbols we have
P(d,z)=

Let v(d,c, z) be the generating function for the number of sequences using
exactly d+ ¢ symbols and where the symbols {(),..., c—1} occur in increas-
ing order. This is first expressed in the terms of an exponential generating
function. The exponential generating function for the number of sequences
using exactly one symbol is ez—1. From the rule for the multiplication of ex-
ponential generating functions we get the exponential generating function for

the number of sequences using exactly d given symbols U'(d, z) = (e: —1

Let U(c,;) be the exponential generating function for the number of
increasing sequences using exactly ¢ symbols. The exponential generating
function for the number of ways to select ¢ positions from j possibilities is
2C. _ 2 iin L o
—Ge' = £ tr’) T. We can see the selected positions as positions for the end of a
block of the same symbols in an increasing subsequence. If the last position is

selected, the corresponding increasing sequence uses exactly c symbols, if last

position is not selected, the corresponding increasing sequence uses exactly

4.6 Upper bounds for larger alphabets 73

c + 1symbols. Therefore

V(c,*) + U(c+l,z) = Ne*.

For c = 1we have V'(l, z) = el—1. This specifies the recurrence relation

V (I, *)
V(c+l,.z) V(c,z)
with the solution
V(c,z) = e" + (-Dc.

The exponential generating function for the number of sequences using
exactly a+ ¢ symbols and where the symbols {0,..., c—1} occur in increasing
order is therefore W(d, z)V(c, z). Using (2.2) we transform it to an ordinary

generating function

i ds

Let r(d,b,z) be the generating function for the number of all minimal
matches q with W(</) 1= d+ 1 and |b@EI] =6 +1. We have k choices for
the matching symbol, ~ A choices for the remaining symbols in f(q) and

~ A choices for the remaining symbols in b(g). This gives
rd,6,z) = k(* " *) (*" ;" M z2p(d,z)p(b,z).

Let s(in,d,b, z) be the generating function for the number of all minimal
i
matches g € Omwith |[fiN]] =6+1 and |p&)|| = d+ 1. For matches q6 Om,

symbols O, I,...,m have to appear in increasing order in b(q). Suppose r of

4.6 Upper bounds for larger alphabets 74

these symbols are used in b(q) (excluding the matching symbol). We have to
distinguish cases when the matching symbol is among O0,1,..., m and when

it is not. This for s(m,d, b, z) gives

< oy, * «) - 1 (*t~:m d) **«* -« e*>** >4

Now we are able to express the generating functions grs for the the number

of matches in Qra

. m—1lin—1
i SN 12r(d' b-2)
d=0 6=0
m—1m—1
912 - Moy s(m,d,b,z)
420 6=0
m—1m —1
913 = 51 51 s(m',d,b,z)
d=0 6=0 .
in=1lin'— M- 1in-1
921 - 51 Y, r(d,b,z)+ ¥ Y [m<M]
d=m 6=0 lo0 &
-4l -1 in—Lin'= 1

02 ¢ | 3 a(m.,d,b,z) ! Y“ 1. agm.d.b.z)
7?:"1 ﬁﬁ T

0 _1 i_30 ﬂ[m ¢’ *) t é—lo L, S(mid.b.2)
] k-d M g
931 - 52 . é|ﬂ [(d ‘6 ‘;)+5[§:616:7I‘m({1,b,z)
o k-1-d m-lk-1-d
R N T i
) -1 k——d in'= 1 k—\—d
93.3 - 151:1111 élﬂ a{m',dtb,z) + W(O S:TW a(m',d,b,

As a consequence of Theorem 4.4 we havi’ the following two properties of

the sets V. Forevery I, 0< I < m

p €U(m (Mm—1 ==0,1) =» (j)p 6W(i m mee (1+1), 1),

4.6 Upper bounds for larger alphabets 75

p6UM (M—L) «==0,1) => (,j)p € U(M (M—1) e (f+1), 1).

We shall use these properties to improve the upper bounds further. Let Rj,
for 1 < j < k. be the set of all minimal matches p = (“) such that the
symbols 0,1,...,j —1do not occur in v. Let P} be the set of all matches from

Rj having j as a matching symbol. We redefine the Q's.

QL3 — Q13HRmM-m\ Pin'-m,
0*23 = Qz,3U (Q\,3\ Rrn-m) U (QI,30
Qr,, = qr,a otherwise.

Let m(to,]j, f, b, z) be the generating function for the number of all minimal
matches g € Omn Rj with |l = d+ 1land ||5@l] = 5+ 1. Function u is
similar to function s, actually s(m, d, b,z) = u(m, 0, d, b,2). The difference in

selecting ¢ symbols from 0,1,..., m then gives

Let t(m,d,b,z) be the generating function for the number of all minimal
matches ¢ € Omn Pj with |Ifg)l]l = d+ 1and |p@)]] = 5+ 1 Since symbols
{j,....,//7} have to appear in increasing order in h(q) and j is a matching sym-
bol, these symbols cannot be in b(q). The set Pj is a subset of Rj and therefore
symbols 0,... ,j —1are not in b(g). Thus T(m, d, b, 2) is not dependent on j

and

For generating functions this means

m—1lrn—1
0,3 = E E (“(m',rn'- TO,d b z) - t(m', dib, z))
(1=0 =0

4.6 Upper bounds for larger alphabets 76

923 — 23+ 93— 3

gra = otherwise.

Let Pq be the set of all minimal matches with matching symbol 0. Thus

we get a final refinement of Q’s.

072 = Ql Qh = Q22u (Qizn P0),
Qi3 = Q23 \N . QS3 = 0i,3u(Q23NP,),
Q", = Qr, otherwise.

The generating function for the number of matches in Om#H# PO is also
t(m, d,b,2).

Now we are able to express the generating functions for the Q"'s.

3
L
L

|
L

c(\m
L&
o3 ??ITIB
o

f i e 4>b, -))
d=0 6=0
T I R R I P (L
rrn#;—lm/—l m—1rr/—1
Eod [(d,M)*E r(d.b,z)
d—m 6=0 f=0 6=m
TR A R e Tl
d=m 6=0 d=0 6=m f=0 6=0
m'-Im '-1 m —1m'-| mi—Im '-1
Pt *[m I‘H;G,*}* [osmydb.z)* £ b tmudb, 2t
d=m 6=0 rf=0 6=m f=0 6=0
P st - 10 n = et g fn o bt
0
A k—I—d m'—k ——d
Cle I JHE b e
d—m' 6=0 d—0 b-—m'
Ei Eir *(m ,d,e,*)rEi CiEir a(m.d,b,z)
d=tn' 6=0 f=0 6=ru’
A—1 k—\—d m!—\ k—1—d m'—Im '—I

Eo *(m ‘,d,e,S]*E [oamuabz HE T *[m‘ (]

d=rn' 6=0 d=0 6=ni' rf=0 6=0

4.6 Upper bounds for larger alphabets

Having specified the sets of matches Q", we can recursively build sets
of collations S(i), Ai(i), C(i), as in the case of alphabet size 3. Let 'H(i) =

S(i) UM (i) U £(q).

Theorem 4.5 Every nondominated collation is in 7i(i).

Proof. The proof of this theorem is analogous to the proof of Theorem 4.3. O

The number of collations in H can be bounded using Corollary 4.1 for

V.,..w < 2()
Q(z) @.,(> q'U,) <i'U~)
~31(~) Qsi(~) 9B3(2)j
Now we can use Theorem 4.1 to get upper bounds for 7*. For k = 2,.... 15

these can be found in Figure 4.6 together with values in and m' that give the

best results.

4.6 Upper bounds for larger alphabets

© N o UM WN X

Upper

bound

0.837623
0.765803
0.708236
0.664428
0.629316
0.600184
0.575407

m m' -0

0.145256
0.116369
0.098038
0.085203
0.075633
0.068181

L T
N N NN NN

Figure 4.6: The upper bounds for <.

Upper

bound

0.553937
0.534855
0.517842
0.502591
0.488800
0.476198
0.464619

N N N N NN

AN W www N 3

-0

0.062187
0.057651
0.053505
0.049949
0.046863
0.044248
0.041868

Chapter 5

Related problems

There are many ways to generalize the longest common subsequence prob-
lem. As the most natural we shall consider the expected length of a longest
common subsequence of more than two sequences and we shall extend the
methods from the previous chapters to cover it. These methods can be also
adjusted for the case of shortest common supersequences and for the inves-
tigation of the adaptability of sequences. The chapter is closed with a small

survey of longest common substring problem.

5.1 Several sequences

In the previous chapters we have described upper and lower bounds for
the expected length of a longest common subsequence of two sequences. The
natural generalization of this problem is to consider more than just two se-
guences.

Let E be an alphabet of size k. We shall work over the set, = (En)l of /-
tuples of sequences of length n. We denote the set of all /-tuples of sequences

by = (E*)'. Tin* total length of the /-tuple it = (ui,...,ti/) € 'lI' is the

5.1 Several sequences 80

sum of lengths of all sequences from the /-tuple, i.e. Jul = /(iq,... ,tq) =
J«i] H--—-—-- t1«/]. Let L(tt) = L («i,...,«() be the length of the longest common
subsequence of /-tuple u = (tq,...,) 6 Let EL"1 be the expected value
of L (« i f o r random sequences iq,..., W € £", i.e.

ELn>= f:]r ufé*nL («).

Similarly to the case of /= 2, the expected length EL*** is linear with

respect to n.

Theorem 5.1 For every k> 2 and every | > 2 there is 7{'» such that

;i\(D o EL«/» _ ELI
rk = ﬂ@o —n T sup
Proof. The existence of constants 7*» follows from the fact that EL”™ is

superadditive. Superadditivity of EL*'» can be proved in the same manner

as in Lemma 2.2. O

The methods from Chapter 4 can be used to obtain upper bounds for
EL['». Let F(i,n) be the number of /-tuples from 4" with a longest common

subsequence of length i, i.e.
F(i.,n) = {u € L(u) = <.

Let H(i,n) be any upper bound for F(i,n). The following lemma, a natural
generalization of Lemma 4.1, will be used to transform upper bounds for

F(i,n) to upper bounds for 7}.
|

Lemma 5.1 Ify issuch that Y1 = o(ktn) then 7*» < y.
MiH

5.1 Several sequences 81

Proof.
1=0
I /Ty l-i n \
_ :*:(§
< +n £ tfq»))=y +o(l)
vV = < /
O
An /-tuple of sequences (iq,..., «/) € 'lI' is a match if itj,..., mi have the

same last symbol. A collation of order i is a sequence of » matches followed
by an /-tuple. We already know that collations are good objects to produce
upper bounds for F(\ n). Let //(#,m) be the number of all collations of order
i generating an /-tuple of total length m. For every /-tuple u with a longest
common subsequence of length t there is at least one collation of order i

generating u, therefore F(i,n) < H(i,In).

kz1l

Theorem 5.2 Let h(z) = M 2 - Let cO Le such that li(zq) < 1. Then
@) < bK((™~o0) (5.1)
k ~ I°g/*(~0)

Proof. To get an upper bound for F(i,n) we have to count Again

we shall use generating functions to achieve this. There are K possibilities for
a matching symbol, so its contribution then is kz1l The contribution of every
sequence, not counting the matching symbol, is yj p , therefore the generating

function for the number of matches is

5.1 Several sequences 82

The generating function for the number of collations of order i then is

s(z)(h(z))’; where s(z) is independent of i. Now we can bound H(i,n).

r N ~ s(zomzo)Y 7 h(zo
2- H{i,n)< ~» (zomzo)Y. < ns(=o)] (h(———)-Z«T .

*=rshHi *=ryni *0 \ o /
Foreveryy > ~ we have < kland therefore J2 H, 7/, = o(kin).
ognitio, -0 1=1»,1
Using Lemma 5.1 we can conclude that 7** < vy. 0O

For 1 = 2 the upper bound from Theorem 5.2 corresponds to the up-
per bound of Chvatal and Sankoff [CS75], Now we can analyse the speed of

convergence of the upper bounds (5.1).
Corollary 5.1 For every | >2 we have
kIi_r;ﬁ00 Al"1"7« < ee
Proof. Let ;0= then kzo = 1 —ekx* *. For h(~0) we have
h(

and after substitution of kzO we get

g (1 -efcl-)V (1 -dk'/-1)

hzo) ekl/~I)

From (5.1) we have

| I —eA 1
ki~1570 < k'-11 290l —eAE)
log(l — eA*/* *) —i

Since lim lo&(1+" 1) = U} we get
O+ 1

)

um @& «M f» < um (, I« (| -m
00 \ Al * i —log(l —elk*** 1)/

k—oc

< (—e)(—1) = e. =

5.1 Several sequences 83

We can use the following algorithm A to obtain lower bounds matching
to within a constant factor. We shall scan the first input tape until A1-1/
different symbols are found. Let A'i be the set of these symbols. Then we
scan the second tape until k,-2/ different symbols from A'j are read. We
denote the set of symbols from A'i scanned on the second tape by AY We
shall continue in this way. Suppose we have determined the set A’,_ie We
scan the i-th tape until A1-*/ different symbols from A’,_i are found. These
symbols form the set AY Having specified A'/_i, we search for some symbol

a6 A';_i on the last tape. Since
a€A/_iCAj2C...CA,,

we can put a into a common subsequence produced by algorithm JT Comput-

ing the average progress on each tape yields following lower bounds.

Theorem 5.3 For every | > 2 we have

lini AI"'/Si» > 1.

Proof. Let us consider the i-th tape. We have constructed the set A/ i of

A',_i are found. Let EK, be the expected number of symbols read to achieve

. . . EL, N
this. Since lim n > nm{EK,T<7<7}’ to Prove theorem we have to

show that for every i
EK, < kI~I/Z1+ o(kl~I/1) .

The waiting time to collect one ofj symbolsis 1+ (1 —¢)+ (| — -—-—- i,

therefore

5.2 Super-, nonsub-, and nonsupersequences A

There are Al summands and the largest of them is , hence
A
EK *
1
< AL
1- A-1

< AL_IN(1 + o()) = AL*/' + o(A,_1/)

In [Ste86] Steele conjectures that 7~ = 7* 1for | > 2. As we can see from

Corollary 5.1 and Theorem 5.3 this is not the case.

5.2 Super-, nonsub-, and nonsupersequences

Our major topic is longest common subsequences, however, there is a

‘dual’ notion, namely shortest common superseqguences.

Definition 5.1 Let u,v € E*. We say, that w € E* is a common superse-
guence of u and v, ifu C wand v C w. We say, that w € E* is a shortest
common supersequence (SCSS) of u and v, if w is a common supersequence

of u and v and for every w' € E* the following condition is true:

LCWwW&vVCW==> |tu] < [t/]

The length of a shortest common supersequence is denoted by S(«, v). Cre-
ating shortest common supersequences is natural when merging sequences.
This is useful for some types of compression [Sto88] or for efficient plan-
ning [FLY92]. Longest common subsequences and shortest common superse-

quences are dual in the following sense.

5.2 Super-, nonsub-, and nonsupersequences 85

Lemma 5.2 For every u,d€S’
S(myv)+ L(mv)= M+ V]
Proof. The lemma is a consequence of the simple property of finite sets:

4+ H|= li4nB] + |i4uB].

Corollary 5.2 Let ES, be the expected length of a shortest common superse-

quence of two random sequences from E”. Then nlir)g0 —---a exists and its value

is2- 7%
For more sequences ut, ... ,u/ the length of their shortest common super-
sequence is denoted by S (mj, ..., «/). If we have more than two sequences and

we know only their lengths and the length of their longest common subse-
quence then we are not able to compute the length of a shortest common

supersequence.

Example 5.1 We have L(I1,22,33) = L(12,23,31) = O, but S(11,22,33) =

6 and 8(12,23,31) = 4. o)

We can define ESj0 the expected length of a shortest common super-
sequence of / sequences of length n analogously to the ELI/1 Properties of
E S*'1 are similar and there are constants o[!] = lim ESU-.

The expected length of a shortest common supersequence does not appear
to have been investigated in the literature.

To obtain lower bounds for <** we shall use methods similar to the meth-

ods from Chapter 4. The following lemma corresponds to Lemma 4.1.

5.2 Super-, nonsub-, and nonsupersequences 86

Lemma 5.3 Let F(i,n) — |{it € : S(u) = *] and let H(i,n) be any

upper bound for F(i,n). Ify is such that £ H(i,n) = o(kln) theny < a
i=0

For common supersequences the role of matches will be played by ‘place-

ments’ and a ‘distribution’ will be the notion analogous to a collation.

Definition 5.2 An /-tuple tq,..., iq is a placement if tq,...,«/ € {A, «} for
some a € £ and not all of tg,...,tqg are empty sequences. A sequence of i
placements will be called a distribution of order i. Distribution d generates

/-tuple u if cat(d) = u.

