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Summary

A  longest common subsequence o f two sequences is a sequence that is 

a subsequence of both the given sequences and has largest possible length. 

It is known that the expected length o f a longest common subsequence is 

proportional to the length of the given sequences. The proportion, denoted by 

7*, is dependent on the alphabet size k and the exact value o f this proportion 

is not known even for a binary alphabet.

To obtain lower bounds for the constants 7 *, finite state machines comput­

ing a common subsequence of the inputs are built. Analysing the behaviour 

of the machines for random inputs we get lower bounds for the constants 7 

The analysis of the machines is based on the theory of Markov chains. An 

algorithm for automated production o f lower bounds is described.

To obt ain upper bounds for the constants 7 *, collations pairs o f sequences 

with a marked common subsequence -  are defined. Upper bounds for the 

number of collat ions of ‘small size’ can be easily t ransformed to upper bounds 

for the constants 7*.. Combinatorial analysis is used to bound the number of 

collations.

The methods used for producing bounds on the expected length o f a com­

mon subsequence of two sequences are also used for other problems, namely 

a longest common subsequence o f several sequences, a shortest common su­

persequence and a maximal adaptability.

viii





Chapter 1

Introduction

Many different problems, when described in the terms o f sequences, be­

come independent of disturbing influences and are easier to handle. Very often 

sequences can capture many, if not all, interesting features.

One such abstract problem is the sequence alignment problem. Given two 

input sequences of symbols we have to find an output sequence that occurs 

in the input sequences. We can demand that the symbols involved in the 

output must form a continuous block within the input sequences. The contin­

uous alignment problems lead to common substring problems. The alignment 

problems that do not require the continuity condition correspond to common 

subsequence problems.

The alignment problem arises in various situations in different fields. As 

typical within computer science we can mention the string edit problem. Imag­

ine we have a terminal connected through a very slow line. Then when the

screen of the terminal has to be upgraded, it might be much more efficient
I

to send editing instructions instead of the full screen of information. Thus, 

given two sequences, we want to find a shortest sequence of editing stops 

that transforms one sequence into the other. The length of such a sequence
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is called the edit distance of the two sequences.

In the pattern matching problems we have to find one or all occurrences 

of a pattern in the image. There are cases when we would be satisfied with 

occurrences of similar patterns. For example, if we are searching in a database 

of names and we do not remember the name properly, or when recognizing a 

handwritten text or fingerprints.

Molecular biology is an important area where alignment problems appear 

quite often. Both proteins and nucleic acids can be treated as sequences of 

symbols. In molecular biology it is common to search for homologies the 

parts of macromolecules that have only minor differences.

Chromatography is other field creating alignment problems. The pres­

ence of certain elements in burning gas can change the colour spectrum of 

the light produced. The results of such experiments can be described by chro­

matograms and comparing chromatograms can be seen as an alignment prob­

lem.

In this thesis we shall focus on the longest common subsequence problem. 

The structure of the thesis is as follows. Basic notation is given and main 

terms are defined in the first section o f Chapter 2. Then we shall describe 

the longest common subsequence problem and will give a small survey of 

algorithms for solving this problem. In the last section of the chapter the 

expected length of a longest common subsequence is defined and its basic 

properties are shown.

We know that the expected length of a longest common subsequence is 

linear with respect to the length of the sequences, however we are not able 

to determine their exact ratio. Bounds on the expected length of a longest 

common subsequence are the topics of the next two chapters.
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In Chapter 3 will be given lower bounds based on analysis of Markov 

chains. An algorithm for producing better and better lower bounds will be 

described. Special treatment is required for lower bounds over general alpha­

bets of size k.

In Chapter 4 collations -  pairs of sequences with marked matches -  are 

described. Upper bounds for the number o f collations based on combinatorial 

analysis are given. From these, upper bounds for the expected length of a 

longest common subsequence can be obtained.

Some problems related to the longest common subsequence problem will 

be described in Chapter 5. We shall apply the methods from the previous 

chapters when investigating the maximal adaptability, the shortest superse­

quence, and the longest subsequence problems for more sequences. The chap­

ter is closed with a small survey of the longest common substring problem.

I

\



Chapter 2

Notation and preliminaries

2.1 N otation  and  basic  definitions

Let E =  {0 ,1 , . . . ,  k — 1} be a fixed alphabet of size k. Let E" be the set 

of all sequences of length n over the alphabet E. We can define E" recursively

by:

E° =  { A } ,

En+1 =  S x E " ,  for n >  0,

here A is the empty sequence, i.e. a sequence consisting of no symbols. Se­

quences are also commonly called strings. If sequence u is from E'\ we shall say 

that the length of sequence u is n and write |u| =  n. The number of different 

symbols that occur in the sequence u will be denoted by ||u||. The set o f all se-
OO OC

quences is E* =  U £ " «m l the set o f all nonempty sequences is E+ =  (J E".
n=0 n=l

Concatenation is a basic operation over sequences. I f  u =  (u j , . . . ,  um) 6 E'"

and v =  (tq .......t»„) € E ", then cat(u, v) =  ( m, ........ um, v,........ v„) € Em+n

is the concatenation of sequences u and v. To simplify the notation we shall
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write u =  Wi • • • um instead o f a =  (u\,. . .  ,um) and u.v or uv instead of 

cat(w, v).

Sequence u is a subsequence of sequence v, if u can be obtained by deleting 

some symbols from v, the notion of subsequence is given formally in Defini­

tion 2.1

D efin it ion  2.1 Sequence u =  U\ - • • um is called a subsequence o f v =  Vj • • • v„ 

(u C v), if there are m indices i i <  • • • <  im such that u\ um =  Vim.

Note that A is a subsequence of every sequence and that every sequence 

is a subsequence of itself. If u is a subsequence of v, we shall also say that v 

is a supersequence of u. We shall write u g  v if u is not a subsequence of v.

Similar, but not the same, is the notion of substring. Sequence u is a 

substring of v, if there are sequences x and y such that xuy =  v. I f  v =  v\ • • • vn, 

we shall sometimes denote the substring o f v beginning at the i-th position 

and ending at the j-tli position by v(i . . j ) .  We shall say that it is a prefix 

of v (u < v ) ,  if there is an index j  such than it =  r ( 1 . . j ) .  Sequence u is a 

proper prefix o f v (u <1 v) if it <  v and u ^  v.

The set o f all natural numbers {0 ,1 , . . . }  will be denoted by N. The set 

of all real numbers will be denoted by R. While describing sequences we use 

€ to denote the membership o f an element in a set. We also use U to denote 

the union of sets and x to denote the product o f sets. Other symbols used to 

denote operations and relations on sets are n for intersection, \ for difference,

C for subset, and C for proper subset. The set of all elements r having
I

property P  is denoted by {.r : P (x ) } .  Instead of {y : there is x  such that y — 

/(.r) and P (x ) }  we shall write { f ( x )  : P ( t ) } .
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For a (linearly) ordered set M  we denote the maximal element of M  by 

max M. Similarly min M  is the minimal element of M  and inf M  is an infimum 

of M. Sometimes we use max f ( x )  instead of m ax {/ (x ) : P (x ) } ,  especially
P ( x )

when P (x )  is simple. Similarly for min and inf.

We use & to denote the conjunction o f logical propositions. For disjunc­

tions we shall use the symbol V, for implications = > ,  and for equivalences 

<*=>•. The negation of a proposition is denoted by

We shall intensively exploit generating functions. Let o0, . . . ,  a „ , . . .  be
°C

an infinite sequence o f numbers, then a(z) — a,z' is the corresponding
1=0

(ordinary) generating function. For example, the generating function corre­

sponding to the sequence 1 ,1 ,..., 1 , . . .  is yzT- The addition of generating 

functions corresponds to the addition of sequences and the multiplication of 

generating functions corresponds to the convolution o f sequences. Knowing 

the generating function for a nonnegative sequence, we can bound the ele­

ments of a sequence by

~  l e i  ’ i2-1)

OO

where Z  is the set of all positive :G  K such that a(z ) =  £  04 z* converges.
1=0

„1
We shall also use exponential generating functions /1(c) =  X) a>f t • For ex-

1=0 *•
ample, the generating function corresponding to the sequence 1 , 1 , . . . , 1 , . . .  

is r r. We can transform exponential generating functions into ordinary gen­

erating functions using

0(2) = / “  e~*A(zx)dx. (2.2)
Jo

I
The addition of exponential generating functions corresponds to the addi­

tion of corresponding sequences. The product o f the exponential generating
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OO i
functions /1 (c) =  £  an r and Z?(c) =  

1=0 *•oo
function C (z )  =  51 c ^ ,  where

i=o *•

is the exponential generating

a=SC)“‘-jC'-i =0

More about generating functions can be found in [Rio78] or [Liu85].

We shall use standard O-notation. For functions f (n )  and g(n) we say 

that / is O(g)  (/  is tt (g ))  if there is a constant C  such that / (n ) <  Cg(n) 

(/ (n ) >  Cfi(n) respectively) for sufficiently large n. We say that / is o(g) if 

lim =  0.n—oo 9\V>)

2.2 Longest com m on subsequences

We shall work with pairs o f sequences. The set of all pairs of sequences 

will be denoted by If =  E* x E*. The total length o f a pair is the sum of the 

lengths o f the sequences from the pair, /(“ ) =  |(“ )| — |u| +  |v|. Let 1 and b 

be the projections o f a pair ( “ ) to its members: t (" )  — u and 6( “ ) =  v. Let 

cat(p,g) — be the concatenation o f pairs p,q. The definitions of

concatenation, projections, and length are naturally extended to sequences of 

pairs:

ca t(p i, p i .......Pn.Pn+i) =  cat(cat(p ,,p2, . . . , p n),p n+j ) ,

f(Pi-P2......... P„) ■  t(cat(p i,p2..........p,,)) =  t (p i ) - - - t (p „ ) ,

b(Pi,P2, - - ,pn) =  6(ca t(p i,p j......... p „ ) )  =  b(pt) ■ ■ ■ b(p„),

l(P i,P2......... Pn) =  /(cat(pltp2..........pn))  =  |pi| +  •• • +  |p„|.

A sequence w is a common subsequence of u and v if it is a subsequence 

of both ii and v. A  longest common subsequence is a common subsequence 

of maximal possible length.
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D efin ition  2.2 Let u,v  € E*. Sequence w € E* is a longest common subse­

quence if

1 . w O u and w C v,

2. Vw' 6 E* (w' C it & w' C v ==> |w'| <  |w|).

W e shall denote the length of a longest common subsequence of sequences 

it and v by L (u,v). While two sequences can have several different longest 

common subsequences, L ( it, v) is unique. Sometimes we use CSS as an ab­

breviation for a common subsequence and LOSS for a longest common sub­

sequence.

E xam ple 2 .1  Let u =  10023211022233101 and v =  01113330212110121. 

Common subsequences o f it and v are for example 1321211 or 0113301. Both 

011022101 and 102211021 are longest common subsequences and L (u ,v )  =  9.

O

Now we shall describe the basic properties of the length o f longest common 

subsequences. The following lemma shows the invariant properties of L (it, v).

Lem m a 2 .1  For permutation 7t : E —» E let S„(u) denote the sequence ob­

tained from sequence it after substitutions defined by n. For u =  iq •••«,, let 

utt =  it,, • • • it| be the reversed sequence. Then for every it, v € E '

1. L ( it, »>) =  L(t\ it),

2. L(it, v) =  L (uH, vR),

S. L(tt,t») =  L (5 , ( « ) ,5 , (n ) ) .
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Proof. This lemma is a simple consequence o f Definition 2.2. □

The following lemma about the monotonicity of L (u , v ) is also a simple 

derivation from the definition of longest common subsequences.

L em m a 2.2 For eveiy u, v, u', v' e  E*,

1. if v! C  u and vf C v, then L ( « ' , « ' )  <  L (u , v),

2. L(u, v) +  L(u ', v') <  L (u « ', vv').

The basic recurrences for computing L (m, v )  are given by Lemma 2.3.

L em m a 2.3 For every u, v € E* and a,b € E,

1 . if a =  b then L(wo, vb) =  L (m, v ) +  1.

2. if a ^  b then L(ua,vb) =  m ax{L(wn, v), L (n , vb)}.

Proof. 1. Let w =  uq • • • wm be a longest common subsequence of ua and va. 

Then for w' =  wi • • • « ’„,_) we have w' C u and w' C v. Therefore, using the 

previous lemma, part 2 , we get

L(u, v) +  1 =  L(w, v) +  L(a, b) <  L(ua, vb) =  |te| =  |w'| +  1 <  L(w., v) +  1 .

2. Let w =  n11 ■ ■ ■ tvm be a longest common subsequence of ua and vb. If the 

last symbol o f w is a, then w C v and |in| <  L («n , v). If the last symbol o f «; is 

not a, then w C «  and |«»| <  L (u ,i;6). Hence |«;| <  m a x {L (« « ,  v). L (u , vb)). 

The opposite inequality is a consequence of Lemma 2.2, part 1 . □

Part 2 of the previous lemma can be generalized in the following manner.

Lem m a 2.4 I f  u, v € E* are such that L(it, v) =  0 then for every «/, v' € E* 

we have L (ini', vv1) =  m ax{L(uu ', v), L ( u,vv')}.
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2.3 A lgorithm s for com puting  longest com ­

mon subsequences

Finding a longest common subsequence is a widespread problem. There is 

strong motivation for finding efficient algorithms to compute longest common 

subsequences.

The algorithm presented by Wagner and Fischer [WF74] belongs now 

among classical dynamic programming methods. It is based on the recursive 

computation of L (t , y) for every x < u  and y <  v. This can be described by 

the matrix D  =  {r/.j}, where dij =  L (u ( l  . . î ) , t (1 . . j ) ) .  Clearly d0j  =  0 

and d,,o =  0 for all i =  ( ) , . . . ,  |w| and j  =  0 , . . . ,  |v|. For i , j  > 0  we have the 

following recurrence based on Lemma 2.3.

4 - l j - l  +  1 if u(i) =  v ( j ) ,
« i  j  1

m ax{d j_ ij, if u (i) /  t> (j).

The time and space complexity of this algorithm is O(mn), where n =  |u| 

and m =  |v|.

E xam p le 2.2 Matrix D  computed by the dynamic programming algorithm 

for input sequences u =  10023211022233101 and v =  01113330212110121 is 

given in Figure 2.1. O

Hirschberg [Hir75] gave a variation o f the dynamic programming algo­

rithm, that computes D  using only linear space.
I

Hunt and Szymanski [HS77] have improved the dynamic programming 

algorithm by computing only those entries of matrix D  that correspond to
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1 0 0 2 3 2 1 1 0 2 2 2 3 3 1 0 1
0 0 ® 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 ®  1 1 1 1 i  ( D 2 2 2 2 2 2 2 2 2 2
1 1 1 1 1 1 i 2 ( D  3 3 3 3 3 3 3 3 3
1 1 1 1 1 1 i 2 3 3 3 3 3 3 3 ©  4 4
3 1 1 1 1 ( D  2 2 3 3 3 3 3 (4) 4 4 4 4
3 1 1 1 1 2 2 2 3 3 3 3 3 4 (5) 5 5 5
3 1 1 1 1 2 2 2 3 3 3 3 3 4 5 5 5 5
0 1 ® 2 2 2 2 2 3 © 4 4 4 4 5 5 ©  6

2 1 2 2 (3) 3 3 3 3 4 ( 5 )  5 5 5 5 5 6 6
1 1 2 2 3 3 3 @  4 4 5 5 5 5 5 ©  6 ®
2 1 2 2 3 3 (4) 4 4 4 5 © 6 G 6 6 6 7
1 1 2 2 3 3 4 ( 5 ) 5 5 5 6 6 C 6 @ 7 7
1 1 2 2 3 3 4 5 ©  6 G 6 6 G 6 7 7 ®
0 1 2 (3) 3 3 4 5 6 ®  7 7 7 7 7 7 ©  8
1 1 2 3 3 3 4 5 6  7 7 7 7 7 7 ®  8 ©
2 1 2 3 @ 4 4 5 6 7 ©  8 8 8 8 8 8 9
1 1 2 3 4 4 4 5 6  7 8 8 8 8 8 © 9 9

Figure 2.1: Computing longest common subsequence using dynamic program­

ming.

matches between symbols from u and v. These are typeset in bold in Fig­

ure 2 .1 .

Hirschberg [Hir77] concentrates on dominant matches. A  match a <-» b is 

dominant, UL(ua, vb) >  m ax {L (u , v), L(na, v), L (u , vb)}. Dominant matches 

are circled in Figure 2 .1 .

An algorithm with the best worst-case complexity is given by Masek and 

Paterson [MP80]. Their approach is based on the Four Russians’ algorithm for 

computing transitive closure. We can split matrix D  into small submatrices 

of size 0 ( lo g  n). These submatrices can be precomputed and the relevant part 

of matrix D  recovered in time C)(v2/ log n).

Ukkonen [Ukk85] formulates the problem of finding longest common sub-
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1 3 3 2 3 3 1 3

2UJJ\UJ2UJJ\UJ■NJJJJJ

Figure 2.2: Graph corresponding to longest common subsequence computa­

tion.

sequences in terms o f directed graphs. The graph corresponding to a pair of 

sequences is an oriented mesh with diagonals in place of matches (Figure 2.2). 

Computing L  thus can be seen as finding the shortest path in the directed 

graph corresponding to pair ( “ ).

There are many improvements and variations o f these algorithms. A  list 

o f some of them is in Figure 2.3. More detailed description of basic algorit hms 

together with algorithms for other string problems can be found in [Ste92]. 

Problems o f practical implementations of the longest common subsequence 

algorithms is in [Sim89]

A lot of effort have been made over the years to search for quick algorithms 

computing longest common subsequence. Despite this there is still quite a 

large gap between lower and upper bounds. The trivial lower bound is il(ri).

In the case of an unknown (infinite) alphabet Masek-Paterson’s algorithm

bound Q(n log n) for the number o f less than equal greater than queries

has complexity 0 (n 2(log log n )2/ lo g » ).  Hirschberg [Hir78] has shown lower
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Time Space
Wagner Fischer [WF74] O(mn) 0 (mn )
Hirschberg [Hir75] 0 (mn) O(n)
Hunt-Szymanski [HS77] 0((n  -F R) log n) 0 (R  +  n)
Hirschberg [Hir77] 0 (Ln +  n log n) O(Ln)
Hirschberg [Hir77] 0(L(m  — L) log n) 0 ((m  — L )2 +  n)
Masek-Paterson [MP80] 0 (n m ax{l, m/ log n } ) 0 (n 2/ log n)
Nakatsu at al. [NKY82] 1O

0 (m 2)
Hsu-Du [HD84, Apo87] 0(Lm  log(n/L) +  Lm) O(Lm)
Ukkonen [Ukk85] O(Ern) 0 (E  min{m. E })
Apostolico [Apo86] 0(n +  m log n +  D  log(jnn/D )) 0 (R  + n)
Kumar-Rangan [KR87] 0(n(m -  L)) 0 (n)
Apostolico-Guerra [AG87] 0(Lm  4- n) 0 (D  + n)
Wu at al. [WMMM90] 0 1 c~> 0 (n)
Chin-Poon [CP90] 0(n +  min{£>, Lm}) 0 (D  +  n)
Apostolico, at al. [ABG92] 0(n(m -  L)) 0 (n)
Apostolico at al. [ABG92] 0 (Lm ) O(n)
Eppstein at al. [EGGI92] 0(n  +  D log log min{£>, mn/D}) 0 (D  +  m)

Figure 2.3: Time and space complexity of algorithms computing LCSS. Here 

m =  |n|, n =  |t/|, m <  n, R  is the number o f matches, L  is the length o f a

longest common subsequence, E  =  m +  n — 2L  is the edit distance, and D  is

the number of dominant matches.

over infinite alphabet . Wong and Chandra [WC7G] consider a restricted model 

for deriving lower bounds. They have shown, that every algorithm over an 

infinite alphabet using only equal unequal queries requires 0 (n 2) operations.

Lin, Lu, and Fang [LLF91] gave a parallel algorithm (C R E W  PRAM )  with 

complexity O (log2 m log log m) using mn/ log2 m  log log m processors when 

log2 ni log log m >  lo gn  and with complexity O (lo gn ) using mn processors 

otherwise. This improves the algorithm of Lu [Lu90], that has complexity 

0 (lo g  L  log2 n) and uses R processors. For implementations of longest com­

mon subsequence algorithms on other parallel models see [And86, ITH92].

We can extend the dynamic programming algorithm to compute the length
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of a longest common subsequence of / sequences t i j , T h e  task is then to 

compute an /-dimensional array and the algorithm complexity is O(n'). This 

is an exponential algorithm in terms of / and there is little expectation of an 

polynomial algorithm, since Maier [Mai78] has shown this problem to be N P -  

complete. However, there are algorithms for finding L ( « i , . . . ,  iq) with better 

complexity than 0 (n l ) (but still exponential in /) [HD84, IF92, HI92, BY91].

A  slightly different aproach is needed for the approximate string matching 

problem. In such case we have to compute longest common subsequences of 

many short sequences [HD80, CL92],

2.4 E xp ec ted  length  o f longest com m on su b ­

sequences

We can use the length of the longest common subsequence as a measure 

of similarity of two sequences. Essential for a decision, as to whether two 

sequences are similar or not, is knowledge of the expected length of a longest 

common subsequence.

D efin ition  2.3 The expected length E L „ of a longest common subsequence 

is the average value of the longest common subsequences over all pairs of 

strings of the same length n, i.e.,

E L " = -¿ 7  E L ( " - p ). (2.3)
K u.weE"

Chvatal and Sankoff [CS75] were the first who investigated the properties

of the expected length of a longest common subsequence. They have computed

values of E L „ for n =  1, . . . ,  5 and k =  1.......15. They also showed that E L„

ELis linear in n and gave bounds on
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T h eo rem  2.1 For every k >  2 there is 7* such that

7t =  lim =  sup e pj n >  q\ _ (2.4)
n~ 00 n [ n )

Before we prove the theorem, we shall show some basic properties of E L „. 

The expected length o f a longest common subsequence is superadditive in the 

following sense.

L em m a 2.5 For every m,n € N, m, n >  1,

E L,„ -\- E L„ E L m+„

Proof. From Lemma 2.2 we have

L(w, v) +  L(u', v' ) < L ( mu', vv ' ) .

For the expected length we then have

EL,„ +  E L „ — E ( L ( m, v) +  L ( m' , v' ) )  <  E L m+„ , □

C oro lla ry  2 .1  For every m ,n  6  N. m,n >  1.

n/EL„ ^ E L ,„„

Proof. By induction on m. For m =  1 we have E L „ <  E L „. For m >  1 we 

have
/

m E L„ =  (to — 1 )E L „  +  E L n <  E L ( m_i)„ +  E L „ <  E L ,„„ ^

Now, using superadditivity o f E L „ we can prove Theorem 2.1
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Proo f o f Theorem 2.1. Let 7* be sup j  : n 6 N, n >  o }.  Let s >  0 be any

ELreal number. Since 7/.. — sup —— there is m e  N such that EL„, >  ( 7* — e)m. 

Now let n be any natural number such that en >  E L m. We can express n 

as am +  b where a, b € N and 0 <  b < m. Then, using Lemma 2.5 and 

Corollary 2.1, we have

Ik >
E L„ fiEL.i EL,,

n n
(n - ¿>)EL„, 

«in
E L  EL,„

>  7k ~

FTThis means that lim — a exists and its value is 71..n—*00 n □

Exact values o f the constants 7 * are not known even in the case k =  2. 

Upper and lower bounds on 7* will be described in the forthcoming chapters. 

However, it is possible to generate pairs of pseudo-random sequences and to 

compute the lengths of their longest common subsequences. In Figure 2.4 

are shown values o f  ̂ for successive prefixes «, v of four pairs of binary 

sequences of length one million. To interpret this data we use the following 

estimate about the convergence behaviour o f E L „ due to Alexander [Ale92]:

7*n -  0 (  \Jn log n) <  E L „ <  7 *71.

The best fit method used with the data from Figure 2.4 gives the function 

0.8 1 23757» — 0.07188530» log n. That suggests that 72 is likely to lie in the 

interval (0.8120,0.8125).

For large k we can see that 7* —» 0 as k —► 00. Deken [Dek79] has shown, 

that the speed o f this convergence is not smaller than 1 /s/k\ more precisely

lim “yks/k >  1.k—oo
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E L„

0.8125

0.8120

0.8115

Figure 2.4: Random strings o f length one million.

An upper bound o f Chvatal and Sankoff [CS75] leads to following estimate:

lim 7kVk <  e ,k—+ oo.

while Sankoff and Mainville [SK83] conjecture that

lim 7* v T  =  2 .k—*oo

When using the dynamic programming algorithm to compute L(w, v ), we 

actually compute L(.r, y) for all prefixes x  <  u and y <  v. We can grou]> these 

prefixes according to diagonals.

