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Abstract
We provide a systematic description of the solid angle function as a means 
of constructing a knotted field for any curve or link in R3. This is a purely 
geometric construction in which all of the properties of the entire knotted 
field derive from the geometry of the curve, and from projective and spherical 
geometry. We emphasise a fundamental homotopy formula as unifying 
different formulae for computing the solid angle. The solid angle induces a 
natural framing of the curve, which we show is related to its writhe and use 
to characterise the local structure in a neighbourhood of the knot. Finally, we 
discuss computational implementation of the formulae derived, with C code 
provided, and give illustrations for how the solid angle may be used to give 
explicit constructions of knotted scroll waves in excitable media and knotted 
director fields around disclination lines in nematic liquid crystals.

Keywords: knotted fields, solid angle, geometry, writhe

(Some figures may appear in colour only in the online journal)

1.  Introduction

Knotted fields are 3D textures of continuous media that encode in their structure a knotted 
curve, filament or family of field lines. Originating in Lord Kelvin’s speculations of atomic 
structure as knotted vortices in the aether [1], they have since been experimentally realised 
in nodal lines of optical beams [2], disclinations in nematic liquid crystals [3–5], spinor 
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Bose–Einstein condensates and fluid vortices [6]. Concurrently, theoretical studies continue 
to flourish in classical field theory [7], electromagnetism [8, 9], superfluids [10] and excitable 
media [11–13].

Central to theoretical advances are explicit constructions for knotted fields exhibiting 
different knot types, or other pertinent physical properties, such as helicity in fluid flows. 
Constructions for knots in electromagnetic fields have centred around the Hopf map and 
rational map generalisations of it, shear-free null congruences and twistor methods [8, 9, 14, 
15]. The simplest constructions yield torus knots and links and the majority of constructions 
have focused on this family, together with seeking to control the helicity of the field [15], or its 
dynamics [16]. The same rational map constructions also give knotted solutions in other field 
theories, such as the Skyrme–Faddeev model [7, 17]. These methods satisfy the dynamical 
equations of motion directly and are geometrically special by construction, providing power-
ful tools for describing the full knotted field and its properties.

A separate approach has been developed to create nodal lines in optical beams that encodes 
the knot as the zero locus of a complex polynomial [2]. From these fields initial conditions 
can be generated for paraxial wave equations with the subsequent evolution giving a beam 
containing the encoded knot. Again, the simplest constructions are for torus knots (captured 
by the polynomials z p

1 + zq
2) but the method can be applied for any geometric braid [18, 19]. 

The argument of such a complex polynomial gives a phase field that winds around the knotted 
nodal line and can be used to initialise phase vortices, or as an angle orienting the director field 
of a liquid crystal with the nodal line then appearing as a disclination [20]. In common with 
the constructions for electromagnetic knots, this approach encodes the knot implicitly rather 
than explicitly in that its location and geometry derives from the polynomial rather than being 
given a priori.

A canonical construction for a phase field associated to any knotted curve K, that depends 
only on the curve and represents a knotted field on its complement is given by the solid angle 
ω(x) subtended by K at each point in space. This construction of knotted fields goes back to 
Maxwell [21], since the solid angle is proportional to the magnetostatic potential of a current 
carrying wire, and in all likelihood represents the earliest explicit construction for a knot-
ted field. If we imagine K to be a wire carrying unit current then Maxwell’s equations state 
that it generates, in its complement, a magnetic field that is irrotational, so that locally it is 
the gradient of a potential. Ampère’s law shows this potential to be globally multi-valued 
(increasing by µ0 upon traversing any closed loop encircling the wire): the solid angle is 
the magnetostatic potential normalised to be 4π cyclic, i.e. it takes values in R/4πZ ∼= S1. 
This description makes clear that solid angle is naturally defined for an oriented curve K, the 
orientation being provided by the current flow. Since magnetic fields are divergence free, the 
solid angle is a harmonic function, and this, together with the 4π circulation, may be taken 
as an alternative definition. Knotted fields constructed out of it satisfy physical differential 
equations (Laplace’s equation), but in contrast to other methods are more direct and explicit 
in their construction, so that there is no special focus on torus knots, geometric braids or any 
other particular class of knots.

Construction of the magnetostatic potential via numerical integration of the magnetic field 
about K has recently been used to initialise knotted fields in superfluids and excitable media 
[10, 11]. However, very little in the way of a systematic treatment of solid angle and its geo-
metric content has been given since Maxwell’s own presentation in his Treatise on Electricity 
and Magnetism [21]. Maxwell devotes articles 417–22 of [21] to an extended discussion of 
solid angle, its properties and geometric meaning, as well as methods for calculating it. He 
gives three methods, in addition to (1): a direct calculation; a method given ‘for the sake of 
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geometrical propriety’; and his preferred method which involves calculating the work done in 
transporting a unit magnetic pole to the point x. Through the latter he (independently) derives 
the Gauss linking integral [22].

Typically, solid angle is described with the help of an orientable surface Σ spanning K: 
ω(x) is then the area that this surface projects to on the unit sphere centred on x, and is given 
explicitly by the formula [23] (which Maxwell attributes to Gauss [21, art. 409])

ω(x) =
∫

Σ

(x − y)
|x − y|3

· dS,� (1)

where y varies over Σ. While this description hides the fact that solid angle depends only on 
K, it provides the main geometric interpretation for solid angle and establishes close connec-
tions to projective and spherical geometry, particularly to spherical curves and areas. Solid 
angle, then, is a naturally geometric object dependent only on K, which involves an interplay 
between the geometry of K itself, and that of the spherical curve to which K projects. As such 
it belongs firmly to the domain of the differential geometry of curves. Yet its relationship to 
curve geometry is only partially developed, limited to how the local geometry influences the 
local structure of the magnetic field in the curve’s normal plane [23–25]. A related question 
is that of an ‘optimal’ method of computing ω, both from a theoretical and computational 
standpoint. Both methods mentioned above suffer deficiencies. In the first, an unnecessary 
intermediate, the magnetic field, is computed before ω. In the second, an arbitrary surface 
spanning K must be provided, of which ω is independent—this is especially inconvenient from 
a numerical standpoint. We desire a convenient direct expression for ω, dependent only on K.