Let T>(i) be the set of all distributions of order i. Let t/(m) be the set
of all distributions generating an /-tuple of total length m, i.e. Q(m) = {d
|cat(d)] = rn}. Since for every /-tuple u G «I<', there exists a distribution of

order S(u) that generates u, we have
F(i, n) < \G(In) DT>\ —G (i, n).

Every placement of total length m corresponds to a nonempty subset of
{1,...,7} ofsize in, thus the generating function for the number of placements

is fc ((I1+2)(—1). The generating function for the number of distributions in the

we have

< + 20y - iy

5.2 Super-, nonsub-, and nonsupersequences 87

Thus we have just proved the following theorem.

Theorem 5.4 For every | > 2 and k > 2 we have

(O> /log ¢pfc

- logfc((1+-0)"-1)"

where ~ 6 R is such that 20 > 2*~ —1.

To obtain upper bounds for the expected length of a shortest common
supersequence of /sequences we shall design an algorithm which produces a
common supersequence of its input. If the algorithm is simple enough, we can
analyse its behaviour for a random input. The expected length of a common
supersequence produced by the algorithm will be an upper bound for a['\

We can use a tournament-style algorithm T from Figure 5.1 to produce
a common supersequence of /sequences ui,..., ttj. In the first round u\ and
u2produce a common supersequence iqg,i, u3 and «4 produce a common su-

persequence 1,2, and so on. In the second round we repeat the process with

t>ix,..., I',|7/2]|*After [log /] steps we get a ‘winner’ t'riog/i,i acommon super-
sequence of Mi,..., iii. This is a consequence of the simple inductive argument
saying that tq is subsequence of Vij for /= (J —1)2'+ 1,...,]j2".

Tinikovskij [Tim89] has asked a question about how good an approxima-
tion is the tournament algorithm. Bradford and Jenkyns [B.191] have found
an example of three sequences of length 12 over the alphabet of size nine
such that no tournament-like algorithm can compute their shortest common
supersequence. They also asked the question of when the tournament algo-
rithm is not optimal. As a partial answer to this question we shall describe an
algorithm that produces shorter common supersequences when the alphabet

size k is relatively small compared to the number of sequences /.

QO
OO

5.2 Super-, nonsub-, and nonsupersequences

algorithm i

input tq,...,U € E*
output iv 6 S* - common supersequence of U\,..., ui

begin
m := /,
for i := 1to [log/] do
forj = 1to m do

endfor;
m := [m/21
endfor;

output tflogll.l
end.

Figure 5.1: The tournament algorithm for producing common supersequences.

Suppose every input sequence has a marker marking an active symbol. By
‘processed prefix’ we shall understand a prefix of the input secjuence up to,
but not including, the active symbol. At the start the first symbol of every

input is the active symbol.

In every step of algorithm the input sequence with shortest processed pre-
fix is selected. In the case of unequal input sequences the one with the smallest
proportion of processed prefix will be selected. Let a be the active symbol of
the selected input sequence. Symbol a is added to the output sequence and
a marker on every input sequence having an active symbol a is advanced to
the next symbol. This will ensure that after every step of the algorithm the
output sequence is a common supersequence of processed prefixes. The entire

algorithm can be found in Figure 5.2.

We shall express the expected progress of markers corresponding to one

output symbol. The expected progress on the selected tape is L The expected

5.2 Super-, nonsub-, and nonsupersequences 89

algorithm 6

input t(i,..., Ut € E*
output iv € E* - common supersequence of ui,..., «i
begin
while ji < J«i] V... Vit < |d] do
m:=1;

forj —2to 1 do
ifij <im then (j/\uix <>m/]am])

m:=j;
endif
endfor;
a = umli,n]\
output a;
forj = 1to 1 do
if Uj[ij] = a then
=i+ L
endif
endfor
endwhile
end.
Figure 5.2: An algorithm producing a common supersequence.
progress on the remaining | — 1 tapes is j. Therefore the overall expected
progress on the input tapes is 1+ symbols. There are In input symbols,

hence the expected length of a common subsequence produced by algorithm ©
is
In lien

i+ A = /+a-71

We summarize upper bounds in the following theorem.

Theorem 5.5 Foreveryl > 3 and k >2 we have

Ik
I+ k-1

5.2 Super-, nonsub-, and nonsupersequences

10

11

12

13

14

15

=2

1.33333
1.09321
1.38462
1.16377
1.45455
1.21514
1.49385
1.25447
1.52831
1.28583
1.55498
1.31162
1.57763
1.33333
1.59679
1.35196
1.61344
1.36819
1.62804
1.38251
1.64101
1.39527
1.65263
1.40675
1.66313
1.41715
1.67268
1.42664

1=3

1.50000
1.14253
1.80000
1.25982
2.00000
1.34913
2.14286
1.41951
2.25000
1.47679
2.33334
1.52463
2.40000
1.56541
2.45455
1.60076
2.50000
1.63183
2.53847
1.65943
2.57143
1.68418
2.60000
1.70657
2.62500
1.72696
2.64706
1.74564

1=4

1.60000
1.17267
2.00000
1.32366
2.28572
1.44278
2.50000
1.53883
2.66667
1.61830
2.80000
1.68549
2.90910
1.74333
3.00000
1.79387
3.07693
1.83857
3.14286
1.87851
3.20000
1.91451
3.25000
1.94721
3.29412
1.97710
3.33334
2.00458

=5

1.66667
1.19287
2.14286
1.36923
2.50000
1.51244
2.77778
1.63017
3.00000
1.72893
3.18182
1.81331
3.33333
1.88656
3.46154
1.95098
3.57143
2.00828
3.66667
2.05972
3.75000
2.10627
3.82353
2.14871
3.88889
2.18762
3.94737
2.22349

-6

1.71429
1.20731
2.25000
1.40336
2.66667
1.56642
3.00000
1.70270
3.27273
1.81841
3.50000
1.91818
3.69231
2.00542
3.85715
2.08260
4.00000
2.15158
4.12500
2.21377
4.23530
2.27025
4.33333
2.32189
4.42106
2.36938
4.50000
2.41326

Figure 5.3: Upper and lower bounds for the expected

=18 /= 16

1.77778 1.88236
1.22656 1.25822
2.40000 2.66667
1.45107 1.535G9
2.90910 3.36843
1.64476 1.79311
3.33333 4.00000
1.81106 2.02791
3.69231 4.57143
1.95512 2.24164
4.00000 5.09091
2.08131 2.43661
4.26667 5.56522
2.19301 2.61512
4.50000 6.00000
2.29285 2.77923
4.70589 6.40000
2.38282 2.93073
4.88889 6.76924
2.46452 3.07115
5.05264 7.11111
2.53919 3.20180
5.20000 7.42858
2.60782 3.32378
5.33334 7.72414
2.67122 3.43804
5.45455 8.00000
2.73007 3.54540

length of a shortest

common supersequence of /sequences over an alphabet of size k.

Upper and lower bounds for k = 2,...,

15 and / =

2,3,4,5,6,8,16 ob-

tained using Theorems 5.4 and 5.5 can be found in the table in Figure 5.3.

Better bounds for /= 2 follow from bounds for longest common subsequences

5.2 Super-, nonsub-, and nonsupersequences 91

using duality properties.

Shortest common supersequences can be computed using the dynamic
programming algorithm. This algorithm is not polynomial when the num-
ber of sequences is unbounded. Maier [Mai78] has shown that the shortest
common supersequence problem for k > 5 and the longest common subse-
quence problem for k >2 are NP-complete. Raiha and Ukkonen [RU81] have
strengthened Maier’s result and have shown the shortest common superse-
quence problem to be NP-complete for k > 2. Middendorf [Mid94] has shown
that the shortest common supersequence problem over the binary alphabet
remains NP-complete even if all the given sequences have the same length
and each of them contains exactly two ones.

Even approximating longest common subsequences and shortest common
supersequences is not much simpler. Papadimitriou and Yannakakis [PY 88]
have defined a class of MAX SNP problems, an approximation analogue of
NP problems. Jiang and Li [JL94] have shown that the approximation ver-
sions of longest common subsequence and shortest common supersequence
problems are MAX SNP-hard, i.e. no polynomial-time algorithm can achieve
approximation ratio 1+ e, unless P=NP.

We ought to mention also some interesting variations of common sub-
sequences and supersequences. Timkovskij [Tim89] has considered negative
variants, namely common nonsubsequences and nonsupersequences. Sequence
v is a common nonsubsequence of u\,..., W/ if, for every i —1,...,/, sequence
V is not a subsequence of u,. Similarly sequence v is a common nonsuperse-
quence of Mi,..., W/ if, for every i = 1,..., /, sequence tt, is not a subsequence
of v. We are then interested in finding shortest common nonsubsequences and
longest common nonsupersequences. An interesting feature of common non-

supersequenees is that there are /-tuples of sequences such that their longest

5.2 Super-, nonsub-, and nonsupersequences 92

common nonsupersequences does not exist. Timkovskij [Tim89] has shown
that the problem of the existence of a longest common nonsupersequence
with polynomially bounded length is in the class IIf of the polynomial hierar-
chy (as defined by Stockmeyer [Sto77]). Middendorf [Mid93] has proved that
the shortest common nonsubsequence problem is NP-complete for k > 2. He
also proved the NP-completeness of the similar problem of shortest distin-
guishing sequence. Sequence W is said to distinguish, two sequences u and v
if wis a subsequence of one of them and is not a subsequence of the other.
Sequence W distinguishes sequence u and a set of sequences {tq,..., tq}, if
it distinguishes u and v, for every i = 1,...,/. The dynamic programming
algorithm for finding shortest distinguishing sequence of two sequences was

described by Hebrard [Heb91],

We can change the view on longest common subsequences and consider
maximal common subsequences. Sequence Vv is a maximal common subse-
guence of iii,...,«/ if v isacommon subsequence ofiq,...,tq and no (proper)
supersequence of v is a common subsequence. Every longest common subse-
quence is also a maximal common subsequence, but there may exist maxi-
mal common subsequences that are not longest common subsequences. The
corresponding dual notion is a minimal common supersequence. Irving and
Fraser [IF94] have described a dynamic programming algorithm that solves
the maximal common subsequence and minimal common supersequence prob-
lems for a constant number of sequences in polynomial time. They also have
shown the NP-completeness of the shortest maximal common subsequence
problem. The question of the complexity of the longest minimal common

supersequence problem remains open.

5.3 Adaptability 93

5.3 Adaptability

We have defined the expected length of a longest common subsequence as
the average over all pairs of sequences. We can separate the averaging process
so that we first take the average with respect to the first sequence and then

with respect to the second sequence. Thus we get following formula:

We can investigate the contribution of each sequence u to the average.

This yields the notion of ‘adaptability’.

Definition 5.3 For every u € S' we define the adaptability of sequence u of

length n by

K ueE'

It is quite natural that different sequences can have different adaptabili-
ties. The expected length of a longest common subsequence is the average of
adaptabilities. We can also raise the questions of what are the the maximal

and the minimal adaptabilities.

Definition 5.4 Forevery n > 0 we define minimal adaptability A, and max-

imal adaptability B,, by

A,

min{A(w) :u € S"},

B, = max{A(i/) :a€ S "}.

Minimal and maximal adaptabilities are strict bounds for the expected

length of a longest common subsequence.

5.3 Adaptability sV}

Lemma 5.4 Forevery k> 2 anil n > 2 we have

A, < EL, < B,.

Proof. Since EL,, = p E A(u), we liave directly A, < EL, < B,. The
lul=n
strictness of the inequalities is a consequence of the fact that not all sequences

have the same adaptability. 0O

First we shall investigate minimal adaptability.

Theorem 5.6 Foreveryn,k 6 N. n > 0, k > 1 we have

Proof. We define an equivalence relation for sequences; two sequences are
equivalent, if one can Ix- obtained from the other by a cyclic permutation of
symbols of E. This splits E" into \ = k"~ equivalence classes Si,..., ¥,- of
size k. If we compare sequences from one class, we can observe, that they have

always different symbols in the same position. Therefore for every #€ E"

H > 71
»Es,
hence
S A A T N SRR
" I—1 tE€*S K i=1 A
Since .4(00... 0) = j, we have immediately A, = jjf.]

If we define o* analogously to 7* (2.4), we get

. A
Q= lull == =

n—00 ft

5.3 Adaptability 95

The gap between a* and 7* is thus ‘quadratic’.

The case of maximal adaptability is more similar to the expected length
of a longest common subsequence. Exact values of maximal adaptability are

not known, but we shall describe here some upper and lower bounds.

Lemma 5.5 Maximal adaptability is .superadditive, i.e.,

B»] + B, < Bmtn.

Proof. Let u e S™ and v e E" be sequences with maximal adaptabilities.

Following the proof of Lemma 2.5 we can easily prove
A(u) + A(v) < A(uv).

Combining this with the definition of the maximal adaptability we complete

the proof of the lemma. 0O

As a consequence of the superadditivity of maximal adaptability we get

the following theorem.

Theorem 5.7 For every k there is a constant such that

Pk =

lim —
n—00 71

Moreover 7* < /..

Proof. The proof of the first part is the same as the proof of Theorem 2.1.

The inequality between 7* and /I* is a trivial consequence of Lemma 5.4. O

5.3 Adaptability 96

n Bj,2> ‘witness’ n Bg> ‘witness’

1 05 0 7 0.72321429 0100110

2 0.625 10 8 0.734375 100110 01

3 0.66666667 010 9 0.73763021 010011001

4 0.6875 1010 10 0.7453125 1001101001
1001 11 0.74818004 01001101001

5 0.7 01010 12 0.75423177 1001101001 10
01001 13 0.75618803 01001101001 10

6 0.71614583 100110 14 0.76020595 10011010010110

Figure 5.4: Maximal adaptability for k= 2 and n= 1,..., 14.

The table in Figure 5.4 gives values of B,, for n = 1,..., 14 and k —2
together with a “witness” sequence. This allows us to guess that a sequence
with maximal adaptability for k = 2 could have form u(01101001)*« for some
‘constant’ sequences u,v € E* i.e. tt and v depend only on n mod 8. We
can build a css machine and thus get a lower bound for the adaptability of

(01101001)". This will serve as a lower bound for fo, too.

Theorem 5.8 LetC, = A((01101001)"). then
C
0.800350 < lim -4 < fh
l—oc 8t

Proof. A css machine giving this lower bound can be found in Appendix C.
Since the situation is not symmetric, we have to analyse progress on the top
and the bottom tapes separately. The lower bound for /2 will be the minimum
of the lower bounds given by each tape. O

|
For the alphabet of size k we predict that the adaptability of sequence of

the form u = (01 ... k —1)* is quite close to the maximal adaptability. The

5.3 Adaptability 97

following strategy can be used to obtain lower bounds for the adaptability
of sequence u. Suppose U is on the top tape and a random input is on the
bottom tape. First we read j symbols from the top tape and than we scan
the bottom tape until we find a match with one of j symbols from the top
tape. We continue in this manner until the input is exhausted.

The waiting time to collect one of the j symbols on the bottom tape is
1+ + ("Njl)2+ eee = j. The expected progress on the top tape is Al.
Hence the expected length of acommon subsequence produced is min{ f}.
For j = A(VAFTT — 1) we have therefore we can choose jj =
[I(N\/8A+ 1 —1)J or jc — |Nv/8A+ 1 —1)j depending which gives better
bounds.

We can achieve larger progress by alternating j/ and jc in a suitable ratio

r. Then the top tape progress is

" lr+j°;r Ya-r). (5.2)

The bottom tape progress corresponding to the ratio r is

—r+4-(1-r). (5.3)
3f Jc

The minimal progress (corresponding to the maximal lower bound) will be

achieved when (5.2) and (5.3) are equal, hence

_jcj/Uc + 1) -
(ic - j/)(jcif + 2A)

Having expressed r we can compute lower bounds.

Theorem 5.9 Letjj = ~(~/sFTT —1)J andjr= + i _ j)j. Then

jejj + 2k

fa> -~
k(jc + j/ + 1)

5.3 Adaptability o8

The lower bound from Theorem 5.9 is assymptotically s/2/\fk. However,

for large alphabets this bound can be improved.

Theorem 5.10 We have

lim 3Kk > 2.

Proof. Let u be a sequence of the form (01 ... k — 1), Jul = ki. We shall

actually show, that

This bound can be achieved by a simple algorithm, that in one cycle
reads k symbols from the top and the bottom tapes anti computes a longest
common subsequence of the read sequences. This cycle is repeated until the
input is exhausted. The common subsequence obtained in one cycle is simply
the longest increasing subsequence of the sequence read from the bottom tape.
From the work of Logan anti Shepp [LS77] it is known that the ratio between
the expected length of a longest increasing subsequence and \fk is at least 2
as A —»o00 (actually, Vershik and Kerov [VK77] have shown this rate to be

exactly 2). This means, that lim lh\/k > 2. O

Methods developed in Chapter 4 can be used to obtain upper bounds for
maximal adaptability. In the case of adaptability we have lost the symmetry

between tapes, therefore we have to adjust the method.