Let D m{u,v) be the set of all pairs ( ’ )  o f total length m such that x <  u 

and y < v .  If m =  min{|»|, |e|}, we shall omit the index and simply write 

D(u ,v ).  Now we can define a ’diagonal' longest common subsequence.
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u

Figure 2.5: Diagonal longest common subsequence.

D e fin ition  2.4 Let u,v 6  E*. We define a diagonal longest common subse­

quence by

D ( « ,  v) =  max |l ( x , y) : ( * )  € D(u, v ) | .

The expected length of a diagonal longest common subsequence, E D „, 

is defined analogously to (2.3). When computing L (u ,v )  we have to ‘hit’ the 

opposite corner, but to compute D ( w, v) it is enough to achieve an entry some­

where on the diagonal o f the matrix computed by the dynamic programming 

algorithm.

The D (m, v) and D (u n, v " )  are the maxima on diagonals, but if a match 

from a longest common subsequence appear exactly on the main diagonal, 

it contributes neither to D (u , v) nor D (uR,vn) (illustrated in Figure 2.5). 

Therefore L(u, v) <  D (u , t>) +  D(//w, r w) +  1 and this gives '2ED„ +  1 as an
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upper bound for E L „. A  lower bound for E L „ in the terms o f E D „ is given 

by Alexander [Ale92].

Lem m a 2.6 (Alexander [Ale92]) There is a constant a such, that for all n

Combining Lemma 2.6 and Theorem 2.1 we immediately get the following 

theorem.

T h eo rem  2.2 For every k there is 6* such that

Moreover 26* =  7*.

This theorem will be helpful when analyzing the EL „ .  It means that we can 

omit the condition |u| =  |r| =  n, it is enough if 11 and v satisfy |m| +  |r| =  2n.

The variance V a r(L „) is another value describing the properties of the 

length of longest common subsequences,

Chvatal and Sankoff [C'S75] conjecture that V a r(L „) is o(n2̂ 3). Steele [Stc82] 

has shown that V a r(L „) <  (\/n + 1)2. Later, in [Ste86], he improved his bound 

to

V ar(L „) =  ii r £  (L(u,t>) — E L n)2.
 ̂ ..crn

V a r(L „) <  (1 - \ ) n .

Both bounds are based on the Effron-Stein inequality.



Chapter 3

Lower Bounds

In the last section o f the previous chapter we have defined the expected 

length E L „  of a longest common subsequence and the constants 7*. I11 Sec­

tion 2.3 we have described algorithms computing L (m, v)  but unfortunately 

we are not able to analyse the behaviour o f these algorithms for a random 

input. Thus the constants 7* remain unknown yet. In this chapter we shall 

derive new lower bounds for 7 Also we can achieve previously known lower 

bounds for 7* using a different approach.

3.1 Css m achines

The basic idea for obtaining lower bounds is quite simple. Let C be any 

algorithm such that for input u,v € D* it computes w € E* some common 

subsequence of a and v. If we denote C (u ,v )  =  |h»| then C (u  ,v )  <  L(u , v) 

and E C „ <  EL„ ,  where E C „ is the expected length of C ( « , ( ' )  for random 

inputs u, v € C .

Tin1 main problem is to design an algorithm <£ in such wav that we are 

able to analyse it for a random input. As a model for algorithms computing
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common subsequences we choose finite state machines. Their analysis will 

rely on methods developed to analyse finite Markov chains. Our finite state 

machines will have two input tapes and a counter as output.

D efin ition  3.1 A  finite state machine 971 is a 5-tuple 971 - (S, E ,7, T, O), 

where 5  is a finite set of states, E is a set o f input symbols, I  : S  —» { | ,| }  is a 

tape switch function, T  : S’ x E —► S is a transition function, and O  : S  x S  —+ N 

is an output function.

Every state s € S and symbol a € E determine a transition s -̂ + T(s,a). 

We sometimes also write s T (s ,a )  when the value o f output function

is important.

In one step o f the computation we decide which tape to read according 

to the value of the tape switch function in the current state. We read one 

symbol from the tape and advance the input head of the tape. The transition 

function determines a new state of the machine and the output counter is 

advanced by a value given by the output function.

Suppose we start computation in the state s with u and v being the 

contents of the tapes. The state of the machine after m steps o f computation 

determines the value of an extended transition function T " ‘ : S x E* x E* —♦ S. 

For m =  0 we define T°(s ,u ,v )  =  8 and for m >  0 and a. € E we define

T ’"(s, \,v) not defined if / (» ) = | ,

T m(s, au, v) =  T m~x(T (s , a), u, v) if 7(s) = | ,

T ”'(s ,u ,\ )  not defined if / (» ) =  i ,

T m(s,u,av) =  T " '~ l (T (s ,a ) ,u ,v )  if / (» ) =| .

We shall write T*(s ,u ,v )  instead of u, v).
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A  computation on machine 9H yields a function Cgn(s, u, v, rn). Informally 

C ot(s, m, v, m) is the value o f the output counter after an m-step computation 

on 911 when starting in state s and sequences u and v are on the input tapes.

D e fin it ion  3.2 The computation function of machine 9J1 =  (S , £ , I, T, O) on

input u, v starting in state s is the function C.^ : S  x S* x V * —♦ N defined

recursively:

C®i(s, u, v, 0) =  0

C®[(s, A, v, m) =  0 if Hs) = T .

Cnn(s, au, v, m) =  Can(T(s, a), u, v,tn — 1) 4- 0(s, a ) if / (* ) = T .

A, m) =  0 if I (s )  = i  ,

u , an, m) =  Cm(T(s, a), u, v, m — 1 ) +  0(s, a) if I (s )  = i  .

We shall omit the index 911 when there is no ambiguity. To  obtain lower 

bounds we need an analysable machine comput ing the length o f some common 

subsequence of input sequences. To get such a machine we have to impose 

some more constraints on the definition of finite state machine.

The states of a machine will be represented by two sequences. The se­

quences consist of symbols already read from the input tapes but not used 

for producing a common subsequence yet.

Every transition appends the symbol just read to the corresponding se­

quence from the state. Some transitions can also match some symbols and 

thus reduce the ‘size’ of the state. This is done by cutting o ff prefixes and 

adding the length of a longest common subsequence o f the prefixes to the 

output counter. In some favorable states we can leave the decision about the 

matching for the future. Such states have the form ( '^ “ ) ,  where |.r| =  |,i/| >  0 

and L(x, p) =  0. The validity of such a move is supported by Lemma 2.4.
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A computation on machine OT yields a function C m(s, u, v, rn). Informally 

C ot(s, u, v, m) is the value o f the output counter after an m-step computation 

on OT when starting in state s and sequences u and v are on the input tapes.

D efin ition  3.2 The computation function o f machine 9Ji =  (5, E, I, T, O )  on 

input u, v starting in state s is the function C ot : S x E* x E* —*• N defined 

recursively:

C m(s,u ,v ,0 ) =  

C m(s, =

C ot (s ,au,v,m ) =  

C ot( «> «, A, m ) =  

C  m(s,u,av,m)  =

0

o if i (s )  = t ,

C<m(T(s, a), u, v, m — 1 ) +  0(s, a) if I (s )  = j  , 

0 if / ( s )=  i ,

Cm (T(s , a), u,v, m — 1) +  0 (s ,a )  if I (s )  =|  .

We shall omit the index 991 when there is no ambiguity. To obtain lower 

bounds we need an analysable machine comput ing the lengt h of some common 

subsequence o f input sequences. To get such a machine we have to impose 

some more constraints on the definition of finite state machine.

The states o f a machine will be represented by two sequences. The* se­

quences consist o f symbols already read from the input tapes but not used 

for producing a common subsequence yet.

Every transition appends the symbol just read to the corresponding se­

quence from the state. Some transitions can also match some symbols and 

thus reduce the ‘size’ o f the state. This is done by cutting off prefixes and 

adding the length of a longest common subsequence of the prefixes to the 

output counter. In some favorable states we can leave the decision about the 

matching for the future. Such states have the form ( ^ “ ), where |.ij =  \y\ >  0 

and L ( r ,y )  =  0. The validity o f such a move is supported by Lemma 2.4.
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D efin it ion  3.3 A  finite state machine SUI =  (5, T..I.T , O )  is called a css 

machine if S  Ç E* x E*. ( * )  e  5, and for every s =  ( “ )  € S  and a € E 

at least one o f the following three conditions is satisfied. We denote v! — ua, 

v' =  v ìi  I ( s ) = f ,  and u1 =  u, v1 =  va if I (s )  .

1. T (s ,a )  =  ( “/), and 0 (s ,a )  =  0,

2 . T (a ,a )  =  (*< ), and O(s.a ) — L (x ,y ) ,  where .r.r' =  j/y' =  v1,

3. T (s ,a ) =  (yy')< and 0 (s ,a ) =  |z| — 11/| >  0, where yxx’ — xyy' =  v', 

L (x ,y )  =  0 ,

Transitions o f the form 1 and 3 are called saturated. State s G S is satu­

rated if transitions s A  T(s ,a )  are saturated for every a 6  E.

E xa m p le  3.1 A  css machine with 11 states is described by the table in 

Figure 3.1. O

A css machines are designed to produce the length of a possible common 

subsequence o f its inputs.

L em m a  3.1 Let. DJI be a css machine and C  its computation function. Then 

for every s =  ( " )  € S and m 6  N

C(.s, u, v. in) <  L(ww', :z ' ) ,

where w' <  u (~ <  v ) is the sequence of symbols that are lead by 911 from the 

first (second) tape while computing C(s, u ,v ,m ).
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s I(s) T(s,  0 ) 0 ( s ,  0 ) T(s, 1 ) 0(s,  1 )

So = © T
C )

0 G) 0

«1 = © i © 1
©

0

s 2 = G) i G) 0
©

1

«3 = (?) T
n

0
© )

0

»4 = 0.) T ( o ) 0
( “ )

0

S5 =
( ” )

i
©

1
© )

0

se =
( “ )

l G) 1 © 1

«7 =
( “ )

l G) 1 © 1

s 8 =
( " )

l
G ' )

0 G) 1

S9 =
©

T © 1 © 0

»10 = (i) T
©

0 © 1

Figure 3.1: Css machine with 11 states.

Proof. By induction on in. If m =  0, then we have C (s ,u ,v ,m )  =  0 <  

L (  ww', zz'). Now let m >  0 and let C (s ,u ,v ,m  — 1) <  L (ww',zz') for 

all u,v,a. Without loss of generality we can suppose /(a) = f .  We have 

C (s , A,v ,m )  =  0 <  L (ww',zz'). While considering C(a,au,v ,m )  we have 

the following cases:

1. T(a,a) =  0 (a ,a )  =  0. C(a .au ,v ,m )  =  C (T (s ,a ) ,u ,v ,m  — 1) <

L (  u>atu', zz').

2. T(a,u) =  (¡y), 0(8, a) =  L(.r, y), where sx' =  iva, yy' — z. Then we 

have
1

C (a, an, v, m) =  L (x ,  y) +  C (T (a , a), u, v, m — 1)
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<  L (x , y) +  L(x'u/, y'z')

<  L (xx'w1, yy'z') =  L (waw', z z ' ) .

3. T(s, a) =  (yy>), 0 (s , a) =  |x| =  |j/|, where yxx' -  wa and xyy' =  

According to Lemma 2.4, then L(xx'w', yy'z') must be either L(xx'u/, y'z') 

or L(x'w ', yy'z'). In the first case we have

C (s ,au,v ,m ) — 0 (s , a) +  C (T (s ,  a), u, v, m — 1 )

=  L(j/, xy) +  C (T (s , a),w, t>, to — 1)

<  L(j/, xy) +  L (xx V , yy'z') =  L(j/, xy) + L(xx'te', y'z')

<  h(yxx'w\ xyy'z') =  h(waw', z z ' ) .

In the second case we can prove that C (s,au,v, m) <  L (waw', zz')  in the 

same way. □

In most cases we are interested in computations started in state s0 =  (\) 

and we set C (m, v, m) =  C ot(s0, m, v, m).

C o ro lla ry  3.1 Let 9)1 be a css machine and C  its computation function. 

Then for every input u, v the computation function satisfies

1. C (u , v, |u| +  |r|) <  L ( « ,n ) ,

2. C ( « ,  v, min{|u|, |r|}) <  D (« ,  v ) .

Proof. 1 . Let w\ z' be the sequences read from the input tapes while comput­

ing C (u, v , |u| -(- |e|). Then

C ( u, v, |? | +  |t’|) =  C ((J ), u, v, |u| +  |i;|) <  L (w ', z') < L ( u , v ) ,
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since w' is a subsequence o f u and z' is a subsequence of v.

2. Let m -  min{|u|, |v|}. Let w',z' be the sequences read from the in­

put tapes while computing C (m, v , m ) .  During every step of the computation 

machine 971 read exactly one input symbol. Moreover, m is sufficiently small 

that we cannot run out o f input symbols. So we have |u/| -I- \z'\ =  m and 

( ”< )  € D(u,v), therefore

Previous lower bounds for the expected length of a longest common sub­

sequence were derived using the first inequality o f Corollary 3.1. To simplify 

the analysis of a machine we shall use the second inequality in conjunction 

with Theorem 2.2. After taking the average over all sequences of length m we 

directly get the following theorem.

T h eo rem  3.1 Let 971 be a css machine and C.^ its computation function. 

Let

C (u ,v ,m )  =  C ((J ), u, v, m )  <  L(u/, z')

<  max |l (x , y )  : (^ )  G = D ( u , v ) .

□

m—oo m

3.2 A na lysis  o f  css m achines

To compute EC „, we have to analyse the behaviour of css machines when a 

random input is given. This analysis is similar to the analysis of finite Markov
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chains [KS60]. Changes of current states are described by the ‘ transition’ 

matrix o f the machine.

D e fin it ion  3.4 Let 9Ji =  (5, E, I , T , O)  be a finite state machine. Let T  =  

{ L j }  be a matrix such that

where k =  |S|. Then matrix T is  called the transition matrix o f machine 9JL

We shall introduce ‘regular’ machines that are easier to analyse.

D e fin it ion  3.5 A finite state machine 9Ji with transition matrix T =  { tt J}

the ( i , j ) - th entry of matrix T " .

It is not hard to see that a css machine Wl is regular if and only if there is 

some m 6  N such that for every two states s,t- € S  there is an input u, v 6  S ' 

such that |u| +  |u| =  m  and T* (s ,u ,v )  =  t.

L em m a  3.2 Let T  be the transition matrix of a regular css machine. 9Ji. Let. 

t\"j be the ( i.,j)-th entry of the n-th power of matrix T. Then

D efin it ion  3.6 Let 9H =  (5, E ,/ ,T , ( ) )  be a finite state machine and let 

s, t g  S. We say, that state t is reachable from s if there are « ,  v € S* such 

that T*(.s, a, v) — t.

(3.1)

is called regular if there is n 6  N such that t^J >  0 for all i , j ,  where f*” * is
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Lem m a  3.3 Let 9JI =  (S, E, I ,  T, O) be a css machine satisfying the following 

conditions:

1 . Every state s € S is reachable from Q ) ,

2. (^ )  is reachable from every state s € S,

3. there are a state s € S and a symbol a 6  E such that T(s, a) =  s.

Then machine 9JÎ is regular.

Proof. For s, t € S, t is reachable from s, and we denote by d(s, t) their 

‘distance’ , i.e.,

d(s. t ) =  min{|«| +  |u| : T*(s , u, v) =  t}.

Let n>i =  nmx </((*), t) and m4 =  inaxd (t ,  (* )). Now let s/ be the state whose

existence is guaranteed by condition 3. We put m2 =  d((J), s<), m 3 - d(si, ( * ) ) ,

and we set m =  mj +  m2 +  m3 +  m4.

Let a ,f € 5  be any two states of DJI. Let Ui,vi € E*, |«i| +  |i»i| <  »»1

be an input such that T*(s,u\,v\) -  (^ ) .  Let « 2,e 2 € E*, |«2| +  |v2| =  m 2

be an input such that T *((j[), tt2, n2) — */. Let u3, e3 e  E", |u3| +  1 1  =  m 3

be an input such that T*(s/,n3, t>3) =  (^ ).  Let « 4,114 € E*, |u4| 4- |v4| <  m 4

lie an input such that T *((J ), « 4, e4) =  t. Let i =  m — ¿ (| « j|  +  |e2|). If
>=1

/(sj) =| we set u =  H i«2a '« ;)u4 and «  =  « iv 2e3e4, otherwise «  =  u i « 2u3u4 

and v =  t’it '2« 't '3t'4. Then |«| +  |«| =  m and T* (s ,u ,v )  =  /. This guarantees 

9JI to be regular. □

From the theory of Markov chains [KSGO, F0IG8] we get the following

lemma.
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L em m a  3.4 Let T  be the transition matrix of a regular css machine 971 with 

l states. Let e =  (ej € R ( be any vector such that £  e; =  1 and let

c„ =  (c„,i....... cnJ) =  eT " .  Then for every j  =  1......../

lini c„ i — d i ,n—+oo ’

where d  =  (d i , . . . ,  di) € R i is the unique vector such that dT  =  d and 

Z d t  =  1 .

The vector d =  (r/|,. . .  , d/) whose existence is guaranteed by Lemma 3.4 

is called a stationary probability distribution o f the regular css machine. For 

state Si € S  we define d{s,) =  (/,. the stationary probability distribution of 

machine 971 in the state s,. As an immediate corollary o f Lemma 3.4 we get 

following theorem.

T h eo rem  3.2 Let T  be the transition matrix of a regular css machine 971 

with l states. Let d =  (</j,. . . ,  df) be a stationary distribution of machine 971. 

Then the expected length of a common subsequence produced by css machine 

971 is asymptotically <V(971)w, where

b'(9Jl) =  ^  di a ) • (3-2)
;=i «es:

E xa m p le  3.2 Because o f symmetries given by parts 1 and 3 of Lemma 2.1, 

we can reduce the size of css machines. The machine from Example 3.1 after 

reduction will have five states tu =  [jj], li =  ['{], tj =  ['/], 13 =  [^°], and 

14 =  [Y1 ]. The reduced machine 91 is described by the transition graph in 

Figure 3.2. The value of the tape switch function is denoted by the symbol •,
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Figure 3.2: A css machine that, yields the lower hound 0.7368.

and the transitions for which the output function is 1 are marked by the 

symbol + . The transition matrix defined by (3.1) is

Since

(  °
1 0 0 o \

1
2 0 1

2 0 0

T  = 0 0 0 1
2 2

0 1
2 0 1

2 0

k 0 2
1
2 0 »  /

/ i 5 3
8 16 8 4 16
5 11 1 3 1
32 32 4 16 16

_ 7 1 9 3 1
32 4 32 16 16
5 5 7 |
32 16 16 32 8

L -2. 3 1 1 r.
N 32 8 8 4 32

the machine SH is regular. The system of linear equations d T =  d is

<11 =  2 do , ido+da +  di =  2d i , d\ +  d̂  =  2 dj , c/j +  c/.i =  2d a , dj =  2d\.
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Solving this system we get

,  _  3 , 6  , 4  4_ 2
0 19 ’ 1 19 ’ ‘ 2 19 ’ ' *  1 9 ’ ' 4 19

From (3.2) we get

¿'(911) — -d\ +  -d 3 +  d4 =  —  . 

and this yields the lower bound 72 >  =  0.736842 . . . . O

As we have seen in Example 3.2 we can use symmetries to decrease the 

size o f css machines. There is one symmetry between the top and bottom 

sequences of states of machine. Another symmetry can be obtained by the 

substitution of symbols according to some permutation 7t : £  —> E as specified 

by Lemma 2.1. Therefore we can split states of sequences into equivalence 

classes, where two states are equivalent if we can get one from the other by 

permutation o f symbols and by exchanging the top and bottom sequence of 

the state. We shall denote all states equivalent to state ( “ )  by [” ].

3.3 D es ign  o f css m achines

For automated production o f lower bounds we need stronger constraints 

on css machines. Every new condition is natural and efficient css machines 

are likely to satisfy it. We shall not allow sequences in any state to begin 

with the same symbol as this match should be taken out before getting to 

such a state. This corresponds to the first condition from Definition 3.7. If 

one o f the sequences from a state is empty, we should read a symbol from the 

corresponding input tape, otherwise we could lose some matches (corresponds 

to conditions 2 and 3). If we move from a state of the form [}',] to a ‘smaller’
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state, we could also lose some information (corresponds to conditions 4 and 5). 

States that are not reachable from the initial state can be deleted from the 

machine without any influence on the output of the machine (corresponds to 

condition 6 ). Thus we get the definition o f ‘strong’ css machines.

D efin ition  3.7 Let 971 =  ( S, E, /, T, O)  be a css machine such that for every

* =  [“ ] e s

1. « ( i )  /  v ( i ) ,

2. if I (s )  = f  and u /  A then v /  A,

3. if 1(a) = ). and v j t  A then u ^  A,

4. if u =  a ', v =  a >  6, then I (s )  =| and ( T(a,a) =  [£, ] or

Such a machine 971 is called a strong css machine.

Strong css machines automatically satisfy Lemma 3.3.

L em m a 3.5 Every strong css machine is regular.

Proof. Let 971 =  (S , E, /, T. ( ) )  be a strong css machine. Let us consider states 

t.j — T ' (s ,0i , 0( ) for i =  0 where / =  151 is the number o f states of

machine 971. Let 1 be the state with a repeated occurrence among ........ .

Since we are discarding symbols from the left and adding ones from the right, 

the state t has to have the form / =  [^ ].  Since we have to road from the

T(s,a )  =  s),

5. if u =  a', v /y, I (s )  =T, and T(s,b)  =  [“  ] then l =  t +  1.
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tape corresponding to the empty sequence, there is some state [^] between 

two occurrences o f state t.

Let s be a state o f the form [j^] with maximal i +  j .  Then according to 

conditions 4 and 5 from Definition 3.7, T (s ,c )  must be s, where c is a or b 

depending on I (s ).

Hence from Lemma 3.3 we have that © i is regular. □

The structure of strong css machines can be used for their automated 

production. An algorithm (£ for such production can be found in Figure 3.3.

The basis o f this algorithm is the function add(©i, s). The input of the 

function ‘add’ is a machine © l and a pair of sequences s. The output of the 

function ‘add’ is an extension of the machine © l that contains the pair s as 

one o f its-states. If pair s is already a state o f ©t then the output is simply 

©t. Otherwise for every symbol a € £ , a transition T (s ,a )  is found and the 

value of the output function 0 (s ,a )  is computed. If required, function ‘add’ 

is called recursively. Finally the pair s is added among the states of the ©l. 

The new transitions are built so that the new state n automatically satisfies 

conditions 2 5 from Definition 3.7 and every new state is reachable from .s.

The performance o f the algorithm (£ is as follows. A nonsaturated tran­

sition that will be upgraded is selected. The new target of the transition is 

added to the machine ©1. This can lead to the situation when* the old target 

o f the transition become unreachable from the initial state. In such a case 

the old target is removed from the states of the ©1. The transition is then 

upgraded.

This algorithm preserves the properties of strong css machines.

Theorem  3.3 Let procedure cut(in a, v; out x, y, //') be .such that ex' =  u, 

yy' =  v, i/(l) /  f’(l). and xy /  A. Let reduce(iXR) be a maehine identical with
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algorithm £

input regular css machine 97? =  (5 , E, /, 7\ O )  
output expanded css machine 97?; =  <£(97I)

function add( css machine 9)1, pair s =  (J})) 
begin

if  [*] G S then 
return 97?; 

i f  \u\ <  |r| then 
exchange^, v ); 

for a  G E  do
if  [“a] G 5  then

*> ,a ] :=
0 [s ,  a] := 0

else i f  L(u, i ' ll ) =  0 & ti =  a a ... a then 
X ^ a ] := s;
0[s, a] := 0

else if  3x,x', y, y' (u =  yxx' , va =  rj/;y', |r| =  |j/| > 0, L (j, y) =  ())then
an :=add(an, ( « : ) ) ;

* > . « ] : =  f e ' ] i
0[s, a] := |z|

else
cut(u, va, x ,  x ' , y ,y ' ) ;  

an := a<ui(an, (£ '»;

X[.,,n] := [£ ];
0(s, a] := b ( x , y )  

endif 
endfor;
S =  5 U [«];

return On 
end add;

begin
select s =  ( “ ) -2. T (s ,a ) ;  
i f  /[.s] :=| then

an := add(an.(“° ))

r[s,«] :=
else

an := add(an.(“„ ))

T\s,«] := (“a]:
endif;
reduce(On);
()\»,a\ := 0

end.

Figure 3.3: Algorithm (f for expanding css machines.
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971 ex O;ept. that all states not reachable from ( ^ ) are deleted. I f  3)1 is a strong

css machine, then <£(971) is also a strong css machine.