In this paper, we show that Maxwell’s three methods, extended where appropriate to knot-
ted curves, may all be considered as applications of a single curve homotopy formula. In 
doing so, we shall arrive at several distinct formulae for computing ω directly from K and 
make connections between solid angle and modern results on the geometry of spherical curves 
[26, 27], as well as discussing close connections between the asymptotic structure of ω and 
the writhe of K [28, 29]. With these formulae in place, we offer a geometric description of 
the local properties of ω in a tubular neighbourhood of K, considering both the structure in 
the normal plane and as one moves along the knot. Our description, which begins directly 
at the spherical geometry of the projected curve, complements existing results on the local 
structure of the magnetic field, and reveals a previously unseen connection between the local 
structure of ω and the ‘writhe framing’ of [29]. Our results give several formulae for the direct 
computation of ω from K, of practical value when initialising simulations of knotted fields. 
We discuss solutions to the main difficulties in their numerical implementation, and end with 
a brief description of applications to the initialisation of scroll waves in excitable media and 
knotted textures in nematics. Implementations in C of the methods described are given at 
https://github.com/garethalexander.

The extension of the construction of solid angle to the case where K is a link is straightfor-
ward: by the linearity of electromagnetism the solid angle for a link is simply the sum (mod 
4π) of the solid angles corresponding to each of the link components. For this reason, we 
restrict the majority of our discussion to knots, and discuss the few subtleties which come with 
extension to links in a brief dedicated section.

2. The homotopy formula for solid angle

At each point x of the knot complement the projection of K onto the unit sphere centred on x, 
which we shall call the observation sphere, traces out a curve n := y−x

|y−x|, y ∈ K , as shown in 
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figure 1. This projected curve has points of self-intersection in correspondence with the cross-
ings of the knot as seen from x. Upon varying x there will be particular viewing points where 
the number of visible crossings changes and at those points n also has cusps. In all cases (1) 
expresses that the solid angle at x is the area bound by the projected curve n on the observation 
sphere; indeed, Maxwell states this as the definition of the solid angle.

Maxwell’s first method of computing ω(x) is to choose arbitrary spherical coordinates 
(θ,φ) on the observation sphere, and integrate the projected area directly [21, art. 417]:

ω(x) =
∫
(1 − cos θ) dφ.� (2)

If we denote by n∞ the (arbitrarily chosen) polar direction θ = 0, then (2) can be expressed 
in vector notation as

ω(x) =
∫

n∞ × n
1 + n∞ · n

· dn,� (3)

a formula that has been rediscovered a number of times [30–32]. We remark that if we inter-
pret (3) as an integral over K rather than its projection on the observation sphere, the integrand 
is the vector potential for a magnetic monopole placed at x, with −n∞ corresponding to the 
choice of Dirac string. Indeed, expressing it in the spherical coordinates of (2) we recover the 
vector potential of [33]

n∞ × n
1 + n∞ · n

· 1
|y − x|

=
sin θ

r(1 + cos θ)
φ̂,� (4)

where r = |y − x|. Maxwell gives this formula explicitly in Cartesian coordinates and remarks 
on the role of the string (‘axis’) in evaluating the integral.

Maxwell does not advocate the use of (2), other than for computational convenience, writ-
ing that it ‘involves a choice of axes which is to some extent arbitrary, and it does not depend 
solely on the closed curve’ [21, art. 418]. We shall discuss his second method in section 3, 
but his preferred method is his third ‘as it employs no constructions which do not flow from 
the physical data of the problem’ [21, art. 419]: viewing ω as the magnetostatic potential of 
K, it may be built by measuring the change ∆ω as we transport a unit magnetic pole along an 

Figure 1.  (a) An oriented knot K with tangent vector T (here the 41) projects onto a unit 
observation sphere about a point x, giving the spherical curve shown in blue. (b) The 
projection of K onto the observation sphere gives an immersed spherical curve n, with 
self-intersections in correspondence with the crossings of the knot as seen from x. A 
unit tangent t for n is induced by the orientation of K, and we select normal γ := n × t.
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arbitrary path from a reference location to x, or equivalently by fixing x and oppositely trans-
porting K. Maxwell gives a formula for ∆ω under this transport in terms of a double integral 
over the path and K, by summing the areas of the infinitesimal parallelograms swept out by 
line elements of K.

This approach shifts the focus from calculating the solid angle directly to calculating the 
change induced by a translation of the knot along some path. It is a small step to extend this to 
give a formula for the change associated to a general homotopy of K, in which the shape of K 
may vary. Of course, ∆ω does not depend on the precise form of this homotopy, which allows 
it to be calculated using a standardised method, for instance by connecting corresponding 
points of the initial (K0) and final (K1) curves with straight lines, i.e. Kt = (1 − t)K0 + tK1, 
t ∈ [0, 1]. This homotopy induces one on the observation sphere, which we denote nt, with the 
straight lines along which the points of K move projecting to geodesic arcs connecting n0 and 
n1. The change in solid angle is the area swept out by this mesh of geodesic arcs.

Consider the contribution to the area of the geodesics connecting a small segment of the 
two curves: By Archimedes’ theorem on the equality of the area of the sphere and its circum-
scribed cylinder this is equal to the product of the distance |n0 − n1| between the two end-
points of the geodesic arc and the angle swept out by its midpoint (n0 + n1)/|n0 + n1|. The 
difference in solid angle is therefore

ω(x; K1)− ω(x; K0) =

∫
(n0 − n1)×

n0 + n1

|n0 + n1|
· d

n0 + n1

|n0 + n1|

=

∫
n0 × n1 · (dn0 + dn1)

1 + n0 · n1
mod 4π.