Lemma 5.6 Let H(i,m,n) he .such that

5.3 Adaptability 99

Proof. The proof is analogous to the proofof Lemma 4.1. Let u,, be a sequence
from with maximal adaptability. Let F(i,n) = J{r e £" : L(u,i>) = i}].
Since H(i,n,n) > F(i,n), we have

B.
n

Vn F(iin)+ n //(*«,n)l=y+o(l).
O

To prove upper bounds for maximal adaptability we need a notion of

‘guasiminimal’ match.

Definition 5.5 Let p= (“*) be a match satisfying following conditions:
1. ag ii.
2.ag9 Vv,
3. if jn]> O then «(1) g v.

Then match p is quasiminimal.

Let ii be a fixed sequence of length s. Let g, t be the number of quasimin-
imal matches (") with |c] = t. The generating function for the number of
quasiminimal matches with s= 1 is ,r —[jjzi). mThe generating function for
the number of quasiminimal matches with s > 1is fr; i_(«_2)- *The generat-

ing function for quasiminimal matches then is

The number of quasiminimal matches is dependent only on the length of

ii and not on the structure of ii.

5.4 Longest common substrings 100

Theorem 5.11 Let q(x,y) = - £~ e Let ;ro,Co be such that

q(x0,z0) < 1. Then
0 K log(A:j~0-0)
\ogq(x0,z0)
Proof. This proof follows the upper hound technique from Chapter 4. Let u he
a fixed sequence from S'. Let p be a collation of order i generating a pair (")
for some v e S" such that every match in p is quasiminimal. Let Q (i,u,n)

be the set of all such collations. Since for every v € S" with L(w, v) = i there

is a collation in Q(i, u,n) generating (“), we have
IG*.«, n)] > {v€ £" :L(u,Vv) = t]

for every u € S™. The number of collations in Q(i, u,n) is dependent only
on the length of u and we can put Q(i, m, n) =]Q(, u, n)]. The generating
function for Q(i,m,n) is s(x, z)(q(x, z))".

then < k~n

Y > ok s(ro.-0) X020

E (: (</(xO, za)y'
H >n.n
i=f»nl >=pnl XoZo
A\ To [/
Therefore A% < y for every x> |6???;/(\>9)'\%) -

Bounds obtained by Theorems 5.9 and 5.11 are given in the table in Fig-

ure 5.5. For k = 2 we have better bounds from Theorem 5.8.

54 Longest common substrings
/

Let mand v be two sequences from S*. Sequence w is a common substring

of uand v if wis a substring of both ii ami v. A longest common substring of

5.4 Longest common substrings 101

k lower bound upper bound k lower bound upper bound
2 0.75000 (0.80035) 0.88693 9 0.41667 0.58566
3 0.66667 0.80638 10 0.40000 0.56569
4 0.58333 0.74760 11 0.38182 0.54791
5 0.53333 0.70205 12 0.36667 0.53194
6 0.50000 0.66522 13 0.35385 0.51747
7 0.46429 0.63453 14 0.34286 0.50427
8 0.43750 0.60836 15 0.33333 0.49216
Figure 5.5: Maximal adaptability for k= 2,..., 15.

u and v is a common substring with maximal possible length. We shall denote
this length by W(w, e). The expected length of a longest common substring
is the average of W (u, v) over all pairs u,v € S", i.e.,

Ew" =i £ W («,.»). (5.4)
K u,u€xX"

While the expected length of a longest common subsequence is linear, the
expected length of a longest common substring is logarithmic. Arratia and

Waterman [AWS85] have proved following theorem.

Theorem 5.12 (Arratia and Waterman [AWS85]) For every k > 2

% |Og*. n

Alignments with mismatches are especially of interest to molecular biol-
ogists. Let Iu, v 6 D". Sequence w is a common substring of u and v with in
mismatches if there are SC {(), 1,..., ll—1}andi,j € {1,..., n —]< |+ in}

such that |S] > Jul —m anti w(s) = u(i + a) = v(j + a) for all a€ S. Let

5.4 Longest common substrings 102

M "1(m, v) be the length of a longest common substring of u and v with m mis-
matches. Let EM™ be the expected value of M m(tt, v), defined analogously

to (5.4). Arratia et al. [AGW 86] have evaluated the EM ™.

Theorem 5.13 (Arratia et al. [AGW86]) For afixed m and large n the ex-

pected value of M m(u, v) is

EM™ = log,(n2) + mlog, log,(n2) + 0(1). (5.5)

If we allow the number of mismatches to be large, the expression (5.5)
is not sufficient. For every pair u,v € E" and r € R we define Nr(u,v) to
be the length of a longest common substring of u and v with m mismatches
such that m < rN'(u,v). Let EN' be the expected value of N' («, v) for
random sequences U and v from E". Arratia and Waterman [AWS89] consider

the expected value of N r(w, v).

Theorem 5.14 (Arratia and Waterman [AW89]) Forr < 1—j the expected

value of (v) is approximately

en; = 2

H—oo log o H(1—r, 1/X)"’

where H(x,y) = alogj + (1 —a)log is the relative entropy function.

Since for sequences of length n we can expect £ symbols to be matched,
we have EN' —ii for r > 1 — To obtain more realistic results, we shall
consider insertions and deletions together with mismatches.

We define m(p) = min{lf(p)], Ib(P)I} and Al(p) = maX{lf(p)l. B(p)I} for

every pair p. The number of mismatches in match p is then n(p) = m(p) —1

5.4 Longest common substrings 103

and the number of deletions/insertions is N(p) = M(p) —m{p). Let r,s> 0
be real parameters. For every collation p of order i and weights r, s we define

a weight of collation by

H(p:r,s) =

Let H(u, v) be the the set of all collations generating substrings of u,v € E”,

For a,v € E" and r,s € R we can defined the length of a heaviest common

substring of u and v by

H(m,v;r,s) = max{//(p;r,s) :p e H(u, t>)}.

H(u, v;0,0) is then the length of a longest common subsequence of u
and v and H(w, woc, oc) is the length of a longest common substring. Let
EH,.(r, s) be the expected value of H(it, v;r, s) for random sequences u,v €
E". Waterman et al [WCJA87] have shown that, similarly as in the case of
EMJ], there is a strict boundary separating parameters leading to logarithmic

or linear expected length. This is illustrated by the diagram in Figure 5.6.
Theorem 5.15 (Waterman et al [WCJA87]) There isaset C C R" of critical
points such that for every (?y,sr) 6 C

pr,,n foreveryr,s, O<r<rrand0O< s< sc

(Tr,. logn for evei-y r,s, rc< r < oo and sr < s < oc.

5.4 Longest common substrings 104

Figure 5.6: Diagram for EH, (r, S).

The proofs of Theorems 5.12-5.15 are enhanced versions of the proof of
the Erdos-Renyi law. For every u 6 E" we define the longest run of ‘heads’

in u by
Tu) = max{j :«?"..i+j —1)= (F forsome i,1<i<n+ 1—j).

Let ET, be the expected value of T(w) for random u € E". Erdos and

Renyi [ER70] have proved that

hif E 1

Wy ey = .

A (T

Longest common SUbSQqUEﬂCQS and shortest common supersequences are

dual in the sense that S(u, v) = Jul+ Je]l + L(?t, v). There is no similar evident

5.4 Longest common substrings 106

duality between the longest common substring and the shortest common su-
perstring problems. It can be shown that the expected length of a shortest
common superstring is 2n —0(1). The problem of finding a shortest common
superstring for more sequences is more interesting. Common superstrings have
applications in data compresson [Sto88]. Gallant at al. [GMS80] has shown
that the shortest common superstring problem is NP-complete. Middendorf
[Mid94] have shown that the shortest common superstring problem over the
binary alphabet remains NP-complete even if each given sequence contains
exactly three ones. Approximation algorithms for this problem are given by
Tarliio and Ukkonen [TU88] and Turner [Tur89j. Blum at al. [B.JL+91] have
shown that the shortest common supersting problem is also MAX SNP-hard.
Thus even approximate algorithms are not likely to be efficient. The expected
length of a shortest common superstring of more random sequences is con-

sidered by Alexander [Ale94].

Chapter 6

Conclusion

In this thesis we have concentrated on the longest common subsequence
problem. Longest common subsequences are often used as the measure of
similarity for two (or more) sequences. Knowledge of the expected length of a
longest common subsequence is essential for a judgement about the similarity
of sequences. It is known that the expected length of a longest common sub-
sequence is proportional to the length of the given sequences. The exact value
of this proportion is not known even for a binary alphabet. This proportion
is dependent on the alphabet size and has been denoted by 7*.

We have obtained better upper bounds for 7* using a new method and,
especially for small alphabets, the improvement is substantial. We have also
described an algorithm for automated production of lower bounds and using
it we havel improved lower bounds for 72. We have used these methods to
obtain bounds in the case of common supersequences and adaptabilities

It seems that known methods are exhausted and to determine the con-
stants 7* or substantially improve the bounds for them a new method is

needed.

G Conclusion 107

Many open problems remain unsolved and some new ones have been

raised. Here is a list of the most challenging of them.

1. What are the exact values of 7*? What is the value of Iiim TrAIR2?
What is the convergence rate of EL , i.e. how large is 7jin —EL, ? Is

kIim TMLY2 = kIim % 1A1“ 1™ ? How large is the variance Var(L,)?
—o0cC —o0cC

2. Is there a (uniform) algorithm for computing longest common subse-
quences that is faster that Masek and Paterson’s algorithm? Is it pos-
sible to obtain nonlinear lower bounds for the longest common subse-

quence problem?

3. Can nondominated collations be used to compute the exact values of

the constants 7*?

4. What is the asymptotic behaviour of the expected length of a shortest

common supersequence of several sequences?

5. If a longest common nonsupersequence exists, is its length smaller then
the total length of the input sequences? Is the longest common non-
supersequence problem decidable? What is the complexity of the short-
est maximal supersequence problem? What can be said about longest
minimal common nonsubsequences and shortest maximal common non-

supersequences?

G What are the maximal adaptabilities? Do the sequences with the max-
imal adaptabilities have the form u(01101001)‘v for some ‘constant’ se-
quences ii,i' € E*? What are the proportions of maximal adaptabilities

/>*? 1s lim 7/w/A = lim (IK'/kt

Appendix A

Css machine with 931 states

s e T F R R

T2l

d(s)
39.295
30.133
25.100
20.125
17.858
15.796
15.009
12.368
11.246
9.833
8.622
8.253
7.564
6.924
6.698
6.502
5.972
5.600
5.270
4.948
4.878
4.849
4.751
4.665
4519
4.340
4.186
4.176
4.055
3.701

s
IsT -
re?]
Ri]

T(.s,0)
- Kgq

[]1

[’
ir)2
FAR™

o}
%ﬁ

I

el

T(s, 1)

,_
Sk

d(a)
31.544
28.362
22.712
17.914
16.907
15.693
15.001
11.314
10.319

8.787
8.390
7.764
6.986
6.807
6.553
6.253
5921
5.526
5.022
4.940
4.851
4.766
4.706
4.545
4.507
4.293
4.176
4.107
3.821
3.519

Appendix A CSS machine

1 s

61

63

65

67

69

71

75

77

79

81

83

yFT

1211
roooon
11110*J
rooiooi
Llooi J
[001001
11000*J
[010001
hni*J
[001011
1noo1+*J
[001001
110113
[001 111
Liooisj

[vii'l
001111
000%]
001101
i000*J
[000011
Llooi J
[000101
111013
roioj
Ho*J
[00111
ho» J
mooini
11100%3
000111
1100%J
[001101
11011
01001,
101+
[001011
11010+
[001111
10 11+
[001101
1101(>+J
010*1
oo J
[00001*1
[ENARNI]
[01101
1101+
[00100]
11101+
[00000*1
11101 J
[00010%1
fiom 3
[00001*1
110000 J
[00001*1
111100 J
[00010%1
licooi J
[00100*1
110010 J
000111
ioin J
00010%1
10000 J
[00010%1
110011 J

[211]
[00100%1
111001 3
[01101*1
111 100 J
[0100]

s

[01101*1
111 NO J
[00010%1
111000 3
[00100*1
1 Kill) 3

[?0i81%]
[00101
s
[00001*1
111010 i
titi'l
[vri

K 1

T(*.,0)

B Ti

o o
o

[oooon
illioo]j
[001001
liocoioj
001001
i0000]j

[fflojI

[114
[001001
lionoj

ft*]3
[ee'l1
[0012
[00110]
liooooj

[000011
liocoioj

[000101
IlioioJd

(¢811
fooin
lioo J

|(e]e]e][e]]
1110003

[q0011]
licooJd

[?10°]i
100] 1
[693 1
001011
icioo]

[001101
liciooj

[o8°]i
[0000101
livu 3

fiion
loioJ1
[0

I
[o0000]

[0001001
ot J

[0000101
110000 J

0000101
11100 J
R °]4

irja
[000110]
110111 J

[000100]
110000 J

[0001001
nooiun J

[01011
1110 3

[0010001
Liloot J
(?00)2
[0100]
1110 J
[?18]2
[0001001
Inooo J
[0 000]!
[0010101
110101 J

o]

12901
lio 10)

Vs

T(S, 1)
T2i0iT ~

[?12]
[oooon
Liiioid
[001001
lioou]j
[001001
lioooij
[fw.11

[001011
Liooiid
[001001
Tioillj

[114
[ei'll
[oi]2
[001101
licooij
[iz1]2
[000101
LiioiiJ

[ev]L
oo0in
o1 3

(o]
1

910,
[001101
o1 1

mo
001011
ioioi]

m il
[20!°]i

[¢8']1
[000011]
[NRRENI]

p i
[001001
11 101 1j

0o0ooon
11101 J

0001011
ot J

[ri4
[oo00in
111100 J
B']4
0010011
iooio J
[?21"]1
[¢°13
[?s°12
[01011
i

[001001]
liool J

[?00]2
[01001
i g
[011011]
hum 3
1°3
[ooL0011
11010 J
[2..2"]1
m n
199824
11 3
1V 2°'0]

1221

ds)

3.508

n s
TR riie
o oI
s feni
e [32000
O
e o,
000I01
i000*J
7o [G0RY
78 1001
s [200%%
sz 198019
se [obsy
86 foiors
e [oooss
so P
92 [f)ﬂngJ
oa [5051%)
oo [9%%55
o8 [535%
100 [0235
10z [000Y
1oa figi
ros {1
ros 19959
no [R5
1z B9PRY
11a RN,
116 K5y
118 090
120 15660
122 [T,
12 000
126 5600
128 [2909
130 [ROOR0Y
1z [
[00100*1
134 111000 J
136 (Y500 5
138 [9O00L
140 [99999)
1az [P0
12 RSN,
146 (9000
ves RO
1o BRI,
e
154 [oRo00Y,
1se 39399
s BB

T(S,0)

[000001
Tultl J

[o°°]2

[o']3
[0000 11
liooooj
[oppooL
00j
[000101
lino J
000I0I
i0000j
o
100
000111
iooioj
[oooo!
lioo J
[000101
lionoj
000101
ioioo]j
001001
i0iooj
fooion
liooooj
[o000!
1110 J
000in
oioJ
[ooolol
liooioj

s
(flig 1

B 2i']i
[00100]
11101 J
[0010
Lioi
o1
oj
[00po01
i Lioj

[eec]
[oogo11
1 diioj
0010001
101113
[v+i13

00101

ioo J

[001000]
licooi J
[000010]
111101 J
[001000]
ool J
[0010001
110000 J
00001

ioooJ

[oco10)
inooj

[2ire°7i
[001000]
11 1000 J

f0001001
Liitoo J

[<>"]2
[00000]
ho 3
[o00in
h 11o0j

[0010101
lioon J

m
[0001101
111000 J

m i
[000010]
h toil J

for0001
noo J
[001001
liooo J

[?A?]2

TS

[000011
Inn J
[00000]
hiioiJd

11H
000011
i0coo0ij
[001001
Inooij
[000111
fino J
000101
i000ij
foooon
luonj

12142
[00001
hoi J
[00010]
Tioin j
[000101
lioioij
[010011
hoi JA

[e?12

[00001

hil
foooin
hioilj
[oo0IO!
lioonj
[001011
Liiooil
on n

hioild
[00011]
fion 1j
fooion
1101 J

[r.13
[01101
LiioiJd
[000001
Tiin ij

[ee]1
[00001]
T
[0010011
fioin J

[?"13
[ooio!
oi J
oomon
ioooi J
[000O0I11
finoi J
[001001]
imon 3
[0010011
110000 J
[0000]
110013
fooo mi
1111019
[001101]
hom 3
[0010011
limoo J
[0001011
Tu mgwJ
fooo

oi J
[00000]

