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Geographic Scope of Proximity Effects among  

Small Life Sciences Firms 
 

1. Introduction 

 

Early stage seed funding for small innovative firms is critical and scarce. In the US, a common 

source of capital for these innovative firms is the Small Business Innovation Research (SBIR) 

program under which 11 federal agencies allocate 2.5 percent of their annual budget to firms 

with promising research ideas using a two phase process.
1
 Phase 1 grants are used to explore the 

scientific and commercial feasibility of an idea/technology and, typically, do not exceed 

$100,000.  Phase 2 grants are considerably larger and are given to the most meriting Phase 1 

winners to expand their initial results.  Angel and venture funds are alternative sources of capital 

for such early stage projects but, as a whole, they lag the SBIR grant pool.  In 2007, for instance, 

the SBIR program awarded $2.3 billion for research and seed funding in the US while the 

corresponding figure for private venture markets was $1.2 billion (pg. 5, Wessner 2009b).     

A key goal of the SBIR program is to stimulate technological innovation (Wessner 

2009a)
2
. As a result, the bulk of SBIR funds are awarded to small firms operating in cutting edge 

research areas such as the life sciences, electronics, materials and energy conversion.  An 

important research finding about such firms that has largely gone unnoticed in the literature is 

that when these firms are located in close proximity to one another they tend to have a higher 

chance of winning SBIR grants (Wallsten 2001) – a spatial externality of sorts that has been 

attributed to knowledge spillovers, network effects and other benefits associated with knowledge 

transfers among neighboring firms. These proximity effects have been found to be stronger 

                                                 
1
 There is also a Phase 3 but federal agencies do not provide funds during that phase. 

2
 Evidence suggests that the SBIR program has, generally, been successful in promoting innovation (Audretsch 

2003; Audretsch et al. 2002a; Audretsch et al. 2002b) 
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within one tenth of a mile and to be effectively exhausted within half mile from their origins. 

This finding is generally unique in the literature as few other studies have determined proximity 

effects to be geographically so limited in scope (Aharonson et al. 2007; Rosenthal and Strange 

2003)
3
. Indeed, most studies of proximity effects in innovative industries do not generally 

measure their precise geographic reach and those that do, find them to be significantly broader in 

scope (e.g. Acs et al. 2002; Anselin et al. 1997; Baldwin et al. 2008; Baldwin et al. 2010; 

Orlando 2004)
4
.   

In this study we return to the question of whether proximity effects exist among 

neighboring firms funded through SBIR grants and we measure how far they extend when they 

do exist.  Our point of departure is Wallsten (2001)
5
 who examined the effects of spatial 

proximity on the binary outcome of winning/not winning an SBIR grant among small innovative 

firms over a four year period (i.e. 1993-1996).  To evaluate the robustness of Wallsten‟s (2001) 

findings we introduce a number of changes. First, we use a sharper measure of proximity effects. 

Specifically, we quantify the relationship between the amount of SBIR grants raised by a given 

firm and the number of SBIR winners at various distances and this measure should prove more 

sensitive than the binary winning/not winning an SBIR measure used by Wallsten (2001).  

Second, we extend the period of analysis to almost 25 years (i.e. 1983- 2006), which should 

ensure that any presence of proximity effects is structural and not a chance event. Finally, we 

focus on the presence of proximity effects among small firms in the life sciences industry 

                                                 
3
Aharonson et al. (2007) study the firm location choice of biotechnology firms conditional on the existence of  

knowledge spillovers, which are approximated as the level of R&D spending; Rosenthal and Strange, (2003) also 

study firm location choice and operationalize knowledge spillovers as the level of employment in a given industry. 

Hence, empirical evidence from these studies does not specifically pertain to SBIR firms. 
4
 The benefits from the agglomeration of firms and industries discussed in the literature are, generally, of two kinds: 

The first involves efficiency gains from reductions in firm production costs through access to local labor pools and 

services as well as reductions in transaction costs through improved access to local suppliers and buyers. The second 

involves gains in firm knowledge and innovation that typically result from knowledge spillovers, network effects, 

increased collaboration among proximate firms and other forms of knowledge transfer. Because these later effects 

rely heavily on human capital (e.g. labor mobility, face to face interactions), the associated benefits are generally 

assumed to be more geographically limited (termed proximity effects here).  
5
 Black (2005) also studied the probability for a given firm to win Phase 2 SBIR awards but his analysis did not 

include proximity effects across similar firms. 
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receiving SBIR grants.  We focus on the life sciences industry because it is said to be well-suited 

for knowledge spillovers, network externalities and other modes of knowledge transfers which 

can lead to proximity effects (Shane 2004).
6
  Hence, if spatial proximity does benefit firms 

pursuing SBIR grants, proximity effects should be measurable among small innovative firms 

specializing in the life sciences
7
.  

Our interest to the question at hand is, primarily, motivated by the apparent divergence of 

empirical evidence on the geographic scope of proximity effects which is found to be quite 

narrow in a small number of studies (Aharonson et al. 2007; Rosenthal and Strange 2003) and 

much broader in a larger number of studies (e.g. Acs et al. 2002; Anselin et al. 1997; Audretsch 

and Feldman 1996; Bottazzi and Peri 2003; Delaney 1993; Funke and Niebuhr 2005; Jaffe 1989; 

Jaffe et al. 1993; Keller 2002; Orlando 2004; Varga 2000).  Resolving this seeming divergence 

in the empirical evidence presented in the literature goes beyond academic curiosity. There are 

ongoing efforts for the development of clusters in knowledge-intensive sectors, such as the life 

sciences, in many parts of the world (Doeringer and Terkla 1995; OECD 1999, 2007; Schmitz 

and Nadvi 1999) and such investments could prove ineffective if the geographic scope of 

proximity effects and their underlying causes are not well understood.  Similarly, given the 

increasing popularity of SBIR like programs around the world (i.e. UK‟s SIRI program, 

Australia‟s IIF program and programs in Sweden, Russia, Canada, UK etc.) (Cumming et al. 

2007; Wessner 2009b) understanding and promoting possible proximity effects could secure 

greater returns on the public funds invested through these programs.  

                                                 
6
 Proximity effects have been found in a number of studies that have analyzed the life sciences industry (e.g. 

DeCarolis and Deeds 1999; Kolympiris et al. 2011; Owen-Smith and Powell 2004; Ponds et al. 2010; Zucker et al. 

1998a).  
7
 The life sciences industry is also characterized by a large number of university and other life science firm spinoffs 

created in close proximity to the original sources of knowledge. This is a firm creation mechanism described in the 

knowledge spillover theory of entrepreneurship and refers to the process where firms are founded in order to exploit 

knowledge that is not fully developed at the institution that first produced it (Audretsch and Keilbach 2007). 

Accordingly, our analysis could also provide insights on the proximity effects and the geographic scope of 

knowledge spillover entrepreneurship.  
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We proceed with the rest of the paper then as follows: In sections 2 and 3 we review the 

relevant literature on the sources of proximity effects and what is known about their geographic 

scope.  In section 4 we introduce the empirical hypotheses of our study and we describe our 

estimation procedures. In section 5 we review the data used in our empirical analysis and 

examine in some detail the spatial characteristics of various regions that could influence the 

geographic scope of proximity effects that could emerge among neighboring life science firms 

receiving SBIR funds.  In section 6, we present the estimation results and in section 7 we 

summarize and conclude. 