�

(5)

This is the basic homotopy formula for solid angle, applicable to an arbitrary deformation 
of K. Both Maxwell’s first and third methods of computing ω can be seen as applications of 
(5)—we recover (3) by letting K0 recede asymptotically far from x, so that n0 is a single point 
n∞ on the observation sphere and ω(x; K0) = 0 mod 4π. In section 3 we shall use a homotopy 
of K along its tangent developable surface to demonstrate that his second method also follows 
directly from the homotopy formula.

The integral in (5) is not defined when x lies on the surface swept out by Kt, which we refer 
to as the surface of discontinuity—as an example, in (3) this surface is formed by translating K 
to infinity along n∞. The line of Kt passing through x connects antipodal points of the observa-
tion sphere, n0 · n1 = −1, and this line does not project to a unique geodesic arc connecting 
these endpoints. Instead there is a whole family of equivalent connecting geodesics, which 
cover the sphere once. As x crosses the surface of discontinuity, the geodesic parameterisation 
of the antipodal sections of n0 and n1 jumps from one side of the observation sphere to the 
other, giving a 4π jump in (5).

We note that (5) has the same form as the formula given by Fuller for the difference in 
writhe of two curves [28]. This is because for each fixed point x (not on Kt for any t) the dif-
ference in solid angle is expressible as an area between two spherical curves, as arises for the 
difference in writhe. This is the first of several relations between the solid angle function for a 
curve and its writhe, which help to convey its geometric content.

3.  Maxwell’s geometric formula, dual curves and homotopies along tangent 
developable surfaces

Maxwell’s objection to (2) is that it involves an arbitrary choice of spherical coordinates on 
the observation sphere, and for this reason he states a construction in which no such choice is 
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made [21, art. 418]. Let a unit circle roll without slipping around n such that its plane of con-
tact is tangent to n, as shown in figure 2. Then a unit vector perpendicular to this circle traces 
a second curve on the observation sphere, called the dual curve n∗. Denote the length of n∗ by 
σ. Maxwell states that the solid angle is given by

ω(x) = 2π − σ,� (6)

a result he simply describes as a ‘well-known theorem’. This result is in fact equivalent to the 
Gauss–Bonnet formula [34], an identification that has been rediscovered at least twice [26, 
27]. In the form stated by Maxwell, (6) is only correct if n is a simple curve without points of 
inflection, but it is true in much greater generality [27]. As a more general version is essential 
for application to generic knot projections, we give a self-contained elementary proof, appli-
cable to any smoothly immersed spherical curve.

3.1.  A dual curve theorem for self-intersecting curves

We begin by relating the area swept out by n to its integrated geodesic curvature by using the 
Gauss–Bonnet formula. n has a canonical tangent vector induced from the orientation of K, 
denoted t, and we choose for it a normal vector γ := n × t, as shown in figure 1(b). (Note 
that in the special case that n is a simple curve it bounds two regions on the sphere, but is only 
correctly oriented as the boundary of one of them. γ  points inwards to this region.) We per-
form a Seifert decomposition [35] of n. This entails resolving each crossing in a manner that 
preserves the orientation of the curve and results in its separation into a collection of Seifert 
circles ni, as shown in figure 3. Each circle is a simple curve and bounds a region Ωi . At self-
intersections of n the Seifert circles have corners, with exterior angles εij. Now, for each circle, 
the Gauss–Bonnet formula tells us

∫

Ωi

dA = 2π −
∫

ni

kγds −
∑

j

εij,� (7)

n

t

n*

Figure 2.  A spherical knot projection n (blue curve, here a typical projection of a twisted 
unknot) induces a dual spherical curve n∗ := t × n  (yellow curve). Maxwell proposes 
the construction of n∗ by allowing a unit circle (yellow disk) to roll without slipping 
around n such that its plane of contact is tangent to n. A unit vector perpendicular to 
this circle (yellow arrow) then traces n∗. As shown in (9), zeros of geodesic curvature 
in n correspond to cusps in n∗ (marked points). More pictures of this construction may 
be found in [26, 27].
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where kγ = dt
ds · γ  is the signed geodesic curvature of the boundary. Summing over all Seifert 

circles, the left-hand-side gives ω(x) mod 4π; on the right-hand-side the exterior angles cancel 
pairwise, and we pick up a contribution of 2πS , where S is the number of Seifert circles, in 
addition to the total integrated (signed) geodesic curvature. The number of Seifert circles is 
equal to χ+ D, where χ is the Euler characteristic of the surface constructed by the Seifert 
algorithm and D is the number of double points (self-intersections) [35, 36]. For a knot the 
Euler characteristic of any Seifert surface is odd, so that S  =  D  +  1 mod 2. Thus we have

ω(x) = 2π(D + 1)−
∫

n
kγds mod 4π.� (8)

We remark that the quantity D  +  1 mod 2 is the spherical equivalent of the rotation num-
ber of a planar self-intersecting curve, sometimes termed its parity [37–39]. The 2π in the 
Gauss–Bonnet formula arises as the rotation number of a simple curve, and the appearance of 
the parity here is thus a natural extension to the self-intersecting case.