Proof. The total length of the pair s does not increase in recursive calls of 

procedure ‘add’ . Therefore algorithm (£ finishes after a finite number o f steps.

Let 971 be a strong css machine. Procedure ‘add’ preserves properties 1 G 

from Definition 3.7. Newly added states satisfy conditions 2-5. The satisfiabil­

ity o f condition 1 is guaranteed by the properties of procedure ‘cut’ . Procedure 

‘reduce’ causes the resulting machine to satisfy condition 6. Therefore (£(971) 

is a strong css machine. □

Algorithm (£ for extending strong css machines carries two heuristic fea­

tures. The first one is selecting a transition that will be upgraded. The second 

one is the decision how to create transitions for newly added states. It is not 

difficult to create a sequence o f strong css machines 971i,. . .  over the alphabet 

o f size k such that 971,+ i -  (£(971, ) and 2b'(9Jl, ) —> 7<, as i —» 00.

To  achieve this we select a nonsaturated transition s A  T (s ,a )  with min­

imal |.s| and set procedure cut(u, v,x,x\ y, y') to return x — u, x' =  A, y =  v, 

?/ — A. The machines 971 can be seen as (almost) complete balanced A'-ary 

trees. State Q )  corresponds to the root o f the tree, saturated states are the 

internal vertices o f the tree and nonsaturated vertices are the leaves of the 

tree. From every leaf there are nonsaturated transitions to the root. However, 

there are exceptions in this structure caused by part 3 Definition 3.3 and by 

Definition 3.7. We do not have transitions o f the form s —» [*®], these transi­

tions rather have the form s [^]. Also transition [^#] A  ["] will be rather
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Although ¿'(9Jl,) converges to 7*, the convergence is slow. To get a faster 

convergence we shall change the heuristics. We shall describe an improved 

heuristic for the alphabet S =  {0 ,1 }. When selecting the transition to be 

upgraded, we shall choose such a transition that is likely to make a large 

increment of the lower bound produced. There are two factors contributing 

to the decision of selecting which transition to upgrade. The first factor is the 

‘quality’ of a transition and the second one is the ‘quality’ of a state.

For every transition we can estimate how many matches we lose when 

using this transition. For transition

this loss' will occur when

L («a .r, vy) >  L (u 'r , v'y) +  0(s, a)

for some x,y € £*. A  failure ratio for depth j  for the transition (3.3) is then 

defined by

From (3.2) we can see that the contribution of every state is proportional 

to the value of the stationary probability distribution in this state. Therefore 

when extending css machines we shall select the transition «  A  T (a ,a )  with 

the largest value of the product d(s)Rj(a, a).

When adding a new symbol a to machine 911 we have to built new tran­

sitions ,s =  [“ ] A  T(a,a )  for every a 6  £. Some of these are determined by 

properties of strong css machines, but in the most cases we are not bound 

when choosing T(a,a). We shall match as few symbols as possible. This will

(3.3)
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procedure cut(u, v ;x ,x ',y ,y '); 

input u, v € S*
output x ,x ',y , y' € E* such that xx' =  u, yy' =  v, u(l) /  t»(l), ami xy /  A 

begin
I := fuid.firstfu, t'(l)); 
i f f  < oo then

j/q := eoimiioii-pi'cfix(u(t . . |u|), i<);
*o := u(l . . t -  1 + |j/o|);
Ho == »'(|i/o| +  1 ■ • It'D; 
xi) ■■= u(t + |.vo| • • |u|); 

endif
b := fimLfirst(r, « ( 1 )); 
i f  h < oo then

x i := coniinon_prcfix(u, v(b . . |i»|));
2/1 := »'(1 b~ 1 + ko|);

== « (k ii| + 1 • • |u|); 
j/J := t’(6 + |J*o| ■ • It'D;
i f  t < oo ¿'(addfOT.K.i/i))) > i'(add(!OT, (x\,y\))) then

. return(x0,2/o.io-Sfo)
endif

endif
return(xi, 2/1, x\ ,y\)\ 

end:

Figure 3.4: Procedure ‘cut’ from algorithm <E. Function fiiuLfirst(w, a) returns 
the first position o f symbol a in sequence a or 00 if a % it. Function com- 
inon.prefix(w, v) returns t he common prefix o f sequences u and v.

allow us to make further matchings dependent on symbols not yet read. Since 

k =  2 and w (l) /  t’( l ) ,  then either //(1 ) or t ' ( l )  must be involved in the next 

match. Out of two possible matches we shall choose the one which yields a 

better lower bound. The corresponding piece o f code can be found in Figure 

3.4.

We have used these heuristics to produce larger and larger css machines 

and gain better and better lower bounds for 7 The actual depth used for 

computing the failure ratio was j  =  G. The best machine we have created has
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931 states and gives us a lower bound o f 0.773911 <  72. It can be found in 

Appendix A. If I (s ,n )  is nonzero, it appears in column T(s,a )  as a number 

after the name of the state T(s,a). I11 the column d(s) is the value of the 

stationary probability distribution of the state multiplied by 103.

3.4 Labeled css machines

Deken [Dek79] describes and analyses algorithms for obtaining common 

subsequences. The best of these algorithms is given in Figure 3.5. He also 

observed that describing this algorithm by finite css machine requires a large 

number o f states. However, we shall introduce a variant of css machines, that 

allows us to describe Deken’s algorithm by a machine with a small number 

o f states.

The basic idea of Deken’s algorithm is as follows. We have two markers, 

one for each tape. The algorithm starts with markers marking the beginning 

o f the input tapes. In one step the algorithm reads symbols from one of the 

input tapes until a new symbol, with respect to symbols between the marker 

and input head, is read. If this symbol matches a symbol on the other tape 

(again in the area between the marker and the input head), we copy the 

symbol to the output, move the markers to the matched symbols and new 

scanning starts from the markers. We continue in this manner and alternate 

the tape from which the input is read. This is illustrated in Figure 3.G.

Tin* analysis of the algorithm is based on the fact that the numbers of 

symbols scanned between matches are independent. Therefore if E N  is the 

expected number of symbols scanned between two matches, then 7* >  2/EN.

E xam p le  3.3 State diagram O corresponding to Deken's algorithm for al-
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algorithm D

input « , v € E*
output w € E* - common subsequence of u, v and css =  |u>|

begin
n, := 1;
ns := 1;
css := 0; ,
TopPos[ 1 ,..., it] := 0;
BotPos[l...... it] := 0;
loop

while Toi>Pos[u(nt )\ / 0 do 
nt := n, +  1; 
i f  nt >  |u| then 

return css 
endif 

endwhile:
TopPos[u(nt)\ := n( ; 
i f  BotPos[u( « ( ) ]  0 then

css := css +  1; 
output it(n,); 
ns := BotPos[u(tit)] +  1;
7opPos[l...... it] := 0;
BofPos[l.......it] := 0

endif:
nt :=  n, +  1;
while BotPos\v(its)] /  0 do 

ns := ns +  1; 
i f  /it > |tz| then 

return css 
endif 

endwhile
Z?ofPos[«(nt)] := lit; 
i f  TopPos[v(ns)] /  0 then 

css := css +  1; 
output «(/it); 
ii, := To]tPos[v(ns)] + 1;
TopPoa[\.......it] := 0;
B o t P o s [  1.......it] := 0

endif: 
ns := lit + 1 

cndloop 
end.

I

Figure 3.5: Dekcn's matching algorithm.



3.4 L abeled css machines 40

1 3  5 7

0 2 3 1 3 5 1 3 1 6 4 5

7S----------- ------ ----- 1

Figure 3.6: One cycle o f Deken’s algorithm.

phabet {(), 1,2 ,3} can be found in Figure 3.7. There are five states [^*], [ " . ] .  

[ l * ] ’ [ l •]> [13*] with • signalling where the next symbol will be read. One 

step o f Deken’s algorithm corresponds to a movement from one state to a 

different state. Finding a match corresponds to a transition leading to 

and one cycle of the algorithm corresponds to a path from [^] back to [^]. 

We shall analyse machine Q  in two steps. First we shall not consider loops 

and multiple transitions will be seen as one transition.

Let P (s ,a )  be a probability o f a transition s A  T (s ,n )  where T (s ,a )  /  ». 

We have

P (.s ,«)

undefined if T(s,a )  ^  s ,

1 to r -E l. El.
è t o r - E M A .

2 f,,r * =  [13] •

For every state a /  [^] there is a unique path from [^] to «. Let U(n) be 

the probability of moving along this path and let p(s, a) be the probability 

of moving from [^] to .s and then to T(a ,a )  =  [^]. It is p(s,a) =  P ( s , « ) {/ ( « )
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Figure 3.7: Labeled css machine for k -  4.

and

t/([5]) = i W.o) = J.
=  f  m  i )  «  h  =  i .

^ ( [? 2] )  =  \ p([?*]. 0) =  p ( [H , 2 )  =  U  -  s*

^([?§]) =  i  />([?!].!) =  p([?I].3) =  y  =

VVe put p(s, a) =  0 if T (s ,a )  /  soi i.e., transition s A  T(s ,a )  <loes not 

correspond to a match. Thus p(s, a) is the probability distribution o f matches 

and H p (s ,« )  =  1 .
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y +  (y  ) 2 +  • • • =  1. Therefore the mean progress to collect the first symbol 

on one tape is VF(1 ) =  1 , for the second symbol it is l l ' ( 2 ) =  2|, and for the 

third symbol it is 3) =  4|. For q(s,a) we now have

< / ( [U ° )  =  1V(1) +  1F(1) =  2 <?([?•], 1) =  W (2 ) +  W ( l )  =  3 i

0 ) =  1F(1) +  IF (2 ) =  3| flr(R2], 2 ) =  W(2) +  \V(2) =  4§

?([?!*], 1) =  l^ (3 ) +  VF(l) =  5| </([??*],3) =  W(3) +  \V(2) =  6§

Having found p(s,a) and q(s,a), we can now compute the expected num­

ber of symbols read between two matches E N  =  Yl Z) p(s,a) q(s,a) =  yy.
tes aes J

This yields the lower bound yy =  0.545454.... O

We can build a css machine 971 that simulates the behaviour of Deken’s 

algorithm for any alphabet E =  {0 , . . . ,  k — 1 }. Because of the symmetries 

(Lemma 2.1, part 3) we can suppose that symbols read on the top tape are 

even and in the order 0,2,.. . and symbols on the bottom tape are odd and

in the order 1,3...... Machine 971 will have k +  1 states Sq =  [^], « i =  [^],

roi ro2 . . . 2« - 2i .  ro2 ... 2 1 -2 2 0  c
s2 =  l i j ........ « 2. =  Ll 3 ... 2» -  l j  ’ s2i+l =  li 3 ... 2i -  1 J ..........For the taPe

switch function o f the machine 971 we have /(s2i) =T and /(a2i+ i) =1- The 

appropriate transition function is given by

»0 for  a =  1 , 3 , . . • > 2? — 1

T(S'n , a)  =  < »21 for  a  =  0 , 2 , . . , 2» -  2

»2i+l for  a >  2 i

for  a  =  0, 2 , . . • , 2 *

T ( s 2i+ x ,a )  =  < »2. +  1 for  «  =  1 , 3 , . . • ,  2» — 1

1
»2i+2 for  a >  2/ +  1
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For the output function, we have

1 if T (s , a) =  sq

0 otherwise

To compute E N . we shall introduce a value function V : S  x E —► E. If 

T (s , a) =  s0, we define V^s, a) =  p(s, a)q(s, a), where p(s, a) is the proliability 

of matching using the transition s A  s0 and q(s, u) is the expected number 

o f symbols read to achieve this transition. I f  T (s , a) /  so, we put V (s, a) =  0. 

Clearly

To evaluate V(s,a )  we shall introduce the functions U ( j )  and IT ( j ) .  U ( j )  

is the probability of achieving the j- t li state o f the machine 971 and IT ( j )  is 

the expected length o f a sequence read until j  different symbols appear in 

the sequence. For t/ (l) we have t/( 1) =  1. To express U (i  +  1) in the terms 

o f U (i )  we can observe that for k — \i/2\ symbols the transition leads out of 

the state .s,. In k — i cases this is transition s, A  sl+1 and in \i/2] cases it is 

transition s, A  ,s0. Therefore U (i  +  1) =  ^ (* )jfir j7yjj- This gives ns

where a is such that T(.s, it) =  .s0.

Since the waiting time for the ( j+ l ) - t h  symbol, having already collected 

j  symbols, is l +   ̂+  (^ )2 +  . . . =  A - ,  we have

E N  =  £  £  v ( « , b ) .
. € S  o e E

and

w ( j )  =  £  r
(=0  h

k
- r
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Alphabet

size

Lower

bound

Alphabet

size

Lower

bound

Alphabet

size

Lower

bound

2 0.77391 7 0.44502 12 0.35899

3 0.61538 8 0.42237 13 0.34737

4 0.54545 9 0.40321 14 0.33687

5 0.50615 10 0.38656 15 0.32732

6 0.47169 11 0.37196

Figure 3.8: Lower bounds for 7*.

Therefore

q(s ii a) =  W( L*/2j) +  W (\a/2\ ),

where again a is such that T (s ,a ) =  s0-

All this together gives us the following lower bound:

Th eorem  3.4 For every k > 2  we have

1  k > k l « - l ) / 2j /[>/2J 1. j  1. \  1 i - 1  1.   1

S  S  ( S  ^  + is FTi) A- - L//2J n  A' -  L//2J

Actual lower bounds for k =  2 , . . . ,  15 can be found in Figure 3.8 

Functions U ( j )  and W ( j )  can be seen as labels on the states and func­

tions p(s,a) and can be seen as labels on the transitions. So machines

described in this section can be called labeled css machines.

So far, all attempts to push this approach further break clown on the 

independence condition for numbers collected between matches.



Chapter 4

U p p  er bounds

In this chapter we shall describe a new method for obtaining upper bounds 

for the expected length of a longest common subsequence. First we shall 

outline the method and define collations pairs of sequences with marked 

matches. Then we shall describe simpler versions of the new method and 

finally full versions o f the method will be given.

4.1 Collations

Let. jF(i, n) be the set of all pairs o f sequences, both of length //, with a 

longest common subsequence of length i, i.e.

F ( i ,  n) =  {u , v e E " :  L (u , i>) =  t }  .

The number of elements in set F ( i ,  n) will be denoted by F ( i ,n ) .  Since

U F ( i , n )  =  D" x E ", we have 
1=0

± F ( i , n )  =  k’ \
*=0

I
( 4 . 1 )
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0 7 kn yn n

Figure 4.1: Upper bounds for the expected length of a longest common su-

This allows us to rewrite the definition of the expected length o f a longest 

common subsequence in the following way:

is very small compared with A-2", then pairs with a longest common subse­

quence larger than yn do not really contribute to the average and therefore 

the expected length must be smaller than yn.

This is the basic idea o f the first upper bound given by Chvatal and 

Sankoff [C'S75] and also the basic idea o f all further upper bounds. It is 

illustrated in Figure 4.1 and formally proved in Lemma 4.1.

L em m a  4.1 (Chvatal and Sankoff [C-S75]) Let F ( i ,  n) he the number of pairs 

of strings of length n over the alphabet of size k with a longest common

persequeuce.

(4.2)
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subsequence of length i. Let H ( i ,n )  be an upper bound for F ( i ,n ) ,  i.e., 

F { i ,n )  <  H (i,  n) for all i, n. I f  y is such that

then 7* <  y.

Proof. We can split the summation in (4.2) into two parts, from 0 to yn and 

from yn to n. We get

For the first sum we have i <  fj/n] — 1 <  yn and for the second sum we have 

i <  n. Hence

We can use (4.1) to evaluate the first sum and (4.3) to estimate the second 

one. We get

To obtain upper bounds for F ( i ,n )  we shall concentrate on the relation 

between F ( i ,  n) and F ( i +  1, n). We shall try to observe the changes o f F ( i .  n) 

when increasing To realize it we introduce the notion of a match a pair of 

sequences that have the same last symbol, and a collation a pair of sequences

£  H ( i ,n )  =  o(kin) (4.3)
*= fynl

F (i ,  n) +  n
»= fj/»»l

(ynfcin +  no(k2n) )  =  y +  o ( l ) .

ELFor n —* oo this gives 7 *. =  lini —¡^  <  y. □

with a marked common subsequence.
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D efin ition  4.1 Let u =  U\- • • u„, and v =  Vt ■ ■ ■ vn be two sequences. We say 

that pair ( “ )  is a match, if um =  v„. The set of all matches will be denoted 

by A . For match ( “ )  € A  we denote [ ( " ) ]  =  ( 'u).

Given two sequences u and v and their common subsequence tv, we can 

chop u and v just behind the corresponding symbols from w. Every piece we 

get (except the last one) is a match and such a chopped pair o f sequences will 

be called a ‘collation’ . The sum of the positions of w(i) in the input sequences 

u and v is the *-th entry o f a ‘collation key’ .

D e fin ition  4.2 A  sequence p =  p i,p i , . • •., p„ , p„ +1 of pairs is called a colla­

tion of order n if the pairs pi,P2, ■ ■ •.pn are matches. We say that collation

Pi,P2, - - -\pn,pn+i generates the pair ( “ )  if cat(p,,p2....... P„,P ,.+1) =  ( “ )•

The positions of pairs of matching symbols form the collation key L (p), where

¿ (p )  =  l ( p i ). l { p i . P 2) ......../(P1.P2.........P n )-

We shall use L H(p ) to denote the reverse of collation key L ( p). Let '-<’ be 

the lexicographical order on integer sequences. We shall introduce the notion 

of dominance. Informally, having two ways of cutting the sequences we shall 

prefer it when the cuts appear as soon as possible. We shall say that a collation 

is ‘dominated’ when symbols in the collation are not matched optimally.

D e fin ition  4.3 We say that collation p dominates collation q. if p and q 

have the same order n >  1, generate the same pair, and L H( p) -< L l{(q). 

Collation q  =  q of order n >  0 is dominated if there exists a 

collation p such that p dominates q  or if L(</,1+|) >  0.

The following example illustrates the definitions.
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E xam ple 4.1 Let E =  {0 ,1 }.  Pairs ( q), (°J ), (¿¡¡) are matches, pairs ( " j )  

and ( ¿ i )  are not. Collation ( ° i ) ( o i) ( a )  generates the pair (j,1, } )  and its 

collation key is 3, G. Another collation generating pair ( h i! )  is ( i o ) ( ! ) ( a ) and 

its collation key is 3,5. When we compare these collation keys, we observe 

that ( i o ) ( i ) ( a )  dominates ( 01) ( o i) ( a )  Th,ls ( ° i ) ( o i) ( a )  is a dominated 

collation. O

If a collation is dominated, it remains dominated after any permutation 

of symbols from E. There is another symmetry between the top and bottom 

sequences o f a pair. Therefore we can split pairs of sequences into equivalence 

classes, where two pairs p and q are equivalent if we can get q by permutation 

of the symbols in p or |_p]. We shall denote all pairs equivalent to pair ( “ ) as 

["]. These equivalences (and notations) are naturally extended to matches, 

collations and sets o f collations. Reversing is a third symmetry, that works for 

longest common subsequences, however this symmetry does not make sense 

for matches or collations.

Let C(m )  be the set of all collations generating a pair o f total length in. 

The set. o f all collations will be denoted by C =  (J C(m). Let Af ( i )  be the set
m =0

of all nondominat.ed collations of order i. Let A f(i, in) =  A i ( i )  n C (m ) be the 

set of all nondominated collations of order i generating a pair of total lengt h 

m. These sets of collations can serve us as upper bounds for F ( i ,n ) .

Lem m a 4.2 For every /', n € N

F ( i ,n )  <  |A/’(i,2n)|

Proof. This lemma is a simple consequence o f a fact that for every pair ( " )
I

with longest common subsequence of length i there is at least one nondomi­

nated collation of order / generating pair ( ” ). □
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We are still unable to count the number of elements in n) or in Ai(i, n).

But we can define sets of collations H (i ,n )  which contain all nondominated 

collations and are easier to handle.

Suppose we have expressed the number of elements in 'H(i, n) in terms
OO

of the generating functions 51 \H(i,n)\z". Theorem 4.1 gives us conditions

when we can transform upper bounds for these generating functions to upper 

bounds for 7*.

Th eorem  4.1 (Dancik and Paterson [DP94]) Let 'H(i), i >  0. be sets of 

collations of order i such that every nondominated collation of order i is 

in H ( i ) .  Let /i(,)(s ) -  51 | H {i) C\ C(m)\zm be the generating functions for

where p(z) and X(z) are functions independent of i and g(i) is a nondecreasing 

polynomial. I f  z0 £ (0, ) is such that A (;0) <  1 then

Proof. We shall denote | H (i)  D C (m )| by //(?', rn). The set Af(i ,  m) is a subset 

of the set W ( i )n t ’ (w )  and therefore H(i,2n )  is an upper bound for F ( i ,n )  

according to Lemma 4.2. Let Z  be the set of all ;  € (0. ^-¡-) such that A ( ; )  <

n- 0

77? =0
H(i, m) =  H ( i )  C\C(m). Suppose the h ^ (z )  satisfy

h(i\ z ) <  p(z)q(i)(X (z)Y (4.4)

— *''0 "
-  log A(z0)

2 log kz0

1. For every y >  >  0 from (2.1) we get

From (4.4) and from the fact that 51 inf <  inf 51 we have

71 71 p(z)q (i ) (X (z )) '
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Since A (s) <  1, we get (A (c )) ' <  (A (5 ) ) tfn for i >  yn. Hence

n p{z)nq(n )(\{z))»"

and from the properties of infimum for we get

n m n
Y  H (*. 2n) <  p(z0)nq(n)

For y we have (A (c0) ) y <  k2;„ and therefore Y1 H (i,2n ) =  o(k2n). Finally

The numerical computations are performed with the help o f Mathematica. 

The actual command used to compute the upper bound y is

FindMinimum[2*Log[k*z]/Log[lambda[k,z]],{z,0.5/k>]

4.2 P rev io u s  u p p e r  bou nds

In this section we shall show how older upper bounds for the expected 

length o f a longest common subsequence fit into the new framework given by 

Theorem 4.1. These upper bounds for alphabet size k =  2 , . . . .  15 together 

with upper bounds developed later in this chapter are given by the table in 

Figure 4.2.

The first upper bound flue to Chvâtal and Sankoff [CS75] corresponds to 

sets of all collations 'H(i) o f the form

for some F C  S. The generating function for the number o f sequences of t ho 

form ua, for some u € E*, is ,

i=r»"i
Lemma 4.1 gives us 7* <  y for every y > □

having k choices for n we get the generating
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k New results Deken

[Dek83]

Chvatal Sankoff 

[CS83]
Chvatal Sankoff 

[CS75]
2 0.83763 0.85750 0.86660 0.90512
3 0.76581 0.77682 0.78648 0.82999
4 0.70824 0.71810 0.72971 0.77291
5 0.66443 0.67323 0.68612 0.72767
6 0.62932 0.63721 0.65099 0.69056
7 0.60019 0.60731 0.62172 0.65932
8 0.57541 0.58189 0.59676 0.63250
9 0.55394 0.55987 0.57508 0.60909

10 0.53486 0.54052 0.55598 0.58841
11 0.51785 0.52331 0.53895 0.56995
12 0.50260 0.50786 0.52363 0.55331
13 0.48880 0.49387 0.50973 0.53820
14 0.47620 0.48112 0.49704 0.52440
15 0.46462 0.46942 0.48538 0.51172

Figure 4.2: Upper bounds for alphabet size k =  2 , . . . ,  15.

function for the number o f matches A(c) =  . The generating function

for the number of collations in 'H(i) then is (A (z ) ) ’p(z), where />(:) is the 

generating function for the number of matches of form We then

can use Theorem 4.1 to produce upper bounds. Analysing these upper bound 

for k —» oo we get the following theorem.

Th eorem  4.2

lim ~ric\/T' <  ek-—oo

Proof. This is a consequence of the more general Theorem 5.2. □

l
Chvatal and Sankoff [C’S83] have observed that if n is the matching symbol, 

then E* can be replaced by (E \ ft)* . They have improved their upper bounds
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using collations o f the form

A s \  « , ) • « , 'W ( s \ « 2) * « 2\ A e

l ( S \  « ■ ) * « , ;  \ (S  \ a2)*a2y \(E

The generating function for the number of matches of this new form then is 

=  ( l- (A - l l )c p -

Deken [Dek83] goes further in the elimination of dominated collations. His 

approach involves ‘minimal1 matches matches with only one possibility of 

matching symbols.

D e fin ition  4.4 The match p is minimal if there is no match q such that 

p =  cat(</, r) for some r € Ii with l ( r )  >  0.