2. The literature on the sources of proximity effects 

 

Why should firms of a particular industry located in close proximity have higher chances of 

winning SBIR grants than non-proximate firms? Knowledge spillovers, network effects, 

increased collaboration among nearby firms and other forms of knowledge transfer could cause 

such effects and the general consensus in the literature is that geographic proximity matters for 

two main reasons: First, because it facilitates the transmission of tacit knowledge and, in turn, 

innovation (Asheim and Gertler 2005).  Second, because it allows access to a local knowledge 

pool enabling economic actors to interact with more ease and with more actors (Asheim and 

Gertler 2005). This ease of interaction and knowledge transfer is essential as firms, confronted 

with a dynamic business environment as well as technical challenges and financial constraints, 

constantly look for knowledge resources outside their own to improve their performance (Cohen 

and Levinthal 1990; Conner and Prahalad 1996; Grant 1996).  

Along these lines, a well-developed body of literature has documented the contribution of 

knowledge transfers on firm performance and innovation (e.g. Acs et al. 2002; Anselin et al. 

1997; Audretsch and Feldman 1996; Bottazzi and Peri 2003; Delaney 1993; Funke and Niebuhr 



5 

 

2005; Jaffe 1989; Jaffe et al. 1993; Keller 2002; Orlando 2004; Rosenthal and Strange 2003; 

Varga 2000; Wallsten 2001) 
8
. Knowledge transfer mechanisms such as face-to-face interactions, 

local professional networks and labor mobility are the primary means through which spatial 

knowledge transfers are realized.   

Saxenian (1990) explained in some detail how face-to-face interaction among individuals 

is a significant knowledge transfer mechanism. Routine personal encounters among employees 

of proximate firms can enhance the knowledge base of a given firm through deliberate or chance 

reciprocal exchange of ideas, information sharing, and technical advice.  Knowledge tends to 

diffuse locally when economic actors working in similar problems locate in proximity 

(Liebeskind et al. 1996; Saxenian 1994; Sorenson and Stuart 2001).  For instance, so called, 

“local buzz” (Bathelt et al. 2004; Storper 1997) allows valuable knowledge transfers, such as 

accounts of failures in scientific experiments (Asheim and Gertler 2005), to diffuse locally 

mainly due to network relationships sustained by geographic proximity.  

 More broadly, a large number of studies have supported the importance of interpersonal 

relationships as a knowledge transfer mechanism. For instance, Dahl and Pedersen (2004) found 

that for employees of proximate wireless communication firms in Denmark interpersonal 

interactions were a major source of knowledge transfers. Sorenson and Stuart (2001),  Gupta and 

Sapienza (1992), Lobo and Strumsky (2008), and Athanassiou and Nigh (2000) are some of the 

many authors that have similarly emphasized the role of interpersonal interactions as a primary 

knowledge transfer mechanism. Sweeney (1987) discussed how important interpersonal 

encounters are for small firms and Von Hippel (1994) explained the significance of interpersonal 

communication among small firm employees in knowledge intensive industries, which can be 

effective due to the “stickiness” of tacit, non-codified information that is difficult to transmit 

through more formal channels.  By their very nature, frequent face-to-face interactions and 

                                                 
8
 Among others, contributions from Breschi and Lissoni (2001) and Håkanson (2005) take a critical stand towards 

tacit knowledge and positive spatial externalities. 
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interpersonal relationships often have a spatial scope that extends to a firm‟s immediate 

proximity as social connections that involve recurring interactions develop, mainly, at short 

distances (Porter 1998; Rosenkopf and Almeida 2003; Rosenthal and Strange 2003; Walker et al. 

1997).  

 Firms can also source knowledge from other firms through local professional networks 

and there is growing evidence that suggests such networks are significant conduits of knowledge 

transfers (Huggins and Johnston 2010; Powell et al. 1996).  In high technology industries 

collaborations among firms that are sustained by local professional networks are common 

(Hagedoorn 2002; Von Hippel 1988) partly due to scientific complexities and high costs which 

can be shared among firms. Along these lines, Saxenian (1990, 1991) described how 

semiconductor firms in the San Francisco Bay area – even competitors -  collaborate to solve 

common problems. Similarly, Huggins and Johnston (2010) reported that high-technology firms 

in Northern England use localized networks to exchange knowledge and Autant-Bernard et al. 

(2007) discussed how European high technology firms are more likely to cooperate if located in 

the same area.  In principle, the geographic reach of collaborative efforts is not spatially bounded 

because firms can develop ties with distant ones (Boschma 2005; Gilding 2008).  Nevertheless, 

because professional networks are mostly local (Sorenson and Stuart 2001; Stuart and Sorenson 

2003) the geographic scope of knowledge transfer from inter-firm collaborations is often also 

local.   

 Labor mobility is another mechanism regarded as a core conduit of knowledge transfer, 

particularly in industries that rely heavily on human capital (Audretsch and Feldman 1996).  

Highly trained workers with developed skills and expertise can act as “knowledge spillover 

agents” (Schiller and Diez 2010) as they move from one organization to another (Almeida and 

Kogut 1999; Dahl and Pedersen 2004; Franco and Filson 2006; Kim and Marschke 2005; Maier 

et al. 2007; Malecki and Poehling 1999).  
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A number of empirical studies have supported the notion of labor mobility as a 

knowledge transfer mechanism. Almeida and Kogut (1999) used patent citations to approximate 

knowledge flows and found that the level of labor mobility in a region is a significant predictor 

of such knowledge flows. Rosenkopf and Almeida (2003) also used patent data and reached 

similar conclusions. Boeker (1997) found that managerial expertise gained at prior organizations 

affected new product introduction at the new firm and Maliranta et al. (2009) used data from 

Finland to conclude that firms which hired workers with R&D experience increased their 

productivity and profitability.  Because the expertise and skills that make workers attractive for a 

given employer are typically tailored to a specific research area, labor mobility occurs, chiefly, 

across firms in the same industry.  At the same time, employees in high demand tend to exhibit 

spatial inertia (Almeida and Kogut 1999; Angel 1989) partly because they seek to maintain 

social and professional ties.  Taken together, these tendencies suggest that the spatial scope of 

knowledge transfers from labor mobility is also expected to be limited.  

All knowledge transfer mechanisms discussed above, involve human interactions and 

human capital. Industries that are heavily dependent on human capital are therefore more likely 

to experience knowledge transfers which are, most likely, limited in geographic scope. The life 

sciences is an industry built on human capital and capacity to innovate (Stuart and Sorenson 

2003; Zucker et al. 1998b).  Therefore, the chance of discovering spatially limited proximity 

effects in the life sciences industries is expected to be high.  

3. The literature on the geographical scope of proximity effects 

  

In line with the arguments presented in the previous section, the standard view in the related 

empirical literature is that proximity effects from knowledge spillovers, network effects, 

increased collaboration among nearby firms and other forms of knowledge transfer must have a 
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geographic upper bound largely because the marginal costs of knowledge transmission increase 

with distance (Acs and Audretsch 2010; Audretsch 1998).   

A number of studies have empirically tested this proposition using both direct and 

indirect measures of proximity effects and geographic reach.  Some studies have analyzed the 

relationship between knowledge inputs (e.g. R&D expenditures) and knowledge outputs (e.g. 

number of patents) (Anselin et al. 2000; Audretsch and Feldman 1996; Black 2005; Jaffe 1989; 

Jaffe et al. 1993).  The unit of analysis in these studies is typically the state or the Metropolitan 

Statistical Area (MSA) and the empirical results support the notion that the transmission of 

knowledge is indeed confined within these regional units.  Using similar methods, studies have 

examined the geographic scope of proximity effects specifically in the life sciences industry and 

have reached similar conclusions (e.g. DeCarolis and Deeds 1999; Owen-Smith and Powell 

2004; Ponds et al. 2010; Zucker et al. 1998a).   