The integrated geodesic curvature is equal to the (signed) length of the dual curve 
n∗ := −γ = t × n [26, 27] (figure 2). To see this, consider how n∗ varies with arc length 
along n:

dn∗

ds
=

d
ds

(t × n) =
dt
ds

× n = kγ t.� (9)

t is tangent to n∗, but its orientation alternates across zeros of kγ , which correspond to cusps 
in n∗. Defining ds∗ = kγds, we obtain dn∗/ds∗ = t , and see that ds∗ should be interpreted as 
a signed length element, the sign being given by that of kγ . Thus we arrive at

ω(x) = 2π(D + 1)−
∫

n∗
ds∗ mod 4π.� (10)

For a simple curve without inflection points D  =  0 and the sign of ds∗ never alternates, so 
its integral gives σ and we recover (6). By contrast, for n as shown in figure 2 D  =  1 and we 
have two zeros of geodesic curvature, which divide n∗ into two segments separated by cusps 
with ds∗ switching sign between them. Applying (10) to this example gives the expected result 

a b

n n1 n2

n3

Figure 3.  The spherical knot projection n in (a) may be decomposed via the Seifert 
algorithm into Seifert circles ni, shown in (b). These circles bound regions Ωi , signed 
according to the orientation of their boundary (coloured hatching). At self-intersection 
points of n, the resulting circles have corners, with exterior angles εij (shown for one 
such corner).
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ω = 0; applying (6) does not. Equation (10) thus generalises Maxwell’s ‘well known theo-
rem’ (6) to the case of a smoothly immersed curve, and in particular to any generic spherical 
knot projection.

3.2. The pullback to K and a homotopy along the tangent developable surface

As a result on the structure of spherical areas, (10) is valid for any spherical curve. However, 
we have in mind the case where one arises as the projection of the knot K. Using this projec-
tion we now pull each term in (10) back to K. This facilitates a reinterpretation in terms of the 
geometry of K, as well as a novel method of deriving it using (5).

We begin by constructing a natural ‘projective’ framing for K, dependent on x, with which 
we will express D in (10) as a self-linking number. To construct this framing, extend the lines 
of sight from x along n until they meet K. These lines project to vectors normal to K, which 
are non-zero provided n · T �= ±1 where T is the unit tangent vector to K, in other words 
provided there are no cusps in n on the observation sphere. The number of double points seen 
from x mod 2 is equal to the self-linking number of K given this projective framing, SL(K, x), 
also mod 2. The mod 2 counting gives an ambiguity in the sign of the identification of D with 
SL(K, x) which will lead to two distinct re-writings of (10), and so we shall keep the sign 
explicit in the following.

Using Călugăreanu’s theorem [40, 41], SL(K, x) = Tw(K, x) + Wr(K), we now write 
SL(K, x) in terms of the writhe of K and the twist of the projective framing, which is directly 
computed to be

Tw(K, x) =
1

2π

∫

K

(n · T)(n · T × dT)
1 − (n · T)2 .� (11)

Substituting this expression for SL(K, x) into (10) with the sign ambiguity discussed above, 
and combining with the pullback of the dual curve length,

∫

n∗
ds∗ =

∫

n
kγds =

∫

K

n · T × dT
1 − (n · T)2 ,� (12)

we arrive at

ω(x) = 2π(1 ± Wr(K))−
∫

K

n · T × dT
1 ± n · T

mod 4π.� (13)

This formula for the solid angle depends only on K and data canonically associated to it, with 
the only ambiguity being a choice of sign. The appearance of the writhe in (13) reveals this 
geometric property of curves to be closely connected to the solid angle. We shall return to the 
sign ambiguity in a moment—for now, let us select the plus sign.

Instead of taking (6) as our starting point, we now demonstrate how (13) may be derived 
directly from the curve homotopy formula (5). To construct the appropriate homotopy, extend 
half-lines from K along its tangents T, sweeping out a surface in space known as the forward 
tangent developable surface of K, which we denote Tt,+ := y + tT, t ∈ [0,∞) [42]—an exam-
ple of this surface is shown in figure 4. Consider the intersection of this surface with a sphere 
of asymptotically large radius. The curve T∞,+ given by this intersection is simply the spheri-
cal image of T, known as the forward tangent indicatrix of K [42], scaled to the sphere radius. 
Our desired homotopy is between T∞,+ and K, and is defined by the half-lines comprising 
Tt,+. As T∞,+ is asymptotically far from x, its projection on to the observation sphere simply 
reproduces the tangent indicatrix. Using the fact that n × T · dn = 0, we see that the integral 
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in (13) is a second special case of (5), with K0 = T∞,+, K1  =  K, and the area swept out on the 
observation sphere lying between the forward tangent indicatrix and n.

This argument also identifies 2π(1 + Wr(K)) as the solid angle of T∞,+. We may obtain an 
integral formula for this area by considering the asymptotics of (13), allowing x to recede far 
from K along −n∞ so that ω(x) → 0. Doing so yields

∫

K

n∞ · T × dT
1 + n∞ · T

= 2π(1 + Wr(K)) mod 4π,� (14)

however, as this integral is the area bound by the tangent indicatrix on the unit sphere, the 
identification is simply a recovery of Fuller’s writhe mod 2 formula [28]. In the context of 
curve homotopies, we may interpret (14) as giving the change in solid angle for a homotopy in 
which T∞,+ shrinks to a point (that projects to n∞ on the observation sphere). Equation (13) 
may then be thought of as a combination of two homotopies: the first from an arbitrary point 
to T∞,+, and the second from T∞,+ to K. By contrast, (3) combines these two homotopies into 
one. Returning to the sign choice made above, we now see that choosing a minus sign would 
give a version of (13) corresponding to a homotopy along the backward tangent develop-
able surface Tt,− := y − tT, t ∈ [0,∞), between K and the backward tangent indicatrix T∞,−. 
That aside, the geometric interpretation remains the same. We note briefly that the tangent 
indicatrix is not the only spherical curve canonically associated with K which might be used 
to define a homotopy; we might also consider the normal and binormal indicatrices. In these 
cases, however, neither triple product in (5) vanishes, as occurred in (13), and so the resulting 
formulae are less simple.