[000111
hiioiJ

1" 1»
[0000]

[1"13
[001001]
liouo J
[0000111
111011 J
[01000]

h 101 3
[00100]

liooi J
foiion]
iuoi J

3

3

3.

ds)

.330

109

Appendix A CsSS machine

n
159
161
163
165
167
169
171
173
175
177
179
181

S
roooio#i
Uo11o J
fo10001
ho* J

rooiio*i
110001 J

R 11]
00100*1
10100 J
00011*1
1001 J

Ri-1
00011*1
lion J
00101*1
0000 J
00101*1
11000 J
[001001
110*
[011001
Litie J
00101*1
ioioo J
00101*1
oiio J
00110*1
omo

1501

01001
i00*J

[2i°°]
{0000101
1()()o0*J
0010011
mnr 111
0000011
I'1101J
0001001
ol ii*j
01011
ii*l
foion
hio*J
Loooom
o* J
[0010001
110001*1
roooonj
111 10n*,
roo00ioj
hima*J
01n
m*J
‘oomon
mom*J
[ootin
lui* 1
0010011
0000*J
000i ml
oi ii*i
0010101
mmi*J
0001001
moi i*J
0001101
i000*J
rootoooj
hiooo*
0010011
moo*J
0001011
i mo*J

[IOI*O]:]

OO0O0Ii*1.
limo J

[?n

oo(H)in

mi |*J

fMM11
II1010*1
ooioioj
iooi]
foioooi
1M'101*J

T, 0)
0010011
uo JA

[c800] i
0011001
ioooi J

ittt
[0100011
1100 Ji

o0ooiml
uooi J

[A°]i
0001101
lion J

0010101,
10000 J

0010i0i
11000 J
001001,
ioo J
011001
ino
foototos
J

0010101
iono J

0110011
ioo JA

[1i

[A”]i
[ces]i
[*]i
[¢]4

ooigon
ioi i mj
fooooon
hiiocioJd
0001001
ioinoj
oion
ioJ

01011
nooJ

[r2
roo mooi
lioooioj
R"]3
[0.013

too] 1
foomon
ImoiooJ
001111
ino J
[(10101)11
mo000J
[oooi mi
110iimJ
oom mj
mmmJ
foiooio
Ino J¢
[000I101
1110000j

HH)10001
moooj
ootool 1

I 10000j

[i0,]3

‘OSH)lﬂl
00101
inoj

0001101
111V J

[e87

i
{oo Ol
110lloj

‘OOOI Ml
™M) JA
oomml
iiooioJ

(r13

T(s,1)

foooion
hoim J

[¢H
[¢'01]2

> 1
hoomou
omo J
172

!
fe8h

[¢8U 12

[ou]2
Loo_1001
oi J
[011001
nn J
fesiesny
Joozot1L
oim J
Looi ion
omo J
(H
[2i01]
M i
[?1e°]
RI5
Pi2
00000N
inoiij

0001001
onnj

[21.]1!
oion
l'101J
[co00]1
001000k
ioooiiJ
[ooo0o0in
111 moli
[00.012

1A1]i
fooioon
11001013
001 111
nn

[ABY']2
ooi mli
nn Ji
oo tom]|
10101 1J
[0001001
1100l1U
0001101
110001J
LH)10001
ioooid
0010011
I moot J
0OO0O0lail
imoij
oooml
ion J
00i0i
n11J
foooi in
hnoo J

[AH

00QOlil
iioinj
0000I1L
ioioild
oom mi
i‘l.l(H)llJ
010001,
Tio1 J

d(s)
1.263
1.261
1.252
1.237
1.222
1.201
1.189
1.186
1.178
1.159
1.126
1.108
1.083
1.046
1.027
1.016
0.960
0.935
0.872
0.854
0.835
0.833
0.830
0.822
0.817
0.815
0.800
0.782
0.782
0.780
0.766
0.763
0.748
0.740
0.733
0.729
0.724
0.718
0.718
0.716
0.713
0.708
0.700
0.690
0.683
0.659
0.459
0.658
0.656

n
160
162
164
166
168
170
172
174
176
178
180
182
184
186
188
190
192
194

198
200
202
204
206
208
210
212
214
216
218
220
222
224
226
228
230
232
234
236
238
240
242
244
246
248
250
252
254
256

3
00010*1
omo
00110*1
0000 J
00010*1
ioioi J
[O00L0*
nooi J
00010*1
imn
00010*1
iioio J
Lloomm

01001
iio*J
00011%1
noio J
00101*1
nooi J
fClIOIn
oi*

5001001

J

fooion
hioieJ

[?iu]

R0O10]
00000*1
1111]
[OOOOIOZL
ull 1
(e]e]ele)]]]
ull 1™
00001*1
um 1
00100*1
imn
0010001
0111*]
o(Hion
R
[01001

010*1
oi J

jooo0oj

[oo1001]
110001*]
010001
iio*J
0000111
hiioieJ
ooooml
110i*)
fooioooi
Imoi i*J
00100I1
i00i1*J
0010101
moi i*J
Q010(H)i
Llnono’\]
oootool
mooo*J
00010*1
nioi J
oom ml
'moo()*J
ooiion
ot 1141
0010011
Ilioo1eJ
foomooi
liiooieJ
000 mol
i imo*J
011011
Inno*J
[ooo0iL
1100*J
fooo mol
lliooo*J
0010011
(i)l
[001001
1101 10*]

Proasd

0010101
hiooo*J
01000i
iloo*J
0(H) 1101
iooi*

r(a,o)
Hmmou
oo JA
0011001
10000 J
oomolf
oi

000 moi
iooi J

0001001
ioil J

[?8 ,00]i
(e]e][e]e)]
orn J
01001
fooj

00oi mi

Torn J
0010101
I'1001 J

mini
oio JA

00 moi
I'100 J

fooion
liiocioJd

[(,"ll

R,0i

[O00000!
inn J
0000 Mi
nn mj
oooo0in
nn ioJ

0000 Mi
inio J
00i000i
non

01000i 1
Iim J1
roooion
lion mj
01 00j

inoj

A701
0°°°]1
1001
oio
01000I
i moj

0000in
iiioioJ

[20°"171

[21]3

Joo10011
oot mj

[VA°]3
[0010H1

0001001
100000j

000 Moi

101 J
oommi
100000]j
fooiion
lioinoj

fooioolj
h icoioJd

R°]4
0001001
I khkiJ

[21Av]2
ooon
iooo0j
0001001
10000j
[01(H)I 11
00 Jt
ooioon
oi moj
0000 Mi
lonoj
[(H)10lof
110000]
ooo 1
lioooj1
oooi ml
iooioJ

T(s.1)
H)oomu
omo J

[A%01]2

0o0ion
foioi J

[710,]2
foooto1s
mn J
000101l
noio J
001001,
ion J
[01001
lioij
foooiin
Ilioio J
fooioin
1loo1 J
(A1 i
001001,
l101 J

001011
ioiiJ

[1r11
[o° 10j

ocooon
inn J
...
[nn]2
fooooin
hum J
fooioon
limn J

0010001
onnj

[hi]3
01001
inij

A2l
000001,
il J

[Au' 12
roioooi
IM'i101J
0000in
iion]
0000 Mi
inoiiJ
foomooi
liooinJ
ooioon
ool 1|]
0om
moi |I]
foomoai
hooooij
0001001
I00001J
0oo10il
imi
roomioj
hooooiJ
ooiion
onnj
foomon
hiocoiiJ
00 10(H)!
noot ij
[o001(H:
inooij

[?A]2
00011
iooij
R°H

RAYL']!
00100)1
ionoij
0000101
non 1ij
‘(H)toml
noooiJ
foioooi

InooiJ

[ooa 11
iioonj

d(s)
1.262
1.252
1.252
1.234
1.219
1.199
1.189
1.184
1.166
1.159
1.116
1.108
1.066
1.030
1.021
0.965
0.946
0.914
0.863
0.842
0.835
0.830
0.825
0.820
0.815
0.800
0.792
0.782
0.782
0.766
0.760
0.757
0.748
0.734
0.733
0.728
0.723
0.718
0.718
0.716
0.709
0.700
0.699
0.687
0.671
0.459
0.058
0.056
0.042

no

Appendix A CSS machine

n
257
259
261
263
2Cs5
267
269
271
273
275
277
279
281
283
285
287
289
291
293
295
297
299
301
303
305
307
309
311
313
315
317
319
321
323
325
327
329
331
333
335
337
339
341
343
345
347
349
351
353

s

fooioin
Uono*J
roiiooi
Inn*J
roi 1ot il

000i0ii
10100*J
fooiiooi
1i0000*J
0001001
1001*J
010001,
100* J
0001011
1101 I*J
[0001011
U 1010%J
000111
11011%
0010101
10100*J
0001101
uoio*J
[0,00°]

R 1,#]
00101*1.
11010 J
0010101
10110%]
f0il00!
11003
00990071
111111 J
000001*1,
111111 J
00011

00001 11
11111+ J
0010011
11011%]
10010011,

000001*1
in o n

{I ll*J
000100*1,
ionn J
[()n loi
in*
foooooi
lin* J
59-01000*1
0ooon J
000011*1
oot J
000011*1
111010 J
001000*1,
ool J
001001*1,
iooioo J
001001*1,
iooni J
000010*1,
noui J
001011*1
ionoi J
001000*1,
ToooolJ
000110*1,
Ioin J
‘0000101
10. 1
LOOOllO*l
10010 J
[k 2001
0000i J
001010*1
101010 J
0001001
1'1101*1
oioon
oI J
001010*1,
iooooo J

010111
1001*J

T1», 0)

[ooH
[no]2

[i610]2
0001011
101000]
0011001
100000)

[?6°°]2
100011
o000 JA
0001011
loi Toj
0001011
110100J
0001 in
I 10170j

[¢«H
0001101
IToiooj

[¢°00]

[V°]l1
0010101
iioio
[?00]3
[ooo0°]l
[0000001
1111113
00000101
111111 J
00011,
oo J
[fo]3
[r,o]2

flOIH
loooj1

[00({(:2111
fooiooil
Il'101 loi
0100101
ino Jl
[0000.0]1

[oor0000!
iooon J
00001101,
111001 J
00001101
il 1011 J
[Ff°°]3
‘00 KM 101
001! J

00100101
tooni J

[m *00]!
i]5

[OOIOOOOI
100001 1
fM)QI 1001,
Inout J

irl0]2
(MM 1001
1110010 j
OOOIOOOI
100001

01010011
ioio J1

éru
(ele][e][e[e]]
100000 J
ion li
ooioil

Ty, 1)
0010111
ionoij
[ni]2

[16ii]2
0010111
100l J1

0011001
100001J

0001001
itoonj

[¢S?°]11

[?2oni)l
fooolon
1110101

0001111
1101113

0010101
101001J
0001101
1101013
[01000]
(0]
fooioin
111010 J
[0101011
1101 J1

[¢
00000011
111111 J
(T.1.12
fooon
1nor J
[M 3
[COOOIOl
111101J

[e8ill
[noi]2
[utlii)i
[?1i0)2
00000n 1
11011 J

[M2

[(KM)lUOll
ot J

[011101
1111 J
000001
nn J

m s

[1)0m1n 1
oot J

00001111
111010 J
[100011
iooni
[Vis

m s

oion n
101 J

looono
ooi F

(M 4
[oML°] 1

RA,0,]2

uns
ooioion
ioioio J
[00(110(1J

n'ion!

[
I
foords

d(s)
638
633
633
631
.626
617
611
.609
.599
.593
.591
.583
.576
.566
.533
.523
.514
494
.488
.480
471
463
447
432
421
417
416
415
415
413
407
400
391
.391
383
383
383
381
374
374
373
371
367
367
3GG
306
.364
.364
362

258
260
262
264
266
268
270
272
274
276
278
280
282
284
286
288
290
292
294
296
298
300
302
304
306
308
310
312
314
316
318
320
322
324
326
328
330
332
334
336
338
340
342
344
346
348
350
352
354

3
01101
ioo*J
011001
1110*J
0001011
i0i i0*J
0011001
T000I*]
fogoion
110101-J
010001
ui* J
0010011
10100*J
‘0001001
1101 1*3

[Tii°]
0001 loi
1101 I*J
0001 111
1101()+d
0010111
I'1001*J
010101
1101«
oioin
ioioo*J
[00°,°]
001101
11112
fooiion
lioioo*J
0000001,
11111J

oo,
11111+J
300101
711110 J
001111
1110°1
000011*1
111110 J
[0jO00]
0010001
1101 1*J
[ooon,
ioo*
001000°1,
ionn
[OOOOOl]
111010 J
000101*1
101110 j

11(11 110 J
011101,
110* J
FOlllOl
u* J
[(HdlD(H)‘l
[1)0001 1*1
inon
OOOOlO*l
111011 J
001001*1
1001'10 J
[oolonl 1
oolol J
‘oooonﬁ]
J

001010"1
fooni
_001001"1
100000 J
[(H 1000"1
khhhh) J

moim J
LIOOOIlO"l
omo J
000100*1,
100000 J
001010*1,
oion J
0001011
1101 J
000100*1
iooni J
OlOOIl
100*
5101010*1
00001 J
0001i0*1
10001 J

(s,0)

[060] 1

foooion
lionooj
foonooij
Uoooiod
0010111
ioio i A
01000
ino J
001001
10i000]
[OOlOOll
110 JA
[01101
110 J

IToiooj
[vVi4

010101
lioioJ

[tio]2
‘101 11
01 000J1
0000001

[0000,0]!
[00010101
oino J
00100011

ino JA

[¢0]2
[O\r]
[_OGOOOOI
ioooio J
00001101,

inon J
[000100]!

[?0,0]13

00100101,
[o]e] [e] AN}
00001101
noiit J

[2143
00100101,
iocoooo J
0010000

iooooo J

nil

Y
ooL10011
ino JA

fOOQIOOO]J
I khhhh)
010100il
ion J1
oooion
11010

[?!H 2
¢TU
OO0l 01(H)!
hooooi "J

[oc0l 169
nooot J

Ti», 1)

[¢¢?]1
011001
non
foooion
lionoij

[etic]2
foooion
UoionJ
0000
ni J
01001n
1001 JA
0001001
itonij
fonoi
J

0001101
noinJ

[JIOIOIJ

1
J1l
roioi il i
ool JA

R TO]
[?i.]2
ooiion
oiooiJ
000000i
nnij
iinin g
[(J)o_ooion
lino J
oon.n
noiJ

[no]”
LOIOOOI
n J
[212°°7i
‘000111
1001 J
721,12

00000111,
noio J

[foH

[?1,0]2
011101
noi

[5)11101

fooiooon
lioooio J
0000Inl
nion J
ooooion
i J
00100111
100110 J

00101011
iooni

looino
n

00oiign
01110 J

[¢H 3
ms
[2tom]i
oooioon
iooni J
[e82°71
[¢m©1]2
[1°]4

©O O O OO OO 000 o O OO OO0 O0O0OO0OO0OOoOOoOOoOOoOOoOOoOOoOOoOOoOoOOoOooOOoOOo oo oo oo oo oo o o o o

d(s)
636
633
632
626
626
614
611
609
594
593
583
.579
.570
542
.523
.514
.514
494
.483
473
471
.457
442
421
.420
417
.416
.415
415
413
.403
400
391
.391
383
383
.381
378
374
374
373
370
367
366
3G6
385
364
364
.302

Appendix A CSS machine

n

355
357
359
361
363
365
367
369
371
373
375
377
379
381
383
385
387
389
391
393
395
397
399
401
403
405
407
409
411
413
415
417
419
421
423
425
427
429
431
433
435
437
439
441
443
445
447
449
451

S
roooiio«i
1110000 J
001101*1
omo J
roioioi
ulu J
001000*1
I 10000 J
{001000’1

001001*1
iiooio J
001001*1
ifooii J
[000101*1
1111001 J

K ‘1
0001111
11100*J
[000110*1
Il 11000 J
0010101
11010*J
000110*1
iioioi J
ronon
Iio* J
001001*1
iouoo J
000011*1
noioi J
000011*1
nolio J
ro0iol0*1
1110000 J
001010*1
110010 J
foooi io*i
1091 J
00,°0
[72a]
000101*1
fouoo J
001100*1
ioooio J
001100"1
100000
000100*1
110011 J
010011
1001+J
000100*1
l10111 J
000101*1
110131 3
0001001
lio* J
000111*1
nolio J
000111*
110100 J
001101
ioi* J
‘001101
no* J
011001
lio* J
‘001011*1
101000 J

fooioin

111010*3

IAAN
[ogtoL.