Other researchers have not specified a priori the geographic boundaries where proximity 

effects could occur and have instead compared their strength across increasingly distant spatial 

units from a central actor. Orlando (2004) reported that spatial externalities from industrial R&D 

can carry up to 200 miles; Anselin et al. (1997) and Acs et al. (2002) showed that university 

research has an effect on high technology innovations that is strong up to 75 miles; and Keller 

(2002) found that the productivity of R&D research across countries declines with distance while 

spatial externalities occur up to 745 miles. Bottazzi and Peri (2003) used European regions as 

their unit of analysis and found that R&D spending in a given region had a small but significant 

and positive effect on the patenting rate of regions located up to 186 miles away while Funke and 

Niebuhr (2005) showed that in selected German regions knowledge spatial externalities extended 

14 miles or more.  Finally, Baldwin et al. (2010)  found that labor productivity in individual 

Canadian firms was positively related to the agglomeration of similar firms within a 3 mile 

radius and in a similar exercise Baldwin et al. (2008) estimated the cutoff point of spatial 
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externalities to be roughly 6 miles
9
. Both Baldwin et al. (2010) and Baldwin et al. (2008) 

attributed their findings to agglomeration economies including buyer-supplier networks, larger 

labor pools and knowledge spillovers. 

The geographic scope of proximity effects in the life sciences industry has not been 

measured as frequently or directly. Delaney (1993) found that the majority of the biotechnology 

firms in his sample had sourced information from a 50 miles radius while Kolympiris et al.  

(2011) measured positive spatial externalities in the venture capital funding of biotechnology 

firms for up to 10 miles distance and attributed that, in part, to knowledge spillovers and network 

externalities.  

A common feature of all the empirical studies reviewed above is that the spatial units of 

analyses extend well beyond the immediate proximity of firms or firm clusters and often 

represent long geographic distances. This methodological choice can primarily be attributed to 

the research setting of each study where narrow geographic proximity was not of primary 

interest.  Still, the mere variance in the geographic scope of proximity effects measured in 

existing empirical studies leaves the reader wondering just how strong are such effects in the 

immediate vicinity of firms and how far they might extend?   

In this context, we find the empirical results of the few studies that have examined the 

presence of positive externalities in the immediate proximity of focal firms intriguing as they 

suggest that, at least in some instances, proximity effects may be significantly narrower than 

generally assumed. Rosenthal and Strange (2003) examined firm births in a number of industries 

conditional on proximity effects which were measured at different geographical distances. 

Proximity effects were found to have the strongest impact on firm births within a 1 mile radius of 

all units considered and such impact was exhausted at a 15 miles radius.  Aharonson et al. (2007) 

estimated that the location choice of Canadian biotechnology firms in the 1990s was heavily 

                                                 
9
 Relatedly, Funderburg and Boarnet (2008) report that the majority of the labor force of a given cluster is located 

within 5 to 7.5 miles from the cluster.   



10 

 

influenced by the R&D activity of existing firms in a one third of a mile radius. Finally, Wallsten 

(2001) employed even smaller units when he estimated the probability of winning an SBIR grant 

among high-technology firms controlling for the presence of previous SBIR winners situated at 

increasingly distant geographical units.  Again, the firms located in the narrowest of these units 

defined as a one tenth of a mile radius had the most pronounced effect on the probability of the 

origin firm to win an SBIR grant while spatial effects remained economically relevant only up to 

half a mile radius.   

The findings of Wallsten (2001) are of particular interest to this study. Wallsten (2001) 

investigates SBIR firms which operate, mostly, in knowledge intensive industries and hence are 

heavily dependent on human capital. Furthermore, the firms he considers are small and, given 

their inherent resource constraints, they are more likely to seek knowledge resources outside 

their boundaries. This is just the kind of environment that proximity effects from knowledge 

spillovers, network effects, increased collaboration among nearby firms and other forms of 

knowledge transfer would tend to exist. Wallsten (2001) then looks for the presence of proximity 

effects at the narrowest possible geographic units, which have rarely been considered in previous 

studies. In this context, Wallsten (2001) finds proximity effects to be very narrow in geographic 

scope indeed.  If Wallsten‟s results could be replicated and generalized, they could influence 

both the conceptual foundation of proximity effects, the underlying knowledge transfers and the 

government policies that pursue them in practice. In this sense, these results must be also 

explained. Just what factors could keep proximity effects so geographically limited? 

We return to the question of whether proximity effects among small firms in knowledge-

intensive industries are as narrow in geographic scope as reported by Wallsten (2001). 

Specifically, we measure whether positive spatial externalities in the level of funding of 

proximate SBIR firms in the life sciences industry do in fact exist and if so, how far they extend, 
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and seek to replicate his results. Furthermore, we seek to understand the sources of these 

proximity effects, if they exist, and what kind of knowledge transfers might explain them.   

To confirm Wallsten‟s results in a robust way we use a more general measure of spatial 

externalities and a much longer period of analysis. Specifically, we employ a unique dataset that 

includes all Phase 1 SBIR grants awarded to life sciences firms since SBIR‟s first award in 1983 

up to 2006 and evaluate the potential presence of proximity effects through a continuous 

response variable instead of the binary win/not win a grant used in Wallsten. We also measure 

potential proximity effects among life science firms (LSFs) that have received SBIR grants, as 

well as between such firms and other neighboring LSFs that have not participated in the SBIR 

program, venture capital firms which have funded LSFs. We do so, in order to evaluate whether 

proximity effects may be attributable to different types of knowledge transfers.  If knowledge in 

the life sciences, in general, is a key factor of success in securing SBIR grants, then all LSF firms 

and venture capital firms active in the industry could contribute knowledge that improves the 

performance of LSFs participating in the SBIR program
10

. We also control for regional and firm 

characteristics that can also influence the capacity of LSFs to secure SBIR grants. We discuss the 

methods and procedures we use in our empirical analysis in the next section.  

4. Empirical Hypotheses and Procedures 

 

Consistent with the previous discussion the empirical part of the present work needs to account 

for proximity effects that extend to different narrow spatial units and are expected to be potent at 

those unit(s) that are closer to the origin firm. Given these considerations, we follow a standard 

practice in the literature to use neighbors at increasing distances from a central actor in order to 

                                                 
10

 It is possible that knowledge specific to the SBIR program itself but not related to the life sciences could also 

result in an increase in the level of SBIR funding of LSFs. In such a case, proximity to SBIR winners from other 

industries could also contribute to the funding performance of LSFs receiving SBIR grants. We consider this 

possibility in our empirical analysis and report relevant results in Appendix Table 1.  
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approximate the geographic reach of spatial externalities (see for example Aharonson et al. 2007; 

Bottazzi and Peri 2003; Kolympiris et al. 2011; Rosenthal and Strange 2003; Wallsten 2001).  

The general form of the model is  

 

where , is an  vector of the dependent variable and  is a matrix of variables used to 

assess the strength and spatial scope of proximity effects.  In our application, the dependent 

variable is the natural logarithm of the inflation-adjusted sum of the total Phase 1 SBIR amount 

raised by a given LSF  at year  (Phase1) where year  is a year where the LSF has won at least 

one SBIR grant.  We use this dependent variable because it increases with two features of the 

SBIR program that can be influenced by proximity effects; namely the number of grants awarded 

to an LSF and the amount of each grant.   