With the choice of plus (minus) sign in (13), the surface of discontinuity discussed in sec-
tion 2 is given by Tt,+ (Tt,−). Jumps are also present in (8) and (10), however they occur on 
both halves of the tangent developable surface Tt,+ ∪ Tt,− and the overall 4π jumps are com-
posed of each individual term in the equations jumping by 2π. To convince ourselves of this 
fact, consider the behaviour of (10) as x passes across Tt,+ ∪ Tt,−. n undergoes a Reidemeister 
1 move, during which D jumps by 1. The segment of n∗ corresponding to the Reidemeister 
move in n begins and ends at antipodal points on the sphere. By removing the loop in n, we 

Figure 4.  The forward tangent developable surface Tt,+ (yellow surface) for the knot 
K in figure 1 (red curve), constructed by extending half-lines along tangents from K 
(green, dashed). The intersection of the surface with a sphere of asymptotically large 
radius gives a scaled copy of the tangent indicatrix to K, T∞,+ (blue). The half-lines 
comprising Tt,+ define a straight line homotopy between K and T∞,+, from which the 
blue, dashed curve is taken.
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create two inflection points. Recalling that the sign of ds∗ alternates between these inflections, 
we pick up a change in signed length of 2π.

4. The structure of ω

The level sets of ω, for regular values, form a family of Seifert surfaces with common bound-
ary K. Figure 5 shows this global structure for a twisted unknot and a Whitehead link. The 
topology of the level sets changes at critical points of ω, where generically the local structure 
is a cone point  ±(x2 + y2 − 2z2) with Morse index one or two. As the solid angle is a har-
monic function, critical points of Morse index zero or three are forbidden by the maximum 
principle. For knots and links that are fibred [43] it is possible for the solid angle to have no 
critical points at all; indeed this is the case for both the unknot and Whitehead link shown in 
figure 5. The general relationship between the shape and geometry of a knot or link and criti-
cal points of the solid angle is a fascinating open problem.

It is of particular interest to characterise ω in a tubular neighbourhood of K, so that we may 
modify it when initialising simulations using ω. This control is useful when the local structure 
of the field around a vortex affects its dynamics, as for example in helicity in fluids [44] or 
the twist of scroll waves in the FitzHugh–Nagumo model [13, 45]. This local structure has 
longitudinal and transverse parts: the level sets of ω rotate as one traverses K, and in a plane 
normal to K corrections due to local curvature and torsion arise, analogous to those studied for 
the magnetic field about a curved wire [23]. Harmonic fields in the tubular neighbourhood of 
a knot have also recently been studied in [46].

4.1.  Longitudinal structure—the solid angle framing

The intersection of the level set ω = 0 with K defines a ‘solid angle’ framing, canonical in the 
sense that it depends only on the knot and is purely geometric. As this framing is described by 
a pushoff of K onto an orientable surface, it has zero self-linking number [36]; the extension 
to links is straightforward and discussed in section 5. Figure 6(a) shows this surface and its 
induced framing for the Whitehead link of figure 5. A natural question is to identify this solid 
angle framing in terms of the curve geometry. Let x approach a particular point y(s) ∈ K, for a 
fixed s, in such a way that the displacement vector u := x − y(s) defines a direction in the nor-
mal plane to the curve at s (figure 6(b)). Aligning the x, y, z axes with the local Frenet–Serret 
frame N(s), B(s), T(s), we have u = (ε cos θ, ε sin θ, 0). As ε/ρ → 0, where ρ is the radius 
of curvature, we may think of the image of K on the observation sphere as comprised of two 
parts; for points y(s′) with s′  outside a small interval I around s (of size ∼

√
2ρε), the projec-

tion to x is no different from the projection to y(s), and the image of K is given by the unit 

chords y(s′)−y(s)
|y(s′)−y(s)|. This is a curve Cs on the observation sphere with endpoints ±T(s) and is 

independent of θ. In the same limit, the points y(s′) with s′ ∈ I  contribute to the image of K 
on the observation sphere a semicircle Ss,θ between ±T(s) with midpoint − u

|u| that depends 
on θ. n is thus decomposed as n = Cs ∪ Ss,θ. Varying θ, Cs remains unchanged, and Ss,θ wraps 
the sphere once, giving the asymptotic winding structure ω = 2(θ − α(s)), where α(s) is the 
rotation angle of the Frenet–Serret normal N(s) into the solid angle framing. α(s) gives the 
longitudinal structure of ω. It represents the contribution of Cs to ω, and as such is a global 
quantity, not computable by a local analysis.

Our decomposition of n is identical to that of the set of cross chords considered in the 
context of Călugăreanu’s theorem [29, 40], a consequence of the projection map outside of I 
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degenerating to the chord map as ε/ρ → 0 to give Cs. The completion of Cs by Ss,θ is given, 
in Călugăreanu’s theorem, by a choice of framing vector u for K [29]. Here it is given, via 
projection, by the displacement vector u.

As discussed by Dennis and Hannay in [29], given some framing u, Wr(K) and Tw(K, u) 
are given by the areas swept out on an abstract sphere by Cs and Ss,θ respectively, as s varies 
along K. They point out that one may choose a special framing, which they call the ‘writhe 
framing’, such that the area swept out by Ss,θ precisely cancels that swept out by Cs, giving 

Figure 5.  The structure of ω around a knotted curve, generated with the method of 
section 5. (a)–(c) Show level sets of ω of spacing π2 , each of which forms a Seifert 
surface for the knot with opacities on the near sides of the images reduced to reveal the 
inner structure of ω. (a) A twisted unknot. (b), (c) The Whitehead link (components 
in blue, green) from two viewing directions. (d) A slice through the Whitehead link 
from the same direction as (c). The local structure of ω about the knot is especially 
clear in (d)—ω winds by 4π, and as we move away from the knot, curvature induced 
corrections cause the level sets of ω to bunch along the curve normal, as discussed in 
section 4.
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zero self-linking number. The discussion above makes clear this framing is exactly the solid 
angle framing, and the cancellation condition may be naturally read as a variation of θ such 
that u

|u| lies tangent to the level set ω = 0; in terms of the Frenet–Serret frame, θ = α(s).