[010001
noi* J
fooioin
11000* J
010101
noo*J
01101
lo* J

(ioitael
000001*1

nno J
[00001011

[000010*1
In noi J
00001101
iunn*J
0100un

i 100* J

T(s.0)
{00011001
110000 J
[2iig*]l
[218]i

(00100001

Il 10000 J
[00100001
Il 10001 J
00100101
iiooio

00100101
110011 J
01010)2

010101
lio J

00011%01
010 n
ioioojl
{00011001
110101 J

‘0 non
1100 J
01001011
1100 JA
{00001101

OOOOIlOl
olio J

{00101001

00101001
ifooio J

{?0011001

[io 100]
room
Ino J

00101011
iioo JA

00110001
ioooio J

{00110001
100000 J
[V000]2
rai

1221000]!

00010101
uoioi J

H 2

00011101
nolio J

0ooinoi
uoioo J

001101
ioio J

[AA°]2
011001
i100 J

()3
010111 1
ioo J1

5000101
no J
‘001101

flOOOll
loio J1

[A8"]2

NcHII
im

1110011
ono JA

[00000101
1111110 J

0000l on
iniiood

joooioojJ
‘OOOOI

001011
ioooj1

r(«,i)
la+01)3

roonoin
homo J

[212]!

[ir 12
ooiooon
i 10001 J

R"]4

[lo & 11jl
roooioin
li 11001 J
010101
ui J
0001111
1110013

1i,01]3
[0010101
InoioiJ
00011011
iioioi J
R]4
ooiooin
iouoo J

0000l in
i 10101 J
ooooiin
uouo J

(/80,2
[i]4

[pogiions
3
Y70°]

000101 11
iouoo J

fiioono
loio .

{naoilQ
ooo I
oooioon
i 10011 J

10011
oonj

000100n
ot J
[oot01n i
ioi J1i
[ooioo]!
ooou in
nolio J
00111 111
ioo Ji
001101
ion J
1i]3
173
molin_i
iooo JA

0101111
ioi
{OOOlOﬁ
ui
{0 onol
ui J
100011
on J1l

[¢?"]2
[208ili
[¢H

[111 0011
loni J1

00000111
nino J

(?11101)1
(Viioi[2

001 OH
iooiJ1l

<t(s)
0.362
0.362
0.359
0.359
0.359
0.359
0.359
0.358
0.354
0.350
0.350
0.345
0.343
0.337
0.335
0.329
0.329
0.329
0.329
0.321
0.319
0.316
0.316
0.313
0.313
0.309
0.306
0.305
0.300
0.298
0.297
0.292
0.287
0.287
0.278
0.271
0.266
0.261
0.261
0.257
0.256
0.253
0.253
0.245
0.241
0.236
0.232
0.229
0.220

n

356
358
360
362
364
366
368
370
372
374
376
378
380
382
384
386
388
390
392
394
396
398
400
402
404
406
408
410
412
414
416
418
420
422
424
426
428
430
432
434
436
438
440
442
444
446

118

150
452

s
LOOllO_l*l
omi J
011001
noo*J
{010101

001000*1
i 10011 J
001001*1
i 10000 J
001001*1
I 10001 J
000100*1,
mooi J
000100*1
i 11000 J
[01001
u* J
0001101

I U0O*J
000100*1
1 10000 J
[000111*1
Liioioi J
Bg;om

J

onon
ui* J
001001*1
ionoi J
000010*1
nolio J
[001010"1
i J
001010*1
i 10001 J
(0001001,
ni* J
fonooi
In* J
&001001"1
101000 J
5000101*1
ionoi J
000101*1
101000 J

001100*1
10000l
000101*i
ioiou J
‘0010001

000101*1
i10lio J

[?10101

0*

{1)00101‘1
110100 J
000110*1

110110 J
001010*1
ioiooi J
000110*1
1 10100
001101
ui* J
L(Illoll

o* J
L(IflllOOl
o* J
[0001001
111~ J
onon
nu*J
L(I]OllOl
o* J

{0011001

ooiioi*i
ioiooi J
OHM
loi.l
[0000101
11 J
[00000011
1111111-J
00000101
111111-J
00001001
niiio*j

Ve

ooioin
ion* J
Olioioi
ino* J
0100101,
Hoir* J

T(s,0)
[o1101011
ini JA

ai4
010101
1100 J
joo00] 3

00100101
00100101
110001 J
[01000)2

00010001
inooo J

in i
5(3801101
10003
[00010001
11 10000 J

(000111o0i
noioi J

RI00]1
onon
ino J
‘pioaioli
101 JA
{00010011

[0OI01001
Liiooii J
{00101001

R*,00]1

[o1100L
10

00100101
ioiooo J

00101011
1101 J1

00010101
ioiooo J

00110001
10000l

0001010|
ioiou J

(0010001
11100 J

00010101
nolio J

[Ao0]i
00010101
110100 J

[FIAOH i
[f15
‘00011001
1 10100 J
001101
lino J

811

[Q eoo]l
[0001001J
no
oiion
unoj
00110
ioo J
[OA™]2
00110101
ioiooi J
[ilo] X
[0000101
Ino J

00000011
niilioj

foooooioi
liinnoj

0O00O0looi
i 111io0J

cm
(00101 11
idiio J
[?A0)2

0100101
uoio J

T(s, 1)
ooiioni
mi J
via
[010101
1101 J

ooiooon
i 10011 J

[A8™]2

[oVv©°r]2

oooioon
inooi J

[r'3

(2]
0001101
luoolJ
[oao.]s
oooiun
ifoioi J
pioiooj
[011011
Inn J
fooiooin
lionoi J
rooooion
Inolio J
[_ooioion
i 10011 J

[~2,0%)2
{0001001
m i J
{011001
mi 1
01001111

iooo JA

oooioin
ionoi J

8 "),
[AAP]2
F 1

[OHX.O]!

oooioin
i101io J

ani
001011ii
ioo J1i

0001101|
i 101io

01010111
iooi JA

roooi ioi i
li 10100 J

[WIH
A
[&ioo]!

ff)ooiooi
J
onon
uuij
001101
ioi J
0011001
i1 J

fononi,
lioor JA

[Alili
(0000101
Ini J

[unii]!
(tinnii

00001001
IHI 101J

joooooj

[f1<
[\
iV 1

d(s)
0.362
0.360
0.359
0.359
0.359
0.359
0.358
0.358
0.353
0.350
0.349
0.343
0.341
0.337
0.335
0.329
0.329
0.329
0.324
0.320
0.317
0.316
0.316
0.313
0.313
0.306
0.305
0.304
0.300
0.297
0.295
0.292
0.287
0.281
0.275
0.267
0.262
0.261
0.367
0.257
0.255
0.253
0.247
0.244
0.236
0.234
0.231
0.228
0.220

Appendix A CSS machine

n
453
455
457
459
4G1
463
465
4C7
469
471
473
475
477
479
481
483
485
487
489
491
493
495
497
499
501
503
505
507
509
511
513
515
517
519
521
523
525
527
529
531
533
535
537
539
541
543
545
547
549

S
[?2ri
[’>||Ol]

] '()()‘
ro|1101
11

[001001*1_
mono j

0100101,
1110* J

00000111
1110111
[0.°,°

00010101
101110*J
011101
1101*J
(00100001
100011*1
100" °]
0010111
ioo*
[00001 111
11101 1= J
00001011
111011%)
[00001 111
1110019
!E}OIOOIOI
100100*1
00100111
100110*J
00100101,
i(>0i11J
‘00001 11,
110111<J
00101011

iooiu*J

00101111
101101<J

00100101,
1000003
[00011001
I 1MV 3
00011001,
101117

{00011011
101110*J

pooooo]
[911011
io* J
00010001

100001*]
010100
ion*
000101*1
inoio

PO%9H
100111

[oo1o 100I
110000Uj

00011001
11000I*J

00110111
im 110*
‘0110101

nn* J
00100101
110010*J

00100101
l10001*1

00100101
I 10(100% J

literetelial
00(11 0(11 1
11001*1

BI,,I
000110*1
111001 J
001010*1
rioioi J
i
IIgIo1*
E);ml*l
im J
[00100111
1101100%]
[oi mo]
ull* 1

ety

r(«,o)
oo01]
o J
011011,
110 J

fioini
looo JA

oino]
I 11109

P00,

0010]1
1100j1

[0000011]
1uoltio]

[¢°>°]11

00101011
100 JA

[0?0]2
[t10H
[28"°]
[001011]
1000 J
[ono)3
fO000I01]
Iioiioi
[oocoi
I110010J
[0°]5
[0010011]
1001100J
[uo°]3
0000111
1101110
[218°]3
[010)4
{10010 19
0000
0001100
1110000

0001100
l101110

A

jooooojl

(AH1
0001000
1000010

[10100}’1
ono JA
00010101,
111010 J

0010100
1000010

00011001,
1100010J

fnoH

[oVijo0]1
[?18]2
11°15
10010
[oio 12
[10010I9
o000 J*

00100011
l100010J

[?r,]2
110,11
‘0001100]
Il 1001 J
Bmmo]}l
01 1
[¢ioio]2
[?1212
[Vlooo)z

OOOOIlO
lio1010

r(*. 1)

b h
[01101]
g

B

0011 !]l
10110J1

001051
110101

EggOOOll!]
10111,
[21°7°]
[?i0i]3
foiiio]
111011y
[?n)4
[oono]

Rn]3
[9900111)
IMioillj
[Vi0111]3
0000 1111
111001ij
RI®
[01]5

[2..14

[ooo11112
1111 JA

Vivi]3

[o0101111
10110119

IOOIOOIOI
1000001J

[oo01100
11110001
Bulls
[00110151
I1101 JA
jooooooj

[¢i0,]1
[on]4
10100]1
oill JA
0001011
l11010
[m]4
[ooo011)2

R°]5
0011011
1011101

Bins
L1714

‘00|o 11
100011J1
10010I9
1w

5.10001 !Jl

I'm0011j1

[Vi01]
louoi|2
‘0101 il
10101J1
[0001 111]
I 10101113

01 |0n]
1111

[01001|]|
1ooI JA

B4
[0000110!]
11101011

o o o

O O O OO OO OO OO O OO O O OO O O OO OoOOoOOoOOoOOoOOoOooOoOooOoooooooo o o o o o

d(s)
218
216
214
212
210
209
208
208
207
207
200
200
196
195
195
195
191
191
191
191
.189
187
187
.187
.187
185
184
.184
.183
183
.183
.182
182
181
181
.181
179
179
179
179
179
178
175
173
172
171

168
167
.165

n
454
456
458
460
462
464
466
468
470
472
474
476
478
480
482
484
486
488
490
492
494
496
498
500
502
504
506
508
510
512
514
516
518
520
522
524
526
528
530
532
534
536
538
540
542
544
546
548
550

s
5301110]
11 J
000011*1
111100 J
[00010]
u* J

t
e
01101
1100,
[010000
u I*
[0000011]
11101>+J
0001001]]
=
00010001
101111*J

[oo100001
i000io*J
%8100011
00 1) J
[001000]
|11« J

!&%{?Ollo
[I 11010*!]
[OOOOllO-jL

000011
1llOIO"J
00100011
100111*1
[9910010]
00101 +J
[po1111]
100* J

190091 161
110111J
01101
ioi*

F_ 100001
ioooo0i*J
[001C(£OL
100000*J
0001 111
l10111¢

l
PR
E)ouoo!]

110%*
0001100]
I'iooio*.

[0001000]

00101011
ioioio*J
010100
ioio*
000100*1
l11011 J
[8010100
0GEOC=
[oocx 1HI]
I101()1+J
0001i00
110000~
0011011
101111

[00100001
110000*J
00101)00
I'10001+
001OOIOI]1
001(H)10
fi9a52ie
000I0I11
I 11((11*J
food 10001
011011]
Inn 13
00010001
NO(HH)*j
00011011
l10101J

0001 tool
110101}

o1ion
mo*J
0010011]
Idl1o1*1
0000I10]
11101 10*1
00001011,
101 10*J

T(s,0)

R14
!&IC-)OOI]Dl
1100 J
[reli
[o]4
[00]3
0000
Iioj*

[ioo Ilﬂ

Binds
[00100051
11110 JA
0010000
1000100

00100011
1000100J

[001000]
ino

0000110]
inonoj
[o00110] 1
100 1
[oou°]2

joooo111)
Inoiooj

[W8*]3
[?0°]4
[em]2
[OOO_OIIDl
noinoJ
mom
loio JA
5-00100001
10000100
fioooo]9
loooo J*
[01110)2
tr]2
B&JS

0001100
1100100

1000]Q
000
[So]3
[1910051
oioo JA
(00.°001]1
‘10100|9
0000
[¢1010)2

0001 KM)]
I 100000

[9011011]
ionnoj
2500500
1100000
0010000
1100010
b h s
[28,0]3
[2ie "
gloomoo
Bilo]2
(,'r'13
[¢.>14
[?0i0)3
01101
1043
[001001 1]
11011010J
[OOOIlO}'l
KK) ~JA
000I01 11
noo Ji

T(S, 1)
713
10000111]
1100 J
J00010J
01110
nioi
[0i]3
000011
||||11
[I llOlOlJ
lihn]2
[?1111)2
[?0t]4
tells
[«2]!
[ioin)2
199901101
11101013
[oo* *°]2
[o101)3
Bi.i]3
IMS
dl,]3

[i.i.13
o121
Ms

[01]5
[0001111
ron 11

jooo,°11

[Vo1]2
0001100
l100101

[¢8V°]3
010101]1
10101 Ji
[101(H)51
0101
I1011J1

[0010100
000001

01101 111
inn JA

FCIID 1
TOO(H)! J1
Eggoo 1

(H)11J1
fouol 11
I001I1ij1

383 11 3a

food1o11]
In 1001 u

(r14

B!.]2
[9oQioga:
1100001J
[O(H) 11011
noionJ
AR,

[01101]
11 1013

[VIniij2
9902

[o000101]
motion

113

Appendix A

551
553
555
557
559
561
563
565
567
569
571

573
575
577
579
581

583
585
587
589
591

593
595
597
599
601
603
605
607
609
611

613
615
617
619
621

623
625
627
629
631

633
635
637
639
611

643
645
647

s
00001111
110101*J

00101001
110000*J
00101001
1100113
00101001
110010*J
[90011
*J
01111
100*J
00011001
1 1001 1*J
001001
n» J
00100101
ioiooo*J
HOlOlOl
101* 3
0010101
1100* J
00010101
ioiooo*J
00110001
ioooic*J

00010101
ioioil*J

0001001 1
110011*)
00010111

1101109
00010101
110101*J
[099s01L
1101104
0101011
1001 J
00011011
101 (>0
010011
110047
loin

[O
IOOOl*J
L({)l_oon
i* J
0101111
1000* J
001 111,
ioo* J
[000101
1nmo=*J
0000111
iooo* J
001 1001
1101«
0110111
ooi* J
[lJ)OOOOOl
* J
0110*1
ion J

0101"1
ion

001010
iooi*

00000111
n_ino*J

u 11100 J
59000100*1
1111100 J
0100101
ioie J
oioin
ion*J
E?J(?OOIlO*l
11100 J
011101
101 11%
010101

o |o J
[| 11100*]
0Ol 1001,
r101* J
!8-0000*1

0001 J
[0100101
no* 1
00000111,

J

CsS machine

7>,0)
oooonn
noioioJ
00101001
1100000J
[i6°°]13
00101001
nooiooJ
n i
[coe] 1
[?1a°°]2
[001001
no J
01001011
10000 JA
!POIOIOI
11010 J
0010101,
11000 J

00101011
i0ooo J1
00110001
1000i100j

FOOIOlOl
1

fon i
10noo0jl

00101011
ioio J1

[ioo]4
fioion i
looio JA
[Oo0]4
n! |
ol
0o
0

[60°1l
Pon in
0000 JA
001 111
iooo J

000101,
1100 J

[VH
(i0)3

(AAIANI
100000j 1

[¢irli
1A21°]1
u-la
00000111
innooj
|ooioioj2
| ooioooj2
flOOlOl
loio JA
rionn
lonojl

000011001,
innoo J

ri>ioti
lonioj1
[¢éioo] 1
[on°]3

[/mi]2

[H 3

[o100101
1100

[Voin]2

ir"ii

T(s. 1)
[oooonn
i 101011
B?llOlOOl
00001
0100 11
ioonijA
R°]5
[0°01]

[ooi]l

[f.H

[ooz001
ni J
01001011
1oooi JA

00101011

T it
ooioijl

linic

[?00. u]I
Ooli
|0no|]1
oio
|0n0|]1
li
ioionjl
0001101
nonoiJ

foon *ha

00011011
001J

b n
liooijl
ronn]
linii)
[e?1°]12
[¢rii
[0801']!
[ooL11]
1001 J

000101,
1101 J

[?“ 13
[2.13

I'u otili
oon Jl

1000000]

uni

[AVIq)!
[001010]
ioon
linoi]2
[00901011)
n litoo J
[001001J2
[Loor01t
oti JA
101 M1
oniJl
0O000I11011
nn loo J
m o lli
otinjl
B
[o0i m]2

in a
00000M
10001 J
[OlO_OIO!]
noi
0oooonn
inoni J

[oiio]3

d(s)
165
165
165
165
163
162
160
160
158
158
158
158
157
156
154
152
152
150
148
148
146
144
143
139
138
135
132
131
130
129
128
124
123
122
121
121
118
.118
117
.115
114
111
.109
108

O O © OO OO O0O0O OO O O O O O OO OO OoOOoOOoOOoOOoOOoOoOooOoOooooOoOoOoOOoOoOoOoo o o o

.106

imi

0.104
0.104

552
554
556
558
560
562
564
566
568
570
572
574
576
578
580
582
584
586
588
590
592
594
506
598
600
602
604
606
608
610
612
614
616
618
620
622
624
626
628
630
632
634
636
638
640
642
644
646
648

s

[ooou in
1101107
fooioion
Inoon*J
00101001
i10001*J
foioin
lio* ' J
[000100]

0101001,
ioi* J
0001101
i 10011*J
00011101
nolio*J

[o10011]
iooo* J

0001011,
i 01101%

[000101 1n
101100*J
O 1
eiii
00110001,

100000*J

00011101
110100*J
0010001
11100%J
roooioon
1110111%)
0001010’
110100*,

ooioin
o1 J

‘00011%]
i]

00011001
11010073

ODI 1010]
101001 *
[000010]
m* J

11111110 J

0000010*1
ninio

[po1010]
i0oo* J

00000101
mno*J
foni]

u* J
!B-OOOlOO*ZI:J

0100101,
ioo* J

g

[OlOl]j
1()10*,
[010111

010010
i1010*.