The independent variables used to test whether potential  proximity effects among SBIR 

firms exist, measure the number of LSFs that have won at least one SBIR grant between  

and 11 and are located at increasingly distant spatial units from the origin firm.  To compare 

our results with the findings of Wallsten (2001), the first set of neighbors in the empirical model 

consists of LSFs with at least one LSF SBIR award winner located within 0.1 miles from the 

origin firm (SBIR_0.1) and the corresponding parameter  measures the semi-elasticity 

between the SBIR funds raised by the origin LSF and the number of other LSF SBIR winners in 

that spatial ring.  Similarly, LSFs with SBIR awards located between 0.1 and 0.5 miles from the 

origin firm compose the second set of neighbors (SBIR_0.5) whose effect is measured with the 

corresponding parameter .  For consistency and to allow for a comparison between the spatial 

units considered, we build analogous variables that measure the density of SBIR winners located 

                                                 
11

 We use a 5 year lag because we expect the effects of the knowledge transfer mechanisms to be stronger during 

that period.  However, given the relative lack of theoretical guidance from the extant literature (albeit this lack Acs 

et al. 2009;  and Baum et al. 2000  have, among others , also used 5 year windows) we performed a robustness check 

and tried shorter and longer lag periods.  The results of this robustness check revealed that our estimates are not 

sensitive to the choice of the lag structure and are not reported here for parsimony.  
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in radii of 0.5 miles that are increasingly distant from the origin firm.  To test whether proximity 

effects are potent at immediate vicinity we compare the statistical significance and the estimated 

magnitude of SBIR_0.1 with the corresponding values for the remaining density variables.  We 

estimate the spatial unit at which proximity effects cease to exist as the density variable after 

which the proceeding variables are statistically insignificant and of small economic magnitude.  

For instance if the SBIR_0.5 variable was significant and the variables that reflect SBIR winners 

located between 0.5 and 1 miles and 1 and 1.5 miles from the origin firm were statistically 

insignificant, we would conclude that proximity effects are effectively exhausted at the 0.5 miles 

radius.  We also expect the magnitude of the s to decrease as we move farther away from the 

origin LSF which would indicate that the strength of proximity effects decays with distance until 

it eventually dies off.
 12

  

 It is possible that SBIR LSFs can benefit through knowledge transfers from proximate 

venture capital firms as well as from other LSFs that are not participating in the SBIR program. 

To test for the presence of such proximity effects we evaluate the potential presence of spatial 

externalities among SBIR LSFs and Venture Capital Firms (VCFs) active in the life sciences 

industry. SBIR LSFs can use nearby VCFs as sources of knowledge since local networks of 

VCFs tend to generate non publicly-available knowledge (Shane and Cable 2002) and empirical 

evidence (Kolympiris et al. 2011) suggests that the presence of VCFs in proximity is beneficial 

for the performance of LSFs.  As before, we expect any benefits of collocation with VCFs to 

wane with distance and, accordingly, we specify six non-overlapping variables (VCFs_0.1, 

                                                 
12

 It should be noted that in addition to measuring the association of the sum of SBIR funds raised by a given LSF 

with the density of SBIR winners located in different spatial rings we also considered its association with the sum of 

funds raised by the proximate SBIR winners. Initial empirical results from the two alternative approaches were 

qualitatively similar and we opted for using the density of SBIR firms for two reasons: First, it allows for a direct 

comparison with Wallsten (2001) who also considered firm density in his study. Second, Phase 1 grants are typically 

of similar magnitude across firms and as a result the amount of funds from SBIR grants accumulated from LSFs in a 

given radius was found to be highly correlated with the corresponding measure of SBIR firm density in the relevant 

spatial rings.    
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VCFs_0.5, VCFs_1, VCFs_1.5, VCFs_2, VCFs_2.5)
13

 that include the number of VCFs located 

in the same radii considered for the SBIR winners.  We expect positive signs for these variables 

and the magnitude to decrease as we move from VCFs_0.1 to VCFs_2.5.  

In order to account for possible proximity effects between the origin firm and LSFs that 

have not received SBIR grants we also include in  of equation  variables that measure the 

number of non-SBIR LSFs in the same rings used for the SBIR winners (NON_SBIR_0.1, 

NON_SBIR_0.5, NON_SBIR_1, NON_SBIR_1.5, NON_SBIR_2, NON_SBIR_2.5).  The 

performance of the origin firm may improve due to knowledge transfers from the proximity with 

the non-SBIR LSFs which could eventually lead to an increase of SBIR funds for the origin firm, 

generating positive coefficients
 14

.   

To effectively measure the strength and geographic scope of knowledge spillovers we 

must also account for regional characteristics that could affect the level of SBIR funding 

received by LSFs at different locations. For instance, LSFs that are close to universities may 

benefit from potential knowledge transfers  (Acosta et al. 2009; Ponds et al. 2007) and previous 

research has shown that knowledge transfers from universities can extend up to the MSA level 

(Anselin et al. 1997; Anselin et al. 2000; Black 2005; Varga 2000).  Accordingly, we include a 

variable (Universities) that measures the number of universities active in life sciences research 

that are in each firm‟s MSA and we expect a positive sign for the coefficient of this variable.  

                                                 
13

 As with SBIR LSFs we initially specified variables that measured potential spatial externalities with VCFs at 

larger distances from the origin firm but we pared down the specification of our variables to those presented above 

as we could not find statistically significant impacts in larger distances. We also examined proximity effects with 

VCFs and SBIR LSFs through an alternative specification. Because many locations do not host a large number of 

VCFs and because the potential impact of VCFs may go beyond immediate proximity, following previous literature 

(i.e. Samila and Sorenson 2011) we also measured the density of VCFs at the MSA level. We discuss the empirical 

results of these alternative specifications in the next section.     
14

 As we explain in the next section, the empirical assessment of such potential proximity effects is hampered by the 

fact that while we can locate the non-SBIR LSFs in space we cannot assess whether they never applied for an SBIR 

grant or they were unsuccessful in sourcing SBIR grants. This is important as underperforming firms may have a 

negative proximity effect on the origin SBIR LSF.  Beaudry and Breschi (2003) document the potential of negative 

effects arising from collocation with underperforming firms. As a result, we include the particular variables in the 

analysis to account for the potential knowledge transfer but, as we explain below, we interpret the results with 

caution.  
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A number of states provide support services to LSFs applying for SBIRs through their 

Small Business Administration offices but also through private consulting organizations.
15

 

Highly effective consulting services could greatly enhance the capacity of LSFs to secure larger 

sums through the SBIR program and we account for the potential impact of such consulting 

services available at different states in the empirical analysis.  

LSFs can become more efficient and secure more SBIR grant funds if they benefit from 

urbanization economies, defined as gains from collocation with firms in different industries 

(Rosenthal and Strange 2003).  We account for this effect on SBIR funds by including the 

average number of non-LSF establishments in the LSF‟s zip code from 1992 to 2006 

(Establishments) as an indicator of such urbanization economies.  We expect the sign of the 

coefficient for this proxy variable to be positive. 

We also include a set of variables that are specific to a given LSF and are expected to 

influence the magnitude of SBIR funds raised in a given year. A firm‟s prior experience with the 

SBIR program may be important and we evaluate the potential effects of such past experience 

with two variables. The first measures the average of the real SBIR funds awarded to the origin 

LSF from  up to  (PreviousSBIR) while the second variable measures the number of 

years since the last SBIR grant awarded to the origin LSF (Last).  Since organizations benefit 

from experience and prior knowledge (March 1988) we expect a positive sign for the first 

variable and a negative sign for the second variable
16

.   