For example, in the binary alphabet the only minimal matches are in 

( °  !)> (o* 1)• ( ‘ g). all(l ( i* o )• F °r alphabet {(), 1 ,2 ,3 }, matches ( 012)  and 

C*1”-}) aro minimal while ( ¡ 323) and (p jo ) are not. The usefulness o f minimal 

matches is supported by the following lemma.

L em m a  4.3 All matches in a nondominated collation are minimal.

Proof. Let p =  p i , . . . ,p ,1+i be a collation such that p, is not a minimal 

match. We have p, =  qr where q is a match and l ( r )  >  0. Collation p is then 

dominated by collation p\, . . .  ,P t-i ,q ,  rp ,+ i,. . .  ,p„+1. □

Now we set 'H(i) to be the set o f all collations consisting o f minimal 

matches. To evaluate the generating function for the number of collations in 

'H(i) we shall need the generating function p(d. z) for the number o f sequences 

using exactly d given symbols.
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For every sequence using exactly <1 symbols we can mark the first oc­

currence of the last used symbol. We have d choices for the symbol and its 

contribution to generating function is dz. The sequence before the marked 

symbol (exclusive) uses exactly <7— 1 symbols and the generating function 

for the number of these is p(d -  1, z). After the marked symbol can be any 

sequence and the corresponding generating function is ■_1. . For p(d,z) we

L ( ua, v) — L( u, va) =  0. Let T be the set of all symbols that occur in u, then 

u € r*  and v € (S  \ ( f  U  « ) )* .  The size d o f T can range from 0 to k — 1

symbols from T is given by the generating function p(d,z), for the number of

the contribution of the matching symbol is kz2. The generating function for 

the number of minimal matches then is

The generating function for the number o f collations in the sets 'H(i) then is 

(A (z ) ) ‘p(z), where p(z) is the generating function for the number of matches

then get

/>(<*. - ) =  Y ~ j Z  P(d ~  z)

which leads to

(4.5)

Every minimal match has the form ( ' “ )  where a € E, u,v  € E*, and

se q u e n c e s  over E \ ( f U  a)  we have th e  g e n e r a t in g  fu n c tio n l- (k - t l- l ) : '  rtll<1
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4.3 S im ple  u pper bou n d  (b in a ry  a lp h ab e t )

In this section and Section 4.5 we shall work with the binary alphabet 

D =  {0 ,1 }. Previous methods for an estimate of F (n , i )  counted the number 

of all possible pairs that have a specific sequence as a common subsequence. 

To improve the upper bound we must avoid counting any one pair too many 

times. To do so we shall use the dominance partial order. We shall not count 

a pair ( “ )  in association with subsequence w when we know that there is 

some subsequence w' of ( “ )  such that the collation based on w' dominates 

that o f w.

We shall take advantage o f the following idea. The collation ( ° J ) (o i ) (o )  

generates a pair ( Voio) and has the collation key 3,6,8. But having the 

match (°J ) followed by the match ( 0{ )  is not optimal, because it is possible 

to arrange matches in a better way, namely (!* {) ( l )  ( 1(>) ’ w i,h tlM> collation 

key 3, 5 ,8. This idea is generalized and made precise in the following Lemma.

Lem m a  4.4 I f  collation p contains matches of the form |((l } ) ( 0+})J then 

p is dominated.

Proof. Let p -  p i , . . . ,p „+ i  be a collation such that p,- =  ( °  j )  and pi+1 =  

( „ + ! ) '  ' <  "■ Then p is dominated by the collation

........... .. < P i+3i • • • , p n  +1 •
a

These inefficient collations from Lemmas 4.3 and 4.4 are said to be rejected. 

Collations that are not rejected, are accepted.

For i >  0 let be the set o f all accepted collations p of order i

generating pairs o f total length m and let be the number of pairs in
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the 7i(i,m). For i =  0 we put H(0,m )  =  Ai(0, m). Let 7 i( i )  =  (J
m=0

Every dominated collation is accepted and therefore ’H ( i )  can be used for 

obtaining lower bounds through Theorem 4.1.

To count H (i ,m )  we can split i >  1, into two sets and

Ti.2( i ,m )  such that all collations beginning with a match o f type [¡j] will form 

W i(i,m ) and all collations beginning with a match of type [* ¡¡] will form 

? f2(i, in). For i =  0 we set W i(0, m) -  Ti.(0, m) and ? f2(0, m ) — 0.

We build the sets 7i\(i,m) and W2(i ,m ) by induction on i. All the colla­

tions of order 0 (forming the set 7ii(0, m)) are those in U [j+ ]. Now

let us suppose we have the sets 'H\(i — 1, m) and W2(t — l,m ) for all m. To 

get all accepted collations from 7i( i,m ')  we shall extend the collations from 

'H(i  — 1,'m) to the left by one match. The extensions by the matches from 

[¡}] form 7it(i, m'). The situation in the case of extensions by the matches 

from q] is a bit more complicated. When the collation from 4i2(i — l, m) 

begins with a match from ( 1 ¡¡), the extension by a match from ( j+q) does 

not create an accepted collation. Therefore W2(i, m ') is formed by the exten­

sions of collations from 'H\(i — 1 ,m )  by the matches from [* j{], and by the 

extensions of collations from W2(i — 1 , m) beginning with a match from ( 1 ¡{) 

by matches from ( 1 ¡¡) U ( °  } )  U ( 0+ } ) ,  and similarly for the symmetric cases. 

The containments between the sets ' )  and W2( t ,m ) can be described 

by the diagram in Figure 4.3.

Let H j(i ,m )  be the number of collations in j  =  1,2. From the

definitions o f W i(0, m)  and W 2.(0, m) we have

//.(0, 0) =  1 ,

//, (0, m ) =  2m+l +  2m -  2 for m >  0 ,

//2(0, m) =  0 .
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[8] [ 1+8]

Figure 4.3: The containments between the sets and m).

For convenience we take H\(i, m) =  m ) =  0 for m <  0 and all i >  0. 

Now we can transform the containments from the diagram into the following 

recurrences.

H\(i,m ) =  2H\(i — 1, m — 2) +  2Ht(i — 1, m  — 2 ),
m m

=  4 ^ f f i ( i - l , m - j )  +  3 ^ / f i ( i - l , m - , j ) .
j =3 j =3

We can express these recurrences more compactly in terms of the generat­

ing functions h^\z) =  £  H t(i, rh)zm, h^\z) =  £  H2(i,tn )zm, and h ^ (z )  =  

h[’\z )  +  h j\ z )  =  £  H ( i ,m )z m. The contribution o f each pair from (¡¡) is

z2 and the total contribution of the pairs from ( 1 ¡¡) is ttt- For H\(0 ) =

P0 11*1 ro+l 1+2'” o 22
A J u [ i +J we have generating function . The resulting re­

currences are the following.

c 1+ 2; 
-  1- 2;

, 2; J 
+  (T ^ IF  -

/40) =  o ,

=  2 z2h\i- ,) +  2z2h(i ~ x)

4 °
(<-D , 3; 3 , (•- 
1 +  1 - Zn2

To solve the system of the linear recurrences we can use the following well- 

known lemma.
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Lem m a 4.5 Let { x (,) =  Q x (,- 1) ; x (0) =  (xj0>, . . .  ,xj.0)) T }  be a system of r 

linear recurrences. Let A i, . . . ,  Aj be the characteristic values of the matrix Q  

and let e i , . . .  ,ei be their multiplicities. Then there are constants sm , . . . ,  sr/e, 

such that, for sufficiently large i,

— 5 ^ ( sO> +  s<>2* + -----stjejir’ 1 <  t < r .
i =i

Proof. Let Q  =  P R P  1 he a decomposition of Q  into Jordan normal form.

Therefore x (i> =  Q 'x (0) =  P R P x {()), w

< B\ 0
0 1

R  =
0 B , 0

, R 1

. 0 0 B, ,

and

f  A, 1 0

0 Aj 1

B j —

0 0 ••

1 » 0 ••

Hence for i >  ej we have

f A j
0 Aj (DA*-1

B) =

0 0

^0 0 ...

Putting all this together, gives us x\l] in

I

ere

( B\ 0 • • • ( ) ' '

0 B 2 ■■■ 0

v, 0 o ••• B\ /

. . .  0 \

0

A, 1
0 A> )

(./-»)A p+1 \
(•>’-* )Aj~'i+2

Aj (j )Aj-1

0 Aj

e required form. □

Lemma 4.5 gives us upper hounds in the form required by Theorem 4.1



4.4 Simple upper bound (alphabet size 3) 59

C oro lla ry  4.1 Let { x ('* ( ; )  =  Q (c )x (,_ 1)(.j); x (0)(c ) -  (x\0).......xi.0' ) 7' }  be a

system of r linear recurrences. Let Ai(z),. . . ,  \t(z) be the characteristic val­

ues of the matrix Q (z )  and let \ (z ) =  m axJA j(2)|. There is some s(z), 

independent of i, such that

x ^ ( z ) < r i rs (z ) (X (z )Y .

For the system of linear recurrences (4.6) we have

Q (z )
2 c 2 2 c 2

\

4c3 3c3
1 - î 1 - j >

with characteristic values

’ A (c) =  A ,(c )

a2(~)

( 2 +  - +  v/(2 — ~)(2 +  7 ; ) )  , 

¿ r A 2 +  z -  r j ( 2 - z ) ( 2  +  7z)) .

From Corollary 4.1 we get

* (0(x) <  s(^)(A(x))*

for some s(z). Theorem 4.1 then yields an upper bound 7 2 <  0.853173, with 

c0 =  0.185199 and A(c0) =  0.0974715.

4.4 S im ple  u p p e r bo u n d  (a lp h ab e t  size 3)

In the case of a three-letter alphabet we shall proceed in a way similar 

to the case of the binary alphabet. Let P  be the set o f all minimal matches.

. We can divide P  into the sots of ‘short’ minimal/> =  U

m a tc h e s , S  =  [{{], ‘ m e d iu m ’ m in im a l m a tc h e s  M — [* ¡¡] U [2+0] e n d  ‘ lon g*

1+0
2+0
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r/2 11*2+1 + 01
minimal matches L  =  [* ’ ’ 0J. However, without loss of generality we

can suppose that if p is from M  then it has form (i, .y ) and similarly for 5

and L.

We need something that corresponds to Lemma 4.4. W e define O\ ( 0 2) to

appear in the order 01 in v (symbols 0,1,2 always appear in the order 012 in 

v respectively). So

From the definition of the set O, we know that if p € P  \ 0\ and q € M  (or

construction we are able to eliminate collations containing such patterns and 

thus get better upper bounds.

Let Q i . i , . . . ,  Q 3i3 be the following sets of matches:

Q\,\ =  S , Qi,t — S  n O i , Q\,a = S  n O ?,

Qi. i = A/, Q ‘2,i = M n O f , Q'2,3 = M n 0 2,

(¿3,1 =  L i Q3,2 =  L  n  0 \, (¿3,3 =  ¿ n  .

We shall define pairwise disjoint sets 'Hi(i), and 'H i(i ) recursively

according to First we define W|(0) as the set of all nondominated collations 

of order 0. Clearly these collations are exactly the collations that consist of 

one pair with ho match. Moreover we define 'Hj(O) =  Hs(0 ) =  W. For / >  0, 

the set H r(i )  is formed by all collations of the form pq, where p € (¿,., and

be the set of all minimal matches p — ( " )  such that any symbols 0,1 always

and

p € P \  Oi and q € L )  then collation pq(\) is dominated. Using the following
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Figure 4.4: The containments between the sets A4, and C

q € 'H„(i — 1), for r,s € {1 ,2 ,3 }. We shall give mnemonic names to the 

sets 'Hj(i), namely 'H i(i) will be S{i), ’H'i(i) will be M ( i )  and will be

£(/'). Finally w e define 'H(i) — S ( i )  U M ( i )  U C(i). These recurrences can be 

described by the diagram in Figure 4.4

Now we shall introduce a more sophisticated technique to show that every 

nondoininated collation of order i is in the set H (i) .  This will mean that the 

sets 'H(i) can lx* used to produce upper bounds for the expected length of a 

longest common subsequence as given by Theorem 4.1. We also redefine sets 

Q i.i, . . . ,  Q3 3 to get better upper bounds.

From Lemma 4.4 we already know that if the first match of collation p 

has the form (*[J) then the collation ( io ) p  >s dominated. We shall capture



4.4 Simple upper bound (alphabet size 3) 62

such collations p in the set « (1 0 ). For general m, we shall define the set U{u).

D efin ition  4.5 For every u € E*, let

« ( u )  =  {p  : V (" ) € A  (L (u , w) >  1 = >  ( ”)p  is dominated)}.

These sets possess the following properties analogous to Lemma 4.4. With 

every property there is also shown a pattern illustrating it.

P.l ( 'o )p  € « (1 0 ),  Q Q ,

P.2 O p  e « ( 210 ), ( 2} ) ( 21o) ,

P.3 if p  € « (1 0 ) then (g)p € « (0 1 )  , ( 0} ) Q Q .

P.4 if p  € « (2 1 0 ) then (g)p € «(0 2 1 ) , ( 02) ( o ) ( 21o)-

P.5 if p € « (2 1 0 ) then ( } )p  6 « (1 2 )  , ( i l ) (1 ) ( 21S )•

Using the sets « ( a )  we can extract the significant properties from the 

collations. The equivalence relation for pairs o f strings is naturally extendable 

to collations. The set of all collations equivalent to some collation from « ( a )  

is denoted by « [ « ] .

Clearly, if a collation p starts with a match from M  then p is in «[10 ] 

(property P .l), and if p starts with a match from L then p  € «[210] (prop­

erty P.2). Because of the significance of the sets «[10 ] and «[210] we shall 

denote them by U.m and «/, respectively. Let Us be the set of all collations. 

These sets were designed to satisfy Lemma 4.6.

Lem m a 4.6 For nwry / € N,

S(i)  C U s , M ( i )  C  U M , C(i) Ç  « ,..
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Before proving this lemma we shall use the remaining properties of the U'a 

to improve the upper bounds further. Let be the set of all matches from P  

having 1 as a matching symbol. According to property P.5, if p e  C(i)  then 

collation ( j )p  can be put in A4(t +  1) instead of S (i  +  1). This allows us to 

redefine the Q'a.

0i,3 =  Q i,3 \ Pi i — Q'2,3 U (Q i,3 n P i ) , Q'r , — Q, 3 otherwise.

Let PQ be the set of all minimal matches with matching symbol 0. We 

shall use properties P.3 and P.4, which for p € M ( i )  put (¡J)p into .Vf(/ +  1) 

and for p € C (i)  put (¡¡)p into C(i -f- 1 ). I hus wo got the final refinement, of 

the Q's.

Q'i.2  =  Q ',.2 \ Po, Q h  =  Q'2a u  ( Q ,,2  n  P o ) ,

Q '2,3 =  Q'2 ,3  \ a . , QZ,3 =  Q'3,3 U  ( ( h ,3 n f t ) ,

Q"., =  Q'r,. otherwise.

Now let the sets S (i ) ,  M (t), and C(i)  be constructed using the Q "'s instead 

o f the Q'a. We can now return to,the proof o f Lemma 4.G.

Proof (o f Lemma 4.6). Since Us is the set o f all collations, the first inclusion 

is trivial. We prove the second inclusion by induction on i.

For i =  0 we have ,Vf(0) =  (t C /Y(10 ). For i >  0 let p =  /.q be a collation 

from M ( i ) .  The following cases are based on the construction of the set M (/).

Case 1 . j> € Q!J , =  A/, q  € S ( i  — 1). From P.l we can conclude that p € Um .

Case 2. p  € Q"i,2 =  (A/ n ()\) U (5  O 0\ n / »), q 6  ,Vf(/ — 1). Without loss

of generality we can suppose q € fY (10 ). If p  € M  fl ()\ then we can
I

conclude p 6 Um using P.l. If p € S n  O\ PI P0 then, from P.3, we gel

P  €  M m -
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Case 3. p £ Q'-ps — ( Ĵ f~ '^ 2\^:o)C(S,n 0 2 n/:>i\/:o)) *1 £ £ (t—1). Ifp  £ A/0 0 2 

then we again conclude q  € UM using P .l. If p 6  S n 0 2 H P x, we get 

q  £ U\i from P.5.

The third inclusion can be proved in the same way as the second. □

To get upper bounds for 7* we need to show that the sets 'H(i) cover all 

nondominated collations.

Th eo rem  4.3 If  p is a nondominated collation of order i then p £ 'H(i).

Proof. We use induction on the order of the collation p. The base of the 

induction holds since H(0) is exactly the set of all nondominated collations 

of ordef 0. Now let p be a nondominated collation o f order i >  0. We can 

express p as pq where p is a match and q is a collation of order i — 1. Since p 

is nondominated, p must be a minimal match and q  must be a nondominated 

collation. Hence q £ H (i  — 1) =  S( i  — 1) U M ( i  — 1) U  C(i — 1), and we can 

consider the following three cases.

Case 1. q € S (i  — 1). We have p £ P  — S U M  U L. If p £ 5 =  Q " , then 

pq £ S(i ) ,  if p £ M  =  Q" 1 then pq £ M ( i ), if p £ L  =  Q " , then 

pq £ C(i). Hence p =  pq £ H(i).

Case 2. q € .V( ( i — 1 ) C ¿/[10]. Again without loss of generality we can 

suppose q £ /Y(10 ). Collation pq is nondominated and p must be from 

O |. Since Q'\ 2 U Q"i:1 U 2 =  Ci the construction of the sets S ( i ), 

M (*) and C(i)  guarantees that p =  pq € 'H(i).

Case 3. q £ C(i — 1) Ç ¿/[210]. This case is similar to Case 2, and so we have 

P € 0-2 =  i U Q j.3 u  Q's.s HI1<1 p =  pq € W(t). □
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This recursive construction allows us to derive upper bounds for the 

number of collations in 'H(i). Let q"a(z )  be the generating functions for 

the number o f elements in Q " ,, i.e., q"a(z) =  Y  \Q”s H P(m )\~n, where
m =0

P (m )  =  { ( “ ) : /(“ ) =  m}  is the set o f all minimal matches with total length m.

Let sb>(r), l ‘̂\z), h ^ (z )  be the generating functions for the num­

ber o f collations in S(i ) ,  M (*), C(i), and 7Y(*), i.e.,

=  £  |5 (i)n C (m )| *",m < l>(*) =  £  \M(i) n C (m )| * "t
m =0 m = 0

l ^ \ z )=  Y .  \C(i)nC(m)\zm,
m—0

oo

h(i)(z )  =  s(i>(z) 4- -t- lW(z) =  Y  l’W (i) n C(m)\zm.
m=0

The recursion defining the sets S (i ) ,  A i ( i ) ,  and C(i) gives the following 

recurrence equations for s''\z), m(,)(z ), and

s(i>( 2) =  +  q",2(z )m (i~l ) (z )  +

m(i)(z) =  9i,,1( z y <- 1) ( 2) +  <?i,,J( 2 )m<<- , ) ( i )  +  9" 3( 2 )/<<- 1)( 2), (4.7)

l{i\z) =  q l d z W ^ i z )  +  q l2(z)m^~l\ z )  +  q l3( z ) l ^ ( z ) .

The corresponding matrix is 

/

Q(-) =

3  z1 2z2 J2

12*3 , 6 ;4 *2 . I D 3 | 5; 4 -'2 + l £ 1  +\-z ^1 - i  T  ( 1 - j ) 2 ~ 1 1 - j  1 ( 1 — r )2

12.-4 =4 . 8c4 . 2  , 2 i3 , .4
( l - 2 i ) ( l - î ) ( l - i ) 3 ^  ( l - 2 i ) ( l - c ) ( ! — = )*

3;4
n^T7

6;4

Let, A|(c), \2(z), A2(z) be the characteristic values (possibly repeated or 

complex) of matrix Q =  {</"„} . Let A(z )  =  max{|A1(s)|, |A2(c)|, |A3(c)|}. 

Solving the system of recurrence equations (4.7) gives us

h(,)(z) < s(z ) i3(\ (z )Y .
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This allows us to use Theorem 4.1 to get upper bounds for 73. We get 

the best results if we set ; 0 =  0.145256. Then A i(io ) =  0.114253, Xi(~o) =

0.022959 +  0.002789*, A3(z0) =  0.022959 -  0.002789* and 73 <  0.765803.

4.5 U p p e r  bou n ds for b in ary  a lph abet

To improve the upper bound for the binary alphabet we can find other 

cases where specific collations are not efficient enough, for example, when p 

is a collation containing any of the following patterns:

Again, in each case, the collation p is dominated. To capture such patterns 

we have to split set into more than just two sets. We also refine the

classification of matches into 10 sets: ( „ ) ,  ( { ) ,  ( * 0) ,  ( 10). ( ° i ) .  ( 01) .  ( 1+ 1(J)’ 

( i + iq) ,  ( °  ° { ) ,  (o+oi)- W e have to redefine the sets U(u)  as well. First we 

strengthen the definition of the dominance relation. A  collation generating 

will be ‘«-dominated’ if it can be dominated by a collation that does not 

involve u to make matches.

D efin ition  4.6 Let «  6  S ’ . The collation q  is u-dominated, if there is a col­

lation p  =  p i , . . .  ,pn+i that dominates q  and u C v <  t(p 1) for some v € S ’ .

For u, w € S ’  and m € N we shall denote by A '„ ,(« , w) the smallest suffix 

v of u such that L (v,w) =  rn. Let A’m(« ,  w) be the remaining prefix, i.e. 

u =  I\m(u ,w )Nm(u,w). We will omit the index m when L(*t, w) =  m.
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D efin it ion  4.7 For every u G E* and i G N we define 

U t(u , i )  -  {p  : V ( ") G A  (L (a , w ) > i = >  ( ” )p  is A',+ i(u, wO-dominated)}. 

and

Ub(u , i )  =  {p  : [p i € l f ( u , i ) } .

If collation ( ” )p  is A ’,+1 ( u, »^-dominated then collation (/v,+1(i„,u))P  >s also 

A','+i(u, w)-dominated and L(u, Ni+i(w, « ) )  =  i +  1 . Therefore

Ut(u, i )  =  {p  : V ( i )  G A  (L (u,w) =  i +  1 = >  ( u‘;)p is A'(it, to)-dominated)}.

These sets are monotone in the following sense.

L em m a  4.7 For every i , j  G N and u, v G E*

1. I f  i <  j  then U(u, i) C  U (u , j ) ,

2. if  u C v then U(v, i)  C U ( u, t),

3. if  i <  |« | then U (u , i )  =  C,

where IA is either I f  or If, and C is the set. of all collations.

Proof. 1. Let p G U(u, i) and let ( (Jt) G A  be such that L(u, w ) > j  > i. Since 

p G U (u , i )  and L (u,w) > i, there is a collation q that A\+i(w, u/)-dominates 

p. For i <  j  we have A'J+I ( « ,  w) <  A"1+) ( « ,  w) and therefore collation q also 

I\J+i(u, (c)-doininates p. Hence p G U (u , j ) .

2. Let p G U(v, i) and let ( * )  G A  be such that L(u, w) > i. Since u C v, 

then also L(r, w) >  i and (¡'r ) p  is A 'i+ i(v , w)-domiuat.ed. For u C v we have 

A’j+ i(u , w) C A’j+ i(r ,  ui) and therefore ( * ) p  is A',+ i(w, w)-dominated.
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3. If i <  |f(| then it can never happen that L ( « ,  w) > i, and therefore every 

collation is in U(u, i). □

The main properties of these sets are captured by the following theorem.

T h eo rem  4.4 Letx,y , w be sequences from E* such that ( Jf/) is a match.

1. I f  p is any collation, then ( J,)p 6 £V<(:r, 1) fl Uh(y. 1),

2. if p is a collation from U,(w, i), i >  1 , and u, v are sequences from E* 

such that, uv — xw, then (^ )p  € Ut{u, i — L (v,y) +  1 ).

Proof. 1. Let ( (|,) € A  be a match such that L(.r, w) >  2 , hence there is a 

collation (u,1) o f  order 2 that generates ( * ) .  Collation ( j j ) ( ^ ) p  =  

( .e ) (y )p i  - Pn+I is then dominated by { J ' y§p\))p2 - ■-Pn+i and

therefore from Definition 4.7 we have ( Jf/) p € Ut(x, 1)- In the same manner 

we can prove that (^ )p  € Ub(y, 1 ).

2. It is sufficient to prove that ( l  ) ( '^ )p  is /v («, ¡^-dominated for all ( r  ) € 

A  such that L ( « , z) =  i — L (v,y) +  2. Let u' =  N (u ,z )  be the smallest 

suffix of a such that L(u, z) =  L (u',z), then L (u ',z) +  L (v,y) =  * +  2.

Since L(u'v, zy) > i +  2 there is a collation q =  q\.......qi+3 of order i +  2

generating ( “.^). Since t{q\.......i/i+3) =  u'v is a substring of uv =  xw, then

either t(q\ )t (q j) is a substring of x  or a.t(q3, . . . ,  q,+:i) is a substring of tv where 

11 is the matching symbol from qj.