4.2. Transverse structure—curvature induced corrections to ω

In the previous section, we saw that the asymptotic structure of ω normal to K, corresponding 
to the decomposition n = Cs ∪ Ss,θ, is simply ω = 2(θ − α(s)). At finite ε/ρ  we find correc-
tions due to the local curvature of K, with the leading contribution being logarithmic in ε. For 
the derivative of ω, the magnetic field, this problem is well studied [23, 25]. However, we wish 
to demonstrate that existing results may be mapped directly on to corrections in the geometry 
of n as the decomposition n = Cs ∪ Ss,θ is smoothed at finite ε/ρ , insight one does not gain 
from the magnetostatic picture.

The asymptotic description n = Cs ∪ Ss,θ contains cusps at the boundary between Cs and 
Ss,θ, located at ±T(s). The primary effect of small but finite ε/ρ  is a rounding of these cusps, 
and the displacement of n slightly off ±T(s), as shown in figure 7(a). It is thus natural to focus 
our attention, and choose coordinates, appropriate to describing n in the vicinity of ±T(s). 
Expanding y(s′) to lowest order in s′ , y(s′) = ( 1

2ρ (s
′ − s)2, 0, s′ − s) and n is given by

n =

[
1 +

ε̃

2

(
s̃2 +

1
s̃2

)
−ε̃ cos θ

]− 1
2
(√

ε̃

2
1
s̃
(s̃2 − cos θ),−

√
ε̃

2
1
s̃
sin θ, 1

)
,

� (15)

where we have defined reduced lengthscales ε̃ := ε
ρ, ̃s := s′−s√

2ερ. The form of (15) is chosen to 

emphasise that we have an expansion of n in the vicinity of ±T(s) on the observation sphere. 

Figure 6.  (a) The solid angle framing for the Whitehead link of figure 5. Shown is the 
level set ω = 0 (blue surface), and its induced framing (components in blue, green). 
(b) The limiting behaviour of n as x approaches K (shown is the behaviour of n about 
the marked point on the 41 of figure  1). x approaches a fixed point y(s) on K such 
that u := x − y(s) = (ε cos θ, ε sin θ, 0) lies in the normal plane to y(s). As ε/ρ → 0, 
a region on K of size 

√
2ρε (green) projects to a semicircle Ss,θ between ±T(s). This 

semicircle sweeps the observation sphere as θ is varied. The remainder of K projects to 
Cs (red), and is independent of θ.
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Focusing now on the smoothed cusp at positive ̃s, we introduce a new variable t := ln(s̃), and 

rotate the x-y coordinates of n by θ2 , yielding

n = [1 + ε̃(cosh 2t − cos θ)]−
1
2

(√
2ε̃ cos

θ

2
sinh t,−

√
2ε̃ sin

θ

2
cosh t, 1

)
,

�
(16)

a hyperbola projected onto the observation sphere (figure 7(a)). In the original, unrotated coor-
dinates, the asymptotic behaviour of this hyperbola is of two longitudinal great circles passing 
through T(s) at angles θ and 0. As ε̃ → 0, the first of these circles gives Ss,θ. The second gives 
the local structure of Cs, and in particular tells us that the direction of departure of Cs from T(s) 
is set by N(s). The vertex of the hyperbola, found at t  =  0, is the point of closest approach to 
T(s) and gives the natural choice ̃s = 1 (s′ = s +

√
2ρε) to define the upper boundary between 

Ss,θ and Cs. It approaches the pole as 
√
ε̃, and so in the limit ε̃ → 0 we recover the sharp 

decomposition n = Cs ∪ Ss,θ.
The local structure of the solid angle can be computed using any of our formulae for ω, 

however, in view of the foregoing description, an appealing method is to use (8) and the geo-
desic curvature of the hyperbola. As this approach is symmetric in ̃s, it is enough to compute 
the geodesic curvature for the hyperbola near s̃ = 1 and simply double the result to account 
for s̃ = −1. Further, the geodesic curvature of n is strongly peaked in a localised region of 
size ∼

√
ε̃  about the vertex of the hyperbola, decaying to zero as the hyperbola approaches its 

asymptotic great circles. Using (16) we find an integrated geodesic curvature of

Figure 7.  (a) For finite ε/ρ , the local structure of n is approximated by the hyperbola 
(16)—the dashed black line gives the approximation to n shown in figure 6. As ε/ρ → 0, 
the vertex of this hyperbola approaches T(s), and the asymptotes (black dotted lines) 
remain unchanged. In this way, we obtain the limiting decomposition n = Cs ∪ Ss,θ. 
The two asymptotes are great circles through T(s) at angles θ and 0, and give the local 
behaviour of Ss,θ and Cs—note that that an angle of 0 corresponds to the direction N(s). 
(b) The local structure of ω in a plane normal to K. Contours of spacing π3  are shown 
for the the zeroth order rotational structure (black dashed line), the curvature induced 
correction (18) (orange) and the exact solution for a circle of radius ρ (blue). The 
absolute values of the level sets are arbitrary, as we have discarded global information 
about Cs in our local structure calculations. The primary effect of curvature is to bunch 
the level sets of ω along the local normal. Note that for the curvature induced correction 
we have fixed the regular values in (18) to zero by comparison with the exact solution 
for a circle [23].
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−2
∫ ∞

−∞

sin θ
√

1 + ε̃(cosh 2t − cos θ)

cos θ + cosh 2t + ε̃ sin2 θ
dt,� (17)

where we have extended the upper limit of integration to +∞, corresponding to an integra-
tion of the hyperbola between − u

|u| and N(s) on the observation sphere. The integrand decays 
exponentially for large t so that the error involved is small.