A core criterion for SBIR awards is the degree of innovation in the proposed project(s) 

(Wessner 2009a).  Accordingly, more innovative firms are expected to attract more SBIR funds.  

To account for such a potential effect, we follow previous literature (e.g. Autant-Bernard 2001; 

                                                 
15

 Examples of private organizations that offer consulting services on securing SBIR grants include Foresight S&T 

in Rhode Island and the Larta Institute in California and the District of Columbia. 
16

 Note that in addition to experience, the PreviousSBIR variable may capture unobserved qualities and 

characteristics of the LSF that make it successful in acquiring SBIR funds and as such the relevant empirical results 

should be interpreted carefully. 
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Boix and Galletto 2009) that used patents as a proxy for innovation and add a variable that 

measures the total number of patents awarded to each LSF by 2006 (Patents). We expect this 

variable to have a positive sign
17

. 

LSFs can receive grants from a number of funding agencies under the SBIR program 

including the United States Department of Agriculture, the Environmental Protection Agency 

and the Department of Electricity Development.  However, LSFs in the biopharmaceutical 

industry receive most of their funds from the National Institutes of Health (NIH).  Up to 2006, 

NIH was the only agency in the SBIR program whose Phase 1 grants exceeded the $ 100,000 cap 

(pg. 39, Wessner 2009a) imposed by other agencies. Furthermore, biopharmaceutical LSFs tend 

to have access to grants from a broader set of agencies as compared to other LSFs (say those 

focused on agriculture or energy).  As such, we expect that biopharmaceutical LSFs might have, 

on average, higher levels of funding and we include a dummy variable that equals 1 for 

biopharmaceutical LSFs (and 0 otherwise) and expect a positive sign (BioPharma). 

We also analyze the potential effects of time on an LSF‟s development process with a 

variable that measures the age of the LSF at the SBIR award(s) year (Age).  Older LSFs may 

become less aggressive in pursuing government funds, plausibly, due to increased reliance on 

alternative sources of capital. Therefore, we expect a negative sign for the Age variable. In order 

to incorporate potential nonlinearities in the relationship between age and SBIR funds 

acquisition, we also include the age variable in its quadratic form (AgeSquare). 

Along the same lines, we examine the potential impact of the size (number of employees) 

of the origin LSF firm at time  (Size)
18

 on its capacity to secure SBIR grants. Firm size may 

                                                 
17

 It should be noted, that there is potential for simultaneity of the patent variable with the dependent variable 

because we report the total number of patents over a range of years and some of the patents may have resulted from 

SBIR grants. Unfortunately, differential and often unobserved lags in the dates of discovery, patent submission and 

patent issuance make proper allocation of the patents by year exceedingly difficult and as a result we opt for 

including a total patent count as an indicator of the innovative character of each firm. For this reason, the relevant 

empirical results should be treated with caution.  
18

 We, however, followed the codification scheme described in Table 2 because the number of employees is 

typically reported by firms in discrete categories. 
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have two opposing effects on SBIR funds grant acquisition, and as such the sign of the variable 

is not clear beforehand.  On the one hand, larger firms may generate a larger portfolio of projects 

for which they may pursue and acquire larger sums of SBIR grants.  On the other hand, larger 

firms may have more in-house resources to fund early stage projects and, as a result, they may be 

less interested in SBIR grants.   

Finally, we control for a policy change in 1994 that increased the total number of SBIR 

grant awards (Wallsten 2001) and we expect LSFs to increase their total SBIR funds as a result 

of this policy shift.  In particular, following the 1992 congressional reauthorization of the 

program, the set aside of each agency that participated in the SBIR program increased gradually 

from 1.5% in 1993 to 2.5% in 1997.  Moreover, differential rates across agencies for the SBIR 

set-aside were also eliminated. These changes resulted in substantial increases in the total 

amount of Phase 1 SBIR awards. Accordingly, we include a dummy variable (After_94) that 

equals 1 if the dependent variable corresponds to a year after 1994 (0 otherwise) and expect a 

positive sign.  

5. Data, Variable Definition and Descriptive Statistics 

 

InKnowVation, Inc. provided a dataset on the Phase 1 SBIR grants awarded to LSFs from the 

first SBIR award in 1983 up to 2006.  The dataset included specific information about the dollar 

amount and nature of each grant as well as about the LSF that won each individual grant.  This 

information was used to construct the dependent variable and the Age, AgeSquare, Size, Patents, 

Last, After_94, and PreviousSBIR variables. For the PreviousSBIR variable we converted the 

nominal amounts of each grant to real amounts (2006 $) using the CPI.  The data from 

InKnowVation, Inc. included the address of each SBIR winner which we converted to 

geographic coordinates to develop the SBIR_0.1, SBIR_0.5, SBIR_1, SBIR_1.5, SBIR_2, 
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SBIR_2.5 variables.  In order to identify biopharmaceutical firms and construct the BioPharma 

variable, a keyword search was performed for all LSF descriptions
19

 included in the 

InKnowVation dataset.  The total number of establishments at each LSF‟s zip code 

(Establishments) was collected from the U.S. Bureau of the Census. The number of universities 

with life sciences research activity located at each LSF‟s MSA (Universities) was compiled from 

information provided by the Association of University Technology Managers and the publicly 

available list of research grant recipients from the National Institutes of Health. Finally, we used 

the Thomson‟s Financial SDC Platinum database, the Zoominfo web-based database, and the 

web-based Moneytree report to identify LSFs that have not won SBIR grants as well as VCFs 

active in the life sciences located in the areas of interest.  The address of each relevant LSF and 

VCF were transformed to geographic coordinates
20

 which were, in turn, used to construct the 

VCF_0.1, VCF_0.5, VCF_1, VCF_1.5, VCF_2, VCF_2.5, NON_SBIR_0.1, NON_SBIR_0.5, 

NON_SBIR_1, NON_SBIR_1.5, NON_SBIR_2, and NON_SBIR_2.5 variables. The final dataset 

consisted of 4832 observations from 1673 LSFs that won 7731 Phase 1 grants from 1983 up to 

2006.  

                                                 
19

 The biopharmaceutical keywords list was constructed after consulting with biotechnology researchers employed at 

the authors‟ institution. The list included the following terms: Allergen, Antibodies, Antigen, Ascites, Biomedicine, 

Cancer, Cardiovascular, Cartilage, Central Nervous System, Chinese Hamster Ovary, Cho cells, Collagen, Dermal, 

Endocrine, Gene therapy, Genetic disorders, Growth hormone, Immune suppression, Immunodeficiency, Infectious 

disease, Insulin, Ligament, Lymphoma, Magnetic resonance imaging (MRI), Monoclonal antibodies, Myocardial 

infarction, Oncogene, Pharmacokinetics, Polyclonal antibodies, Polyvalent vaccine, Renal, Respiratory. 
20

 One issue that has plagued previous research is how to correctly identify the location of relevant organizations.  