00001111
niioo*J
fon looi
Inn* 1
foinooi
li lio* J
jo11000

[009911]
100* J

000001i*1
nloioi J

00)010]
11'160%3

T(s, 0)
oooonn
nonooJ
[?A01]3
00101001
11000i0]
1A8"]1
R0'00]!
[A?A°°]i
[?1A0,]2

[oiioo0]2
1001111
0000 J1
ioioH
[o00]4
00110001
10000i0j
loooo

[oioo00]2
0010001
in OOOJ

it

[?A°"]1

[onoo]2
00011,
lio J
00011001,
1101000J

001101
inooj

[re°Ti

[io]3

m a

[A°°]3
000101
ino J
oonoi
iooo J
1,013

[lOlO 11
01001071

ir ,oli
10000010} 2
JOOOOIOOj1

oo1010]
ioooo J

[00«10]2

vV |

1
1001011
ooo J1
[A* <11
[A?AA]L
[211,]1

0100101
noiooJ

000011
nnooo

[Vo]3

FlOOOll
ono

0000111,
iooo J
ir...]
(e]e][e][e]]
I'licooJ

nooLi)
[pooonn
i 101101J
[?101]3

0100 11
iooonjl

[A2"]i

[m1]1
10100] 1
oti JA
[2ti°12
00011101
11011013

1001 111
oooi JA

o
00010111
ioiiooiJ

lOOO ﬁl
0001 U1
TZOOI \

ooinon
1001 JA
0010001
uiooij
001 li
ionnjl
OOIOIOI l
1001

[QOIDII’\
ion J

|, 2
[00110011
1001 JA
001101
inoij
joooiooj

m a
[0o0ljl
[S°14
211
in»
jonc°]2
01101011
ioon JA
[0000101
nn J
(inio]2
(211110171
&OOIOIO!J
10001
1000010] 1

r 1]
[v?1101]1

1001011
ooi JA

[?!u 0]
[AVAIJI
[?[[.]!
0010 11
ioioijl
[fooi]™

[27]3

[?14

(AT]I
r ul2
[0i0i]3

001010]
luiooij

© O O © OO OO0 O OO © O OO OO O OO O O O OO OoOoOOoOOooooOooOoOoOoOOoOoOoooo o o o o o o o

114

d(s)
.165

165

.165

.164

162

161

.160

159

158

158

158
157
157
156
153
152
150
150
148
146
146
144
143
139
136
134
131

131
129
128
126
124
122
121

121

118
118
117
116
115
112
110
108
106
106
106
104
104
104

Appendix A CSS machine

n
Cc49
M1
653
655
657
659
661
663
665
667
669
671
673
675
677
679
681
683
685
687
689
691
693
695
697
699
701
703
705
707
709
711
713
715
717
719
721
723
725
727
729
731
733
735
737
739
741
743
745

S
rooioooi
11111 0%J
roooioii
liooo* J
K "]
rooioooo*i
1000100 J
roiigooi
Ino* J
rooooi u *i
lilioor J
rooooi n *i
[moni J
l’?OODI ii* |
10010
rooo "o*i
Imo J
foioi
1To1*J
roooi ni
Inn* J
ro00o0iio*i
o111 J
rooioooo*i
liooooio J

0001100*1
I 110000 J

0001100*1
li01110 J

rooiion
11'1100*
(X(>®1)01)1
fn * J
0001100*1
nooioi J

0101011
ioioi*J

[oogo001
n* J

[eotgtol

1oo* J

0010100*1
000001 J

0001110*1
noion J

0001100*1
nooooo J
ooifoii*l
ionno J
[mm«]

0010000*1
noooio J
01)0101 1*1
on
| ooooioj
jooioooj
0001000*1
l100001 J
0100*1
iooo J

0001111%1
lio1011 J

0100111
T1001*J

0000101*1
nonoi J
0001101

I 100* J
‘0001015
noo*
00001111
noion
[0000110*1
Inoion J
[0010100*1
11100001 J

0010100*1
noooio J
00i00i

in* J
[010010]
110000%)

0&Qli*l
[RAES™s
0011000*1
1000loo0 J
Q1010111
ioiono J
0001010*1
nonoo J
[0100015
no*

[000110,1*]
nonoi J

ro>,o0)
0010001
nnooJ
[A°']3
[90111
o J

B&J4

["H
TR

[i..H
[o.0H
(VoV' “ *J
[A2¢]i

Ifo]3

oooomm
iiom o

[>0]5

[?880012
fgo110001 1
ino JA

[1000)2
JUO00g |
000110001
1100101 J

1010111
01010J1

R 1000) i
0010101
iooo J
1000 lo
0000iH
Ego1110011
A

000110001
l100000 J

roncn 1011

nno JA

11
LuoomJl

fono ji
1110011J1

[egooto
io J
[.JI000)]

0000 11
100001J1
100011
000 JA

0011110]1
1011

001
10010.11
fo1io 11
1101101J1
000110

11000
[101]3
[?87?"0li
jion)3
[01000 J1
1100001 1
01000 11

100010J1

001001,
lino J

‘100101_1
00000jA

0115

fl 1000019
loioo J*

‘001010051
10110 A
[1)0101DO] 1
Inoo ¢
IR
[?0.H

T(s. 1)
0010001
iinoij
B'H
R H
100001l
‘0100 i€
0110001

lio1 J

000011111
l110011 J

000011111
li10111 J

00001111
1110010
[i6ioi]2
M ill
M3
[TioH
[o]6
[0100113
[?no)3
001101
111001
0000001
il
[0i]5
10101]1
01011J1
‘9010001
J
‘001010]
o1

fioiooilo
loooi

[0?én]2
[A¢'K,.13
[¢?tijo]l
[01000j

Pt
100010J1
[7i0,,,]2
jooooioj
irji
[¢r'13
[Ass'Ti
[01011]2
[i84i,]1
[?6tioi]i

000110
1001 J

[0 ..MJ2

ooonnli
JA

ion
(i iH
[igi“ 12
[eie* *]2
[v2.)1

10010
00001J1

17968

fo100° &
o1l

[fo]3

iiofloo]!
ir ‘)2
[o1)s

© © 0O 0O OO0 OO0 O OO OO OO0 Oo0Oo0OoOOo0Oo o oo o o o

©O O O O O o ©O 0o OO 0 o O O o

n
650
652
654
656
658
660
662
664

668
670
672
674
676
678
680
682
684

690
692
694
696
698
700
702
704
706
708
710
712
714
716
718
720
722
724
726
728
730
732
734
736
738
740
742
744
746

S
[OIHH]

[Quooo]J

0010001*]
iooo100 J

[0001100]
niooi*J
001010
10io*
0000I10%1
niono J
[9010005
io*
0000101*1
niono j
0000111*1
n 10100 J
0010011*1
1001100 J
0000III*]
nonio J
0010111%]
1011011 J
Egoloom*i
000001 J
0001100*1
inoooi J
0001111*1
tioini J
001101
nioi*
0001100*1
1100100 J
0001000*1
1000010 J
01011
1000*
[0001010]
111010*J
0001011
111010%
0010100*1
1000010 J
0001100*1
1100010 J
0001100*1
1100001 J
011011* l
RO
010000*1
101)000
[0010001*1
1100010 1
&?001000*1
110000 J

01111

[in*].'l
0011101
1I001* J

0111101
0111%)
0001100*1
noion J
[000_1101*1
on

0010011*]
ionoio J
O000I10*1
1101010 J
[OOQOI_ll"l

ooooum
nonoo

oooon_o~1_
nonoi j
00001 N *
nonoi J
[(H)10 1DO*]
1n 00000
0010100*]
1100100

0001110* 1
nonoi J
[0100101

110001*1

0001011*1
ionon

(H)11 000* 1
1000010 J
[010011
no* J
010011
ino*
‘0|0000|
J

0001 t00*]
101000 J

r(.,.0)

[2i>8]2
001000101,
1000100 J

[10010]2

J|00IOI0]
10100 J

(000,,00]!
[,o00]2
fooototons
no JA
[ilOOH

[il®
{9001110]1
ino [
0oj01non
lion JA
[600i)3
00011000

110001
[0011 noli
m JA

[foio)2
000110001
I 1H)100 J
[8001(3(}1]
000010 J

101301

0000

100101011,
lio

foo ionn
lioo JA

001010001
1000010 J

000110001
l100010 J

[0.]5
011011018,
11101

[00000 n

0JA

1
LDOOIOJI

0001
n 10000 J
01111
ino

[6,013

(¢!tio]i
[?n!looo] 1

IMS

fono lo
111010 J*
000110011
1010 JA
‘0001 noj.1
1010 JA

[ogQrtoLs
noo JA

[?i0i)3

‘OO(H)! 110]
nonoi J
[(H)1010(H)]
11101)000 3

[oe"14
0011 Ioo}]l
I 101
1001011
000i0j1

IMS

fIHHH) 11
looooio j*

‘OIOOI],
noo

(ir)i
[vm
[?800)3

T(S, 1)

[21101
[28?]2
[10001 I]o
0100
[01100J2

0010101
o101 J

[?ono0)2
(0,00°]1
[t10110)1
[6100]3
[Vo¢*)3
[Al,0]2
[Ai.]4
[10010119
000i
11**14
[T2am]I
[?¢.]2
[0o0]5
[,viri3
{ionn
0001J1
00101011
ki
11
11010101
10100119
0010

[¢001]4
[Al001]3

[6V1161]1
Jiggoo1e
000 Ji

ro0ioooi 11
11100010 J

[r K,i]3
ai'l
1114
[A G Ifli
[fon)3

[6iila
[0o10011n 1

[11010 JA

[0,0]4

000111111
1010 JA

OOOOIlI [
I'101 100 J

lio,H
(6i,0,12
[.r M2
[i© 14
[67i0i)2
100101 1

000i1J1

fooo1o01ll]
lionon J

[i 10001 19
1(H) 10
[r]2
{Ioon n
(H) JA
[IKK»,]2

[k 0011 L
I(HH) A

</()
0.102

0.100

0.100

0.099
0.098
0.098
0.098
0.098
0.098
0.096
0.095
0.094
0.093
0.093
0.093
0.093
0.092
0.092
0.092
0.092
0.092
0.091
0.090
0.090
0.090
0.090
0.090
0.090
0.089
0.088
0.086
0.086
0.086
(1.084
0.082
0.082
0.082
0.082
0.082
0.082
0.082
0.079
0.079
0.079
0.078
0.077
0.076
0.076
0.073

Appendix A CSS machine

n

747
749
751
753
755
757
759
7G1
763
765
767
769
771
773
775
777
779
781
783
785
787
789
791
793
795
797
799
801

803
805
807
809
811

813
815
817
819
821
823
825
827
829
831

833
835
837
839
841

843

s
fO001101*1
11101001 J
room ioi
Lnii* J
foioo*l
lion J

[0101101
Ir1io0* J
[00011001
11010* J

[0100101
lioio* J

R°.u]
[oo00O0I1
1ooaGiI*J

R H]
30000100j

[0000011%1
11111100 J
000010111
nn i0o0*J
300100lj

looooioj

ooiion
1100*J

[0.,0,°]

[?0i']
1000100j

l‘il 110111- J
f00001101
Ino* J
[oinon
111110%)
[0111101
lion* J
[0011101
lion* J
[0011101
1101+ J
0000i n n
1110011+
000011101
1110011%]
[00010101
Ilio*
fooooi iin
11110010*1
[00011101
lino* J
[01011101
rrio1r* J
[001 1000]
lino* J
[00000m
lioooo*j
000110001
11001013
[011101
1101 J
[01010*1
noiotr 3
[0010101
ot
foo I]]ool
lion *
000110001
1100000*J
[01101101
111101 J
roin in
Li1111*%J
[mom]

[o0 110001
lion
[oounm
lion*
[0100111
T1'1010% J
fooonnj
lioio*
[o00L1101
lion*
0000l in 1
Tioiioo*)
[010110]
ino* J
[010110]
1101. 3

T{S, 0)
[oi]5
fii]5

[100011

foll J1
fonoii
iooj1
[oo120011
ioo J1i

[10010] 1
foioo J1

)1

[¥0']3

|oooLoJI
joooi io]2
R 10]3
R ,00,]1
ir ,0]i
(0..0.13
U0,0]i
[ee,0T0
R0,00]i
[oi 1lio]3
[oouU°12
[mo]3
[oiio°]l
[?i0,0]1
[0?0]2
[ooi 10]3
[ono]4
[0.0.°]2
[2r"]2

[¢14
[01110]1
1o110JA

[mo]2
[115

[VoioH
111011
oio J1
£10100]1
loioi JA
jootozoL
ioio J
[01 1I(H>1 1
Ino 1
[1100011
looo J°

011019
lioiojn

[¢15
[?A"]i

[?1A°°°]1
[011110 1
1110 J1

irn
[iKiinih
lioo J1
[(Mil 1101 1
i J1
[oooiin n
Inooo J1

M i
[10110]1
loio J1

T(s, 1)

[001101111
1001 JA

[?14
[off1!
[?:a?]i
[00110011
noit Ja
[1001011
foioi JA
ir 1
GIRE]
[00001j

10000100j

[noo]”
[?!110011
[H 1

jooooioj

[?hooi]2
Jololoj

[¢1,01
JOOOIO0J

[000001111
finoinij

(f13
lioi]3
[ottte]i
[21>°]i
(21 °Ji
[niln]2
[om]4
207211
11100101
[i14
[onion
lion 1j1
102]2
[?']4

[01100019
lion K

[etreni
[1010111
loioi JA
713
[?iilo0]1
[o0i]5
[?012]2
[H)5
e
[?! iotvo] |
[?it,,0]i
[?°"13

[int1*]t
111 - oy
[oliooi]2
[010110]
11101 J

[10110]
foll JA

O O O O OO OO OO0 0O O O 0O 0O 0O OO0 0O 0O O OO O0OO0OOoOOo0OOo0OOoOOoOOoOOoOOoOOoOOoOOoOoo o o o o

o O © o O o

d(s)
073
069
067
066
066
064
064
063
062
061
060
059
059
058
057
057
.054
053
052
052
051
050
049
049
049
049
049
049
048
047
047
046
046
046
046
046
046
045
045
045
045
043
.t
042
041
041
041
041
041

n
748
750
752
754
756
758
760
762
764
766
768
770
772
774
776
778
780
782
784
786
788
790
792
794
796
798
800
802
804
806
808
810
812
814
816
818
820
822
824
826
828
830
832
834
836
838
840
842
844

s

[00000*1
110000 J

[011001

[1
1101« J
[00001]
[T

[0110101
110011*3
[0000101
Tu s)
[0001101
Tio*
[ggo00o!
X* J

[ooooon
io*r
10010101

[ooomom
G
[oiion
Tlioo* J
joga101
a¥)
[o00011001
mnoo*J
[0101*1

lioio J

0000I111*1
iniooo

5011101
*
[00001101
o= 3
jor1z01]
inn*]
[onion
Liiioi=J
001000101
ioooioo*J
ooin n
ion*
[01111]
11110%J
[00011001
ino*]
[99991111]
1110111*J
fooioon

J

[0001100]
Lioi*
oooouocu
1101110*3
000110001
1110(101%]
[0011111]
Tulis 3
f000000]
Im * J
00011000

I iooioo*J

190010000
1101)001 0*
[01010*1
lioioo J

[00101000]
11000010* J
[0(H) 1l000i
11100010*J
[0110110]
flino* J

[0011111
Ini*

‘OOIOOOlll
1100010*J
‘O 100001

0000*J

[01011]
113

[011111
J

o]

[ATER]
[00011101
]

_&ﬂ]ll
ion*]l
[QVH) 1110]
11101101+
010110]
Inix J
[00101000)
Inooooo*J

T(s, 0)
R°]4
[i100]1
(©°13
(°13

ir oo01]
[11010]1
foonojA

[000010i
111110 J

[0001101
lioo 3

Joooo10Jl
RH2
Qoo

3
jooioooj j
[oo001]!
R,,0]
R 03

[¢?A°]1
R,,,0]3

[i“-°q1
[0o°,.°]t

[lio]n

[o]5
10001019
0io00

[214* i

[00]3
[ou°o]2

[omo]3

(T ‘]2
[ooonoo]
lioio 3

[000I 1(H)] 1
in loo

fooo
licooiojn
[o]4
1000(K)j |

bbb
1000011
loioo
[10100]1
foioo J
o
loo' XD
[08°°]14
0i 10]9
nooj~
t0]3

£10001119
loioo 1-

[ere]s
[01011]
fino J

[o0]2
001110]1
oo JA

1« °13

im 1"]!
[oooinon
Inoio JA
010110]

lino J

FIOKHHILO
loooo Jx

T(S, 1)
[000001]
110000 J

H 1
[0111101
inn
[?0i?]1
[oo°°l]
[1101-
Tooidls

[0000101
linn 3

[o°nolj
10000010]

[oooo1!