The integral (17) may be evaluated exactly in terms of elliptic integrals of the first and 
third kind. The main feature is that the result is not analytic in ε̃  but has leading behaviour 
ε̃ ln ε̃. This can be seen most easily by noting that the integrand decays exponentially for 
|t| � 1

2 ln(2/ε̃) and that the integral is dominated by values of |t| smaller than this. Retaining 
only the leading behaviour, one finds the local structure of the solid angle has the form

ω(ε̃, θ) = 2
(
θ − α(s)

)
+ ε̃ ln

8
ε̃
sin θ + O(ε̃),� (18)

in which a zeroth order term from the integrated geodesic curvature gives the winding of ω and 
the logarithmic term causes the level sets of ω to bunch along the local normal. Figure 5(d) 
shows a cross-section through a Whitehead link in which both of these structures are clearly 
visible. In figure 7(b) we compare the various orders of approximation in (18) to the exact solu-
tion for a round unknot. In contrast to the divergence of the magnetic field, ω is perfectly well 
behaved as ̃ε → 0. The logarithmic correction ̃ε log ε̃ tends to zero, but in a cusped manner, with 
unbounded radial derivative at the origin. We may interpret this fact as a direct consequence of 
the limiting cusped structure n = Cs ∪ Ss,θ—the magnetic field gives the rate of change in the 
area of a spherical curve as we smooth a cusp in it, and is thus naturally unbounded.

We note briefly that (18) is not harmonic—indeed, the corresponding expression for the 
magnetic field found in, for example, [23] is not divergence free. This is a consequence of 
neglecting variation in ω along T(s) and one may verify that, allowing x to lie off the plane 
normal to y(s), one picks up a term linear in z which restores harmonicity.

5.  Remarks on numerical implementation, extension to links

In (3), (8), (10) and (13), we have several possible methods for computing ω for any curve K, 
directly from the specification of its embedding in R3. The main difficulties in their numer
ical implementation are encountered when evaluating ω(x) at points close to the surface of 
discontinuity discussed in sections 2 and 3.2. We shall focus discussion on (3) and (13), the 
remaining equations being of similar numerical character.

Focusing first upon (3), when x lies on the surface of discontinuity it is pierced by a 
(generically) unique half-line extended from some point y(s) ∈ K such that n(s) · n∞ = −1. 
Considering the integral in (3) to be defined upon K, at the arc length s there is an isolated 
point of divergence in the integrand. In the degenerate case where x lies upon a line of self-
intersection in the surface, there will be multiple such points. Letting x now lie slightly 
off the surface and approach it perpendicularly, we may expand the integrand of (3) using 
x − y(s) := ε cos θ n∞ + ε sin θ n∞ × T(s)/|n∞ × T(s)|, where θ is now the angle between 
x − y(s) and the surface. We find that its limiting behaviour is that of a Lorentzian peak 
of width εθ, which abruptly switches sign as x crosses the surface. If one employs a sim-
ple numerical integration scheme with regularly spaced points along K of spacing ∆s, the 
Lorentzian peak is not captured when εθ ≈ ∆s. This leads to poor approximation of ω(x) in 
a region of constant thickness ∆s about the surface of discontinuity. By refining K, we may 
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reduce the thickness of this region—unsurprisingly, this result suggests that ∆s should be on 
the order of the resolution one desires for ω.

A similar discussion holds for (13), for which the divergences of the integrand occur 
at s such that n(s) · T(s) = ±1, depending on which homotopy is used. The width of the 
Lorentzian peak instead scales as ρ(s)θ, and so the thickness of the region of poor approx
imation is ∆sε/ρ(s); in particular, we note that this thickness scales with viewing distance in 
(13), but not in (3).

One method of avoiding these peaks is to use the freedom in (3) and (13) to move the 
surface of discontinuity about in space, ensuring x is never too close to it when computing 
ω(x). In (3), we have freedom in our choice of n∞. The surface of discontinuity is given by 
dragging K to infinity along n∞, and two different choices of n∞ will give two such surfaces. 
If K is knotted, these surfaces must intersect, giving a set of curves on which a third choice 
of n∞ is needed. In practice, an initial choice of n∞ is often suggested by the geometry of 
the input knot, or is simply chosen to be a coordinate axis. When computing ω(x), one may 
record the minimum value of n · n∞ and, if it crosses some user defined threshold, switch to 
using −n∞ for the calculation at that point. On the set of lines where this second choice again 
crosses the threshold, a random choice of n∞ may be used. (13) faces analogous problems on 
the tangent developable surface. Here, we have freedom in whether to place the discontinuity 
on Tt,+ or Tt,−. However, these two surfaces again generically intersect [48, 49], and there is 
now no more freedom in (13), forcing one to either switch method or analytically correct for 
the Lorentzian peaks along such intersections. For this reason, and for the scaling properties 
discussed above, from a numerical standpoint we have found the use of (3) to be more con-
venient than (13).

Two brief computational remarks: As discussed in section 4, the limiting local structure 
of ω about K has cylindrical symmetry. If one desires high accuracy to sample the tubular 
neighbourhood of K, one may use a cylindrical mesh out to a distance ∼ρ(s). Finally, we note 
that as values of ω for different values of x are computed independently of one another, our 
formulae are easily parallelised.

5.1.  Extension to links

Extending our results to links is straightforward: by the linearity of electromagnetism, one 
simply sums ω mod 4π for each component of K. We reiterate that ω is only defined for 
oriented curves, and that different choices of orientation for each component of K will give 
distinct solid angle functions. In the case of the solid angle framing discussed in section 4, 
each component Ki acquires a framing, whose self-linking number equals the negative of the 
sum of the linking numbers between Ki and Kj, j �= i (figure 6).

6.  Construction of knotted fields: two illustrations

We describe briefly two different examples of knotted fields that can be constructed using the 
solid angle as illustrations of how it influences the structure in different settings.