For example, often only the address of the corporate headquarters or main university campus may be recorded in 

datasets while the locations of other facilities are not reported.  We cope with such potential issues in our dataset in 

the following ways: For SBIR LSFs and non-SBIR LSFs, proper identification of location is relatively 

straightforward because these firms are typically small and they only have one location. For the small number of 

firms with a relatively large number of employees, we visited the website and for a handful of firms with multiple 

locations we recorded all such locations. For the venture capital firms active in the life sciences sector, we visited 

their websites in all occasions and we used their multiple locations in the very few cases that multiple locations 

existed. In the case of the universities used in our analysis, we received data from AUTM on campus locations with 

active research life sciences programs which we complemented with data available from NIH on all university 

locations that received NIH funding over the period of analysis. We further used Google Earth ® and visited the 

website of each institution to ensure that we could identify the proper locations of the universities and associated 

medical schools in our sample. While it is still possible that some locations of relevant organizations might have 

been overlooked, our focus on the life sciences has allowed us to minimize such potential shortcoming.  
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[Table 1 about here] 

[Figure 1 about here] 

 

Table 1 presents the zip codes, cities and states with the most SBIR winners in our 

sample.  The top 5 states host a bit over 50 percent of all SBIR winners (the top 3 states alone 

host 42 percent of the winners) while the corresponding shares for the top 5 cities and zip codes 

are almost 15 and 11 percent respectively.  In some states SBIR winners are more heavily 

concentrated at the city or the zip code level than others.  For instance, in California SBIR 

winners are geographically concentrated as 3 zip codes are home to more than 31 percent of all 

LSF firms in the state receiving SBIR grants. In fact, 94 of the 412 SBIR winners in the state are 

located in the 92121 zip code in San Diego
21

.  Even more interesting is the spatial distribution of 

firms in the 92121 zip code which is illustrated in Figure 1. With the exception of two LSFs, 

which do not appear in the map, the rest of the LSFs in the zip code are located within walking 

distance from at least one other LSF as they often locate in the same office park or the same 

business incubator; hence they reside within yards from other LSFs.  Office parks and incubators 

are in the center of a life science research and development cluster that includes a major research 

university, renowned research institutes, a number of large LSFs and four venture capital firms 

active in the industry.  Further, almost all office parks and business incubators in the area are 

located within 2 miles distance from each other as they are connected through a major highway.   

The location patterns of zip code 92121 are replicated in a number of other states.  For 

instance, the 20850 zip code in Rockville, MD along with the city of Gaithersburg, MD hosts 51 

of the 112 SBIR winners in the state. Most of these LSFs are located very close to each other and 

often in the same building, office park or incubator.  Similarly, 5 of the 10 SBIR winners in 

Arkansas are located at the same zip code and within walking distance to each other and 12 of 

                                                 
21

 Walcott (2002) provides a detailed case study of the growth of the San Diego bioscience cluster with insightful 

references on geographical patterns. 
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the 19 SBIR winners in Arizona reside in the same city in proximate locations.  These spatial 

characteristics and the implied collocation of LSFs acquiring SBIR grants and other relevant 

firms could, at least in part, rationalize the potential presence of proximity effects with limited 

geographic scope. 

There are also states that LSF SBIR winners exhibit less geographic concentration, 

however. LSFs that have received SBIR funds located in Massachusetts are more spread out 

geographically with only 31 of the 178 winners in the state residing in 1 of the top 5 zip codes.  

Similarly diffused patterns are observed in other states as well. 23 zip codes in 15 cities host the 

33 SBIR winners in Florida while 11 zip codes in 8 cities host the 16 SBIR winners in Indiana. 

[Figures 2a to 2d about here] 

  

The maps presented in Figures 2a to 2d show the location of the SBIR LSFs in our 

sample.  LSFs are classified according to their total SBIR funds from 1983 up to 2006, and larger 

symbols in the Figures indicate LSFs surrounded by a greater number of SBIR winners from 

 to  in the same zip code.
22

  Many LSFs in our sample are located in East Coast and 

West Coast cities such as San Diego, San Francisco, Boston and New York.  However, a number 

of LSFs winning SBIRS are located in urban and rural interior cities such as Gainesville, Florida; 

Scottsdale, Arizona; Atlanta, Georgia; and Chicago, Illinois.   

The general pattern observed from Figures 2a to 2d implies that, on average, LSFs 

receiving the most SBIR funds are surrounded by an above average number of SBIR winners in 

their zip code and the opposite. LSFs with low success and levels of SBIR funding are 

surrounded by a lower than average number of SBIR winners in their zip code. While Figures 2a 

to 2d imply a positive association between the number of neighboring SBIR firms and origin 

                                                 
22

 We used the zip code – instead of the units used in the empirical analysis - as the unit of presentation in the map 

because it is the smallest spatial unit for which symbols do not overlap to the degree of making the map 

prohibitively difficult to assess visually. 
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LSF‟s SBIR funding over a 23 years period, they do not account for the influence of other 

proximate LSFs and VCFs or for relevant regional and firm characteristics. We use the estimated 

empirical model to provide a more complete account of all such relationships in the next section.  

[Table 2 about here] 

Table 2 presents descriptive statistics for the dependent and explanatory variables.  On 

average, the LSFs in our sample sourced $162,442 per year with most of them receiving close to 

$ 97,000.  LSFs located in close proximity to other LSFs (typically in the same office park or 

business incubator) accumulated, on average, substantially more SBIR funds over time than 

more isolated LSFs. Across the whole sample, each LSF had, on average, 0.37 SBIR winners in 

a 0.1 miles radius, another 0.68 winners in a 0.5 miles radius and about 1 more winner in each of 

the remaining spatial units considered in the empirical analysis.  Note that regardless of the 

spatial unit considered, the standard deviation of the number of winning LSFs in that unit is 

larger than the average value, which indicates the wide range of values in the observed spatial 

density among winners.  Also, the modal value of most spatial units considered was 0, which 

indicates that most of the observations in the dataset come from spatially disconnected regions. 

On average, each LSF: was located in MSAs with more than 8 universities that conducted 

some life sciences research; had 0.03 and 0.22 VCFs in a 0.1 and 0.5 miles radius respectively; 

had 0.2 and 0.7 LSFs with no SBIR funding in a 0.1 and 0.5 radius respectively; and had more 

than 1,000 non-LSF business establishments in the same zip code.  With regard to firm-specific 

features, the average LSF receiving SBIR funds had more than 14 patents, it was about 7 years 

old when it received the SBIR grant(s) and had 15 to 19 employees.   

  Not reported in Table 2, is the geographic location of the non-SBIR LSFs which 

resembles the geographic distribution of SBIR winners, though there is a higher relative 

concentration of non-SBIR LSFs in California and Massachusetts.  This pattern may be 

explained by the higher concentration of venture capital firms in the East and West Coast 
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(Powell et al. 2002) which may have provided alternative funding sources for non-SBIR LSFs.  

SBIR LSFs and non-SBIR LSFs have similar number of patents (non-SBIR LSFs had, on 

average, close to 13 patents) and had a similar average age and age distribution.  Finally, the 

distribution of LSFs according to their research specialization was somewhat different across the 

two sets. While approximately 32 percent of the SBIR winners were biopharmaceutical LSFs, 

the corresponding share for the non-SBIR LSFs was close to 45 percent.    

6. Estimation Results 

 

White‟s test suggests strong presence of heteroskedasticty and for that reason we estimated the 

model with OLS using White‟s heteroskedastic-robust variance estimator.  The parameter 

estimates from this model are reported in the first column of Table 3. LSFs that have won SBIR 

grants in multiple years enter the dataset more than once.
23

 These LSFs may possess unobserved 

characteristics that allow them to be more successful in sourcing grants from the federal 

government on a yearly basis and, hence, the errors associated with different annual observations 

of individual LSFs may be correlated. 