If t(<l 1 )t(<h) is a substring of x, say t(q\)t(q1) =  x ( j ' .. j ) ,  then collation

(z'h'(u,z)t(qx)\ (t(q-2)\ ( rU + l  • • kl)t(Pi )\ ,. ,
V, b ( q , ) J  \ b ( q 3 ) J  {  b(q3 . . q ,+ a l> \ ) )  12 1 "+l

A’ ( m, c)-dominates collation ( l  ) ( ^ )p  because i >  1 and b(q3 . . qi+3) ^  A.
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If a.t(q3, . . . ,  qi+3) is a substring of w then L(w,b(q2, . . . ,  qi+3)) >  i. Let 

j  be the order of collation p. Since p € ¿¿ (w ,»), there is a collation r =  

r i , . . . ,  rJ+2 of order j  +  1 that A ’,+ 1(w, 6(92, . . . ,  g,+3))-dominates collation

. Sequence x ' is nonempty becouse it contains symbol a. The collation

Again we can extend the equivalence relation from collations to the sets 

U i i, (u, i). Then U[u,i\ =  U, [«, /] = ¿4[u, t] will lie the set of all collations 

equivalent to some collation from ¿¿ (m, i).

Now we split set into the eight sets "W|(*, m ), . . ., Wg(i, m ) (pair­

wise disjoint) in such way, that

« 1( 1, m ) =  CW [A,0), W2( * ,m )=  V 10 C ¿/[10, 1],

n 3( i ,m )  =  v " °  c  ¿/[no, 1], n A( i ,m )  =  w M0 c  ¿/[110 , 2],

=  V 101 C IV[101,1], C [¿¿(11, l )n i/ * (0 1 ,1)],

where V * , . . .  are more meaningful names for H\(i, in ), . . .  ,H 3(i, in ).  Using 

Lemma 4.7 and Theorem 4.4 we can establish containments among the sets 

W i(i, m ) , . . .  ,'Ws(t, m ) as shown in Figure 4.5. For example if p € V 1U C 

¿ ¿ (10, 1 ), then we get (0j)p  € ¿¿(11,1) using part 2 of Theorem 4.4 with

u = 11, r =  0, w =  10, x  =  1, y =  0 1 , and i =  1. But according to part

( b(q-2...... i/,+3') )P -  Let X> be SUch that

A T «, ~)t(qi )x' =  xA'i+t(w, b(q2, . . . ,  qi+3) ) r t

□

W7( i ,m ) -  V " "  C M[0 11 , 1 ], •«„(/, » 0 =  VJÌS c  [¿¿(01,1) D ¿4 (10,1 )],

1 o f the theorem also (0j)p  € ¿4(01,1). Hence (0[ )p  can be put into V,J.
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( o ° ) ( 1 ) o ( 18) ( ° 1 ) ( 0! )  (

0
 0

0
 0+ 0+ 01\  (  1\  

1/  V0+ 01/

V * v AA v aa
y l O

V , o
y O l

V 01
y l ,0

V n o
y o o i

V ’o o ,

y l O y 01 W h o y l O l X y O l
Vo1,1 y  101 X y o o i

V 001
y u o y o u w » ° y l O l

X y O l l
Vo1,1

y l O l
X y o i ,

V o o ,

W " ° v AA v aa
y l O y O l

M O
y O l

V 0 ,
y l l O X y o o i

V ’o o ,

y l O l y O l y l l O y l O l X y O lO
X y , 0, X y ° i o X

Kl 0̂01 V , . V o o V “ o X V o , o
y l l O X X V 0 , o

y O l l y y O O l y l O l y l O
v f t

y O lO
X y l l O

X y O lO
X

V ?o ‘ V 0 ,
y l O X V , o ,

y O lO X X V , o ,
y O lO X

Figure 4.5: The containments among the sets . . . .  W8(i, m ).

Symbol x in row V and column ( “ )  denotes the case when collations ( " )  V 

are dominated by Definition 4.7 and we can exclude such collations from 

further extension.

Hence we can create a system of eight linear recurrences

x<H,(c) =  ( { r f f +  ^S]j.o,o,o,o,o,o,o)/ ,

where

2 z2 0 0 2z2 0 0 0 0
4c3 C* +  i 3 0 3c3 ¡2 .2 .3 2z2

2i* .4 3c< .4 .4
01-j 1 - : ITT: 1-i T—T r=7

0 ¡2 . 2 0 0 . 2 ¿ 2 0
0

„3 . 3
0 2z3

1-i
.2 2cl

1-:
0 . 3 .3

,3
0 0 » 3 0 0

0 0 0 0 0 0 0

0 0 () .3 0 ; 3 .3 0
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Let X(z) be the maximal characteristic value o f matrix Q (s ). Using Theo­

rem 4.1 and Corollary 4.1 with Zo =  0.228424, we get A(z0) =  0.155602 <  1 

and 72 <  «/ =  0.842166. However, for the best bound we have achived so far, 

we split Ti(i, m ) into 52 sets, build a system of 52 linear recurrences and use 

Theorem 4.1 with ;o =  0.252652. As a result we get X(zo) =  0.195960 <  1 

and 72 <  !J — 0.837623. The transition diagram and description of sets 

H i(i ,  m ) , . . . ,  'Ws2(i, m) are given in Appendix B. There is a special con­

tainment between sets H 25 and Hu- Since Ç U\\ 110,3], every collation 

( i+no)P- P  e 25, is dominated. Therefore only the match (, (JJ) can create a

nondominated collation and the contribution of this match is only z4 instead 
.4

4.6 U pper bounds for larger alphabets

S, A/, and L  were the sets of minimal matches used to obtain lower bound 

for the expected length o f a longest common subsequence in case k =  3. 

We can interpret these sets as S =  {p  € P  : ||p|| =  1 },  M  =  {p € P  : 

IH I =  2}> L =  {p  € P  : ||p|| =  3 }, where for a pair p =  ( “,) we define 

||p|| =  max{||«||, ||j;||}. For larger alphabets we can set two boundaries 

integers m and in' such that 0 <  m <  in' <  k, and redefine S, A/, and 

L by S  =  {p € P  : 0 <  ||p|| <  m }. A/ =  {p  S P  : m < ||p|| <  m '}, 

L =  {p  € P  : in' <  ||p|| <  k). Sets corresponding to 0\ and 0 2 will be 

the sets O m and , where Om is defined as the set of all minimal matches 

p =  ( “ )  such that symbols 0, 1 , . . . ,  m appear in increasing order in v.

I
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Let Q i.i, . . . .  (¿3,3  be the following sets of matches:

Qi.i = S , (¿1,2 — S n Om , (¿i,3 = Sn Om>,

(¿2,1 = M, q2,2 = M n om, (¿2,3 = M n om, ,

C?3,l =  L , (¿ 3,2 — L i~l Om > (¿ 3.3 — L Cl Omi .

We need to express the number of matches in Q,. , in terms of generating 

functions. First we introduce some auxiliary generating functions.

From 4.5, for the generating function for the number of sequences using 

exactly d given symbols we have

P (d ,z )=

Let v(d,c, z) be the generating function for the number o f sequences using 

exactly d +  c symbols and where the symbols { ( ) , . . . ,  c — 1 }  occur in increas­

ing order. This is first expressed in the terms o f an exponential generating 

function. The exponential generating function for the number of sequences 

using exactly one symbol is ez — 1. From the rule for the multiplication of ex­

ponential generating functions we get the exponential generating function for 

the number o f sequences using exactly d given symbols U '(d, z) =  (e: — 1

Let U (c ,; )  be the exponential generating function for the number of 

increasing sequences using exactly c symbols. The exponential generating 

function for the number of ways to select c positions from j  possibilities is

ZC °° i ¡\—¡e‘ =  £  (r)^T. We can see the selected positions as positions for the end of a 

block o f the same symbols in an increasing subsequence. If the last position is 

selected, the corresponding increasing sequence uses exactly c symbols, if last 

position is not selected, the corresponding increasing sequence uses exactly
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c +  1 symbols. Therefore

V (c ,* )  +  U ( c + l , z )  =  ^ e * .

For c =  1 we have V '(l, z) =  e1 — 1. This specifies the recurrence relation

V ( l ,  * )

V (c + l , . z ) V (c ,z )

with the solution

V (c ,z )  =  e " +  ( - D c .

The exponential generating function for the number of sequences using 

exactly a +  c symbols and where the symbols { 0, . . . ,  c — 1 }  occur in increasing 

order is therefore W(d, z )V (c, z). Using (2.2) we transform it to an ordinary 

generating function

-  l ) rf ds

Let r(d,b,z) be the generating function for the number o f all minimal 

matches q with 11/(</)11 =  d +  1 and ||6(g)|| = 6 + 1 .  We have k choices for 

the matching symbol, ^ ^  choices for the remaining symbols in f(q) and 

 ̂ ^  choices for the remaining symbols in b(q). This gives

r(d, 6, z) =  k ( *  "  * )  ( *  "  ;  "  rf)  z2p(d,z)p(b, z ) .

Let s(in,d,b, z) be the generating function for the number o f all minimal
i

matches q € Om with ||f(r/)|| = 6 + 1  and ||6(</)|| =  d +  1 . For matches q 6 O m, 

symbols 0, l , . . . , m  have to appear in increasing order in b(q). Suppose r  of
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these symbols are used in b(q) (excluding the matching symbol). We have to 

distinguish cases when the matching symbol is among 0, 1 , . . . ,  m and when 

it is not. This for s(m,d, b, z) gives

»< •». *  « )  - 1  ( *  t ~ :  ■) _ _  d)  * * « *  - « .  «• *> ** . -->+

Now we are able to express the generating functions qrs for the the number 

of matches in Q r,a-

m — 1 i n — 1

« L i  =  5 1  1 2  r ( d ' b- z )
d= 0 6=0
m—1 m —1

91.2 =  5 1  Y  s (m ,d ,b ,z )
a1 = 0  6=0 
m — 1 m — 1

91.3 =  5 1  5 1  s(m ',d ,b ,z )
d =0  6=0
in' —  1 in' — 1 H i  —  1 in' —  1

92.1  =  5 1  Y ,  r (d ,b ,  z )  +  Y  Y  r ( r f < M )
d=m 6=0 d =0 6= mr n '  —  1 m '  —  1 in — 1 in'  —  1

92.2 =  £  5 3  a ( m , d , b , z )  +  5 1  5 1  a { m ,d ,b , z )
d=m 6 = 0  r f = 0  6 = 7 / 77 7 » ' —  1 in' — 1 777—  1 777* ~  1

9 2 . 3  =  5 1  5 3  a ( m < ’ d ’ * )  +  5 1  s (m ',d ,b ,  z )
d=m 6=0 d =0  b=in
k — 1 k -\ -d  7 7 7 * - 1  k - l - d

93.1 =  5 Z  I I  r ( d , 6 , ; ) + 5 3  5 1  r ( d , b , z )
d—m'  6 = 0  d = 0  6 = 7 m *A - l  k - l - d  m ' - l k - l - d

93.2 =  5 1  H  * ( m , d , b , z )  +  Y  H  a (m ,d ,b , z
d—in* 6 = 0  ( ¿ = 0  6 = 7 7 1 *it  —  1 k—l —d in' —  1 k—\—d

93.3 =  5 1  5 1  a { m ' ,d t b , z )  +  Y  Y .  a (m ' ,d ,b ,
d=TTl' 6 = 0  f / = 0  6 = 7 7 7 *

As a consequence of Theorem 4.4 we havi’ the following two properties of 

the sets /V. For every l, 0 <  l <  m

p € U(m (m— 1) • • • 0,1) ==► (¡)p 6 W(i m ■ • • (1+1), 1),
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p 6  U(m  (m — 1 ) • • • 0, 1 ) = >  (,j)p  € U (m  (m —1 ) • • • ( f + 1 ), 1 ) .

We shall use these properties to improve the upper bounds further. Let Rj,

symbols 0 ,1 ,. . . ,  j  — 1 do not occur in v. Let P} be the set of all matches from 

R j  having j  as a matching symbol. We redefine the Q ’s.

Let m( to, j, rf, b, z) be the generating function for the number of all minimal 

matches q € Om n Rj with ||t(g)|| =  d +  1 and ||5(g)|| =  5 +  1. Function u is 

similar to function s, actually s(m, d, b, z) =  u(m, 0, d, b, 2 ). The difference in 

selecting c symbols from 0 , 1 , . . . ,  m then gives

Let t ( m , d , b , z )  be the generating function for the number of all minimal 

matches q € Om n Pj  with ||f(g)|| =  d +  1 and ||6(f/)|| =  5 +  1. Since symbols 

{ j , ...,///} have to appear in increasing order in h(q)  and j  is a matching sym­

bol, these symbols cannot be in b(q).  The set Pj  is a subset of Rj  and therefore 

symbols 0, . . .  , j  — 1 are not in b(q).  Thus T(m , d, b, 2) is not dependent on j  

and

for 1 <  j  <  k. be the set of all minimal matches p =  ( “ )  such that the

Ql,3 — Q  1,3 FI R mi- m \ Pin'-m ,

0*2,3 =  Q z ,3 U (Q \ ,3  \ R r n '- m )  U ( Q l , 3 O ,

Q'r,, =  Q r,a  otherwise.

For generating functions this means

m — 1 r n — 1

01,3 =  E  E  ( “ (m ', rn' -  TO, d, b, z) -  t(m', di b, z))
(1 = 0  b =0
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9-2,3 — *72.3 +  91,3 — Ql ,3

q'r a =  otherwise.

Let Pq be the set of all minimal matches with matching symbol 0. Thus 

we get a final refinement of Q’s.

07,2 =  Ql. Q h  =  Q '2,2 u (Q i ,2 n P0) ,

Qi',3 =  Q 2.3 \ n . QS.3 =  0i,3 u (Q2,3 n P„),

Q", =  Q'r , otherwise.

The generating function for the number of matches in Om f~l P0 is also 

t(m, d, b, 2 ).

Now we are able to express the generating functions for the Q"'s.

m — 1 m —1

E  E  r ( d , 6 , * )
<¿=0 6=0 
m — 1 m — 1

E  E  ( ® ( m - * )  -  <l > b, - ) )
d = 0 6=0 
m  — 1 rn — 1

E  E  ( u ( m > < m '  “  m > < * .  ~ )  -  * ( ” * ' .  d .  2 ) )
r/=0 6=0

m# — 1 m/ — 1 m — 1 r r /— 1

E  £  r ( d , M )  +  E  E  r ( d , b , z )
d —m  6=0 rf=0 6=m
m / — 1 m ' - l  m —1 m ;  —1 m — 1 m — 1

E  E  ® ( m , d , f c , 2 )  +  E  E  ® ( m , d , 6 , z ) + E  E  7 ( m , r / , 6 ,  2 )
d = m  6=0 d=0 6=m rf=0 6=0
m ' - l m ' - l  m —1 m ' - l  m1 —I m ' - l

E  E  * ( m ' , i f , 6 , * )  +  E  E  8 ( m \ d , b , z )  ~ E  E  t (m ' , d , b ,  z )  +
d = m  6=0 rf=0 6=m rf=0 6=0
m — 1 m  — 1E  E  ( s (m \  <1, 6 ,  c )  —  t t ( r o ' ,  m '  —  m ,  < / ,  6 ,  c )  4 -  ¿ ( m ' ,  < / ,  / > , c ) )
ft—0 6=0
A1—I k —l —d  m '  — l k —l —d

E  E  r ( d , M ) + E  E  r ( r f , 6 , « )
d —m '  6=0 d—0 b—m '
A - I  A - l - r f  m ' - l f c - l - r f

E  E  * ( m , d , 6 , * ) + E  E  a ( m , d , b , z )
d = t n '  6=0 rf=0 6=ru'
A'—1 k —\ —d  m !  — \ k — 1— d m '  — l m ' —l

E  E  * ( m ' , d , 6 , s )  +  E  E  a ( m ' , d , b , z )  r f  E  E  * ( m ' < - )
d = r n '  6=0 d=0 6=ni' rf=0 6=0



4.6 U p p e r b o u n d s  f o r l a r g e r  a l p h a b e t s

Having specified the sets o f matches Q ",  we can recursively build sets 

of collations S (i ) ,  A i ( i ) ,  C ( i ), as in the case of alphabet size 3. Let 'H(i) =  

S ( i )  U M ( i )  U £ («).

T h eo rem  4.5 Every nondominated collation is in 7i(i).

Proof. The proof of this theorem is analogous to the proof of Theorem 4.3. □

The number o f collations in H  can be bounded using Corollary 4.1 for

Q (z )

V ,'..w  < 2(i)

«?.,(*> q 'U , )  <i'U~)

^3,1 ( ~ ) Qs.i ( ~ ) 93,3 ( Z )j

Now we can use Theorem 4.1 to get upper bounds for 7*... For k =  2 , . . . .  15 

these can be found in Figure 4.6 together with values in and m' that give the 

best results.

I



4.6 U pper bounds for larger alphabets 78

k
Upper

bound 111 m' ~0 k
Upper

bound m m' -0
2 0.837623 9 0.553937 i 2 0.062187

3 0.765803 1 2 0.145256 10 0.534855 2 3 0.057651
4 0.708236 1 2 0.116369 11 0.517842 2 3 0.053505

5 0.664428 1 2 0.098038 12 0.502591 2 3 0.049949
6 0.629316 1 2 0.085203 13 0.488800 2 3 0.046863
7 0.600184 1 2 0.075633 14 0.476198 2 4 0.044248

8 0.575407 1 2 0.068181 15 0.464619 2 4 0.041868

Figure 4.6: The upper bounds for •>*..



Chapter 5

Related problems

There are many ways to generalize the longest common subsequence prob­

lem. As the most natural we shall consider the expected length of a longest 

common subsequence of more than two sequences and we shall extend the 

methods from the previous chapters to cover it. These methods can be also 

adjusted for the case o f shortest common supersequences and for the inves­

tigation o f the adaptability of sequences. The chapter is closed with a small 

survey o f longest common substring problem.

5.1 Several sequences

In the previous chapters we have described upper and lower bounds for 

the expected length of a longest common subsequence of two sequences. The 

natural generalization o f this problem is to consider more than just two se­

quences.

Let E be an alphabet of size k. We shall work over the set, =  (E n)1, o f /- 

tuples of sequences of length n. We denote the set of all /-tuples of sequences 

by =  (E *)'. Tin* total length of the /-tuple it =  (ui , . . . , t i/)  € 'l' is the
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sum of lengths o f all sequences from the /-tuple, i.e. |u| =  /(iq , . . .  , tq) =

|«i| H------ 1-1«/|. Let L (tt ) =  L ( « i , . . . , « ( )  be the length of the longest common

subsequence of /-tuple u =  ( t q , . . . ,  m<) 6  Let E L ^1 be the expected value 

of L ( « i f o r  random sequences i q , . . . ,  u/ € £ ", i.e.

E L n> =  ¿ r  £  L ( « ) .  
h ue*n

Similarly to the case o f / =  2, the expected length EL*** is linear with 

respect to n.

T h eo rem  5.1 For every k >  2 and every l >  2 there is 7 {'» such that 

AD _ EL«/» E L I'» 
rk =  Jim —  =  supn—*°° n

Proof. The existence of constants 7*'» follows from the fact that E L ^  is 

superadditive. Superadditivity of EL*'» can be proved in the same manner 

as in Lemma 2.2. □

The methods from Chapter 4 can be used to obtain upper bounds for 

EL['». Let F ( i ,n )  be the number o f /-tuples from 4'" with a longest common 

subsequence o f length i, i.e.

F(i.,n) =  |{u € : L ( u )  =  <}|.

Let H ( i ,n )  be any upper bound for F ( i ,n ) .  The following lemma, a natural 

generalization o f Lemma 4.1, will be used to transform upper bounds for

F ( i ,n )  to upper bounds for 7 }'».
I

Lem m a 5.1 I f  y is such that Y1 =  o (k tn) then 7*'» <  y.
M iH
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Proof.

1=0

I /Ty*»l-i n \

-  =*=(§
<  +  n £  t f « , » ) ) = y  + o(l)" V *=° <=r»»i / □

An /-tuple o f sequences ( i q , . . . ,  «/) € 'I' is a match if i t j , . . . ,  mj have the 

same last symbol. A  collation of order i is a sequence of » matches followed 

by an /-tuple. We already know that collations are good objects to produce 

upper bounds for F(»\ n). Let //(#’, m ) be the number o f all collations of order 

i generating an /-tuple o f total length m. For every /-tuple u  with a longest 

common subsequence o f length t there is at least one collation o f order i 

generating u, therefore F ( i ,n )  <  H ( i , ln ) .

T h eo rem  5.2 Let h(z) = k z1
M ? . Let c0 Le such that Ii ( zq) < 1. Then

(/) <  l»K (^~o) 
k ~ l°g/*(~o)

(5.1)

Proof. To get an upper bound for F ( i , n )  we have to count Again

we shall use generating functions to achieve this. There are k possibilities for 

a matching symbol, so its contribution then is kz1. The contribution of every 

sequence, not counting the matching symbol, is yj p , therefore the generating 

function for the number o f matches is

h(z) =
kz1

(1 — kz)1 '
I
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The generating function for the number o f collations of order i then is 

s (z )(h (z ) ) ’ ; where s(z) is independent of i. Now we can bound H (i,n ) .

r  ^  ^  s (zom zo )Y  ^ , J ( h ( z o ) ) « Y
2 - H { i , ln ) <  ^  ^ ------ <  ns(=o) --- -----  I •

*=rs/'»i *=ryni *"0 \ o /

For every y >  we have <  k1 and therefore J2 H, /„ =  o(kln).
‘o g n i io ;  -o i= f»„ i

Using Lemma 5.1 we can conclude that 7** <  y. □

For 1 =  2 the upper bound from Theorem 5.2 corresponds to the up­

per bound of Chvatal and Sankoff [CS75], Now we can analyse the speed of 

convergence of the upper bounds (5.1).

C o ro lla ry  5.1 For every l > 2  we have

lim A1" 1" 7 «  <  e •
k —>oo

Proof. Let ; 0 =  then kzo =  1 — ekx̂  *. For h(~o) we have

h(

and after substitution of kz0 we get

¿ • / '" ‘ ( l -e fc1/,- ‘ ) V  (1 - d k '/ '- 1)'h(zo)

From (5.1) we have

{  ekl/‘~l )

k '~1' S *0 <  k ' - 1' 1

Since lim lo&(1 +" 1 ) =  U} we get 
0+ 1

lo g (l — eA1̂  1 ) 
lo g (l — eA*/*“ * ) — i

um «■' « M f »  <  um (, |,l« ( l - ■ )
k—oc *■—oo \ A1/*- * i — log (l — elk*'*“ 1) /

<  ( —e ) (—1 ) =  e . □
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We can use the following algorithm A to obtain lower bounds matching 

to within a constant factor. We shall scan the first input tape until A,’1-1/' 

different symbols are found. Let A 'i be the set o f these symbols. Then we 

scan the second tape until k,-2/' different symbols from A'j are read. We 

denote the set of symbols from A 'i scanned on the second tape by A Y  We 

shall continue in this way. Suppose we have determined the set A’,_i • We 

scan the i-th tape until A-1-*/' different symbols from A’,_i are found. These 

symbols form the set AY  Having specified A'/_i, we search for some symbol 

a 6  A';_i on the last tape. Since

we can put a into a common subsequence produced by algorithm JT Comput­

ing the average progress on each tape yields following lower bounds.

T h eo rem  5.3 For every l >  2 we have

Proof. Let us consider the i-th tape. We have constructed the set A’/_i of

A',_i are found. Let E K , be the expected number o f symbols read to achieve

The waiting time to collect one o f j  symbols is 1 +  (1 — ¿ ) +  ( l  — ---- --- j ,

therefore

a € A/_i C A j_2 C . . .  C A , ,

lini A-1 " '/S i'» >  1 .

this. Since lim EL„ > nmx~{ È K , T<7<7} ’ to Prove theorem we have ton

show that for every i

E K , <  kl~l/l +  o(kl~l/l) .
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There are A1 summands and the largest o f them is , hence

A
E K  *

<  A1- 1"
1

1 -  A - 1/ '

<  A 1 _ 1 /I( l  +  o ( l ) )  =  A 1- * / '  +  o (A ,_ 1 / ' )

In [Ste86] Steele conjectures that 7^  =  7 * 1 for l >  2. As we can see from 

Corollary 5.1 and Theorem 5.3 this is not the case.

5.2 Super-, nonsub-, and  nonsupersequences

Our major topic is longest common subsequences, however, there is a 

‘dual’ notion, namely shortest common supersequences.