6.1.  Scroll waves in excitable media

The possibility of knotting in the waves of excitable media has been considered for some time 
[45, 47]. In a 3D excitable medium, scroll waves of excitation emanate from a vortex filament, 
which it is possible to close into a loop or knot. Recent results have highlighted a remarkable 
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topology-preserving dynamics in these materials [11–13] in which the geometric shape of 
the vortex filament relaxes and simplifies but without strand crossings, thus preserving the 
topology. Simple effective curve dynamics seem insufficient to capture the full behaviour, 
which depends also on interactions mediated by the global structure of the scroll waves. This 
structure can be captured, in part at least, using the solid angle.

Scroll waves emanate from a knotted vortex filament creating an outward propagating fam-
ily of approximately equi-spaced wavefronts. A simplified description of this wave system is 
given by a phase field that both winds by 2π around the filament curve and increases linearly 
with distance from it. This behaviour is captured by the function

ψ(x) = kdK(x) +
1
2
ωK(x) mod 2π,� (19)

where ωK(x) is the solid angle of K, dK(x) = miny∈K |y − x| is the distance from x to the curve 
K and k is a wavenumber. In figure 8(a) we show an example of the scroll waves generated by a 
simple unknotted vortex ring. Note that the way the wave surface attaches to the filament—i.e. 
the local spin rate of the scroll wave along the length of the filament—is determined by the 
solid angle and, in particular, given by the solid angle framing. Of course, the phase function 
(19) can be modified to vary this; the modulation can by thought of as a K-dependent off-set 

Figure 8.  Scroll waves from a unknotted vortex filament. In (a) we show the zero level 
set of the phase field (19) and in (b) a modification of it where a sinusoidal modulation 
has been added to the solid angle framing, thereby adjusting the local spin rate of the 
scroll wave. In both (a) and (b) the two columns simply show different cuts through the 
emanating scroll waves.
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to the distance function dK(x). An example of such a modulation and how it alters the scroll 
waves is shown in figure 8(b).

6.2.  Nematic disclinations

In nematic liquid crystals it is possible to manipulate topological defect lines, called disclina-
tions, so as to create closed loops in the form of any knot or link [3, 5, 50]. The surrounding 
liquid crystal texture is an example of a knotted field. The molecular orientation in liquid crys-
tals is described by a unit vector d with the nematic symmetry d ∼ −d; disclinations are line 
defects in the director field around which the orientation rotates by π, or reverses. The solid 
angle facilitates an explicit construction of a knotted field with this property. For example, the 
director field

d(x) =
[
sin

(
ωK(x)/4

)
, 0, cos

(
ωK(x)/4

)]
,� (20)

encodes K as a disclination line for any choice of knotted curve, or link. This knotted field has 
two particularly notable properties. First, since the solid angle is harmonic, it corresponds to 
a critical point of the one elastic constant Frank free energy. Second, the texture is ‘planar’, 
having no y-component.

We show in figure 9(a) a visualisation of the director field (20) for the case where the discli-
nation lines K correspond to the Borromean rings. The knotted nematic texture is conveniently 
visualised by showing the surface where the z-component of the director vanishes—the vector 
field (20) has boundary conditions such that the director is aligned along z asymptotically far 
from K, motivating this choice. This surface is a level set of the solid angle, namely ωK = 2π.

A generalisation creating fully 3D knotted nematics is the vector

d(x) =
[
sin

(
ωK(x)

4

)
cos

(
ωL(x)

2

)
, sin

(
ωK(x)

4

)
sin

(
ωL(x)

2

)
, cos

(
ωK(x)

4

)]
,

�
(21)

where ωL(x) is a second solid angle function for a curve L chosen as follows. The surface 
dz  =  0 is the same as before (the level set ωK = 2π) but the director field is no longer constant 

Figure 9.  Knotted nematic texture for disclinations forming the Borromean rings. The 
surface corresponds to the set of points where the director has no z-component, dz  =  0; 
it is coloured according the xy-components. In (a) the texture is planar (equation (20)) 
and in (b) it is fully 3D (the curve defining the xy-winding through the angle ωL  is also 
indicated).
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over it, varying with the solid angle function ωL . In figure 9(b) we illustrate this through the 
colour of the surface. Now the gradient of this colour is (proportional to) a magnetic field and 
L is the curve corresponding to the current carrying wire needed to generate that magnetic 
field. More formally, L is a curve in the complement of the surface dz  =  0 corresponding to 
a homology cycle and generates colour winding around the dual cycle of the surface itself. 
Knotted nematic fields with any desired topological properties can be constructed in this way 
but of course the construction is more than purely topological and depends also on the geo-
metric properties of the solid angle and of the curves that generate them.

7.  Discussion

The solid angle provides a canonical knotted field for any explicitly given curve or link, 
depending only on that curve and its geometry. As such it facilitates a study of the geometry 
of knotted fields, shedding light on their structure and establishing connections between the 
field and the geometry of the curve. We have given a survey of its properties and methods for 
computing it that parallels and modernises Maxwell’s seminal presentation. The fundamen-
tal result is the homotopy formula (5), which unifies the different formulae for calculating 
the solid angle, and also provides the means for characterising changes in the knotted field 
induced by deformations of the curve. In the latter context, it would be natural to study the 
consequences of inflection points and other geometric degeneracies in the curve shape, and 
also strand crossings or, with suitable extension, reconnections. Likewise, one could seek a 
characterisation of the geometric shape of a knot or link whose solid angle function realises 
specific properties, for instance having a minimal number of critical points. Those special 
geometric shapes where the properties of the solid angle change would then represent an 
interesting branch of singularity theory.

The local structure of the field can be considered particularly important in many systems. 
Here, the natural framing provided by the solid angle and its relation to the writhe of the curve 
establish a standard reference, from which the global effects of changes to the local behaviour 
can be systematically assessed.
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