The errors associated with observations of different LSFs located in the same state may 

also be correlated because the amount of funds raised by such LSFs may be influenced by 

systematic differences in the portfolio and quality of support services provided by Small 

Business Administration offices and private consulting organizations to firms interested in SBIR 

grants across different states.  Ideally, we would like to directly account and measure any 

potential qualitative differences in the support services received by LSFs across states, but any 

such effects, if they exist, are difficult to observe and measure. Hence, in addition to firm effects, 
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 Approximately one third of the LSFs in the sample are repeated winners and are mostly larger firms.  
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there might also be unobserved state effects which could lead to the errors associated with 

different annual observations of individual LSFs in the same states to be correlated.  

The potential firm- and state-specific unobserved factors above may lead to violations in 

the assumption of independence across observations (Nichols and Schaffer 2007; Stimson 1985).  

In order to evaluate whether such potential violations are present and correct for them, the last 

two columns of Table 3 report parameters and standard errors that are estimated using 

generalized estimating equations (GEE),
24

 which account for the potential clustering of residuals 

at the firm and the state level respectively.  Overall, the estimated parameters remain the same 

but their statistical significance does change with the type of estimator used.  Based on the 

statistical significance of all the estimated parameter estimates, we find that the model 

accounting for the potential clustering of errors at the state level is superior and we use it as the 

basis for the discussion of our empirical results below (see third column of Table 3). 

 

[Table 3 about here] 

 

Because the dependent variable is in logarithmic form and the variables that measure the 

number of SBIR winners in different spatial units are in level form, the corresponding 

coefficients can be interpreted as semi-elasticities. An additional SBIR winner located within a 

0.1 miles radius from the origin LSF is associated with a 4.5 percent increase in the SBIR funds 

acquired by the origin firm.  Evaluated at the mean of the dependent variable ($162,442), the 4.5 

percent increase translates into an additional $7,378 per year for each one additional SBIR 

winner located in the immediate proximity. To put this figure in context, one might think of the 

10 SBIR winners that are, on average, found to collocate in close proximity (0.1 miles radius) in 

San Diego. Collocation in such close proximity is then  associated with $73,782 more funding 
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 GEE is a method to estimate the standard errors which first estimates the variability within the defined cluster and 

then sums across all clusters (Zorn 2006). 



24 

 

for each origin LSF, or almost half of the $162,442 average SBIR funding received by LSFs in 

the sample. Just as Wallsten (2001) did, we therefore also find strong evidence that LSFs 

receiving SBIR grants located in very close proximity with other SBIR winners enjoy a 

significant advantage in securing such funds – a proximity effect with a very narrow geographic 

scope.
25

   

With regard to the threshold level where the proximity effects are exhausted, we find that 

the benefits from collocation cease at a 1.5 miles radius from the origin firm. We also find a sort 

of discontinuity in the impact of collocation with other SBIR winners. While the variables that 

measure the impact of SBIR LSF density at a 0.1 to 1 mile radius from the origin firm are 

statistically insignificant, the corresponding variables for a 1 to 1.5 miles radius are statistically 

strong and of meaningful size. Specifically, an additional SBIR winner located between 1 and 

1.5 miles radius from the origin LSF is associated with a 2.38 percent increase in the SBIR funds 

acquired by the origin firm.  Therefore, as in previous studies, we find that the effects of 

proximity decline with distance. 

The discontinuity in the above proximity effects, however, is of interest. Close inspection 

of the geographic location of firms in our dataset reveals that in many regions there is significant 

and dense clustering of LSFs that receive SBIR grants through collocation in the same office 

parks or business incubators. These types of facilities typically cover areas between 0.5 and 0.7 
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 The size and reach of research collaborations and networks has increased over time as communication costs have 

declined. These types of effects have also been mentioned in the literature (Johnson and Lybecker 2012) and such 

changes could have changed the geographic scope of the proximity effects. As a robustness check to the sensitivity 

of our results against such considerations we constructed two alternative empirical specifications: (a) one where a 

time trend was added to our base model (to represent ongoing reductions in communication costs) and where the 

trend was interacted with the independent variables that measure the density of SBIR winners in close proximity to 

the origin firm (to test for changes in the geographic scope of proximity effects); (b) another where our base model 

was modified to allow the above-mentioned density coefficients to differ over two selected sub-period spanning the 

1983-2006 period of analysis. The results were generally similar but because of the limited number of observations 

in the early years of the sample and the increase in the size of the SBIR program in 1994, the inclusion of a time 

trend in our model conflicted with the 1994 dummy variable and generally caused significant multicollinearity that 

raised the condition index well above the generally accepted threshold of 30 and rendered inference from such 

results problematic. The empirical results from the second specification were generally invariant to the choice of 

sub-periods. We have reported the empirical results for one of such models in the Appendix Table 2. All the 

empirical models we estimated, including the one reported here, did not support any shift over time in the 

geographic scope of the proximity effects in our sample.  
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mile radius. Hence, the strong spatial externalities effects that we measure among LSFs in very 

close proximity seem to be driven by cohabitation of many of these small firms in the very same 

facilities. Weaker but still meaningful proximity effects are also found within distances of 1.5 

miles from the origin firms and these appear to be related to the presence of other nearby firms 

but which do not occupy the same quarters.
26

  

Increased density of non-SBIR LSFs in very close proximity (within 0.1 mile radius) is 

found to have a positive and statistically significant impact on the SBIR funding of the origin 

LSF. More specifically, an additional LSF that has not received SBIR funding located within a 

0.1 miles radius from the origin LSF is associated with a 2.71 percent increase in the SBIR funds 

secured by the origin firm. However, the impacts of non-SBIR LSFs located in more distant 

spatial units are statistically insignificant. These empirical results therefore support the presence 

of proximity effects only among very closely located SBIR and NON_SBIR LSFs
27

.
 
 

The presence and density of VCFs active in the life sciences and located at immediate 

proximity to the origin LSF does not have a significant impact on the level of SBIR funds 

received as none of the estimates for VCF_0.1, VCF_0.5, VCF_1, VCF_1.5, VCF_2, VCF_2.5 is 

found to be statistically significant. Hence, we do not find empirical support for the presence of 
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 Note, for instance, that clustering of two firm cohorts in side by side office parks or business incubators of typical 

size would tend to imply that firms within the cohabitating cohorts would, typically, be less than 0.2 miles apart 

from each other while firms between cohorts would be located 1-1.5 miles apart. These types of patterns will tend to 

influence all empirical measures of proximity effects and must be explicitly taken into account.  
27

 It is possible that there may be additional proximity effects between the origin LSF and firms from industries 

other than the life sciences which have received SBIR grants. The performance of the origin LSF may improve from 

proximity with non-LSF SBIR winners if knowledge specific to acquiring SBIR grants is useful, yielding positive 

coefficients.
 
To capture any such potential proximity effect, we include in  of equation  a variable that 

measures the number of non-LSF SBIR winners (NON_LSF_SBIR) that are located in the same zip code as the 

origin LSF. We examine proximity effects with non-LSF SBIR winners at the zip code rather than through a 

sequential ring specification due to the very large number of non-LSF SBIR winners which makes the ring 

specification practically intractable. For instance, in our empirical analysis, construction of a variable that would 

measure the density of non-LSF SBIRs in a single ring over a 23 years period would require 556,021,550 

calculations (14,450 non LSF-SBIR firms * 1673 LSFs * 23 years). We present the empirical results of this 

specification in Appendix Table 1 and we find that while the remaining of the parameter estimates are largely 

unchanged, the estimated coefficient of NON_LSF_SBIR is negative. As a result, we do not find empirical support 

that proximity of LSFs to firms from industries other than the life sciences which have won SBIR grants could 

improve their funding performance.  
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proximity effects from the collocation of VCFs and LSFs receiving SBIR grants
28

. Our empirical 

results indicate that the presence of universities with some research in the life sciences located 

within the same MSA with LSFs acquiring SBIR funds have a positive, but relatively modest, 

effect on their funding and each additional proximate university contributes a 0.18% increase. 