D e fin ition  5.1 Let u ,v  € E*. We say, that w € E* is a common superse­

quence o f u and v, if u C w and v C w. W e say, that w € E* is a shortest 

common supersequence (SCSS) of u and v, i f  w is a common supersequence 

of u and v and for every w' € E* the following condition is true:

11 C w' & v C w' ==> |tr| <  |tt/'|.

The lengt h of a shortest common supersequence is denoted by S( « , v). Cre­

ating shortest common supersequences is natural when merging sequences. 

This is useful for some types of compression [Sto88] or for efficient plan­

ning [FLY92]. Longest common subsequences and shortest common superse­

quences are dual in the following sense.



L em m a  5.2 For every u , d € S ’

S (m, v ) +  L ( m, v ) = |u| + |v|.

Proof. The lemma is a consequence of the simple property of finite sets:

|i4| + |fl| = |i4nB| + |i4uB|.
□

C o ro lla ry  5.2 Let ES„ be the expected length of a shortest common superse-
FS

quence of two random sequences from  E” . Then lim ----a exists and its value
n—*oo f l

is 2 - 7*.
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For more sequences ut, . . .  ,u/ the length o f their shortest common super­

sequence is denoted by S (mj, . . . ,  «/). If we have more than two sequences and 

we know only their lengths and the length o f their longest common subse­

quence then we are not able to compute the length o f a shortest common 

supersequence.

E xam p le  5.1 We have L ( l l ,2 2 ,3 3 ) =  L(12,23,31) =  0, but S (ll,2 2 ,3 3 ) =  

6 and 8(12,23,31) =  4. O

We can define ESj,0 the expected length of a shortest common super­

sequence of / sequences o f length n analogously to the ELI/1. Properties of 

E S *'1 are similar and there are constants o[!] =  lim ES-U-.

The expected length of a shortest common supersequence does not appear 

to have been investigated in the literature.

To obtain lower bounds for <r* * we shall use met hods similar to the meth­

ods from Chapter 4. The following lemma corresponds to Lemma 4.1.
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Lem m a 5.3 Let F ( i ,n )  — |{it € : S (u ) =  *}| and let H (i,n ) be any

For common supersequences the role o f matches will be played by ‘place­

ments’ and a ‘distribution’ will be the notion analogous to a collation.

D e fin ition  5.2 An /-tuple tq , . . . ,  iq is a placement if t q , . . . , «/  € {A, « }  for 

some a € £  and not all of t q , . . . , tq are empty sequences. A  sequence o f i 

placements will be called a distribution o f order i. Distribution d generates 

/-tuple u if ca t(d ) =  u.

Let T>(i) be the set o f all distributions of order i. Let t/(m) be the set 

o f all distributions generating an /-tuple o f total length m, i.e. Q(m ) =  {d  : 

|cat(d)| =  rn}. Since for every /-tuple u  G <I<", there exists a distribution of 

order S (u ) that generates u, we have

Every placement o f total length m corresponds to a nonempty subset of 

{ 1 , . . . ,/ }  o f size in, thus the generat ing function for the number of placements 

is fc ( ( l+ 2 ) ( — 1). The generating function for the number o f distributions in the

upper bound fo r F ( i ,n ).  I f  y is such that £  H (i,n ) =  o(k ln) then y <  a
¡=o

F (i ,  n) < \Ç(ln) D T>(i)\ — G (i, n ) .

we have

<  +  z0y -  iy
Z
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Thus we have just proved the following theorem.

T h eo rem  5.4 For every l >  2 and k >  2 we have

(0 >  / l o g  ¿pfc

-  l o g f c ( ( l + - 0) ' - l ) ’

where ^  6  R  is such that 20 >  2*^ — 1 .

To obtain upper bounds for the expected length of a shortest common 

supersequence of / sequences we shall design an algorithm which produces a 

common supersequence of its input. If the algorithm is simple enough, we can 

analyse its behaviour for a random input. The expected length of a common 

supersequence produced by the algorithm will be an upper bound for a[!\

We can use a tournament-style algorithm T  from Figure 5.1 to produce 

a common supersequence o f / sequences u i , . . . ,  ttj. In the first round u\ and 

u-2 produce a common supersequence iq,i, u3 and «4 produce a common su­

persequence «>1,2, and so on. In the second round we repeat the process with 

t>i,x,. . . ,  i'i,|7/2'| • After [log /] steps we get a ‘winner’ t’riog/i,i a common super­

sequence o f Mi,. . . ,  iii. This is a consequence of the simple inductive argument 

saying that tq is subsequence o f Vij for / =  (J — 1 )2 ‘ +  1 , . . . ,  j 2‘.

Tinikovskij [Tim89] has asked a question about how good an approxima­

tion is the tournament algorithm. Bradford and Jenkyns [B.I91] have found 

an example of three sequences o f length 12 over the alphabet o f size nine 

such that no tournament-like algorithm can compute their shortest common 

supersequence. They also asked the question o f when the tournament algo­

rithm is not optimal. As a partial answer to this question we shall describe an 

algorithm that produces shorter common supersequences when the alphabet 

size k is relatively small compared to the number of sequences /.
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algorithm i

input tq ,. . . ,U| € E*
output iv 6 S* -  common supersequence of U\, . . . ,  ui

begin
m := /;
for i := 1 to [log/] do 

for j  =  1 to m do

endfor;
m := [m/2"| 

endfor;
output t’flogll.l 

end.

Figure 5.1: The tournament algorithm for producing common supersequences.

Suppose every input sequence has a marker marking an active symbol. By 

‘processed prefix’ we shall understand a prefix of the input secjuence up to, 

but not including, the active symbol. A t the start the first symbol of every 

input is the active symbol.

In every step of algorithm the input sequence with shortest processed pre­

fix is selected. In the case of unequal input sequences the one with the smallest 

proportion of processed prefix will be selected. Let a be the active symbol of 

the selected input sequence. Symbol a is added to the output sequence and 

a marker on every input sequence having an active symbol a is advanced to 

the next symbol. This will ensure that after every step of the algorithm the 

output sequence is a common supersequence of processed prefixes. The entire 

algorithm can be found in Figure 5.2.

We shall express the expected progress of markers corresponding to one 

output symbol. The expected progress on the selected tape is 1. The expected
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algorithm 6

input t (i,. . . ,  Ut € E*
output iv € E* -  common supersequence of u i, . . . ,  « i 

begin
while ¡i < |«i| V ... V it <  |«i| do

m := 1;
for j  — 2 to l do

i f  i j  < i m then ( i j / \ u j \  < »m /|«m |) 
m := j ; 

endif 
endfor; 
a  : =  u m [ i , n ]\ 

output a; 
for j  =  1 to  l do

i f  U j [ i j ]  =  a then 
j> := i j  +  1; 

endif 
endfor 

endwhile 
end.

Figure 5.2: An algorithm producing a common supersequence.

progress on the remaining l — 1 tapes is j .  Therefore the overall expected 

progress on the input tapes is 1 +  symbols. There are In input symbols, 

hence the expected length o f a common subsequence produced by algorithm ©  

is

In lien
i  +  ^A =  / +  a- -  r

We summarize upper bounds in the following theorem.

T h eo rem  5.5 For every I >  3 and k > 2  we have

Ik
l +  k -  1
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k l =  2 l =  3 l =  4 l =  5 l -  6 l =  8 / =  16
2 1.33333 1.50000 1.60000 1.66667 1.71429 1.77778 1.88236

1.09321 1.14253 1.17267 1.19287 1.20731 1.22656 1.25822
3 1.38462 1.80000 2.00000 2.14286 2.25000 2.40000 2.66667

1.16377 1.25982 1.32366 1.36923 1.40336 1.45107 1.535G9
4 1.45455 2.00000 2.28572 2.50000 2.66667 2.90910 3.36843

1.21514 1.34913 1.44278 1.51244 1.56642 1.64476 1.79311
5 1.49385 2.14286 2.50000 2.77778 3.00000 3.33333 4.00000

1.25447 1.41951 1.53883 1.63017 1.70270 1.81106 2.02791
6 1.52831 2.25000 2.66667 3.00000 3.27273 3.69231 4.57143

1.28583 1.47679 1.61830 1.72893 1.81841 1.95512 2.24164
7 1.55498 2.33334 2.80000 3.18182 3.50000 4.00000 5.09091

1.31162 1.52463 1.68549 1.81331 1.91818 2.08131 2.43661
8 1.57763 2.40000 2.90910 3.33333 3.69231 4.26667 5.56522

1.33333 1.56541 1.74333 1.88656 2.00542 2.19301 2.61512
9 1.59679 2.45455 3.00000 3.46154 3.85715 4.50000 6.00000

1.35196 1.60076 1.79387 1.95098 2.08260 2.29285 2.77923
10 1.61344 2.50000 3.07693 3.57143 4.00000 4.70589 6.40000

1.36819 1.63183 1.83857 2.00828 2.15158 2.38282 2.93073
11 1.62804 2.53847 3.14286 3.66667 4.12500 4.88889 6.76924

1.38251 1.65943 1.87851 2.05972 2.21377 2.46452 3.07115
12 1.64101 2.57143 3.20000 3.75000 4.23530 5.05264 7.11111

1.39527 1.68418 1.91451 2.10627 2.27025 2.53919 3.20180
13 1.65263 2.60000 3.25000 3.82353 4.33333 5.20000 7.42858

1.40675 1.70657 1.94721 2.14871 2.32189 2.60782 3.32378
14 1.66313 2.62500 3.29412 3.88889 4.42106 5.33334 7.72414

1.41715 1.72696 1.97710 2.18762 2.36938 2.67122 3.43804
15 1.67268 2.64706 3.33334 3.94737 4.50000 5.45455 8.00000

1.42664 1.74564 2.00458 2.22349 2.41326 2.73007 3.54540

Figure 5.3: Upper and lower bounds for the expected length of a shortest 

common supersequence o f / sequences over an alphabet of size k.

Upper and lower bounds for k =  2 , . . . ,  15 and / =  2 ,3 ,4,5,6,8,16 ob­

tained using Theorems 5.4 and 5.5 can be found in the table in Figure 5.3. 

Better bounds for / =  2 follow from bounds for longest common subsequences
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using duality properties.

Shortest common supersequences can be computed using the dynamic 

programming algorithm. This algorithm is not polynomial when the num­

ber of sequences is unbounded. Maier [Mai78] has shown that the shortest 

common supersequence problem for k >  5 and the longest common subse­

quence problem for k > 2  are NP-complete. Raiha and Ukkonen [RU81] have 

strengthened Maier’s result and have shown the shortest common superse­

quence problem to be NP-complete for k >  2. Middendorf [Mid94] has shown 

that the shortest common supersequence problem over the binary alphabet 

remains NP-complete even if all the given sequences have the same length 

and each of them contains exactly two ones.

Even approximating longest common subsequences and shortest common 

supersequences is not much simpler. Papadimitriou and Yannakakis [P Y 88] 

have defined a class of M A X  SNP problems, an approximation analogue of 

N P  problems. Jiang and Li [JL94] have shown that the approximation ver­

sions of longest common subsequence and shortest common supersequence 

problems are M AX  SNP-hard, i.e. no polynomial-time algorithm can achieve 

approximation ratio 1 +  e, unless P =N P .

We ought to mention also some interesting variations of common sub­

sequences and supersequences. Timkovskij [Tim89] has considered negative 

variants, namely common nonsubsequences and nonsupersequences. Sequence 

v is a common nonsubsequence of u\,. . . ,  u/ if, for every i — 1 ,. . . ,/ , sequence 

v is not a subsequence o f u,. Similarly sequence v is a common nonsuperse­

quence of Mi,. . . ,  u/ if, for every i =  1 , . . . ,  /, sequence tt, is not a subsequence 

o f v. We are then interested in finding shortest common nonsubsequences and 

longest common nonsupersequences. An interesting feature of common non- 

supersequenees is that there are /-tuples of sequences such that their longest
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common nonsupersequences does not exist. Timkovskij [Tim89] has shown 

that the problem of the existence of a longest common nonsupersequence 

with polynomially bounded length is in the class I l f  of the polynomial hierar­

chy (as defined by Stockmeyer [Sto77]). Middendorf [Mid93] has proved that 

the shortest common nonsubsequence problem is NP-complete for k >  2. He 

also proved the NP-completeness of the similar problem of shortest distin­

guishing sequence. Sequence w is said to distinguish, two sequences u and v 

if w is a subsequence of one of them and is not a subsequence of the other. 

Sequence w distinguishes sequence u and a set of sequences { t q , . . . ,  tq}, if 

it distinguishes u and v, for every i =  1 ,...,/ . The dynamic programming 

algorithm for finding shortest distinguishing sequence o f two sequences was 

described by Hebrard [Heb91],

We can change the view on longest common subsequences and consider 

maximal common subsequences. Sequence v is a maximal common subse­

quence o f i ii, . . . , «/  if v is a common subsequence o f i q , . . . , tq and no (proper) 

supersequence of v is a common subsequence. Every longest common subse­

quence is also a maximal common subsequence, but there may exist maxi­

mal common subsequences that are not longest common subsequences. The 

corresponding dual notion is a minimal common supersequence. Irving and 

Fraser [IF94] have described a dynamic programming algorithm that solves 

the maximal common subsequence and minimal common supersequence prob­

lems for a constant number of sequences in polynomial time. They also have 

shown the NP-completeness of the shortest maximal common subsequence 

problem. The question o f the complexity o f the longest minimal common 

supersequence problem remains open.
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5.3 Adaptability

We have defined the expected length of a longest common subsequence as 

the average over all pairs of sequences. We can separate the averaging process 

so that we first take the average with respect to the first sequence and then 

with respect to the second sequence. Thus we get following formula:

We can investigate the contribution of each sequence u to the average. 

This yields the notion of ‘adaptability’ .

D e fin ition  5.3 For every u € S ' we define the adaptability of sequence u o f 

length n by

It is quite natural that different sequences can have different adaptabili­

ties. The expected length of a longest common subsequence is the average o f 

adaptabilities. We can also raise the questions of what are the the maximal 

and the minimal adaptabilities.

D e fin ition  5.4 For every n >  0 we define minimal adaptability A „  and max­

imal adaptability B „ by

Minimal and maximal adaptabilities are strict bounds for the expected

K ueE"

A „  =  min{ A(w) : u € S " }  ,

B „ =  max{A(i/) : a € S " } .

lengt h o f a longest common subsequence.
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Lem m a  5.4 For every k >  2 anil n >  2 we have

A „  <  E L „ <  B„ .

Proof. Since E L „ =  p  E  A(u), we liave directly A „  <  E L „ <  B „. The
|u |= n

strictness o f the inequalities is a consequence o f the fact that not all sequences 

have the same adaptability. □

First we shall investigate minimal adaptability.

T h eo rem  5.6 For every n,k 6  N. n >  0, k >  1 we have

Proof. We define an equivalence relation for sequences; two sequences are 

equivalent, if one can lx- obtained from the other by a cyclic permutation of 

symbols o f E. This splits E " into I\ =  k "~ l equivalence classes S i , . . . ,  S/,- of 

size k. If we compare sequences from one class, we can observe, that they have 

always different symbols in the same position. Therefore for every // € E"

H  >  71  ,
»’€ S,

hence

^ ( « )  =  ¿ E  E  L ( « . » )  ^  p r E  «  ^  T -
"  l — I t»€ *S  K  i = l  A

Since .4 (00 ... 0) =  j ,  we have immediately A „  =  jjf.

If we define o* analogously to 7*. (2.4), we get

.. A „Q* =  lull ---- =
n — 00 f t

1
k ’

□
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The gap between a* and 7* is thus ‘quadratic’ .

The case of maximal adaptability is more similar to the expected length 

o f a longest common subsequence. Exact values o f maximal adaptability are 

not known, but we shall describe here some upper and lower bounds.

Lem m a  5.5 Maximal adaptability is .superadditive, i.e.,

B»| +  B „ <  B m + n .

Proof. Let u e  S '" and v e  E " be sequences with maximal adaptabilities. 

Following the proof o f Lemma 2.5 we can easily prove

A (u ) +  A (v ) < A (u v ).

Combining this with the definition of the maximal adaptability we complete 

the proof o f the lemma. □

As a consequence of the superadditivity o f maximal adaptability we get 

the following theorem.

T h eo rem  5.7 For every k there is a constant such that

Pk =  lim —  .
n — 00 71

Moreover 7* <  /fj..

Proof. The proof o f the first part is the same as the proof o f Theorem 2.1. 

The inequality between 7* and /l* is a trivial consequence of Lemma 5.4. □
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11 Bj,2> ‘witness’ n B<2>n ‘witness’

1 0.5 0 7 0.72321429 010 0110

2 0.625 10 8 0.734375 10 0110  01

3 0.66666667 010 9 0.73763021 010 011001

4 0.6875 1010 10 0.7453125 100 110 10 0 1

1001 11 0.74818004 010 01101001

5 0.7 01010 12 0.75423177 100 110 10 0 1 10

01001 13 0.75618803 010 0110 10 0 1 10

6 0.71614583 10 0110 14 0.76020595 10 0 110 10 0 10 110

Figure 5.4: Maximal adaptability for k =  2 and n =  1 , . . . ,  14.

The table in Figure 5.4 gives values o f B „ for n =  1 ,. . . ,  14 and k — 2 

together with a “witness” sequence. This allows us to guess that a sequence 

with maximal adaptability for k =  2 could have form u(0 1 101001)* «  for some 

‘constant’ sequences u,v € E*, i.e. tt and v depend only on n mod 8. We 

can build a css machine and thus get a lower bound for the adaptability of 

(01101001)'. This will serve as a lower bound for fo, too.

T h eo rem  5.8 Let C, =  A ((01 101001) '). then

C
0.800350 <  lim -4  <  fh

I—oc 8t

Proof. A  css machine giving this lower bound can be found in Appendix C. 

Since the situation is not symmetric, we have to analyse progress on the top 

and the bottom tapes separately. The lower bound for /i2 will be the minimum 

of the lower bounds given by each tape. □

I
For the alphabet of size k we predict that the adaptability o f sequence of 

the form u =  (01 . ..  k — 1)* is quite close to  the maximal adaptability. The
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following strategy can be used to obtain lower bounds for the adaptability 

of sequence u. Suppose u is on the top tape and a random input is on the 

bottom tape. First we read j  symbols from the top tape and than we scan 

the bottom tape until we find a match with one of j  symbols from the top 

tape. We continue in this manner until the input is exhausted.

The waiting time to collect one o f the j  symbols on the bottom tape is 

1 +  +  (^ j1 )2 +  ••• =  j .  The expected progress on the top tape is A±l.

Hence the expected length of a common subsequence produced is m in{ f }. 

For j  =  A (v ^ F T T  — 1) we have therefore we can choose j j  =

[j(\/8A' +  1 — 1 )J or j c — |^(v/8A- +  1 — l ) j  depending which gives better 

bounds.

We can achieve larger progress by alternating j / and j c in a suitable ratio 

r. Then the top tape progress is

Jf +  1 
2

r +
j c  +  1 

2
( 1 - r ) . (5.2)

The bottom tape progress corresponding to the ratio r is

— r + 4 - ( l - r ) .  (5.3)
3f Jc

The minimal progress (corresponding to the maximal lower bound) will be 

achieved when (5.2) and (5.3) are equal, hence

_  j cj/Uc  +  1) -
( jc -  j / ) ( j c j f  +  2A:)

Having expressed r we can compute lower bounds.

T h eo rem  5.9 Let j j  =  ^ (^ / s F T T  — 1 )J and j r =  +  i _  j ) j .  Then

fa >
j c j j  +  2 k

k( jc +  j/ +  1)



5.3 A daptability 98

The lower bound from Theorem 5.9 is assymptotically s/2/\fk. However, 

for large alphabets this bound can be improved.

T h eo rem  5.10 We have

Proof. Let u be a sequence of the form (01 . . .  k — 1)', |u| =  ki. We shall 

actually show, that

This bound can be achieved by a simple algorithm, that in one cycle 

reads k symbols from the top and the bottom tapes anti computes a longest 

common subsequence o f the read sequences. This cycle is repeated until the 

input is exhausted. The common subsequence obtained in one cycle is simply 

the longest increasing subsequence of the sequence read from the bottom tape. 

From the work of Logan anti Shepp [LS77] it is known that the ratio between 

the expected length of a longest increasing subsequence and \fk is at least 2 

as A- —► oo (actually, Vershik and Kerov [VK77] have shown this rate to be

Methods developed in Chapter 4 can be used to obtain upper bounds for 

maximal adaptability. In the case of adaptability we have lost the symmetry 

between tapes, therefore we have to adjust the method.

Lem m a 5.6 Let H (i,m ,n ) he .such that

lim (3k\/k >  2 .

exactly 2). This means, that lim lh\/k >  2. □
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Proof. The proof is analogous to the proof o f Lemma 4.1. Let u„ be a sequence 

from with maximal adaptability. Let F ( i ,n )  =  |{r e  £ "  : L(u,i>) =  i}|. 

Since H (i,n ,n ) >  F ( i ,n ),  we have

To prove upper bounds for maximal adaptability we need a notion of 

‘quasiminimal’ match.

1 . a g  ii.

2 . a g  v,

3. if |m| >  0 then « (1 ) g  v.

Then match p is quasiminimal.

Let ii be a fixed sequence of length s. Let q, t be the number of quasimin- 

imal matches ( " )  with |c| =  t. The generating function for the number of 

quasiminimal matches with .s =  1 is ,r —[¡jzi). ■ The generating function for 

the number of quasiminimal matches with s >  1 is f r ;  ¡ _ (<j _ 2 ) -  • The generat­

ing function for quasiminimal matches then is

The number o f quasiminimal matches is dependent only on the length of

B„
n

Vn F (i i  n ) +  n // (*,«, n) 1 =  y +  o ( l ) .
□

D efin ition  5.5 Let p =  ( “ “ )  be a match satisfying following conditions:

ii and not on the structure o f ii.
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T h eo rem  5.11 Let q (x ,y ) =  -I- f ^  • Let ;ro,Co be such that

q(x0,z0) <  1. Then

0 K log(A:j~o-o)
"  \ogq(x0,z0)

Proof. This proof follows the upper hound technique from Chapter 4. Let u he 

a fixed sequence from S '". Let p be a collation of order i generating a pair ( " )  

for some v e  S " such that every match in p is quasiminimal. Let Q (i,u ,n ) 

be the set o f all such collations. Since for every v € S " with L(w, v) = i there 

is a collation in Q(i, u,n ) generating ( “ ) ,  we have

|G(*.« ,  n)| >  |{v € £ "  : L (u , v) =  t}|

for every u € S '". The number of collations in Q(i, u,n ) is dependent only 

on the length of u and we can put Q (i, m, n) =  |Q(j, u, n)|. The generating 

function for Q (i,m ,n ) is s(x, z)(q (x, z ) ) ' .

If y > then <  k ^l°K'/(ro.-o) x0Zo

(</(x0, Zq ))'E  H >n.n <  E
i=f»nl >=r»nl XoZo

\ To Co /

Therefore /i*. <  y for every y >  '»s^g-g ' * — J W loRg(x0,J0) □

Bounds obtained by Theorems 5.9 and 5.11 are given in the table in Fig­

ure 5.5. For k =  2 we have better bounds from Theorem 5.8.

5.4 Longest com m on substrings
/

Let m and v be two sequences from S*. Sequence w is a common substring 

of u and v if w is a substring of both ii ami v. A longest common substring o f
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k lower bound upper bound k lower bound upper bound

2 0.75000 (0.80035) 0.88693 9 0.41667 0.58566

3 0.66667 0.80638 10 0.40000 0.56569

4 0.58333 0.74760 11 0.38182 0.54791

5 0.53333 0.70205 12 0.36667 0.53194

6 0.50000 0.66522 13 0.35385 0.51747

7 0.46429 0.63453 14 0.34286 0.50427

8 0.43750 0.60836 15 0.33333 0.49216

Figure 5.5: Maximal adaptability for k =  2 , . . . ,  15.

u and v is a common substring with maximal possible length. We shall denote 

this length by W (w , e ). The expected length o f a longest common substring 

is the average of W (u, v) over all pairs u, v € S ", i.e.,

E W " =  i  £  W ( « , . » ) .  (5.4)
K  u,u€X"

While the expected length o f a longest common subsequence is linear, the 

expected length of a longest common substring is logarithmic. Arratia and 

Waterman [AW85] have proved following theorem.

T h eo rem  5.12 (Arratia and Waterman [AW85]) For every k >  2

'*  log*. "

Alignments with mismatches are especially o f interest to molecular biol­

ogists. Let u, v 6  D ". Sequence w is a common substring of u and v with in
I

mismatches if there are S C  {(), 1 ,. . . ,  |«>| — 1} and i , j  € {1 , . . . ,  n — |«’| +  in } 

such that |S| >  |u»| — m anti w(s) =  u (i +  a) =  v (j  +  a) for all a € S. Let

\
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M "1 (m, v ) be the length of a longest common substring of u and v with m mis­

matches. Let EM™ be the expected value o f M m(tt, v), defined analogously 

to (5.4). Arratia et al. [AG W 86] have evaluated the E M ”'.