R,0]i

[H i
[0e3'a

J00110]

[001100]2

[0?A]i
[ooo0]4
[0...°]

[000110]1

2113
[i15

[0i]5
[t
[011111
inioid
[?13
[00001111]
linoinij
RB,]3
joouoo]!

Bnoil®
ins

[e[5
[000000]
Inn J

[Yoo.H

[foil5
rioion 1
loioo J1

[1000 19
loom oi

imi] i
[011019
11101

[(mmn
n'n

[oo0ii n
lioooioijl

fro,, Lt
1 100(H) 1J1
[oioin
inn 3
[01]2

[ooinon
1101 JA

[oii,0]2

[21egi
foicoo n
11(HHHH) 1J1

_O_OOOO_OOO_O

116

<t(s)

071

067
.066
.066
065
.064
063
.062
.062
061

059
059
.059
058
.057
055
054
.053
.052
.051
051
050
.049
.049
049
.049
.049
049
.048
047
047
046
.046
.046
.046
.046
045
045
045
045
.045
043
.042
041
.041
041
.041
041
041

— —

[S—

A ppendix A

857
859

861

897
899

901

S

rooiooi
11110*3

rooiom i
111001+ J
f0010100]
Llono*]
00101001
1100« 3
fool 1001t
11000« J

joooiloj

rooiiooi
1101~ J
foi IKK)]
Im « 3
[01101]

1101 1«J

j00000:0j

joooiloj
oooiio]
1100« J
[si101]
[00000111*1

11101111 J
[00001111(]
L i J

o
[O 1110*1
lioiio J
[011101]j
1111« J
[011000I
1100(1« J
[01010]

11011

[001 111]
Inn« J
[011000]
1111« J

[01011]
11110«
[001110]
1101« J
[oo11101

io« J

00011111
11000« J
[000I1101
111010« J
[0101 111
Tulle 3

[VJiou]
[010100]
I1KM)« J
[01100]
1ot 1J
[0000010]
(I J

30001 10
jo XTI,

0oo0oMill
1110010 I«
[00011110]
Inn« J
[011 toil
11110« J
[01000]

[01000I]
1100(1« J

J0000010j
[ooooli
Tinn* j
[001 IN 1]
lion« 3
[00101]

hoi* 1

)

1210

Css MACHINE

T(a,o0)
[00100]
111100
[1"H
[0101001
11100 JJL
[0100]1
lioooJ1
[iA“]2
[01111]
i J
[r ..o0]i

[?A*°°1i
[011100]
fino 3
110111
loiloj 1
jooooioj 2

[rdi

[e*"°]3
1i,0.,]1

[fiiiH
[00011110]1
J1

[011101]
lino J
[1 MM)] 1
loooo J1

[0218]i

[¢H
[011000]
lino 3

[?100] 1
[?A"°]i
(00.0)2

[A"]3

[0001110]
inoioo J

fom Ji
11101

[011100]
1110 I
[010011

Livoojl

[1100]1
ToiioJl

jooooloj j

[000110]
110 J

[A001]!
[ooioio]3
[1s
[A]4
[1000]1

foooo]l

1000111
loooo J1

jooooiojz
[fo)4
[iAT]i
001011
.1010 J

1A']3

r(».D
[00100]
InioiJ
[?n .13
[010100]1
11101 J1
R ,00]3
[Aiv]2
[?11"]

[?12

[vV1,0°]1
[011100]
inn J

[non,
Toii:J1
20(100 10j

JOOO0I110J

[(Kino]z

[000001111]
111101111 J

[oni 3

(Allo li

fonion
(ITETR!

f11mMm)] 1
looo: J1

[A?12]1

[fl4

ir]2

[01011]
InioiJ

[001110]
lion 3
(M) 11101
111 J
(»' 14

[0001110]
1110101 J

[0111]1
1111u 1

[01 1KM)]
In11 J
[0100]1
liooiJ1

rnopji
oL
[0000010]
(1

[000110j

[OOl 1111
ont L
via
011101]
inoi J
1000]1
loom J1

[AMM) 1] 1
IMM)I 31
[?2..]!
(n]4
[?iL,,,]i

[00101]
lion J

(114

o

d(s)
.040

n 3
sas DR,
sas RN,
g50 10011003
ss2 ORatYh
ssa [R3Ei0M)
ess {0510
sss 106.°%
seo (913000
862 iw ri
sea G0l
g6 J0000100j
868 g v
870 [s1001]
g72 [001100j
sra oSO
ore P3RS0
oo Il
ss0 [t
sz EHA
soa oA
sge [0111010]
ass G109
aso [
A
sos [
ase pLIOI
soo 9361119
soo {9815
N i
s0a [GIOFM
906 195100
60g J00001003
910 [mm]
o1z {PR8% IS
ora [GH10%
s1e {§NI2",
o186
920 1 ol'")
ozz [NiRh
924 yi]
926 [901010)
oz [0050™h
930 u“f{l;lv i,

T(-i,0)
[AYio]2

[oi1oH

001100]
i g
o011l
loioo J1

[A(")3

[Am i
[Al100]2
[A8°)2

[reli
1101]
1070031

joooiooj 2

[iot.Ji
e qi
R,,00]i
[ooioijr
0001 KM)]
111000 J

moon
loii: J1

jooooojJ

[¢iio]l
[010111]
11101 10j
[AS]4
[AA®)2
[A"°]2
VA" I
[AAM]2

1x°]3
[0001110]
1110110 J

jt1i10l
oino Ji1

[0111]1
11011i0J1
[0100]1
lioioj1
[EERES
Nt
J000100jJ
K1
[oii11,)3
[00101]
lioo 3
[011101]
Inno J
[AoA®)l
[AA"]1

[10(100] 1
Toooo 11

[A.|1

R ,0,0]i

[ooliol]
liooo J

[AA']2

T (a, 1)

[vivee]1
[0010111] 1
1110111 JA
velz
[Av81'] |

R "14

f110111
loio J1

[001100]
11001 J

‘Oil KM)]
11 J
i,]t

[Aton)l
rooooiool

Vo]
joi001]
jooilooj
[000011111]

linooioi J

[OOOI KM)]
HIKMM J

11 K)I] 1
oi ii J1

[000000]
linn J

[niili
fon iJ1
[VA1L.]
[AV]4
[Al°]2
[001110]
fooin il
lion 3
A2
vei2

[W 1110] i
[111110]1
fonn J1

join 1
11011 11J1
[0100]1
lionJ1
[Ato?)l

|
[0000I11 |
linn
[oolo1]
hoi 1

11
J1
[oinon
inn J
[A0A'H
[A11*]1

[1001)0] 1
IMM)I” 31

[i.02

o]

0]

o]

0]

o]

o]

o]

o]

.032

.031

.030

.030

.010

.007

.006

Appendix B

Recurrences for 7i1l(z),... ,7152(2)

1+ 10j ~0+0
(0> o “n (1)

(@) (io> (o) (I+io) (o+0!)
1 /[A 0] 1 1 2 2 2 2 3 3 3 3
2 /[10.1] 2 4 5 X 6 7 18 X 23 20
3 ¢/[no, |j 8 29 10 X 45 41 52 X 19 20
4 /[no, 2) 21 25 2 1 2 3 X 3
5 ¢¢[010,1] 3 2 12 X 5 X 12 X 18
6 [ié,(io, i)nw ,(looi,2)] 2 24 5 X 47 32 18 X 23
7 [66,(10,1)0 ¢¢*(()0.1)] 14 33 15 X 26 7 3 X X 20
8 ¢¢[100, 1] 5 24 13 X 47 32 13 X 23
0 ¢¢loo, 1] 9 21 8 7 2 11 19 20 3
10 ¢¢[01(H), 1] 18 2 13 X X 13 X 18 X
11 [/Y,(io, 1) n ¢foi.l)] 16 16 15 X X 15 35 X « X 35
12 ¢¢[0110,1) 19 5 12 X 13 X 12 X 13
13 (¢[1010,1] 13 3 13 X 12 X 13 X 12
14 [g(io. i) n ¢ve(1l,i)] 38 27 17 X 40 39 X 20 19
15 [¢é,(0i0, i) n//h(n, 1)] 3 14 17 X 15 X X 35 X
16 [¢6,(10,i)n ¢t(no,2)] 38 4 17 X 6 7 X 23 20
17 [¢¢,(010,1) n(/fe(K).)1 51 16 X X 15 X X 35
18 ¢¢[0010, 1) 3 8 12 X 10 X 12 X 52
19 ¢¢[1100, 1] 12 29 13 X 45 32 13 X 19
20 [¢¢,(110.1) n ¢f00.1)] 31 29 49 X 30 41 35 X X 20

Appendix 13 Recurrences

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
a1
42
43
a4
45
46
47
48
49
50
51
52

¢¢[100,2]

¢¢[010,2]

[77(no, i)n 77,(1001,2)
¢¢[1100,2]

¢/[mo, 3]

[77,(io, 1) n ¢¢,(1001.2) n ¢4(01, 1)]
[¢6(00,i)Nn76(00i,2)]
[¢6(i0,i)n76(00i,2)]
[¢6(00, i)n ¢/,(000i, 2)]
[76(ico0,i)n76(0i,i)]
[¢¢,(100,i)n 2 7/ »(I1,i)]
[¢/,110.1) n/v6(oi. 1)]
[¢/,(110,2) n /i ItK), 2)]
[¢6(10,1)076,(010,2)1
[e/f(exjio,)n 77 k(ii,i)]
[¢¢.(10,1)0 76,(011,2)]
[¢/,(100, 1)0 ub(10,1)1
[¢¢,(10,1)076,(100,2)]
[77,(100, 1)0 /b(CMm), 1)1
[¢¢.(10.1) OT/,(1001,2) 076(00,1)]
[77.(10,1)076,(000, 1))
¢¢[0110, 2]

¢¢[1000,3]
[¢¢,(110,1)076(001,2)]
[¢¢,(100.1)077,(10001,2)1
[¢¢,(1100,1)076(01,1)1
[76(10,1)0/6(10011,2)1
¢.¢[11001,2]
[76(0100,1)076(11,1)1
[77,(100,1)0 (6(110,2)]
[¢6(110,1)0 76,(10,1)]
¢7(00100, 1)

a o o N ©

50
22

a N N W

14
14
24

12

42
18

37
18

(A

29
25

16
21
33
21
16
27
14
25

31

33

24
33
33
22

29
24
14
48
24
14
24
27

('8)

10

15

13
17
49
34
15
12

13
15
15
a7

10

13
13

17
17

13

<10>
34

w N
o o X

X X X X o B X X X X X X X x B x x x 4 x 4 X

X X X X

1)

45

11
26

40

28

49

40

26

26
30

30

47
47
15
a7
39
10

(o1)
28
34
32
28

2
17
11

7
30
17
30
15

2

7

X

32

32
32

34

41
46
17
32
32

32
40

(1+18) (0+0!)
(I+io) (o+0!)
3 3 3 20
23 20 3
52 19 X
3 3 20
3 32 3
15 X X
19 20 X
18 X X 20
19 20 3
13 X X
X X 20
52 X X 35
3 X 20 3
35 X 23 20
X X 52 X
35 X 23 20
X X 20 X
18 X 20 20
13 X X
35 X X
35 X X 20
23 X 3 3
3 3 3 44
52 X X 20
13 X 23 X
13 X X X
18 X 23 X
X 23 X
X 35 X
X 23 X
X 19 20
13 X 52 X

Appendix C

Css machine for adaptability

8 T(s, 0) T(s, 1) d

= CD . (?;|‘) 0.105083
2- H GD- D 0.104108

2 CD CT)- (D eawm
S I J
g = C D ng + (C:»D» 0.055223

- C D ono\ DA 0.055033
\uo) .
‘0iooj /oioo\ /(0100 0.054731
«7 = \110)) .
'0OKIj
v - j (r) . C D 0.049381
rooioX /ooio\ /00io\ 0.042353
@ = 1) \no) vni J '
/ooio\ /0o0io\ 0.039862
«10 = \10) + + Vioi; '
- C D . (D 0.035927
/0010\ /0010\ o
a - (— 010°) + ++ 0034859

\ni; wviiios

Appendix C Css machine for adaptability

8,3

g«

816

8*2

S18

8,9

820

821

822

823

824

825

826

828

829

T(s, 0) T(s,I)
/0110\ /....ioo0i\ , /ono\
(,110) U) o+ o+ o+ Vuoi;
/oioo\ /..00io\
(,110 J (.A)+ + o+ (v)+ +
/oioo\ /0100\ /..0010\ ,
(il Vino; (\111)+
/0010\ /..101i\
(,110) U)+ + (noi)
/0010\ /oo0io\ /o0o0io\
(,201 J Vioioj (ion)
/010\ /.1011\ ,
(3 (o)+ (1)+
/o00io\ /..101I\ , /oo0io \
(,Illoj (A J + + Vinoi;
/0110\ /...0ioo\
(,1101~ (A J+ o+ o+ (A)+ + +
/01(K)\ /..00io\
(,moJd V..a)+ + + (e A) + +
/0010\ /.0ioi\ ,
[noi) (.10) + (A)+ + + +
/ooio\ /o00io \ /.010I\ ,
(,ioioJ Vioioo; (.101) +
/o0o0io\
\ 1011) (.a ;o o+ (A)+ o+ o+ o+
(0010 \
y11101J (A JE E E kA)+ o+ o+
/010I\ /.1011\ /..0lio\
(1o j (00) + (1)+ o+
/010I\ /...110I\ /..ono\

(...0 D+ o+ o+ (.12)+ +
/00io \ /....noi\ /(K)10 \
10100,1 (v IK,)+ + + Vioiooi;
/o00io \

1, 101(K)1) [a ; + + + + \Y; A o4+ o+ o+

o

0

.027516

.021566

.02ili66

.021177

.019931

.011964

.017430

.013758

.013683

.010588

.009965

.009965

.008715

.005294

.004983

.004983

.002491

Notation

Notation

ED,

6k -

expected length of diagonal less of two sequences of length n, 18

lim 19

Var(L,) - variance of less, 19

a1l finite state machine, 21

I(s) tape switch function, 21

T(s,a) transition function, 21

O(s, a) output function, 21

s —T(s,a) transition, 21

Tri(s,u,v

T*(s,u,v)

) extended transition function, 21

7’M+M(s,U t,)) 21

Cgn(s,u,v,m) computation function, 22

T

Ut(n, i), W

7j.) -

S(h,e)

transition matrix, 27
set of pairs equivalent to p, 31
set of all pairs of sequences of length n with less of length i, 45
number of pairs in n), 45
set of all matches, 48
pair with top and bottom sequence swapped, 48
set ofall collations generating a pair of total length m, 49
set ofall nondoininated collations of order t, 49
set ofaccepted collations of order t, 56
set of potentially dominated collations, 62
c(u, i) sets of potentially dominated collations, 67
set of /-tuples of sequences of length n, 79
set (E*)' of /-tuples of sequences, 79
for /sequences, 80

length of a shortest common supersequence of u and v, 84

N otation 124

ak proportional expected length of a shortest common supersequence

of | sequences, 85

A(u) adaptability of a sequence u, 93

A, minimal adaptability, 93

B, maximal adaptability, 93

c\k proportional minimal adaptability, 94
Ok proportional maximal adaptability, 95

W (u,v) longest common substring of u and v, 101

M "(u,v) the length of a longest common substring of u and v with m
mismatches, 102

N r(u, v) the length of a longest common substring of a and v with propor-
tion of mismatches < r, 102

H (u,v;r,s) heaviest common substring of u and v, 103

Index

adaptability, 92 generating, 6
maximal, 93 exponential, 6
minimal, 93 output, 21

i tape switch, 21
collation, 48

transition, 21
accepted, 55

. extended, 21
dominated, 48

rejected, 55 generate, 48
«-dominated, 6G
key
weight of, 102
collation, 48
concatenation, 4
length
distribution, 85
total, 7
stationary probability, 29
dynamic programming, 10 machine
css, 23
equivalence, 31, 49
labeled, 38
function strong, 32

computation, 22 finite state, 21

Index

regular, 27
match, 48

dominant, 11

minimal, 53

quasiminimal, 99
matrix

transition, 27

MAX SNP. 90, 105

nonsubsequence
common
shortest, 91
nonsupersequence
common

longest, 91

pair, 7

placement, 85

prefix, 5
proper, 5

projection, 7

ratio

|
failure, 36

sequence

distinguishing

shortest, 91
empty, 4
state
reachable, 27
saturated, 23
subsequence, 5
common, 7

longest, 8

longest diagonal, 18

maximal, 91

substring, 5

heaviest common, 103
longest common, 101
with mismatches, 101

superadditivity, 15, 94

supersequence, 5
common

minimal, 92

shortest, 83

superstring

shortest common, 104

transition, 21

saturated, 23

variance, 19

Bibliography

[ABG92] A. Apostolico, S. Browne, and C. Guerra. Fast linear-space com-
putations of longest common subsequences. Theoretical Computer

Science, 92:3 17, 1992.