We also find that LSFs located in regions with high concentration of businesses, an indicator of 

urbanization economies, benefit from such environment and associated agglomeration effects 

and have higher average levels of SBIR funding.   

Our empirical results suggest that the individual characteristics of the LSFs in the sample 

also affect their levels of SBIR funding. Our estimates suggest that biopharmaceutical LSFs 

accumulate, on average, 7% more SBIR funds than all other LSFs in the sample. Experience and 

prior success in acquiring SBIR grants also matter. PreviousSBIR is statistically significant and 

an additional $1000 raised within the previous five years by the origin LSF is expected to 

generate a 0.28 percent increase in SBIR funds at present time. The age and size of LSFs, 

however, do not have a distinguishable impact on the amount of SBIR funds secured by these 

firms.  

We also find that LSF‟s patenting activity does not explain the amount of SBIR funds 

secured by LSFs in the sample. While our measure of patenting activity is aggregate in nature 

and somewhat crude, it still suggests that a strong overall patent portfolio is not associated with 

success in SBIR grant activity among LSFs in our sample. Finally, we find that the policy 

changes which resulted in a significant shift in the overall amount of SBIR funds distributed by 

the various agencies, is closely reflected in the average amount secured by LSFs in our sample.  
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 As we explain in footnote 13 we also built models where the density of VCFs is measured at the MSA level.  

Because the density of VCFs at the MSA level and the count of research universities at the same level were highly 

correlated (correlation coefficient 0.78) we could only use one of the two variables at a time as the multicollinearity 

index of the model where both variables were included raised significant inference concerns.  When the density of 

VCFs in the MSA replaces the density of research universities in the MSA, the empirical estimates suggest that the 

presence of variable of interest is statistically significant and positive but it has a very small effect on the amount of 

SBIR funds raised by a given LSF.  The rest of the empirical results remain robust as discussed in the base model in 

Table 3. 
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7. Discussion and Concluding Comments 

 

Prompted, in large part, by the apparent clustering of firms in knowledge industries, a large 

number of studies have examined the effects of spatial proximity on firm knowledge and 

innovation. Numerous theoretical and empirical contributions have demonstrated that the 

innovative performance of firms can benefit from spatial proximity with other like firms but 

fewer studies have attempted to measure the exact geographic scope of such proximity effects. 

Those studies that do measure them have typically focused on the outer limits of the proximity 

effects and, most often, have concluded that such spatial externalities extend over long 

geographic distances.  Little attention, however, has been given to the strength and scope of 

proximity effects among firms located in close vicinity to one another and this is curious since 

most theoretical constructs would predict that proximity effects should be most evident among 

nearby firms. 

In this study we examine the size and geographic scope of proximity effects among life 

sciences firms that receive SBIR grants. We investigate the potential presence of proximity 

effects among all LSFs in the US that have received SBIR grants over a 23 year period while 

controlling for relevant regional and firm characteristics. From our empirical analysis we 

conclude that proximity effects among nearby firms are strong and are exhausted within a radius 

of 1.5 miles. Indeed, we find that the benefits from collocation are significantly stronger among 

firms located within one tenth of a mile from each other, a tiny distance by all measures. Our 

empirical results are consistent with those of Wallsten (2001), Aharonson et al. (2007) and 

Rosenthal and Strange (2003), the few studies that have measured spatial externalities in the 

immediate proximity of firms. 

By focusing on the life sciences alone, we are able to distinguish the potential sources of 

proximity effects by the type of knowledge they might possess (e.g. SBIR LSFs, non-SBIR 
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LSFs, VCFs, non-LSFs receiving SBIR funds) and such distinction is important for 

understanding the modes of knowledge transfer that might contribute more significantly to 

proximity effect. Furthermore, by focusing on a single industry we examine proximity effects in 

a theoretically consistent way since knowledge spillovers, network externalities and other forms 

of knowledge transfers are generally presumed to occur mainly across firms of the same 

industry.   

Importantly, our focus on a single industry allows a detailed look in the underlying data 

and relevant insights. By examining the exact geographic location of each firm in our sample we 

can rationalize how proximity effects can materialize in very short distances.  A large number of 

firms in our sample are found to cohabitate in the same office complexes or business incubators, 

in some cases being located a few yards from each other and frequently at a walking distance. 

These phenomena are, in part, specific to the types of firms we study– smaller firms that 

generally need less space and more technical assistance during their early stages of development.  

Accordingly, proximity effects among larger firms with more human resources and more 

extensive networks could prove of greater geographic scope. Still, we contend, that from our 

study we can draw some useful conclusions that are broadly applicable.  

First, we find that to fully understand the true nature of proximity effects and the 

mechanisms that make them possible we must first measure them with some degree of accuracy. 

This implies the need to evaluate their strength and geographic scope in various settings. Second, 

since knowledge spillovers, network externalities and other forms of knowledge transfers are, 

generally, not directly observable and difficult to measure, starting with distances and industries 

where proximity effects most likely exist would seem to make sense. Third, by linking the size of 

proximity effects to sources of particular types of knowledge, specific physical assets and 

patterns of industrial organization, useful policy recommendations maybe possible. For instance, 

in our study we find that spatial externalities are particularly strong in very close proximity and 
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such vicinity most often materializes through collocation of small life sciences firms in office 

parks, business incubators and like facilities. If this result could be generalized, it would strongly 

suggest that there is significant scope for public investments in such facilities and associated 

services. In fact, such a result would not only suggest that in the absence of public investment a 

market failure would likely result (less than socially optimal capital investment) but it would also 

imply that the burden of such investment should be shared by governments in locales where 

direct, indirect, induced and employment effects could materialize.   

Understanding the exact nature, geographic scope, mechanisms and assets that nurture 

proximity effects is of interest to public granting agencies promoting innovation, directors of 

national and regional industrial development policies, directors of technology transfer at different 

universities, venture capital investors, designers of facilities and developers of clusters, and all 

kinds of policy makers. The interest is understandable as knowledge spillovers, network 

externalities and other forms of knowledge transfers that yield improvements in industrial 

innovation are about as close to a “free lunch” as one gets in economics. Measuring the size and 

scope of proximity effects is an important first step to fully understanding and we find here that 

“starting small” can provide important insight.  
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Figure 2a. Life Sciences Firms with the Highest Sum of SBIR Funds from  1983 to 2006. 

 

Figure 2a
Click here to download colour figure: Figure 2a.docx 

http://www.editorialmanager.com/sbej/download.aspx?id=22827&guid=25a07f3b-2293-471b-8af7-5f36e0dda901&scheme=1


1 

 

 

Figure 2b. Life Sciences Firms with Above Average Sum of SBIR Funds from 1983 to 2006. 
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Figure 2c. Life Sciences Firms with Below Average Sum of SBIR Funds from 1983 to 2006. 
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Figure 2d. Life Sciences Firms With the Lowest Sum of SBIR Funds from 1983 to 2006. 
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