T h eo rem  5.13 (Arratia et al. [AG W 86]) For a fixed m and large n the ex­

pected value of M m(u, v) is

EM™ =  log,(n2) +  m log, lo g ,(n 2) +  0 (1 ).  (5.5)

If we allow the number of mismatches to be large, the expression (5.5) 

is not sufficient. For every pair u,v € E" and r € R we define N r(u, v) to 

be the length of a longest common substring o f u and v with m mismatches 

such that m < rN '(u ,v ).  Let E N ' be the expected value of N ' ( «, v) for 

random sequences u and v from E". Arratia and Waterman [AW89] consider 

the expected value of N r(w, v).

T h eo rem  5.14 (Arratia and Waterman [AW89]) For r < 1 — j  the expected 

value of ( v) is approximately

e n ;, =  2
H—oo log o H ( 1 — r, 1/Jfc) ’

where H (x ,y ) =  a-log j  +  (1 — a-) log is the relative entropy function.

Since for sequences of length n we can expect £ symbols to be matched, 

we have E N ' — ii for r >  1 — To obtain more realistic results, we shall 

consider insertions and deletions together with mismatches.

We define m(p) =  min{|f(p)|, |b(p)|} and AI (p ) =  maX{|f(p)|, |6(p)|} for 

every pair p. The number of mismatches in match p is then n(p) =  m(p) — 1
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and the number of deletions/insertions is N (p ) =  M (p ) — m{p). Let r , s >  0 

be real parameters. For every collat ion p o f order i and weights r, s we define 

a weight of collation by

Let H(u, v) be the the set of all collations generating substrings of u, v € E” ,

For a, v € E" and r, s € R we can defined the length of a heaviest common 

substring of u and v by

H (u, v ;0 ,0) is then the length of a longest common subsequence o f u 

and v and H ( w, w, oc, oc) is the length o f a longest common substring. Let 

E H „(r , s) be the expected value of H (it, v;r, s) for random sequences u,v  € 

E ". Waterman et al [WCJA87] have shown that, similarly as in the case of 

EMJ|, there is a strict boundary separating parameters leading to logarithmic 

or linear expected length. This is illustrated by the diagram in Figure 5.6.

T h eo rem  5.15 (Waterman et al [WCJA87]) There is a set C  C R" of critical 

points such that for every (?y, sr) 6  C

H (p :r ,s ) =

H ( m, v; r, s) =  max {//(p; r, s) : p e  H(u, t>)} .

pr,,n for every r,s, 0 <  r <  rr and 0 < s < sc

(Tr,. log n for evei-y r,s, rc <  r <  oo and sr <  s <  oc.
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k
k -  1

Figure 5.6: Diagram for E H „(r , s).

The proofs of Theorems 5.12-5.15 are enhanced versions of the proof of 

the Erdos-Renyi law. For every u 6 E" we define the longest run of ‘heads’ 

in u by

T (u ) =  m ax {j : «(?'. . i +  j  — 1) =  (F for some i , 1 <  i <  n +  1 — j ) .

Let E T „  be the expected value of T (w )  for random u € E ". Erdos and 

Renyi [ER70] have proved that

E T „
h i l l  :--------- =  1 .n - ° °  l o g * :  n

Longest common subsequences and shortest common supersequences are 

dual in the sense that S(u, v) =  |u| +  |e| +  L(?t, v). There is no similar evident
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duality between the longest common substring and t he shortest common su­

perstring problems. It can be shown that the expected length of a shortest 

common superstring is 2n — 0 (1 ). The problem of finding a shortest common 

superstring for more sequences is more interesting. Common superstrings have 

applications in data compresson [Sto88]. Gallant at al. [GMS80] has shown 

that the shortest common superstring problem is NP-complete. Middendorf 

[Mid94] have shown that the shortest common superstring problem over the 

binary alphabet remains NP-complete even if each given sequence contains 

exactly three ones. Approximation algorithms for this problem are given by 

Tarliio and Ukkonen [TU 88] and Turner [Tur89j. Blum at al. [B.JL+91] have 

shown that the shortest common supersting problem is also M AX SNP-hard. 

Thus even approximate algorithms are not likely to be efficient. The expected 

length of a shortest common superstring o f more random sequences is con­

sidered by Alexander [Ale94].



Chapter 6

Conclusion

In this thesis we have concentrated on the longest common subsequence 

problem. Longest common subsequences are often used as the measure of 

similarity for two (or more) sequences. Knowledge of the expected length of a 

longest common subsequence is essential for a judgement about the similarity 

of sequences. It is known that the expected length of a longest common sub- 

sequence is proportional to the length of the given sequences. The exact value 

of this proportion is not known even for a binary alphabet. This proportion 

is dependent on the alphabet size and has been denoted by 7*.

We have obtained better upper bounds for 7* using a new method and, 

especially for small alphabets, the improvement is substantial. We have also 

described an algorithm for automated production of lower bounds and using 

it we have1 improved lower bounds for 7 2. We have used these methods to 

obtain bounds in the case of common supersequences and adaptabilities.

It seems that known methods are exhausted and to determine the con­

stants 7* or substantially improve the bounds for them a new method is 

needed.
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Many open problems remain unsolved and some new ones have been 

raised. Here is a list of the most challenging of them.

1 . What are the exact values of 7*? What is the value of lim 7/tA:1/2?k—oc
ELWhat is the convergence rate of , i.e. how large is 7 ¡¡n — E L „ ? Is 

lim 7/tA' 1/2 =  lim %  1 A:1 “ 1 ̂  ? How large is the variance Var(L „)?
k — oc k — oc

2. Is there a (uniform) algorithm for computing longest common subse­

quences that is faster that Masek and Paterson’s algorithm? Is it pos­

sible to obtain nonlinear lower bounds for the longest common subse­

quence problem?

3. Can nondominated collations be used to compute the exact values of 

the constants 7*?

4. What is the asymptotic behaviour of the expected length of a shortest 

common supersequence of several sequences?

5. If a longest common nonsupersequence exists, is its lengt h smaller then 

the total length o f the input sequences? Is the longest common non­

supersequence problem decidable? What is the complexity of the short­

est maximal supersequence problem? What can be said about longest 

minimal common nonsubsequences and shortest maximal common non­

supersequences?

G. What are the maximal adaptabilities? Do the sequences with the max­

imal adaptabilities have the form u(0 1101001 ) ‘ v for some ‘constant’ se­

quences ii,i' € E*? What are the proportions of maximal adaptabilities 

/?* ? Is lim 7/tv/A =  lim (Ik'/kt
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Css machine with 931 states

n s T ( s ,  0) T ( s ,  1) d ( s ) n s T ( . s ,0 ) T ( s ,  1) d (a )
i 1°,.] [ill ”T?I 39.295 2 I s T - ~ w ~ 31.544
3 IS] IS] [S] 30.133 4 re?]

[OOOllio J [to1] 28.362
5 [0001lio*J [0001liooj [OOOllioij 25.100 6 Ri] [¿]1 Ri] 22.712
7 15*1 R] [1] 20.125 8 RM u n [S 1] 17.914
9 R°.i M l re°] 17.858 10 [000*1 Ilio J [00001 Ilio J [00011 Ilio J 16.907

11 resi
[0001InoJ [0001 ll 11J 15.796 12 [?!!*] [01101 ll 11 J Rii1] 15.693

13 (toil foonliooj [0011lioij 15.009 14 [000*1 1101 J [00001 llOl J fooon llOl J 15.001
15 [Si] foonInoJ [oon In ij 12.368 16 [001*1 lioo J [00101 lioo J [ooi n lioo J 11.314
17 [001*1 1101 J [00101 lioi J [001 Mlioi J 11.246 18 [Olilili n*J llììò] [Olili l l111] 10.319
19 [00001 11111*1 R°]2 [00001 ll101J 9.833 20 [ooool 11 01*J rani [00001 llOl ij 8.787
21 [0(H) 11ll10*J [000 lll1100J [OOOllInoiJ 8.622 22 [01101lni*J fon ol linoj [01101InnJ 8.390
23 [000*1 Il 11 J [000°) [ooo n lin  J 8.253 24 fooo n lioi*J fooon l IOI (»J fooon 1101 lj 7.764
25 [00111 1100* J [00111lioooj roomliooij 7.564 26 [00101lioo*J [(H) 101lioooj [00101liooij 6.986
27 cty [ill [?•] 6.924 28 root n lioi*J [00111lioioj roomlionj 6.807
29 [ooool1111*J [00001 In ioJ [00001 ll 111J 6.698 30 [00101 l101*J [00101 1101 (>J [00 un lioi ij 6.553
31 [(H) I *1Ino J [00101 Ino J [001M1110 J 6.502 32 [0000*1 lino J [000001 lino J [000011 lino J 6.253
33 [',“;'] [0001 lio J [S°] 5.972 34 [0000*1 liooo J R°]3 [0000iiliooo J 5.921
35 [00011 ll11*J [00011 linoj [00011 ll 111J 5.600 36 [0001*1 liooo J [OOOl01liooo J [0001 Ii liooo J 5.526
37 [0000*1 11101 J [OOOOH foooon Inoi J 5.270 38 [0011*1 l 10(11 J [i°]3 [OOI111 llOOl J 5.022
39 Sii] foniInoJ [?[[] 4.948 40 [()()()( >*1 llOOl J i r ) 2 [000011 llOOl J 4.940
41 [0011*1 11000 J [001iol liooo J [001111 liooo J 4.878 42 R u n [01OOO]Inn J [S i]! 4.851
43 [0010*1 ll(K)l J [(H) 1001liooi J [001011 liooi J 4.849 44 K °] m [S°] 4.766
45 [00111 ll10*J [óò)2 [001 Mll101J 4.751 46 [0010*1 liooo J [(H) 1(H) 1liooo J fooion liooo J 4.706
47 re™*]

[000101 Inoi J [0001n Inoi J 4.665 48 [0001*1 liooi J [OOO 101liooi J [OOOl11 llOOl J 4.545
49 [0001*1 ll100 J [000101 ll 100 J [ooo in lII00 J 4.519 50 [0010*1 l l100 J [001001 Inoo J [ooioij Inoo J 4.507
51 [0001*1 

MOM ] [000101 lion J OOO111lion J 4.340 52 [0001*1 lioio J [000101 11010 J [S " ] i 4.293
53 [(H)! 1*1lion J [(H) 1 101lion J [001 in lion J 4.186 54 [Vi°] [¿°]1 Ri°l 4.176
55 [0010*1 lion J [001001 lion J [(H) ion lion J 4.176 56 [S00] [00001 lio J [S00] 4.107
57 [<H>101lno*J [00101 11 1 Oil J [00ioi11101J 4.055 58 [0011*1 lioio J [001101 lioio J Ri11]! 3.821
59 [0010*1 lioio J [(H) 1 <M)1 

M O K I J [ooion lioio J 3.701 60 Ri°] ll°]l R‘°l 3.519
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11 s T ( * , 0 ) T ( S ,  1 ) d(s) n s T(s, 0 ) T(S, 1 ) d(s)
6 1 I y F T B T i T ? i T ~ 3 . 5 0 8 6 2

[0000*1 
l u l l  J

[000001 
l u l l  J

[000011 
I n n  J 3 . 4 5 3

6 3 [ ? ! ! ] -
o

o
o

[ ? ! ? ] 3 . 3 4 3 6 4
[000001 
l l  110*J

[ o ° ° ] 2 [00000 ] 
h  i i o i  J 3 . 3 3 0

6 5
r o o o o n  
11110*J

[o o o o n  
l l l i o o j

[ o o o o n  
L i i i o i J 3 . 1 2 7 6 6

[000111
lio o o * J [ o ' ] 3 I 1 H 3 . 1 0 7

6 7
ro o io o i  
L lo o i J

[001001 
l i o o i o j

[001001
l i o o u j 3 . 0 6 4 6 8

[OOOOI1 
l io o o * J

[0 00 0  l l  
l i o o o o j

[OOOOI1
l i o o o i j 3 . 0 3 1

6 9
[001001 
110 0 0 *J

[001001 
l io o o o j

[001001
l i o o o i j 2 . 9 9 2 7 0

[001001 
ll1 0 0 *J

[001001 
l 11oo o j

[001001
l n o o i j 2 . 8 7 2

7 1
[010001 
h n i * J [ f f l o j l [ f W . 1 1 2 . 8 0 0 7 2

[0001*1 
l i n o  J

[000101 
l i n o  J

[000111 
l i n o  J 2 . 8 0 0

[001011
[ 1 ] 4

[001011
2 . 7 8 5

[OOOlOl [OOOlOl [OOOlOl
ll0 0 1 *J L io o i iJ lio o o * J l io o o o j l i o o o i j

7 5
[001001 
11011*J

[001001
l i o n o j

[001001
l i o i l l j 2 . 6 8 2 7 6

[OOOOI1
L i i o i *J

[o o o o n  
l l  1010J

fo o o o n
l u o n j 2 . 6 3 5

7 7 [001 111 
L i o o i • j f t * ] 3 [1 1 4 2 . 6 2 9 7 8 [000111 

l 1001•J
[000111
l i o o i o j l ? ! ' ] 2 2 . 6 1 7

7 9 [ V i i ' l [ ¿ ¿ ' ] 1 [ ¿ i ' l l 2 . 6 1 0 8 0 [00001 
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271 [0001011 
Il 101 l*J

[0001011 
Li lo i îoj [ ? o n i ) l 0 .6 0 9 27 2 [0001001 

Il 101 1*J
[0010011 
Il 10 JA

[0001001
l i i o n i j 0 .6 0 9

2 73 [0001011 
U 1010*J

[0001011 
Il 10100J

foooion 
Il 10101 0 .5 9 9 27 4 [ ï i i ° ]

[01101 
Il 10 J

fon o i 
U n  J 0 .5 9 4

2 75 [000111j 
I l 1011*J

[0001 in  
Il 101îoj

[0001111 
Il 10111J 0 .5 9 3 2 7 6 [0001 lo i 

I l 101 l*J
[OOOl101
Il 101îoj

[0001101
In o in J 0 .5 9 3

2 7 7 [0010101
ll0100*J [¿ «H

[0010101
llOlOOlJ 0 .5 9 1 2 7 8 [0001 l l l  

Il 1 O 1()•J
[OOOl111
I lîo io o j

[OOOl in  
U îo io iJ 0 .5 8 3

2 7 9 [0001101 
lu o io *J

[0001101 
I l îo io o j

[0001101 
Il 10101J 0 .5 8 3 2 8 0 [0010111 

Il 1001*J [V ]4 [ ? " ] 3 0 .5 7 9

281 [0,00°]
[¿ °00]

[01000] 0 .5 7 6 2 82 [010101 
Il 1 0 1 •  J

[010101 
I l io io J

[010 11 
L io iîJ 1 0 .5 7 0

2 8 3 R l ,#] [V ° ]1
[ 0 " ° ] 0 .5 6 6 2 84 [o o io in  

Lioioo*J
[o o io in  
lio iooo j

ro io i i l  i
IlOOl JA 0 .5 4 2

2 85 [00101*1 
111010 J

[0010101 
l i io io  J

fo o io in  
Il 1010 J 0 .5 3 3 2 86 [00 °,° ] [OOOl01

lio  J R T 0] 0 .5 2 3

2 8 7 [0010101 
llOl10*j [?oo]3

[0101011 
Il 101 J1 0 .5 2 3 2 8 8 [OOl101

Il 111*J [ î io ]2 [? i . ]2 0 .5 1 4

2 8 9 foiIOOI
I l 00* J [o o o ° ]l [ ¿ ¿ n i 0 .5 1 4 2 9 0 fooi io n  

lio ioo*J
[101 11 
loi 000J 1

[ooi io n  
UoiooiJ 0 .5 1 4

291 [000000*1 
Il 11111 J

[0000001 
Il 11111J

[00000011 
Il 11111 J 0 .4 9 4 2 92 [0000001 

li 1111 • J
[0000001 
l u l l  îoj

[ooooooi 
U n n i j 0 .4 9 4

2 9 3 [000001*1 
Il 11111 J

[00000101 
Il 11111 J (î.1 .1 2 0 .4 8 8 2 94 [OOOOO11

Il 1111 • J
[0000011 
U n i  îoj

[OOOOO11 
l i i i i n j 0 .4 8 3

2 9 5 [00011 
lio *  j

[00011 
lioo  J

fooo n  
llO l J 0 .4 8 0 2 9 6 [OOOO10*1

Il 11 1 10 J
[OOOO1001
Il 11 1 10 J

[ooooion  
U l i n o  J 0 .4 7 3

2 9 7 [0011M
U 1 1 l*J [îo ]3 [M 3 0 .4 7 1 2 9 8 [00 !l l l  

I l 110*1
[001 11] 
Il 1îooj

[oon  n 
U n o iJ 0 .4 7 1

2 9 9 [0000101 
h  11 ni* J [ r ,o ]2 [OOOO101

Il 11101J 0 .4 6 3 3 0 0 [OOOOI1*1
Il 11 1 10 J

[OOOOI101
Il n  1 10  J [n o ]^ 0 .4 5 7

3 0 1 [01011 
Il 00* J

flO lH  
looo j1 [ ¿ 8 i ] l 0 .4 4 7 3 0 2 [OjOOO] [OlOOOl

Il 10 J
[OlOOOl
U n  J 0 .4 4 2

3 0 3 f00001 11 
Il 11I I I *  J

[00(K)111
Il 1 1100 J [n o i ]2 0 .4 3 2 304 [0010001 

Il 101 l*J
[0100011 
Il 10 J1 [ ? ! ? ° ° ] i 0 .4 2 1

3 0 5 [0010011 
Il 101l* j

foo ioo il 
Il 10 1 loi [ u î ! i i ) i 0 .4 2 1 3 0 6 [OOOll]

lio o *  J
[000111 
I l 0(H) J

[000111 
IlOOl J 0 .4 2 0

3 0 7 [0010(11*1 
1101110 J

[01001011 
l i n o  J1 [ ? !  i o ) 2 0 .4 1 7 3 0 8 [001000*1 

l i o n n  J
[01000011 
U n i  JA [ ? ? ! , ] 2 0 .4 1 7

3 0 9 [000001*1 
l i n o n  J

[0000.0]1 [00000n  1 
Il 11011 J 0 .4 1 6 3 1 0 [OOOOO1 • ]

I l 1 1010 J
[0000,0]! [00000111 

U n o io  J 0 .4 1 6

311 [001 11 
Il 11*J

[00111 
li n o j [M 2 0 .4 1 5 3 1 2 [000101*1 

llO l 1 10 j
[00010101 
l i o in o  J [ îo H 0 .4 1 5

3 1 3 [000100*1 
l i o n n  J

[OOOlOOOl
l io n  n  J

[(KM) 1 0 0 1 1
l IO I ll l  J 0 .4 1 5 3 14 11 (Il 1 10 J

[00100011 
l in o  JA [? ! ,o ]2 0 .4 1 5

3 15 [o n  loi 
l i n *  J

[011101 
l i n o  J

[011101 
Il 111 J 0 .4 1 3 3 1 6 [011101 

Il 10* J [¿o]2
[011101 
In o i  J 0 .4 1 3

3 17 foooooi
l i n *  J

[000001 
l i n o  J

[000001 
I n n  J 0 .4 0 7 3 1 8 [011101 

l u *  J [0, \ r ]
[011101 
U n  J 0 .4 0 3

3 1 9 [001000*1 
11000n  J

[OOIOOOOI
lio oon  J m s 0 .4 0 0 3 2 0 [(H) 10 (H ) *  1

I l 00010 J
[OOIOOOOI
liooo io  J

foo i o o o n 
liooo io  J 0 .4 0 0

321 [000011*1 
lllIOOI J

[00001101 
Il 11001 J

[1)0001 n  1 
IlIlOOl J 0 .3 9 1 3 2 2 [1)0001 1*1 

l i n o n  J
[00001101 
l in o n  J

[OOOOInl
In  io n  J 0 .3 9 1

3 2 3 [000011*1 
l l l 1010 J

[00001101 
l l l  101(1 J

[OOOOI1 11
l l l 1010 J 0 .391 3 24 [OOOO10*1

Il 1 101 1 J
[000100]! [ooooion 

l i n o n  J 0 .3 9 1

3 2 5 [001000*1 
UOOlll J [ f f ° ° ] 3

[(H) 1000 11
l io o n i  J 0 .3 8 3 3 2 6 [001001*1 

IlOOl 10 J [?o,0]3
[00100111 
IlOOl10 J 0 .3 8 3

3 2 7 [001001*1 
lioo ioo  J

[ 0 0  KM) 101
I l 00100 J [V i s 0 .3 8 3 3 2 8 [oo ion i*] 

IlOOlOI J
[00100101 
IlOOlOI J [? “ ]4 0 .3 8 3

3 2 9 [001001*1 
l io o n i  J

[00100101 
l io o n i  J m s 0 .3 8 3 3 3 0 [O O O O II *]

Il l o in  J
[OOOOI101
I n o i 11 J

[o ooo iin  
I n o u ï  J 0 .3 8 1

331 [000010*1 
I n o u ï  J [ m " 00] ! 0 .3 8 1 3 3 2 [001010*1 

l io o n i  J [? !<K>]3 [00101011 
l io o n i  J 0 .3 7 8

3 3 3 [001011*1 
l io n o i J [ i ]  5

[o o ion  n
11 CM IOI J 0 .3 7 4 3 34 [001001*1 

liooooo J
[00100101 
liooooo J

[ lo o in o  
looo J^ 0 .3 7 4

3 3 5 [001000*1 
I l OOOO1 J

[OOIOOOOI 
IlOOOO1 1

[lo o o n o  
Iooi F 0 .3 7 4 3 3 6 [(H) 1000*1

I k h h h h ) J
[OOIOOOOI
liooooo J

[1000119 
l(MM) J * 0 .3 7 4

3 3 7 [000110*1 
Il loi I I  J

f(M)()l 1001
I n o u ï  J (M 4 0 .3 7 3 3 3 8 I l IO I11 J [ n i 1 " ’ U

[o o o i  u n  
I n o u ï  J 0 .3 7 3

3 3 9 [0000101 
l io .  1 i r l0]2 [0.M1. °] 1 0 .3 7 1 3 4 0 [OOOl10*1

h o m o  J
[00110011 
l in o  JA

[ooo i ion  
U 01110 J 0 .3 7 0

341 [000110*1 
h  10010 J

f(MM)l 1001
1110010 j RA,0,]2 0 .3 6 7 3 4 2 [000100*1 

liooooo J
fOOQIOOO]
I k h h h h ) J [ ¿ H 3 0 .3 6 7

3 4 3 [(KM) 100*1
Ilooooi J

[OOOlOOOl
11OOOO1 J u n s 0 .3 6 7 3 44 [001010*1 

l i o io n  J
[0101o o i1 
l io n  J1 m s 0 .3 6 6

3 4 5 [001010*1 
1101010 J

[01010011 
l io io  J1

[o o io ion  
lio io io  J 0.3GG 3 4 6 [0001011 

11 1 101 • J
[oooion  
U 1101oJ [? ! o 11 ] i 0 .3 G 6

3 4 7 [0001001 
Il 1101*1

[00(110(1] 
In  io n ! 0 .3 0 6 3 4 8 [000100*1 

l io o n i  J [ ? ! H  2
[oooi oon  
l io o n i  J 0 .3 8 5

3 4 9 [o ioon  
MOI* J [ ¿ r u [ ¿ r u 0 .3 6 4 3 5 0 [01OOl1

lio o *  J [¿ T U [ ¿ 8 ? ' ] l 0 .3 6 4

351 [001010*1 
liooooo J

[OOIOlOOl
l 100000 J

[K )io il9  
l(HH) J*• 0 .3 6 4 3 5 2 [001010*1 

1100001 J
OOl 01(H)!
hooooi J [¿ m ° ']2 0 .3 6 4

3 5 3 [010111 
IlOOl *J

[ i o n  l i  
lo o io i1

[IO I1)1
loon J1 0 .3 6 2 3 54 [ooo iio * 1  

UIOOOI J
[OOOl 1(H)
In ooo i J [1 ° ‘ ]4 0 .3 0 2
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n S T ( s , 0 ) r ( « , i ) < t ( s ) n s T ( s , 0 ) T ( S ,  1 ) d ( s )