[AG87] A. Apostolico and C. Guerra. The longest common subsequence

problem revisited. Algorithmica, 2:315 336, 1987.

[AGW86] Richard Arratia, Louis Gordon, and Michael S. Waterman. An ex-
tremal value theory for sequence matching. The Annals of Statistics,

14(3):971 993, 1986.

[Ale92] Kenneth. S. Alexander. The rate of convergence of the mean length
of the longest common subsequences. Unpublished manuscript, Au-

gust 1992.

[Ale94] Kenneth S. Alexander. Shortest common superstrings of random
strings. To appear CPM'94.

[And86] Gabriela Andrejkova. Systolic systems for the longest common sul>-
sequence problem. Computers and Artificial Intelligence, 5(3): 199
212, 1986.

[Apo86] Alberto Apostolico. Improving the worst-case performance of the

Hunt-Szymanski strategy for the longest common subsequence of

two strings. Information Processing Letters, 23:63 69, 1986.

127

Bibliography 128

[Apo87] Alberto Apostolico. Remark on the Hsu-Du new algorithm for the

[AWS5]

[AW89]

[BJ91]

longest common subsequence problem. Information Processing Let-

ters, 25:235 236, 1987.

Richard Arratia and Michael S. Waterman. An Erdos-Renyi law

with shifts. Advances in Mathematics, 55:13 23, 1985.

Richard Arratia and Michael S. Waterman. The Erdos-Renyi strong
law for pattern matching with a given proportion of mismatches.

The Annals of Probability, 17(3):1152 1168, 1989.

James H. Bradford and T. A. Jenkyns. On the inadequacy of tour-
nament algorithms for the n-scs problem. Information Processing

Letters, 38(4): 169 171, 1991.

[BIL+91] Avrim Blum, Tao Jiang, Ming Li, John Tromp, and Mihalis Yan-

[BY91]

[C'L92]

(CP90)

uakakis. Linear approximation of shortest superstrings. In Proceed-
ings of the Twenty Third Annual ACM Symposium on Theory of
Computing, pages 328 336, New York, 1991. Assoc. Computing Ma-

chinery.

Ricardo A. Baeza-Yates. Searching subsequences. Theoretical Com-

puter Science, 78:363 376. 1991.

William 1. Chang and Jordan Lampe. Theoretical and empirical
comparisons of approximate string matching algorithms. In A. Apos-
tolico, M. Crochernore, Z. Galil, and U. Manlier, editors, Combina-
torial Pattern Matching. Proceedings, pages 175 184. Lecture Notes

in Computer Science 644, Springer-Verlag, 1992.

Francis Y. L. Chin and C. K. Boon. A fast algorithm for computing

longest common subsequences of small alphabet size. Journal of

Bibliography 129

[CS75]

[CS83]

[Dek79]

[Dek83]

[DP94]

Information Processing, 13(4):463 469, 1990.

Vaclav Chvatal and David Sankoff. Longest common subsequence of
two random sequences. Journal of Applied Probability, 12:306 315,

1975.

Vaclav Chvatal and David Sankoff. An upper-bound technique for
lengths of common subsequences. In D. Sankoff and J. B. Kruskal,
editors, Time Warps, String Edits, and Macromolecules: The the-
ory and practice of sequence comparison, chapter 16, pages 359 362.

Addison-Wesley, Reading, Mass, 1983.

Joseph G. Deken. Some limit results for longest common subse-

quences. Discrete Mathematics, 26:17 31, 1979.

Joseph G. Deken. Probabilistic behavior of longest-common-sub-
sequence length. In D. Sankoff and J. B. Kruskal, editors, Time
Warps, String Edits, and Macromolecules: The theory and practice
of sequence comparison, chapter 16, pages 359 362. Addison-Wesley,

Reading, Mass, 1983.

Vlado Dancfk and Mike Paterson. Upper bounds for the expected
length of a longest common subsequence of two binary sequences.
In P. Enjalbert, E. W. Mayr, and K.W.Wagner, editors, 11th An-
nual Symposium on Theoretical Aspects of Computer Science, Pro-
ceedings, pages 669 678. Lecture Notes in Computer Science 775,

Springer-Verlag, 1994.

[EGGI92] David Eppstein, Zvi Galil, Raffaele Giaucarlo, and Giuseppe F.

Italiano. Sparse dynamic programming I: Linear cost functions.
Journal of the Association for Computing Machinery, 39(3):519 545,

1992.

Bibliography 130

[ER70]

[Fel68]

Paul Erdos and Alfred Renyi. On a new law of large numbers. J.

Analyse Math., 22:103-111, 1970.

William Feller. An Introduction to Probability Theory and its Ap-
plications, volume |. John Wiley & Sons, New York, third edition,

1968.

[FLY92] David E. Foulser, Ming Li. and Qiang Yang. Theory and algorithms

for plan merging. Artificial Intelligence, 57:143 181, 1992.

[GMS80] John Gallant, David Maier, and James Storer. On finding mini-

[HDS8O]

[HD84]

[Heb91]

[H192]

[Hir75]

mal length superstrings. Journal of Computer and System Sciences,

20:50-58, 1980.

Patrick A. V. Hall and Geoff R. Dowling. Approximate string match-

ing. Computing Surveys, 12(4):381 402, 1980.

W. J. Hsu and M. W. Du. New algorithms for the LCS problem.

Journal of Computer and System Sciences, 19:133 152, 1984.

Jean-Jacques Hebrard. An algorithm for distinguishing efficiently
bit-strings by their subsequences. Theoretical Computer Science,

82:35 49, 1991.

Koji 1lakata and Hiroshi Imai. The longest common subsequence
problem for small alphabet size between many strings. In T. Ibaraki,
Y. Inagaki, I\. lwania, T. Nishizeki, and M. Yamashita, editors, Algo-
rithms and Computation, Proceedings, pages 469 478. Lecture Notes

in Computer Science 650, Springer-Verlag, 1992.

Daniel S. Hirschberg. A linear space algorithm for computing maxi-
mal common subsequences. Communications of the Association for

Computing Machinery, 18(6):341 343, 1975.

Bibliography 131

[Hir77]

[Hir78]

[HS77]

[IF92]

[IF94]

[ITH92]

[JL94]

[KR87]

Daniel S. Hirschberg. Algorithms for the longest common subse-
quence problem. Journal of the Association for Computing Machin-

ery., 24(4):664 675, 1977.

Daniel S. Hirschberg. An information-theoretic lower bound for the
longest common subsequence problem. Information Processing Let-

ters, 7(1):40—41, 1978.

James W. Hunt and Thomas G. Szymanski. A fast algorithm for
computing longest common subsequences. Communications of the

Association for Computing Machinery, 20(5):350-353, 1977.

Robert W. Irving and Campbell B. Fraser. Two algorithms for the
longest common subsequence of three (or more) strings. In A. Apos-
tolico, M. Crochemore, Z. Galil, and U. Manber, editors, Combina-
torial Pattern Matching, Proceedings, pages 214 229. Lecture Notes

in Computer Science 644, Springer-Verlag, 1992.

Robert W. Irving and Campbell B. Fraser. Maximal common subse-

quences and minimal common supersequences. To appear C'PM’'94.

O. H. Ibarra, J. A. Tao, and W. Hui. String editing on a one-way
linear-array of finite-state machines. |IEEE Transactions on Com-

puters, 41(1):112 118, 1992.

Tao Jiang and Ming Li. On the approximation of shortest com-
mon supersequences and longest common subsequences. To appear

ICALP'94.

S. Kiran Kumar and C. Panelu Rangan. A linear space algorithm for

the LCS problem. Acta Information, 24:353 362, 1987.

Bibliography 132

[KS60]

[Lius5]

[LLF91]

[LS77]

[Lu90]

[Mai78]

[Mid93]

[Mid94]

[MP80]

John G. Kemeny and J. Laurie Snell. Finite Markov Chains. D. Van

Nostrand, Princeton, New Jersey, 1960.

Chung L. Liu. Elements of Discrete Mathematics. McGraw-Hill,

New-York, 1985.

Hua Lin, Mi Lu, and Jesse Fang. An optimal algorithm for the
longest common subsequence problem. In Proceedings of the Third
IEEE Symposium on Parallel and Distributed Processing, pages 630-

639. Los Alamitos, 1991. IEEE Comput. Soc. Press.

B. F. Logan and L. A. Shepp. A variational problem for random

Young talbleaux. Advances in Mathematics, 26:206-222, 1977.

Mi Lu. Parallel computation of longest-common-subsequence. In
S. G. Akl, F. Fiala, and W. W. Koczkodaj, editors, Advances in
Computing and Information - ICC1 90. Proceedings, pages 383 394.

Lecture Notes in Computer Science 468, Springer-Verlag, 1990.

David Maier. Tin' complexity of some problems on subsequences and
supersequences. Journal of the Association for Computing Machin-

ery,, 25(2):322 336, 1978.

Martin Middendorf. The shortest common nonsubsequence problem

is np-coniplete. Theoretical Computer Science, 108:365 369, 1993.

Martin Middendorf. More on the complexity of common super-
string and supersequence problems. Theoretical Computer Science,

125:205 228, 1994.

William J. Masek and Michael S. Paterson. A faster algorithm com-
puting string edit distances. Journal of Computer and System Sci-

ences. 20(1):18 31, 1980.

Bibliography 133

[NKY82] Narao Nakatsu, Yaliiko Kambayashi, and Shuzo Yajima. A longest

[PY88]

[Ri078]

[RUSB1]

[Sim89]

[SK83]

[Ste82]

[Ste86]

common subsequence algorithm suitable for similar text strings.

Acta Informatica, 18:171 179, 1982.

Christos H. Papadimitriou and Mihalis Yannakakis. Optimization,
approximation, and complexity classes. In Proceedings of the Twen-
tieth Annual ACM Symposium on Theory of Computing, pages 229

234, New York, 1988. Assoc. Computing Machinery.

John Riordan. An Introduction to Combinatorial Analysis. Prince-

ton University Press, Princeton, New Jersey, 1978.

Kari-Jouko Riiiha and Esko Ukkonen. The shortest common super-
sequence problem over binary alphabet is np-complete. Theoretical

Computer Science, 16:187 198, 1981.

Imre Simon. Sequence comparison: Some theory and some prac-
tice. In M. Gross and D. Perrin, editors. Electronic Dictionaries and
Automata in Computational Linguistics, Proceedings, pages 79 92.

Lecture Notes in Computer Science 377, Springer-Verlag, 1989.

D. Sankoff and J. B. Kruskal. Time Warps, String Edits, and Macro-
molecules: The theory and practice of sequence comparison. Addison-

Wesloy, Reading, Mass, 1983.

J Michael Steele. Long common subsequences and the proximity
of two random strings. SIAM Journal on Applied Mathematics,

14(4):731 737, 1982.

1 Michael Steele. An Efron Stein inequality for uonsymmetric

statistics. The Annals of Statistics, 14(2):753 758, 1986.

Bibliography 14

[Ste92]

[Sto77]

[Sto8s]

[Tim89]

[TU8s]

[Tur89]

[UKK85]

[VK77]

[WC76]

Graham A. Stephen. String search. Techinal report tr-92-gas-01,
School of Electronic Engineering Science, University College of North

Wales, Bangor, October 1992.

Larry J. Stockmeyer. The polynomial-time hierarchy. Theoretical

Computer Science, 3(1):1 22, 1977.

James A. Storer. Data Compression: Methods and Theory. Com-

puter Science Press, Rockville, Maryland, 1988.

B. T. T hmkobckhu. Cjio» hoctl nowcKa oRiuhx noZEnocjie-
aoBaTejinHOCTeft, HaOTOCjieaoBaTejiiHociefi m cxoahux 3a,nay.
KubdepnemuKa, 25(5): 143, 1989. (English translation: V. G. Tim-
kovskii. Complexity of Common Subsequence and Supersequence

Problems and Related Problems. Cybernetics, 25:565-580, 1990).

Jorma Tarhio and Esko Ukkonen. A greedy approximation algo-
rithm for constructing shortest common superstrings. Theoretical

Computer Science, 57:131 145, 1988.

Jonathan S. Turner. Approximation algorithms for the shortest com-
mon superstring problem. Information and Computation, 83:1 20,

1989.

Esko Ukkonen. Algorithms for approximate string matching. Infor-

mation and Control, 64:100 118, 1985.

A. M. Vershik and S. V. Kerov. Asymptotics of the plancherel mea-
sure of the symmetric group and the limiting form of Young tables.

Soviet Math. Doklady, 18:527 531, 1977.

C. K. Wong and A. K. Chandra. Bounds for the string editing prob-

lem. Journal of the Association for Computing Machinery, 23(1): 13

Bibliography 135

16, 1976.

[WF74] Robert A. Wagner and Michael J. Fischer. The string-to-string cor-
rection problem. Journal of the Association for Computing Machin-

ery, 21(1):168-173, 1974.

[WGA87] Michael S. Waterman, Louis Gordon, and Richard Arratia. Phase-
transitions in sequence matches and nucleic acid structure. Proceed-
ings of the National Academy of Sciences of the USA, 84:1239-1243,

1987.

[WMMM90] Sun Wu, Udi Manber, Gene Myers, and Webb Miller. An
O (NP) sequence comparison algorithm. Information Processing Let-

ters, 35:317-323, 1990.

THE BRITISH LIBRARY

BRITISH THESIS SERVICE

EXPECTED LENGTH OF LONGEST COMMON
TITLE SUBSEQUENCES.

AUTHOR Viadimir

DANCIK

DEGREE PD

AWARDING warwick University
BODY

DATE 1M

THESIS DX187306
NUMBER

THIS THESIS HAS BEEN MICROFILMED EXACTLY AS RECEIVED

The quality of this reproduction is dependent upon the quality of the original thesis
submitted for microfilming. Every effort has been made to ensure the highest quality
of reproduction. Some pages may have indistinct print, especially if the original
papers were poorly produced or if awarding body sent an inferior copy. If pages are
missing, please contact the awarding body which granted the degree.

Previously copyrighted materials (journals articles, published texts etc.) are not
filmed.

This copy of the thesis has been supplied on condition that anyone who consults it is
understood to recognise that it's copyright rests with its author and that no
information derived from it may be published without the author's prior written
consent.

Reproduction of this thesis, other than as permitted under the United Kingdom
Copyright Designs and Patents Act 1988, or under specific agreement with the
copyright holder, is prohibited.