355 r o o o i io « i  
1110000 J

[00011001 
l 110000 J là *01 ) 3 0.362 356 [001101*1 

h o m i  J
[01101011 
l i n i  JA

[oo i i o n i  
h o m i  J 0.362

357 [001101*1 
U o m o  J [?ii8‘°]l r o o n o in  

h o m o  J 0.362 358 [011001
ln o o *J [ài4 [V I4 0.360

359 ro io io i 
U l U  J [?!8]i [ ? ! ? ] ! 0.359 360 [010101 

I n o *  J
[010101 
I l 100 J

[010101 
I l 101 J 0.359

361 [001000*1 
I l 10000 J

[00100001 
I l  10000 J [ i r ‘ 12 0.359 362 [001000*1 

l i  10011 J
¡oooo] 3 [o o io o o n  

l i  10011 J 0.359
363 [001000*1 

I l  10001 J
[00100001 
I l  10001 J

[o o io o o n  
l i  10001 J 0.359 364 [001001*1 

l i  10000 J
[00100101 
lllOOOO J [A8°"]2 0.359

365 [001001*1 
l i i o o i o  J

[00100101 
l i i o o i o  J R "]4 0.359 366 [001001*1 

I l 10001 J
[00100101 
I l 10001 J [ ò V ° " ] 2 0.359

367 [001001*1 
L i ìo o i i  J

[00100101 
I l 10011 J [ l o ò l l j l 0.359 368 [000100*1 

I m o o i  J
[01000)2 [o o o io o n  

l i n o o i  J 0.358
369 [000101*1 

I l 11001 J
¡01010)2 r o o o io in  

l i  11001 J 0.358 370 [000100*1 
l i  11000 J

[00010001 
l i  n o o o  J [ r ‘ ]3 0.358

371 K ' 1
[010101 
I l i o  J

[010101 
l u i  J 0.354 372 [01001 

u *  J i n i [ ? ' “ ] 0.353
373 [0001111 

111100*J
[0001111 
I l 1100 1J 0.350 374 [0001101 

I l UOO*J
[0001101 
111 1000J

[0001101
llU O O lJ 0.350

375 [000110*1 
Il 11000 J

[00011001 
l i  11000 J li ,01]3 0.350 376 [000100*1 

I l 10000 J
[00010001 
I l 10000 J [ò°°']3 0.349

377 [0010101 
Il1010*J

[010 n 
l i o i o o j 1

[0010101
In o io iJ 0.345 378 [000111*1 

L i io io i  J
[OOO111oi 
I n o i o i  J

[ooo i u n  
Li i o i o i  J 0.343

379 [000110*1 
L iio io i  J

[00011001 
I l 10101 J

[00011011 
L i io io i  J 0.343 380 [001001 IX* J R100]1 p io ioo j 0.341

381 r o n o n  
I l i o *  J

[o n o n  
I l 100 J R]4 0.337 382 [o n o n  

l u i *  J
[o n o n  
l i n o  J

[011011 
I n n  J 0.337

383 [001001*1 
l i o u o o  J

[01001011 
I l 100 JA

[o o io o in  
l io u o o  J 0.335 384 [001001*1 

l i o n o i  J
[o i o o io l i  
l i  101 JA

fo o io o in  
l i o n o i  J 0.335

385 [000011*1 
I n o i o i  J

[00001101 
I l  10101 J

[OOOOl i n
l i  10101 J 0.329 386 [000010*1 

I n o l i o  J
[00010011 
I n o  J1

roooo i o n  
I n o l i o  J 0.329

387 [000011*1 
I n o l i o  J

[OOOOl101
I n o l i o  J

[ooooi i n  
l u o u o  J 0.329 388 [001010*1 

l i  10011 J
[OOIOIOOI
L i ìo o i i  J

[o o io io n  
l i  10011 J 0.329

389 ro o io 10*1 
I l  10000 J

[00101001 
I l 10000 J [A8,0,]2 0.329 390 [001010*1 

li  10001 J
[00101001 
I l 10001 J [A?,0')2 0.329

391 [001010*1 
Il 10010 J

[00101001 
l i i o o i o  J [i°']4 0.329 392 [0001001 

I n i *  J R°,00]1 [0001001 
I m i  J 0.324

393 fooo i io * i  
l i  10011 J

[00011001 
I l 10011 J

[00011011 
I l 10011 J 0.321 394 fo n o o i 

I n *  J
[011001 
I l i o  J

[011001 
I m i  1 0.320

395 [00,°0]
[ i o 100] [Y?,0°] 0.319 396 [001001*1 

1101000 J
[00100101 
l io io o o  J

[01001111 
li  ooo JA 0.317

397 [??:■ ] r o o m  
I n o  J

rooi n  
l u i  J 0.316 398 [000101*1 

l i o n o i  J
[00101011 
I l 101 J1

[o o o io in  
l i o n o i  J 0.316

399 [000101*1 
l io u o o  J

[00101011 
l i i o o  JA

[000101 11 
l io u o o  J 0.316 400 [000101*1 

I l 01ooo J
[00010101 
l io io o o  J

[00101 n i  
l i  ooo J1 0.316

401 [001100*1 
l io o o io  J

[00110001 
l io o o io  J

f i i o o n o
lo io 0.313 402 [001100*1 

IlOOOOl J
[00110001 
IlOOOOl J [AA?°']2 0.313

403 [001100*1 
I l 00000 J

[00110001 
I l 00000 J

[ n o o i i9  
looo J ̂ 0.313 404 [000101* i  

l i o i o u  J
[000101o i 
L io io u  J [“ I?“ ! 1 0.313

405 [000100*1 
I l 10011 J [VI000]2 [o o o io o n  

l i  10011 J 0.309 406 [0010001 
I m o *  J

[0010001 
I l 1 100 J

[OHX.O]! 0.306
407 [010011 

11001•J r a i [100111 
l o o n j 1 0.306 408 [000101*1 

l i  101 io  J
[00010101 
I n o l i o  J

[o o o io in  
l i  101 io  J 0.305

409 [000100*1 
I l 10111 J l??!000]! [000100n  

l l l O l l l  J 0.305 410 [010101 
h o *  J [Ao,0]i a n i 0.304

411 [000101*1 
I l  101(11 J

[00010101 
l u o i o i  J

[00101 n i  
l i o i  J1 0.300 412 [1)00101*1 

I l  10100 J
[00010101 
Il 10100 J

[001011i i
l io o  J1 0.300

413 [0001001 
I l i o *  J H 2 [o o io o ] ! 0.298 414 [000110*1 

I l 101 IO J [ffA,0Hl i [0001101i
l i  101 io  J 0.297

415 [000111*1 
I n o l i o  J

[00011101 
I n o l i o  J

[o o o u  i n  
I n o l i o  J 0.297 416 [001010*1 

l io io o i  J [f]5 [01010111 
l io o i  JA 0.295

417 [000111* 
l i  10100 J

[o o o i n o i  
lu o io o  J

[00 111 111 
l io o  J1 0.292 418 [000110*1 

Il 10100 J
[00011001 
I l 10100 J

roooi ìo i  i 
l i  10100 J 0.292

419 [001101 
l i o i *  J

[001101 
l i o i o  J

[001101 
l i o n  J 0.287 420 [001101 

l u i *  J
001101 

l i n o  J [WIH 0.287
421 [001101 

I n o *  J [A A °]2 li]3 0.287 422 [01011 
h o *  J [A8‘]1 [AV‘]i 0.281

423 [011001 
I l i o *  J

[011001 
l i  100 J l?]3 0.278 424 [011001 

h o *  J [AA°°]1 [Òi00]! 0.275
425 [001011*1 

I l 01000 J [iKKl] 3 [m o l i  n  i 
l i  ooo JA 0.271 426 [0001001 

111* J
[0001001 
I n o  J

fòoo ioo i 
I n i  J 0.267

427 f o o io in  
I l  1010*J

[010111 1 
l io o  J1

[0101111 
l i o i  J1 0.266 428 [ o n o n

ln u * J
[o i io n  
l u n o j

[o n o n
l u u i j 0.262

429 [YT°] [000101 
I n o  J

[000101 
l u i  ] 0.261 430 [001101 

h o *  J
[00110Ì 
l io o  J

[001101 
l io i  J 0.261

431 [001101 
I l I* J

[001101 
I l i o  J

[o o n o l 
l u i  J 0.261 432 [0011001 

I n o *  J [ÒA°°]2 [0011001 
l i  101 J 0.367

433 [010001 
n o i *  J

f 100011 
lo io  J1

[100011 
lo n  J1 0.257 434 [ o o i i o i * i  

l i o i o o i  J
[00110101 
l io i o o i  J

f o n o n i ,  
l i  001 JA 0.257

435 f o o io in  
I l 000* J [ A 8 " ] 2 [ ¿ ? " ] 2 0.256 436 [O H M

l l o i . l [ilo] X [Alili 0.255
437 [010101

ln o o *J [V.‘x°H,]l [?ò8i|i 0.253 438 [0000101 
I l 1* J

[0000101 
I n o  J

[0000101 
I n i  J 0.253

439 [01101 
I lo *  J i m [ ¿ H i 0.253 440 [00000011 

1111111•J
[00000011 
I n i  i l  ìo j [ u n i i ] ! 0.247

441 ( i ò ì ! J ° l
[1110011 
l o n o  JA

[111 0011 
I o n i  J1 0.245 442 [00000101 

1111111 • J
fooooo io i
l i i n n o j ( t i n n i i 0.244

443 [000001*1 
U n n o  J

[00000101 
11 11 1 10 J

[00000111 
I n i  n o  J 0.241 444 [00001001 

I n i  i io * j
[OOOOlooi 
l i  111iooJ

[00001001 
Il H I  101 J 0.236

445 [00001011 
I n  n  io*J

[OOOOl o n  
l i n i  io oJ ( ? ì 1101)1 0.236 446 [OOOOOl

U* J c m
joooooj 0.234

447 [000010*1 
I n  n o i  J

jo o o io o j J 0.232 1 18 [ o o i o in  
l i o n *  J

[OO101 11
l id i  io  J [ f ] < 0.231

449 [00001101 
li  u n n *J

[OOOOl101
l i m i  ooj (Viioi[2 0.229 150 [0 1 io io i  

l i n o *  J [?A o )2 [VA?] 2 0.228
451 [0100 un 

l i  100* J
[001011 
l i o o o j 1

[001 OH 
l io o iJ 1 0.220 452 [0100101 

l l lO I *  J
[0100101 
l u o i o  J luì IV] 1 0.220
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n s r ( « , o ) r ( * .  1 ) d (s ) n s T ( s , 0 ) T ( S ,  1 ) d ( s )
4 5 3 [ ? r i

[0001] 
l io  J b h 0 .2 1 8 4 5 4 [001110] 

11 1 1 • J R ]4 [?|3 0 .2 1 7

4 5 5 [? i i01]
[011011 
ll 10 J

[01101] 
l l  11 J 0 .2 1 6 4 5 6 [000011*1 

ll 11100 J
[OOOOI101 
111 1100 J

[0000111] 
111 1100 J 0 .2 1 6

4 5 7 ro iou i 
l !()()• J

f i o i n i  
looo JA 0 .2 1 4 4 5 8 [00010] 

u *  J [ r ° ] i
J00010J 0 .2 1 3

4 5 9 ro i1101 
111 1UJ

[o in o ] 
ll 1 110 J

[01110] 
l l l l l l j 0 .2 1 2 4 6 0 [o n to ]

lm o *J [o ]4
[01110]
In io iJ 0 .2 1 2

4G1 [001001*1 
m o n o  j

[010010]1 
l l  10 JA

[0011 ]1 
I 1 0 1 1 0 J1 0 .2 1 0 4 6 2 [01101]

lllOO*J [0 0 ] 3 [o i]3 0 .2 1 0

4 6 3 [0100101 
l l 110* J

[0010]1 
l l  lOOj1

[0010]1 
ll 101J1 0 .2 0 9 4 6 4 [010000] 

l u l l *  J
[0000]1 
l l l i o j *

[0000]1 
l l l l l j 1 0 .2 0 9

4 6 5 [00000111 
l l 11011*1

[0000011]
l iu o i i o j

[0000011] 
111 10111J 0 .2 0 8 4 6 6 [0000011] 

ll 1 10 1 (>• J
[OOOOI111
lioo  JA

[0 0 0 0 0 111 
ll 1 10101J 0 .2 0 8

4C 7 [0 ,° ,° ] [¿°>°]1 [? 1 ° '° ] 0 .2 0 8 4 6 8 [0001001] 
1101 I I I * ] B i n d s | ih n ]2 0 .2 0 7

4 6 9 [00010101 
l l 01110*J

[00101011 
111 100 JA [? io i ]3 0 .2 0 7 4 7 0 [0 0 0 10 0 0 1 

ll01111*J
[001000]1 
l l  1110 JA [? 1 1 1 1 ) 2 0 .2 0 7
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Appendix B

Recurrences for 7i1(z),... ,7i52(z)

(o>

( ! )

o

(io>

( ° ! ) (

( o ! )

1 + I0 j ^0+0

( l + i o )

l )

(o + o !)
1 ¿/[A, 0] 1 1 2 2 2 2 3 3 3 3

2 ¿/[10.1] 2 4 5 X 6 7 18 X 23 20

3 ¿/ [n o , l j 8 29 10 X 45 41 52 X 19 20

4 ¿/ [n o , 2 ) 21 25 2 11 2 2 3 X 3 3

5 ¿¿[010,1] 3 2 12 X 5 X 12 X 18 X

6 [¿¿,(io , i ) n w , ( l o o i , 2 )] 2 24 5 X 47 32 18 X 23 X

7 [¿ ¿ ,(1 0 ,1 )0  ¿¿*(()0 .1)] 14 33 15 X 26 7 35 X X 20

8 ¿¿[100, 1] 5 24 13 X 47 32 13 X 23 X

0 ¿¿[00, 1] 9 21 8 7 2 11 19 20 3 X

10 ¿¿[01(H), 1] 18 2 13 X 5 X 13 X 18 X

11 [/Y,( io ,  l ) n  ¿¿fc( o i . l )] 16 16 15 X X 15 35 X • X 35

12 ¿¿[0110,1) 19 5 12 X 13 X 12 X 13 X

13 ¿¿[1010,1] 13 3 13 X 12 X 13 X 12 X

14 [¿¿, ( io .  i ) n  ¿v*( 1 1 , i )] 38 27 17 X 40 39 X X 20 19

15 [¿¿,(o io , i )  n//h( n ,  l ) ] 3 14 17 X 15 X X X 35 X

16 [¿¿,(10 , i ) n  ¿¿t ( n o , 2 )] 38 4 17 X 6 7 X X 23 20

17 [¿¿,(0 10 , 1 ) n(/fc(K ). 1)1 51 16 X X 15 X X X 35 X

18 ¿¿[0010, 1) 3 8 12 X 10 X 12 X 52 X

19 ¿¿[1100, 1] 12 29 13 X 45 32 13 X 19 X

20 [¿¿,(11 0 . l ) n  ¿¿fc(00. l )] 31 29 49 X 30 41 35 X X 20
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(8 )

( ! )

( ' 8 )

<10>

( ° ! ) (

( o ! )

1+18) ( 0+0 ! )  

( l + i o )  (o + o !)
21 ¿¿[100,2] 22 1 2 34 2 28 3 3 3 20

22 ¿¿[010,2] 4 1 6 7 2 34 23 20 3 3

23 [77,( n o ,  i ) n  77, ( 10 0 1 , 2 )] 8 29 10 X 45 32 52 X 19 X

24 ¿¿[1100,2] 42 25 2 26 2 28 3 X 3 20

25 ¿ / [m o ,  3] 43 1 2 36 2 2 3 32 3 3

26 [77,( io ,  l ) n  ¿¿,( 10 0 1 .2 )  n  ¿4 (01 , l )] 16 16 15 X X 17 15 X X X

27 [¿ 6 (o o , i )n 7 6 (o o i ,2 ) ] 9 21 8 7 11 11 19 20 X X

28 [¿ 6 ( i o , i ) n 7 6 ( o o i , 2 ) ] 2 33 5 X 26 7 18 X X 20

29 [¿6 (oo, i ) n  ¿/ ,(o oo i, 2 )] 9 21 8 7 2 30 19 20 3 X

30 [ 7 6 ( i o o , i ) n 7 6 ( o i , i ) ] 5 16 13 X X 17 13 X X X

31 [¿¿,(100 , i ) n 2 / » ( l l , i ) ] 5 27 17 X 40 30 X X 20 X

32 [¿/,(1 1 0 . l )  n/v6( o i .  l ) ] 50 14 49 X X 15 52 X X 35

33 [¿/,(1 10 ,2 ) n  ¿/fc( ltK ), 2 )] 22 25 34 11 28 2 3 X 20 3
34 [¿6 (1 0 ,1 )0 76 ,(01 0 ,2 )1 16 4 15 X 6 7 35 X 23 20

35 [¿/f ( cxjio, i )n 7 7 k( i i , i ) ] 3 31 12 X 49 X X X 52 X

36 [¿¿ ,(1 0 ,1 )0  76,(011,2 )] 2 4 5 X 6 7 35 X 23 20

37 [¿/,( 100, 1 ) 0  U b (  10,1 )1 5 33 X X 40 32 X X 20 X

38 [¿¿,(10,1) 0 7 6 ,(1 0 0 ,2 )] 2 4 5 X 6 7 18 X 20 20

39 [77,(100, 1 )0  ¿/b(CM), 1)1 5 24 13 X 26 32 13 X X X

40 [¿¿,(10.1) OT/,( 1001,2 ) 0 7 6 (0 0 ,1 )] 14 33 15 X 26 32 35 X X X

41 [77 .(10 ,1 )076 ,(000 , l ) ) 14 33 15 X 30 7 35 X X 20

42 ¿¿[0110, 2] 24 22 47 32 2 34 23 X 3 3

43 ¿¿[1000,3] 1 1 2 2 2 2 3 3 3 44

44 [¿¿,(110,1) 0 7 6 (0 0 1 ,2 )] 8 29 10 X 30 41 52 X X 20

45 [¿¿,(100 .1 )077 ,(10001,2 )1 5 24 13 X 6 46 13 X 23 X

46 [¿¿ ,(1 1 0 0 ,1 )0 7 6 (0 1 ,1 )1 12 14 13 X X 17 13 X X X

47 [7 6 (1 0 ,1 )0 / 6 (1 0 0 1 1 ,2 )1 2 48 5 X 47 32 18 X 23 X

48 ¿.¿[11001,2] 42 24 2 26 47 32 3 X 23 X

49 [7 6 (0 1 0 0 ,1 )0 7 6 (1 1 ,1 )1 18 14 17 X 15 X X X 35 X

50 [77 ,(100 ,1 )0  ¿ 6 (1 1 0 ,2 )] 5 24 17 X 47 32 X X 23 X

51 [¿ 6 (1 1 0 ,1 )0  76,(10,1)] 37 27 X X 39 40 X X 19 20

52 ¿7(00100, 1) 18 8 13 X 10 X 13 X 52 X
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Css machine for adaptability

8 T ( s ,  0 ) T ( s ,  1 ) d

» .  = C D + (?;■“) 0.105083

«2  = H G D + C D 0.104108

»3  = C D C T ) + ( D 0.100481

»4  = C D /oo io\  

V i »  ) C D 0.079724

*5 = C D ( iD + C D 0 .055223

«6  = C D / o n o \

\ u o  )
( : » „ » , ) + +

0.055033

«7  =
'o io o j /o ioo\  

\110 )
/()10<)\

) 0.054731

*8 =
'OOKlj ( r ) + C D 0.049381

«9  =
r'ooioX 

1 »  )

/oo io\  
\ n o  )

/oo io\  
V n i  J

0.042353

«10 =
/ooio\  
\10 ) +  +

/oo io\  
V i o i ; 0 .039862

»11 = C D + ( D 0.035927

«12 =
/0010\ 
\ n i ;

/ 0010\ 

V1110/
( — 0 1 0 ° ) + + + 0.034859
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s T ( s ,  0 ) T ( s , l ) d

/0110\ / ....io o i\  , / o n o \
8,3 “  (,110 ) U  ) + + + V u o i ; 0 .027516

/oioo\ / ..ooio\
8 “  =  (,110 J (....A  ) + + + (. . . .a  ) + + 0 .0 2 1566

/oioo\ /0100\ /..0010\ ,
8 “  =  ( i l l J V i n o ; (.111 ) + 0 .02 i l i  66

/0010\ / ..10 li\  ,
816 -  (,110 ) U  ) + + ( n o i )

0 .021177

/0010\ /ooio\ /oo io\
8 *2 =  (,101 J V io io j ( i o n )

0.019931

/010l\ /.101l\ ,

S18 =  ( l  J ( .0  )  + (.1  )  +
0 .0 1 1964

/oo io\ /..101l\ , / oo io  \
8,9 ~  ( , l l l o j ( .... A J +  + V i n o i ; 0 .017430

/0110\ /...o ioo\
820 -  (,1101 ̂ ( .... A J +  +  +  + + ( .... A ) + + + 0 .013758

/ 01(K)\ /..oo io\
821 =  ( ,m o J v .... a  ) + + + ( .... A ) +  + 0.013683

/0010\ / .o io i\  ,
822 =  [ n o i ) ( . 1 0  )  + ( .... A ) + + + + 0.010588

/oo io\ / oo io  \ /.010l\ ,
823 (, io io J V io io o ; (.1 0 1  )  + 0.009965

/oo io\
824 -  \ 1011 ) ( .... a ;  +  +  +  + + ( .....A ) +  +  +  + 0 .009965

(0010 \
825 =  y 11101J ( ......A ) +  +  +  +  +  + ( ......A ) +  +  +  + 0 .008715

/010l\ /. 1011 \ /..Ol io\
826 = ( l 0  j (.0 0  )  + ( . 1  )  +  + 0.005294

/010l\ /... 110l\ / ..o n o \IIr-Nj;

( . . .o  ; + + + (..11 ) +  + 0 .004983

/ oo io  \ / .. . .n o i\ / (K)10 \
828 -  10100,1 (....IK, ) + +  + V io io o i ;

0 .004983

/ o o io  \
829 “  l, 1()1(K)1 ) ( .......a ;  +  +  +  + V A ;  +  +  +  + + 0.002491

/
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E D „ expected length o f diagonal less of two sequences of length n, 18

6k -  lim 19

V ar(L „) - variance of less, 19

911 finite state machine, 21

I (s )  tape switch function, 21

T (s ,a ) transition function, 21

0 (s , a) output function, 21

s —> T (s ,a ) transition, 21

T n'(s ,u ,v ) extended transition function, 21

T*(s,u,v) 7'M+M(s,U) t,)) 21

Cgn(s,u,v,m ) computation function, 22

T  transition matrix, 27

[p] set o f pairs equivalent to p, 31

f ( i ,  i i ) set of all pairs o f sequences of length n with less of length i, 45 

F (i, n) number of pairs in n), 45 

A  set o f all matches, 48

[p] pair with top and bottom sequence swapped, 48 

C(m) set o f all collations generating a pair of total length m, 49

JV ( i)  set o f all nondoininated collations of order t, 49

'H (i) set o f accepted collations of order t, 56

U (u ) set o f potentially dominated collations, 62

Ut(n, i),Wfc(u, i )  sets of potentially dominated collations, 67 

set o f /-tuples o f sequences of length n, 79

set (E * )' of /-tuples of sequences, 79 

7 j,) -  for / sequences, 80

S (h, e) length of a shortest common supersequence of u and v, 84
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ak proportional expected length o f a shortest common supersequence

of l sequences, 85

A (u ) adaptability of a sequence u, 93 

A „  minimal adaptability, 93

B „  maximal adaptability, 93

c\k proportional minimal adaptability, 94

0k proportional maximal adaptability, 95

W (u ,v ) longest common substring o f u and v, 101

M '" (u ,v ) the length of a longest common substring o f u and v with m

mismatches, 102

N r(u, v) the length of a longest common substring o f a and v with propor­

tion of mismatches <  r, 102

H (u ,v ;r ,s ) heaviest common substring of u and v, 103



Index

adaptability, 92 

maximal, 93 

minimal, 93

collation, 48 

accepted, 55 

dominated, 48 

rejected, 55 

«-dominated, 6G 

weight of, 102 

concatenation, 4

distribution, 85

stationary probability, 29 

dynamic programming, 10

equivalence, 31, 49

function

computation, 22

generating, 6 

exponential, 6 

output, 21 

tape switch, 21 

transition, 21 

extended, 21

generate, 48

key

collation, 48

length 

total, 7

machine 

css, 23 

labeled, 38 

strong, 32 

finite state, 21
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regular, 27 shortest, 91

match, 48 empty, 4

dominant, 11 state

minimal, 53 reachable, 27

quasiminimal, 99 saturated, 23

matrix subsequence, 5

transition, 27 common, 7

M AX  SNP. 90, 105 longest, 8

nonsubsequence
longest diagonal, 18 

maximal, 91
common

substring, 5
shortest, 91

heaviest common, 103
nonsupersequence

longest common, 101
common

with mismatches, 101
longest, 91

superadditivity, 15, 94

pair, 7 supersequence, 5

placement, 85 common

prefix, 5 minimal, 92

proper, 5 shortest, 83

projection, 7 superstring

ratio
shortest common, 104

l
failure, 36 transition, 21

sequence
saturated, 23

distinguishing variance, 19
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